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Background: Identification of patient subgroups to enhance treatment effects is an important topic
in personalized (or tailored) alcohol treatment. Recently, several recursive partitioning methods have
been proposed to identify subgroups benefiting from treatment. These novel data mining methods help
to address the limitations of traditional regression-based methods that focus on interactions.

Methods: We propose an exploratory approach, using recursive partitioning methods, for example,
interaction trees (IT) and virtual twins (VT), to flexibly identify subgroups in which the treatment effect
is likely to be large. We apply these tree-based methods to a pharmacogenetic trial of ondansetron.

Results: Our methods identified several subgroups based on patients’ genetic and other prognostic
covariates. Among the 251 subjects with complete genotype information, the IT method identified 118
with specific genetic and other prognostic factors, resulting in a 17.2% decrease in the percentage of
heavy drinking days (PHDD). The VT method identified 88 subjects with a 21.8% decrease in PHDD.
Overall, the VT subgroup achieved a good balance between the treatment effect and the group size.

Conclusions: A data mining approach is proposed as a valid exploratory method to identify a suffi-
ciently large subgroup of subjects that is likely to receive benefit from treatment in an alcohol depen-
dence pharmacotherapy trial. Our results provide new insights into the heterogeneous nature of alcohol
dependence and could help clinicians to tailor treatment to the biological profile of individual patients,
thereby achieving better treatment outcomes.
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ALCOHOL USE DISORDERS (AUDs) constitute a
major public health problem worldwide that accounts

for significant morbidity and mortality. Three medications
have been approved in the United States to treat AUD:
disulfiram, acamprosate, and naltrexone. However, many
patients have limited or no response to these medications
(e.g., Anton et al., 2006), which leads to a reluctance on the
part of physicians to prescribe medications, representing an
important barrier to the dissemination of pharmacological
treatments (Oliva et al., 2011; Weber, 2010). Developing new

and more effective medications to treat AUDs is a high prior-
ity for researchers (Willenbring, 2007).
Medications to treat AUD have been identified and evalu-

ated using the whole sample, a “one-size fits all” approach
that leaves little room for individual treatment. However,
considerable heterogeneity exists among people with AUDs,
suggesting a need for personalized treatment approaches
based on individual features, for example, genetic variation
(Heilig et al., 2011). The goal of personalized medicine is “to
develop new therapies and optimize prescribing by steering
patients to the right drug at the right dose at the right time”
(Hamburg and Collins, 2010, p. 301). Ongoing research has
informed studies that match alcohol medications to patients
based on genotype (Kranzler and McKay, 2012). In one of
the first such studies, we discovered that alcoholics with 2
specific variations of a gene related to the neurotransmitter
serotonin were capable of reducing their drinking signifi-
cantly using the medication ondansetron (Johnson et al.,
2011). These findings can help clinicians to prescribe ondan-
setron to patients who are likely to benefit from this drug,
replacing the current trial-and-error process. It may also
inform the development of new therapeutic agents that can
improve the treatment and prevention of AUD.
In the above pharmacogenetic study, we were interested in

the moderating effect of genetic variations on treatment, that
is, the interaction between treatment and genotypes (Gail
and Simon, 1985). A common approach to evaluate modera-
tors is to use regression methods to test the significance of
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the interaction terms. However, such an analytical strategy
suffers from the large number of potential interaction terms,
arbitrary definition of covariate cutoffs to form actual sub-
groups, and other common problems associated with subjec-
tive post hoc analysis. For example, in an ondansetron study
(Johnson et al., 2013), a total of 21 genetic variations (poly-
morphisms) were examined for their associations with drink-
ing outcomes. Each common polymorphism (minor allele
frequency >5%) has 3 genotype levels (e.g., LL/LS/SS in the
promoter region polymorphism 5-HTTLPR of the SLC6A4
gene), resulting in a total of 321 possible genotype combina-
tions! Traditional regression models are limited to analyzing
no higher than 3-way interaction terms (e.g., polymorphism-1
by polymorphism-2 by treatment), which make these methods
impractical to assess higher order interactions. Thus, new tech-
niques are needed to tackle such high-dimensional data.

