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spike-timing-dependent plasticity (STDP) 
using various types of memristors. [ 12,16–21 ]  
However, in these studies, the synaptic 
learning rules were implemented phenom-
enologically by engineering the duration or 
amplitude of the overlapping programming 
pulses from the pre- and postsynaptic neu-
rons. [ 12,18–22 ]  The phenomenological nature 
of this approach means that different pro-
gramming pulses have to be manually 
designed to implement the desired syn-
aptic behaviors. However, in biology, the 
apparently different learning rules have 
been shown to be specifi c effects driven 
by internal molecular dynamic processes 
under stimulation. [ 23–25 ]  Consequently, 
manually designing a system to specifi -
cally target only certain effects, but not 
their cause, can easily miss other important 
aspects that make the system functional. 

 In a previous study, we showed that by 
employing multiple internal state variables (e.g., temperature 
and conduction fi lament size), a second-order memristor can 
be obtained which allows biorealistic implementation of several 
synaptic learning rules—notably spike-timing-dependent plas-
ticity. [ 26 ]  Here, we show that a second-order memristor can also 
be implemented by utilizing the different time scales of internal 
ionic dynamics in oxide-based memristors, leading to the natural 
implementation of several types of important synaptic behav-
iors. We show that an oxide-based memristor may be described 
by two state variables—one ( w  c ) directly determines the device 
conductance (weight) and the other ( w  m ) affects the dynamics of 
the fi rst (conductance) state variable. Specifi cally in our device 
system,  w  c  represents the area of the conducting channel region 
in the oxide memristor thus directly affecting the device con-
ductance, while  w  m  represents the oxygen vacancy mobility in 
the fi lm which directly affects the dynamics of  w  c  but only indi-
rectly modulates the device conductance. Within this second-
order memristor framework, the device long-term state can be 
shown to be controlled by activities at much shorter time scales. 
Specifi cally, the natural decay of the state variable  w  m  provides 
an internal timing and modulation mechanism analogous to 
that exhibited by Ca 2+  concentration, [ 23–25 ]  and enables the mem-
ristor to exhibit important rate- and timing-dependent behaviors 
at both short-term such as pair-pulse facilitation (PPF) [ 27 ]  and 
long-term such as STDP [ 28 ]  using simple, nonoverlapping spike 
signals. The experimental observations can in turn be quantita-
tively explained using a simple dynamic device model including 
the two state variables, and facilitates large-scale simulation and 
implementation of memristor-based neuromorphic systems.  
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  1.     Introduction 

 Memristors are two-terminal electrical devices whose states are 
described by internal state variables and governed by dynamic 
ionic processes. The concept of memristors was initially pro-
posed in the 1970s [ 1,2 ]  and has been intensively investigated in 
the last few years. [ 3–7 ]  The key advantages of memristor devices 
include the compact two-terminal structure, internal memory, 
fast speed, low power, complementray metal oxide semicon-
ductor (CMOS) compatibility, and the ability for hybrid and 3D 
integration, making them attractive for a broad range of appli-
cations including memory, analog and reconfi gurable circuits, 
as well as neuromorphic computing. [ 8–11 ]  

 In particular, the prospect of building biologically inspired 
neuromorphic computing systems with memristor-based syn-
apses has generated signifi cant interest. [ 12–14 ]  These systems 
offer distributed computation and localized memory and could 
offer much higher capability and effi ciency than today’s dig-
ital computers to handle complex tasks. [ 13,15 ]  To date, several 
studies have demonstrated basic synaptic learning rules such as 
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  2.     Results and Discussion 

  2.1.     Device Characteristic and Modeling 

 The memristor devices used in this study are based on a metal–
insulator–metal (MIM) structure similar to those reported ear-
lier. [ 16,17 ]  The device has a palladium (Pd) top electrode, a tungsten 

