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Abstract 

This study aims to investigate the economic viability of residential wind energy in Michigan 

and in the United States. In the Michigan analysis, the study examines the cost effectiveness 

of residential wind turbines in three counties - Leelanau, Huron, and Oakland. The national 

analysis uses electricity price information for each state along with wind data information 

to display cost-effective areas for residential wind. The dependent variable is how many 

years of energy savings from wind turbine usage will it take to pay off the cost of 

purchasing and maintaining the wind turbine. The independent variables tested are wind 

speed, electricity prices, turbine prices, and energy usage. The study uses geographic 

information system (GIS) software to analyze the wind and utility data spatially and to 

display the results. A small but significant portion of all three counties are shown to be 

economically advantageous for residential wind, especially under alternative usage and 

policy scenarios. 
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Background 

The United States produces 4 trillion kilowatt hours of electricity nationally, of 

which coal accounts for 39% (EIA 2011).  Coal is the largest source of electricity for 

American homes, and coal mining and combustion are fraught with issues. Using coal for 

our energy can cause huge damages to public health, natural resources, buildings, and the 

atmosphere. Coal was originally considered an abundant, cheap source of energy, but 

research suggests that the cost of coal is much higher for society than its for-sale price 

shows (Epstein et al. 2011). Coal has health costs to miners and their communities, and to 

those living around coal power plants. According to Epstein et al. (2011), when the entire 

cost borne by society is factored in, the cost of coal can double or even triple. In addition, 

calculations have shown 90% of coal reserves in the western and eastern U.S. will be 

consumed and unavailable by 2054 and 2084, respectively (Milici et al., 2013).  

Coal, petroleum, and natural gas, which account for 67% of Americans’ electricity 

usage (EIA 2011) are fossil fuels, which contribute to climate change. Sources of renewable 

energy limit the negative externalities associated with energy production. They promote 

energy security currently and into the future while minimizing harm to the environment. 

Aside from materials, installation and maintenance, wind power burns no fossil fuels 

(Kondili and Kaldellis 2012). Of the life cycle CO​2​ emissions from wind energy installations, 

98% are in the initial building and installation of the turbine (Kondili and Kaldellis 2012). 

Due to a variety of factors, energy production from wind continues to grow. In the United 

States, the total installed wind capacity has gone from 4,147 MW in 2001 to 61,327 in 2014, 

according to the U.S. Wind Industry Market Report (American Wind Energy Association 
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2014). According to the US Department of Energy, wind is the fastest growing source of 

power in the United States (Gerrity 2013). Wind is second to hydropower as the largest 

source of renewable energy in the United States; 4.4% of US electrical energy comes from 

wind (EIA FAQ 2015).  

 Over time, the cost of producing  energy using wind power has fallen. In some areas, 

the energy produced per dollar now rivals that of coal, natural gas, and nuclear (Milborrow 

2012). This is especially true in the Great Plains, where wind resources are greatest 

(Caldwell 2014). However, while wind energy cost is decreasing, in areas like Michigan it is 

unclear yet if, without federal incentives, the cost of wind energy rivals coal.  

There is some debate as to when humans first began utilizing wind energy.  The first 

concrete evidence of its usage is in 644 A.D. in the Middle East (Swift-Hook 2012). The first 

windmills were used for water pumping. Since then, wind mills have evolved over time and 

developed into what we recognize as wind turbines.  

Americans have relied on wind energy since the 1850s, when it was used to pump 

water, primarily to nourish livestock (Swift-Hook 2012). These pumps were especially 

important to open up the American West because they were able to reach groundwater. In 

the 1920s the wind pumps disappeared from the landscape because of cheaper electricity 

sources and because of the dams that made water more available (Swift-Hook 2012). Small 

wind turbines were common during the late 1800s and early 1900s, and were used 

primarily for areas where electricity supplies were unavailable (Swift-Hook 2012).  

The Yom Kippur war in 1973 caused a short worldwide oil crisis. The concern that 

western nations were running out of usable oil fueled a new interest in renewable energy. 
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Now such interest is primarily fueled by concerns about global climate change (Swift-Hook 

2012).  In 1978, the Carter administration passed the Public Utility Regulatory Act, which 

required public utilities to buy renewable energy. California decided to give high tax credits 

to wind projects, this, coupled with incentives from the federal government to give 50% tax 

credits to investors in renewable energy, began a huge boom in wind generation, in 

California in particular. The first wind farm was erected in 1980 by US Windpower. Since 

then, most of these original incentives have been discontinued, although new ones have 

risen in their place (Swift-Hook 2012).  

 Renewable portfolio standards (RPS) are state policies made to encourage 

renewable energy adoption.  Although they differ in terms of program structure, 

enforcement mechanisms, size and application, they work by mandating and encouraging 

electricity producers to supply a minimum share of electricity from renewable sources. 

Thirty states have adopted binding RPS programs (Today in Energy, EIA 2011). Federal and 

state incentives also exist to reduce the cost of renewable energy for commercial and 

residential usage.  

Net metering is a policy which allows residential generators of energy to “save” the 

excess electricity that they have produce, by subtracting that energy from their utility 

meter - hence “net” metering. Any excess electricity not used up by the end of each month 

is a credit for future bills, and is “rolled over” into the next billing period. Forty three states 

plus Washington D.C. have net metering policies (Auck et al. 2014). These policies range 

widely, and have different aspects which can relatively favor or discourage residential 

electricity generation (Auck et al. 2014).  Michigan has a relatively progressive net 
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metering policy (Auck et al. 2014) (MPSC Net Metering 2011) - in this policy, excess 

electricity credit is “rolled over” into subsequent time periods indefinitely, rather than only 

lasting a year, as in some other states (MPSC Net Metering 2011). Part of the analysis in the 

current study uses a term which is referred to here as “perfect net metering”. Perfect net 

metering refers to a policy in which the utility is required to compensate residential 

generators at the retail rate in cash, rather than through energy credit. No states currently 

have such a policy.   

The energy market in the United States is changing. Policy changes such as the RPS 

coupled with technological advances in efficiency and electricity generation are expected to 

change the energy market. 

The current electricity system faces issues with widespread distribution of energy. 

Firstly, about 6% of electrical power generation is lost in transmission and distribution 

(EIA FAQ 2014). These transmissions losses increase as the distance from the power plant 

increases (Benedict et al. 1992). Additionally, as more and more users are tied to power 

plants, the danger of catastrophic failures increases. One proposed solution to these issues 

is to localize energy production. This paper discusses several methods to localize wind 

energy production in Michigan and in the United States through residential installations 

and community sharing of wind turbines. 

In this study I assess economic viability of residential wind turbines in several ways. 

The first analysis uses local Michigan utility prices and household electricity usage to 

calculate the payoff periods for wind turbines under the scenario of perfect net metering. 