Several statistical approaches developed within the machine
learning and data mining communities have been proposed
recently to identify subgroups of patients for which there are
differential effects of specific treatments. Most of these meth-
ods rely on tree-based search methods, for example, the classi-
fication and regression tree (CART) methodology (Breiman
et al., 1984; Zhang and Singer, 2010). Trees form subgroups
by bisecting the covariate space so that the heterogeneity in
the effects of the treatment on the response variable is maxi-
mized between the resultant “child” nodes (e.g., a highly sig-
nificant treatment effect in one partition and a nonsignificant
treatment effect in the other). Once a rule is selected, the same
logic is applied to split either child node, stopping when there
is no additional benefit from splitting any further.

Some notable developments include interaction trees (IT;
Negassa et al., 2005 and Su et al., 2009), virtual twins (VT;
Foster et al., 2011), and relative effectiveness (Zhang et al.,
2010). Unlike traditional methods of subgroup (or subset)
analysis in clinical trials that rely on multiple comparison
procedures applied to a small number of prespecified sub-
groups, nonparametric methods based on recursive parti-
tioning appear flexible and efficient in that they allow the
generation of subgroups within a very broad “model space”
and can handle higher order complex treatment-by-covari-
ates interactions in high-dimensional data.

However, most of these up-to-date methods have not yet
been applied in alcohol pharmacogenetic studies. In this
study, we aim to fill a crucial gap in the development of new
pharmacogenetic analytic tools and their applications in
alcohol treatment trials. These methods were tested in a
recently completed alcohol dependence pharmacogenetic
trial of ondansetron (Johnson et al., 2011).

MATERIALS ANDMETHODS

Data

Johnson and colleagues (2011) conducted a double-blind, pla-
cebo-controlled trial of ondansetron, a serotonin-3 (5-HT3) recep-
tor antagonist, to reduce drinking severity in 283 alcohol-dependent
subjects (aged 20 to 78 years), who were enrolled in the 11-week

randomized trial after a 1-week single-blind placebo lead-in. All
subjects received weekly, standardized cognitive behavioral therapy
as their psychosocial treatment in addition to either ondansetron
(4 lg/kg twice daily) or placebo.

At enrollment, genotyping was performed on all samples for long
(L) and short (S) alleles of the functional insertion–deletion poly-
morphism (50-HTTLPR) in the promoter region of SLC6A4 gene.
Subjects were randomly assigned to receive either ondansetron or
placebo from weeks 2 through 12, stratified by 5-HTTLPR geno-
type (LL vs. LS/SS). Their daily drinking level during the treatment
period was recalled and recorded using the timeline follow-back
method (TLFB; Sobell and Sobell, 1992). Samples were also retro-
spectively genotyped for a functional single nucleotide polymor-
phism (SNP), rs1042173 (T/G), in the 30-untranslated region of the
same gene. Subsequently, Johnson and colleagues (2013) examined
an additional 19 SNPs inHTR3A andHTR3B genes, which encode
the 5-HT3A and 5-HT3B subunits of the 5-HT3 receptor, to deter-
mine whether these variants moderated ondansetron treatment out-
come. This resulted in a total of 21 genetic polymorphisms to be
considered as predictors of ondansetron response.

Statistical Analysis

We took the reduction from baseline percentage of heavy drink-
ing days (PHDD) to the average PHDD during treatment period as
our primary outcome, rather than the original longitudinal daily
heavy drinking index. It is of note that we did not perform any
imputation on missing values for this outcome. The covariates
included PHDD_base (PHDD at baseline), age, onage (age of onset
of alcohol dependence), race (Hispanic vs. others), gender, and the
21 genetic polymorphisms. We removed subjects with any missing
genotypes, leaving 251 subjects in the analysis. Using linear regres-
sion, ondansetron patients had 0.7% lower PHDD than placebo
patients (p = 0.422), showing no significant difference between
treatment and placebo in the overall sample.

