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Profiling of pathway-specific changes in gene expression following growth of human cancer cell lines transplanted into miceTranscriptional regulation in eukaryotes often involves multiple transcription factors binding to the same transcription control region, and to understand the regulatory content of eukaryotic genomes it is necessary to consider the co-occurrence and spatial relationships of indi-vidual binding sites. The determination of conserved sequences (often known as phylogenetic footprinting) has identified individual tran-scription factor binding sites. We extend this concept of functional conservation to higher-order features of transcription control regions

Abstract

Background: Tumor cells cultured in vitro are widely used to investigate the molecular biology of
cancers and to evaluate responses to drugs and other agents. The full extent to which gene
expression in cancer cells is modulated by extrinsic factors and by the microenvironment in which
the cancer cells reside remains to be determined. Two cancer cell lines (A549 lung adenocarcinoma
and U118 glioblastoma) were transplanted subcutaneously into immunodeficient mice to form
tumors. Global gene-expression profiles of the tumors were determined, based on analysis of
expression of human genes, and compared with expression profiles of the cell lines grown in
culture.

Results: A bioinformatics approach associated genes that showed changes in their expression
levels with functional classes as defined by either the GO gene annotations or MeSH terms in the
literature. The classes of genes expressed at higher levels in cells grown in vitro indicated increased
cell division and metabolism, reflecting the more favorable environment for cell proliferation. In
contrast, in vivo tumor growth resulted in upregulation of a significant number of genes involved in
the extracellular matrix (ECM), cell adhesion, cytokine and metalloendopeptidase activity, and
neovascularization. When placed in comparable tissue environments, the U118 cells and the A549
cells expressed different sets of ECM and cell adhesion-related genes, suggesting different
mechanisms of extracellular interaction at work in the different cancers.

Conclusions: Studies of this type allow us to examine the specific contribution of cancer cells to
gene expression patterns within an in vivo tumor mixed with non-cancerous tissue.

Background
Since the 'seed and soil' hypothesis of Paget in the 19th cen-
tury [1], it has been understood that the microenvironment,

or 'soil,' surrounding the tumor 'seed' plays a critical part in
its development. However, investigations into the molecular
biology of cancers are often carried out on cells grown in vitro
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in culture, where the environment is unlike that of the in vivo
tissue environment in which cancers naturally develop. The
effects of these environmental differences on cancer cells may
account, in part, for the fact that only a small percentage of
anticancer drugs that are found to effectively kill cells in vitro
are successful in subsequent animal and human studies. In
this study, we explored the changes that occur at the tran-
scriptome level as cells grown in vitro are transplanted into
an in vivo environment, where they develop as a tumor. The
in vivo environment represented here is that of the subcuta-
neous intrascapular region of the nude mouse. Two different
cell lines were studied: A549, derived from human lung ade-
nocarcinoma, and U118, derived from human brain glioblast-
oma. Our study examined the differences in global gene
expression between A549 mouse xenograft tumors and A549
cell cultures and between U118 xenograft tumors (grown in
the same location as the A549 tumors) and U118 cultures. We
looked for in vivo versus in vitro differences that were com-
mon to the two cell lines, and for differences that were found
in one cell line but not the other.

In modeling mechanisms of cancer development, global
gene-expression profiling of human-derived cells grown as
tumors in mice has some distinct advantages over profiling of
tumors obtained from patients. Whereas a great deal of
genetic variability exists among different tumors from differ-
ent patients, lesser genetic heterogeneity would be expected
in xenografts of cancer cells originally derived from a single
patient. Furthermore, patient-derived tumors are composed
of both cancer and non-cancer cells, making it difficult to pre-
cisely ascertain gene-expression patterns specifically attrib-
utable to cancer cells. For example, in many cancer
microarray studies, the actual percentage of cancer cells in a
profiled sample may be as low as 30-40% [2]. Even when
using techniques such as laser capture microdissection,
which can improve tumor purity [3], the relative contribution
of cancer cells and non-cancer cells to the overall gene-
expression profile remains uncertain. In contrast, profiling
human genes expressed in a mouse xenograft using a human
microarray chip might uncover genes specifically expressed
in human cancer cells in xenograft tumors comprised of a
mixture of human- and mouse-derived cells [4].

The data obtained in a microarray experiment can be over-
whelming, and the challenge is to understand, on a global sys-
tems level, the biology behind the differences in expression
observed in hundreds of genes. In this study, we have
searched for 'significantly enriched' classes of genes among
all differentially expressed genes. These are classes or func-
tional categories of genes that appear overrepresented in the
set of differentially expressed genes. As a result, valuable
clues could emerge as to the dominant biological features or
processes that might underlie the coordinate expression of
these genes. Such clues could be especially convincing if it can
be shown that the enriched classes are unlikely to represent a

chance occurrence. Gene classes can be defined by common
gene annotations or concepts from the biomedical literature.

