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Abstract

lead to chronic inflalmmation.

Background: The aberrant inflammation that is the hallmark of the inflammatory bowel diseases (IBD) is associated
with several factors, including changes in the intestinal microbiota. Here, we confirmed that an intestinal microbiota
is needed for development of typhlocolitis in Helicobacter hepaticus infected IL.-107~ C57BL/6 mice, and
investigated the role of the microbiota in modulating disease.

Results: We altered the murine microbiota by treatment with the antibiotics vancomycin or cefoperazone prior to
H. hepaticus infection. Through surveys of the 165 rRNA encoding-gene, analyses of histology and changes in
expression of host mediators, we correlated alterations in the microbiota with host responses. We found that
resident microbes are essential for initiation of disease, as animals mono-associated with H. hepaticus did not
develop colitis. Despite the requirement for an indigenous microbiota for the initiation of disease, the severity of
disease was independent of antibiotic-induced changes in the microbial community structure. Despite differences
in the expression of host inflammatory mediators associated with shifts in the microbiota, H. hepaticus infection led
to similar histopathologic lesions in microbial communities exposed to either cefoperazone or vancomycin.

Conclusion: In conclusion, we demonstrate that colitis due to H. hepaticus infection can be initiated and progress
in the presence of several different microbial communities. Furthermore, H. hepaticus is the main driver of
inflammation in this model, while the specific structure of the microbiota may modulate the host pathways that
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Background

Inflammatory bowel diseases (IBD), of which Crohn’s
disease (CD) and ulcerative colitis (UC) are the most
common, are a group of idiopathic conditions that result
in inflammation of the intestinal mucosa. Although the
incidence of IBD is increasing, its cause is yet to be de-
termined [1,2]. However, recent evidence indicates that
genetic factors, dysregulated immune responses and al-
tered intestinal microbial communities play key roles in
the onset of disease [3].
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Alteration of microbial community structure has been
associated with intestinal diseases in patients and animal
models of IBD [4-8]. For example, fecal and biopsy sam-
ples from IBD patients have different microbial commu-
nities to those from healthy controls [9]. Furthermore,
patients with CD contain communities that are distinct
from those in UC [9]. Animal models have been key, not
only in elucidating the importance of interactions be-
tween the immune system and microbiota, but also the
importance of microbial community structures in IBD.
Knock-out mice that are double-deficient in both Tbet, a
transcriptional factor, and Rag2, recombination activat-
ing gene, contain colitogenic communities that can be
transferred into healthy recipients who subsequently de-
velop disease [10]. Additionally, inflammation does not
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develop in germfree mice in some models, providing fur-
ther evidence for the necessity of resident communities,
and the significance of microbial community structure,
in the development of enteric diseases [11-13]. Results
of these studies suggest that changes in the balance
among members of the indigenous microbial community
can trigger an inflammatory response.

Multiple animal models have been developed to study
IBD and, more recently, several of these have been used
to monitor how changes in microbial communities affect
disease [14,15]. We have previously employed a specific
murine model that involves infection of IL-10-deficient
mice (IL107~ C57BL/6) with Helicobacter hepaticus. In
this model, H. hepaticus infection elicits a dysregulated
Th (T helper)1/Th17 response that results in clinical
and histopathologic disease that resembles Crohn’s dis-
ease in humans [16,17]. Infection with H. hepaticus does
not cause disease in wild-type mice and only triggers in-
flammation in immune-altered hosts [18,19]. Onset of
disease is MyD88-dependent [20].

Interestingly, H. hepaticus only causes disease in the
presence of resident microbiota as there is no disease
observed in ex-germfree mice mono-associated with
H. hepaticus [21], indicating the importance of the
microbiota in initiation of IBD. There is also evidence
that mouse strain influences H. hepaticus-induced alter-
ations in the microbiota that may be related to disease
manifestation [22]. However, apart from these findings,
there is limited knowledge of the roles that the resident
microbiota play in this model. Therefore, the aim of the
current study was to investigate roles of the microbiota
in H. hepaticus-triggered IBD by observing how altering
community structure of the indigenous microbiota can
alter disease manifestations. Previously, we showed that
treatment with antibiotics, cefoperazone and vanco-
mycin significantly alter microbial communities of the
murine gut [23,24]. In the current study, we used these
antibiotics to modify the community structure in the
guts of IL10™"~ C57BL/6 mice before and during infec-
tion with H. hepaticus, and then compared disease in
treated and untreated mice as well as germfree mice.
Cefoperazone has not been cited to have activity against
H. hepaticus, but this bacterium is resistant to vanco-
mycin [25]. Our goal was to determine whether presence
or absence of microbiota or alterations in microbiota
structure would alter disease severity in IL10~~ C57BL/
6 mice infected with H. hepaticus.