We tried 2 data mining methods, that is, IT and VT, to identify
genetic and other prognostic moderators of ondansetron. We com-
pared the results of these analyses to identify new pharmacogenetic
findings.

Interaction Tree. IT is a tree-based exploratory procedure for
subgroup analysis (Su et al., 2009, 2011). It divides the data into
subgroups of contrasted treatment effects by partitioning the data
recursively, that is, covariates are recursively evaluated at each data
partitioning step in growing a tree. Thus, subjects in the terminal
nodes with top treatment effects are those who are the most respon-
sive to treatment. Following a CART convention (Breiman et al.,
1984), IT analysis consists of 3 major steps: growing, pruning, and
validation.

In the growing step, the split is restricted to a binary question on
a predictor Xj. If Xj is continuous, the question takes the form of
Xj ≤ c for some real value c. Otherwise, ifXj is nominal with catego-
ries C = {c1, . . ., cr}, then the question takes the form of Xj 2 A,
A ⊂ C. The aim is to find a split among all valid candidates that
bisects the data into 2 subsets with the greatest heterogeneity in
treatment. In other words, the best split would show the greatest
interaction with treatment.

A linear regression model for the continuous response Y is used
to assess the interaction effect:

Y� b0 þ b1trtþ b2sþ b3trt� s; (1)

where s is the indicator associated with a split. The split is eval-
uated via the Wald test statistic for hypothesis H0:b3 = 0 versus
Ha:b3 6¼ 0, that is, GðsÞ ¼ fb̂3=seðb̂3Þg2.
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The best split s* is the one that yields the maximum G(s) among
all candidates. The same procedure is applied to split either child
node recursively until some lenient stopping rules are satisfied,
resulting in a large initial tree, denoted by T 0.

The final tree model is one of the subtrees of T 0. To select the
best subtree, a pruning procedure is first applied to narrow down
the subtree choices. This leads to a sequence of nested subtrees of
decreasing size. Then a cross-validation method is applied to assess
the performance of each subtree in the sequence. IT adopts the
pruning method and a bootstrap-based validation procedure pro-
posed by LeBlanc and Crowley (1993), where a detailed description
can be found.

Virtual Twins. The VT method (Foster et al., 2011) involves
predicting the response to treatment and control “twins” for each
subject. Based on the prediction, an optimal subset can be found
with an enhanced treatment effect.

The VT method has 2 steps: estimation of the paired outcome
and a subsequent search for the optimal subset. In step 1, a random
forest is used to learn the outcome “twins” of the ith subject,
E(Yi|trti = 0, Xi) and E(Yi|trti = 1, Xi), where E(Y|trt = 0, X) is the
expected outcome for a subject in the placebo group with covariate
value X. The response of input is Y, while the covariate includes Xi,
trti, and their interaction Xi 9 I(trti = 0), Xi 9 I(trti = 1). The
inclusion of both Xi 9 I(trti = 0) and Xi 9 I(trti = 1) is not essen-
tial, but their inclusion improves the property of the method. The
estimates for E(Yi|trti = 0, Xi) and E(Yi|trti = 1, Xi) are denoted as
Ê0i and Ê1i respectively. The treatment effect of subject i is thus eval-
uated as Zi ¼ Ê1i � Ê0i.

In step 2, a regression tree is built to find a parsimonious number
of Xs that are strongly associated with Z and hence can define the
desired subset, using the rpart package in R (R Core Team, 2014)
with minimal terminal node size at 5. Following the standard proce-
dure in CART, a complexity parameter for pruning is chosen by
cross-validation.

