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ABSTRACT

In a multiproduct order-driven production system, an organization has to decide how to
selectively accept orders and allocate capacity to these orders so as to maximize total
profit (TP). In this article, we incorporate the novel concept of switching point in devel-
oping three capacity-allocation with switching point heuristics (CASPa−c). Our analysis
indicates that all three CASP heuristics outperform the first-come-first-served model
and Barut and Sridharan’s dynamic capacity-allocation process (DCAP) model. The
best model, CASPb, has an 8% and 6% average TP improvement over DCAP using the
split lot and whole lot policies, respectively. In addition, CASPb performs particularly
well under operating conditions of tight capacity and large price differences between
product classes. The introduction of a switching point, which has not been found in pre-
vious capacity-allocation heuristics, provides for a better balance between forward and
backward allocation of available capacity and plays a significant role in improving TP.

Subject Areas: Capacity Allocation, Order-Driven Production Systems,
Protection Level, Revenue Management, and Switching Point.

INTRODUCTION

Revenue management originated in the airline industry and is aimed at solv-
ing the allocation of airplane seats with different fares (Belobaba, 1989; Pfeifer,
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1989; Curry, 1990; Weatherford & Bodily, 1992; Williamson, 1992; Belobaba &
Weatherford, 1996). After more than four decades of development, revenue man-
agement techniques have been successfully applied to a variety of industries to
enable an organization “to sell the right products to the right customer at the
right time for the right price so as to maximize revenue” (Cross, 1997, p. 4).
Examples of revenue management applications include car rentals (Geraghty &
Johnson, 1997), hospitality management (Baker, Murthy & Jayaram, 2002;
Kimes & Thompson, 2004), health care (Chapman & Carmel, 1992), manage-
ment of public parks (Nautiyal & Chowdhary, 1975), broadcasting and advertising
(Cross, 1997), E-commerce (Boyd & Bilegan, 2003), and Internet-based auctions
(Baker & Murthy, 2002, 2005).

Early studies in the area of capacity allocation for the make-to-order pro-
duction environment include Balakrishnan, Sridharan, and Patterson (1996) and
Patterson, Balakrishnan, and Sridharan (1997). Their models optimally allocate
the available capacity to different products or customers based on their revenue
as well as delivery priority. One of the key challenges is to efficiently match ca-
pacity with demand, especially when it is difficult to increase capacity. Harris
and Pinder (1995) present two models to solve the pricing and capacity-allocation
problems for an order-driven production system with two classes of orders. Sridha-
ran (1998) applies the concept of perishable asset revenue management to a tightly
constrained capacity system with competing classes of products and/or customers.
Balakrishnan et al. (1996) analyze a production system with two classes of prod-
ucts in the fashion industry and propose a heuristic capacity-allocation model
under stochastic demands. Deng, Wang, Leong, and Sun (2008) present a marginal
revenue-based capacity management (MRBCM) model that “generates order ac-
ceptance policies that allocate available capacity to higher revenue generating mar-
ket segments” (2008, p. 737). The MRBCM model incorporates a unique opportu-
nity cost estimation logic that has resulted in improved performance over existing
models in the literature. Barut and Sridharan (2005) apply the dynamic capacity-
allocation process (DCAP) technique to an order-driven production system in the
fashion industry and show that it performs better than the first-come-first-served
(FCFS) policy in a variety of scenarios.

The objective of this article is to develop a heuristic for allocating capacity in
an order-driven system, which can improve performance over Barut and Sridharan’s
(2005) benchmark DCAP model. Our contribution in developing the heuristic is
the inclusion of a switching point, a simple concept not found in previous models
reported in the revenue management literature. However, the notion of a switching
point has already been used to address many other management problems. For
example, Amit (1986) investigates the petroleum producer’s optimal switching
policies from primary to secondary recovery. Thomke (1998) studies the switching
between different “modes” of a given experiment in new product design to reduce
the development cost and time. Berman, Wang, and Sepna (2005) examine the
optimal switching points of cross-trained workers between the front room and back
room to minimize the expected customer waiting time in a retail service facility.
We postulate that the introduction of a switching point in the capacity-allocation
model will provide a better balance between forward and backward allocation
resulting in improved utilization of available capacity and performance.
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CAPACITY ALLOCATION WITH SWITCHING POINT (CASP)
HEURISTICS

For the sake of comparison, we utilize an order-driven production environment
similar to the one introduced in Barut and Sridharan’s (2005) study. Each customer
order is characterized by a product class, an order size, and a due date. The system
is capable of producing three classes of products: class 1 with the highest profit,
class 2 with medium profit, and class 3 with the lowest profit. The profit derived
from per unit capacity to produce class i products is Pi (i = 1, 2, 3), where P1 > P2

> P3. We have a continuous time horizon (T), which consists of k periods. In each
of these periods, the total available capacity is C.

