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Abstract
Background: We wanted to determine if changes in the expression of serotonin 2A receptor
(5HT2A receptor) gene in the premammillary hypothalamus are associated with changes in
reproductive neuroendocrine status. Thus, we compared 2 groups of ovariectomized-estradiol-
treated ewes that expressed high vs low LH pulsatility in two different paradigms (2 groups per
paradigm): (a) refractoriness (low LH secretion) or not (high LH secretion) to short days in pineal-
intact Ile-de-France ewes (RSD) and (b) endogenous circannual rhythm (ECR) in free-running
pinealectomized Suffolk ewes in the active or inactive stage of their reproductive rhythm.

Results: In RSD ewes, density of 5HT2A receptor mRNA (by in situ hybridization) was significantly
higher in the high LH group (25.3 ± 1.4 vs 21.4 ± 1.5 grains/neuron, P < 0.05) and 3H-Ketanserin
binding (a specific radioligand) of the median part of the premammillary hypothalamus tended to be
higher in the high group (29.1 ± 4.0 vs 24.6 ± 4.2 fmol/mg tissu-equivalent; P < 0.10). In ECR ewes,
density of 5HT2A receptor mRNA and 3H-Ketanserin binding were both significantly higher in the
high LH group (20.8 ± 1.6 vs 17.0 ± 1.5 grains/neuron, P < 0.01, and 19.7 ± 5.0 vs 7.4 ± 3.4 fmol/
mg tissu-equivalent; P < 0.05, respectively).

Conclusions: We conclude that these higher 5HT2A receptor gene expression and binding
activity of 5HT2A receptor in the premammillary hypothalamus are associated with stimulation of
LH pulsatility expressed before the development of refractoriness to short days and prior to the
decline of reproductive neuroendocrine activity during expression of the endogenous circannual
rhythm.

Background
Seasonal reproductive activity is a common feature of
many mammalian species of temperate latitudes [1]. In
ewes, ovulatory activity is suppressed for several months

in spring and summer during the anestrous period. These
seasonal changes in ovulatory activity result from changes
in LHRH and LH pulsatile secretion [2,3]. Seasonality of
neuroendocrine reproductive activity in ewes is under the
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control of an endogenous circannual rhythm [4–6] syn-
chronized by photoperiod through its control of the circa-
dian rhythm of melatonin secretion [7,8]. Expression of
the endogenous circannual rhythm can be observed under
two types of experimental conditions : prolonged expo-
sure to constant photoperiod (i.e. constant duration of
melatonin secretion) or elimination of melatonin secre-
tion by pinealectomy. In the case of pineal-intact ewes ex-
posed to constant short days following constant
inhibitory long days, three successive phases of reproduc-
tive neuroendocrine activity can be distinguished: (a) ini-
tially, a short-day induced stimulation of LH pulsatile
activity after a time-lag of about 45 days, (b) second, inhi-
bition of LH pulsatility, resulting from «refractoriness» to
short days after about 150 short days [9], probably the in-
itial event of the expression of the endogenous rhythm,
and (c) third, circannual changes between periods of high
and low LH pulsatility reflecting expression of the endog-
enous circannual rhythm [5]. In pinealectomized ewes
that are functionally uncoupled from their photoperiodic
environment, the endogenous circannual rhythm is ex-
pressed and induces alternations of periods of high and
low LH pulsatility, which are not synchronous among
ewes or in phase with the seasons [8,10].

Basic mechanisms responsible for the generation and the
expression of this endogenous rhythm are unknown. Sev-
eral neuromediator systems, such as catecholamines and
serotonin (5HT) [11,12] (review [13]), and neuroplastic
remodeling of GnRH neurons [14,15] seem to play a role
in seasonal and photoperiodic regulation of LH pulsatile
secretion. However, in most of these cases, it is not known
whether these mechanisms are involved in the expression
of the endogenous rhythm or whether they simply medi-
ate the effect of photoperiod and melatonin. In the case of
serotonergic pathways, however, it is clear that the sero-
tonergic component plays a role in LH suppression during
the refractory state to short days [16,17]. Indeed, systemic
administration of serotonin antagonists can temporarily
reverse the suppression of LH pulsatile secretion in ewes
that are refractory to short days [18]. The use of specific
antagonists, and especially ketanserin, led to the sugges-
tion that 5HT2A receptors are probably involved in this in-
hibitory effect of serotonin [19]. The inhibition of LH
pulsatile secretion during the establishment of refractori-
ness to short days is associated with changes in 5HT2A re-
ceptor binding capacities (3H-ketanserin binding activity)
in specific area of the ventral hypothalamus [20]. Howev-
er, it is worth noting that although an increase in 5HT2A
receptor binding capacities was expected during this peri-
od of low secretion to be consistent with the inhibitory
role of serotonin, the contrary was found, i.e. an increased
3H-ketanserin binding. This specific hypothalamic area
has been identified as the premammillary hypothalamus

as confirmed by the expression at this site of 5HT2A recep-
tor mRNA [21].