oxide (WO  x  ) switching layer, and a tungsten (W) bottom elec-
trode (Supporting Information). As with all memristor devices, a 
“pinched-hysteresis” behavior can be distinctively observed in the 
 I – V  characteristics as presented in  Figure    1  a. When a positive 
voltage is applied, the device conductance gradually increases 
(termed the write process) and when a negative voltage is applied 
the conductance gradually decreases (termed the erase process).  
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 Figure 1.    Electrical characterization and modeling of the memristor. a) DC characteristics of the device showing pinched hysteresis and gradual con-
ductance increase. Three consecutive DC sweeps were applied from 0 to 1.2 V with 2 V s −1  ramp rate. Inset: Scanning electron microscope image of 
a typical device. Scale bar: 20 µm. b) Schematic illustration of the internal  V  O  dynamics showing: (1) electric fi eld driven  V  O  drift and (2) spontaneous 
diffusion. c) Memristor conductance decay. The device was stimulated with ten write pulses (1.2 V, 1 ms) and the conductance decay was monitored 
after the stimulation. The experimental data (black squares) can be fi tted by the sum of two stretched exponential functions with distinct relaxation time 
constants (red line). Green line shows simulation results from the memristor model (Equations  ( 2)  – ( 4)  ) that also captures the memristor behavior 
at different time scales. Inset: Experimental (black squares) and simulation results from the memristor model (green line) showing the memristor 
conductance decay plotted in linear time scale. d) Memristor conductance as a function of repeated stimulation, showing a saturation behavior. Inset: 
The programming waveform with a write pulse (1.3 V, 1 ms) followed by a read pulse (0.5 V, 500 µs). The device was subjected to 1000 such pulses 
with a repetition frequency of 50 Hz. Modeling results (solid red lines) and measured data (open circles) of the device when subjected to e) AC stimu-
lation and f) DC stimulation. The insets show the stimulation waveforms (blue lines) corresponding to a 1 kHz sine wave with e)  V  peak  = 1.3 V and a 
triangular waveform with f)  V  peak  = 1.2 V and 2 V s −1  ramp rate.
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 The conductance change can be explained by the redistribu-
tion of ions, [ 16,29 ]  here in the form of oxygen vacancies, as sche-
matically illustrated in Figure  1 b. The regions rich with oxygen 
vacancies form high conductance channels while the rest of the 
regions remain at low conductance and form a Schottky contact 
with the W electrode. Therefore, the device can be modeled as 
having two conduction paths in parallel, with a state variable  w  c  
representing the relative area of the conducting region, [ 16,30 ]  as 
shown in Figure  1 b. Specifi cally, we note that the  V  O  movement 
can be caused by both the electric fi eld during programming [ 31 ]  
and by spontaneous diffusion, [ 16 ]  also schematically illustrated 
in Figure  1 b. These internal ionic dynamic processes allow the 
memristor to exhibit a number of key synaptic behaviors at 
short-term and long-term discussed below. 

 The synaptic cleft is a region between the axon of a presyn-
aptic neuron and the dendrite of a postsynaptic neuron. [ 32 ]  
Spikes, or action potentials (APs) from the presynaptic neuron 
can be transmitted through the synapse and generate a post-
synaptic potential (PSP) whose amplitude is determined by 
the connection strength, i.e., the synaptic weight. Here, the 
synaptic weight will be emulated by the conductance of the 
memristor. In neurobiological studies, the modulation of the 
synaptic effi cacy (weight) can be further traced to internal 
molecular dynamics, e.g., modulations of the pre- or postsyn-
aptic Ca 2+  ion concentrations [ 24,25,27,33 ]  which inspired us to 
explore how internal ionic dynamics in memristors can affect 
its conductance change. The time scales of the ionic dynamic 
processes can be probed by monitoring how the memristor 
weight evolves after stimulation, as shown in Figure  1 c. In 
this study, ten positive write pulses (1.2 V, 1 ms) at 5 ms inter-
vals were applied fi rst, followed by small read pulses (0.4 V, 
1 ms) to track the memristor conductance (weight) change. The 
stimulation drives the memristor conductance higher, however 
after stimulation is stopped the memristor conductance decays, 
likely due to the diffusion of  V  O  [ 16,21,34–36 ]  as shown in Figure  1 c. 
Signifi cantly, careful analysis of the data shows that the decay 
appears to occur at two very different time scales: right after 
stimulation, the memristor conductance shows a very fast decay 
and the decay becomes much slower after a few hundreds of 
milliseconds. Specifi cally, the data can be well fi tted with two 
time constants: a short-term effect with time constant ≈52.5 ms 
and a long-term time constant ≈92.5 s
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 Here, stretched exponential functions that describe relaxation 
in a disordered system are used to model both the short-term 
and the long-term decays, where  τ  s  ( τ  l ),  I  0s  ( I  0l ),  β  s  ( β  l ) are the 
characteristic relaxation time, prefactor, and the stretch index 
for the short-term (long-term term) process, respectively. Exper-
imentally, this behavior can be explained by the fact that the 
state variable governing memristor conductance ( w  c ) is affected 
by how mobile the oxygen vacancies are. It has been found that 
the mobility of oxygen vacancies (ions) increases when they are 
driven out of equilibrium right after a stimulation pulse, pos-
sibly due to the local lattice distortion and strain, followed by 

