Ecomorphological change in lobe-finned fishes (Sarcopterygii): disparity and rates

by

Bryan H. Juarez

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Ecology and Evolutionary Biology) in the University of Michigan 2015

Master's Thesis Committee:

Assistant Professor Lauren C. Sallan, University of Pennsylvania, Co-Chair Assistant Professor Daniel L. Rabosky, Co-Chair Associate Research Scientist Miriam L. Zelditch © Bryan H. Juarez 2015

ACKNOWLEDGEMENTS

I would like to thank the Rabosky Lab, David W. Bapst, Graeme T. Lloyd and Zerina Johanson for helpful discussions on methodology, Lauren C. Sallan, Miriam L. Zelditch and Daniel L. Rabosky for their dedicated guidance on this study and the London Natural History Museum for courteously providing me with access to specimens.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	ii
LIST OF FIGURES	iv
LIST OF APPENDICES	v
ABSTRACT	vi
SECTION	
I. Introduction	1
II. Methods	4
III. Results	9
IV. Discussion	16
V. Conclusion	20
VI. Future Directions	21
APPENDICES	23
REFERENCES	62

LIST OF TABLES AND FIGURES

TABLE/FIGURE

II. Cranial PC-reduced data	6
II. Post-cranial PC-reduced data	6
III. PC1 and PC2 Cranial and Post-cranial Morphospaces	11-12
III. Cranial Disparity Through Time	13
III. Post-cranial Disparity Through Time	14
III. Cranial/Post-cranial Disparity Through Time	15

LIST OF APPENDICES

APPENDIX

A. Aquatic and Semi-aquatic Lobe-fins	24
B. Species Used In Analysis	34
C. Cranial and Post-Cranial Landmarks	37
D. PC3 and PC4 Cranial and Post-cranial Morphospaces	38
E. PC1 PC2 Cranial Morphospaces	39
1-2. Era-scale	39
3-7. Period-scale	40
8-13. Epoch-scale	42
14-18. Age-scale	45
F. PC1 PC2 Post-cranial Morphospaces	48
1-2. Era-scale	48
3-7. Period-scale	49
8-13. Epoch-scale	51
14-18. Age-scale	54
G. PC Diversity Through Time	57
1. Cranial	57
2. Post-cranial	58
3. Cranial:Post-cranial	59
H. Coordinate and PC-reduced data Cranial and Post-cranial Rate Matrices	60

ABSTRACT

Patterns of vertebrate cranial/post-cranial trait diversification are not well-understood. Two ecological hypotheses, the 'head-first' model and the 'stages' model, predict the ordered decoupling of cranial/post-cranial ecomorphological diversification. Rate (tempo) analyses and macroevolutionary model-fitting (mode) analyses are often used to test whether cranial traits or post-cranial traits diversify earlier in vertebrates. Here we reconstructed the tempo and mode of cranial/post-cranial trait evolution in lobe-finned fishes (Sarcopterygii), a group containing coelacanths, lungfishes, and tetrapodomorph fishes, to test for differences in the timing of vertebrate cranial/post-cranial trait diversification. We collected full-skeletal geometric morphometric coordinate and PC-reduced data for 57 species of aquatic and semi-aquatic lobefins since the Paleozoic. We performed rate, raw disparity through time, phylogenetic signal and model-fitting (multivariate BM, EB and OU) analyses using both coordinate data and PCreduced data but did not model-fit the coordinate data due to computational constraints. The BM (best fit model) rate parameter is highest for post-cranial traits but cranial trait disparity is highest throughout the majority of lobe-fin evolution, supporting the 'head-first' model, with peaks in the Middle to Upper Devonian and Jurassic. We also find that PCA reduction increases trait variance, creating bias in favor of early post-cranial trait diversification. We conclude that cranial 'head-first' ecomorphological diversification drove the early Paleozoic radiation of aquatic and semi-aquatic lobe-fins, but more research may be needed to understand conflicting patterns in the Mesozoic when taxonomic diversity was substantially lower among "living fossils".

vii

Ecomorphological change in lobe-finned fishes (Sarcopterygii): disparity and rates By: Bryan H. Juarez¹ and Lauren C. Sallan²

¹Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor; bryanhjuarez@gmail.com

²Earth and Environmental Science & Evolution Cluster, University of Pennsylvania; lsallan@sas.upenn.edu

Keywords: Lobe fin, geometric morphometrics, PCA, Brownian Motion, Early Burst

Introduction

Our knowledge of the role of ecology in determining the relative timing and rate of cranial to post-cranial trait evolution is limited. High rates of evolution (tempo) and support for different models (mode) of evolution are often used as indicators of the relative timing of trait diversification (Sallan and Friedman, 2012; Anderson et al. 2013; Muschick et al. 2014). Various hypotheses that have been proposed explain how and why the rates and timing of cranial and post-cranial evolution might differ. Streelman and Danley (2003) proposed the 'stages' model which says that habitat diversification precedes trophic morphological diversification in vertebrates. More broadly, Streelman and Danley's (2003) hypothesis may be viewed as the β niche of a group evolving before its α niche *sensu* Ackerly et al. (2006) where macrohabitat affinity (β niche) diversification precedes within-community niche (α niche) diversification. A second hypothesis, the 'head-first' model, uses the converse argument and ascribes more importance to the cranial (α niche) skeleton rather than the post-cranial (β niche) skeleton as the primary driver of early ecomorphological diversification (Sallan and Friedman, 2012).

Few empirical studies have attempted to answer whether cranial functional morphology, associated with the use of new resources (α niche), or post-cranial functional morphology, associated with locomotion through different habitats (β niche), contributes most to the ecomorphological diversification of vertebrates. Even fewer studies analyze both the tempo and mode of evolution of a group when testing the 'stages/head-first' models. Streelman and Danley (2003) support the 'body-first' (post-cranial) argument for extant vertebrates but do not provide any empirical data. Anderson et al. (2011) showed an early increase in gnathostome (including lobe-fin) jaw disparity in the early Devonian (Emsian) followed by relative stasis, indicative of a 'head-first' pattern, but did not examine post-cranial disparity. Similarly, Anderson et al. (2013) studied the tempo of early tetrapods and found a 'body-first' pattern but again did so using only cranial jaw traits, with qualitative terrestriality standing in for post-cranial change. Little can be concluded about differential cranial/post-cranial ecomorphological diversification without studying both sets of traits. Sallan and Friedman (2012) on the other hand, found cranial and post-cranial evidence that the mode of separate radiations of ray-finned (Actiopterygii) fishes showed a 'head-first' (cranial) pattern. This was the first study to use full skeletal geometric morphometric data to test the 'stages/head-first' models. Furthermore, Muschick et al. (2014) studied the mode of evolution of six ecologically-relevant traditional morphometric measurements in cichlid fishes and also found a head-first pattern although their model-fitting results did not corroborate their other analyses.

The tempo and mode of early lobe-finned fishes (Sarcopterygii), including our closest "fish" relatives, is vastly understudied in the context of modern comparative methods. Previous studies are taxonomically or methodologically limiting and study only select groups (coelacanths, lungfish or digited tetrapods), use taxonomic origination as a proxy for disparity

(Schaeffer, 1952) or use only discrete character traits including traditional morphometrics measurements (Schaeffer, 1952; Cloutier, 1991; Lloyd et al. 2011; Anderson et al. 2011; Anderson et al. 2013). Among these, Cloutier (1991) identified a shift in the rates of coelacanth cranial and post-cranial traits in the Permian. Lloyd et al. (2011) found rate differences between groups of lungfish with significant decreases toward the crown; however, this was tested using (primarily cranial) cladistic characters. Other aquatic vertebrate groups have also been shown to undergo similar patterns of ecomorphological diversification. Ray-finned fishes often exhibit a 'head-first' pattern early in their history (Dornburg et al. 2011; Sallan and Friedman, 2012; Muschick et al. 2014; Price et al. 2014) as well as cranial (Alfaro et al. 2009) and post-cranial (Dornburg et al. 2011) rate shifts.

We are interested in which pattern of skeletal diversification is characteristic of the majority of vertebrate geological history. We chose lobe-fins to study the 'stages/head-first' model due to their long phylogenetic history and availability of museum specimens/fossil reconstructions. Lobe-fins have diversified over a long 419 Ma history (Zhu et al. 2009) and have persisted through several mass extinction and mass depletion events. The diversification of aquatic lobe-fins preceded that of semi-aquatic digited tetrapods (Sallan and Coates, 2010). Early tetrapods did not evolve and diversify until the late Devonian <382.7 Mya (Clack, 2006) and Carboniferous (Sallan and Coates, 2010), respectively. Of coincident stochastic, catastrophic events, the Devonian Hangenberg mass extinction (359 Mya), unlike the Devonian Kellwasser mass depletion (374 Mya), restructured ecosystems and resulted in a bottleneck of the major fish groups such that terrestrial lobe-fins became dominant at the expense of aquatic and semi-aquatic lobe-fins (Sallan and Coates, 2010). Previous studies have noted that early lobe-fin diversity is much higher than previously realized (Clack, 2006). Lobe-finned fishes, whose fossil record

contains >600 species (this study), remain a largely understudied group in terms of their diverse functional morphology. Here we study the tempo and mode of aquatic and semi-aquatic lobe-fin cranial and post-cranial functional traits to test the 'stages/head-first' models of ecomorphological diversification over 419 Ma and describe the associated changes in skeletal disparity at four different geological time scales.

Methods

We found >600 species with partial remains (Appendix A) using a literature search; our analyses use 57 species of fully-preserved (cranial and post-cranial) lobe-fins (Appendix B). Stratigraphic upper and lower dates of origination were collected from the literature for all taxa (Appendix B). We collected phylogenetic data using *Mesquite* version 2.75 (Maddison and Maddison, 2011) for groups primarily from Bockmann et al. (2013) with some modifications (Kemp, 1994; Cloutier and Ahlberg, 1996; Clement, 2005; Friedman, 2007; Clement, 2009; Snitting, 2009; Wen et al. 2013). These data constitute every major group of lobe-fins (Bockmann et al. 2013) with the exception of canowindrids. Of the sampled groups, every group had several species as representatives in our data with the exception of earlier lobe-fins, onychodontiforms, rhizodonts and elpistostegalians+relatives which were represented in our data set by Guiyu, Strunius, Gooloogongia, and Tinirau, respectively. All geometric morphometric data were taken from literature reconstructions or from museum specimens from the London Natural History Museum. In cases where reconstructions from the literature featured varying jaw positions, pectoral fin positions, or pectoral and pelvic fins placed along the midline of the organism rather than on its lateral side indicating bilateral symmetry, we used *Photoshop* to adjust jaw and fin positions to standard closed and lateral positions, respectively.

Ecologically relevant landmarks and semilandmarks were collected and processed using *tpsDig* version 1.4 (Rohlf, 2004), *tpsDig2* version 2.17 (Rohlf, 2013a), and *tpsUtil* version 1.58 (Rohlf, 2013b). We collected 27 and 20 cranial and 26 and 150 post-cranial landmarks and semilandmarks, respectively (Appendix C). As noted above, previous studies that have used geometric morphometrics to study lobe-fins have only studied a single lobe-fin group (Friedman and Coates, 2006) or only the cranial (jaw) morphology of single group (Anderson et al. 2011; Anderson et al. 2013). This necessitated the use of a new set of landmarks to encompass high lobe-fin cranial and postcranial disparity. We designed a landmark scheme based on known morphological indicators of prey capture and locomotion (Boily and Magnan, 2002; Webb, 1982; Webb 2002; Webb and Weihs, 2011) such as jaw/opercular structure and fin position/shape to serve as proxies for a species' α - and β -niche. The tree, species images, and code used in this study are all available from the authors upon request.