Collectively, the foregoing observations prompted us to
investigate whether 5HT2A receptors in the premammil-
lary hypothalamus may play a role in the expression of the
endogenous rhythm. As an initial step, we have deter-
mined if expression of the 5HT2A receptor gene in the pre-
mammillary hypothalamus changes during the course of
expression of the endogenous rhythm independently of
photoperiodic or melatonin influence. In addition, we
have examined if transcriptional regulation of the 5HT2A
receptor gene is associated with changes in binding capac-
ities of this receptor. For this purpose, we employed in situ
hybridization for mRNA of 5HT2A receptor and binding
of 3H-Ketanserin in the premammillary hypothalamus of
ewes under two experimental conditions enabling the ex-
pression of the rhythm: (a) pineal-intact ewes that were ei-
ther refractory or not to short days (RSD), and (b)
pinealectomized ewes during either the active and inac-
tive stages of their endogenous circannual rhythm (ECR)
of reproductive neuroendocrine activity.

Results
Experiment 1: Refractoriness to short days
Mean plasma LH during photoperiodic treatments varied
as expected (Fig. 1) with low LH plasma concentrations
during long days, high values resulting from the stimula-
tory effect of short days and low values during continued
exposure to short days due to the establishment of a re-
fractory state to short days. On the day before sacrifice, LH
pulse frequency was significantly higher in the High group
than in the Low group (mean ± S.E.M. 2.83 ± 0.40 vs 0.50
± 0.22 pulses/5 hours, P < 0.001).

In situ hybridization analysis for 5HT2A receptor mRNA
revealed that the density of silver grains was significantly
higher in the neurons of ewes from the High group (25.3
± 1.4 vs 21.4 ± 1.5 grains/neuron, P < 0.05). Overall distri-
bution of neurons per class of number of grains was sig-
nificantly different between the two groups (Chi2= 52, P
< 0.0001); neurons bearing more than 20 grains were
more numerous in the High than in the Low group (Fig-
ure 2). An example of in situ hybridization 5HT2A recep-
tor mRNA labeling is given in Figure 3.

3H-Ketanserin binding was not significantly different be-
tween groups, but tended to be significantly higher in the
High group than in the Low group (29.1 ± 4.0 vs 24.6 ±
4.2 fmol/mg tissue-equivalent; P < 0.10).

Experiment 2: Expression of the endogenous circannual 
rhythm
Endogenous LH cycles were desynchronized among ewes
and appeared to free run in all ewes included in the
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Figure 1
Experiment 1 (RSD): Mean (± SEM) plasma LH concentration in 2 groups of ovariectomized estradiol-treated 
Ile-de-France ewes subjected to the artificial photoperiodic regimens indicated by the horizontal bars. High 
ewes (n = 6; upper graph) were subjected to 3 months of short days (8L: 16D; April to July, data not shown) – 3 months of 
long days (16L: 8D, July to October), and 3 months of short days (8L: 16D, October to January). Low ewes (n = 6) were sub-
jected to 3 months of long days (April to July, data not shown), and 6 months of short days (July to January). Inserts depict rep-
resentative LH pulsatile secretory profiles the day before sacrifice (blood sampled every 12 min for 5 hours).
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analysis [for more details see ref. [10]]. Figure 4 illustrates
the LH profiles for one ewe in the High and Low groups;
data were not pooled for presentation of mean values be-
cause the circannual LH cycles were not synchronized
among ewes. On the day before sacrifice, LH pulse fre-
quency was significantly higher in the High group than in
the Low group (3.50 ± 0.72 vs 0.83 ± 0.40 pulses/4 hours,
P < 0.01). One ewe which was detected as being high with
the cluster cycle detection algorithm, did not show a high
pulsatile activity (1 pulse/5 hours); this animal was in-
cluded in the analysis as she had high overall LH values.