Results
Global differences in gene expression between 
xenograft tumors and cell cultures
A549 and U118 cells were each transplanted subcutaneously
into the intrascapular region of immunodeficient mice,
within which sizable tumors developed after 21 days. Global
mRNA expression profiles from these tumors, using Affyme-
trix HuGeneFL chips, were compared with profiles obtained
from the cell lines as grown in culture. Between the A549
xenograft tumors and the A549 cell cultures, 357 genes (375
probe sets) differed significantly at p < 0.01 with a fold change
greater than two either way (134 genes being higher in tumors
and 223 genes being higher in culture), a number much
greater than the 24 to be expected by chance, as determined
by permutation testing. Between the U118 xenograft tumors
and cell cultures, 368 genes (387 probe sets) differed signifi-
cantly (112 genes being higher in tumors and 256 genes being
higher in culture), with 29 expected false positives due to
chance. Table 1 shows the genes with highest expression in
tumors compared with cultures, for each of the cell lines.

From histological analysis the amount of mouse tissue in a
xenograft tumor was estimated between 10 and 20%. To
determine the extent of hybridization with the human
HuGeneFL chip that might be attributable to mouse RNA, a
sample of mouse lung tissue was also profiled. Whereas the
total amount of hybridization measured in the xenograft
tumor profiles was comparable to that of the culture profiles
with equal amounts of RNA, the total hybridization measured
in the mouse control profile was found to be about one-fifth
that of a xenograft profile, with the same amount of RNA. As
the control profile was from a sample of 100% mouse tissue,
the contribution of mouse genes to differences observed in
gene expression between cell cultures and tumors was consid-
ered to be minimal. From a comparison of the individual
probe-set intensities of the mouse lung profile with those of
the culture profiles, and assuming a 20% contribution of
mouse tissue to the human xenograft sample, we estimate
that in only about 20 out of the 7,069 probe sets on the
HuGeneFL chip (a number on the level of measurement noise
in a microarray experiment) would the amount of hybridiza-
tion from mouse tissue alone have been high enough to
account for greater than twofold changes between cell cul-
tures and tumors. In contrast, nearly 800 probe sets showed
a greater than twofold increase on average from A549 culture
profiles to A549 xenograft tumor profiles. It can therefore be
concluded that, in all but a handful of genes, the numerous
significant changes observed in gene expression in the
xenograft tumors are due to the cancerous (human) cells and
not the surrounding (mouse) host tissue.
Genome Biology 2003, 4:R46
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Table 1

Top 30 genes showing higher expression in xenograft tumors over cultures for each cell line ranked by fold change

Probe set Gene Gene product description

Higher in U118 tumors over cultures (p < 0.01, fold change > 5)

V00594_s_at MT2A Metallothionein 2a

M33552_at LSP1 Lymphocyte-specific protein 1

U41518_at AQP1 Aquaporin 1 (channel-forming integral protein, 28 kD)

Z24680_at GARP Glycoprotein A repetitions predominant

J04599_at BGN Biglycan

J03278_at PDGFRB Platelet-derived growth factor receptor, beta polypeptide

M11718_at COL5A2 Collagen, type V, alpha 2

L08096_s_at TNFSF7 Tumor necrosis factor (ligand) superfamily, member 7

D87002_cds2_at POM121L1 Similar to rat integral membrane glycoprotein POM121

HG2994-HT4850_s_at ELN Elastin (supravalvular aortic stenosis, Williams-Beuren syndrome)

Z74615_at COL1A1 Collagen, type I, alpha 1

M57399_at PTN Pleiotrophin (heparin binding growth factor 8, neurite growth-promoting factor 1)

L07807_s_at DNM1 Dynamin 1

Z74616_s_at COL1A2 Collagen, type I, alpha 2

L38486_at MFAP4 Microfibrillar-associated protein 4

X14885_rna1_s_at TGFB3 Transforming growth factor, beta 3

U24488_s_at TNXB Tenascin XB

D86479_at AEBP1 AE-binding protein 1

M80563_at S100A4 S100 calcium-binding protein A4

M18533_at DMD Dystrophin (muscular dystrophy, Duchenne and Becker types

HG945-HT945_s_at ZNF9 Zinc finger protein 9 (a cellular retroviral nucleic acid binding protein)

M93221_at MRC1 Mannose receptor, C type 1

D12485_at ENPP1 Ectonucleotide pyrophosphatase/phosphodiesterase 1

HG1078-HT1078_at FLJ10254 Hypothetical protein FLJ10254

HG2810-HT2921_at HOXA10 Homeo box A10

M24351_cds3_s_at PTHLH Parathyroid hormone-like hormone

D13666_s_at OSF-2 Osteoblast specific factor 2 (fasciclin I-like)

Z37976_at LTBP2 Latent transforming growth factor beta binding protein 2

M35878_at IGFBP3 Insulin-like growth factor binding protein 3

X04412_at GSN Gelsolin (amyloidosis, Finnish type)

Higher in A549 tumors over cultures (p < 0.01, fold change > 10)

Z19574_rna1_at KRT17 Keratin 17

M29540_at CEACAM5 Carcinoembryonic antigen-related cell adhesion molecule 5

M35252_at TM4SF3 Transmembrane 4 superfamily member 3

HG371-HT26388_s_at MUC1 Mucin 1, transmembrane

X52003_at TFF1 Trefoil factor 1 (breast cancer, estrogen-inducible sequence expressed in)