We superimposed each configuration (the cranial and post-cranial landmarks) to remove the effects of translation, rotation and scaling using *geomorph* version 2.1.1 (Adams and Otarola-Castillo, 2013) in R version 3.13 (R Development Core Team, 2008). Semi-landmarks were slid using the bending-energy criterion. The resulting coordinates were averaged for each genus; all analyses used genus-level averaged data. For all analyses that could be done using the full set of shape variables (all coordinates), we used all the data. For analyses that could not be done using such high-dimensional data given the small number of taxa in this study, we reduced the dimensionality using a principal components analysis (PCA, Table 1-2). The PCs in our cranial and post-cranial datasets were analyzed as a single multivariate dataset using the model-fitting methods described below. Our analyses of lobe-fin tempo includes analyses of rate and estimates

of pairwise raw disparity relative to time whereas our analyses of mode encompass model-fitting

approaches and PCA analyses. All analyses in this study were performed in *R* version 3.13.

Table 1. Cranial PC-reduced data. St. Dev.; standard deviation, Propor. Var.; proportion of variance, Cumul. Propor.; cumulative proportion of variance.

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10
St. Dev.	0.192	0.097	0.091	0.079	0.071	0.059	0.058	0.051	0.045	0.041
Propor. Var.	0.412	0.105	0.093	0.070	0.057	0.039	0.037	0.030	0.023	0.019
Cumul. Propor.	0.412	0.517	0.610	0.680	0.736	0.775	0.812	0.842	0.865	0.884

Table 2. Post-cranial PC-reduced data. St. Dev.; standard deviation, Propor. Var.; proportion of variance, Cumul. Propor.; cumulative proportion of variance.

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10
Std. Dev.	0.210	0.089	0.074	0.071	0.057	0.050	0.038	0.036	0.033	0.030
Propor. Var.	0.555	0.099	0.069	0.063	0.041	0.031	0.018	0.017	0.014	0.011
Cumul. Propor.	0.555	0.654	0.723	0.787	0.828	0.859	0.877	0.894	0.908	0.919

Tree-scaling and PCA analyses

As previously mentioned, many studies have fit macroevolutionary models to determine patterns of diversification, but few have examined the order of skeletal trait diversification and even fewer; used fossil data. Paleontological data, unlike neontological data, must be fitted to macroevolutionary models using trees that are time scaled using stratigraphic information, which produce non-ultrametric trees with branch lengths based on time. The use of non-ultrametric trees in this study (and every other study which uses non-ultrametric trees) restricts us from performing any tree transformations. We time-scaled our trees using the 'equal method' (Bell and Lloyd, 2014), which increases the time of root divergence and apportions time equally to later zero-length branches, in favor of the 'mbl' method (Laurin, 2004), which subtracts time apportioned to later branches to maintain the temporal structure of events. We chose minimum branch lengths of 1 Ma and resolved polytomies by order of appearance using the 'timeres' option in the *paleotree* package version 2.3 (Bapst, 2012). We preferred the 'equal' over the 'mbl' method because preliminary analyses showed that Early Burst (EB, see below) model

optimization failed more frequently when analyzing our post-cranial data (>99% of trees). However, EB model optimization still failed often when fitting post-cranial data (>97%), and subsequently cranial data (<40%). We assume that unsampled trees do not have a large effect on our results; most species have a small 'lower' and 'upper' age of origination range (standard deviation = 9.46 Ma). In this study we used the first 1000 optimized trees for each analysis and average across each tree to calculate relevant statistics and p-values.

We used *geomorph* and the first tree from our model-fitting analyses to plot cranial and post-cranial PCs 1-4 according to a color scheme corresponding to different lobe-fin groups. Each color-coded point corresponds to one of nine monophyletic groups of early lobe-fins concordant with Bockmann et al. (2013). Additionally, we plotted cranial and post-cranial PCs 1 and 2 at the Era, Period, Epoch, and Age geologic time scales to qualitatively analyze changes in morphospaces through time. Some PC plot bins contain >1 Period, Epoch, or Age to accommodate low diversity/limited sampling, (e.g. Silurian and Mesozoic).

Disparity and Rate Analyses

One benefit that fossil data has when determining the order of skeletal diversification is that fossils allow us to directly quantify raw disparity relative to time. We calculated raw disparity for each sampled bin for the Era, Period, Epoch, and Age time-scales using *geomorph* to test whether cranial/post-cranial diversification patterns are emergent at different time scales. We also conducted two forms of pairwise disparity tests for all consecutive geological intervals. The first pairwise disparity test we used was, *morphol.disparity* in *geomorph*, which we ran for 1000 iterations using both our coordinate and PC-reduced data. *morphol.disparity* uses group disparity as a test statistic and evaluates it through permutation where the residuals are randomized between groups. We recoded *morphol.disparity* to also output 95% confidence

intervals using a bootstrapping technique. The second test we used was a new kind of "loglikelihood ratio test", different from the more frequently used log-likelihood ratio test, this new "log-likelihood ratio test" tests for differences in the variance between pairs of time bins (Finarelli and Flynn, 2007). We then conducted analyses of rate using the *compare.evol.rates* function in *geomorph* for which we used the coordinate and PC-reduced data and ran for 1000 iterations. *compare.evol.rates* assumes a Brownian Motion (BM) process and uses a BM rate formula as well as data simulated using BM to test for different evolution rates between clades, using pairs of evolution rates as a test statistic. This was done, assuming that the BM model describes our data well, to study potential differential group contributions to the analyses performed in this study.

Model-fitting analyses

To fit the models to our data, we used an unpublished multivariate version of the *fitContinuous* function in *geiger* (Harmon et al. 2008), *fitContinuousMV*, (provided to us courtesy of Graham Slater) and *ouchModel* in *mvSLOUCH* (Bartoszek et al. 2012). *fitContinuousMV* was used to fit the BM and EB models to our data while *ouchModel* was used to fit the OU (Ornstein-Uhlenbeck) model since *fitContinuousMV* requires a tree transformation before fitting the OU model but *ouchModel* does not. We use BM as the null model with EB showing high rates of evolution concentrated at the root. We included OU in this analysis because OU-like processes have been shown to fit paleontological bony fish (ray-finned fish) data (Sallan and Friedman, 2012). Support for an OU process may be interpreted as early or late divergence depending on the evolutionary rate and rebound parameters. We collected log-likelihoods, AIC scores (Akaike, 1974), AICc scores, and akaike weights for the first set of 1000 trees and data that was successfully optimized. Lastly, we used *geomorph* to calculate the

phylogenetic signal of our shape and PC-reduced data. *geomorph* calculates phylogenetic signal using a generalized multivariate 'K-statistic' where values >1 represent high phylogenetic signal relative to the signal expected for a BM process (Blomberg et al. 2003), and uses BM simulations to test for statistical significance under the null that K = 0; simulations were ran for 1000 iterations.

Results

PC Plots

All species were plotted on PC1 PC2 cranial and post-cranial morphospaces (Fig. 1-2). PC3 and PC4 cranial/post-cranial morphospaces were also plotted (Appendix D.1). The all-species PC1 morphospace (Fig. 1) shows us two distinct clusters of morphotypes, one consisting of coelacanths/lungfish and a second consisting of all other lobe-fins. This discrete difference contributes 41.2% (PC1) of the cranial trait variance. PC1 depicts variation from an elongated anterior skull/jaw with a small coronoid process (such as *Guiyu*) to a much shorter anterior skull/jaw with a large coronoid process typical of coelacanths and lungfishes, reflecting a stronger, faster bite and developed jaw musculature. Coelacanths and lungfish span the entirety of cranial PC2 morphospace while other groups clump around the center value with the exception of *Strunius*, a late-diverging (Middle Devonian) onychodontiform. Cranial PC2 is aligned with the disparity between the deepness of the skull and length of primarily the rostrum, reflecting mostly differences in coelacanth/lungfish feeding strategy in addition to the cranial morphology on the positive extreme of PC1.

The all-species PC2 morphospace (Fig. 2) shows a relatively more continuous distribution between groups, generally ranging from coelacanths to lungfish to other lobe-fins. This continuous shift contributes 55.5% (PC2) cumulative post-cranial trait variance. Post-

cranial PC2 is a dimension of variation from short bodies with short distances between each fin (typical of coelacanths) to elongated bodies with posteriorly-placed (including fused) fins with the exception of an anteriorly-placed pectoral fin, a body shape typical of lungfishes and semi-aquatic lobe-fins. Post-cranial PC2 reflects approximately a 45° change in the angle between the first dorsal fin and the pelvic fin as well as the expansion of the fin bases and the space between them. Cranial PC1 and PC2 plots at the Era scale (Appendix E.1-2), Period scale (Appendix E.3-7), Epoch scale (Appendix E. 8-13) and Age scale (Appendix E. 14-18) and post-cranial PC1 and PC2 plots at the Era scale (Appendix F. 3-7), Epoch scale (Appendix F.1-2), Period scale (Appendix F.3-7), Epoch scale (Appendix F. 14-18) show a general bimodal pattern between coelacanth/lungfish and other semi-aquatic lobe-fins early in geologic history. Later in geologic history (post-Devonian) coelacanths and lungfish are the sole members of time bins, but expand through morphospace rather than clumping.

Analyses of Disparity and Rate

We plotted disparity at 4 different geologic time scales for our coordinate data (Figs. 3-5) and PC-reduced data (Appendix G. 1-3) to observe potential differences in disparity through time between cranial and post-cranial data as well as the relative cranial to post-cranial disparity. Cranial (Fig. 2) and post-cranial (Fig. 3) disparity both generally decrease through geologic time. We observe that significant changes in both cranial and post-cranial disparity happen over different geological scales. Our analyses suggest that cranial disparity significantly increases into the Middle/Upper Devonian (Givetian-Frasnian), as well as into the Mesozoic (Lower Triassic and Cretaceous) and significantly decreases into the Middle/Upper Devonian (Frasnian) and Mesozoic (Lower Triassic), and significantly decreases in the Upper Devonian (Famennian),

Fig. 1. PC1 and PC2 Cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Fig. 2. PC1 and PC2 Post-cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Fig. 3. Cranial disparity through time at the Era (top left), Period (top right), Epoch (bottom left), and Age (bottom right) geologic time scales. Dashed black lines represent 95% confidence intervals. Dotted lines represent significant likelihood-ratios. Dashed red lines represent significant permutation tests. Solid red lines represent significant likelihood ratios and permutation tests. L: Lower; M: Middle; U: Upper; S: Silurian; D: Devonian; C: Carboniferous; Tr: Triassic; J: Jurassic; K: Cretaceous; Lu: Ludfordian; Lo: Lochkovian; E: Eifelian; G: Givetian; Fr: Frasnian; Fa: Famennian.

Fig. 4. Post-cranial disparity through time at the Era (top left), Period (top right), Epoch (bottom left), and Age (bottom right) geologic time scales. Dashed black lines represent 95% confidence intervals. Dotted lines represent significant likelihood-ratios. Dashed red lines represent significant permutation tests. Solid red lines represent significant likelihood ratios and permutation tests. L: Lower; M: Middle; U: Upper; S: Silurian; D: Devonian; C: Carboniferous; Tr: Triassic; J: Jurassic; K: Cretaceous; Lu: Ludfordian; Lo: Lochkovian; E: Eifelian; G: Givetian; Fr: Frasnian; Fa: Famennian.

