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Abstract

Background: A substantial fraction of non-coding DNA sequences of multicellular eukaryotes is
under selective constraint. In particular, ~5% of the human genome consists of conserved non-
coding sequences (CNSs). CNSs differ from other genomic sequences in their nucleotide

composition and must play important functional roles, which mostly remain obscure.

Results: We investigated relative abundances of short sequence motifs in all human CNSs present
in the human/mouse whole-genome alignments vs. three background sets of sequences: (i) weakly
conserved or unconserved non-coding sequences (non-CNSs); (ii) near-promoter sequences
(located between nucleotides -500 and -1500, relative to a start of transcription); and (iii) random
sequences with the same nucleotide composition as that of CNSs. When compared to non-CNSs
and near-promoter sequences, CNSs possess an excess of AT-rich motifs, often containing runs of
identical nucleotides. In contrast, when compared to random sequences, CNSs contain an excess
of GC-rich motifs which, however, lack CpG dinucleotides. Thus, abundance of short sequence
motifs in human CNSs, taken as a whole, is mostly determined by their overall compositional
properties and not by overrepresentation of any specific short motifs. These properties are: (i) high
AT-content of CNSs, (i) a tendency, probably due to context-dependent mutation, of A's and T's
to clump, (iii) presence of short GC-rich regions, and (iv) avoidance of CpG contexts, due to their
hypermutability. Only a small number of short motifs, overrepresented in all human CNSs are

similar to binding sites of transcription factors from the FOX family.

Conclusion: Human CNSs as a whole appear to be too broad a class of sequences to possess
strong footprints of any short sequence-specific functions. Such footprints should be studied at the
level of functional subclasses of CNSs, such as those which flank genes with a particular pattern of
expression. Overall properties of CNSs are affected by patterns in mutation, suggesting that

selection which causes their conservation is not always very strong.
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Background

Genomes of multicellular eukaryotes mostly consist of
DNA segments which do not encode proteins. Still, a size-
able fraction of such non-coding DNA is subject to selec-
tive constraint and, thus, is conserved between species.
Typically, a long intergenic region consists of alternating
segments with high and low rates of evolution [1]. A vari-
ety of terms have been used to refer to slowly-evolving seg-
ments [2,3], here we will call them CNSs (conserved non-
coding sequences).

A majority of mutations in segments which evolve at high
rates are presumably selectively neutral or nearly-neutral.
In contrast, a large fraction of mutations within CNSs
must be deleterious enough to be removed by negative
selection. Indeed, data on within-population genetic vari-
ability indicate that slow evolution of CNSs is due to neg-
ative selection, and not to locally reduced mutation rate
[4]. In multicellular eukaryotes with compact genomes,
such as Drosophila melanogaster, a majority of mutations
affecting non-coding sequences may be removed by selec-
tion [5,6]. For large-genome organisms, such as mam-
mals, the fraction of selectively constrained non-coding
sequences is probably between 3% [7] and ~10% [8].

Obviously, CNSs must perform important biological
functions, but the whole range and nature of these func-
tions remains unknown [9]. Still, many CNSs are certainly
involved in regulation of transcription, and harbor bind-
ing sites of a variety of transcription factors [10]. Thus, we
can expect some short sequence motifs to be overrepre-
sented in at least some kinds of CNSs, as this is the case for
proximal promoters [11]. Indeed, analyses of samples
from human CNSs demonstrated overrepresentation of
some short sequence motifs [12,13].

New, powerful methods of detecting overrepresented
motifs [e. g., [14,15]], make it possible to undertake the
analysis of small-scale composition of mammalian CNSs
at the genomic level. Such analysis has a potential to
reveal short sequence-specific function(s) common for all
human CNSs. Here, we report the results of application of
discriminating matrix enumerator (DME) [14] to all
strong human CNSs.

Results

We studied representation of short sequence motifs in all
human CNSs against three backgrounds: unconserved or
only weakly conserved segments of intergenic regions
(non-CNSs), near-promoter non-coding sequences, and
randomized sequences with the same nucleotide compo-
sition as that of CNSs. CNSs are relatively AT-rich [9]: fre-
quencies of nucleotides A, T, G, and C are 30.7%, 30.7%,
19.3%, and 19.3% in CNSs, 26.3%, 26.4%, 23.6%, and
23.7% in non-CNSs, and 23.7%, 23.7%, 26.3%, and
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26.3% in near-promoter sequences. Dinucleotide compo-
sitions of sequences of different classes were also substan-
tially different (Fig. 1).