Orders of class i products arrive in accordance with a nonhomogenous
Poisson process, at a rate that is linearly decreasing with time such that λit =
(1.5 − t

T
)λ̄i , t = 0,1,. . .,T , where λ̄i = average arrival rate (Balakrishnan et al.,

1996; Barut & Sridharan, 2005). The order size of class i products follows a trun-
cated normal distribution, with mean μi and standard deviation σ i (i = 1, 2, 3).
Note that the order size is nonnegative; if it is negative, regenerate a new ran-
dom number. The due date of each order is uniformly distributed on the interval,
[max(t, ( k

2 + 1)), k], where t is the arrival time of the order and k is the number of
periods in the time horizon T . We do not allow any tardiness but products can be
finished early without penalty. The capacity in each period is fixed and any unused
capacity is lost. In addition, when an order is received after the start of a period,
only the capacity available from the moment of its arrival time until its due date
can be used.

We introduce the concept of switching point in developing three CASP
heuristics to further improve performance. To test the significance of a switching
point, production is restricted to the second half of the planning period. This
assumption is not unusual in the fast-moving fashion industry where orders are
back scheduled from the due date to meet current market needs and to minimize
inventory holding cost. For example, The Limited commits to an order from Li &
Fung for 100,000 garments several months ahead of the season to lock up capacity,
but style or colors are only provided five weeks before the delivery date (Magretta,
1998). The three CASP models as well as a FCFS with switching point heuristic
are discussed next.

CASPa

Our first heuristic, CASPa, is as follows: Set t = ( k
2 + 1) as the switching point,

where k = number of periods in the time horizon. With this allocation heuristic,
orders accepted in the first k/2 periods can only be scheduled for the start of
production in period ( k

2 + 1) and beyond. Orders for the three classes of products
can be accepted and produced in the periods from ( k

2 + 1) to k. For orders that
arrive before the switching point, reserve some capacity for each class of orders
except the lowest one; otherwise, use the FCFS rule where orders are accepted in
the order they arrive. For the accepted orders, if they arrive before the switching
point, then use backward allocation; otherwise, use forward allocation.

Because the class i orders arrive in accordance with a nonhomogenous
Poisson process with decreasing rate (i.e., the arrival rate in period t is λit =
1.5λ̄i(1 − 2t/3T ), where t = 1, 2, · · · T ), then the percentage of orders arriving in
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interval [0, t] with respect to total arriving orders is =
1
2 (λit+λi0)t

1
2 (λiT +λi0)T

= t(3T −t)
2T 2 , where

t = k/2 and T = k. Next, we set a static protection level for each class of orders
according to its percentage of expected orders.

The protection level for the class i orders is computed as follows:

PL1(i) = min

{
t(3T − t)

2T 2
UT −

i−1∑
j=1

PL1(j ),
t(3T − t)

2T 2
μiλi

}
, i = 1, 2, 3

CASPb

Our second heuristic, CASPb , which is a modified version of CASPa, is described
as follows: Set t = ( k

2 + 1) as the switching point. For orders that arrive before
this point, use CASPa; otherwise, use the modified FCFS mechanism, which is
described as follows: when CT ≤ X, where X = capacity tightness level deter-
mined empirically from an earlier experiment that provides the best performance
(X = 0.7), for the class 3 product order, if there is no available capacity in the
subsequent E3 periods after its arrival, then refuse this order; for the class 2 product
order, if there is no available capacity in the subsequent E2 period after its arrival,
then refuse this order.

Note that Ei is the constrained time period to accept the order for product
class i and is calculated as follows:

Ei =
√

k/[2∗(i − 1)∗(i + 1)]

where i (class of orders) = 1,2,3 and k = total number of periods
For example, when k = 450 and i = 2, this value equals√

450/[2∗(2 − 1)∗(2 + 1)] = √
450/6 = 8.66 and can be rounded normally to 9;

when i = 3, this value equals
√

450/[2∗(3 − 1)∗(3 + 1)] = √
450/16 = 5.30 and

can be rounded normally to 5. Note that when i = 1, this value equals infinity,
corresponding to zero constraint for a class 1 order. Note that class 1 products
have the highest profit and therefore there should be no constraint on accepting
this class of orders.

