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Greater insulin sensitivity in calorie restricted rats
occurs with unaltered circulating levels of several
important myokines and cytokines
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Abstract

Calorie restriction (CR; ~60% of ad libitum, AL intake) has been associated with substantial alterations in body
composition and insulin sensitivity. Recently, several proteins that are secreted by nontraditional endocrine tissues,
including skeletal muscle and other tissues, have been discovered to modulate energy metabolism, body
composition, and insulin sensitivity. The aim of this study was to characterize the influence of CR by rats on plasma
levels of six of these newly recognized metabolic hormones (BDNF, FGF21, IL-1β, myonectin, myostatin, and irisin).
Body composition of 9-month old male Fischer-344/Brown Norway rats (AL and CR groups) was determined by
nuclear magnetic resonance. Blood sampled from the carotid artery of unanesthetized rats was used to measure
concentrations of glucose and plasma proteins. As expected, CR versus AL rats had significantly altered body
composition (reduced percent fat mass, increased percent lean mass) and significantly improved insulin sensitivity
(based on the homeostasis model assessment-estimated insulin resistance index). Also consistent with previous
reports, CR compared to AL rats had significantly greater plasma levels of adiponectin and corticosterone. However,
there were no significant diet-related differences in plasma levels of BDNF, FGF21, IL-1β, myonectin, myostatin, or
irisin. In conclusion, these results indicate that alterations in plasma concentration of these six secreted proteins are
not essential for the CR-related improvement in insulin sensitivity in rats.
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Findings
Moderate calorie restriction (CR; ~60% of ad libitum,
AL, food consumption) has well-known effects on body
composition, glucose homeostasis, plasma insulin con-
centration, insulin sensitivity, and other aspects of meta-
bolic health in many species, including rats [1-3], mice
[4,5], non-human primates [6], and humans [7]. Several
circulating proteins have been recently discovered and
found to modulate energy metabolism and insulin sensi-
tivity. It seems possible that the healthful metabolic ben-
efits of CR may be, at least in part, related to alterations
in the plasma levels of some of these proteins. For ex-
ample, the plasma concentration of adiponectin, an

insulin-sensitizing adipokine, has been reported to be
increased with CR in rats [1], mice [8] and humans [9].
We were especially interested in CR effects on plasma

proteins that are secreted into the circulation by skeletal
muscle (i.e., myokines) because insulin signaling in this
tissue is highly responsive to CR [10]. CR induces
enhanced insulin sensitivity in skeletal muscle [11,12]
and skeletal muscle accounts for the largest portion of
insulin-stimulated glucose disposal [13]. Myonectin (also
known as C1q/TNF-related protein 15; CTRP15) [14],
and irisin (recognized as a product of proteolytic cleav-
age of FNDC5) [15] are newly discovered myokines with
metabolic functions. Circulating myonectin concentra-
tion in normal mice was reported to be responsive to
fasting and refeeding, and treating these mice with re-
combinant myonectin lowered circulating non-esterified
fatty acids levels [14]. Irisin was reported to induce a
program of brown fat-like development in white adipose
cells and to oppose high fat diet-induced obesity and
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insulin resistance in mice [15]. Myostatin is a myokine
that is best known for its role in regulating skeletal
muscle mass [16], but it can also influence metabolism
and insulin sensitivity [17]. To the best of our know-
ledge, earlier studies have not assessed CR effects on
any of these three myokines. A number of other plasma
proteins that have been implicated as potential regula-
tors of body composition and/or energy metabolism are
expressed and apparently secreted by skeletal muscle
and various other tissues. Several of these proteins that
have not been previously assessed in the context of
CR include brain-derived neurotrophic factor (BDNF)
[18], fibroblast growth factor 21 (FGF21) [19], and
interleukin-1β (IL-1β) [20].
The goal of the current study was to characterize the

effects of moderate CR on plasma levels of myonectin,
myostatin, irisin, BDNF, FGF21, and IL-1β in 9 month-old
rats. These proteins were selected for study because they
are newly discovered plasma myokines and/or cytokines
that were recently recognized to have metabolic functions,
and they have not been previously studied with CR. Ac-
cordingly, it seemed possible that they might play a role in
the CR phenotype (e.g., increased insulin sensitivity). We
also assessed other parameters that have been previously
documented to be responsive to CR-induced changes (body
composition, homeostasis model assessment-estimated
insulin resistance [HOMA-IR] index, and plasma concen-
trations of insulin, C-peptide, adiponectin and cortico-
sterone) [1,10,21-24]. We hypothesized that CR-related
changes in these parameters would be accompanied by
altered plasma values of one or more of these six proteins
that have been recently linked to modulation of metabolism
and insulin action.
Procedures for animal care were approved by the Uni-