The next analysis calculates payoff periods if turbines are shared by several households. 
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The final analysis estimates the viability of residential wind turbine usage in all fifty states 

using statewide averages for electricity prices and electricity usage.  

 

General Methods 

The first two sections of this study focuses on three counties in Michigan, each of 

which has a different energy provider. The three counties are Huron, Leelanau and Oakland 

(Figure 1). Huron and Leelanau were chosen because of their high wind resources. Oakland 

was chosen for comparison as a residential area with relatively low wind resources. 

 

 
Figure 1​: The three counties used in the Michigan analysis - Leelanau, Huron, and Oakland.  

7 



In these three regions, the study uses wind speed data to estimate electricity 

potential. Although zoning for towers can be a major issue with installation of residential 

wind turbines, that is outside of the scope of this study.  This study  does not exclude areas 

in which towers are currently prohibited. Also, because this study is focusing on the 

economic viability of residential wind turbines, only sites on land are considered; offshore 

sites are beyond the scope of this study. 

 

Wind Turbine Data 

Turbines used for cost analysis were the eight that are currently certified by the 

Small Wind Certification Council (SWCC). These turbines were chosen because third-party 

certification is now a prerequisite for eligibility for the IRS - Renewable Energy Tax Credit 

(Rhoads-Weaver 2015).

 

Table 1:​ SWCC certified turbines investigated for the study. 

8 



Two of the turbines were excluded - the Endurance S-343, which is no longer sold in 

the United States, and the Everready Kestrel e400nb, which never responded to cost 

enquiries.  The remaining six turbines still included a sizable range in energy output (from 

5,000 kW/yr to 34,000 kW/yr at a 5 m/s wind speed) and cost.  The six turbines are the 

Bergey Excel 10, Bergey Excel 6, Kingspan KW6, Pika T701, Xzeres 442SR, and the Xzeres 

Skystream 3.7 (Table 1).  

Viability in the context of this paper is economic payoff; it answers “yes” to the 

question: is purchasing the turbine going to save enough money, through offset energy 

costs, and/or revenue, with the energy it will produce in its lifetime? Since individual 

turbine prices aren’t readily available, each company was contacted, and a cost estimate 

was given for turbines and necessary equipment such as inverters. Tower and installation 

costs were estimated after contacting several installers in the area and averaging estimates. 

Installation costs can range greatly in price based on labor costs, and equipment rental 

rates (Table 2). Tower costs can vary orders of magnitude based on height of tower (from 

10 m - 42 m) and type (i.e., guyed towers vs. free-standing towers). For the sake of a 

conservative estimate of turbine economic viability, a high estimate of cost was used. Each 

turbine price was approximated as if it was installed on a relatively high 30-m 

free-standing tower. Although turbine lifetime varies, the companies usually advertise a 

20+ year lifetime, although some claim to last 30-50 years. Again, for a more conservative 

estimate, a 20-year lifetime was assumed for each turbine. Each turbine was analyzed as if 

it was purchased new. According to the 2012 Market Report on Wind Technologies in 

Distributed Applications, the average cost of a small turbine is about $6,960/kW. Estimates 
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of price in this paper work out to be similar but higher. After the installed cost analysis, the 

IRS Renewable Energy 30% Federal Tax Credit was applied to the cost.  

 

 Bergey 
Excel 10 

Bergey 
Excel 6 

Kingspan 
KW6 

Pika T701 Xzeres 
442SR  

Xzeres 
Skystream 
3.7 

Turbine 
Stand-Alone 
Cost ($) 

29,500 19,500 18,000 6,000 50,000 7,000 

Turbine 
Inverter 
Cost ($) 

2,500 2,500 2,500 2,500 2,500 2,500 

Turbine 
Tower Cost 
($) 

25,000 23,750 19,500 12,600 27,190 13,000 

Turbine 
Installation 
Costs ($) 

15,000 14,250 14,000 7,400 10,310 7,500 

Federal 
Incentive 
Discount  

30% off 30% off 30% off 30% off 30% off 30% off 

Yearly 
Maintenance 
Costs ($) 

600 400 360  120 1,000 140 

Lifetime 
(years) 

20 20 20 20 20 20 

Turbine 
Lifetime Cost 
($) 

62,400 50,000 45,000 22,350 83,000 23,800 

 
Table 2: ​Turbine cost estimations with Michigan installers and with a 30% federal 
discount. Turbines highlighted in light grey were used for the spatial analysis. 
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Estimates of yearly maintenance costs also exhibited a wide range. Although some 

turbines may have performed more reliably with less maintenance, an estimated yearly 

cost of 2% of turbine cost was used (Wind Measurement International 2011).  

 

T​LC ​= (T​S ​+ T ​I ​+ T​T ​+ T​IC​) * ( 1 - F​I​) + (T​S ​* M) * L 

 

T​LC ​= total lifetime costs:($) 
T​S ​=​ Turbine Stand-alone cost ($)  
T​I ​= ​Turbine inverter cost ($) 
T​T ​= ​Turbine Tower cost ($) 
T​IC ​= ​Turbine installation cost ($) 
F​I ​= ​Federal incentive discount (%/100) 
M = ​Maintenance costs per year as a percent of turbine cost (%/year) 
L = ​lifetime (years) 

 
The Small Wind Certification Council publishes information on turbine performance 

and annual energy output for each of the turbines they certify. The following graphs show 

the annual kWh produced at average wind speeds for each of the analyzed wind turbines 

(Figure 2). 
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Figure 2:​ Graphs of annual energy output (kWh/yr) by wind speed (m/s) for of all turbines 
analyzed. Third degree polynomial trend lines were fitted to the reported values. The 
formulas for each trendline are given.  
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Despite periodic variations at wind velocity, wind tends to follow a 

Rayleigh-distribution over enough time. This distribution was taken into account in the 

calculations of annual energy output, according to the SWCC. The SWCC only measures 

output at wind speeds of 4 m/s and above. In order to extrapolate to lower wind speeds, 

and to retrieve a more precise output for non-integer wind speeds, a 3rd order polynomial 

trendline was used, then extrapolated to 3 m/s. The resulting formula was used with wind 

velocity GIS data to yield information on annual energy produced by each turbine.  

In order to simplify the results, three of the best-performing turbines were 

primarily used in the spatial analysis: One turbine was used in each of three categories of 

energy production. The small category was the Xzeres Skystream, which has a rotor 

diameter of 3.7 m and produces 3,416 Kw/Yr at 5 m/s wind speed. The medium category 

was the Kingspan KW6, which has a rotor diameter of 5.6 m and  produces 8,429 kW/Yr at 

5 m/s wind speed. The large category was the Bergey Excel 10, which has a rotor diameter 

of 7 m and produces 13,842 kW/Yr at 5 m/s wind speed.  