U40434_at MSLN Mesothelin

Z48314_s_at MUC5AC Mucin 5, subtypes A and C, tracheobronchial/gastric

M57730_at EFNA1 Ephrin-A1

L24203_at TRIM29 Tripartite motif-containing 29

U17760_rna1_at LAMB3 Laminin, beta 3 (nicein (125 kD), kalinin (140 kD), BM600 (125 kD))

U04313_at SERPINB5 Serine (or cysteine) proteinase inhibitor, clade B (ovalbumin), member 5

J05068_at TCN1 Transcobalamin I (vitamin B12 binding protein, R binder family)

AB006781_s_at LGALS4 Lectin, galactoside-binding, soluble, 4 (galectin 4)
Genome Biology 2003, 4:R46
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Principal components were extracted from the cell culture
and xenograft expression data using all 7,069 probe sets con-
sidered in the analysis. The first principal component cap-
tures the greatest fraction of the overall variance in gene
expression; the second captures the greatest fraction of vari-
ance subject to being independent of the first, and so on.
From the first two principal components, a pair of coordi-
nates was determined for each xenograft and cell culture pro-
file to construct a two-dimensional view that reflects the
relative locations of the profiles in the higher-dimensional
space. On the same two-dimensional view, we plotted one
dataset of 86 profiles from lung adenocarcinomas and
another dataset of 45 profiles from glioblastomas and astro-
cytomas, generated from previous global gene-expression
studies [5,6]. Figure 1 shows this principal components anal-
ysis (PCA) plot of the gene-expression profiles from cell cul-
tures, xenografts, and human lung and brain tumors.
Although none of the human tumor profiles was used to
define the principal components coordinate space, lung
tumor profiles appear well separated on the plot from brain
tumor profiles. A549 profiles (both xenograft and culture) are
grouped with lung tumors rather than brain tumors, and
U118 profiles, with brain tumors rather than lung tumors. Of
the 134 genes found expressed more highly in A549 xenograft
tumors over A549 cultures (p < 0.01, fold change > 2), 70
were also higher in stage I adenocarcinomas over A549 cul-
tures (p < 0.05). Of the 112 genes upregulated in U118

xenograft tumors over cultures, 50 were also higher in high-
grade glioblastomas over U118 cultures (p < 0.05).

Probe set Gene Gene product description

K01396_at SERPINA1 Serine (or cysteine) proteinase inhibitor, clade A), member 1

M27436_s_at F3 Coagulation factor III (thromboplastin, tissue factor)

V01512_rna1_at FOS v-Fos FBJ murine osteosarcoma viral oncogene homolog

M18728_at CEACAM6 Carcinoembryonic antigen-related cell adhesion molecule 6

HG2981-HT3127_s_at CD44 CD44 antigen (homing function and Indian blood group system)

U37283_at MAGP2 Microfibril-associated glycoprotein-2

U78551_at MUC5B Mucin 5, subtype B, tracheobronchial

S77410_at AGTR1 Angiotensin receptor 1

J04469_at CKMT1 Creatine kinase, mitochondrial 1 (ubiquitous)

S73591_at TXNIP Thioredoxin interacting protein

Y00318_at IF I factor (complement)

M35878_at IGFBP3 Insulin-like growth factor binding protein 3

M34309_at ERBB3 v-Erb-b2 avian erythroblastic leukemia viral oncogene homolog 3

M95787_at TAGLN Transgelin

L34155_at LAMA3 Laminin, alpha 3 (nicein (150 kD), kalinin (165 kD), BM600 (150 kD), epilegrin)

U65932_at ECM1 Extracellular matrix protein 1

D87953_at NDRG1 N-Myc downstream regulated

Genes in bold were found upregulated in xenograft tumors over cultures for both cell lines with p < 0.05 in each. For A549, underlined genes were 
also found upregulated in lung tumors over A549 cultures with p < 0.05. For U118, underlined genes were also found upregulated in brain tumors 
over U118 cultures with p < 0.05.

Table 1 (Continued)

Top 30 genes showing higher expression in xenograft tumors over cultures for each cell line ranked by fold change

Figure 1
Principal components analysis (PCA) plot of global gene-expression 
profiles from cell cultures, xenografts, and human lung and brain tumors. 
Principal components were extracted from the cell culture and xenograft 
expression data (but not the lung and brain tumor data) using all 7,029 
HuGeneFL probe sets. The first two principal components are shown.
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Table 2

Significantly enriched classes arising both in genes higher in A549 cell cultures over tumors and in genes higher in U118 cell cultures 
over tumors (p < 0.05 in both sets)

Category Term Gene 
count in 
A549 set 
of 223

Gene 
count in 
U118 set 
of 256

Gene count 
in entire set 

of 5,682

p-value A549 set p-value U118 set

GO term annotation (0.95 terms expected, found 46) 