versity of Michigan Committee on Use and Care of Ani-
mals. Male Fischer-344 x Brown Norway, F1 generation
rats were obtained at 3 months of age from Harlan
(Indianapolis, IN). Rats were housed individually in
shoebox cages and maintained on a 12:12 h light–dark
cycle (lights out at 17:00 h). After familiarization in the
Ann Arbor facility, rats were assigned to either AL or
CR groups. At baseline (~ 14 weeks-old) prior to initiat-
ing the dietary protocol (CR group received 60–65% of
AL intake daily for approximately 6 months as previ-
ously described [10]), the body mass of the groups were
not significantly different (318.1 ± 3.3 g for AL and
315.7 ± 3.4 g for CR at baseline). When rats were 9
months of age, animals from both AL and CR groups
were catheterized for blood collection as previously
described [10]. Seven days after catheter placement, food
was removed from the cages of all rats between 0700
and 0800 h, and body composition (body fat mass, lean
mass, and free fluid) was measured in some of the rats
using an NMR-based analyzer (Minspec LF90II, Bruker

Optics; Billerica, MA). At 1200–1300 h, blood was
collected from conscious rats and an aliquot was imme-
diately used for glucose analysis by a glucometer (Accu-
Chek Aviva, Roche, Indianapolis, IN). Additional blood
was collected using heparinized capillary tubes (#22-
362-566; Fisher Scientific, Hanover Park, IL). Blood was
transferred to microcentrifuge tubes and centrifuged (1
min at 1500 g), with the resultant plasma fraction col-
lected and stored at -80°C until analyzed.
ELISA kits (EMD Millipore, Billerica, MA) were used

to measure plasma levels of insulin (#EZRMI-13K), adi-
ponectin (#EZRADP-26K), BDNF (#CYT306), and
FGF21 (#EZRMFGF21-26K). Multiplex bead kits (EMD
Millipore) were used to measure C-peptide (#RMHMAG-
84K), corticosterone (#RSH69K) and IL-1β (#RCYTOMAG-
80K). Reagents and apparatus for SDS-PAGE and immuno-
blotting were from Bio-Rad Laboratories (Hercules, CA).
Anti-FNDC5 antibody (#ab93373) was from Abcam
(Cambridge, MA). Anti-myostatin antibody (#AB3239)
was from EMD Millipore. Anti-rabbit IgG-horseradish
peroxide conjugate (#7074) was from Cell Signaling
Technology (Danvers, MA). Anti-myonectin antibody
was a gift from Dr. G. William Wong at Johns Hop-
kins University School of Medicine. Myonectin and
myostatin in plasma were determined by Western
immunoblotting procedure as previously described
[10]. Briefly, equal amounts of protein were separated
by SDS-PAGE and transferred to nitrocellulose mem-
branes. Equal loading was determined by the Mem-
code reversible protein stain kit for nitrocellulose
membranes (PI-24580, Fisher). Plasma samples used for
irisin analysis were prepared based on the procedures
described by Bostrom et al. [15] including the removal
of albumin/IgG (#122642; EMD Millipore) and deglyco-
sylation using PNGase F (#P0704S; New England Bio-
labs, Ipswich, MA) prior to immunoblotting using the
FNDC5 antibody. Immunoreactive proteins were quan-
tified by densitometry (AlphaEase FC, Alpha Innotech,
San Leandro, CA). Values are normalized to an average

Table 1 Body mass and composition

AL CR

Body Mass (g) 420.4 ± 19.3 263.5 ± 6.7*

Fat Mass (g) 65.2 ± 4.4 19.0 ± 1.9*

Lean Mass (g) 293.0 ± 10.3 205.5 ± 4.6*

Free Fluid (g) 31.9 ± 1.2 20.9 ± 0.5*

Fat Mass (%) 15.4 ± 0.5 7.1 ± 0.6*

Lean Mass (%) 70.0 ± 1.4 78.1 ± 0.4*

Free Fluid (%) 7.6 ± 0.2 7.9 ± 0.1

*Indicates a statistically significant difference (P ≤ 0.05) between the AL and
CR groups as determined by unpaired Student’s t-test. Values are mean ± SEM
for n=8-12 per treatment group. Body composition (fat, lean and free fluid
masses) determined by nuclear magnetic resonance are expressed as both
absolute (g, grams) and relative (%) values.
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of the AL samples on the same blot. The HOMA-IR
index [glucose (mg·dl-1) x insulin (μU·ml-1)/405] was
calculated [25]. Unpaired Student’s t-tests were used for
comparisons between AL and CR groups (SigmaPlot
version 11.0; Systat Software, San Jose, CA). A P value
≤ 0.05 was accepted as statistically significant. Data are
presented as mean ± SEM.
CR rats compared to AL rats had significantly (P ≤