 

Wind Data 

Wind data was obtained from the National Renewable Energy Laboratory (NREL) 

(Wind Data 2005). The wind data (Figure 3) is classified into six different power classes. 

The average of each range was used as the wind velocity of each power class. The data 

measures wind velocity at 50 m above ground. Since the wind data is at 50 m height, the 

Hellman-Approach formula was used to estimate the wind speed at the lower 30-m tower 

height used in this study (Kaltschmitt 2007). 
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v​Wi,h ​= v​Wi,ref​(h/h​ref​)​αHell 

 

v​Wi,h​ = mean wind velocity at tower height (m/s). 
 ​v​Wi, ref​  ​= wind velocity at reference height (m/s).  
h​ = tower height = 30 m.  
h​ref​ = reference height = 50 m. 
 ​α​Hell​ ​= the altitude wind exponent (Hellman-exponent).  
 

A Hellman exponent of 0.16 was used, which corresponds to a flat area with neutral 

air. So each wind speed was multiplied by 0.9215188. 

 
Table 3​: ​α​Hell​ ​values for different wind types. (Kaltschmitt 2007) 

 

The wind power classes, after applying the Hellman Exponent Formula, correspond to 

approximately:  

Wind Power 
Class 

1 2 3 4 5 6 7 

Median Wind 
Velocity 
(m/s) 

2.5 5.5 6.2 6.7 7.1 7.7 8.3 

 

Table 4​: Calculated wind velocity for each wind power class after applying the 
Hellman Exponent Formula to account for a tower height of 30 m instead of the 
reference value of 50 m. 
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Figure 3​: Wind speed in m/s at 30 m above ground level in select counties of Michigan.  
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Electrical Energy Costs 

The economic viability of wind turbines depends in part on the cost of electricity 

charged by the local electric utility company. Utility prices were obtained for Leelanau, 

Huron, and Oakland counties. Four utilities service those three counties: Cherryland 

Electric Cooperative, Thumb Electric Cooperative, DTE Energy, and Consumers’ Energy.  

 

1. Cherryland Electric Cooperative 
(​http://cherrylandelectric.coop/wp-content/uploads/2015/01/Sec-D-New-
Rates-Feb-20151.pdf​) 

2. Thumb Electric Cooperative (​http://www.tecmi.coop/farm-and-home-rates​) 
3.  DTE Energy 

(​https://www2.dteenergy.com/wps/wcm/connect/e014f02d-957b-4397-b
00b-42813ec8319d/electicrateinsert0212.pdf?MOD=AJPERES​) 

4.  Consumers’ Energy 
(​http://www.consumersenergy.com/uploadedFiles/CEWEB/SHARED/Rates
_and_Rules/electric-rate-book.pdf#page=129​) 

 

Each of their pricing schemes was determined, and used to compute the average 

annual costs a consumer would pay under three different energy use scenarios (Table 5). 

The low energy use scenario is based on average energy use in Hawaii (low) (EIA RECS 

2009). The medium energy use scenario is based on average energy use in Michigan 

(medium)(EIA RECS 2009). The high energy use scenario is based on average energy use in 

United States (high)(EIA RECS 2009).  
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Energy Use Scenario kWh/Yr 

Low: HI Avg. Annual Energy Consumption 6,528 

Med: MI Avg. Annual Energy Consumption 8,112 

High: US Avg. Annual Energy Consumption 11,280 

 

Table 5:​ Annual energy use scenarios used in this analysis 

 

Annual Energy Costs ($/Yr) 

 Energy Use Scenario 

Utility Low Medium High 

Cherryland 930.61 1112.75 1477.02 

Consumers 790.98 1199.74 1668.27 

Thumb 989.53 1194.69 1605.02 

DTE 876.16 1090.28 1518.53 

Average 896.82 1149.37 1567.21 

  

Table 6:​ Annual energy cost by energy use scenario and Michigan utility provider 
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This information was joined with township information on ArcGIS to get a more 

precise mapping of utility providers. The modified 30-m wind data was entered along with 

turbine costs and energy output.  

 
 
Figure 4​: Annual average electricity prices in select Michigan counties based on Michigan 
average usage and township utility provider.  
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Section I: Single Home Feasibility​: 

Methods: Section I: Single Home Feasibility 

 The first analysis determines how economically feasible wind turbines are strictly 

based on dollars per kilowatt hour. If a wind turbine produces energy cheaper over its 

lifetime than buying from the grid, the turbine is considered economically viable.  

 

T​LC​/T​O​(v​w​,T​L​) < U​C​(U​P​, E​S​) 

 

T​LC ​= Turbine lifetime cost ($) 
T​O ​= Turbine lifetime output (kWh) as a function of 

v​W ​= wind velocity (m/s) and 
T​L ​= Turbine lifetime (20 years) 

U​C ​= Utility cost ($/kWh) depends on 
U​P ​= Utility Provider and 
E​S ​= Energy Use Scenario, in this case, Michigan Average 

 

Results: Section I: Single Home Feasibility 

At the medium energy usage of 8112 kWh/year, 33% of Leelanau and 45% of Huron 

county, along with a very small portion of Oakland County,  are shown to be viable under 

this analysis (Figure 5).  
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Figure 5​: Economic Viability of a large wind turbine (Bergey Excel 10) in three Michigan 
counties. Analysis assumes a 20-year turbine lifetime and average Michigan household 
energy usage of 8,112 kWh/y.  The spatial variation in average wind speed and variation 
among provider prices allows viability of wind turbines in 33% of Leelanau County, 45% of 
Huron County, and less than 0.01% of Oakland County. 
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Discussion: Section I: Single Home Feasibility 

The first analysis determines how economically feasible wind turbines are strictly 

based on dollars per kilowatt hour - if the wind turbines produce energy cheaper in their 

lifetime than buying from the grid, it is considered viable.  

It is not this simple in reality. It is unusual for all of the energy produced by the 

turbine to be used to offset energy costs or sold to the utility at retail rates. However, these 

assumptions hold in several cases. First, the assumptions hold if the energy produced by 

the turbine is less than the energy used by the household. However, households in which 

large turbines are viable would have to use huge amounts of energy for this to be true 

(about three times Michigan’s average household electricity consumption, or more than 

twice the national average). 