Methods

Animals

IL-107"~ mice on a C57BL/6 background, from a breed-
ing colony (Michigan State University and the University
of Michigan) initially established with breeding stock
from Jackson Laboratories (Bar Harbor, ME, USA), were
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used for experiments. Mice were housed with autoclaved
bedding, given sterile food and water ad libitum, and ex-
posed to 12:12 h light:dark cycles. Germfree IL10~'
C57BL/6 mice were from the University of Michigan
Germ Free Life Laboratory. They were maintained in
sterile bubble isolators, and they remained bacteriologic-
ally sterile until removed from the isolators and inocu-
lated with H. hepaticus. All animal studies were
conducted at the University of Michigan and were ap-
proved by the University Committee on Use and Care of
Animals (UCUCA).

Murine infection with H. hepaticus
As previously described, the wild-type H. hepaticus
strain 3B1 (ATCC 51449) was incubated at 37°C under
micro-aerobic conditions for 48 h, on tryptic soy agar
(TSA) plates, supplemented with 5% sheep’s blood, and
then re-suspended in 5 ml of tryptic soy broth (TSB)
[19]. Mice were inoculated with a suspension of bacteria
with an optical density of 1.0 at 600 nm (approximately
10® colony-forming units (CFU)) in a volume of 0.2 ml.
Bacteria were introduced directly into the gastrointes-
tinal tract with a 24-gauge ball-tipped gavage needle.
Control mice were inoculated with sterile TSB [19].
Three experimental studies were conducted to inves-
tigate roles of the microbiota in disease development.
The first was to investigate disease development in
H. hepaticus mono-associated IL10~'~ C57BL/6 mice
from our colonies, two groups of germfree mice were
used: five mice were gavaged with TSB only and five
were gavaged with the H. hepaticus suspension de-
scribed above. Tissues were collected four weeks post-
infection. The second and third experiments were to
investigate the roles of altered microbiota in disease
development. We manipulated microbial communities
using two different antibiotic treatments, cefoperazone
and vancomycin. Cefoperazone was administered, ad
libitum, as a 0.5 mg/ml solution in the drinking water of
10-week-old, conventionally raised IL10~~ C57BL/6 mice.
Mice were assigned to six groups, as shown in Figure 1A.
Vancomycin treatment involved ad libitum administration
of 0.1 mg/ml vancomycin in the drinking water of 6- to 8-
week-old, conventionally raised IL10~~ C57BL/6 mice
[24]. These mice were assigned to six experimental groups
as depicted in Figure 1B.

Necropsy and histology

Mice were euthanized by CO, asphyxiation and cecal
samples were collected as follows [26]. Cecal tips were
excised and opened along the longitudinal axis. Contents
were removed, and cecal walls were gently washed with
1 x PBS to remove luminal contents. Tissues were cut
into three 3 x 3 mm sections and snap-frozen in liquid
nitrogen before storing at —80°C until future use. The
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(See figure on previous page.)

Figure 1 Schematic of experimental designs showing cefoperazone and vancomycin administration to IL10 '~ C57BL/6 mice prior to
or during infection with H. hepaticus. (A) Cefoperazone administration. (B) Vancomycin administration. Scales represent the Morisita-Horn index

describing dissimilarity distance among communities.

remaining portions of cecum were processed for hist-
ology by removing luminal contents before washing with
PBS, and placing in tissue cassettes. Cassettes were then
submerged in 10% neutral buffered formalin for 24 h
and transferred to a 70% ethanol solution prior to pro-
cessing for paraffin embedding and sectioning at 5 mi-
crons, and staining with H & E.

Stained slides were blinded and scored. The following
scoring system was used: 0, no significant inflammation;
1, small multifocal lamina proprial or transepithelial
leukocyte aggregates; 2, coalescing lamina proprial
leukocyte aggregates, may have submucosal involvement;
3, frequent coalescing leukocyte aggregates with sub-
mucosal involvement, may have follicle formation; 3.5,
strong submucosal component, infrequent extension to
muscularis externa or mesocolon; 4, diffuse or regionally
extensive transmural involvement.

DNA extraction

Genomic DNA was extracted from tissue using the
MagNA Pure” system and the Nucleic Acid Extraction
Kit I (Roche, Indianapolis, IN, USA) according to the
manufacturer’s directions. Briefly, tissue samples were
incubated in lysis buffer and proteinase K at 56°C, before
being placed in the MagNA Pure” Compact machine for
purification of DNA. Resulting DNA was then used in
preparation of clone libraries and quantitative PCR
(qPCR).