Fig. 5. Cranial:Post-cranial disparity through time at the Era (top left), Period (top right), Epoch (bottom left), and Age (bottom right) geologic time scales. L: Lower; M: Middle; U: Upper; S: Silurian; D: Devonian; C: Carboniferous; Tr: Triassic; J: Jurassic; K: Cretaceous; Lu: Ludfordian; Lo: Lochkovian; E: Eifelian; G: Givetian; Fr: Frasnian; Fa: Famennian.

Carboniferous, and Middle/Upper Triassic. Cranial to post-cranial disparity peaks into the Middle and Upper Devonian (Givetian and Famennian) and into the earlier Mesozoic while decreasing into the Carboniferous and later Mesozoic. PC-reduced data show a similar pattern including a significant decrease in cranial disparity into the Carboniferous, an increase in post-cranial disparity into the Givetian, and Lower Triassic/Cretaceous cranial:post-cranial disparity about equal to one. We found that 20/45 cranial and 24/45 post-cranial coordinate data pairwise rate tests (Appendix H.1-2) for each of the 9 monophyletic groups used in this study were significant. However, only 8/45 cranial and 7/45 post-cranial PC-reduced data pairwise rate tests (Appendix H. 3-4) were significant. These results, however, are dependent on post-hoc error rate correction.

Analyses of evolutionary mode

Akaike weights revealed overwhelming support for BM for both cranial and post-cranial data (73.63% and 66.15% support, respectively). The rate parameter of the BM model was highest for the post-cranial data (.013 < .015), both variances = 0. Cranial and post-cranial data had about equal EB support whereas OU support was disproportionate, post-cranial data had higher OU support (EB: 24.76% and 22.24%; OU: 1.61% and 11.61%). However, EB had a rate change parameter of zero and its rate parameter equaled the BM rate parameter, effectively making cranial and post-cranial BM model support 98.39% and 88.39%, respectively. Phylogenetic signal was insignificant for both coordinate and PC-reduced data (p > .05).

Discussion

Our coordinate and PC-reduced data disparity plots (Fig. 5 and Appendix G.3) revealed largely the same pattern, however, the PC-reduced data had a much lower absolute cranial and post-cranial disparity showing that the differences between both analyses were due to the overall decrease in raw disparity (sum of the diagonal elements of the group covariance matrix) resulting from PC reduction. Both datasets show a Givetian, Famennian, Middle/Upper Triassic and Jurassic increase in cranial/post-cranial trait diversification rates. Both datasets also show an Eifelian, Frasnian, and Carboniferous decrease or near equal rate of cranial/post-cranial trait diversification. Only the coordinate data plots suggest that the Lower Triassic and Cretaceous are both periods of high cranial/post-cranial diversification; however, our PC-reduced data suggests the opposite. All of the above disparity changes are significant with the exception of the Eifelian, Carboniferous, and the Cretaceous. However, the corresponding Middle and Upper Triassic cranial and post-cranial PC plots (Appendices E.13 and F.13) indicate that the high cranial/postcranial trait diversification pattern seen in this time may only be an apparent increase; our dataset during the Middle and Upper Triassic included only coelacanths. We can confidently say that the Givetian, Famennian, Middle and Upper Triassic, and Jurassic were all periods of high cranial/post-cranial trait diversification while the Frasnian was a period of low cranial/postcranial trait diversification. Cranial/post-cranial disparity rates are typically decoupled except during the Frasnian and Lower Triassic where cranial and post-cranial disparity both increase. The pairwise rate analyses between the coordinate data and the PC-reduced data show contradicting results. More pairwise tests were significant for the coordinate data, indicating differences in evolutionary rate between most lobe-fin groups. However, the PC-reduced data indicate that most lobe-fin groups have significantly similar rates of morphological evolution. Judging by the disparity and rate analyses, we argue that PC reduction systematically biases our interpretations of the tempo of lobe-fin evolution.

Our model-fitting analyses showed overwhelming support for BM (>88%) when modelfitting the first 5 and 4 cranial and post-cranial PCs, respectively. BM support may indicate

similar timing of evolution, may only reflect the relationship between little morphological change over a relatively long time scale (419 Ma, Appendices E-F), or may reflect the nature of many PCs with low variance (Tables 1-2) distributed throughout our tree, rather than few PCs with high variance distributed towards the root of our tree (PCs 1-2, Tables 1-2). A lack of EB support may be taken as evidence for an equal rate of cranial to post-cranial trait diversification. We observed more instances of significant high periods of cranial trait diversification throughout lobe-fin evolutionary history than the converse.

We have shown how PC reduction leads to apparent increases in post-cranial trait change as well as differences in between-group rates. Our interpretation of the model-fitting results is rendered dubious given our findings of how PCA biases our other results and despite >88% model support, BM might not be the true mode of lobe-fin evolution. The combined arbitrary use of X number of PCs and our current knowledge of PCs necessitates the development of new multivariate/multirate comparative methods. Problems with the current treatment of multivariate data using univariate model-fitting have recently been discussed in the literature (Uyeda et al. 2015). Uyeda et al. (2015) describes in detail how analyzing highly-multivariate data univariately essentially turns constant-rate multivariate BM data (analyzed univariately, unlike in this study) into data appearing to have evolved by an EB process.

We argue that lobe-fin cranial functional ecomorphological diversification precedes postcranial ecomorphological diversification, in support of the 'head-first' model. In all of our analyses we used 5 cranial PCs and 4 post-cranial PCs, the 4 post-cranial PCs had a higher cumulative variance than the 5 cranial PCs, however, we still observed more instances of high cranial to post-cranial trait diversification. Our coordinate data supports high cranial/post-cranial diversification during the Givetian, Famennian, Lower Triassic and Jurassic. Our coordinate data

also suggests, as others have before (Cloutier, 1991; Lloyd et al. 2011) that each group of lobefin evolves at different rates while our PC-reduced data showed the opposite, implying that multi-rate macroevolutionary models would best fit our data. These results as well as the results of Uyeda et al. (2015) "highlight the need for truly multivariate [and multirate] phylogenetic comparative methods". More data are needed to more accurately infer the phylogenetic signal of our data, the low (<1) phylogenetic signal of our PC-reduced data approached p<.05significance. It is possible that limited sampling of randomly-resolved trees biased our results but this is unlikely given low species origination date ranges (standard deviation = 9.46 Ma). The limited sampling of species relative to the abundant diversity of early lobe-fins (Appendix A) may have also biased our results. However, we stress that our analysis includes most major groups of early lobe-fin (Bockmann et al. 2013) and that low taxonomic sampling is only apparent; most early lobe-fin species are lungfish or other coelacanths known exclusively from limited remains such as tooth plates or scales. In fact, given the general pattern of taxonomic diversity of lobe-fins in the fossil record (Sallan and Coates, 2010), we argue that our results are realistic due to the relatively low and then high diversity of coelacanth/lungfish to other lobe-fins during the Paleozoic and then into the Mesozoic. It is also possible that our phylogenetic signal, and to a lesser extent, disparity and rate analyses were subject to bias from statistical noise introduced from our landmark scheme, resulting in many PCs of low (1%) to moderate (5%) variation. However, here we rely exclusively on significant results to determine the order of skeletal diversification.

It has been suggested that high rates of cranial (jaw) evolution drove lobe-fin diversification, especially in the Emsian-Eifelian (Anderson et al. 2011; Anderson et al. 2013). Anderson et al (2011) performed an analysis which contained many groups of early jawed-fish to

infer an Emsian-Eifelian peak of cranial diversification followed by stasis. Friedman and Coates (2006) also suggests post-Devonian stasis in lobe-fin ecomorphology. However, here we show evidence for a later early lobe-fin peak of cranial diversification Eifelian-Givetian, followed by a second (Famennian), third (Lower Triassic) and fourth (Jurassic) peak rather than an Emsian-Eifelian peak followed by stasis. We presented evidence that the Frasnian was a period of low cranial/post-cranial diversification; however, both cranial and post-cranial traits were increasing at this time. Sallan and Coates (2010) found that only the end-Famennian/Devonian Hangenberg mass extinction (and not the end-Frasnian Kellwasser mass depletion) significantly changed early vertebrate compositions. Our evidence indicates that while the Kellwasser mass depletion was not associated with decreased rates of morphological evolution, the Hangenberg mass extinction selectivity. It is clear that early aquatic and semi-aquatic lobe-fins have a long evolutionary history of ecomorphological diversification which may be explained by extinction selectivity and differences in between-group rates of evolution.

Conclusion

In conclusion, current data show evidence for a 'head-first' pattern where cranial ecomorphological diversification precedes that of the post-cranial early and throughout the majority of aquatic and semi-aquatic lobe-fin evolution. The inclusion of more Mesozoic taxa has potential to change the observed pattern, however, we show evidence that the relative group diversities in this study are similar to previous estimates. These observations are similar to previous observations on the cranial diversification of lobe-fins and the effect of mass extinctions vs. mass depletions on trait diversification. We also discuss the systematic bias that PCA introduces into our evolutionary tempo and mode analyses and stress the need for new

multivariate, multirate phylogenetic comparative methods. It is possible that among these methods, a method of weighing PCs during comparative analyses will alleviate some PCA bias. Lastly, we emphasize the high amount of taxonomic and morphological disparity exhibited by these groups of early lobe-fins, particularly that of post-Devonian coelacanths and lungfish which are often overlooked due to the false assumption of them having very low diversity.

Future Directions

Given the distinct patterns of ecomorphological change and methodological problems identified in this study, future goals of this project are to identify in detail how these patterns might differ over shorter time scales with much higher sampling (Devonian and Mesozoic) while using updated methodologies. A first step might be to identify why so few trees were able to be model-fitted, it is possible that failure to model-fit certain pairs of trees and data reflect a problem with the optimization code we used or a problem with our stratigraphic data. The Devonian has a wealth of other well-preserved lobe-fin taxa which were not sampled in this study that when studied in isolation, might reveal new, taxon-specific changes in morphospace. Likewise, more sampling is needed in the Mesozoic to qualify the patterns observed here as real changes in disparity, not just artifacts of limited sampling or methodology. The lobe-fin fossil record is filled with partial remains which might also help identify potential (preservational) bias in the results presented here. No papers have studied the relationship between taxonomic diversity and morphological disparity using modern comparative methods; doing so my further elucidate patterns of lobe-fin evolution and change preconceptions of lobe-fins as "low-disparity lineages" or "living fossils". Methodologically, current studies are limited in their ability to fit macroevolutionary models to highly multivariate (coordinate) data. This may be achieved by transforming the PC variance of all PCs for all taxa, such that the structure of the sum of

pairwise Euclidean distances between species is maintained, relative to the coordinate data. Although this may render individual PCs uninformative as traits, it will allow us to perform a PC reduction (possibly by using consecutive permutation tests to eliminate low variance PCs) while controlling for univariate PC bias described by Uyeda et al. (2015). APPENDICES

APPENDIX A

Appendix A. Aquatic and semi-aquatic lobe-fins identified in this study.