0.05) lower body mass and absolute values (g) for fat
mass, lean mass and free fluids (Table 1). When body
composition results were expressed as relative values,
CR rats versus AL rats had significantly (P ≤ 0.05) lower
body fat percentage and higher lean body mass percent-
age with unaltered free fluid percentage. There were
significant (P ≤ 0.05) decreases in plasma insulin and
C-peptide levels in the CR compared to AL group

(Table 2). There was no significant difference in gly-
cemia for the AL and CR group (Table 2). The
HOMA-IR index was significantly (P ≤ 0.05) lower for
the CR versus AL group indicating improved insulin
sensitivity in the CR rats (Table 2). There were signifi-
cant (P ≤ 0.05) increases in plasma levels of both adi-
ponectin and corticosterone in the CR versus AL
group (Table 2). There were no significant diet-related
effects on plasma levels of IL-1β, BDNF, FGF-21, myo-
nectin, myostatin, or irisin (Table 2 and Figure 1).
The primary goal of this study was to examine the in-

fluence of CR on the plasma concentrations of six pro-
teins that were recently recognized to have metabolic
functions (BDNF, FGF21, IL-1β, myonectin, myostatin
and irisin) and that had not previously been studied in
the context of CR. The results revealed no significant
differences for any of these plasma proteins in AL com-
pared to CR rats. It is notable that the CR protocol was
accompanied by the expected changes in both body
composition (lower percent fat mass and greater percent
lean mass) and insulin sensitivity (improvement based
on the reduction of the HOMA-IR index). The current
results also confirmed earlier reports of CR-induced ele-
vations in the plasma levels of adiponectin [1] and cor-
ticosterone [23]. Taken together, the data from this study
indicate that alterations in plasma concentrations of
BDNF, FGF21, IL-1β, myonectin, myostatin and irisin
were not essential for the CR-related improvement in in-
sulin sensitivity in rats. These novel results are valuable
because they suggest that other mechanisms account for
CR-induced improvement in insulin sensitivity.
It is important to recognize that the current results do

not eliminate the possibility that one or more of these
plasma proteins may be relevant for some of CR’s

Table 2 Plasma glucose and protein concentrations and
HOMA-IR index

AL CR

Glucose (mg·dL-1) 111.1 ± 2.3 105.9 ± 3.3

Insulin (μU·mL-1) 72.0 ± 10.1 29.5 ± 5.1*

HOMA-IR Index 19.3 ± 3.0 7.8 ± 1.4*

C-peptide (pg·mL-1) 847.3 ± 143.8 321.1 ± 58.2*

Adiponectin (ng·mL-1) 7275.3 ± 437.9 8723.4 ± 541.6*

Corticosterone (ng·mL-1) 113.3 ± 21.7 170.9 ± 26.1*

IL-1β (pg·mL-1) 20.8 ± 3.7 20.5 ± 5.9

BDNF (pg·mL-1) 89.1 ± 19.3 109.4 ± 22.6

FGF21 (pg·mL-1) 208.4 ± 32.6 160.4 ± 36.8

*Indicates a statistically significant difference (P ≤ 0.05) between the AL and
CR groups as determined by unpaired Student’s t-test. Values are mean ± SEM
for n=8-12 per treatment group. HOMA-IR Index; [glucose (mg·dl-1) x insulin
(μU·ml-1)/405].
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Figure 1 Immunoblot analysis of plasma myonectin (42kDa), myostatin (26kDa), and FNDC5 (irisin; 26kDa). Closed bars represent plasma
from ad libitum-fed (AL) rats, and open bars represent plasma from calorie restricted (CR, 60-65% of AL daily intake) rats. Values are mean ± SEM.
n=8-13 per treatment group.
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metabolic effects. It remains possible that CR may alter
their diurnal fluctuations, that CR effects may be loca-
lized to protein concentrations in selected cells or
tissues, or that CR may modify the sensitivity of target-
cells. The current results also do not address the possi-
bility for different outcomes during more brief or severe
CR, in animals of other ages, in females, or in other spe-
cies. Future studies should clarify possible CR effects on
the originating tissues and time-courses for the secretion
of these proteins and determine if the results for CR
found in adult male rats are typical of other populations.
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