Clone library construction

PCR targeting the 16S rRNA-encoding gene was
performed as previously described in Young et al. [27].
PCR reactions were prepared using broad-range primers,
(8 F, 5-AGAGTTTGATCCTGGCTCAG-3'; 1492R, 5'-
GGTTACCTTGTTACGACTT-3'). Approximately 100
ng/pl of DNA extracted from cecal tissue samples were
added to each PCR reaction. Each 25 pl PCR mixture
contained 20 pmol of each primer, 200 pM of each
deoxynucleoside triphosphate, and 1.5 U of Taq DNA
polymerase in a final concentration of 10 mM Tris—HCI,
50 mM KCl, and 1.5 mM MgCl, (illustra PuReTaq™
Ready To Go PCR™ beads; Amersham Pharmacia Bio-
tech, Piscataway, NJ, USA). Cycling conditions included
20 cycles of 30 seconds at 94°C, 45 seconds at 54°C, and
45 seconds at 72°C. PCR products were visualized by
agarose gel electrophoresis. GE illustra™ Microspin™ S-
400 HR columns were used to purify amplicons (GFX,
GE Healthcare, Piscataway, NJ, USA) as directed by the
manufacturer. Purified PCR products were ligated into

the TOPO 4° vector (Invitrogen K4575-01, Carlsbad,
CA, USA) according to the manufacturer’s specifica-
tions, and transformed into Escherichia coli TOP10 cells.
Clones were grown overnight at 37°C in Luria Broth
(LB) amended with carbenicillin (50 pg/ml)). A total of
3,958 clones were sequenced, with an average of 329
clones per treatment group (detailed in Figure 2).

Vector-specific primers (M13F, 5-CAGTCACGAC
GTTGTAAAACGACGGC-3; and MI3R, 5-CAGGAA
ACAGCTATGACCATG-3") were used to screen for
clones containing the appropriately sized inserts and to
amplify inserts for sequencing. Partial 16S rRNA gene
sequences were generated using primer 8 F, at the Se-
quencing Core at the University of Michigan. Raw se-
quence data were processed through an automated
information pipeline available through the Ribosomal
Database Project (RDP) website (http://rdp.cme.msu.
edu/). Distance matrices containing data from each li-
brary were calculated from alignments generated by the
RDP aligner [28]. The program, mothur [29], was used
to assign sequences to operational taxonomic units
(OTUs) based on values in the distance matrices. Ana-
lyses were done using a 95% sequence similarity to de-
note genus level [29], and 97% for species level
EstimateS [30] and mothur were used to calculate eco-
logical measures from the distance matrices. The inverse
Simpson diversity index was used to indicate diversity, a
measure of richness and evenness. The Morisita-Horn
index was used to measure structural similarity among
samples, taking into account both abundance and mem-
bership of the community. Dendrograms were generated
using the Mega3 program, and the parsimony test from
the mothur suite of programs was used to denote signifi-
cant differences between treatment groups [29,31]. Add-
itionally, taxonomic assignments were determined using
Classifier through the RDP website (80% confidence
cutoff).

gPCR analysis of microbial communities

The quantity of 16S rRNA operons in the sam-
ples relative to a single-copy host gene was measured
using a primer/probe set that targets a broad range
of rRNA-encoding gene sequences (forward primer
(5'-TCCTACGGGAGGCAGCAGT-3"); reverse primer
(5'- GGACTACCAGGGTATCTAATCCTGTT-3'); and
probe (5'-(6-FAM)- CGTATTACCGCGGCTGCTGG
CAC-(TAMRA)-3")) [32]. A primer/probe set targeting
a 264-bp portion of the TNF alpha gene was used as a ref-
erence using 200 nanomoles of the forward (TNFo_mu_se;
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Figure 2 H. hepaticus triggered inflammation in conventionally raised IL10~~ C57BL/6 mice compared to germfree counterparts.
Representative histologic sections of mouse cecum are depicted. (A) H. hepaticus-uninfected conventionally raised mice appear normal. (B) H.
hepaticus-infected conventional section shows edema, hyperplasia and inflammatory infiltrate. (C) H. hepaticus-uninfected germfree control, and
(D) H. hepaticus-infected germfree cecum sections are both normal, with few signs of inflammation. (E) Quantification of indicators of pathology
showing significant inflammation only in histologic sections from H. hepaticus-infected conventionally raised mice. *Statistically significant
changes (P <0.05).

5"-GGCTTTCCGAATTCACTGGAG-3") and reverse
primers (TNFa_mu_as; 5'- CCCCGGCCTTCCAAAT
AAA-3’), and 100 nanomoles of the probe (TNFa_
mu_probe; 5'-(Cy5)-ATGTCCATTCCTGAGTTCTGC
AAAGGGA-(Iowa Black RQ™)-3") [33]. The reaction
mix consisted of LightCycler® 480 Probes Master reac-
tion mix (Roche) at 1 x concentration, and appropriate
primer/probe pair. Amplification of each gene was
done under separate run conditions: the 16S rRNA
gene target had an activation step of 50°C for 2 minutes
followed by 95°C for 10 minutes. Forty-five cycles were
done at 95°C for 15 s and 60°C for 1 minute before holding
at 4°C. The TNF reference gene was also amplified with an
activation step of 50°C for 2 minutes followed by 95°C for

10 minutes. Forty-fives cycles of 95°C for 20 s and 64°C for
30 s were done before holding at 4°C. Calculations of 2-AA
cycle threshold (Ct) were made to compare changes in the
amount of 16S rRNA operons from samples between treat-
ment groups.