IIX A	A Aquatic and semi-	aquatic lobe-fins	a identified in this study.	30	Arganodus	tiguidiensis	Soto and Perea, 2010
#	Camua	anosiaa	Citation	31	Ariguna	formosa	Kemp, 1994
#	Genus	species	Charle 2002	32	Asiatoceratodus	atlantis	Kemp, 1998
1	Acaninosiega	gunnari	Clack, 2002	33	Asiatoceratodus	sharovi	Vorobyeva, 1967
2	Acherontiscus	caledoniae	Carroll, 1969; Carroll, 1998; Panchen,	34	Asiatoceratodus	tiguidensis	
3	Achoania	jarviki	Zhu et al. 2001	35	Atlantoceratodus	iheringi	Cione et al. 2007
4	Adelargo	schultzei	Johanson and Ritchie, 2000	36	Atlantoceratodus	patagonicus	Agnolin, 2010
5	Adelogyrinus	simnorhynchus	Brough and Brough, 1967	37	Axelia	elegans	
6	Adelospondylus	watsoni		38	Axelia	robusta	
7	Adololopas	moyasmithae	Campbell and Barwick, 1998	39	Axelrodichtys	araripensis	Forey, 1998
8	Allenypterus	montanus	Lund and Lund, 1984	40	Axelrodichtys	maisevi	de Carvalho, 2013
9	Alcoveria	brevis		41	Aztecia	mahalae	Johanson and Ahlberg, 2001
10	Amadeodipterus	kencampbelli	Young and Schultze, 2005	42	Balanerpeton	woodi	<i>e</i> ,
11	Ameghinoceratodus	iheringi	Apesteguia et al. 2007	43	Banhedidae	noour	
12	Andreyevichthys	epitomus		44	Baphetes		
13	Antlerpeton	clarkii	Thomson, 1998	15	Barameda	deciniens	Long 1989
14	Apateon	caducus	Sanchez et al. 2010	45	Barameda	mitchalli	Holland et al. 2007
15	Apateon	gracilis		40	Banuickia	downunda	Long and Clament 2000
16	Apateon	pedestris	Sanchez et al. 2010	47	Barwickia	aownunaa	Long and Clement, 2009
17	Apatorhynchus	opistheretmus	Friedman and Daeschler, 2006	40	Deelarongia	1 .	W 1 CC 1 W/1 2012
18	Aphelodus	anapes	Kemp, 1993	49	Belemnocerca	prolata	Wendruff and Wilson, 2013
19	Archaeoceratodus	avus	Kemp, 1997	50	Belfanodus	ambilobensis	Marshall, 1986
20	Archaeoceratodus	djelleh	Kemp, 1997	51	Bogdanovia	orientalis	
21	Archaeoceratodus	rowleyi	Kemp, 1997	52	Branchiosaurus		
22	Archaeoceratodus	theganus	Kemp, 1997	53	Bruenhopteron	murphyi	Schultze and Reed, 2012
23	Archaeonectes	pertusus	Marshall, 1986	54	Bunoderma	baini	
24	Archaeotylus	ignotus	Marshall, 1986	55	Bukkanodus	jesseni	Johanson et al. 2007
25	Archichthys	portlocki	Jeffery, 2006	56	Cabonnichthys	burnsi	Ahlberg and Johanson, 1997
-e 26	Arganodus	arganensis	Martin 1979	57	Caerorhachis	bairdi	Ruta et al. 2007
20	Arganodus	atlantis	Marshall 1986	58	Callistiopterus	clappi	
21	21 Arganodus	attantis	Warshall, 1700	59	Canningius		

28 Arganodus

29

Arganodus

Case, 1921

Vorobjeva and Minikh, 1968

dorotheae

multicristatus

60	Canowindra	grossi		92	Ceratodus	kaupi	Marshall, 1986
61	Caridosuctor	populosum	Lund and Lund, 1984	93	Ceratodus	latissimus	
62	Casineria	kiddi		94	Ceratodus	madagascariensis	Marshall, 1986
63	Cathlorhynchus	trismodipterus		95	Ceratodus	minor	Marshall, 1986
64	Cathlorhynchus	zengi		96	Ceratodus	multicristatus	Marshall, 1986
65	Ceratodus	africanus	Soto and Perea, 2010	97	Ceratodus	nageshwarai	
66	Ceratodus	altus		98	Ceratodus	nargun	Marshall, 1986
67	Ceratodus	arenaceus		99	Ceratodus	obtusus	
68	Ceratodus	arganensis	Marshall, 1986	100	Ceratodus	parvus	
69	Ceratodus	argentinus	Apesteguia et al. 2007	101	Ceratodus	pectinatus	Marshall, 1986
70	Ceratodus	avus	Marshall, 1986	102	Ceratodus	planasper	
71	Ceratodus	bovisrivi		103	Ceratodus	planus	
72	Ceratodus	concinnus	Marshall, 1986	104	Ceratodus	priscus	
73	Ceratodus	cruciferus		105	Ceratodus	rectangularis	
74	Ceratodus	curvus		106	Ceratodus	robustus	
75	Ceratodus	daedaleus		107	Ceratodus	rucinatus	
76	Ceratodus	disauris		108	Ceratodus	sturii	Kemp, 1998
77	Ceratodus	dorotheae	Marshall, 1986	109	Ceratodus	tiguidensis	Soto and Perea, 2010
78	Ceratodus	donensis		110	Ceratodus	vinslovii	
79	Ceratodus	emarginatus		111	Ceratodus	wollastoni	Marshall, 1986
80	Ceratodus	felchi		112	Chagrinia	enodis	Forey, 1998
81	Ceratodus	formosus		113	Changxinia	aspratilis	
82	Ceratodus	frazieri		114	Chaoceratodus	portezuelensis	Apesteguia et al. 2007
83	Ceratodus	gibbus		115	Chinlea	sorenseni	
84	Ceratodus	guentheri		116	Chirodipterus	australis	Miles, 1977
85	Ceratodus	gustasoni		117	Chirodipterus	liangchengi	Zhu, 2000
86	Ceratodus	heshanggouensis		118	Chirodipterus	onaweyensis	Marshall, 1986
87	Ceratodus	heteromorphus		119	Chirodipterus	potteri	
88	Ceratodus	hieroglyphus		120	Chirodipterus	wildungensis	Marshall, 1986
89	Ceratodus	humei	Marshall, 1986	121	Chrysolepis	orlensis	
90	Ceratodus	hunterianus		122	Cladarosymblema	narrienense	
91	Ceratodus	kannemeyeri		123	Coccoderma	bavaricum	

124	Coccoderma	gigas		156	Ctenodus	ornattis	
125	Coccoderma	nudum		157	Ctenodus	quadratus	
126	Coccoderma	suevicum	Forey, 1998	158	Ctenodus	robertsoni	Sharp and Clack, 2013
127	Coelacanthopsis	curta		159	Ctenodus	romeri	Sharp and Clack, 2013
128	Coelacanthus	banffensis		160	Ctenodus	serratus	
129	Coelacanthus	elegans	Moy-Thomas, 1935	161	Ctenodus	wagneri	
130	Coelacanthus	granulatus	Forey, 1991; Moy-Thomas and Westoll, 1935	162	Delatitia	breviceps	
131	Coelacanthus	harlemensis		163	Deltaherpeton	hiemstrae	Bolt and Lombard, 2010
132	Coelacanthus	lunzensis		164	Dendrerpeton		
133	Coelacanthus	madagascariensis	Moy-Thomas, 1935	165	Densignathus	rowei	Daeschler, 2000
134	Coelacanthus	welleri		166	Devonosteus	proteus	Marshall, 1986
135	Colosteus			167	Diabolepis	speratus	Campbell and Barwick, 2001
136	Conchodus	elkneri	Marshall, 1986	168	Dictyonosteus	arcticus	
137	Conchodus	jerofjewi	Marshall, 1986	169	Diplocercides	davisi	
138	Conchodus	ostreaeformis	Marshall, 1986	170	Diplocercides	heiligenstockiensis	
139	Conchodus	parvulus	Marshall, 1986	171	Diplocercides	jaekeli	
140	Conchopoma	arctatum	Marshall, 1986	172	Diplocercides	kayseri	
141	Conchopoma	edesi	Marshall, 1986	173	Diplopterus	agassizi	
142	Conchopoma	exanthematicum	Marshall, 1986	174	Diplurus	longicaudatus	
143	Conchopoma	gadiforme	Kuhn, 1967; Thomson, 1969	175	Diplurus	newarki	Shultze, 2004
144	Crassigyrinus	scoticus		176	Dipnorhynchus	cathlesae	
145	Cryptolepis	grossi		177	Dipnorhynchus	kiandrensis	Marshall, 1986
146	Ctenodus	allodens	Sharp and Clack, 2013	178	Dipnorhynchus	lehmani	Marshall, 1986
147	Ctenodus	cristatus	Sharp and Clack, 2013	179	Dipnorhynchus	sussmilchi	Marshall, 1986
148	Ctenodus	flabelliformis		180	Dipnotuberculus	gnathodus	
149	Ctenodus	interruptus	Sharp and Clack, 2013	181	Dipterus	calvini	
150	Ctenodus	levis		182	Dipterus	contraversus	
151	Ctenodus	minutus		183	Dipterus	crassus	
152	Ctenodus	murchisoni	Sharp and Clack, 2013	184	Dipterus	fourmarieri	
153	Ctenodus	nelsoni	-	185	Dipterus	johnsoni	
154	Ctenodus	obioenais		186	Dipterus	macropterus	
155	Ctenodus	onbliquus		187	Dipterus	marginalis	
		*					

188	Dipterus	microsoma	Marshall, 1986	220	Eusthenodon	wangsjoi	Clement, 2002
189	Dipterus	mordax		221	Eusthenopteron	farloviensis	
190	Dipterus	murchisoni		222	Eusthenopteron	foordi	Thomson, 1969
191	Dipterus	nelsoni	Marshall, 1986	223	Eusthenopteron	kurshi	Zupins, 2008
192	Dipterus	oervigi	Marshall, 1986	224	Eusthenopteron	obruchevi	
193	Dipterus	radiatus		225	Eusthenopteron	savesoderberghi	
194	Dipterus	sherwoodi		226	Eusthenopteron	traquairi	
195	Dipterus	uddeni		227	Ferganoceratodus	jurassicus	
196	Dipterus	valenciennesi	Ahlberg and Trewin, 1995; Moy-Thomas, 1939	228	Ferganoceratodus	martini	Cavin et al. 2007
197	Dobrogeria	aegyssensis		229	Fleurantia	denticulata	Ahlberg and Trewin, 1995
198	Doleserpeton			230	Ganorhynchus	caucasius	Marshall, 1986
199	Dolichopareias	disjectus	Brough and Brough, 1967	231	Ganorhynchus	rigauxi	
200	Dongshanodus	qujingensis	Marshall, 1986	232	Ganorhynchus	splendens	Marshall, 1986
201	Doragnathus	woodi		233	Garnbergia	ommata	
202	Duffichthys	mirabilis		234	Gavinia		
203	Ectosteorhachis	nitidus		235	Gephyrostegus		
204	Edenopteron	keithcrooki	Young et al. 2013	236	Geptolepis	donensis	
205	Eldeceeon	rolfei		237	Glyptolepis	baltica	
206	Elginerpeton	pancheni	Ahlberg, 1995; Ahlberg et al. 2005	238	Glyptolepis	dellei	
207	Elpistostege	watsoni		239	Glyptolepis	groenlandica	
208	Eoactinistia	foreyi	Johanson et al. 2006	240	Glyptolepis	leptopterus	
209	Eoctenodus	microsoma		241	Glyptolepis	paucidens	Forey, 1998
210	Eoherpeton	watsoni		242	Glyptopomus	bystrowi	
211	Epiceratodus	forsteri		243	Glyptopomus	elginensis	
212	Equinoxiodus	alcantarensis	Toledo et al. 2011	244	Glyptopomus	kinnairdi	Thomson, 1969
213	Erikia	janvieri		245	Glyptopomus	minor	
214	Erikia	jarviki	Zhu, 2000	246	Glyptopomus	sayerei	
215	Esconichthys	apopyris		247	Gnathorhiza	bothrotreta	Marshall, 1986
216	Eucritta	melanolimnetes	Clack, 2001	248	Gnathorhiza	dikeloda	Marshall, 1986
217	Euporosteus	eifelianus		249	Gnathorhiza	noblensis	Marshall, 1986
218	Euporosteus	yunnanensis	Zhu et al. 2012	250	Gnathorhiza	pusillus	Marshall, 1986
219	Eusthenodon	gavini	Johanson and Ritchie, 2000	251	Gnathorhiza	serrata	Marshall, 1986