CNSs from human chromosomes with odd and even
numbers were analyzed separately, to check the results for
consistency. The overall lengths of CNSs were 27,112,333
on odd chromosomes and 24,962,379 on even chromo-
somes. Tables 1, 2, and 3 list top 30 motifs, overrepre-
sented within CNSs over these three backgrounds.
Overrepresentation was calculated as the ratio of the
number of occurrences of a motif within CNSs, normal-
ized to their overall length, over normalized number of
occurrences of the motif within the background
sequences.

In order to study a possible similarity of the overrepre-
sented CNS motifs with known binding sites for transcrip-
tion factors (TF), we applied our recently developed
method m2transfac [16], and compared all the motifs
found at the previous step with the TRANSFAC library of
positional weight matrices (PWMs). Relatively few
matches between the motifs and the TF matrices were
found. Out of 12000 motifs reported at the previous step
as being overrepresented in CNS versus the three different
backgrounds, we have identified just 20 motifs that match
TF matrices with E-values lower than 0.001 and satisfy fac-
tor class-specific cut-offs (Table 4). The majority of these
matches involved matrices for the factors of "Forkhead
DNA-binding domain", especially of the FOX family,
which were repeatedly found over two rather different
backgrounds: of non-CNSs and randomized sequences.
Among the motifs found over the background of near-
promoter sequences, there was only one that matched a
PWM.
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Percentages of dinucleotide frequencies, in CNSs (red), non-
CNSs (green), near-promoters (lue), and random sequences
(black).
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Table I: Motifs overrepresented in CNSs over non-CNSs
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Odd Chromosomes

Even Chromosomes

Motif

SYTAATTA
CTRATTAS
WGYAATTA
TTAATTAV
STAATTGV
VWGCTAAT
TTTAATBA
GMWTAATT
TAATTATV
STTAATKG
ATTVAATT
ATTAATBA
CWKTAATT
ATAATTAV
SMAATTAA
SBTAATGA
VATTWGCA
TWAATCAR
AATTAVTT
GTAATTMM

Discussion

Number of occurrences

10620
6152

12596
13141
8267

10503
15800
10290
10100
5905

12177
11006
13577
10536
12754
8828

14265
10639
12668
7484

Overrepre-sentation

3.45
3.14
3.09
3.08
2.89
2.84
2.77
2.72
2.72
271
2.68
2.6l
2.59
2.58
2.57
2.56
2.53
2.52
2.51
2.49

We treated all human CNSs as a single class of sequences.
Comparison of this class against three different back-
grounds demonstrates that many short sequence motifs
are substantially overrepresented within CNSs (Tables 1,

Motif Number of occurrences Overrepresen-tation
TTAATTAV 12637 3.72
TAATTRCW 12019 3.43
GYAATTAS 6142 3.39
TTTAATBA 15060 3.14
ATTAATBA 10910 3.07
TAATTWGM 10885 3.04
GMWTAATT 9941 2.97
CWTAATKA 10028 2.94
ATTAAWTT 11570 2.85
TTAATBAT 10115 2.79
CWKTAATT 13079 2.75
VWGCTAAT 9823 2.71
CMATWAAT 10129 2.65
ATTTVATT 15715 2.64
CAATTRCH 8188 2.61
MCWAATTA 9605 2.6l
ATTWWGCA 9959 261
GKTAATTW 9019 2.59
AATTAMCW 10053 2.58
MATTDGCA 13694 2.58

2, 3). CNSs from odd- and from even-numbered human
chromosomes show very similar patterns, which is con-
sistent with the lack of any large-scale heterogeneity
within CNSs. At a first glance, these results may seem to
suggest that CNSs as a whole possess some complex