Biological process Alcohol metabolism 10 15 110 1.07E-02 1.06E-04

Biological process Aromatic compound metabolism 7 6 23 1.87E-05 4.16E-04

Biological process Biosynthesis 31 27 330 3.88E-06 1.69E-03

Biological process Cell cycle 31 33 327 3.20E-06 8.11E-06

Biological process Cell proliferation 36 39 535 7.98E-04 1.53E-03

Biological process Cytokinesis 8 6 39 1.06E-04 7.36E-03

Biological process DNA metabolism 16 12 120 1.52E-05 7.46E-03

Biological process DNA replication 13 10 81 1.30E-05 3.22E-03

Biological process G1/S transition of mitotic cell cycle 5 7 39 1.73E-02 1.55E-03

Biological process Metabolism 108 134 2278 6.12E-03 3.34E-05

Biological process Mitotic cell cycle 9 10 54 2.14E-04 1.20E-04

Biological process Nucleotide biosynthesis 10 5 31 1.52E-07 1.16E-02

Biological process Regulation of CDK activity 5 6 23 1.68E-03 4.16E-04

Biological process Tricarboxylic acid cycle 3 5 12 1.01E-02 1.09E-04

Molecular function ATP binding activity 29 33 425 2.18E-03 1.28E-03

Molecular function Cyclin-dependent protein kinase activity 6 8 25 3.23E-04 8.44E-06

Molecular function Enzyme activity 90 109 1466 8.76E-07 1.70E-09

Molecular function Ligase activity 14 11 72 5.40E-07 3.28E-04

Molecular function Lyase activity 8 8 75 8.69E-03 1.88E-02

Molecular function Nucleotide binding activity 40 42 564 1.28E-04 6.40E-04

MeSH term association (2.2 terms expected, found 37) 

Anatomy Intracellular membranes 21 30 344 2.79E-02 3.20E-04

Anatomy Mitochondria 38 52 607 2.17E-03 2.46E-06

Biological sciences Active transport, Cell nucleus 23 23 329 4.68E-03 2.26E-02

Biological sciences Cell cycle 62 66 980 4.19E-05 2.82E-04

Biological sciences DNA replication 30 33 440 1.84E-03 2.28E-03

Biological sciences Genes, lethal 17 16 211 3.61E-03 2.78E-02

Biological sciences Mitosis 28 37 484 2.30E-02 8.57E-04

Biological sciences Mutagenesis 52 55 940 4.84E-03 2.07E-02

Biological sciences Oxidative stress 30 36 454 2.98E-03 5.13E-04

Biological sciences S phase 21 22 272 2.12E-03 5.18E-03

Chemicals and drugs Acetyl coenzyme A 4 4 24 1.32E-02 2.10E-02

Chemicals and drugs Adenosinetriphosphatase 30 36 416 7.50E-04 9.02E-05

Chemicals and drugs Antineoplastic agents 49 55 897 8.09E-03 8.39E-03

Chemicals and drugs Cyclin B 10 15 101 5.96E-03 3.87E-05

Chemicals and drugs Cyclin-dependent kinases 21 30 336 2.22E-02 2.12E-04

Chemicals and drugs Cysteine endopeptidases 26 29 418 1.21E-02 1.22E-02

Chemicals and drugs Multienzyme complexes 35 35 512 7.14E-04 7.58E-03

Chemicals and drugs Phosphoglucomutase 5 6 30 5.68E-03 1.88E-03

Chemicals and drugs RNA nucleotidyltransferases 5 5 33 8.60E-03 1.51E-02

Diseases Carcinoma in situ 6 7 55 1.99E-02 1.11E-02
Genome Biology 2003, 4:R46
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Overrepresentation of genes involved in cell division 
and metabolism among genes upregulated in cancer 
cells in culture relative to xenografts
Searches were made for significantly enriched gene classes, as
defined by Gene Ontology (GO) annotation or Medical
Subject Heading Index (MeSH) term association (see Materi-
als and methods), for both the set of 223 genes upregulated in
the A549 cell cultures over A549 tumors and the set of 256
genes upregulated in the U118 cell cultures over the U118
tumors (p < 0.01, fold change > 2). In each case, the p-values
for the most enriched classes appeared highly significant
compared to what would be expected, based on simulation
results, in a randomly selected set of the same number of
genes. For example, for the A549 set of 223 genes, 35
enriched LocusLink annotation terms were found that had a
p-value less than 1.9E-03, where one term with a p-value less
than 1.9E-03 would be expected in a given set of 223 ran-
domly selected genes. Out of 100 simulation tests, no single
test had more than eight terms with a p-value less than 1.9E-
03. Table 2 shows the top gene classes found in both the A549
set and the U118 set with p-values less than 0.05. There are
far more gene classes common to both gene sets with p < 0.05
in each than would be expected in two randomly selected gene
sets of 223 and 256 (for example, for the MeSH term classes,
37 were found to be significantly enriched in the actual data,
whereas about two would be expected to occur by chance, see
Table 2).