Expression of 5HT2A receptor gene was different between
groups. Density of silver grains was significantly higher in
the neurons of ewes from the High compared to the Low

group (20.8 ± 1.6 vs 17.0 ± 1.5, P < 0.05). Overall distri-
bution of neurons classified by number of grains per neu-
ron was significantly different between the two groups
(Chi2= 52, P < 0.0001); neurons bearing more than 20
grains were more numerous in the High as compared with
the Low group (Figure 5).

3H-Ketanserin binding in the premammillary hypothala-
mus was significantly higher in the High group than in the
Low group (19.7 ± 5.0 vs 7.4 ± 3.4 fmol/mg tissue-equiv-
alent; P < 0.05). An example of 3H-Ketanserin binding
sites on sections of the premammillary hypothalamus is
shown in Figure 6.

Figure 2
Frequency distribution of labelled neurons in frontal brain sections after in situ hybridization with riboprobes 
against sheep 5HT2A-receptor, according to the number of silver grains per neuron, in the premammillary 
hypothalamus of Ile-de-France ewes during the establishment of refractoriness to short days (experiment 1). 
Closed and open symbols depict ewes with high or low LH pulsatile activity, respectively.
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Figure 3
Bright-field microscopy images of premammillary hypothalamus after in situ hybridization with antisense (X, 
Y) or sense (Z) riboprobes against sheep 5HT2A receptor. Arrows indicate labeled neurons. Scale bar 15 µm. X is a 
ewe from the high group while Y is a ewe from the low group.
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Figure 4
Experiment 2 (ECR): plasma LH concentration measured in bi-weekly blood samples obtained from two pine-
alectomized Suffolk OVX+E ewes. Animals were maintained melatonin-free under simulated natural photoperiodic condi-
tions in a light-proof building for 2 years. The upper graph depicts LH profiles in one ewe in the High stage of the endogenous 
rhythm at the end of the experiment and the lower graph LH profile of one ewe in the Low stage. Inserts depict LH pulsatile 
secretory profiles at the end of the experiment (blood sampled every 6 min for 4 hours).
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Discussion
Coordinated changes in the expression of the 5HT2A re-
ceptor gene and in the density of 5HT2A receptors were
observed in the premammillary hypothalamus; both gene
expression and binding activity were greater in ewes ex-
pressing a high LH pulsatile secretion compared to those
expressing a low LH pulsatile secretion. This relationship
was observed both during the establishment of refractori-
ness to short days (RSD) and during the course of the en-
dogenous circannual rhythm (ECR) of neuroendocrine
activity. The results obtained with ketanserin binding, in
ewes refractory or not to short days (experiment 1) tended
to be significant, this tendency confirms earlier results ob-
tained in the same breed of ewes, placed in the same ex-
perimental conditions [20]. Our current results brought
interesting new insights by showing that this increase in
binding capacity results at least in part from an up-regula-
tion of expression of the 5HT2A receptor gene.

It is important to emphasize that the two experiments de-
scribed here were conducted in two different locations
(France and USA), in two different seasonal breeds of
sheep (Ile-de-France and Suffolk), and using two different
animal models (pineal-intact ewes maintained in short
days and pinealectomized ewes under normal photoperi-
odic changes). Yet, the results were comparable regarding
changes in the 5HT2A receptor system in the premammil-
lary hypothalamus according to LHRH/LH pulsatile activ-
ity. The observation that expression of the gene and
density of receptors varied in the same direction in both
experiments (even if a non-significant tendency in the
binding density was observed in the RSD experiment) is of
major importance. This provides strong evidence that the
enhanced activity of the 5HT2A receptor system in ewes
expressing stimulated vs inhibited LH pulsatility can occur
in the absence of daily changes in melatonin input and
thus photoperiodic influence. This suggests one or two
possibilities. Either (a) the changing activity of the 5HT2A
receptor system is the consequence of changes in the
LHRH/LH pulse generating mechanisms, or (b) changes
in the 5HT2A receptor system are a fundamental compo-
nent of the circannual processes that cause changes in
LHRH/LH pulsatility. In this case, the establishment of re-
fractoriness to short days could be considered as an early
step in expression of the endogenous circannual rhythm
[5], and changes of activity in the 5HT2A receptor system
could be considered as part of the endogenous mecha-
nisms involved in circannual rhythms of reproductive
neuroendocrine activity.