slow relaxation after the stimulation is removed. [ 36 ]  The tempo-
rary higher mobility, represented by another state variable  w  m  
in our model, may explain the initial fast decay of the mem-
ristor conductance and also affect how the conductance state 
variable  w  c  responds to stimulation. Physically, the migration 
of oxygen vacancies are driven by electrochemical gradients, [ 37 ]  
including the fi eld-driven drift process by an electrical poten-
tial gradient and the diffusion process driven by an internal 
chemical potential gradient. Additional factors (e.g., protons 
provided by moisture; local morphology, etc.) can in turn affect 
the dynamics of such processes. The formation of (electro)
chemical potential gradients in both electrochemical metalli-
zation memory (ECM) and valence change memory (VCM, to 
which the WO  x   memristor belongs) and the relaxation that lead 
to the experimentally observed nanobattery effect [ 37 ]  have been 
extensively discussed previously. [ 37 ]  

 Borrowing terms used in neuroscience, the fi rst stage with 
time constant ≈52.5 ms is considered short-term and the 
second stage with time constant ≈92.5 s (i.e., >1000× longer) 
is considered long-term. We note that even though the absolute 
values of the short-term and long-term characteristic time con-
stants are different from those reported in biological synapses 
(e.g., tens of milliseconds to a few minutes for short-term [ 27 ]  
and minutes to hour for long-term, [ 38 ]  the separation of the two 
time scales that differ by more than three orders of magnitude 
is evident in the memristor, and that circuits based on memris-
tors can potentially operate at higher clock frequency (e.g., kHz 
or higher compared to ≈Hz in biological systems) to utilize the 
different dynamics in the two regimes. 

 Another property of the memristor device is the nonlinear 
response to programming. For example, in an experiment 
shown in Figure  1 d, continuous positive write pulses (1.3 V, 
1 ms) were applied to the device at a repetition frequency of 
50 Hz, and the device conductance was measured by a small 
read pulse (0.5 V, 500 µs) after each write pulse. The read cur-
rent increases quickly following the fi rst few write pulses but 
gradually saturates as the device conductance increases with 
an increasing number of write pulses. The loss of program-
ming capability at high conductance states is likely due to the 
exhaustion of the limited supply of oxygen vacancies in the 
switching layer. 

 These ionic dynamics can be captured in a memristor model 
considering two state variables

    
1 1 exp sinhc cα β γ( ) ( )( )= − × × − −⎡⎣ ⎤⎦ + × ×I w V w kV
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 Here, Equation  ( 2)   is the current–voltage equation determined 
by the state variable  w  c , which represents the effective area of 
the conducting region, as discussed in previous studies. [ 16,30 ]  
Equations  ( 3)   and  ( 4)   are the dynamic equations of the two 
state variables  w  m  and  w  c , in which the fi rst term describes 
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the effect of the stimulation voltage, while the second term 
describes the effect of decay with effective time constants ( m

*τ  
and c

*τ ). Specifi cally, the dynamic Equation  ( 3)   for state variable 
 w  m , which represents the effective mobility of the  V  O s, shows 
that the V O s become more mobile with stimulation since more 
 V  O s are driven out of equilibrium, and the mobility enhance-
ment fades after stimulation is removed. [ 36 ]  Additionally,  w  m  
affects how  w  c  changes with stimulation through the factor 
exp mε( )w  in Equation  ( 4)  . The decay of  w  c  may also be affected 
by the  V  O  mobility so the effective decay time constant c

*τ  is 
considered a function of  w  m  too. In this sense, the memristor 
can be considered as a “second-order” memristor [ 26,39 ]  where 
the state variable that directly controls the device current–
voltage characteristics,  w  c , is modulated by another state vari-
able  w  m . In particular, even though the enhancement of  w  m  is 
mostly short-term with an effective time constant of only 10 s 
of milliseconds, it can (indirectly through Equation  ( 4)   have 
long-term effects on the device conductance. The values of 
the device-specifi c parameters and the choice of the “window 
function” ,( )W w V  that refl ects the nonlinear state-dependent 
programming capability and the effective time constant func-
tions ( )m

*
mτ w  and ( )c

*
mτ w  can be found in the Supporting 

Information. 
 This memristor model based on two state variables can quan-

titatively capture the ionic dynamics and describe the device 
response over a large range of programming conditions. For 
example, the two-stage decay phenomenon can be well-repro-
duced through simulation based on Equations  ( 2)  – ( 4)   (Figure  1 c). 
Simulation results based on this dynamic model can also quan-
titatively explain both the AC (Figure  1 e) and DC (Figure  1 f) 
responses of the device. 