H. hepaticus was quantified as describes by Ge et al.
[34]. Briefly, the H. hepaticus cdtB gene was amplified
using a primer/probe set of 400 nM forward primer (5'-
CCGCAAATTGCAGCAATACTT-3"), reverse primer
(5'-CACCTGTGCATTTTGGACGA-3’), and 100 nM
probe (5'-[FAM]-AATATACGCGCACACCTCTCATCT
GACCAT-(TAMRA)-3’). The reaction mix consisted of
LightCycler® 480 Probes Master reaction mix (Roche) at
1X concentration, and run conditions of 50°C for 2 min,
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95°C for 10 min, and then 40 to 45 repeats of 95°C for
15 s and 60°C for 60 s. The TNF reference gene was also
amplified, as described above, for 224" calculations.

RNA extraction and determination for cytokine

expression

Total nucleic acids were extracted using MagNA Pure®
(Roche) and the RNA Extraction Kit as directed by the
manufacturer’s protocol. Total RNA was then isolated
from three mice per treatment group by treating total nu-
cleic acids with RNase-free, recombinant DNasel, (Roche,
Indianapolis, IN, USA), and quality checked via PCR for
DNA contamination. The High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, Foster City,
CA, USA) was used to transcribe total RNA to cDNA.
Cytokine expression was determined by applying the
cDNA to a custom Superarray® (Frederick, MD, USA)
PCR plate which contained gene-specific primers
designed for the following targets [35]: IFNy, IL-12a,
TNFa, IL-4, IL-13, IL-5, TGEp, IL-6, forkhead box (FOX)
p3, IL-17a, IL-23a, CXCL2, CCL5, nitric oxide synthase
(NOS)2, arginase (Arg)1, chitinase (Chi)3/4, prostaglandin-
endoperoxide synthase (PTGS)2, indoleamine-pyrrole
2,3-dioxygenase (INDO), glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) (used in normalization calcula-
tions), a reverse-transcription control and a genomic DNA
control. Quantification was done with LightCycler® 480
SYBR Green I Master and analyzed on a LightCycler® 480
system (Roche Diagnostics, Indianapolis, IN, USA) as di-
rected by the manufacturer’s protocol, with the following
program: 95°C activation for 10 minutes; 40 cycles of 95°C

Page 6 of 15

denaturation for 15 s, and 60°C annealing for 1 minute.
Resulting threshold values were analyzed by calculating the
2-AACt values, using GAPDH as the reference, to calculate
fold regulation compared to the antibiotic untreated,
H. hepaticus uninfected control [36-38].

Statistical analysis

Statistical significance in the histological scores were deter-
mined using the non-parametric Kruskal-Wallis test. Com-
parisons of specific microbial taxa was accomplished by
Fisher’s exact test using Metastats, with a false discovery rate
correction to provide a prioritized list of microbial abun-
dances among the treatment groups [39]. Differences in
clustering within dendrograms were determined using the
parsimony test function in mothur [29]. Probability values
less than 0.05 were considered significantly different.

Results
Germfree IL10™~ C57BL/6 mice infected with H. hepaticus
do not develop colitis
To confirm whether resident microbiota have an import-
ant role in the development of disease in IL107/~
C57BL/6 mice, germfree animals were mono-associated
with H. hepaticus. The relative levels of H. hepaticus
were measured via qPCR and indicated that the organ-
ism burden in germfree mice was not significantly
different from that encountered in conventional mice
(-2.94 + 1.90 fold change, P = 0.446) (Table 1).
Significantly less inflammation was detected in ceca of
germfree mice infected with H. hepaticus compared to
infected conventional animals (Figure 2). This result is

Table 1 Quantitative PCR measures of fold changes in the total bacterial and in H. hepaticus loads from genomic DNA

extracted from cecum

Treatment

Fold change + SD

H. hepaticus infected

Total bacterial load H. hepaticus load

Cefoperazone (cef) treatment

Control 1 (no cef) No calibrator N/A

Control 2 (1 day recovery from cef) No —3,333.00 + 0.34 N/A

Control 3 (6 wk recovery from cef) No 216 +1.18 N/A
Community 1 (no cef) Yes 125+ 075 calibrator
Community 2 (1 day recovery from cef before infection) Yes 448 + 255 -112+279
Community 3 (6 wk recovery from cef before infection) Yes -135+0.71 394 + 6.30
Vancomycin (vanc) treatment

Control 4 (no vanc) No 117 £ 068 N/A

Control 5 (vanc) No 195+ 141 N/A

Control 6 (vanc + 11 days recovery) No 141 £ 091 N/A
Community 4 (no vanc) Yes 190 + 191 1.04 + 030
Community 5 (vanc) Yes 198 + 1.62 -159 £ 052
Community 6 (vanc + 11 days recovery) Yes 1.14 + 1.16 1.28 + 0.56
Germfree mice infected with H. hepaticus N/A —2.94 + 190

The fold change reported (2 -AACt) is normalized to TNFa and is in comparison to the samples indicated as calibrator in the respective columns. N/A,

not applicable.
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in agreement with a previous study [21]. Uninfected
IL10~~ C57BL/6 mice, from our breeding colony, raised
in specific pathogen-free conditions did not develop in-
flammation that was significantly different from conven-
tionally raised wild-type animals.