At present, it is not known whether changes in the 5HT2A
receptor system are a cause or a consequence of the
circannual rhythm of LHRH and LH secretion. Neverthe-
less, it is of interest to consider a causal relationship and,
for this purpose, it is useful to consider certain parallel-

isms between circadian and circannual mechanisms.
Regarding circadian rhythms, three major points could be
raised : (a) The suprachiasmatic nucleus is the brain area
where the master circadian clock is located, and where
several «clock» genes are expressed at different precise
times of the cycle (reviews [22] and [23]). (b) Serotoner-
gic fibers project from raphe nuclei to the suprachiasmatic
nucleus [24], onto 5HT1B receptors [25], probably to
modulate response of the suprachiasmatic nucleus activi-
ty to light stimulation [26]. (c) The suprachiasmatic nu-
cleus is the nucleus where photoperiodic and/or light
inputs act to synchronize the circadian system to fit with
the external environment, directly via nerve fibers and/or
by the way of melatonin receptors (review [23]).

How might these three points relate to the circannual
rhythms? (a) In contrast with circadian rhythms, there is
to date no formal identification of a site for a clock driving
circannual rhythms. In the ground squirrel, which was ex-
tensively studied in this context [27–33], a brain site in-
volved in generation of circannual cycles was not
discovered. (b) With respect to serotonergic innervation,
medium or high density of serotonin fibers are present in
the premammillary hypothalamus in sheep [34], white-
footed mouse [35], monkey [36] and rat [37,38]; these
fibers probably originate from the raphe nuclei, as in the
cat [39]. Changes in gene expression and ketanserin bind-
ing capacities of 5-HT2A receptor in the pre-mammillary
hypothalamus of the ewe were observed in the present
study. (c) Finally, the site in which we observed changes
in 5HT2A receptor seems to be located in the same area
than the site of action of melatonin to stimulate LHRH/
LH pulsatile secretion in the ewe [40], probably via MT1
receptors [41,42]. This stimulation of the LHRH pulsatili-
ty by melatonin may be one way by which melatonin
enters the circannual system to synchronize it to the pho-
toperiodic cue of the outside environment [review [43]].
This may explain that in the results presented here, ewes
in the absence of any photoperiodic/melatonin input, ex-
pressed de-synchronized rhythmicity of LH secretion.
Thus, the suprachiasmatic nucleus contains a circadian
clock and is the site where the external cues are treated to
reset the clock via melatonin receptors or/and via seroton-
ergic system, and the premammillary hypothalamus may
give rise (or help give rise) to circannual rhythmicity and
may be a site where melatonin synchronizes the endog-
enous circannual rhythm and where changes in the sero-
tonergic system take place.

The involvment of the posterior hypothalamus in repro-
ductive function has received relatively little attention in
the rat where it has only been shown to inhibit LH release
and that it may participate in timing and amplitude of the
pro-oestrus surge of the hormone [44]. In the macaque
posterior hypothalamus, ovarian steroids altered expres-
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sion of 5HT2C receptor gene, but not of 5HT2A receptor
gene [45]. Recent preliminary observations in Suffolk
ewes suggest that thyroid hormones, which are required
for the expression of endogenous rhythms, may be re-
quired for the day-night rhythm of fos expression in the
premammillary hypothalamus [46], which re-inforces the
suggestion of a potential role of this particular structure in
the mechanisms involved in the circannual endogenous
rhythm of reproductive activity in sheep. More generally,
the posterior hypothalamus is considered as playing an
important role in the maintenance of circadian wakeful-
ness, especially via its histaminergic neurons [39,38].

The divergent actions of serotonin are achieved through
seven distinct families of receptors encoded by more than
seven different genes, among them the previously men-
tionned 5HT2A, 5HT2B and 5HT2C receptors, each of
which exhibit subtypes or isoforms [reviews [47,48]].
How these different receptors mediate the multiple action
of serotonin and whether individual neurons express
multiple receptors are still subject of debate [review [48]].
In the present experiment, the riboprobes used were spe-
cific of the sheep 5HT2A receptor. They showed a low
homology with 5HT2B and 5HT2C receptors (60% for
both), and no homology at all for other subtypes of recep-

Figure 5
Frequency distribution of labelled neurons in frontal brain sections after in situ hybridization with riboprobes 
against sheep 5HT2A-receptor, according to the number of silver grains per neuron, in the premammillary 
hypothalamus of pinealectomized Suffolk ewes at different stages of the expression of the endogenous circan-
nual reproductive rhythm (experiment 2). Closed and open symbols depict ewes with high or low LH pulsatile activity, 
respectively.
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tors, as it was shown by Pelletier et al. [21]. This situation
ensures that the mechanisms described here are specific of
the ovine 5HT2A receptors.