The second case is under perfect net metering. ​Perfect ​net metering means that the 

utility compensates the residential generator for every kWh that the residence produces - 

regardless of usage.  In contrast, ​standard​ net metering is (usually) formulated so that 

excess electricity generated by the wind turbine is credited towards the monthly bill - but 

is NOT redeemable- i.e. the monthly bill is reduced, but households never receive cash for 

the electricity they generate. This excess electricity is in terms of a monthly basis - if the 

turbine produces more electricity than is used by the household at the end of the month, 

the household is credited for that energy, regardless of which point in the month the 

turbine produced the energy.  The “negative balance” of energy is applied to the monthly 

energy bill, and, depending on the state net metering policy, “rolls over” into following 

billing periods. This means that perfect net metering compensates households 
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immediately, and standard net metering provides savings to households which last over 

time. Under standard net metering, savings from the wind turbines will continue to be 

realized years after the turbine has stopped functioning. An assumption of this paper is that 

residential wind turbines produce energy for 20 years. What this means is that in viable 

households in perfect net metering scenarios - the turbine creates revenue equal to the 

retail rate every time it produces energy and by the end of its 20 year lifetime, has given 

value to the household greater than its total cost over those 20 years. In standard net 

metering, a household can still be viable, but the payoff will be much longer than 20 years - 

because the energy saving credits are still “rolling over.” In other words,  households’ 

electricity credits continue to offset electricity usage after the turbine stops operating. The 

credits (in kWh) will continue to be credited to the account at the retail rate (in dollars), 

even as the retail rate changes.  In viable households, the energy savings over time (holding 

retail rates constant) are greater than the lifetime cost of the turbine. The energy produced 

during the 20 year lifetime of the Bergey Excel 10 can offset a household’s energy needs for 

50 or more years, in viable households (Figure 6).  
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Figure 6​: Number of years of energy use for a typical Michigan household (i.e. medium 
energy scenario: 8,112 kWh/y)  that would be offset by a large residential wind turbine 
(Bergey Excel 10) which was operating for 20 years with standard net metering. 

 

For families to receive these energy credits, in many cases, they must remain in their 

households for extended periods of time - sometimes up to 40 to 60 years. The Bergey 
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Excel 10, for example, cost $62,400. Energy costs in Michigan are ~$1200 per year. In 

viable households, then, the turbine takes 52 years to payoff. There is little information 

available as to whether or not families can “cash out” if they plan to move from their 

household after generating energy credits. In Massachusetts, for example, the utilities’ 

decide whether energy credits can be used to “cash out” when they draft their net metering 

contracts with customers (Massachusetts Energy and Environmental Affairs 2015). In 

areas where households can’t cash out, however, the lag in payback time is a big problem - 

American families stay an average of only 15 years in their house (Emrath, 2009). This 

means the payoff of the turbine may not be realized by residents in time. For that reason, 

some households may choose not to invest in a turbine at all. 
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Figure 7: ​The cost of energy production for turbine use for 20 years, for three sizes of wind 
turbines. Horizontal dashed lines indicate the average electricity price in Michigan and in 
the United States. Bars beneath the dashed lines indicate that wind turbines are 
economically viable with perfect net metering. See ​Table 4​ for Wind Power Class to wind 
velocity (m/s) conversion.  

 
There are two ways to decrease the payback time of turbines in standard net 

metering scenarios. First is to decrease the price associated with purchasing the turbine. 

Second is to increase the amount of turbine-generated electricity which is actually used by 

the households. Wind energy sharing accomplishes both of these tasks - and therefore 

decreases the payback time of the turbine. Sharing or co-ownership of turbines is discussed 

in the following section.  
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Section II: Wind Energy Sharing in Michigan 

Methods: Section II: Wind Energy Sharing in Michigan: 

 In this analysis, wind energy sharing, or neighborhood localized wind generation, 

refers to multiple households consuming the energy produced by a single residential wind 

turbine. For example, a larger residential turbine, such as the Bergey Excel 10, can produce 

double or even triple the amount of energy that is consumed by an average household, in 

which case it would be advantageous to increase the number of households using the 

energy produced by the turbine. In order to analyze the economic viability of neighborhood 

localized wind generation, a cost-sharing formula was used. The formula for cost sharing 

analyzes the turbine cost using a lifetime cost analysis and payoff. Years until wind turbine 

payoff with perfect sharing:  

P​S​(T​C​,HH,E​C​) = (T​C​/HH)/(E​C​) 

 

P​S​ = Perfect Sharing payoff time (years) 
T​C​ = total 20-year cost of turbine ($) = ​(C​I​+C​M​*L) 

C​I​ ​= Installed cost ($) 
C​M​ ​= annual maintenance cost ($/year) 
L​ = lifetime (20 years) 

HH= household = ​T​O​(v​w​)/HH​A​(E​S​) 
T​O​ ​= Turbine output (kWh) 

v​w​= wind velocity (m/s) 
HH​A​= Household annual electricity usage (kWh/y) 

E​S ​= Energy use scenario 
E​C​ ​= Electricity cost ($/year) = ​E​C​(U) 

U​ = Utility provider 
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Location provided the necessary utility provider and wind velocity values. The first 

three maps (Figures 8, 9, and 10) compare the small, medium, and large turbines with the 

medium energy use scenario - Michigan’s current average consumption of 8,112 kWh/y. 

The next three maps (Figures 11, 12, and 13) all use the large turbine (Bergey Excel 10) 

and compare the economic viability under different energy use scenarios: Low - 6,528 

kWh/y (average annual household consumption in Hawaii), Medium - 8,112 kWh/y 

(average annual household consumption in Michigan), and High - 11,280 kWh/y ( average 

annual household consumption in United States).  

 
Results: Section II: Wind Energy Sharing in Michigan 
 

Community sharing of small and medium residential turbines resulted in only a 

9.1% feasibility area in Leelanau county (Figures 8, 9). Small and medium turbines fared 

even worse in Huron County and Oakland County. The small turbine had no viable area in 

either county (Figure 8). Sharing with the medium turbine resulted in viability in a very 

small portion (0.3%) of Huron County and no viability in Oakland County (Figure 9). 

Community sharing using the large turbine was relatively successful, 40.8% of Leelanau, 

45.1% of Huron, and 19.3% of Oakland County were viable under this analysis (Figure 10).  
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Figure 8:​ The above map shows economically viable areas in Michigan for community 
wind sharing of a single small turbine (Xzeres Skystream) in three Michigan counties. 
Analysis assumes a 20-year turbine lifetime and average Michigan household energy use of 
8,112 kWh/y.  The spatial variation in average wind speed allows viability of wind turbines 
in 9.1% of Leelanau County, 0% of Huron and Oakland counties. 1.6% of total area is viable 
under this analysis.  
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Figure 9: ​The above map shows economically viable areas in Michigan for community 
wind sharing of a single medium turbine (Kingspan KW6) in three Michigan counties. 
Analysis assumes a 20-year turbine lifetime and average Michigan household energy usage 
of 8,112 kWh/y.  The spatial variation in average wind speed allows viability of wind 
turbines in 9.1% of Leelanau County, .3% of Huron and 0% of Oakland county. 1.8% of total 
area is viable under this analysis.  
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Figure 10:​ The above map shows viable areas in Michigan for community wind sharing of a 
single large residential turbine (Bergey Excel 10) in three Michigan counties. Analysis 
assumes a 20-year turbine lifetime and average Michigan household energy usage of 8,112 
kWh/y.  The spatial variation in average wind speed allows viability of wind turbines in 
40.8% of Leelanau, 45.1% of Huron and less than 19.3% of Oakland County. 33.3% of total 
area is viable under this analysis.  
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Wind Turbine County Percent of area viable 