252	Gogodipterus	paddyensis	Marshall, 1986	284	Holodipterus	meemannae	Clement, 2009; Pridmore et al. 1991
253	Gogonasus	andrewsae	Holland and Long, 2009	285	Holodipterus	elderae	
254	Gooloogongia	loomesi	Johanson and Ahlberg, 2001	286	Holodipterus	gogoensis	Marshall, 1986
255	Gosfordia	truncata	Kemp, 1994	287	Holodipterus	longi	
256	Graphiurichthys	callopterus		288	Holophagus	striolaris	
257	Greererpeton	burkemorani		289	Holopterygius	nudus	Friedman and Coates, 2006
258	Greiserolepis	minusensis		290	Holoptychius	americanus	
259	Greiserolepis	tulensis		291	Holoptychius	bergmanni	Downs et al. 2013
260	Grenfellia	meemannae	Johanson and Ritchie, 2000	292	Holoptychius	decoratus	
261	Griphognathus	minutidens	Marshall, 1986	293	Holoptychius	flemingi	Berg, 1947; Moy-Thomas, 1939
262	Griphognathus	sculpta	Marshall, 1986	294	Holoptychius	giganteus	Schultze and Chorn, 1998
263	Griphognathus	whitei	Ahlberg et al. 2001	295	Holoptychius	granulatus	
264	Grossipterus	crassus	Marshall, 1986	296	Holoptychius	hallii	
265	Grossius			297	Holoptychius	jarviki	Cloutier, 1996
266	Guiyu	oneiros	Zhu et al. 2012	298	Holoptychius	murchisoni	
267	Guizhoucoelacanthus			299	Holoptychius	nobilissimus	
268	Gyroptychius	agassizi	Moy-Thomas, 1939	300	Holoptychius	pustulosus	
269	Gyroptychius	antarcticus		301	Holoptychius	quebecensis	
270	Gyroptychius	dolichotatus		302	Holoptychius	radiatus	
271	Gyroptychius	elgae		303	Holoptychius	scheii	
272	Gyroptychius	greenlandicus		304	Holoptychius	tuberculatus	Newman, 1890
273	Gyroptychius	pauli		305	Hongkongichthys	youngi	Zhu, 2000
274	Hadronector	donbairdi	Lund and Lund, 1984	306	Howidipterus	donnae	Clement, 2009; Long and Clement, 2009
275	Hainbergia	granulata		307	Howittichthys	warrenae	Long and Holland, 2008
276	Hamodus	lutkevitshi		308	Hyneria	lindae	
277	Harajicadipterus	youngi	Clement, 2009	309	Hynerpeton	basseti	Daeschler, 2000
278	Heddleichthys	dalgliesiensis	Snitting, 2009; Schultze and Reed, 2012	310	Ichnomylax	karatajae	Reisz et al. 2004
279	Heimenia	ensis	Mondejar-Fernandez and Clement, 2012	311	Ichnomylax	kurnai	Long et al. 1994
280	Heliodus	lesleyi	Marshall, 1986	312	Ichnorhynchus	kurnai	
281	Heptanema	paradocxum		313	Ichthyostega	eigili	Ahlberg and Clack, 1998
282	Holodipterus	kiprijanowe	Marshall, 1986	314	Ichthyostega	kochi	Ahlberg and Clack, 1998
283	Holodipterus	sanctacrucencis	Marshall, 1986	315	Ichthyostega	stensioei	Clack and Neininger, 2000

316	Ichthyostega	watsoni	Ahlberg and Clack, 1998	348	Letognathus	hardingi	Brazeau, 2005
317	Indocoelacanthus	robustus	Jain, 1974	349	Libys	polypterus	
318	Iowadipterus	halli	Campbell and Barwick, 1998	350	Libys	superbus	
319	Iranorhynchus	seyedemamii	Marshall, 1986	351	Ligulalepis		
320	Jakubsonia	livnensis		352	Litoptychius	bryanti	Coates and Friedman, 2010
321	Jarvikia	arctica	Marshall, 1986	353	Livoniana	multidentata	Ahlberg et al. 2000
322	Jarvikia	lebedevi		354	Lochmocercus	aciculodontus	Lund and Lund, 1984
323	Jarvikina	wenjukowi	Schultze and Reed, 2012; Vorobjeva, 1977	355	Lohsania	utahensis	
324	Jessenia			356	Loxomma		
325	Kenichthys	campbelli	Zhu and Ahlberg, 2004	357	Lualabaea	henryi	
326	Koharalepis	jarviki		358	Lualabaea	lerichei	
327	Kyrinion			359	Luckeus	abudda	Young and Schultze, 2005
328	Laccognathus	embryi	Downs et al. 2011	360	Luopingcoelacanthus	eurylacrimalis	Wen et al. 2013
329	Laccognathus	grossi		361	Macropoma	lewesiensis	Forey, 1998
330	Laccognathus	panderi		362	Macropoma	mantelli	Thomson, 1969
331	Lamprotolepis	fradkini		363	Macropoma	praecursor	
332	Lamprotolepis	verrucosa		364	Macropoma	willemoesii	Lambers, 1996
333	Langdenia	campylognatha	Wang et al. 2010	365	Macropoma	speciosum	
334	Langlieria	socqueti	Clement et al. 2009	366	Macropomoides	orientalis	Forey, 1991
335	Latimeria	chalumnae	Thomson, 1969	367	Mahalalepis	resima	
336	Latimeria	menadoensis		368	Mandageria	fairfaxi	Johanson and Ahlberg, 1997
337	Latvius	grewingki		369	Marsdenichthys	longioccipitus	Holland et al. 2010
338	Latvius	niger		370	Mawsonia	gigas	
339	Latvius	obrutus		371	Mawsonia	lavocati	
340	Latvius	porosus		372	Mawsonia	libyca	
341	Laugia	groenlandica	Forey, 1998; Thomson, 1969	373	Mawsonia	tegamensis	
342	Lavocatodus	casieri		374	Mawsonia	ubangiensis	
343	Lavocatodus	giganteus		375	Medoevia	lata	
344	Lavocatodus	humei		376	Meemania	eos	Zhu et al. 2010
345	Lavocatodus	protopteroides		377	Megadonichthys	kurikae	
346	Lepidosiren	paradoxa	Thomson, 1969	378	Megalichthys	hibberti	
347	Lethiscus	stocki		379	Megalichthys	laticeps	
380	Megalocephalus			412	Nesides	schmidti	Berg, 1947
-----	--------------------	---------------------	---------------------------------	-----	-----------------	----------------	---------------------------
381	Megalocoelacanthus	dobiei	Dutel et al. 2012	413	Nigerpeton		
382	Megapleuron	rochei	Marshall, 1986	414	Nilsenia	nordica	Marshall, 1986
383	Megapleuron	zangerli	Marshall, 1986	415	Notorhizodon	mackelveyi	
384	Megapomus			416	Obruchevichthys	gracilis	
385	Megistolepis	klementzi		417	Occidens	portlocki	
386	Melanognathus	canadensis	Marshall, 1986	418	Oervigia	nordica	Marshall, 1986
387	Metaceratodus	kaopen	Cione and Gouiric-Cavalli, 2012	419	Onychodus	firouzi	
388	Metaceratodus	wichmanni	Cione and Gouiric-Cavalli, 2012	420	Onychodus	hopkinsi	
389	Metaceratodus	wollastoni	Apesteguia et al. 2007	421	Onychodus	jaekeli	
390	Metaxygnathus	denticulus		422	Onychodus	jandemarrai	Andrews et al. 2005
391	Microceratodus	angolensis	Antunes et al. 1990	423	Onychodus	sigmoides	
392	Microsaur	sp.		424	Onychodus	yassensis	
393	Miguashaia	bureaui	Cloutier, 1996	425	Ophiderpeton	nanum	
394	Miguashaia	grossi	Forey et al. 2000	426	Orlovichthys	limnatus	
395	Mioceratodus	anemosyrus	Kemp, 1998; Kemp, 1997	427	Ossinodus	pueri	Warren, 2007
396	Mioceratodus	diaphorus	Kemp, 1997	428	Osteolepis	macrolepidotus	Berg, 1947; Thomson, 1969
397	Mioceratodus	gregoryi	Kemp, 1998; Kemp, 1997	429	Osteolepis	microlepidotus	Moy-Thomas, 1939
398	Mioceratodus	poastrus	Kemp, 1997	430	Osteolepis	panderi	Thomson, 1969
399	Moenkopia	wellesi	Schaeffer and Gregory, 1965	431	Osteoplax	erosa	
400	Monongahela	dunkardensis	Marshall, 1986	432	Osteopleurus	milleri	
401	Monongahela	stenodonta	Marshall, 1986	433	Osteopleurus	newarki	
402	Muranjilepis	winterensis	Young and Schultze, 2005	434	Owensia	chooi	Holland, 2009
403	Mylacanthus	lobatus		435	Palaedaphus	abeli	
404	Mylacanthus	spinosus		436	Palaedaphus	devoniensis	
405	Namatozodia	pitikanta	Kemp, 1993	437	Palaedaphus	ferquensis	
406	Nasogaluakus	chorni	Schultze, 2000	438	Palaedaphus	insignis	Marshall, 1986
407	Neoceratodus	eyrensis	Kemp, 1997	439	Palaedaphus	livenensis	Marshall, 1986
408	Neoceratodus	forsteri	Thomson, 1969	440	Palaeomolgophis	scoticus	Brough and Brough, 1967
409	Neoceratodus	nargun	Kemp, 1997	441	Palatinichthys	laticeps	Witzmann and Schoch, 2012
410	Neoceratodus	palmeri		442	Paleolophus	yunnanensis	
411	Nesides	heiligenstockiensis		443	Panderichthys	rhombolepis	