Regarding the functional role of 5HT2A receptors, in ova-
riectomized rats, they seem to be involved in the negative
feedback of oestrogens on LH release [49] and in the trig-
gering of LH surge by oestradiol [50]. As previously ex-
posed, it was shown in ewes, that the use of specific
antagonists of 5HT2A receptors liberates the inhibition of
pulsatile LHRH/LH activity during refractoriness to short
days [18,19]. However, this effect is contradictory with the
results presented here showing that 5HT2A receptor gene
expression and binding activity were lower during this
specific stage. More generally, the information on the po-
tential role of these 5HT2A receptors in mammals is scarce
but suggests that they could be involved in depression [re-
views [51,52]] and/or learning [53], which are both long-
term neurobiological events. Regarding the interaction
between 5HT2A receptor system and thyroid hormones, it
is interesting to note that 3H-Ketanserin binding capacity,
is decreased in thyroidectomized rats, and that this effect
of thyroidectomy can be reversed with low doses of T4
[54]. Thus, the fact that, 5HT2A receptor activity in rats
and the transition into anestrus in sheep [55–58], are de-
pendent of thyroid hormones may suggest that it would
be interesting to look for an eventual relationship be-
tween 5HT2A receptors and thyroid hormones in sheep.

Conclusions
In conclusion, we demonstrated in two different para-
digms that the expression of a change in circannual rhyt-
micity in LHRH/LH neuroendocrine activity is associated
with regulation of 5HT2A receptor gene expression in the
premammillary hypothalamus of the ewe. This anatomi-
cal and molecular evidence for an implication of the
5HT2A receptor system of the premammillary hypothala-
mus in circannual rhythmicity provides new insight in the
field of circannual rhythms. In particular, the present find-
ings provide novel evidence for a putative site that may
contribute to the generation of endogenous circannual
rhythms. This possibility is further strengthened by evi-
dence that the premammillary hypothalamus could also
be a site for integration of the circannual mechanisms
with the melatonin signal which translates photoperiodic
cues synchronizing the endogenous rhythm. Thus, our
present results pave the way for studies to investigate the
functional significance of the changes in 5HT2A receptor
and of the premammillary hypothalamus as a component
of circannual mechanisms.

Methods
Animal model
Two experiments were conducted on adult ovariect-
omized ewes treated with constant release estradiol im-

plant (1.7 cm for experiment 1 and 3 cm for experiment
2; [59]). In this model, plasma LH concentration in blood
sampled twice a week provides a robust index of seasonal
changes in reproductive neuroendocrine responsiveness
to estradiol negative feedback on LHRH and LH pulsatile
secretion [60]. High LH concentration reflects high fre-
quency of LHRH and LH pulses, which is indicative of the
breeding season, whereas low LH reflects infrequent
LHRH and LH pulses typical of anestrus [61]. Animals
were fed hay and pellets and had free access to water and
mineral licks. Surgeries were performed under aseptic
conditions.

Experimental design
Experiment 1: Refractoriness to short days (RSD)
This study was conducted on 12 adult (3–7 years old) Ile
de France ewes maintained at the INRA Research Center of
Nouzilly France (47°N). All ewes were housed in a light-
proof building under artificial lighting (300 lux at animal
eye level). Temperature was not regulated. Ewes were allo-
cated to two groups (n = 6/group). The first group (high
LH group) was exposed to short days (8L:16D) for 3
months starting in April; 3 months of long days (16L: 8D;
July to October) and 3 months of short days (8L: 16D; Oc-
tober to January) after which brains were collected. With
this photoperiodic regimen, ewes remain sensitive to the
stimulatory effect of short days resulting in high pulsatile
LH secretion at the time of sacrifice. The second group
(low LH group) was exposed to long days for 3 months
starting in April followed by 6 months of short days. This
photoperiodic regimen enables the photorefractory state
to occur resulting in low pulsatile LH secretion at the time
of sacrifice. Blood samples were collected twice a week
throughout photoperiodic treatments. LH pulsatile secre-
tory profiles on the day before sacrifice were determined
from LH concentration measured in blood samples col-
lected every 12-min for 5 hours. Ewes from both groups
were sacrificed in pairs by decapitation between 10:00 am
and 2:00 pm on the same day. All procedures were per-
formed in accordance with French legal requirements, and
with the authorization for animal experimentation nb
A37801 of the Ministry of Agriculture.