Table 2: Motifs overrepresented in CNSs over near-promoter sequences

Odd Chromosomes

Even Chromosomes

Motif Number of occurrences Overrepre- sentation Motif Number of occurrences Overrepresen-tation
STAATTAS 7576 4.55 SYTAATTA 9852 4.26
TTAATKAR 17516 433 TTAATTAD 14561 4.07
GBTAATKA 12299 3.96 CTRATTAS 5744 3.90
VTAATTGM 10174 391 ATTAATGN 9762 3.74
TTTMATKA 19449 3.86 TAATTATD 11760 3.73
MTTMATTA 13688 3.82 TTTAATDA 16633 3.66
AATKYAAT 15204 3.73 ATAATTAB 9233 3.62
TTAATKGY 12925 3.72 TAATKSAA 10418 3.59
RTAATKAA 13613 3.68 STAATTGV 7823 3.55
MMTAATTA 12518 3.68 GYAATWAA 10608 3.55
TSTAATTW 14964 3.49 TGYAATTW 13322 3.51
AATKMATT 18824 3.48 AATGMWTT 15412 3.49
TGATWAAW 12898 3.46 AGYAATTW 12585 3.4l
KATAATKA 10739 3.46 AATTDATT 14693 3.39
CATTAAKV 10838 342 AATTATAD 10379 3.36
CATWAWTT 14599 3.39 TWAATTGR 8896 335
CATTWAAW 19325 3.37 AWTARCAT 9601 3.35
CAATTAKV 9515 3.33 TAATTHAT 12789 3.34
ATRATTYA 13356 3.30 CWTTAATR 9114 3.32
ATTTYMAT 20983 3.29 ATTSMATT 11547 3.27
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Table 3: Motifs overrepresented in CNSs over randomized sequences

Odd Chromosomes

Even Chromosomes

Motif Number of occurrences Overrepre-sentation
CWGSCWGS 32472 7.50
SCCHGSCH 42207 5.68
GGSWGGSN 39555 5.55
CWGSCCWS 24103 5.52
RGTCCTBY 22100 5.45
GRGSWGRG 25293 5.36
CCYYYCCH 40727 5.22
SCCWGGRY 33839 5.20
CWGSCYCH 36409 5.04
SCWGGGSN 36038 5.03
SCHGSCCH 36013 491
CWGRGSCH 35318 4.77
SCYCWGCH 34141 4.56
NCAGCTGN 32928 4.52
CAGCTGNN 32867 451
TWACWGAA 14781 4.48
RGGGRRAR 32929 442
CWGSAGSY 24140 437
SCWGGRAR 32065 437
GGARRGRR 33390 437

sequence pattern(s), with possible implications for their
functioning. However, this is probably not the case.
Instead, the results can be explained by simple, generic
properties of CNSs.

Indeed, when CNSs are analyzed against a background of
non-CNSs (Table 1) or of near-promoter sequences (Table
2), almost all overrepresented motifs possess two com-
mon features: (i) they are AT-rich (consist of 75% or more
of A and/or T) and (ii) they contain runs of A's and/or T's.
Feature (i) simply reflects a well-known, although poorly
understood, fact that CNSs are more AT-rich than the
genome as a whole [9,17] or that these two classes of
background sequences. Feature (ii) appears to be due to
general excess of AA and TT dinucleotides in CNSs, rela-
tively to corresponding random sequences. This tendency
of A's and T'e to clump is probably due to patterns in
mutation, and not to any functional constraint. Indeed,
context-dependence of spontaneous mutation in mam-
mals tends to produce runs of A's and T's, because at a site
preceded and followed by A's (T's) T>A (A>T) transver-
sions are ~2 times more common than A>T transversions
[18,19]; Table 2.

Obviously, it is neccessary to consider CNSs against a
background of the same nucleotide composition, as oth-
erwise the impact of different compositions is the leading
factor causing overrepresentation of some motifs. When
CNSs are analyzed against a background of random