 Below we show that the internal ionic dynamics of the 
memristors can be used to natively emulate a diverse range 
of synaptic behaviors at both short-term such as PPF [ 27 ]  and 
long-term such as STDP [ 28 ]  using simple spike signals, without 
having to engineer arbitrary, overlapping pulses. Unlike our 
previous study that relies on temperature as the second state 
variable [ 26 ]  and requires a separate heating pulse to initiate the 
temperature change, here both state variables are associated 
with the same specie (oxygen vacancy) and can be excited by 
using a single, simple (e.g., square) pulse. Additionally, these 
experimental results can be fully explained by the memristor 
model based on the two state variables, using essentially a 
single set of material-dependent parameters (Supporting 
Information).  

  2.2.     Paired-Pulse Facilitation 

 Paired-pulse facilitation (PPF) is an important short-term phe-
nomenon extensively discussed in neuroscience studies. [ 27 ]  PPF 
states that when two excitatory presynaptic spikes are applied 
successively, the second spike will generate a larger excitatory 
postsynaptic current (EPSC) than the fi rst pulse. Additionally, 
the amplitude of EPSC caused by the second pulse is deter-
mined by the time interval between the two pulses and a larger 
interval will lead to a smaller EPSC amplitude enhancement. 
Results from studies on guinea pig hippocampal cells are repro-
duced in  Figure    2  a. [ 40 ]  The PPF effect is believed to be caused 

by the residual Ca 2+  concentration in the presynaptic neuron 
induced by the fi rst spike which enhances the overall Ca 2+  level 
and the resulting EPSC generated by the second spike. Due to 
the exponential decay of the residual Ca 2+  caused by the fi rst 
spike, the effect naturally becomes weaker when the interval 
between the two spikes increases. [ 27 ]   

 Figure  2 b shows similar effects obtained in the memristor 
device when applied with two identical, nonoverlapping pulses. 
Similar to PPF studies in biology, the intervals between the 
two write pulses (simple square pulses with amplitude of 1.4 V 
and duration of 1 ms) were changed systemically to probe 
how the memristor responds to the paired pulses. First, we 
notice that the current spike through the memristor during the 
second voltage pulse is indeed larger than that during the fi rst 
pulse, similar to PPF effects. Analogous to the residual effects 
of Ca 2+  in biological synapses, the enhancement in program-
ming current (determined by  w  c ) observed in the second pulse 
can be explained by the residual mobility enhancement effect 
(represented by  w  m ) from the fi rst pulse. If the second pulse is 
applied before  w  m  has decayed to its resting value, an enhanced 
current spike will be obtained, as expected from PPF effects. 
Additionally, with increasing interval between the two pulses, 
the enhancement is reduced (Figure  2 b), as the enhanced  w  m  
gradually decays toward its resting value. 

 The PPF effect observed in memristors can be better illus-
trated by calculating the conductance change by comparing the 
device conductance measured immediately after the fi rst pulse 
( p  1 ) and the second pulse ( p  2  ). The dependence of the con-
ductance enhancement on the pulse interval (Figure  2 c) again 
shows a similar trend to that observed in biological systems 
(Figure  2 a). A larger interval will lead to a smaller conductance 
enhancement and this could be directly explained from the 
perspective of the enhancement and decay of the state variable 
 w  m , as discussed above. Specifi cally, the change in device con-
ductance as a function of pulse interval can be quantitatively 
explained through simulations based on the device model, 
shown as the solid line in Figure  2 c. 

 As an extension of PPF, if more than two excitatory presyn-
aptic spikes are applied to the synapse, the amplitude of the 
resulting EPSC will continue increasing gradually. The extent 
of the synaptic weight change depends on the frequency of 
stimuli, which is inversely related to the interval between each 
pulse. To verify that the internal  V  O  dynamics can naturally lead 
to similar frequency-dependent weight change, we applied ten 
continuous write pulses (1.25 V, 1 ms) with different frequen-
cies and monitored the current during each pulse (Figure  2 d). 
The device current was indeed found to increase gradually, and, 
more interestingly, at different rates depending on the stimula-
tion frequency. The increase in current, measured at the last 
pulse and compared to the fi rst pulse, is calculated and shown 
in Figure  2 d. A clear trend in the potentiation effect with respect 
to the stimulation frequency can be observed. As the stimula-
tion frequency increases, the increase in current is more sig-
nifi cant. This frequency dependence can be readily explained 
using the  V  O  dynamics following the residual calcium con-
centration model, as pulse trains with higher frequency mean 
smaller intervals between pulses to allow  w  m  decay and result 
in more effective accumulation of the  V  O , as already explained 
in the PPF experiments. Again the experimental data can be 
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quantitatively explained by the memristor model (solid line in 
Figure  2 d).  