Small 
 
(3.7 m rotor diameter) 

 
(Figure 8) 

Leelanau 9.1 

Huron 0.0 

Oakland 0.0 

Total 1.6 

Medium 
 
(5.6 m rotor diameter) 

 
(Figure 9) 

Leelanau 9.1 

Huron 0.3 

Oakland 0.0 

Total 1.8 

Large 
 
(7 m rotor diameter) 
 
(Figure 10) 

Leelanau 40.8 

Huron 45.1 

Oakland 19.3 

Total 33.3 

 
Table 7: ​Percentage of area in which residential wind turbines are economically viable 
under the medium energy usage scenario (MI current average: 8112 kWh/y). Analysis 
varies turbine size and demonstrates strong economies of scale related to increasing 
turbine size.  
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The next three maps use the large Bergey Excel 10 turbine to determine how 

viability changes under low (6,528 kWh/year), medium (8,112 kWh/year), and high 

(11,280 kWh/year) energy usage scenarios. Varying energy usage with large turbine 

sharing resulted in highest viability under medium energy usage (Figure 11, 12, 13 and 

Table 8). Energy scenario was especially important in Oakland county. Low and high usage 

resulted in no viable area in Oakland County (Figure 11, 13). Medium energy usage 

resulted in 19.3% viability in Oakland (Figure 12). 
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Figure 11​:The above map shows viable areas in Michigan for community wind sharing of a 
single large residential turbine (Bergey Excel 10) in three Michigan counties. Analysis 
assumes a 20-year turbine lifetime at a low household usage scenario of 6,528 kWh/y.  The 
spatial variation in average wind speed allows viability of wind turbines in 27.9% of 
Leelanau County, 45.1% of Huron and 0% of Oakland county. 22.7% of total area is viable 
under this analysis.  
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Figure 12:​ The above map shows viable areas in Michigan for community wind sharing of a 
single large residential turbine (Bergey Excel 10) in three Michigan counties.. Analysis 
assumes a 20-year turbine lifetime at a medium household usage scenario of 8,112 kWh/y, 
which is the current average Michigan household usage.  The spatial variation in average 
wind speed allows viability of wind turbines in 40.8% of Leelanau County, 45.1% of Huron 
and 19.3% of Oakland county. 33.3% of total area is viable under this analysis.  
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Figure 13:​ The above map shows viable areas in Michigan for community wind sharing of a 
single large residential turbine (Bergey Excel 10) in three Michigan counties. Analysis 
assumes a 20-year turbine lifetime at a medium household usage scenario of 11,280 
kWh/y, which is the current average United States household usage.  The spatial variation 
in average wind speed allows viability of wind turbines in 32.8% of Leelanau County, 
45.1% of Huron and less than .1% of Oakland county. 23.6% of total area is viable under 
this analysis. 

35 



 
 
Figure 14: ​The above map shows number of households with Michigan’s current average 
electricity consumption - i.e. medium energy use scenario - whose total energy 
consumption can be offset with the energy produced using the large turbine - the Bergey 
Excel 10. 
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Household Energy 
Use Scenario 

County Percent of Area 
Viable 

Low 
 
(6,528 kWh/year) 
 
(Figure 11) 

Leelanau 27.9 

Huron 45.1 

Oakland 0.0 

Total 22.7 

Medium 
 
(8,112 kWh/year) 
 
(Figure 12) 

Leelanau 40.8 

Huron 45.1 

Oakland 19.3 

Total 33.3 

High 
 
(11,280 kWh/year) 
 
(Figure 13) 

Leelanau 32.8 

Huron 45.1 

Oakland <0.1 

Total 23.6 
 

Table 8​: The economically viable area of different counties as a percent of total area. 
Compares different energy use scenarios with the large turbine, the Bergey Excel 10. 
 

Discussion: Section II: Wind Energy Sharing in Michigan 

Economies of scale, at least theoretically, are hugely important to wind power 

production, as demonstrated in Table 7. This is why the Bergey Excel 10 has the largest 

area of economic viability - it produces energy at a cheaper cost than do the other turbines, 

due primarily to its larger rotor diameter (see table 7). As rotor diameter increases, wind 

swept area increases. Wind swept area refers to the total area over which the turbine 

rotors spin. Calculating the wind swept area is the same as calculating the area of a circle: 
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A ​= π*(​r​)​2 

 

A​ = Wind swept area (m​2​) 
r​ = rotor radius (m) 
 

So, doubling the radius of a wind turbine rotor quadruples the wind swept area, and, 

therefore, the power that the turbine can theoretically extract. Since increasing the turbine 

rotor area is less expensive in general than quadrupling the price, larger turbines tend to 

produce energy at a lower dollars per kilowatt hour. The importance of the wind swept 

area to power extraction is shown in this formula: 

 

The power extraction by a rotor, according to Zafirikis et al. (2012) is  

P​r​ = ½ * ​d​ * ​V​3​ * ​A​ *​ C​P 

 

P​r​ is power extraction by the rotor (W) 
d​ is given air density 
V​ is the wind velocity (m/s) 
A​ is the wind swept area (m​2​) 
C​p​ is the aerodynamic coefficient.  
 

Of this wind power function, only the aerodynamic coefficient and wind swept area 

can be manipulated by turbine design and rotor size (not including location of the turbine 

and tower height).  The aerodynamic coefficient is a measure of the losses from the 

theoretical maximum power available from the wind, including friction losses and 

turbulence losses (Zafirikis et al. 2012). The aerodynamic coefficient usually ranges from 
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approximately 0.35 to 0.45 (Zafirikis et al. 2012). While the aerodynamic coefficient does 

depend on turbine design, the turbines in this analysis have relatively similar aerodynamic 

coefficients,  and size is the main factor in determining the wind energy output from each 

turbine. 

 
 

Figure 15:​ Demonstrates the effect of rotor 
diameter on energy productivity. Data are 
from operating turbines in a variety of 
locations, from the Danish Environment 
Ministry. (Milborrow 2012) 

Figure 16:​ Demonstrates the effect of 
increased turbine size on reducing cost per 
kilowatt. 

  

This explains why it is more economically efficient to use a larger, yet more 

expensive turbine and create a surplus of energy rather than using a smaller,  less 

expensive  turbine to produce less energy. Wind turbine sharing can help minimize the cost 

per household of installing and maintaining a turbine, while maximizing the amount of 

energy which is actually used by the turbine. 

The next three maps, Figure 11, 12, 13, show how the viability area is affected by 

energy usage. As shown in Table 8, the viability of residential wind is maximized at the 

medium energy use scenario, rather than at either the low or the high energy use scenarios. 