444	Papposaurus	traquari		476	Protopterus	amphibius	
445	Paraceratodus	germaini	Schultze, 2004	477	Protopterus	annectens	Thomson, 1969
446	Paraglyptolepis	karkiensis		478	Protopterus	crassidens	
447	Parapanderichthys	stolbovi		479	Protopterus	dolloi	
448	Parasagenodus	sibiricus	Marshall, 1986	480	Protopterus	elongus	
449	Parnaibaia	maranhaoensis	Yabumoto, 2008	481	Protopterus	lybicus	
450	Pederpes	finneyae	Clack and Finney, 2005	482	Protopterus	nigeriensis	
451	Pentlandia	macroptera	Moy-Thomas, 1939	483	Protopterus	polli	
452	Pentlandia	macropterus		484	Protopterus	protopteroides	Marshall, 1986
453	Phaneropleuron	andersoni	Moy-Thomas, 1939; Ahlberg and Trewin, 1995	485	Protopterus	regulatus	
454	Phaneropleuron	elegans		486	Psarolepis	romeri	Yu et al. 1998
455	Pholidogaster	0		487	Pseudosauripterus	anglicus	
456	Pillararhynchus	longi		488	Ptychoceratodus	acutus	
457	Pinnalongus	saxoni		489	Ptychoceratodus	concinnus	
458	Piveteauia	madagascariensis	Thomson, 1969	490	Ptychoceratodus	donensis	Marshall, 1986
459	Platycephalichthys	bishofi		491	Ptychoceratodus	guentheri	
460	Platycephalichthys	rohoni		492	Ptychoceratodus	hislopianus	Marshall, 1986
461	Platycephalichthys	skuensis		493	Ptychoceratodus	iheringi	
462	Platyethmoidia	antarctica		494	Ptychoceratodus	ornatus	
463	Polyosteorhynchus	beargulchensis		495	Ptychoceratodus	pattinsonae	
464	Polyosteorhynchus	simplex	Lund and Lund, 1984	496	Ptychoceratodus	phillipsi	Kemp, 1996
465	Polyplocodus	leptognathus		497	Ptychoceratodus	rectangulatus	Marshall, 1986
466	Porolepis	brevis		498	Ptychoceratodus	serratus	Kemp, 1998; Marshall, 1986
467	Porolepis	foxi	Johanson et al. 2013	499	Ptychoceratodus	szechuanensis	Marshall, 1986
468	Porolepis	posnaniensis		500	Ptychoceratodus	virapa	
469	Porolepis	uralensis		501	Pycnacanthus	fischeri	
470	Potamoceratodus	guentheri	Pardo et al. 2010	502	Pycnoctenion	jacuticus	
471	Powichthys	spitsbergensis		503	Pycnoctenion	siberiacus	
472	Proceratodus	carlinvillensis	Marshall, 1986	504	Qingmenodus	yui	Lu and Zhu, 2010
473	Proceratodus	wagneri		505	Quebecius	quebecensis	Cloutier, 1996
474	Proterogyrinus	-		506	Rebellatrix	divaricerca	Wendruff and Wilson, 2012
475	Protopterus	aethiopicus		507	Reidus	hilli	Graf, 2012

508	Remigolepis			540	Sagenodus	inaequalis	Marshall, 1986
509	Retodus	tuberculatus		541	Sagenodus	periprion	
510	Rhabdoderma	aegyptiaca		542	Sagenodus	quadratus	
511	Rhabdoderma	aldengeri		543	Sagenodus	quinquecostatus	
512	Rhabdoderma	ardrossense		544	Sagenodus	serratus	
513	Rhabdoderma	corneti		545	Sagenodus	vinslovii	
514	Rhabdoderma	davisi		546	Sassenia	groenlandica	Forey, 1998
515	Rhabdoderma	elegans	Thomson, 1969	547	Sassenia	tuberculata	
516	Rhabdoderma	exiguum		548	Sauripterus	anglicus	
517	Rhabdoderma	huxleyi (dumfregia)		549	Sauripterus	taylori	Davis et al. 2004
518	Rhabdoderma	madagascariensis		550	Scaumenacia	curta	Ahlberg and Trewin, 1995
519	Rhabdoderma	phillipsi		551	Scleracanthus	asper	
520	Rhabdoderma	stensioei		552	Screbinodus	ornatus	Jeffery, 2012
521	Rhabdoderma	tingleyense		553	Sengoerichthys	ottomani	Janvier et al. 2007
522	Rhabdoderma?	abdenense	Forey and Young, 1985	554	Shoshonia	arctopteryx	Friedman et al. 2007
523	Rhabdoderma?	corrugatum		555	Sigournea	multidentata	Bolt and Lombard, 2006
524	Rhabdoderma?	granulostriatum		556	Silvanerpeton	miripedes	Ruta and Clack, 2006
525	Rhinodipterus	kimberleyensis	Clement, 2012	557	Sinocoelacanthus	fengshanensis	
526	Rhinodipterus	secans	Marshall, 1986	558	Sinodipterus	beibei	Qiao and Zhu, 2009
527	Rhinodipterus	ulrichi	Marshall, 1986	559	Sinostega	pani	Zhu et al. 2002
528	Rhipis	moorseli		560	Soederberghia	groenlandica	Friedman, 2007
529	Rhipis	tuberculata		561	Soederberghia	simpsoni	Ahlberg et al. 2001
530	Rhizodopsis	minor		562	Sorbitohynchus	deleaskitus	Zhu, 2000
531	Rhizodopsis	sauroides		563	Spathicephalus	mirus	
532	Rhizodopsis	savinkovi		564	Speonesydrion	iani	Campbell and Barwick, 2007
533	Rhizodus	anceps		565	Spermatodus	pustulosus	
534	Rhizodus	hibberti		566	Spodichthys	buetleri	Snitting, 2008
535	Rhynchodipterus	elginensis	Berg, 1947; Ahlberg et al. 2001	567	Sterropterygion	brandei	
536	Ribbo	sp.		568	Sterropterygion	markovskyi	
537	Robinsondipterus	longi	Long, 2010	569	Stomiahykus	thlaodus	Marshall, 1986
538	Sagenodus	barrandei		570	Straitonia	waterstoni	Marshall, 1986
539	Sagenodus	copeanus		571	Strepsodus	arenosus	Jeffery, 2006

572	Strepsodus	brockbanki	Jeffery, 2006	604	Tungsenia	paradoxa	Lu et al. 2012
573	Strepsodus	dawsoni	Jeffery, 2006	605	Undina	barroviensis	
574	Strepsodus	hardingi		606	Undina	cirinensis	
575	Strepsodus	sauroides	Jeffery, 2006	607	Undina	gulo	Forey, 1998
576	Strunius	rolandi	Ginter, 2001	608	Undina	penicillata	
577	Strunius	walteri	Andrews, 1973; Thomson, 1969	609	Undina	purbeckensis	
578	Styloichthys	changae	Zhu and Yu, 2002	610	Uranolophus	wyomingensis	Marshall, 1986
579	Sunwapta	grandiceps	Marshall, 1986	611	Uronemus	lobatus	Thomson, 1969
580	Swenzia	latimerae	Clement, 2005	612	Uronemus	splendens	Marshall, 1986
581	Synaptoptylus	newelli		613	Utaherpeton	franklini	
582	Synthetodus	calvinus		614	Uzunbulaklepis	obruchevi	
583	Synthetodus	trisulcatus	Marshall, 1986	615	Ventalepis	ketleriensis	
584	Syphonodus	panderi		616	Ventastega	curonica	Ahlberg et al. 2008
585	Taeniolepis	trautschodi		617	Viluichthys	fradkini	
586	Tarachomylax	oepiki		618	Viluichthys	verrucosa	
587	Tellerodus	sturii	Marshall, 1986	619	Vorobjevaia	dolodon	
588	Thaumatolepis	edelsteini		620	Westlothiana	lizzae	
589	Thursius	estonicus		621	Westollrhynchus	lehmani	
590	Thursius	fischeri		622	Whatcheeria	deltae	
591	Thursius	macrolepidotus	Thomson, 1969	623	Whiteia	africanus	
592	Thursius	minor		624	Whiteia	groenlandica	
593	Thursius	moythomasi	Thomson, 1969	625	Whiteia	nielseni	
594	Thursius	pholidotus	Moy-Thomas, 1939; Thomson, 1969	626	Whiteia	tuberculata	
595	Thursius	talsiensis		627	Whiteia	woodwardi	Forey, 1998
596	Thursius	wudingensis	Zhu, 2000	628	Wimania	multistriata	
597	Thysanolepis	micans		629	Wimania	sinuosa	
598	Ticinepomis	peyeri	Forey, 1998	630	Xeradipterus	hatcheri	Clement and Long, 2010
599	Tiktaalik	roseae	Shubin et al. 2014	631	Yambira	thompsoni	Johanson and Ritchie, 2000
600	Tinirau	clackae	Swartz, 2012	632	Ymeria	denticulata	Clack et al. 2012
601	Tranodis	castrensis	Marshall, 1986	633	Youngichthys	xinhuanisis	
602	Tristichopterus	alatus	Moy-Thomas, 1939	634	Youngolepis	praecursor	Thanh et al. 1995
603	Tulerpeton	curtum		635	Yunnancoelacantus	acrotuberculatus	Wen et al. 2013

APPENDIX B

Appendix B. List of species used in analyses. Data includes 57 species in 49 genera. Cranial and Post-cranial headers indicate whether species represent a genus in the respective subset. Lower and Upper are the boundaries of the earliest date of appearance of a genus in Mya.

Genus	species	Cranial	Post-cranial	Lower	Upper
Allenypterus	montanus	1	1	323	323
Ariguna	formosa	1	1	252.17	247.2
Asiatoceratodus	atlantis	1	0	252.17	247.2
	sharovi	0	1		
Axelrodichtys	araripensis	1	1	113	100.5
Cabonnichthys	burnsi	1	1	372.2	358.9
Caridosuctor	populosum	1	1	330.9	323.2
Coelacanthus	granulatus	1	1	358.9	298.9
	madagascariensis	1	0		
Conchopoma	gadiforme	1	1	323.2	298.9
Diplurus	newarki	1	1	237	201.3
Dipterus	valenciennesi	1	1	419.2	410.8
Eusthenopteron	foordi	1	1	384	382.7
	kurshi	1	0		
Fleurantia	denticulata	1	1	382.7	372.2
Gooloogongia	loomesi	1	1	372.2	358.9
Griphognathus	sculpta	0	1	382.7	372.2
	whitei	1	0		
Guiyu	oneiros	1	1	425.6	423
Gyroptychius	agassizi	1	1	393.3	387.7
Hadronector	donbairdi	1	1	330.9	323.2
Heddleichthys	dalgliesiensis	1	1	372.2	358.9
Heimenia	ensis	1	1	387.7	382.7
Holophagus	striolaris	1	1	157.3	152.1
Holopterygius	nudus	1	1	382.7	372.2
Holoptychius	flemingi	1	1	393.3	387.7
	jarviki	1	1		
Latimeria	chalumnae	1	1	163.5	157.3
Laugia	groenlandica	1	1	252.17	247.2
Lochmocercus	aciculodontus	1	1	331	323
Luopingcoelacanthus	eurylacrimalis	1	1	247.2	237
Macropoma	lewesiensis	1	1	157.3	152.1
	mantelli	1	1		
	praecursor	1	0		

	speciosum	1	1		
Macropomoides	orientalis	1	1	100.5	93.9
Mandageria	fairfaxi	1	1	372	359
Microceratodus	angolensis	1	1	252.17	247.2
Miguashaia	bureaui	1	1	387.8	382.7
Neoceratodus	forsteri	1	1	113	100.5
Osteolepis	macrolepidotus	1	1	393.3	387.7
	microlepidotus	1	1		
	panderi	0	1		
Paraceratodus	germaini	1	1	252.17	247.2
Parnaibaia	maranhaoensis	1	1	164	145
Pentlandia	macroptera	0	1	387.3	384.99
	macropterus	1	1		
Polyosteorhynchus	simplex	1	1	331	323
Protopterus	annectens	1	1	99.6	93.5
Quebecius	quebecensis	1	1	382.7	372.2
Rhabdoderma	elegans	1	1	358.9	346.7
	madagascariensis	1	1		
Rhinodipterus	kimberleyensis	1	1	387.7	382.7
Rhynchodipterus	elginensis	1	1	372	359
Scaumenacia	curta	1	1	382.7	372.2
Strunius	walteri	1	1	387.7	382.7
Thursius	macrolepidotus	0	1	393.3	387.7
	moythomasi	0	1		
	pholidotus	1	1		
Tinirau	clackae	1	1	393.3	387.7
Tristichopterus	alatus	1	1	387.7	382.7
Undina	gulo	1	1	157.3	152.1
	penicillata	0	1		
Whiteia	woodwardi	1	1	252.17	247.2