Cefoperazone alters total bacterial load, but not H.
hepaticus-induced disease severity

To determine the effect of microbiome population size and
composition on experimental colitis, we altered the commu-
nity by reducing bacterial loads (via cefoperazone), prior to
H. hepaticus infection. This treatment resulted in a more
than 1,000-fold decrease in bacterial load one day after end-
ing cefoperazone administration (Table 1), without altering
the community structure. After cefoperazone treatment,
mice were administered untreated water and allowed to re-
cover for one day, or for six weeks before infecting with
H. hepaticus. Four weeks post infection, all communities
had similar total bacterial loads compared to control animals
that did not receive cefoperazone nor were infected with
H. hepaticus (P = 0.224), indicating that the communities
had recovered during the four weeks. Communities in
infected mice contained similar amounts of H. hepaticus
regardless of cefoperazone treatment or recovery period
(P = 0.246) (Table 1). It is noteworthy that there was an
exception, with one infected mouse having 20-fold lower
detectable H. hepaticus.

Clone libraries were constructed from three individual
mice from each treatment group (Table 2). OTU-based
analyses indicate that the communities in H. hepaticus-
infected mice were significantly different from those in
mice that did not harbor H. hepaticus (P <0.001). This
difference was due to the presence of H. hepaticus, as no
statistically significant differences were found among
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communities when H. hepaticus sequences were masked.
In communities of infected mice, the relative abundance
of H. hepaticus varied between 25 and 70% (Figure 3).
This difference in relative abundance of H. hepaticus
was independent of cefoperazone treatment. The outlier
mouse that contained low numbers of H. hepaticus, as
determined via qPCR, contained a community that pro-
duced only two of ninety clones that affiliated with
Helicobacter. This supports the finding that H. hepaticus
did not dominate this community as was typically seen
in the other mice in this treatment group.

There were reductions in the genus Clostridia (P =
0.032) and family Lachnospiraceae (P = 0.016) in com-
munities infected with H. hepaticus after only one day
off cefoperazone compared to those infected after six
weeks of recovery. This indicates differences in recovery
dynamics in the two treatment groups.

To investigate whether initially low bacterial loads would
affect H. hepaticus-induced disease in IL107~ C57BL/6
mice, cefoperazone was administered to mice before
infecting with the bacterium. Cecal sections were scored,
and revealed that all animals infected with H. hepaticus
developed inflammation (Figure 4). There was no
correlation between disease scores and relative abundance
of H. hepaticus (Spearman’s rank correlation coefficient
P = 0.242). Despite reduction in initial microbial loads of
cefoperazone-treated communities, disease severity was un-
affected in H. hepaticus-infected mice as compared to
infected mice that were not administered antibiotics.

Vancomycin alters community structures, but not H.
hepaticus-induced disease severity

In order to investigate the effects of altering community
structure on the development of inflammation, vancomycin

Table 2 Clones generated from genomic DNA extracted from cecum samples

Treatment

H. hepaticus infected Clones/sample (number)

Cefoperazone (cef) treatment

Control 1 (no cef) No 93, 54,93 (3)

Control 2 (1 day recovery from cef) No 90, 75, 92 (3)

Control 3 (6 wk recovery from cef) No 95, 90 (2)

Community 1 (no cef) Yes 83,92, 86 (3)
Community 2 (1 day recovery from cef before infection) Yes 150, 163, 76 (3)
Community 3 (6 wk recovery from cef before infection) Yes 93,72, 58 (3)
Vancomycin (vanc) treatment

Control 4 (no vanc) No 95, 95, 95 (3)

Control 5 (vanc) No 94,84, 94 (3)

Control 6 (vanc + 11 days recovery) No 95, 93,92 (3)
Community 4 (no vanc) Yes 89, 89, 92, 93, 94 (5)
Community 5 (vanc) Yes 94, 95, 93, 90, 92, 94 (6)
Community 6 (vanc + 11 days recovery) Yes 94,91, 92,93, 91, 90, 96 (7)
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was administered to mice prior to H. hepaticus infection.
Through clone library construction, we found that
vancomycin-treated communities were significantly altered
and these changes persisted even after antibiotic administra-
tion ceased. Although bacterial load measured by qPCR,
targeting the 16S rRNA-encoding gene, was not altered by
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vancomycin treatment (Table 1), this antibiotic caused a de-
crease in overall microbial diversity (an inverse Simpson’s
index value of 6.57 (+ 1.92) compared to 34.6 (+ 8.22) for
control communities) and a slight, but not significant, in-
crease in relative abundance of members of the
Proteobacteria, namely E.coli/Shigella (not detected in any
control communities, detected in all vancomycin communi-
ties at 14.9 to 54.8%, P = 0.06; Figure 5). These results indi-
cate that vancomycin alone causes changes in the microbial
community.