This means that the energy provided by the utility in terms of dollars per kilowatt-hour is 
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highest for the middle usage scenario, since the same turbine (Bergey Excel 10) is used for 

all values of Table 8. This is an unexpected result. One would expect the viability to be 

mostly uniform across the board, or to peak at either the low or the high ends of usage. 

After perusing the information on usage and price information, given in Table 6, I 

hypothesize this result is due to two factors - both relating to the complicated electricity 

pricing schemes used by the utility. First, the low energy scenario has a lower dollars per 

kilowatt-hour than the medium energy scenario because of the staggered pricing schemes 

used by several of the utility providers - as energy usage increases, so does the price.  For 

example, for one aspect of the pricing scheme, Consumer’s Energy charges $0.08/kWh for 

the first 600 kWh/month used during June-September, but increases the charge to 

$0.11/kWh after the initial 600 kWh. This decreases the relative cost of electricity for low 

energy users, which thereby decreases the viability of turbines for low energy users. This 

hypothesis is corroborated somewhat by showing that the two utility providers that use 

this graduated pricing scheme are Consumer’s Energy and DTE, both of which service 

Oakland County, which is the county which sees the greatest change in viability under 

different energy scenarios. This argument, however, would predict that the high usage 

scenario would have the highest energy costs by far - since the amount of energy used on 

the “high grade” (in the Consumer’s Energy example, over 600 kWh/month) is highest for 

the high energy scenario.  The most likely explanation for why this isn’t the case is because 

of the fixed costs associated with utility pricing. For example, DTE has $14/month of fixed 

costs regardless of usage. This increases the overall dollars per kilowatt-hour price of 

electricity for lower usage than for higher usage, which could explain why the medium 
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energy users face a higher dollars per kilowatt-hour utility pricing than do the high energy 

users.  

The largest assumption that the turbine sharing analysis rests on is the assumption 

of perfect turbine sharing. Perfect turbine sharing refers to the ability to share turbines 

fractionally in order to reduce costs as much as possible. For example, if a given wind 

turbine had an output of 20,000 kWh/yr and each household used 8,000 kWh/yr the 

analysis would be generated as if 2.5 households could share that one turbine to offset 

their annual energy needs and would split the price of the turbine 2.5 ways. This is only a 

fair assumption under two scenarios: First, the fractional-sharing household realizes only 

their fraction of energy offset and are only responsible for that same fraction of total 

turbine cost (in the case of this example, 20% = .5/2.5). Second, if turbine sharing became 

prolific, in which case households could share in many clusters - such as 5 households 

sharing 2 turbines rather than 2.5 households sharing 1 turbine. In this case, all households 

have all of their energy accounted for.  If there are areas where these scenarios exist, this 

model of turbine sharing provides a much more viable option than do models with 

standard net-metering models and single-households.  

Wind turbine sharing is not a new concept (Lantz and Tegen 2009). In fact, several 

studies have investigated the economic impacts of larger-scale (commercial, not 

residential) wind turbine sharing, i.e., community sharing of a local wind farm. Empirical 

analysis by Lantz and Tegen of the National Renewable Energy Laboratory on existing wind 

turbine sharing communities has shown that sharing of wind energy on a local scale has 

increased jobs and economic development both during the construction and maintenance 
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of the wind power plants. The wind sharing operations in their study also exhibited a 

substantial return on investment. These positive effects increase with greater community 

ownership in wind energy sharing operations.  

Local energy production also may reduce the risk of large-scale blackouts. According 

to Pourbeik et al. (2006), blackouts primarily occur when single events (such as failing 

equipment, line trips due to tree contact, overload, relay misoperation, etc.) initiate a 

sequence of events that, if not contained, can cause catastrophic outages across the entire 

grid. Such outages have occurred in the United States before. For example, the second 

worst blackout in history occurred in the Northeast United States in 2003, when a tree limb 

caused a short circuit in one part of the energy grid (Walsh 2013). Issues such as these are 

usually locally contained, but due to some system malfunction and human error, the 

blackout reached a critical mass; 50 million people lost power in 8 states and part of 

Ontario (Walsh 2013). The blackout lasted two days and caused at least 11 deaths and cost 

the economy $10 billion (Walsh 2013).  

Widespread community wind energy sharing would reduce the strain on our energy 

grid, reducing the probability of blackouts from system overload. They also offer 

redundancies in the event of a failure - namely, they would still continue to power the 

homes in the area despite the grid collapse. In the event of a failure within the wind-sharing 

community, the grid would act as a backup so those homes wouldn’t be without power.  
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Section III: United States 

After doing the Michigan analysis, I was curious how the rest of the nation compared 

in terms of viability of wind turbines. So, a similar analysis was conducted using 

information on the average energy price in each state and the wind resources in those 

states.  

Methods:  Section III: United States 

The methodology for this section differs from the methodology used previously in 

several limited ways. These differences are addressed in the following paragraphs. See 

Section I for methodology related to turbine pricing, turbine energy output, and energy 

consumption scenarios.  

Wind data at 50 m height was retrieved from the Natural Resource Energy Library 

(Wind Data 2005) for the contiguous United States.  This data was then adjusted using the 

Hellman exponent formula to compute wind speed data at a 30 m level. This wind data was 

used with the best performing turbine in terms of lifetime dollars per kilowatt hour at each 

different wind power class. In this case, the Bergey Excel 10 performed the best at each 

speed. Each wind power class yielded a different dollar value per kilowatt hour for the 

lifetime of the turbine. 

43 



  

Figure 17:​ United States wind speed map at 80 m above ground level from NREL 2015.  

 

Average energy prices per kWh were then found for each state and mapped (EIA, 

2011). The price map and the wind resource map were then compared - areas where 

energy is produced more cheaply using single-home perfect-net-metering residential wind 

are mapped in green, and areas where energy is more cheaply produced from a power 

plant are mapped in red (Figure 19). 
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Figure 18: ​State electricity prices in dollars per kilowatt hour, according to EIA 2011. 
Michigan ranks 17th in electricity price. 
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Results: Section III: United States 

This analysis shows large wind turbines are viable in about 13.6% of the United 

States (Figure 19).  

 

Projection: NAD 1983 Contiguous USA Albers.  
         Source: Energy Information Administration 2011, National Renewable Energy Laboratory 2005. 

 
Figure 19: ​The above map shows the economic viability of the Bergey Excel 10 in the 
United States based on state utility prices and wind resources. ​ ​According to this analysis, 
13.6% of land is economically viable for turbine use with perfect net metering.  
  