  2.3.     Experience-Dependent Plasticity 

 Another important synaptic behavior is that the synaptic plas-
ticity is experience dependent. For example, according to Bien-
enstock, Cooper, and Munro (BCM), [ 41 ]  the synapse can exhibit 
either potentiation (synaptic weight strengthening) or depres-
sion (synaptic weight weakening) even when subjected to the 
same spike trains. In other words, not only the amplitude but 
also the sign of synaptic weight change depends on the present 
stimulation conditions as well as the stimulation history. Spe-
cifi cally, Bear et al. [ 42 ]  found that high frequency stimulation 
normally leads to potentiation and low frequency stimulation 
normally leads to depression, and there exists a threshold fre-
quency at which the synaptic weight can be maintained. Addi-
tionally, the threshold frequency will also shift accordingly, 
depending on the experience of the synapse. [ 42 ]  For example, 

after a period of increased synaptic activity, the threshold will 
slide to right (higher frequency), promoting synaptic depression 
such that spike trains that previously caused potentiation may 
now be below the threshold frequency and will cause depres-
sion instead. Similarly, after a period of decreased activity, the 
threshold will slide to left, promoting synaptic potentiation 
and it will be easier to enhance synaptic weight with lower-fre-
quency spikes. The sliding threshold effect from Bear’s study [ 42 ]  
on visual cortex is reproduced in  Figure    3  a.  

 In our experiment, we applied a series of pulse trains, each 
consisting of fi ve identical programming pulses (1 V, 1 ms), 
with different frequencies and recorded the memristor conduct-
ance change as shown in Figure  3 b. In step 1, the fi rst pulse 
train with a 200 Hz stimulation frequency was applied and 
resulted in an increase in current through the memristor. Sub-
sequently, in step 2, a 10 Hz pulse train caused the memristor 
current to drop. On the other hand, following the 1 Hz pulse 
train in step 3, the same 10 Hz pulse train in step 4 created 
an increase in memristor current instead. The sign reversal 
with respect to current change at the same 10 Hz stimulation 
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 Figure 2.    Paired-pulse facilitation effect in memristors. a) Results of PPF from mossy fi ber (MF) and assoc/com (AC) synapses. Adapted with permis-
sion from ref.  [ 40 ] . Top: EPSP obtained from paired pulses with different intervals. The EPSP from the second pulse is enhanced, and the enhancement 
is weaker with longer intervals between the pulses. Bottom: PPF ratio as a function of pulse interval. The ratio was defi ned as ( p  2  −  p  1 )/ p  1 , where  p  1  and 
 p  2  are the amplitude of the EPSCs evoked by the fi rst and second pulse, respectively. b) PPF effect obtained in the memristor by applying two paired 
pulses (1.4 V, 1 ms) at ten different intervals. The second pulse produces an enhanced response in all cases, and increasing the pulse interval leads to 
a decrease in the enhancement. c) PPF ratio as a function of pulse interval, showing a similar trend to (a). Squares: Experimental data. Line: Simulation 
results from the memristor model using experimental parameters. d) Change in memristor current after the application of pulse trains consisting of ten 
write pulses (1.25 V,1 ms) with different frequencies. Higher stimulation frequency leads to larger conductance enhancement. Squares: Experimental 
data. Line: Simulation results from the memristor model using experimental parameters.
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conditions shows that the effect of the stimulation for a mem-
ristor can also be dependent on previous activity. 

 The behavior observed in the WO  x   memristors can be 
explained by the  V  O  dynamics of the memristor, as the conduct-
ance change is determined by the competition of the effects of 
the stimulation pulse and the decay of the state variables  w  c  and 
 w  m . The experimentally observed experience-dependent behav-
iors can be fully reproduced in simulation based on the device 
model of Equations  ( 2)  – ( 4)   (black squares, Figure  3 b). Briefl y, 
during the experiment in Figure  3 b, the 200 Hz pulse train 
drove  w  m  to a high value which leads to small effective time 
constants ( )m

*
mτ w  and ( )c

*
mτ w  (Supporting Information) and 

enhanced decay of  w  c  and  w  m  in Equations  ( 3)   and  ( 4)  . As a 
result, the subsequent 10 Hz pulse train was not suffi cient to 
overcome the fast  w  c  decay and increase the memristor conduct-
ance anymore and an overall conductance drop was observed. 
On the contrary, after the 1 Hz pulse train,  w  m  has fully relaxed 
so the decay of  w  c  and  w  m  has slowed down signifi cantly. As 

a result, the same 10 Hz pulse train afterward was enough to 
bring the conductance up. In other words, the same device can 
experience either conductance increase or decrease at a given 
stimulation condition, depending on the previous activity of the 
device. 