Post-infection studies revealed that mice that received
vancomycin both before and after infection with H
hepaticus contained a slightly reduced, but not significantly
different burden of H. hepaticus compared to mice that did
not receive antibiotics (P = 0.06). Additionally, mice that re-
ceived vancomycin before and after infection contained
fewer H. hepaticus than mice that had been administered
vancomycin previous to H. hepaticus infection, but not after
(P = 0.009). There was no difference between the H.
hepaticus loads in mice that were infected but did not re-
ceive vancomycin and mice that were treated with vanco-
mycin only prior to infection (P = 0.28).

Structurally, the microbial communities in mice that were
treated with vancomycin prior to infection were more simi-
lar to communities in mice that were infected without
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receiving antibiotics than those in mice that received vanco-
mycin before and after infection (Figure 5). Compared to
the communities of infected mice that were not exposed to
vancomycin, infected mice that were administered
vancomycin continuously contained communities with de-
creased population sizes of Oscillibacter (P = 0.028),
Coprococcus (P = 0.008), Dorea (P = 0.029) and unclassified
members of the families Lachnospiraceae (P = 0.022), and
Porphyromonadaceae (P = 0.008). Additionally, the commu-
nities in infected mice that were continuously ad-
ministered vancomycin exhibited increases in E. coli/Shigella
(P = 0.001), Akkermansia (P = 0.001) and Anaeroplasma
(P = 0.001). Taxonomic analyses also indicated that commu-
nities in mice that received vancomycin only before infec-
tion exhibited a significant increase in Coprococcus
(P = 0.006) and Dorea (P = 0.011), as well as unclassified
members of the Lachnospiraceae (P <0.001) and
Ruminococcaceae (P = 0.020), compared to communities in

infected mice treated with vancomycin continuously. Fur-
thermore, the communities that were exposed to vanco-
mycin prior to infection contained decreased populations of
E. coli/Shigella (P = 0.001) compared to communities in
mice that were infected and maintained on vancomycin
treatment (Figure 5).

To investigate the effects of vancomycin-induced changes
to the microbiota on disease manifestation, cecal sections of
vancomycin-treated mice were examined and scored for
inflammation and hyperplasia. All animals infected with
H. hepaticus developed similar levels of histopathologic dis-
ease, regardless of the shifts in the microbial community
structures (Figure 6).

Infection with H. hepaticus and antibiotic administration
induce host responses

Although severity of inflammation was not altered by
changes in initial bacterial load (via cefoperazone
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treatment) or shifts in resident community structure (via
vancomycin treatment), we questioned whether differen-
tial immunologic changes were occurring within the host
at a finer resolution. To investigate possible host effects,
we measured changes in expression of host mediators
in animals that were treated with antibiotics prior to
H. hepaticus infection and compared this to the host re-
sponses in animals that did not receive antibiotics prior
to H. hepaticus challenge. As a control, we also mea-
sured the host responses in animals that received the
antibiotic treatments but were never challenged with
H. hepaticus.

In mice that were challenged with H. hepaticus follow-
ing cefoperazone treatment, there was a significant
upregulation of several host mediators including TNFaq,
CCL5, CCL2, Nos2 and Argl, or downregulation in
Chi3/4 and IL-23a (Figure 7). Even when mice were
allowed to recover for 6 weeks after cefoperazone treat-
ment ended, expression of some mediators remained sig-
nificantly different from H. hepaticus-infected mice that
did not receive cefoperazone, indicating that treatment
with the antibiotic is associated with an altered immune
response in the presence of this bacterium, although
these changes did not affect the degree of histopatho-
logic disease. In addition, vancomycin administration
resulted in significant upregulation of several host medi-
ators including INFy, IL-12a, IL-17a and Chi3/4; and sig-
nificant downregulation of other genes such as CXCL2
and CCL2 (Figure 7). The changes following vancomycin
were not completely overlapping with those seen in
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cefoperazone-treated mice and in some cases were op-
posite those seen in cefoperazone-treated animals. These
findings indicate that antibiotic treatment can have long-
term effects on host response, and different host re-
sponses are elicited by different antibiotic-induced
changes, in communities containing H. hepaticus. In ani-
mals that received antibiotics alone, without subsequent
H. hepaticus infection, cefoperazone induced changes in
the expression of several host response genes (Table 3),
but these changes alone did not explain the findings in
infected mice. Only the expression of Ccl2 was minim-
ally increased in vancomycin-treated animals. Larger
numbers of changes were seen in cefoperazone-treated
animals, and the greatest changes were seen in animals
that only recovered from cefoperazone for one day.