Motif Number of occurrences Overrepre-sentation
CWGSCWGV 38927 5.78
SCCWGGSN 33122 5.63
CYCWSCCH 33976 5.50
RGCWGSCH 30738 4.95
GGSDGRGV 34873 4.93
CWGSCYCH 29902 4.78
CWSCWGGV 31840 4.73
SCWGCWGV 30968 4.71
CWGGGRRV 31866 4.64
CWGRGSCH 28886 4.6l
CCWGGRRY 31578 4.6l
SCHGGSCH 28689 4.50
GGRARGRR 29240 4.47
RRGGCWGV 30772 4.44
RGGGRARR 29828 441
GVWGGGRR 31019 437
CYCYVSsCC 19097 437
KCCWSCCH 26417 433
CAGCYSNG 16617 4.28
KKGGCWGV 28051 4.13

sequences of the same, AT-rich, nucleotide composition,
the results are very different (Table 3), and overrepre-
sented motifs can be naturally subdivided into two
classes. The first, larger class contains a variety of GC-rich
motifs which, however, are devoid of CpG dinucleotides
and are correspondingly enriched with CpA and CpT
dinucleotides and with CWG short motif. The second,
smaller class contains several motifs which are either
purine- or pyrimidine-rich. Overrepresentation of motifs
from the first class appear to be due to two simple factors:
i) the presence, within CNSs, of short GC-rich segments
and ii) hypermutability of CpG dinucleotides [18].
Indeed, CNSs are depleted of CpG's more than the other
two classes of genomic sequences (Fig. 1), which might
reflect strong methilation of CNSs. Overrepresentation of
motifs of the second class simply reflects a well-known
[20], although poorly understood, abundance of short
segments with strong purine/pyrimidine imbalance
between the two DNA stands within the human genome.

The analysis of all human CNSs does not reveal clear "glo-
bal" patterns consistent with overrepresentation of spe-
cific, functional motifs. A small number of the observed
overrepresented motifs are similar to Position Weight
Matrices (PWMs) from TRANSFAC database [21] (Table
4). Among them, the strongest similarity was to the PWMs
of FOX and POU families of factors which are character-
ized by a specific AT-rich pattern. In order to test if the
identification of FOX-domain matrices is merely an effect
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Table 4: Motifs found matching transcription factor PWMs from TRANSFAC

Accession Consensus/ID Factor class Taxon Binding factors

acns even

DME280 ATAAACAN Forkhead DNA-binding domain Vertebrate FOXIla,FOXFI,FOXLI ,FOXO4
DME424 WGTAAAYA Forkhead DNA-binding domain Vertebrate FOXCI,FOXA4a,HNF-3beta
DME768 WTGTCATV Basic region + leucine zipper (bZIP) Nematode Skn-1

DME1427 WGTCATSM Basic region + leucine zipper (bZIP) Nematode Skn-1

acns odd

DME27 VATTWGCA POU Vertebrate POU2FI

DME349 ATAAACAN Forkhead DNA-binding domain Vertebrate FOXIla,FOXFI,FOXLI,FOXO4
DMEIO14 GTMAACAD Forkhead DNA-binding domain Vertebrate FOXDI,HNF-3beta,FOXOla
DMEI700 CCAATMAB DNA-binding domain with Histone fold Fungal HAP2,HAP3,HAP4

promoters even

promoters odd

DME1268 STGASTYA Basic region + leucine zipper (bZIP) Vertebrate NF-E2,AP-1|

random even

DME90 VCAGATGN Basic region + helix-loop-helix motif Vertebrate ITF-2,Tal-1beta

DME%4 CATCTGBN Basic region + helix-loop-helix motif Vertebrate ITF-2,Tal-1beta,E47

DME765 RTGWSTCA Basic region + leucine zipper (bZIP) Vertebrate NF-E2,AP-1,Fos,Jun,Fra

DMEI 106 TGTTBACW Forkhead DNA-binding domain Vertebrate HNF-3beta

DMEI T ATAAACAH Forkhead DNA-binding domain Vertebrate FOXIla,FOXFI,FOXLI,FOXO4
DME1920 CCACGTGG Basic region + helix-loop-helix motif Plant, Vertebrate PIF3,c-Myc:Max