 With this understanding, we performed an experiment 
analogous to that of Bear et al. [ 42 ]  (Figure  3 a). In this study, we 
fi rst experienced the device to one of three levels of activities 
by the application of ten pulses at either 10, 20, or 50 Hz, then 
fi ve write pulses (1.2 V, 1 ms) with different repetition frequen-
cies were applied and the net current changes (before and after 
the application of the write pulses) were recorded. The experi-
ment is repeated by fully relaxing the device to the resting state 
(with  w  c  and  w  m  relaxed to their respective resting values), and 
the change in current during the fi ve write pulses was plotted 
against the stimulation frequency of the write pulses, for the 
three cases. As shown in Figure  3 c, a low stimulation frequency 
in general leads to conductance decrease (negative change) 
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due to the previous activities and a high frequency in general 
leads to conductance increase (positive change). Moreover, the 
threshold frequency at which the net conductance change is 
zero is observed to depend on the previous activities as well, as 
evidenced by the shift in the three curves corresponding to the 
three levels of activities the device has been subjected to. The 
threshold frequency will slide to the right (higher frequency) 
when previous activity is stronger, similar to the observations 
in neurobiology shown in Figure  3 a. Importantly, these behav-
iors can be fully explained by the internal memristor dynamics 
using  w  m  and  w  c  as state variables, as evidenced by the quan-
titative agreement between experimental data and simulation 
results shown in Figure  3 c. 

 The sliding threshold effect can be refl ected as either a 
change in threshold frequency at the same stimulation ampli-
tude, as observed in neurobiological studies and shown in 
Figure  3 c, or a change in threshold amplitude at the same stim-
ulation frequency. Both effects may be relevant for memristor 
devices and can be used in hardware-based neuromorphic sys-
tems. The sliding threshold amplitude effect is demonstrated in 
Figure  3 d. In this study, the device again was fi rst subjected to 
different levels of activities, then a pulse train consisting of fi ve 
pulses with a fi xed frequency (50 Hz) but different amplitudes 
was applied and the amplitude at which the device conductance 
can be maintained was recorded. As can be seen in Figure  3 d, 
to maintain the device conductance at a given stimulation fre-
quency, the threshold amplitude shifts to higher voltages with 
stronger previous activities. This behavior can be again quanti-
tatively captured by the memristor model (solid line, Figure  3 d).  

  2.4.     Effect of Short-Term Dynamics on Long-Term State Change 

 More importantly, even though  w  m  is effective at short-term 
only, what the device experiences at short-time scales can have 
long-lasting effects and lead to long-term plasticity behavior. 
For example, PPF is a short-term effect and may be explained 
by evoking the short-term behavior only. However, different 

long-term states can also be achieved by controlling the pulse 
intervals during PPF measurements. To verify this, after a pair 
of stimulation pulses had been applied with different inter-
pulse intervals, the device conductance was measured 5 s later 
to ensure that all short-term effects have fully decayed and the 
device has entered the long-term regime.  Figure    4  a plots the 
change in read current (current read 5 s after the stimulation 
minus the reference value read before the fi rst stimulation 
pulse) versus the stimulation pulse interval. A larger conduct-
ance increase was still found for shorter stimulation intervals, 
suggesting the relative timing between the stimulation pulses 
also affect the long-term value of the state variable  w  c  long 
after all short-term effects have disappeared. This result can be 
explained with the aid of the second-order memristor model, as 
shown in Figure  4 b. The state variable  w  m  was increased by the 
fi rst pulse then decays following the fast time constant (blue 
lines). If the interval between the two pulses is small enough 
then at the moment when the second pulse arrives  w  m  is still 
elevated and causes a large change in the state variable  w  c  
through Equation  ( 4)   (red solid line). On the other hand, if the 
interval between the pulses is long,  w  m  has already decayed to 
a very low value and the second pulse will only cause a small 
change in the state variable  w  c  (red dotted line). In this sense, 
 w  m  can be loosely considered as playing the role of (postsyn-
aptic) Ca 2+  concentration and provides an intrinsic timing and 
modulation mechanism in the model developed by Graupner 
and Brunel, [ 25 ]  while  w  c  can be considered as the state variable 
that determines the synaptic weight.   