Traditional Regression Methods. For comparison, we also
included the results obtained using traditional regression methods
(TRMs), where the interaction terms of genotype and treatment
were examined. Due to the extremely large number (321) of genotype
combinations, only the 2-way interaction of each SNP and treat-
ment was considered. Along the lines of Johnson and colleagues
(2013), subjects were identified if there existed >10% PHDD differ-
ence between the 2 arms, at a significance level of p < 0.05. Analo-
gous to the minimal split restriction in tree methods, we excluded
rare genotypes with an occurrence ≤5.

RESULTS

All the results shown below were based on 251 subjects
with complete genotype information in our analyses.

Interaction Tree

We built our IT using the default setup. In the pruning
process, we adopted Bayesian Information Criterion as the
selection criterion. Figure 1 shows the structure of the
selected IT. The tree depth is 4, implying treatment-by-cova-
riates interactions of possibly up to the fifth order. Terminal
nodes with a significant marginal treatment effect at p ≤ 0.05
were selected to be the optimal subgroup, that is: (i)
rs1150226 is {AG}; (ii) otherwise, rs1176719 is in {AA or
GG} and onset age ≥ 23. A total of 118 subjects (47%) of

the 251 subjects with nonmissing values were selected. The
sample mean difference of PHDD in the selected subgroup
was 17.2%. Compared to the overall sample mean difference
of 0.7% in PHDD, the subjects in the target groups showed
a much greater reduction in PHDD in the ondansetron arm
than the placebo arm.

Virtual Twins

We ran step 1 in the R randomForest package with all
options in default, but the number of trees was set at 1,000.
We obtained an estimate for the global average treatment
effect Z of 0.03. In the recursive partition process, we set the
complexity parameter to be 0.05 according to the cross-
validation provided in the rpart package. As shown in
Fig. 2, the final VT tree is also of depth 4. The 2 terminal
nodes with greater group average (suggested threshold in
Foster and colleagues (2011): global average of Z + 0.05)
were selected as the proposed subgroup. We gave ondanse-
tron to subjects with: (i) rs1150226 is not {GG}; (ii) other-
wise, PHDD_base > 0.883 and rs1176719 is not {AG}.
The selected subgroup has 88 subjects (35%) with a treat-

ment effect of 21.8% in the 251 subjects with nonmissing
genotypes.

Traditional RegressionMethod

Using the TRM to examine the interaction terms of geno-
type and treatment, we identified a combination of 4 geno-
types: rs1150226:AG, rs17614942:AC, rs1062613:CC, and
rs2276302:GG (TRM, N = 57 among 251 subjects). Having
at least 1 of these genotypes was predictive of an ondanse-
tron treatment response. The estimated mean difference of

rs1150226=
AG?

OndansetronYes

No

rs1176719=
AA or GG?

Yes

Onset age
≥23?

Ondansetron

Placebo

Placebo
No

No

Yes 

Fig. 1. Subgroup identified by interaction tree.
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PHDD between treatment and placebo was 26.3% in the
TRM subgroup (p = 0.001).

Comparison of Results

The IT method identified 2 genotypes: rs1150226:AG and
rs1176719:AA or GG in addition to the background attri-
bute age of onset. The VT method identified 2 genotypes:
rs1176719:AA or GG and rs1150226:AA or AG. Four geno-
types were identified in TRM: rs1150226:AG, rs17614942:
AC, rs1062613:CC, and rs2276302:GG. We noted that all
subgroups include rs1150226, although the VT method
included either AA or AG, while the TRM and IT only iden-
tified AG. Furthermore, we found that rs1176719:AA or GG
was shared by the IT and VT methods.