random odd

DMEI | CAGCTGNN Basic region + helix-loop-helix motif Vertebrate AP-4

DME456 MAYAAACA Forkhead DNA-binding domain Vertebrate FOXEFI

DME790 TATGVAAA POU Vertebrate POU2FI

DME930 ATAAAYAT Forkhead DNA-binding domain Vertebrate, Insect FOXIlla,Croc

DMEI 145 TGTTBACW Forkhead DNA-binding domain Vertebrate HNF-3beta

of the general AT-richness of the CNS regions we check
carefully results of alignments of all other "AT-rich" matri-
ces in TRANSFAC. There are approximately 64% of matri-
ces in TRANSFAC with overall AT composition higher
then 50%. 16 of them are characterised by the same and
even higher AT-composition then any of the FOX and
POU-domain matrices (e.g. matrices for such factors as
TBP, Lhx3, Evi-1, Nkx3-1 and others). Nevertheless, non
of them gave statistically significant results of the align-
ments with the motifs under study. This confirms the sim-
ilarity of some motifs from the list specifically to the FOX-
and POU-domain matrices. The FOX factors are involved
in many cellular processes and often control very first
steps of organism development as well as cell cycle and
differentiation; e. g. FOXF1 is highly expressed in mouse
embryonic extraembryonic and lateral mesoderm [22]
and control murine gut development [23]; FOXDL1 is pre-
dominantly expressed in embryonic forebrain neuroepi-
thelium, head mesenchyme and adrenal cortex [24] and
controls normal brain and kidney morphogenesis and cel-
lularity in the renal capsule [25]; FOXO1 governs cell
growth in the heart [26]. Factors of other families, such as
POU and bZIP are often involved in regulation of basic
cell cycle machinery; e.g. POU2F1 is an ubiquitous factor
involved in stimulation of replication [27] and also partic-
ipates in early mouse embryogenesis [28]. In summary, it

might be tempting to speculate that at least some motifs
overrepresented in all CNSs may play crucial role in
organizing the process of development of the vertebrate
organisms. However, the number of such motifs is not
high., More specific classes of CNSs, such as those adja-
cent to genes with a particular pattern in expression
[11,12] should be considered in order to find a larger
number of functional motifs.

In contrast, small-scale composition of human CNSs, con-
sidered as a whole, is strongly affected by patterns in
mutation - hypermutability of CpG's and the tendency
for A's and T's to form runs. This is unexpected because
CNSs must be under negative selection which can over-
come any impact of mutation [4]. Apparently, selective
constraint on the evolution of individual nucleoitide site
can be quite weak even within strongly conserved CNSs.

Conclusion

Abundance of short sequence motifs in all human CNSs is
mostly dictated by their general features: overall AT-rich-
ness of CNSs, runs of A's and T's, GC-rich regions, avoid-
ance of CpG's, and local purine/pyrimidine imbalance of
the DNA strands. Apparently, CNSs as a whole are too
broad a class to display strong overrepresentation of spe-
cific motifs. Instead, such motifs must be sought within
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subclasses of CNSs. In particular, tissue-specificity of
expression of the genes adjacent to a CNS must be taken
into account.

Methods

We used the VISTA pipeline infrastructure [29] with Shuf-
fle-LAGAN glocal chaining algorithm [30] applied to local
alignments produced by translated BLAT [31] for the con-
struction of genome-wide pairwise human/mouse align-
ment. The level of conservation in the alignment was
evaluated with the computational algorithm Gumby [32]
that makes minimal assumptions about the statistical fea-
tures of conserved noncoding regions and treating the
sequence alignment as its own training set. Gumby [32]
proceeds through five steps:

1. Noncoding regions in the input alignment are used to
estimate the neutral mismatch frequency pN between
each pair of aligned sequences. This is done simply by
counting the number of mismatches in nonexonic posi-
tions and dividing by the number of aligned nonexonic
positions.

2. A log-odds scoring scheme for constrained versus neu-
tral evolution is then independently initialized for the
pair of sequences, based on the assumption that the mis-
match frequency pC in constrained regions equals pN/R,
where the ratio R is an arbitrary parameter. For example,
if R = 3/2 (default value), constrained regions are expected
to evolve at 2/3 times the neutral rate, until sequence
divergence begins to saturate.

The log-odds mismatch score for the sequence pair is then
given by SO = log((pN/R)/pN) = -log(R), and the match
score is S1 = log((1 - pN/R)/(1 - pN)). The default R-ratio
(1.5) was selected to optimize the sensitivity-specificity
tradeoff in detecting empirically defined regulatory ele-
ments in the SCL locus. Gap characters in the alignment
are assigned a weighted average of mismatch and match
scores: SG = pNSO + (1 - pN)S1.