Once an order is accepted, the allocation mechanism is the same as CASPa.
If CT > X, then use FCFS.

CASPc

The heuristic, CASPc, is provided below: Set t = ( k
2 + 1) as the switching point.

For orders that arrive before this time, use CASPa; otherwise, reserve some capacity
for each class of orders except the lowest one. Unlike CASPa, the protection level
for a class i order is:

PL2(i) = min

{ [
1 − t(3T − t)

2T 2

]
UT

−
i−1∑
j=1

PL2(j ), 0.5

[
1 − t(3T − t)

2T 2

]
μiλi

}
, i = 1, 2, 3.

Once an order is accepted, the allocation mechanism is the same as CASPa.
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First-Come-First-Served with Switching Point Policy

Although the FCFS policy is quite simple and easy to implement, it may not
perform as well as other mechanisms. When the capacity is fairly limited and we
selectively accept orders according to their respective revenue, there is a good
probability of obtaining higher performance. Because the CASP models include a
switching point, we now incorporate this element into the FCFS model, which is
referred to as FCFSm. We explain the model below:

For each accepted order, if its arrival time is less than t = ( k
2 + 1) then

use backward allocation to accommodate the order; otherwise, use forward
allocation.

OPERATING AND EXPERIMENTAL ENVIRONMENT

We utilize the operating environment in Barut and Sridharan’s (2005) study, which
was motivated by an earlier experience at a medium-sized apparel company pro-
ducing a variety of high-fashion apparel for women. Sport Obermeyer would be
an example of a company in this industry. The operating factors, order process-
ing policies, performance metrics, and number of scenarios tested are presented
next.

Operating Factors

Profit attractiveness (AF) captures the rate of change in profit contributions of the
different product classes. We consider five levels of AF: 0.5, 0.6, 0.7, 0.8, and 0.9.
An AF value of 1 means all three product levels have the same profit. A smaller
value of AF implies a larger difference in price between the product classes. The
relative profitabilities among different classes are denoted as Pi/Pi+1, i = 1, 2. To
reflect the diversity of relative profitability differences, we consider the following
three patterns: (i) decreasing relative profitability (DRP): P2 = P1 × AF2 and
P3 = P2

√
AF ; (ii) stable relative profitability (SRP): P2 = P1 × AF, and P3 =

P2 × AF; and (iii) increasing relative profitability (IRP): P2 = P1

√
AF and P3 =

P2 × AF2. Let P1 = 1, then P2 and P3 can be determined by the above AFs and
relative profitability patterns.

Capacity tightness (CT) is the ratio of total available capacity and total
expected demand over the time horizon. CT is also examined at five levels: 0.5,
0.6, 0.7, 0.8, and 0.9.

Order size structure (OSF) represents order size patterns for the differ-
ent product classes. The mean order size for product class i is μi. Let OSF =
μi/μi+1 = μi+1/μi+2. We investigate the OSF at two levels: 0.75 and 1.25. For
example, if μ3 = 6, then μ1 and μ2 can be determined using the OSF equation.

Order rate structure (ORF) is defined as the ratio of the average order rate
of two classes, ORF = λ̄i/λ̄i+1 = λ̄i+1/λ̄i+2. We examine ORF at levels of 0.75
and 1.25.

Demand variation (CV) is determined by the ratio of standard deviation to
the mean of the demand. We assume the three product classes share the same CV,
which varies at two levels, 0.25 and 0.5.
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Order Processing Policies

There are two order-processing policies: (i) Whole lot order processing where
each order must be processed in one lot, and (ii) Split lot order processing
where each order can be split into several lots and processed between the ar-
rival date and due date. The other parameter settings are: order size = 6,
capacity/period = 24, and number of periods (k) = 450. In this environment,
most orders can be processed within one period. However, when we have a large
number of periods where the remaining capacity is small, the split order processing
approach can more efficiently utilize the available capacity.

Performance Metrics

The primary performance metric is total expected profit, which is calculated as∑3
i=1 Pi.Oi , where Pi = profit per unit capacity allocated to product class i and Oi

is the total demand for product class i. Another performance measure is capacity
utilization (CU), which is defined as the ratio of the total capacity used to the total
fixed capacity available over the planning horizon.

Number of Scenarios Tested

The total number of different scenarios tested is 200, and is derived from five levels
of AF, five levels of CT, two levels of OSF, two levels of ORF, and two levels
of CV.