Discussion

Intestinal microbes have been credited with many bene-
ficial functions as demonstrated by deficiencies in host
development in animals raised in germfree conditions
[40-43]. Collapse of the delicate balance between host
and microbiota has been implicated in the onset of dis-
eases such as IBD, a condition characterized by inappro-
priate host immune responses. IBD is also associated
with an altered microbiota, often exhibited by patients
as a reduction in diversity of the intestinal microbial
community compared to healthy participants [44-47].
Additionally, some investigators noted a relative increase
in particular bacterial groups such as Bacteriodetes in
patients with IBD compared to healthy counterparts
[48,49]. Such investigative studies have been important
in characterizing the microbial community in the pres-
ence of disease, however, findings are difficult to inter-
pret since the extent of the microbial community
changes induced by host immune response is unknown.
In our study, the microbial communities are altered be-
fore the induction of disease, thereby allowing us to as-
certain the effects of community changes on disease
development. There is also evidence that the microbial
community is important in persistence of bowel inflam-
mation, indicated by antibiotic studies showing amelior-
ation of inflammation after treatment [50,51]. Apart
from this, we have little insight into the role of the
microbiota in IBD. We therefore used a murine model
of IBD, H. Hepaticus-infected 1L10~~ C57BL/6 mice, to
further investigate how changes in the microbial com-
munity are associated with disease. We accomplished
this by testing whether the severity of disease is affected
by different microbial community structures.

H. hepaticus is sometimes found as part of the resident
intestinal communities of mice [52-54], and can induce
disease in some cases. H. hepaticus can trigger
inflammation in immuno-compromised mice such as
Rag™", IL-10”" and SCID [22,55-57]. Furthermore, H.
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hepaticus-induced inflammation can be ameliorated by
the use of antibiotics [58,59]. Also, Helicobacter causes
disease in IL10™'~ C57BL/6 mice only in the presence of
resident microbes, as seen here and by others [21], indi-
cating an essential role of the indigenous community to-
wards inducing inflammation in this model. We also
found that H. hepaticus colonizes germfree mice with a
similar burden as seen in conventionally raised animals.
This indicates that H. hepaticus may have a particular
niche that is unaffected by the presence of resident
microbes.

Although other groups have shown the development
of spontaneous disease in IL10~'~ mice in the absence of
H. hepaticus [11,21], we observed that less than 5% of
mice in our breeding colony developed disease over a 2-
year period [19], suggesting that disease can be associ-
ated with several microbial structures. These data
collectively suggest that certain microbiota are important
drivers of inflammation in IBD, particularly in this
model, making it an appropriate system in which to

study the effects of an altered microbial community
structure on severity of inflammation.

Others have shown that when mice were infected with
H. hepaticus, and were mono-associated with Lactobacil-
lus reuteri, they developed more inflammation than H.
hepaticus uninfected animals, emphasizing the need for
microbial interaction in disease onset [60]. To investi-
gate the extent of the role of the microbiota, we infected
conventional IL10~~ C57BL/6 mice, and mice treated
with vancomycin and cefoperazone with H. hepaticus
and assessed whether there were differences in disease
severity. Two antibiotics, vancomycin and cefoperazone,
were used to alter the microbial communities so that the
effects of different community structures could be
assessed in this genetically susceptible host. Each drug
causes different changes in the gut community: vanco-
mycin, a drug that targets the Gram-positive bacteria,
caused shifts in the microbial structure without reducing
the bacterial load, while cefoperazone, a broad-spectrum
antibiotic, reduced the total bacterial load by over 1,000-
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Table 3 Changes of cytokine gene expression in antibiotic treated, Helicobacter hepaticus uninfected mice compared to

untreated, uninfected controls

Vancomycin One-day recovery from cefoperazone Six-week recovery from cefoperazone

Cytokines H. hepaticus uninfected SD H. hepaticus uninfected SD H. hepaticus uninfected SD
INFg 113 0.66 1.64 1.31 -3.78 1.10%
IL12a 113 0.83 8.88 064* —-3.58 1.10%
TNF 1.28 0.21 1.56 0.27 1.64 6.12
L4 1.13 0.58 1.96 1.07 -16 1.1
IL13 1.60 021 925 083* 151 1.1
IL5 1.13 058 —2148 136% —16 1.1
TGF -1.05 0.59 -51.09 136 -329 1.40%
IL6 113 0.58 -2148 136 -16 1.1
FOXp3 113 0.58 -2148 136 -16 1.1
7a 1.68 1.16 —4.98 1.28% =172 1.1
123 —-1.05 048 492 062* —-16 1.1
Cxcl2 2.26 1.15 =576 235%  -16 1.1
Ccl5 -1.01 0.66 -4.07 0.54* -584 7.73%
Ccl2 3.15 0.87* 961 035% -102 1.10*
NOS2 294 130  —2.23 003 -393 3.34%
ARG1 113 0.58 641 0* -1.62 0.81
Chi3/4 113 1.19 16.45 026 —13.69 1.10%
PTGS2 -1.05 0.93 122 0.01 246 495
INDO 1.60 081  —26.17 052% —-295 1.1