APPENDIX C

Appendix C. List of cranial and post-cranial landmarks. Cranial landmarks 16-17 were positioned along the orbit. Cranial landmarks 18-21 were positioned midway along the dorsal-ventral axis of the (sub)operculum. All postcranial "base" (semi)landmarks were positioned clockwise starting at the dorsal end of the cranial skeleton (left lateral view), the pectoral fin was also coded in this way as if it were rotated clockwise to fit along the body outline. Lungfish cranial landmarks: 3 of the dorsal-most and posterior-most skull bones in lungfish were used as functional parietal, postparietal, and extrascapular homologs sometimes including the "E", "AB", and the supratemporal bones. Lungfish post-cranial landmarks: the second dorsal fin functional homolog is known to start along the same dorsoventral axis as the pectoral fin. We assumed the end of the second dorsal fin and the end of the anal fin (start and end of caudal fin, respectively) is positioned along the same dorsal-ventral axis halfway between the start of the ventral fin and end of the caudal fin lobe.

Landmark	Position
1	Antero-dorsal tip of premaxilla
2	Antero-ventral tip of premaxilla
3	Postero-dorsal tip of premaxilla
4	Postero-dorsal tip of premaxilla
5	Antero-dorsal tip of maxilla
6	Antero-ventral tip of maxilla
7	Postero-dorsal tip of maxilla
8	Postero-dorsal tip of maxilla
9	Antero-ventral tip of upper jaw
10	Anterior edge of parietal
11	Posterior edge of parietal
12	Anterior edge of extrascapular
13	Posterior edge of extrascapular
14	Antero-ventral tip of lacrimal
15	Postero-ventral tip of jugal
16	Dorsal lacrimal-jugal joint
17	Dorso-orbital tip of postorbital
18	Anterior operculum
19	Posterior operculum
20	Anterior suboperculum
21	Posterior suboperculum
22	Anterior tip of dentary
23	Dorsal-most tip of dentary-angular joint
24	Coronoid
25	Posterior-most tip of angular
26	Posterior-most tip of submandibular elements
27	Anterior-most tip of submandibular elements
28-37	Semilandmarks surrounding orbit
38-47	Semilandmarks along opercular opening
1	Postero-dorsal tip of cranial skeleton
2-3	Base of first dorsal fin lobe
4-5	Base of first dorsal fin

6-7	Base of second dorsal fin lobe
8-9	Base of second dorsal fin
10-11	Base of caudal fin lobe
12-13	Base of caudal fin
14-15	Base of anal fin lobe
16-17	Base of anal fin
18-19	Base of pelvic fin lobe
20-21	Base of pelvic fin
22-23	Base of pectoral fin lobe
24-25	Base of pectoral fin lobe
26	Postero-ventral tip of cranial skeleton
27-36	Semilandmarks along first dorsal fin lobe edge
37-46	Semilandmarks along first dorsal fin edge
47-56	Semilandmarks along second dorsal fin lobe edge
57-66	Semilandmarks along second dorsal fin edge
67-76	Semilandmarks along caudal fin lobe edge
77-96	Semilandmarks along caudal fin edge
97-106	Semilandmarks along anal fin lobe edge
107-116	Semilandmarks along anal fin edge
117-126	Semilandmarks along pelvic fin lobe edge
127-136	Semilandmarks along pelvic fin edge
137-146	Semilandmarks along pectoral fin lobe edge
147-156	Semilandmarks along pectoral fin edge
157-176	Semilandmarks along body passing through all lobe bases

APPENDIX D

0.2 0 5 0 Principal Component 4 (6.3%) 0.0 -0.1 0 GuiyuStruniusCoelacanths -0.2 Porolepiformes Lungfishes Gooloogongia
 Megalichthyiform
 Tristichopterids
 Tinirau -0 .3 -0.1 0.0 -0.2 0.1 0.2 Principal Component 3 (6.9%)

Appendix D.1. PC3 and PC4 Cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix D.2. PC3 and PC4 Post-cranial Morphospace. Points are colorcoded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC. **APPENDIX E**

Appendix E.1. Paleozoic (Era-scale) PC1 and PC2 Cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix E.2. Mesozoic (Era-scale) PC1 and PC2 Cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix E.3. Devonian (Period-scale) PC1 and PC2 Cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix E.4. Carboniferous (Period-scale) PC1 and PC2 Cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix E.5. Triassic (Period-scale) PC1 and PC2 Cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix E.6. Jurassic (Period-scale) PC1 and PC2 Cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix E.7. Cretaceous (Period-scale) PC1 and PC2 Cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix E.8. Lower Devonian (Epoch-scale) PC1 and PC2 Cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC. Guiyu (Silurian) was added to this time scale to visualize an early lobe-fin morphospaces.

Appendix E.9. Middle Devonian (Epoch-scale) PC1 and PC2 Cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix E.10. Upper Devonian (Epoch-scale) PC1 and PC2 Cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix E.11. Carboniferous (Epoch-scale) PC1 and PC2 Cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix E.12. Lower Triassic (Epoch-scale) PC1 and PC2 Cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix E.13. Middle/Upper Triassic (Epoch-scale) PC1 and PC2 Cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix E.14. Lochkovian (Age-scale) PC1 and PC2 Cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC. Guiyu (Silurian) was added to this time scale to visualize an early lobe-fin morphospaces.

Appendix E.15. Eifelian (Age-scale) PC1 and PC2 Cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix E.16. Givetian (Age-scale) PC1 and PC2 Cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Guiyu
Strunius Coelacanths 70 Porolepiformes Lungfishes Gooloogongia
 Megalichthyiforme
 Tristichopterids Tinirau 0.0 0 DOC. -0.2 -0.4 -0.4 -0.2 0.0 0.2 0.4 Principal Component 1 (77.2%)

Appendix E.17. Frasnian (Age-scale) PC1 and PC2 Cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix E.18. Famennian (Age-scale) PC1 and PC2 Cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix F.1. Paleozoic (Era-scale) PC1 and PC2 Post-cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix F.2. Mesozoic (Era-scale) PC1 and PC2 Post-cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix F.3. Devonian (Period-scale) PC1 and PC2 Post-cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC. Appendix F.4. Carboniferous (Period-scale) PC1 and PC2 Post-cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix F.5. Triassic (Period-scale) PC1 and PC2 Post-cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix F.6. Jurassic (Period-scale) PC1 and PC2 Post-cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix F.7. Cretaceous (Period-scale) PC1 and PC2 Post-cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix F.8. Lower Devonian (Epoch-scale) PC1 and PC2 Post-cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC. Guiyu (Silurian) was added to this time scale to visualize an early lobe-fin morphospaces.

Appendix F.9. Middle Devonian (Epoch-scale) PC1 and PC2 Post-cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix F.10. Upper Devonian (Epoch-scale) PC1 and PC2 Post-cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix F.11. Carboniferous (Epoch-scale) PC1 and PC2 Post-cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix F.12. Lower Triassic (Epoch-scale) PC1 and PC2 Post-cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

0.4

0.6

Appendix F.14. Lochkovian (Age-scale) PC1 and PC2 Post-cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC. Guiyu (Silurian) was added to this time scale to visualize an early lobe-fin morphospaces.

Appendix F.15. Eifelian (Age-scale) PC1 and PC2 Post-cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix F.16. Givetian (Age-scale) PC1 and PC2 Post-cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix F.17. Frasnian (Age-scale) PC1 and PC2 Post-cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

Appendix F.18. Famennian (Age-scale) PC1 and PC2 Post-cranial Morphospace. Points are color-coded according to monophyletic groups. Figures along PC axes represent the morphology of the individual at the respective extreme of each corresponding PC.

APPENDIX G

Appendix G.1. Cranial PC disparity through time at the Era (top left), Period (top right), Epoch (bottom left), and Age (bottom right) geologic time scales. Dashed black lines represent 95% confidence intervals. Dotted lines represent significant likelihood-ratios. Dashed red lines represent significant permutation tests. Solid red lines represent significant likelihood ratios and permutation tests. L: Lower; M: Middle; U: Upper; S: Silurian; D: Devonian; C: Carboniferous; Tr: Triassic; J: Jurassic; K: Cretaceous; Lu: Ludfordian; Lo: Lochkovian; E: Eifelian; G: Givetian; Fr: Frasnian; Fa: Famennian.

Appendix G.2. Post-cranial PC disparity through time at the Era (top left), Period (top right), Epoch (bottom left), and Age (bottom right) geologic time scales. Dashed black lines represent 95% confidence intervals. Dotted lines represent significant likelihood-ratios. Dashed red lines represent significant permutation tests. Solid red lines represent significant likelihood ratios and permutation tests. L: Lower; M: Middle; U: Upper; S: Silurian; D: Devonian; C: Carboniferous; Tr: Triassic; J: Jurassic; K: Cretaceous; Lu: Ludfordian; Lo: Lochkovian; E: Eifelian; G: Givetian; Fr: Frasnian; Fa: Famennian.

Appendix G.3. Cranial:Post-cranial PC disparity through time at the Era (top left), Period (top right), Epoch (bottom left), and Age (bottom right) geologic time scales. L: Lower; M: Middle; U: Upper; S: Silurian; D: Devonian; C: Carboniferous; Tr: Triassic; J: Jurassic; K: Cretaceous; Lu: Ludfordian; Lo: Lochkovian; E: Eifelian; G: Givetian; Fr: Frasnian; Fa: Famennian.

APPENDIX H

Appendix H.1. Cranial coordinate pairwise rate tests. Significant (p<.05) values in red. Coela.: coelacanths; Porolepi.: porolepiformes; Lung.: lungfishes; Megalichthyi.: megalichthyiformes; Tristichopt.: tristichopterids.

	Guiyu	Strunius	Coela.	Porolepi.	Lung.	Gooloogongia	Megalichthyi.	Tristichopt.	Tinirau
Guiyu	1.000	1.000	1.000	1.000	0.001	1.000	0.862	0.991	1.000
Strunius	NA	1.000	0.006	0.003	0.001	0.003	0.079	0.026	0.741
Coelacanths	NA	NA	1.000	0.346	0.001	0.135	0.141	0.001	0.007
Porolepiformes	NA	NA	NA	1.000	0.001	0.406	0.067	0.001	0.003
Lungfishes	NA	NA	NA	NA	1.000	0.001	0.001	0.001	0.001
Gooloogongia	NA	NA	NA	NA	NA	1.000	0.034	0.001	0.003
Megalichthyiformes	NA	NA	NA	NA	NA	NA	1.000	0.040	0.059
Tristichopterids	NA	NA	NA	NA	NA	NA	NA	1.000	0.050
Tinirau	NA	NA	NA	NA	NA	NA	NA	NA	1.000

Appendix H.2. Post-cranial coordinate pairwise rate tests. Significant (p<.05) values in red. Coela.: coelacanths; Porolepi.: porolepiformes; Lung.: lungfishes; Megalichthyi.: megalichthyiformes; Tristichopt.: tristichopterids.