RESULTS

We compare the performance of the CASP models with both the FCFSm and FCFS
models. The results of the simulation analysis show that all three CASP models
outperform the FCFS policy in terms of percentage increase in total profit (ITP)
but CASPb has the best performance. What is interesting is that CASPb showed
a positive ITP over FCFS for all 200 scenarios tested using both the split lot and
whole lot policies. In addition, CASPb also showed a slight increase of 1.2% in CU
over the FCFS model using the split lot policy and a marginal increase of 0.2%
in CU over the FCFS model using the whole lot policy. This indicates that CASPb

is a robust heuristic that outperforms the FCFS model under a wide variety of
operating conditions tested. Using CASPb, not only do we see an ITP but we also
observe a slight improvement in CU. Details of the analysis are available from the
authors on request. This result may be explained as follows: Because the number
of orders arriving after the switching point is much less than those that arrived
before, it is appropriate to use FCFS after the switching point; before the switching
point, refusing a certain amount of orders of lower profit classes when the capacity
is tight will allow some capacity to be available for orders of higher profit classes
and thus increase the total revenue. Because CASPb has the best performance, we
show only the performance of CASPb over the FCFS under the split lot and whole
lot policies in Figure 1.

We use analysis of variance (ANOVA) to analyze the simulation re-
sults. Because CASPb has the best performance, the experimental variable is
TP(CASPb)/TP(FCFSm) and we compare performances between CASPb and
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Figure 1: Performance of CASPb over four different scenarios. SLP = split lot
policy; WLP = whole lot policy.

Figure 2: Simulation results for different CTs under the split lot policy.

FCFSm. Under the whole lot policy and split lot policy, both CT and AF are
significant at the 5% level whereas the interaction effects among ORF, OSF, and
AF are not significant. The ANOVA results are available from the authors on re-
quest. Because the impacts of CT and AF are the most significant, we will discuss
these results further.

From Figures 2 and 3, we find that: (i) With a smaller CT, which corresponds
to a tighter capacity situation, the improvements of the three CASP models over
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Figure 3: Simulation results for different CTs under the whole lot policy.

Figure 4: Simulation results for different AFs under the split lot policy.

FCFSm are more significant in terms of total profit (TP) but less significant in
terms of CU; and (ii) CASPb performs best among the three CASP models in
almost every CT scenario except the case when CT ≥ 0.8 under the whole lot
policy. In particular, when capacity is tight (smaller CT value), CASPb performs
significantly better than CASPa and CASPc.

Figures 4 and 5 show that: (i) When AF is smaller, corresponding to a larger
difference in revenue among different classes of products, the improvement of
the three CASP models over FCFSm is more significant in terms of TP; and (ii)
CASPb performs significantly better than CASPa and CASPc for almost every AF
value except the case where AF = 0.9 under the whole lot policy. In particular, the
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Figure 5: Simulation results for different AFs under the whole lot policy.

smaller the value of AF, the more significant is the advantage of CASPb. Additional
tables of our analysis can be obtained from the authors on request.

Comparison of CASP Heuristics and DCAP Model

Barut and Sridharan’s (2005) benchmark DCAP model shows average TP improve-
ments for the split lot policy and whole lot policy over the FCFS model of 6% and
8%, respectively. In comparison, the best performing CASP model is CASPb and it
has the highest average ITP for the split lot policy and whole lot policy over FCFS
of 15% and 14%, respectively (Figure 1). In Figure 6 , we show that for all relative
profitability structures of DRP, SRP, and IRP, and using the split lot policy, all three
CASP models outperform DCAP. CASPb performs best with an average of 8% im-
provement in TP over DCAP. In addition, we note that CASPb shows the biggest
profit improvement over DCAP for the relative profitability structure of DRP and
SRP. Likewise, in Figure 7, all three CASP heuristics also outperform DCAP for
all relative profitability structures of DRP, SRP, and IRP, using the whole lot policy.
The best performing model is CASPb with a 6% average TP improvement over
DCAP. We also note that CASPb has the biggest profit improvement over DCAP
for the relative profitability structure of DRP and SRP.

MANAGERIAL INSIGHTS

Our study should be interesting for managers because our experiment scenarios
include a variety of demand and capacity environments. We simulate a total of
200 scenarios based on five levels of AF, five levels of CT, two levels of OSF,
two levels of ORF, and two levels of CV. Although this environment is indicative
of the fashion industry, our experimental settings can be adjusted to any industry
environment.
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Figure 6: Models of CASPa−c versus DCAP under the split lot policy.

Figure 7: Models of CASPa−c versus DCAP under the whole lot policy.