3. Each alignment column is scored as a sum of pairwise
log-odds scores. The resulting conservation score fulfills
the requirements of Karlin-Altschul statistics, in that posi-
tive column scores are possible, though the average col-
umn score is negative [33].

4. Conserved regions appear as stretches of alignment col-
umns with a high aggregate score.

5. The aggregate score of the alignment columns in each
conserved region is translated into a P-value using Karlin-
Altschul statistics. As is the case with the BLAST algorithm
[34], the P-value of a given conserved element varies with
the size of the search space, since one is more likely to find

http://www.biomedcentral.com/1471-2164/8/378

a given degree of conservation by random chance in a
long alignment than in a short alignment. To make the P-
values comparable across alignments of different lengths,
Gumby normalizes them to refer to a fictitious fixed-
length alignment with the same statistical properties as
the true alignment. The 10-kb P-value is related to the
expected number of false positives in a 10-kb region (i.e.
the 10-kb E-value) as follows: P = 1-exp(-E). When P << 1,
P ~ E. Thus, the P-value also doubles as an estimate of the
false-positive rate.

Intervals with P-value threshold of 0.01 produced a set of
144,165 highly conserved sequences that totaled 49 Mb in
length. We eliminated all conserved regions that coincide
with the coding evidence provided by the UCSC data sets
of mRNA, human spliced EST and human EST. We
excluded CNSs located within (-1000, +1000) from the
start and end of transcription.

Non-CNSs were defined as regions that have human/
mouse alignment, conserved below 50% in a 100 bp win-
dow and not containing repeats and coding evidences.
Random sequences were generated using standard C
library pseudo-random generator. Overrepresentation of
motifs in different random sequences was calculated
using DME [14] (see Additional File 1). DME identifies
motifs, represented as position weight matrices that are
overrepresented in one set of sequences relative to another
set. The ability to directly optimize relative overrepresen-
tation is a unique feature of DME, making DME an ideal
tool for comparing two sets. In all of studies we compared
8-mers (parameter w = 8) and bits/column bound was set
to 1.6 (parameteri = 1.6).

DME motifs were compared to the TRANSFAC"® database
with the m2transfac program [16]. The program retrieves
all non-overlapping pairwise ungapped alignments of a
query matrix and a TRANSFAC matrix satisfying a given
threshold. The primary similarity measure is an alignment
score which combines Kullback-Leibler divergence with a
scoring system that was previously applied successfully to
comparison of Hidden Markov Models [35]

S(p, q) = C(p. q) - D(p, q) (1)
with

& pid;
Clp.q) =log, Y~ 2)

i=1 i
_1 S -1 bi S 1 a4 3
D(p,q)==| X, pilog=-+ q;log 3)

2 i=1 qi i=1 pi
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In equation (2), r is background model which is set to the
uniform distribution. Equation (2) is based on the col-
umn score derived in [33]. The term assigns a positive
score to similar distributions and tends towards zero for
less conserved positions. Equation (3) is a symmetrized
relative entropy or Kullback-Leibler (KL) divergence. Rel-
ative entropy was used previously in applications for clas-
sification of protein as well as nucleotide patterns [36,37].
The m2transfac scoring system combines the advantages
of both measures. The KL divergence directly assesses the
difference of two distributions and therefore increases
specificity for similar distributions, but makes no distinc-
tion on the basis of their conservation, which is however
a property of the column score.

The m2transfac output provides E-values, the number of
alignments with greater or equal score expected from
searching a database with 1000 matrices. These are
derived for each TRANSFAC PWM from score distribution
estimates based on large-scale searches of a random
matrix library. Furthermore, we apply the transcription
factor classification that was developed in our group
[38,39] to gather matrices according to DNA-binding
domain classes of their binding factors and derive factor
class-specific score thresholds. We define 57 matrix
groups, 15 of which comprise matrices which cannot be
associated with a particular factor class, e.g. the barbitu-
rate-inducible element, or whose binding factors are so far
not assigned to a protein-structural class. Some matrices
occur in more than one class if TFs of different classes are
annotated as binding factors, or binding factors possess
multiple DNA-binding domain types. For each PWM,
score thresholds are defined at three levels of stringency
above the score of the first observed false positive in a
search of the TRANSFAC database.
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