Taken together, the significantly enriched classes found for
both the A549 and the U118 genes in cell culture compared
with tumors are highly indicative of processes of cell division
and metabolism, with significant MeSH term classes for the
two gene sets including 'Cell cycle' (62 genes for A549, 66
genes for U118), 'DNA replication' (30,33), 'Mitosis' (28,37),
'Mitochondria' (38,52), and 'Cyclin-dependent kinases'
(21,30); and significant GO terms including 'Cell prolifera-
tion' (36,39), 'Metabolism' (108,134), 'Cytokinesis' (8,6), 'Tri-
carboxylic acid cycle' (3,5), and 'G1/S transition' (5,7). A
search for enriched gene classes was also made for 157 genes
that were expressed more highly (p < 0.05, fold change > 2)
in both A549 and U118 cell cultures over tumors, and the sig-
nificant classes found were the same, or of the same nature,
as the classes listed in Table 2. For the entire set of enriched
classes for genes upregulated in cell cultures over the
xenograft tumors, including which genes belong to which
classes, see Additional data files and [7].

Overrepresentation of genes involved in cell adhesion, 
the extracellular matrix, and vascularization among 
genes upregulated in cancer cells in xenografts relative 
to cultures
As with the genes expressed at higher levels in culture com-
pared to xenografts, searches were made for significantly
enriched GO and MeSH term classes for the set of 134 genes
with significantly higher expression (p < 0.01, fold change >
2) in the A549 tumors over the A549 cell cultures and the set

of 112 genes upregulated in the U118 tumors over the U118
cell cultures. Again, in each case, the p-values for the most
enriched classes found were quite significant over what would
be expected by chance. For example, for the A549 set of 134
genes, 36 enriched MeSH terms were found that had a p-
value less than 7E-04, where one term would be expected to
have p less than 7E-04 in a set of 134 randomly selected
genes; out of 100 simulation tests, no single test had more
than six terms with a p-value less than 7E-04. Table 3 shows
the top gene classes found in both the A549 set and the U118
set with p-values less than 0.05.

Taken together, the significantly enriched gene classes for
A549 and U118 genes that were upregulated in tumors com-
pared to cell culture are highly indicative of processes involv-
ing cell adhesion and the extracellular matrix (ECM).
Significant MeSH term classes for the two gene sets included
'Cell adhesion' (26 genes for A549, 21 genes for U118), 'Extra-
cellular matrix proteins' (15,16), 'Cytokines' (28,26), 'Colla-
gen' (28,33), 'Fibroblasts' (40,35), 'Metalloendopeptidases'
(11,12), 'Growth Substances' (14,16), 'Proteoglycans' (11,15),
and 'Transcription factor Sp1' (11,10). Sp1 is important for the
basal expression of various collagens, and blocking Sp1
broadly inhibits expression of ECM genes [8]. Terms such as
'Pathologic neovascularization' (13,9) and 'Vascular endothe-
lium' (29,26) can refer to processes of angiogenesis, the gen-
eration of new blood vessels from preexisting vessels for the
delivery of nutrients to tumors. Other disease-related terms
include 'Precancerous conditions' (11,8), 'Pulmonary fibrosis'
(5,5; a condition involving chronic inflammation and pro-
gressive fibrosis of the pulmonary alveolar walls), and 'Sys-
temic scleroderma' (4,6; characterized by hardening of
affected tissues). Also of interest is the significant term 'Stem
cells' (23,20), as similar signaling pathways are thought to
regulate self-renewal in stem cells and cancer cells, and as
tumors may include stem cells [9]. The entire set of enriched
classes found for genes expressed more strongly in the
xenografts over the cell cultures, including which genes
belong to which classes, is available as additional data files
and from [7].

Upregulation of genes specific to cell-line lineage in 
xenografts
While several gene classes were found in common between
the 112 genes upregulated in U118 tumors and the 134 genes
upregulated in A549 tumors over cultures (p < 0.01, fold
change > 2), only 10 upregulated genes were shared between
the two gene sets. At a significance level of 0.05, 26 genes
were shared between the 301 genes upregulated in U118
tumors and the 229 genes upregulated in A549 tumors over
cultures, whereas 12 would be expected if the two gene sets
were independent of each other. By comparison, 46 genes
(over four times the 10 expected by chance) were common to
the 223 genes upregulated in A549 cultures and the 256 genes
upregulated in U118 cultures over tumors (p < 0.01, fold
change > 2). Whereas processes of cell division and metabo-
Genome Biology 2003, 4:R46
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lism may be more in common from one cancer to the next,
processes of cell adhesion and ECM interaction are likely to
be very different between different cell types. These observa-
tions gave rise to the hypothesis that, when placed in compa-
rable tissue environments, cancer cells from different
lineages may express different cell adhesion and ECM-related
genes.