Discussion: Section III: United States 

This analysis shows the importance of energy prices to economic viability of 

turbines. This is especially obvious in New York. The average energy cost is the second 

highest in the nation (about $0.18/kWh). Even though New York’s wind resources are 
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relatively mediocre, almost the entire state is considered economically viable for wind 

turbines. It’s also interesting to consider the importance of price on states in the middle 

part of the country - from North Dakota down through the western part of Oklahoma and 

Texas. According to Figure 17, the best wind resources in the entire contiguous United 

States occur in this region. Despite all that, as shown in Figure 19, only a small portion of 

that area is viable, because of the low cost of energy in this part of the country. This 

highlights the importance of future energy prices on the viability of wind turbines. The U.S. 

Energy Information Administration (2015) predicts a substantial increase (~20%) in 

residential electricity prices in the next 25 years.  

 

 
Figure 20: ​Shows increasing projected energy prices in the United States for residential 
customers. The Reference case is a  projection based on a growth in real gross domestic 
product (rGDP) of 2.4% from 2013- 2040, with laws and regulations remaining relatively 
stable. The high growth scenario is if the rGDP grows instead by 2.9%. The low growth 
scenario is if rGDP instead grows by 1.8%.  
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The section III analysis hinges on several issues.  First, the household average 

dollars per kilowatt-hour isn’t uniformly distributed across the state. Several areas are 

isolated from the power grid or in areas where electricity generation are abnormally high - 

in these regions turbines may be a more viable option.  At the same time, the cost analysis 

of turbines is very location dependent. The turbine cost and installation analysis was 

computed based on Michigan installation prices. However, costs can differ greatly 

depending on location, and remote areas are likely to be more expensive, and could 

therefore be less economically viable.  On the other hand, if a remote area is off the grid, a 

wind turbine could be more economically viable than connecting to the grid.  This model 

also uses rates set at current levels. The analysis only included the Bergey Excel 10, which 

was the best performing turbine in the Michigan analysis in terms of dollars per kilowatt 

hour over a 20-year lifespan. This analysis, however, only compared the eight turbines 

certified by the Small Wind Certification Council, which is only a fraction of available small 

wind turbines available in the market.  This analysis compares price per kilowatt-hour 

from the wind turbine to the price per kilowatt-hour from the utility provider. As stated in 

the first section’s discussion, this isn’t usually the case.  

Another shortcoming of this national analysis is that it fails to investigate state 

energy incentives. The only incentive included in the analysis is a 30% federal tax incentive 

of residential renewable energy installations.  Since the turbine cost analysis was 

performed in Michigan, at the time of the study no incentives existed to promote wind 

generation at non-farming, non-small-business residences in Michigan. So, any additional 
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state incentives would increase the area in which residential wind generation is 

economically viable.  

 

General Discussion 

There are several interesting results from this study. Due to the wind turbines’ 

economies of scale, at least theoretically, bigger is better- which is why the Bergey Excel 10, 

the largest turbine used in the spatial analysis, was the best performer in terms of dollars 

per kilowatt-hour. The second is that utility pricing schemes can make medium energy 

consumers pay the most per kilowatt-hour compared to those households which consume 

more or less than they do. This causes the economic viability to peak in those medium use 

households, holding all else equal. The third is that the price of electricity is a hugely 

important part of the economic viability analysis, and, in some areas, is a more important 

factor than the wind resources. These findings should inform future efforts to increase the 

usage and improve the economic viability of wind generation. 

 

Climate Change Legislation 

Policy makers in the United States have been largely unsuccessful in the regulation 

of greenhouse gas emissions (GHGs). Congress has failed to pass any comprehensive 

climate change legislation (Plater et al.  2010). However, in the 2007 case ​Massachusetts​ v. 

EPA, the Supreme Court has ruled that the Environmental Protection Agency has the 

statutory authority to regulate climate-change-inducing Greenhouse Gas Emissions (Plater 
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et al. 2010). In 2009, the EPA found that GHG emissions constituted an endangerment to 

public health and welfare (Plater et al. 2010). Despite passing several proposals for the 

reduction of GHG emissions from power plants, the EPA has yet to enforce a lasting 

comprehensive plan which regulates the emissions of greenhouse gases (Plater et al. 2010). 

When they, or some other policy makers do, however, we will likely see huge increases in 

the economic viability of residential energy systems, as shown in this analysis. New 

regulation will increase the cost of energy to a level where, as seen in the United States 

analysis, it will be cheaper in many places to produce energy from a home wind turbine 

installation than to purchase energy from an electric grid which overarchingly depends on 

GHG-emitting fossil fuel combustion. 

 

Renewable Portfolio Standards and Net Metering 

The following map shows the 30 states which have adopted renewable portfolio 

standards.  
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Figure 21: ​Renewable Portfolio map from EIA (2012). Thirty States and the District of 
Columbia have mandated renewable portfolio standards and another seven states have set 
goals for renewable energy adoption in their state.  
 

The widespread adoption of these standards highlights the commitment many 

states have made to renewable energy.  Still, no states currently have an energy policy 

which repays residential electric producers for all their energy production at the retail rate. 

In the absence of this perfect net metering, the payback time for wind turbines increases 

substantially, considerably decreasing the incentive to buy a wind turbine. Different states 

have different policies regarding excess electricity produced by residences. These different 

policies are laid out in the following table. 
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Number 
of States 

Restrictions on Net Metering Rollover 

10 Allow lifetime rollover at retail rates 

10 annual rollover paybacks at wholesale rates 

14 rollover for 12 months then all excess is donated back to the utility 

10 monthly pay back at discounted rate 

  6 no statewide policy on rollover restriction 

 
Table 9:​ Net metering rollover policy by state, from Auck et al. (2014). 
 

There are equity issues with net metering. The issue of net metering has been 

debated hotly, and will continue as residential energy systems become more and more 

viable (Satchwell et al. 2014). Net metering has been criticized as placing an unfair burden 

on utility customers who aren’t participating in net metering.  The argument is that utilities 

are responsible for maintaining and increasing the size of the electricity grid, and that net 

metering customers benefit from the grid without having to pay their share, leaving other 

customers to pick up the tab. One study, by Satchwell et al. (2014) used a financial model to 

investigate net metering equity issues under different market penetration rates of solar 

panels. He found that a 2.5% market penetration by residential solar causes a price 

increase of about .1% for utility customers. If that market penetration increases to 10%, the 

customers have to pay about 2.5% more. Although the price increases are moderate, these 

results taken superficially do seem to support the claims made by critics of net metering. 

However, the market penetration modeled in Satchwell et al. (2014) is much higher than 

current levels - about .2% market penetration in the United States. In Michigan, two of the 

largest utility providers - Consumers Energy and DTE, net metering capacity is 0.014% (as 
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in 14/100,000) and 0.06% of total capacity, respectively (Net Metering and Solar Energy 

Report 2014). The capacity of net metering pales in comparison to the utility’s electric 

capacity. If the results from Satchwell et al. (2014) can be applied, the increases in price for 

non-net-metering customers would be incredibly small. Further, increasing residential 

energy production reduces the strain on the energy grid, which decreases the likelihood of 

blackouts for ​all​ consumers (Pourbeik et al. 2006). It also reduces the need to invest in new 

power plants.  