Comparison of the efficacy was also performed using a
dichotomous responder versus nonresponder end point effi-
cacy variable, percentage of subjects with no heavy drinking
days (PSNHDD), which has been endorsed by the U.S. Food
and Drug Administration as an important outcome measure
for phase III trials (Falk et al., 2010). To increase power,
subjects having at most 1 heavy drinking day (PS1HDD)
during the final 4 weeks of the treatment period were consid-
ered to be “responders.” By doing so, the number of
“responders” increased from 48 (PSNHDD) to 64
(PS1HDD). Because many subjects dropped out early, we
imputed their missing drinking outcomes as heavy drinking
days as defined in Falk and colleagues (2010), making the
sample size consistent with our analysis of PHDD. The odds
ratios (ORs) for TRM and the subgroup identified by other
tree-based methods are shown in Table 1. The p-values given
in the table were computed using Fisher’s exact test.

Generally, smaller subgroups had larger ORs and more
significant p-values. Notably, the OR for ondansetron versus
placebo in both the TRM and the VT subgroups were
comparable (5.0 vs. 3.8), although the latter subgroup had
54% more subjects than the former. Such subjects can be
defined as “super-responders.” The subgroup identified by
the IT had an OR of 2.1, with more than double the number
of subjects in the TRM subgroup. Overall, the VT subgroup
achieved a good balance of the treatment effect (OR = 3.8)
and the group size (88 of 251, or 35%). A Phase III trial spe-
cifically targeting this subgroup could be conducted to con-
firm this personalized medicine hypothesis.

Similarity in Selected Subjects

Note that while the subgroup identification criteria gener-
ated by different methods may appear different as defined by
different covariates, the actual subsets of subjects targeted by
these signatures may be quite similar. Therefore, we com-
pared the identified subsets of subjects to see how different
they actually were. Table 2 showed the overlap between sub-
groups S1 and S2 using Jaccard similarity coefficients,
defined as |S1∩S2|/|S1∪S2|, where |S| denotes the size (e.g.,
number of subjects) of set S, and ∩ and ∪ denote the union
and intersection set operation, respectively. We also used a
Venn diagram in Fig. 3 to illustrate the relation of these sets
graphically.

A total of 136 (54%) subjects were selected by at least 1 of
the identification methods, with a treatment effect of 0.15 on
PHDD. As shown in Table 2 and Fig. 3, subjects identified
by these methods tended to overlap. IT was the most com-
prehensive method, containing more than 80% of the sub-
jects selected by the VT and TRM (Fig. 3).

DISCUSSION

In this study, we applied 2 up-to-date data mining tree-
based methods to identify the subgroups that were most
responsive to ondansetron in an alcohol pharmacogenetic
trial. Conventionally, subgroups are preplanned; otherwise
post hoc subgroup analysis arouses controversy due to a lack
of validation. Multiplicity involved in the examination of
many subgroups greatly inflates the type I error rate. More-
over, traditional statistical methods to identify subgroups are
restricted to univariate exploration, namely covariates are
assessed one-by-one. The models for assessing treatment-by-

rs1150226=
GG?

OndansetronNo

Yes

rs1176719= AG

No

PHDD_base < 
0.883 ?

Ondansetron

Placebo

Placebo
Yes

Yes

No 

Fig. 2. Subgroup identified by virtual twins.

Table 1. Subgroup Comparison: Odds Ratio (OR) for PS1HDD
(Percentage of Subjects with at Most 1 Heavy Drinking Day) in Month 3 of

Follow-Up

Method Number OR p-Value

TRM 57 5.0 0.015
Virtual twins 88 3.8 0.017
Interaction tree 118 2.1 0.059

TRM, traditional regression method.
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covariate interaction are also limited to cross-product terms
up to second order. In addition, it is difficult to determine the
final number of subgroups. The tree-based methods
essentially overcome these limitations. Tree methods are
known to deal effectively with higher order complex interac-
tions through their hierarchical structure. For the purpose of
conducting subgroup analysis, tree methods optimally bisect
data into groups that show maximum heterogeneity in treat-
ment effects. The built-in validation process helps to avoid
false positive subgroups and automatically determines the
number of subgroups. The splitting rules leading to each sub-
group are amenable to interpretation.
On the other hand, tree methods for subgroup analysis