To test our hypothesis that A549 cells and U118 cells each
express a restricted set of ECM-related genes in tumors, we
built a classifier for distinguishing between A549 and U118
cell-culture profiles. We used as the training dataset the A549
and U118 tumor profiles with the expression values for the 30
genes that had both an association in the literature with the
MeSH term 'Extracellular matrix proteins' and were signifi-

Table 3

Significantly enriched classes arising both in genes upregulated in A549 xenograft tumors over cell lines and in genes upregulated in 
U118 tumors over cell cultures (p < 0.05 in both sets)

Category Term Gene count in 
A549 set of 

134

Gene count in 
U118 set of 

112

Gene count in 
entire set of 

5,682

p-value
A549 set

p-value
U118 set

GO term annotation (0.58 terms expected, found 2) 

Biological process Cell adhesion 14 9 233 0.001092 0.039587

Molecular function Metal ion binding activity 16 16 411 0.031462 0.006317

MeSH term association (2.2 terms expected, found 42) 

Anatomy Basement membrane 9 5 96 3.94E-04 4.04E-02

Anatomy Endothelium, vascular 29 26 829 1.67E-02 9.33E-03

Anatomy Epithelium 22 15 451 7.63E-04 3.04E-02

Anatomy Fibroblasts 40 35 1215 1.25E-02 8.92E-03

Anatomy Microfilaments 7 6 124 2.66E-02 3.51E-02

Anatomy Stem cells 23 20 665 3.69E-02 3.42E-02

Biological sciences Cell adhesion 26 21 697 1.09E-02 2.96E-02

Biological sciences Cell differentiation 53 46 1780 2.53E-02 1.76E-02

Biological sciences Cell movement 29 23 792 9.13E-03 3.36E-02

Biological sciences Gene expression regulation, neoplastic 54 37 1301 3.92E-06 8.56E-03

Biological sciences Neutrophil infiltration 3 3 34 4.51E-02 2.86E-02

Chemicals and drugs Collagen 28 33 516 1.89E-05 4.25E-10

Chemicals and drugs Complementarity determining regions 4 4 32 6.37E-03 3.36E-03

Chemicals and drugs Cytokines 28 26 808 2.10E-02 6.70E-03

Chemicals and drugs DNA, neoplasm 27 22 705 6.70E-03 1.81E-02

Chemicals and drugs Extracellular matrix proteins 15 16 217 1.59E-04 4.32E-06

Chemicals and drugs Growth substances 14 16 365 4.77E-02 1.95E-03

Chemicals and drugs Heparitin sulfate 4 4 54 3.77E-02 2.12E-02

Chemicals and drugs Laminin 13 8 184 3.60E-04 2.82E-02

Chemicals and drugs Lymphokines 16 14 349 7.60E-03 8.22E-03

Chemicals and drugs Metalloendopeptidases 11 12 241 2.63E-02 2.62E-03

Chemicals and drugs Osteonectin 3 5 35 4.85E-02 5.51E-04

Chemicals and drugs Proteoglycans 11 15 255 3.75E-02 1.25E-04

Chemicals and drugs Transcription factor, Sp1 11 10 250 3.32E-02 2.49E-02

Diseases Astrocytoma 7 6 129 3.21E-02 4.13E-02

Diseases Melanoma 18 13 362 1.94E-03 2.50E-02

Diseases Neovascularization, pathologic 13 9 223 2.16E-03 3.11E-02

Diseases Precancerous conditions 11 8 137 3.50E-04 5.38E-03

Diseases Pulmonary fibrosis 5 5 46 4.27E-03 1.96E-03

Diseases Scleroderma, systemic 4 6 58 4.71E-02 9.02E-04
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cantly upregulated (p < 0.01, fold change > 2) either in A549
xenograft tumors over cultures or in U118 tumors over cul-
tures. We then tested the classifier on the six profiles from
A549 and U118 cell cultures. The classifier distinguished per-
fectly between A549 and U118 profiles, which indicates that
the expression pattern of ECM-related genes upregulated in
the A549 tumors is more similar to the expression pattern of
the same genes in the A549 cell cultures than it is to the
expression of these genes in the U118 cell cultures, and vice
versa. We built three other similar classifiers: one used the
expression values of the 47 genes that are significantly higher
in either A549 or U118 tumors and had an association with
the MeSH term 'Cell adhesion'; the second used the values for
95 genes associated with 'Cell differentiation'; and the third
used the expression values of all 236 genes higher in A549 or
U118 tumors with p less than 0.01 and fold change greater
than two. All three classifiers correctly distinguished between
A549 and U118 cell cultures. Figure 2 shows a cluster diagram
of the expression signatures of the 47 cell adhesion-related
genes across all profiles, showing most of the genes as appear-
ing more highly expressed in either the A549 tumors or the
U118 tumors, but not in both.

Discussion
Cells grown in culture have unlimited access to nutrients
under conditions most favorable for growth and proliferation
and little exposure to extrinsic factors such as cytokines that
modulate growth and differentiation. In contrast, cells in a
tumor growing in a host tissue environment face conditions
with more limited nutrients and oxygen and are subjected to
or benefit from a wide variety of host factors. The ability of
cancer cells to proliferate within a tissue depends on their
response to adhesive and growth factor cues within the ECM
[10], and self-sufficiency in growth signals is one of the
hallmarks of cancer [11]. To stimulate their own growth and
proliferation in tissue, tumor cells can overproduce and
release their own growth factors or obtain them from the
matrix as they are released by matrix metalloproteinases [12].
The endothelial vasculature grows into the tumor and pro-
vides nutrients and oxygen [13]. This model is illustrated by
the experimental results presented here, as both A549 (lung)
and U118 (brain) cell lines are observed to upregulate one set
of genetic programs related to cell growth and proliferation
when in culture and another set related to cell adhesion, the
extracellular matrix, growth substances, and neovasculariza-
tion when developing as an in vivo tumor.