  2.5.     Spike-Timing-Dependent Plasticity Achieved by Internal 
Ionic Dynamics 

 A key inference of Graupner and Brunel is that different syn-
aptic learning rules may be explained in the same model frame-
work of Ca 2+ -dependent synaptic weigh change. [ 25 ]  Below we 
show that the internal  V  O  dynamics can indeed also naturally 
lead to timing-based synaptic plasticity effects such as STDP. 
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 Figure 4.    Effect of short-term behavior on long-term weight change. a) Changes in the memristor conductance measured 5 s after the application of 
a pair of programming pulses (1.4 V, 1 ms) versus the interval between the pulses. The differences in activity at short-term lead to measurable differ-
ences in long-term memristor weight. Black squares: Experimental data. Solid line: Simulation results from the memristor model using experimental 
parameters. b) Simulation results illustrating how the short-term behavior affected long-term weight change. The difference in long-term weight is 
caused by the different values of residue  w  m  at the moment when the second pulse is applied. State variable  w  c  and state variable  w  m  under two condi-
tions (interval between two pulses Δ t  = 20, 90 ms) are shown.
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Together with the rate-based 
learning (spike-rate-dependent 
plasticity, SRDP) shown in 
Figures  2  and  3 , these results 
verify that the diverse STDP and 
SRDP synaptic characteristics at 
different experimental conditions 
can be well emulated by internal 
dynamics of memristors in a 
simple theoretical framework. 

 In STDP, the synapse is sub-
jected to repetitive pre- and post-
synaptic spike pairs, and the 
relative timing of the pre- and 
postsynaptic spikes determines 
whether the synaptic weight 
will be potentiated or depressed 
and by how much. [ 28 ]  If presyn-
aptic spike arrives before post-
synaptic spike (pre–post pair), 
the pairs will cause potentiation 
while a reversed sequence (post–
pre pair) will cause depression. 
Moreover, a larger time interval 
between the pre- and postsyn-
aptic spikes will lead to smaller 
weight modifi cation. Instead of 
relying on external factors that 
keep the timing information, in 
neurobiology, the relative timing 
information between the pulses 
is natively embedded, e.g., by the 
natural decay of Ca 2+  levels which 
provides an internal timing 
mechanism. [ 24,25 ]  Here, we dem-
onstrate that STDP behaviors can 
be achieved in memristors with 
similarly simple, nonoverlapping 
pre- and postsynaptic spike pairs, 
and, similar to the case of biological synapses, STDP is achieved 
naturally since the relative timing information is encoded inter-
nally through the  V  O  dynamics, specifi cally, that of  w  m . 

 The pulse pair we use contains a negative erase pulse (−1.1 V, 
1 ms) representing the effect of a presynaptic spike and 
a positive write pulse (1.1 V, 1 ms) representing that of a 
postsynaptic spike, both applied at the postsynaptic side. 
This confi guration is equivalent to applying identical, posi-
tive pulses on both the presynaptic and postsynaptic sides 
of the device as shown in  Figure    5  a. Before each test, 
the device was stimulated with the same pulse train con-
sisting of ten positive pulses (1.2 V, 1 ms, 200 Hz). In each 
test, 30 pulse pairs of either positive–negative pulse pair 
(+/− pair, representing the post–pre spike condition) or nega-
tive–positive pulse pair (−/+ pair, representing the pre–post 
spike condition) were then applied at 5 Hz repetition frequency, 
as shown in Figure  5 a, right side. The device conductance was 
measured 0.2 s after the last pair and compared to that of the 
reference value, which was measured at identical conditions 
but without the application of the pre–post or post–pre pairs. 

The device was then brought back to the same starting condi-
tion and the experiment was repeated for different pulse pair 
confi gurations. As shown in Figure  5 b, for pre–post condition 
(Δ t  > 0), the memristor conductance increases while for post–
pre condition (Δ t  < 0), the memristor conductance decreases. In 
other words, even though symmetric presynaptic (negative) and 
postsynaptic (positive) pulses were applied with identical ampli-
tude and pulse width, their effects do not cancel each other and 
the net effect is found to be more strongly dominated by the 
effect of the second pulse. This observation can be understood 
again within the second-order memristor model, as illustrated 
in Figure  5 c. Here, the state variable  w  c  after a positive–negative 
pulse pair shows a net decrease, since the erase effect of the 
second pulse will be stronger due to the residue enhanced value 
of  w  m  (which was enhanced by the fi rst pulse). Detailed results 
of the modeling can be found in the Supporting Information. 
Similarly, the negative–positive pair leads to a net increase of 
the state variable  w  c  and a net increase of device conductance.  