We should point out the introduction of a switching point in the heuristic
has provided significant improvement in performance of the CASP heuristics. The
importance of a switching point can be traced back to solving the tradeoff between
forward and backward allocation. With backward allocation, the early capacity is
not utilized and thus may help the firm accept subsequent orders with earlier due
dates; however, early capacity may be lost if not used. In contrast, with forward
allocation, early capacity is more efficiently used. However, it may prevent the firm
from accepting subsequent orders with earlier due dates. Thus the introduction of a
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switching point provides a better balance between forward and backward allocation
resulting in improved utilization of available capacity.

In the dynamic fashion industry where companies face the problem of ob-
solete inventory, final specifications for the apparel related to style and colors are
provided closer to the selling season although orders are placed months earlier to
reserve capacity at the production facility. The CASP heuristics with the inclusion
of a switching point only allocate production during the second half of the planning
horizon so as to be closer to the delivery date. This is a desirable outcome because
finishing early would incur inventory holding cost.

Although Barut and Sridharan (2005, p. 311) show that DCAP performed
better than FCFS they also found a “weakness of DCAP—poor performance due
to greediness—when product classes are not highly distinguishable and demand
exceeds capacity only by a small amount.” Our earlier analysis shows that CASPb

outperforms DCAP using either the split lot or whole lot policy. We also find that
using CASPb leads to an ITP without any loss in CU for a wide variety of operating
conditions whether we use the split lot or whole lot policy. This kind of robustness
can be explained by the improvement in CU/allocation capability of CASPb due to
the incorporation of the switching point in the heuristic.

When capacity is tight (CT = 0.5) our analysis indicates that CASPb shows
the highest profit improvement of approximately 25% over the FCFS model. This
implies that the CASPb model does a better job allocating capacity compared to the
FCFS policy when capacity is sufficient to meet only half the demand. Likewise,
with a small AF ratio such as 0.5, which indicates a large price difference between
the different product classes, CASPb shows an improvement in TP of 24% over
the FCFS policy model. Our advice to managers is that under conditions of tight
capacity and wide price differences between product classes, it is best to use CASPb

to allocate capacity to obtain superior profit performance.

CONCLUSION AND FUTURE STUDY

This article investigates the capacity allocation and order acceptation problem in
order-driven production systems. We develop three heuristics (CASPa, CASPb,
and CASPc) with a switching point to address this problem and evaluate the per-
formance of the different heuristics over 200 scenarios. All three of the capacity
allocations with switching point heuristics perform better than the FCFS, modified
FCFS, and Barut and Sridharan’s (2005) DCAP models. In particular, our best
heuristic is CASPb and it is 15% and 8% better than the FCFS and DCAP models,
respectively, under the split lot policy. Under the whole lot policy, CASPb outper-
forms the FCFS model and DCAP by 14% and 6%, respectively. The introduction
of a switching point allows for a better balance between forward and backward
allocation of available capacity and plays a significant role in improving TP.

Our heuristic not only simplifies the computation but also improves the per-
formance compared with the existing models in the literature. The incorporation
of the unique switching point logic in the CASP heuristics is the major rea-
son for the improved performance. Therefore, managers, particularly from small-
and medium-sized companies, in both the service and manufacturing industries
will appreciate the heuristic because it produces higher profits especially under
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operating conditions of tight capacity and large price differences between product
classes.

Our research is not without limitations. One limitation is demand reforecast-
ing. Mukhopadhyay, Samaddar, and Colville’s (2007) study indicates that airlines
benefit from making forecasting adjustments. However, no study of order-driven
production systems has provided any suggestions to handle reforecasting. Another
limitation deals with the assumption of independence of order demand. Although
this is true in most cases, there could be situations where demand is dependent. We
have not seen any study in this area that deals with the assumption of dependent
demand. As such, future research could address the reforecasting issue and relax
the assumption of independent order demand. Although we have used a wide va-
riety of operating conditions to improve generalizability of the results, we assume
no cancellation of orders, tardiness, cost of finishing early, or multiple shipments.
In addition, we have used three product classes in our experiments but extending
the number of product classes will not impact the applicability of the heuristic.
In general, it would be desirable to improve the model to derive a good solution
for an operating environment that is usually more complex than is currently being
tested.

Another potential area of research is to combine the heuristics we explore
in this article with some advanced dynamic models, such as the DCAP model in
Barut and Sridharan (2005) and the MRBCM model in Deng et al. (2008). We
suspect that this combination will lead to further improvement in performance and
a potential contribution for this area.
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