In terms of new biological insight into cancer development,
our findings suggest that cancer cells of different origins
interact in different ways with the same extracellular environ-
ment to survive and proliferate as tumors. These lineage-spe-
cific genetic programs for cell adhesion and ECM interaction,
although less active in cell culture, are not lost, but may be
reactivated when cells are transplanted back into an in vivo
environment, even if the new environment is different from
the tissue of origin of the cancer. This conclusion is based on
the significant representation of genes associated with cell
adhesion and the ECM in both the A549 and the U118
xenograft tumors. However, the genes in each case represent
two very distinct sets, the set in the U118 tumors being more
similar in their expression pattern to that of the U118 cell cul-
tures than to the A549 cultures, and vice versa.

Although tumors are known to express high levels of genes
involved in cell adhesion and the ECM, as we observed in the
xenografts, assessment of the specific contribution of cancer
cells to the increased expression may be difficult. In the case
of human tumor xenografts in a mouse host, however, it can
be determined conclusively that expression of cell adhesion
and ECM genes is upregulated in the cancerous cells in the
tumor tissue. This conclusion is based on the following two
observations. First, profiling mouse tissue alone using probe
sets designed for human genes gives poor hybridization, to
the extent that the contribution from mouse genes would not
have been enough to account for the differences in gene
expression observed. Second, different cell adhesion and
ECM-related genes are upregulated in tumors of different cell
types (A549 versus U118); if the upregulation were due to a
common mouse source, then the same genes should have
appeared upregulated in both cell types, given that the cells
were grown in the same site.

The findings presented here, suggesting that different ECM
signaling pathways are active in different cancers, could have
important clinical implications, as knowledge of the specific
pathways dysregulated in a particular cancer may be valuable
for devising effective therapy that targets those pathways. As
candidates for further investigation, we have identified genes
that appear upregulated in certain cancers in vivo compared
to in vitro and that belong to distinct functional classes
related to tumor progression. Also of interest are genes that
are upregulated in both the cancers, including IGFBP3 (insu-
lin-like growth factor binding protein 3), which, interestingly,
is thought to have proapoptotic activities [14], and GSN

Figure 2 (see following page)
Hierarchical clustering of the set of genes that have an association in the literature with the MeSH term 'Cell Adhesion' (that is, appeared in the abstract of 
at least one article indexed under 'Cell Adhesion'), and were significantly higher (p < 0.01, fold change > 2) either in A549 xenograft tumors over A549 cell 
cultures or in U118 tumors over cultures. Intensity values were transformed to standard deviations from the average across all twelve profiles. C, culture; 
T, tumor.
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Figure 2 (see legend on previous page)
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(gelsolin), which has a role in cellular motility and acts as
both a regulator and effector of apoptosis [15]. Further
xenograft studies of the type presented here could examine
the responses of the host tissue to the tumor (using a mouse
microarray chip), as well as temporal changes in gene expres-
sion within the developing tumor.

Materials and methods
Cell lines and tumors
Both the A549 lung adenocarcinoma cell line and the U118
brain glioblastoma cell line were cultured at 37°C in a 6%
CO2-humidified incubator in DMEM supplemented with 10%
fetal calf serum, 100 U/ml penicillin and 100 U/ml strepto-
mycin. The cells were passaged weekly upon reaching conflu-
ence. We produced tumors in immunodeficient SCID C.B-17
mice by inoculating 5 × 106 cells (either A549 or U118) subcu-
taneously per mouse in the intrascapular region. Tumors
greater than 5 mm in diameter (range = 5-7 mm) were
observed within 21 days in all the mice inoculated. The
tumors were harvested under sterile conditions and trimmed
of adipose and connective tissue. Total RNA was prepared
from tumor tissue.

Gene-expression profiling
Three A549 xenograft tumors obtained from different mice,
three U118 tumors from different mice, three A549 cell-cul-
ture samples, and three U118 culture samples were each pro-
filed using HuGeneFL microarray chips (Affymetrix, Santa
Clara, CA), which consist of 7,069 probe sets, each represent-
ing an mRNA transcript. To assess the amount of hybridiza-
tion with the HuGeneFL chip (designed for human mRNAs)
that could be attributable to mouse mRNA in a xenograft
tumor sample, a sample of mouse lung tissue was also pro-
filed. Preparation of mRNA, hybridization of the arrays, and
computation of probe-set intensities were as previously
described [5,16,17]. The exogenous probe set controls on the
HuGeneFL chip (probe sets that give constant hybridization
from sample to sample) were used to determine scaling fac-
tors for comparing the mouse lung profile with the xenograft
and culture profiles. For each probe set, we computed the fold
changes for human cell-line cultures (U118 and A549) with
20% mouse lung compared to the pure cell line, using the
expression (0.8 × [human] + 0.2 × [mouse])/[human]. This
assessed the potential impact of mouse tissue on differences
observed between xenograft tumor and cell-culture profiles.