Results are presented as mean change. *Statistically significant difference. INF, interferon; IL, interleukin; TNF, tumor necrosis factor; TGF, transforming growth
factor; Foxp3, Forkhead box protein 3; NOS, nitric oxide synthase; Chi, chitinase; PTGS, prostaglandin-endoperoxide synthase; INDO, indoleamine-pyrrole

2,3-dioxygenase.

fold, as we have shown here and previously [23,24]. With
vancomycin, these shifts were mainly due to the reduc-
tion in Firmicutes, a phylum that typically comprises
more than 50% of human gut community [27,61].
After a recovery period, communities exposed to vanco-
mycin began to resemble control communities, but
also exhibited lasting effects with a reduction in
Firmicutes and an increase in Proteobacteria. Increases
in Proteobacteria after vancomycin treatment have also
been observed by other investigators [62], and is perhaps
due to the reduction in Gram-positive bacteria, thereby
making formerly occupied niches available to members
of the phylum Proteobacteria. Previously, using 454
pyrosequencing analysis of the microbiota, we showed
that Proteobacteria inhabit the ceca of IL10™/~ C57BL/6
mice [23]. It is likely that they were present in commu-
nities analyzed in the current study, but were below the
limits of detection in clone libraries, a shortcoming
we recognize in the Sanger sequencing used in this
study compared to pyrosequencing techniques. Like
other communities after a recovery period [27,63],
cefoperazone-treated communities began to resemble
communities in untreated controls, demonstrating resili-
ence, even after a significant reduction in bacterial loads
immediately after treatment.

In non-germfree mice, disease occurrence was inde-
pendent of community structure with the only common
significant association between disease and community
change being the presence of H. hepaticus. Even then,
the relative abundance of this bacterium did not correl-
ate with disease score. This finding also resonates with
the outcome that severe disease occurs even at very low
colonization loads of H. hepaticus, just as it does with
relatively high colonization levels. The most significant
finding of this work is that the microbiota are essential
for development of inflammation, and markedly different
communities can facilitate development of IBD. This
finding suggests that several non-H. hepaticus microbial
members are involved in disease development, and H.
hepaticus is the major driver of inflammation in this
model.

The host immune response to H. hepaticus, such as
increase in arginase and NOS2, observed in mice admin-
istered cefoperazone, was consistent with work by others
which revealed increases in iNOS [64]. These enzymes
are important in wound healing. Alterations in the mi-
crobial community by antibiotic treatment have been as-
sociated with altered immune responses [65,66], and
since cefoperazone treatment is known to significantly
reduce bacterial load in the intestine, we decided to
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further investigate whether changes in host immune me-
diators were altered by the treatment regime. We discov-
ered that after recovery from cefoperazone treatment,
and H. hepaticus infection, TNFa increased significantly
while IFNy decreased, which may be a compensatory act
for the lack of IFNy response in IL10~’~ mice [17]. Also,
the decrease in Chi3/4 expression in cefoperazone-
treated mice may be a response triggered by the de-
crease in microbial load after antibiotic treatment.
Chitinase is highly expressed in chemically induced IBD
and has a role in enhanced bacterial adhesion [67]. With
lower bacterial loads, chitinase expression may also be
reduced through lack of microbial stimulation. Likewise,
the increases in certain mediators such as TNFa and
chemokines CCL5 and CCL2 seen in the cefoperazone-
treated mice, compared to untreated mice infected with
H. hepaticus, may be due to changes in the microbial
stimuli due to shifts in the microbiota after antibiotic
treatment [68]. Vancomycin-treated, H. hepaticus-
infected mice showed contrasting changes in some of
the host mediators, compared to changes seen after
cefoperazone administration, such as upregulation in
chi3/4. Since vancomycin does not reduce total bacterial
load in treated mice, unlike cefoperazone, chitinase ac-
tivity may be up-regulated to facilitate bacterial adhesion
for microbes present.

Conclusion

The actual mechanism whereby the Helicobacter inter-
acts with the microbiota during inflammation is yet to
be determined. It is possible that the resident microbes
prime the host immune system so that a response can
be generated to Helicobacter, or interactions with other
microbes are needed for H. hepaticus to trigger a host
response. The microbiota may contribute to disease in
multiple ways, making studies of potential patterns in
the community important in unraveling the complexities
of IBD. Understanding changes in the microbiota that
are associated with IBD, can perhaps lead to novel ther-
apies or the development of prognostic tools for early
detection of this debilitating condition.
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