also have limitations. These and many other data mining
methods are not intended to conform with a statistical
significance testing framework. Owing to their adaptive
nature, the p-values reported for resultant subgroups can
be overly optimistic and should not be interpreted with-

out being recomputed using an independent data set
obtained in a subsequent study. Also, if a continuous co-
variate interacts with the treatment in a truly linear form
(i.e., with a cross-product term), a cumbersome tree struc-
ture may be required to fully represent the heterogeneity
structure of treatment effects, compared to TRM. Never-
theless, most covariates (including all the genetic variables
in this ondansetron trial) are categorical, for which trees
are more efficient.
We compared the results to those using TRMs. All

methods successfully identified a subgroup within which
the treatment effect on PHDD was highly significant
(p-value = ~0.001). We also note that these methods yielded
similar subgroups via slightly different paths (e.g., rs1150226,
rs1176719, PHDD_base).
Our study attempted to identify a subgroup with a large

enough effect size to be clinically meaningful. Specifically, we
expect that the selected subgroup will contain at least one-
third of the population. It should be noted that there is a
trade-off between the effect size and the sample size.
Although a smaller sample size, as identified by the TRM,
tended to have a large effect size, it may not be practical to
develop medication for a very small patient population. In
contrast, the tree-based methods, for example, the VT
method, yielded a larger subgroup (i.e., about 35% of the
total population), with an adequate effect size of 0.22 on
PHDD.
The statistical associations of PHDD with ondansetron

treatment and the rs1150226 and rs1176719 genotypes may
have a biological basis. The polymorphism rs1150226 is
located in the promoter region of the HTR3A gene, and
rs1176719 is located in the intron 4 region (NM 000869.5)
of the HTR3B gene, close to an intron–exon boundary.
HTR3A encodes the primary target molecule of ondanse-
tron (the 5-HT3A subunit), and the product of the HTR3B
gene (the 5-HT3B subunit) is necessary to stabilize the
5-HT3A receptor subunit at the cell surface. The exact
molecular mechanisms by which these 2 polymorphisms
moderate ondansetron response remain to be determined.
Yet, given the location of these 2 variants within the genes,
it is possible that ondansetron may modulate HTR3A and
HTR3B gene expression levels in an allele-based manner
leading to differences in receptor subunit expression at the
cell surface.
These methods can be extended in several directions. First,

in many alcohol treatment trials, daily drinking records are
repeatedly measured using the TLFB method over a period
of time. It would be of interest to explore the aforementioned
subgroup identification methods in such intensive longitudi-
nal data, through the method of Su and colleagues (2011), to
improve the power for repeated measures data. Second, in
most of the current work, efficacy, for example, reduction in
PHDD, has been used as the primary focus in subgroup
identification. However, safety measures, such as adverse
events, should be taken into account simultaneously in phar-
macogenetic studies. It would be of interest to develop new

Table 2. Jaccard’s Similarity Coefficients (|S1∩S2|/|S1∪S2|) Among
Subgroups Identified by Different Methods

Subgroup Size

Treatment
Similarity = intersection size/union

group size*100%

Effect p-Value Full TRM VT IT

Full 251 0.007 0.422 100 22.71 35.06 47.01
TRM 57 0.263 0.001 22.71 100 49.48 36.72
VT 88 0.218 0.001 35.06 49.48 100 59.69
IT 118 0.172 0.001 47.01 36.72 59.69 100
Union 136 0.150 0.002 54.18 41.91 64.71 86.76

TRM, traditional regression method; VT, virtual twins; IT, interaction
trees.

Fig. 3. Venn diagram of the results from different methods. The num-
bers in the Venn diagram are numbers of subjects who were responsive to
ondansetron. A total of 115 subjects were not identified by any of the 3
methods.
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data mining/machine learning methods that take efficacy and
safety into account concurrently as outcomes. Finally, what
we have considered so far is within the framework of tree-
based approaches. Other data mining tools, for example,
support vector machine (Cortes and Vapnik, 1995) or least
absolute shrinkage and selection operator (“lasso”) (Tibsh-
irani, 1996), can also be adopted in the estimation procedure.