	Guiyu	Strunius	Coela.	Porolepi.	Lung.	Gooloogongia	Megalichthyi.	Tristichopt.	Tinirau
Guiyu	1.000	1.000	0.999	1.000	0.267	1.000	0.886	0.998	0.969
Strunius	NA	1.000	0.167	0.004	0.001	0.001	0.001	0.016	0.001
Coelacanths	NA	NA	1.000	0.001	0.001	0.001	0.001	0.002	0.001
Porolepiformes	NA	NA	NA	1.000	0.001	0.026	0.001	0.179	0.001
Lungfishes	NA	NA	NA	NA	1.000	0.001	0.010	0.001	0.001
Gooloogongia	NA	NA	NA	NA	NA	1.000	0.082	0.180	0.001
Megalichthyiformes	NA	NA	NA	NA	NA	NA	1.000	0.030	0.001
Tristichopterids	NA	NA	NA	NA	NA	NA	NA	1.000	0.001
Tinirau	NA	NA	NA	NA	NA	NA	NA	NA	1.000

	Guiyu	Strunius	Coela.	Porolepi.	Lung.	Gooloogongia	Megalichthyi.	Tristichopt.	Tinirau
Guiyu	1.000	0.947	0.995	0.983	0.036	0.953	0.865	0.990	0.916
Strunius	NA	1.000	0.566	0.476	0.002	0.556	0.462	0.694	0.820
Coelacanths	NA	NA	1.000	0.695	0.001	0.798	0.466	0.624	0.381
Porolepiformes	NA	NA	NA	1.000	0.001	0.910	0.422	0.556	0.328
Lungfishes	NA	NA	NA	NA	1.000	0.001	0.004	0.001	0.002
Gooloogongia	NA	NA	NA	NA	NA	1.000	0.464	0.670	0.421
Megalichthyiformes	NA	NA	NA	NA	NA	NA	1.000	0.414	0.404
Tristichopterids	NA	NA	NA	NA	NA	NA	NA	1.000	0.527
Tinirau	NA	NA	NA	NA	NA	NA	NA	NA	1.000

Appendix H.3. Cranial PC-reduced pairwise rate tests. Significant (p<.05) values in red. Coela.: coelacanths; Porolepi.: porolepiformes; Lung.: lungfishes; Megalichthyi.: megalichthyiformes; Tristichopt.: tristichopterids.

Appendix H.4. Post-cranial PC-reduced pairwise rate tests. Significant (p<.05) values in red. Coela.: coelacanths; Porolepi.: porolepiformes; Lung.: lungfishes; Megalichthyi.: megalichthyiformes; Tristichopterids.

	Guiyu	Strunius	Coela.	Porolepi.	Lung.	Gooloogongia	Megalichthyi.	Tristichopt.	Tinirau
Guiyu	1.000	0.890	0.973	0.987	0.628	0.937	0.829	0.988	0.629
Strunius	NA	1.000	0.894	0.542	0.014	0.311	0.115	0.483	0.360
Coelacanths	NA	NA	1.000	0.329	0.001	0.198	0.015	0.215	0.188
Porolepiformes	NA	NA	NA	1.000	0.002	0.500	0.162	0.777	0.098
Lungfishes	NA	NA	NA	NA	1.000	0.104	0.183	0.004	0.003
Gooloogongia	NA	NA	NA	NA	NA	1.000	0.581	0.525	0.068
Megalichthyiformes	NA	NA	NA	NA	NA	NA	1.000	0.174	0.015
Tristichopterids	NA	NA	NA	NA	NA	NA	NA	1.000	0.083
Tinirau	NA	NA	NA	NA	NA	NA	NA	NA	1.000

REFERENCES

REFERENCES

- Ackerly, D. D. et al. 2006. Niche evolution and adaptive radiation: testing the order of trait divergence. *Ecology* 87: S50-S61.
- Adams, D. C. and Otarola-Castillo, E. 2013. geomorph: an R package for the collection and analysis of geometric morphometric shape data. *Methods in Ecology and Evolution* 4: 393-399.
- Alfaro, M. et al. 2009. Does evolutionary innovation in pharyngeal jaws lead to rapid lineage diversification in labrid fishes? *BMC Evolutionary Biology* 9: 255. doi:10.1186/1471-2148-9-255
- Akaike, H. 1974. A new look at the statistical model identification. *IEEE Transactions on Automaic Control* 19: 716-723. (doi:10.1109/TAC.1974.1100705)
- Anderson, P. S. L. et al. 2011. Initial radiation of jaws demonstrated stability despite faunal and environmental change. *Nature* 476: 206-209.
- Anderson, P. S. L. et al. 2013. Late to the table: diversification of tetrapod mandibular biomechanics lagged behind the evolution of terrestriality. *Integrative and Comparative Biology* 53: 197-208. (doi: 10.1093/icb/ict006)
- Bapst, D. W. (2012). paleotree: an R package for paleontological and phylogenetic analyses of evolution. *Methods in Ecology and Evolution* 3: 803-807. doi: 10.1111/j.2041-210X.2012.00223.x
- Bartoszek, K. et al. 2012. A phylogenetic comparative method for studying multivariate adaptation. *Journal of Theoretical Biology* 314: 204–215.
- Bell, M. A. and Lloyd, G. T. 2014. *strap*: An R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence. *Palaeontology* 58: 379-389.

- Blomberg S. P. et al. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. *Evolution* 57:717-745.
- Bockmann, F. A. et al. 2013. The salmon, the lungfish (or the coelacanth) and the cow: a revival? *Zootaxa* 3750: 265-276.
- Boily, P. and Magnan, P. 2002. Relationship between individual variation in morphological characters and swimming costs in brook charr (*Salvelinus fontinalis*) and yellow perch (*Perca flavescens*). *The Journal of Experimental Biology* 205: 1031-1036.
- Clack, J. A. 2006. The emergence of early tetrapods. *Palaeogeography, Palaeoclimatology, and Palaeoecology* 232: 167-189.
- Clement, A. M. 2005. A new coelacanth (Actinistia, Sarcopterygii) from the Jurassic of France, and the question of the closest relative fossil to *Latimeria*. *Journal of Vertebrate Paleontology* 25: 481-491.
- Clement, A. M. 2009. A new genus of lungfish from the Givetian (Middle Devonian) of central Australia. *Acta Palaeontologica Polonica* 54: 615-626.
- Cloutier, R. 1991. Patterns, trends, and rates of evolution within the Actinisia. *Environmental Biology of Fishes* 32: 23-58.
- Cloutier, R. and Ahlberg P. E., 1996. Chapter 17 Mophology, characters, and the interrelationships of basal sarcopterygians. In Stiassny et al., Interrelationships of Fishes 445:479. Academic Press.
- Dornburg, A. et al. 2011. The influence of an innovative locomotor strategy on the phenotypic diversification of triggerfish (family: Balistidae). *Evolution* 65: 1912-1926. doi: 10.1111/j.1558-5646.2011.01275.x

- Finarelli, J. A. and Flynn, J. J. 2007. The evolution of encephalization in caniform carnivorans. *Evolution* 61, 1758–1777. doi:10.1111/j.1558-5646.2007.00131.x
- Friedman, M. and Coates, M. I. 2006. A newly recognized fossil coelacanth highlights the early morphological diversification of the clade. *Proceedings of the Royal Society B* 273: 245-250.
- Friedman, M. 2007. Cranial structure in the Devonian lungfish Soederberghia groenlandica and its implications for the interrelationships of 'rhynchodipterids'. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 98: 179-198.
- Kemp, A. 1994. Triassic lungfish skulls. Journal of Paleontology 68: 647-654.
- Harmon L. J. et al. 2008. GEIGER: investigating evolutionary radiations. *Bioinformatics* 24: 129-131.
- Laurin, M. The evolution of body size, Cope's rule and the origin of amniontes. *Systematic Biology* 53: 594-622.
- Lloyd et al. 2011. Identifying heterogeneity in rates of morphological evolution: discrete character change in the evolution of lungfish (Sarcopterygii; Dipnoi). *Evolution* 66: 330-348.
- Maddison, W. P. and D.R. Maddison. 2011. Mesquite: a modular system for evolutionary analysis. Version 2.75 http://mesquiteproject.org
- Muschick, M. et al. 2014. Testing the stages model in the adaptive radiation of cichlid fishes in East African Lake Tanganyika. *Proceedings of the Royal Society B* 281: 1-10.
- Price, S. A. et al. 2014. Two waves of colonization straddling the K-Pg boundary formed the modern reef fish fauna. *Proceedings of the Royal Society B* 281: 20140321.
- R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org
- Rohlf, F. J. 2004. tpsDig. version 1.4. Department of Ecology and Evolution, SUNY. Stony Brook, New York.
- Rohlf, F. J. 2013a. tpsDig2. version 2.17. Department of Ecology and Evolution, SUNY. Stony Brook, New York.
- Rohlf, F. J. 2013b. tpsUtil. version 1.58. Department of Ecology and Evolution, SUNY. Stony Brook, New York.
- Sallan, L. C. and Coates, M. I. 2010. End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates. *Proceedings of the National Academy of Sciences* 107: 10131-10135.
- Sallan, L. C. and Friedman, M. 2012. Heads or tails: staged diversification in vertebrate evolutionary radiations. *Proceedings of the Royal Society B* 279: 2025-2032. (doi: 10.1098/rspb.2011.2454)
- Schaeffer, B. 1952. Rates of evolution in the coelacanth and dipnoan fishes. *Evolution* 6: 101-111.
- Snitting, D. 2009. *Heddleichthys* a new tristichopterid genus from the Dura Den Formation, Midland Valley, Scotland (Famennian, Late Devonian). *Acta Zoologica* 90: 272-284.
- Streelman, J. T. and Danley, P. D. 2003. The stages of vertebrate evolutionary radiation. *Trends in Ecology and Evolution* 18: 126–131. (doi: 10.1016/S0169-5347(02)00036-8)
- Uyeda, J. C. et al. 2015. Comparative analysis of principal components can be misleading. *Systematic Biology*: Advance Access. doi: 10.1093/sysbio/syv019

- Webb, P. W. 1982. Locomotor patterns in the evolution of actinopterygian fishes. *American Zoologist* 22: 329-342.
- Webb, P. W. 2002. Control of posture, depth, and swimming trajectories of fishes. *Integrative and Comparative Biology* 42: 94-101.
- Webb, P. W. and Weihs D. 2011. Functional locomotor morphology of early life history stages of fishes. *Transactions of the American Fisheries Society* 115: 115-127.
- Wen W. et al. 2013. Coelacanths from the Middle Triassic Luoping Biota, Yunnan, South China, with the earliest evidence of ovoviviparity. *Acta Palaeontologica Polonica* 58: 175-193.
- Zhu, M. et al. 2009. The oldest articulated osteichthyan reveals mosaic gnathostome characters. *Nature* 458: 469-474.