In addition, even if the issues associated with net metering are unfair to consumers, 

especially at higher levels of market penetration, they may be necessary. The equity issues 

associated with current energy production and climate change are far worse.  

 
Residential vs. Commercial Wind Turbines 

 
As time passes, wind energy may become even more viable.  According to the 2013 

wind market report (Gerrity 2013), commercial wind turbine prices per kilowatt hour have 

declined dramatically since 2008. The price reductions have been coupled with better 

turbine technology. If these changes in the commercial wind market are also applicable to 

small-scale wind, we could expect to see further decreases in turbine price, increasing the 

economic viability in these areas. Increases in the residential wind turbine market could 

lead to increased competition among suppliers/ installers/ maintainers of wind turbines, 

which can increase the viable area by further driving down the lifetime costs of wind 

turbines. In addition, this analysis was relatively conservative in the cost analysis and 

lifetime estimates of wind turbines - for example, a 20-year lifespan was used for all 
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turbines, while some advertised 30-50 year lifetimes. A decrease in the price or increase in 

the lifetime of a wind turbine would substantially increase the viable area.  

In addition to the reductions in price per kilowatt hour, since 2012, wind capacity 

has risen sharply, and is projected to continue growing (Conti and Holtberg 2015) (Figure 

22).  

 

 
 
Figure 22​: Net capacity of wind is projected to rise in the next 25 years (Conti and 
Holtberg 2015). 

  

This paper primarily investigated small wind turbines to be used in grid-tied 

households. However, the benefits of small wind turbines are much greater in many areas, 

especially areas which are removed from power lines, like farms and islands. In such areas 
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the turbines would no longer be competing with large power plants but instead against 

household diesel or gas generators. Obviously the cost of generator energy is dependent on 

the cost of diesel or gas, and especially with rising fuel costs, this could greatly increase the 

economic viability of small wind turbines. 

Wind Leasing 

 One interesting new program is from United Wind (​http://unitedwind.com​), it’s 

called a wind lease. The wind lease works by allowing customers to lease a wind turbine 

from United Wind. United Wind chooses which sites are most fit for residential wind 

turbines and contacts customers, who then rent the turbine from United Wind. United pays 

for all costs associated with the turbine, including ongoing maintenance, and only takes 

rent at a rate lower than household energy savings. The system makes turbine ownership a 

much more realistic option, especially for users who can’t afford the substantial cost of 

purchasing and installing a new turbine.  

Problems with Residential Wind 

It’s important to remember that there are some significant problems associated 

with wind power. The main environmental impacts of wind power are noise, visual 

impacts, and impacts on wildlife (Konili, Kaldellis 2012).  
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Figure 23:​ Public opinion about noise impact of commercial-sized wind farms (Konili, 
Kaldellis 2012).  

 
Noise is one of the most cited concerns about wind energy. However, modern wind 

turbines create very little noise compared to their predecessors. Unfortunately, there is 

relatively little research on the subject of small wind turbines noise; most of the literature 

is instead about large wind farms.  One study from Taylor et al. (2012) investigated 

community perception of noise from wind turbines around small and micro wind turbine 

installations (like the ones in this study). Taylor et al. found that 54.4 dB of sound were 

emitted from a 5kW turbine at a 12-m distance - this is about equivalent to being 100 m 

away from a car traveling at 40 mph (Konili, Kaldellis 2012). She also found that people 

who have a negative opinion of wind power tend to perceive more noise from the wind 

turbines near which they live.  
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Figure 24​: Public opinion on visual impacts of a commercial wind farm (Konili, Kaldellis 
2012). 

 

There is very little research on the visual impacts associated with small wind 

turbines. One concern about larger scale wind installations is the “flicker” caused by the 

wind turbine blocking sunlight. This flicker can irritate people and can cause detrimental 

effects to their health. Although small scale wind turbines have a smaller rotor diameter 

with which to block sunlight, they are typically closer to neighbors than commercial wind 

farms. This shadow flicker issue can be avoided by changing turbine siting. The sound and 

visual impacts should be taken into account before any wind installation is built. 

There is also some concern of wildlife impacts from wind energy. Again, little 

research has investigated this issue with small scale wind projects, but larger scale wind 

projects have been the study of some scientific scrutiny. Konili and Kaldellis point out the 

issues with criticizing wind energy for bird health when other forms of energy are likely to 

have a much larger impact on the well being of all species including birds. Wind turbines 

account for .0003% of all human-related bird deaths (National Academy of Sciences 2007)​. 

However, wind turbines are responsible for some bird deaths, and measures should be 
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taken to reduce, as much as possible, the effects of the turbines on the birds, such as 

avoiding migratory paths.  

 

Recommendations 

As stated earlier in the discussion, perfect net metering is equivalent to standard net 

metering except that perfect net metering compensates households immediately for the 

electricity they generate, whereas standard net metering compensates (in the form of offset 

electricity costs) over a long period of time. Under standard net metering, households that 

are tempted to buy a wind turbine may be discouraged from doing so because they won’t 

realize the full benefit from their purchase unless they stay at their house for many years 

after their turbine has stopped functioning (because they will still have the electricity 

credits to use). In addition, the standard net metering system encourages increasing energy 

consumption in households which produce more energy than they consume, in order to 

increase their energy savings. In light of Michigan’s commitment to renewable energy 

production demonstrated by their 2008 Renewable Portfolio Standard, which stipulated 

that Michigan electric providers meet a 10% renewable energy standard by 2015 

(Quackenbush 2015), I recommend that states investigate switching from standard net 

metering policy to perfect net metering and turbine sharing. As mentioned previously, both 

perfect net metering and turbine sharing encourage residential wind turbine usage by 

expediting the rate at which energy savings are received by the household. This decreases 

the portion of an area’s energy which comes from fossil fuels while decreasing the stress on 

the energy grid. A change in net metering policy would also improve the viability of other 
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residential energy generation, such as solar panels. The equity issues of net metering were 

mentioned briefly in the discussion section.  

 

Conclusion  

The energy system in America needs change. Coal energy accounts for 39% of current 

energy production in the United States. The extraction and combustion of coal causes huge 

costs to society, which will only increase as we feel more effects of climate change. Large 

electricity systems increase the risk of catastrophic grid failure, which can lead to billions 

in damage. Policy makers have the tools to address these issues by facilitating small scale 

renewable energy systems. Already, small wind turbines are economically viable in a large 

portion of Michigan and the United States, and there are ways to further encourage their 

proliferation.  Utility pricing is shown in this analysis to have huge effects on the 

investment potential of turbines - measures should be taken to disincentivize the use of 

coal and energize the switch to renewable energy.  
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