Missing data are a major problem in longitudinal alcohol
clinical studies. Different methods should be used to accom-
modate different missing mechanisms (Little and Rubin,
2002), for example, missing completely at random (dropout
independent of response), missing at random (dropout
dependent only on observed response), and missing not at
random (informative dropout—dropout dependent on
unobserved response). Imputation has been used in several
studies, for example, Johnson and colleagues (2007) and
Falk and colleagues (2010), to provide a complete data set.
In our current study, we did not perform any imputation for
the PHDD outcome, but did a worst case imputation (e.g.,
imputed all missing values to heavy drinking) in the
PS1HDD study instead (this way the 2 analyses had the same
sample size for comparison). Subgroup identification meth-
ods introduced heretofore can then be applied to the imputed
heavy drinking outcome. However, the performance of these
methods on imputed data has not been extensively investi-
gated, either empirically or theoretically. An alternative
approach to tackling missing data is to use a sensitivity
analysis of the informative dropout, for example, with a joint
model of longitudinal drinking level and time to dropout
(e.g., Johnson et al., 2011). The application of tree-based
methods to this joint model is an interesting topic for future
research.

ACKNOWLEDGMENTS

HZ’s work was supported by NIH grant R01DA016750.
We are grateful to Drs. Ilya Lipkovich and Sue-Jane Wang
for their helpful comments.

FINANCIAL DISCLOSURES

Dr. Johnson has served as a consultant to Johnson &
Johnson (Ortho-McNeil Janssen Scientific Affairs, LLC),
Transcept Pharmaceuticals, Inc., D&A Pharma, Organon,
ADial Pharmaceuticals, LLC, Psychological Education
Publishing Company (PEPCo), LLC, and Eli Lilly and
Company. Dr. Liu has been a consultant to Celladon,
Zensen, and Outcome Research Solutions. Dr. Kranzler
has been a consultant and/or advisory board member for
Alkermes, Lilly, Lundbeck, Otsuka, Pfizer, and Roche.
He is also a member of the American Society of Clinical
Psychopharmacology’s Alcohol Clinical Trials Initiative,
supported by AbbVie, Ethypharm, Lilly, Lundbeck, and
Pfizer. The other authors report no financial relationships
with commercial interests or potential conflict of
interests.

REFERENCES

Anton RF, O’Malley SS, Ciraulo DA, Cisler RA, Couper D, Donovan DM,

Gastfriend DR, Hosking JD, Johnson BA, LoCastro JS, Longabaugh R,

Mason BJ, Mattson ME, Miller WR, Pettinati HM, Randall CL, Swift R,

Weiss RD, Williams LD, Zweben A (2006) Combined pharmacotherapies

and behavioral interventions for alcohol dependence—The COMBINE

study: a randomized controlled trial. J AmMed Assoc 295:2003–2017.
Breiman L, Freidman JH, Olshen RA, Stone CJ (1984) Classification and

Regression Trees. Wadsworth, Belmont, CA.

Cortes C, Vapnik VN (1995) Support-vector networks. Mach Learn 20:273–
297.

Falk D, Wang XQ, Liu L, Fertig J, Mattson M, Ryan M, Johnson B, Stout

R, Litten RZ (2010) Percentage of subjects with no heavy drinking days:

evaluation as an efficacy endpoint for alcohol clinical trials. Alcohol Clin

Exp Res 34:2022–2034.
Foster JC, Taylor JMG, Ruberg SJ (2011) Subgroup identification from ran-

domized clinical trial data. Stat Med 30:2867–2880.
Gail M, Simon R (1985) Testing for qualitative interactions between treat-

ment effects and patient subsets. Biometrics 41:361–372.
Hamburg MA, Collins FS (2010) The path to personalized medicine. N Engl