As criteria for determining significant differences in mean
gene mRNA expression levels between groups of samples, we
used both a p-value less than 0.01 using the two-sample t-test
and a fold change greater than two either way. Probe-set
intensities less than 50 were set to 50. Permutation testing
was used to assess the number of genes that could be consid-
ered significant for any arbitrary separation of the profiles
into two groups. Hierarchical clustering, using the Eisen soft-
ware [18,19], was applied using the average linkage method as

an aid to visualizing gene-expression patterns of interest.
Global views of the variation in gene expression among cell
specimens were obtained using PCA [17].

Significantly enriched classes within gene sets
For a given set of genes showing significant differences in
expression between comparison groups, a search was made
within the set for 'significantly enriched' functional classes of
genes, as described previously [20]. For the entire set of genes
profiled on the HuGeneFL chip, each gene was grouped into
one or more classes as defined by one of the following criteria:
a common Gene Ontology (GO) annotation term, where on
the order of 1,000 terms were considered [21]; and a common
MeSH literature term [22] association as defined below. GO
term gene assignments related to categories of 'biological
process' or 'molecular function' were obtained from
LocusLink [23,24] and the GO term hierarchy was obtained
from the Gene Ontology Consortium [25]. For each GO term
assigned to a given gene in LocusLink, we also assigned all
hierarchical parent terms of the term to the gene.

For each gene profiled in the study, the summaries of the 50
most recent articles that mention the gene by any one of its
common aliases in the article abstract were downloaded from
the web, using the Entrez utilities (described at [26]). An
association was then made between the gene and any MeSH
index terms included within those summaries. To reduce
search time and spurious or uninteresting results, before
searching for common MeSH term associations we first
reviewed the MeSH terms downloaded for the entire set of
genes profiled. We removed from further consideration any
MeSH term that appeared to have no relevance to our study
(for example, MeSH terms describing experimental protocols
or the healthcare system). MeSH terms that were associated
with fewer than 20 genes were also discarded, leaving some
4,000 MeSH terms that were considered in the analysis. Sim-
ilarly, GO gene classes that applied to less than four of the
genes under study were not considered.

For a given set of k significant genes, two separate searches
were made for enriched GO term classes and MeSH term
classes. For a given gene class common to n genes within the
k set, where the class applied to a total of A genes out of the
entire set of G unique genes under study, the probability, p,
for the term occurring n or more times within a set of k genes
randomly selected from the chip was calculated using the
one-sided Fisher's exact test. As multiple gene classes were
tested for our set of genes of interest, the true significance of
a low p-value for an enriched class was estimated using 100
separate Monte Carlo simulation tests. For each test k genes
were first randomly selected from the set of G genes, and p-
values for the classes occurring within the k set of genes were
then calculated. For a p-value for a given class found in the
original k set of genes, we calculated the number of classes
that could be expected to have a p-value as low or lower in a
set of k randomly selected genes, based on the simulation
Genome Biology 2003, 4:R46
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results. For each class found to be represented in two given
sets, one with k genes and the other with l genes, with p-val-
ues less than 0.05 in both cases, we calculated on the basis of
simulation results the number of classes expected to be found
in both a random k-gene set and a random l-gene set with p-
values less than 0.05 in both. In this case, we carried out 100
simulation tests, in each of which one set of k genes and
another set of l genes were each randomly selected from the
entire set of G genes under study. For each gene class that was
found to be represented in both random gene sets, p-values
for enrichment were calculated for each of the two sets.

Classification of cell-line lineage based on gene 
expression
In order to determine whether the lineage, A549 or U118, of a
given cell population could be predicted on the basis of its
gene-expression profile, we built a classifier using a training
set of profiles with a set of genes of interest to be used as
markers. To classify a test sample as either A549 or U118, we
computed the correlation coefficient between the expression
values of the markers in the test sample profile and the same
genes on each of the profiles in the training set (using log-
transformed values). The class identity of the majority of the
top five training profiles having the greatest correlation with
the test profile was then assigned to that profile. This strategy
is known in the classification literature as "five-nearest neigh-
bors with majority voting" [16].

Additional data files
The following files are available with the online version of this
article: expression datasets of the cell culture and xenograft
profiles as a tab-delimited text file (Additional data file 1); a
spreadsheet file including extra data, such as the scale-nor-
malized means prior to quantile normalization, p-values from
the 'present' test, a sheet of data from 60 control probe-sets
on the Affymetrix chips, and data from the mouse lung tissue
control profile (Additional data file 2); the search results for
significantly enriched classes for GO annotation (Additional
data file 3) and for MeSH term literature associations (Addi-
tional data file 4) for genes found to significantly differ at p <
0.01, fold change > 2 between tumors and cell cultures for a
given cell line; the values used in the classifications of cell cul-
ture lineage using xenograft tumor profiles, together with the
classification results, which correctly predicted the lineage of
all six cell culture profiles, as an Excel spreadsheet (Addi-
tional data file 5). The software for finding significantly
enriched classes within gene sets is available from the
authors' website [7].
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