 Moreover, since the enhancement effect of the second pulse 
is caused by the residue of the increased state variable  w  m . 
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 Figure 5.    Implementation of spike-timing-dependent plasticity using the native  V  O  dynamics. a) Left: Experi-
mental setup, a pre–post pair consisting of identical spikes is equivalent to a negative/positive pulse pair 
applied on the postsynaptic side; right: the pre–post programming protocol including 30 pulse pairs (−1.1 V, 
1 ms/1.1 V, 1 ms) applied at 5 Hz for stimulation, followed by read 200 ms after stimulation. Post–pre pairs 
are applied similarly. b) Memristor weight change as a function of the relative timing between the pre- and 
postsynaptic pulses, Δ t  =  t  post  −  t  pre . Symbols: Experimental results obtained from four different tests. Solid 
lines: Simulation results from the memristor model using experimental parameters. c) Simulation results 
illustrating how relative timing of the pulses affects memristor weight. Only  w  c  is shown here for clarity. The 
second pulse in the pair has a larger effect on  w  c  due to residue enhanced  w  m  from the fi rst pulse, and can 
cause either potentiation or depression depending on the relative timing between the pre- and postsynaptic 
pulses.
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The amplitude of the enhancement is dependent on the rela-
tive timing Δ t  of the fi rst (which enhances  w  m ) and the second 
pulse (which utilizes this enhancement) inside the pulse pair. 
Specifi cally, after the fi rst pulse, the enhanced state variable  w  m  
decays following a characteristic time constant m

*τ , so a larger 
Δ t  between the two pulses leads to a smaller residue  w  m  and 
subsequently a smaller change in the state variable  w  c  during 
the second pulse, and a smaller measured conductance change. 
As a result, the accumulating net weight change of the pulse 
pairs, which is dominated by the second pulse in each pair, 
shows an inverse relationship with Δ t . Indeed, an effect analo-
gous to STDP was clearly observed, with larger relative timing 
between two pulses (larger Δ t ) resulting in smaller conductance 
change [ 28 ]  and vice versa, as also shown in Figure  5 b. Here again 
the state variable  w  m  plays the role of the (postsynaptic) Ca 2+  
concentration and provides an intrinsic timing mechanism, 
and in turn affects the plasticity of the weight state variable  w  c . 
Similar to other experiments discussed earlier, the second-order 
memristor model can quantitatively explain the STDP behavior 
(solid lines, Figure  5 b) with essentially only a single set of mate-
rial-dependent parameters (Supporting Information).   

  3.     Conclusions 

 We show that several important, rate- and timing-based syn-
aptic behaviors at different time scales can be implemented 
using simple, biorealistic pulses in memristors naturally, by 
employing the internal ionic dynamics of the device. Following 
the theoretical framework based on Ca 2+  driven synaptic plas-
ticity, different synaptic behaviors including paired-pulse 
facilitation, frequency-dependent facilitation, sliding threshold 
effect, and timing-based plasticity (STDP) can be implemented 
and quantitatively explained using a second-order memristor 
model. We note that the memristor device and model still do 
not capture all the biological details. For example, in biology 
short-term plasticity is believed to be affected by presynaptic cal-
cium concentration [ 27 ]  and long-term plasticity is believed to be 
modulated by postsynaptic calcium concentration, [ 43 ]  while only 
one calcium-like state variable  w  m  is employed in the device 
model to explain both short-term and long-term effects. How-
ever, the identifi cation of the different state variables  w  m  and  w  c  
and the effective roles played by them still allowed one to adopt 
the spirit of the calcium-concentration based theoretical frame-
work to explain the different experimental results and guide 
further device and circuit developments. Specifi cally, we note 
that to emulate the synaptic behaviors in a biorealistic manner, 
two critical features need to be present: fi rst, the device should 
exhibit analog resistance switching behavior, i.e., gradual con-
ductance change during SET and RESET operations; second, 
there should exist an internal physical process that offers a 
short-term decay dynamics to enable activity-dependent con-
ductance change. Looking toward the future, along with other 
recent studies, [ 26 ]  not only will these fi ndings enable the imple-
mentation of dynamic, adaptive neuromorphic systems in a 
biorealistic fashion, the wealth of knowledge already obtained 
at the atomic level regarding the physical processes inside 
memristors and the power of the memristor model based on 
a simple set of equations will stimulate the development of 

other second-order or even higher order memristive systems 
based on different types of physical mechanisms for effi cient 
memory, computing, and other applications.  
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 Supporting Information is available from the Wiley Online Library or 
from the author.  
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