J Med 363:301–304.
Heilig M, Goldman D, Berrettini W, O’Brien CP (2011) Pharmacogenetic

approaches to the treatment of alcohol addiction. Nat Rev Neurosci

12:670–684.
Johnson BA, Ait-Daoud N, Li MD, Seneviratne C, Roache JD, Javors MA,

Wang X-Q, Liu L, Penberthy JK, DiClemente CC (2011) Pharmacogenet-

ic approach at the serotonin transporter gene as a method of reducing the

severity of alcohol drinking. Am J Psychiatry 168:265–275.
Johnson BA, Rosenthal N, Capece JA, Wiegand F, Mao L, Beyers K,

McKay A, Ait-Daoud N, Anton RF, Ciraulo DA, Kranzler HR, Mann

K, O’Malley SS, Swift RM (2007) Topiramate for treating alcohol depen-

dence: a randomized controlled trial. J AmMed Assoc 298:1641–1651.
Johnson BA, Seneviratne C, Wang XQ, Ait-Daoud N, Li M (2013) Determi-

nation of genotype combinations that can predict the outcome of the treat-

ment of alcohol dependence using the 5-ht3 antagonist ondansetron. Am J

Psychiatry 170:1020–1031.
Kranzler HR, McKay JR (2012) Personalized treatment of alcohol depen-

dence. Curr Psychiatry Rep 14:486–493.
LeBlanc M, Crowley J (1993) Survival trees by goodness of split. J Am Stat

Assoc 88:457–467.
Little R, Rubin DB (2002) Statistical Analysis with Missing Data. 2nd ed.

JohnWiley & Sons, NewYork, NY.

Negassa A, Ciampi A, Abrahamowicz M, Shapiro S, Boivin JF (2005) Tree-

structured subgroup analysis for censored survival data: validation of com-

putationally inexpensive model selection criteria. Stat Comput 15:231–239.
Oliva EM, Maisel NC, Gordon AJ, Harris A (2011) Barriers to use of phar-

macotherapy for addiction disorders and how to overcome them. Curr

Psychiatry Rep 13:374–381.
R Core Team (2014) R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria.

Sobell LC, Sobell MB (1992) Timeline followback: a technique for assessing

self-reported ethanol consumption, in Measuring Alcohol Consumption:

Psychosocial and Biochemical Methods (Litten RZ, Allen JP eds), pp 41–
72. Humana Press Inc, Totowa, NJ.

Su XG, Meneses K, McNees P, Johnson WO (2011) Interaction trees:

exploring the differential effects of an intervention programme for breast

cancer survivors. J Roy Stat Soc: Ser C (Appl Stat) 60:457–474.
Su XG, Tsai CL,WangHS, NickersonDM, Li BG (2009) Subgroup analysis

via recursive partitioning. J Mach Learn Res 10:141–158.
Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy

Stat Soc B 58:267–288.
Weber EM (2010) Failure of physicians to prescribe pharmacotherapies for

addiction: regulatory restrictions and physician resistance. J Health Care

Law Policy 13:49–76.
Willenbring ML (2007) Medications to treat alcohol dependence—adding to

the continuum of care. J AmMed Assoc 298:1691–1692.

1258 HOU ET AL.



Zhang HP, Legro RS, Zhang J, Zhang L, Chen X, Huang H, Casson PR,

Schlaff WD, Diamond MP, Krawetz SA, Coutifaris C, Brzyski RG,

Christman GM, Santoro N, Eisenberg E, for the Reproductive Medicine

Network (2010) Decision trees for identifying predictors of treatment effec-

tiveness in clinical trials and its application to ovulation in a study of

women with polycystic ovary syndrome. HumReprod 25:2612–2621.
Zhang HP, Singer B (2010) Recursive Partitioning and Its Applications.

Springer, NewYork, NY.

PERSONALIZED TREATMENTOF ALCOHOL DEPENDENCE 1259