Experiment 2: Endogenous circannual rhythm (ECR)
Seventeen pinealectomized Suffolk ewes (of which 12
were used, see below) were maintained at the Sheep Re-
search Facility near Ann Arbor, MI U.S.A. (42°18'N).
These ewes had previously been used in another experi-
ment aimed at synchronizing their circannual reproduc-
tive rhythm by infusions of different melatonin patterns
at specific periods of the circannual endogenous cycle
[10]. Upon completion of that study, the ewes were made
available to the present study. The ewes were pinealect-
omized in December 1994 during the late breeding sea-
son [62,10] and housed in light-proof rooms where
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lighting (350 lux at eye level) was adjusted twice a week to
simulate natural photoperiod, including 60 min for civil
twilight. Temperature was not regulated. Ewes were allo-
cated to 3 groups, two of which received nightly i.v. infu-
sion of physiological amounts of melatonin for 70 days/
year for two consecutive years [10]. Starting in July 1996,
all the animals were not treated with melatonin for two
consecutive years, to allow free running circannual cycles
of pulsatile LHRH and LH secretion to be expressed. LH
concentrations were determined in blood samples collect-
ed twice a week thoughtout the experiment and every 6-
min for 4 hours the day before sacrifice. At the end of the
study (July 1998), all ewes were sacrificed by barbiturate
overdose during daytime on the same day. Procedures

were approved by the University of Michigan Committee
on the Use and Care of Animals.

Brain processing, in situ hybridization and 
autoradiography
Brain processing
Following sacrifice, brains were rapidly removed, dissect-
ed out in several blocks and frozen on liquid nitrogen va-
pors (experiment 1) or by immersion in isopentane
maintained at -30° in dry ice (experiment 2). Brains were
used as fresh ones and were never perfused nor perifused
before or after being removed from the skull. All blocks
were stored at -72°C. Frozen frontal brain sections (15
µm) were generated between the infundibular and pre-
mammillary recesses using a microtome-cryostat (Leitz

Figure 6
[3H] ketanserin binding sites on coronal sections of premammillary hypothalamus from 2 representative 
ewes. A and C: total binding and B and D: remaining binding after incubation with 10-6M methysergide. A and B are sections 
from a ewe exhibiting high LH pulsatility whereas C and D are from a ewe exhibiting low LH pulsatility. Bar = 2mm. FMT, 
mammillothalamic tract; FX, fornix. Third ventricule (V3).
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Kryostat 1720) at -20°C and were thaw-mounted on
slides pretreated with 1% 3-aminopropyltriethoxysilane
(Aldrich Chemical Co, Saint-Quentin, France) in acetone
as indicated by Sibony et al. [63]. Consecutive sections
were used for in situ hybridization and autoradiography
sections for in situ hybridization were post fixed by im-
mersion for 10 min at 4°C in 4% paraformaldehyde in
phosphate buffer (0.1 M, pH 7.4), washed in 4 × SSC (4x
sodium citrate 0.15 M, sodium chloride 1.2 M), dried
under an air-stream, and stored at -20°C. Sections for au-
toradiography were stored at -20°C immediately after
sectioning.

After in situ hybridization, brain sections were stained
with neutral red 0.1% (Fluka, Sigma Aldrich, Switzerland)
for histological verification and compared with the ewe
atlas of Richard [64] and with the rat atlas of Paxinos and
Waston [65].

In situ hybridization
In situ hybridization was performed as described by Pelle-
tier et al. [21]. Sense and antisense strand riboprobes (546
bp) were obtained from two clones containing the sheep
5HT2A receptor cDNA insert in the opposite section. The
two constructs were linearized by HindIII and the tran-
scripts were generated using T7 polymerase in the pres-
ence of 35S-UTP (Amersham, UK). Free nucleotides were
separated from labelled probes by filtration through a 1
ml Sephadex G50 column previously equilibrated with 20
micrograms tRNA dissolved in TED buffer (10 mM TRIS,
1 mM ED-TA, 10 mM dithiothreitol).

Series of slices were treated by pairs of one ewe from each
group. In situ hybridization labelling was performed ac-
cording to Sibony et al. [63] modified as follows: each sec-
tion was incubated with 19 microlitters hybridization
solution containing approximately 200 000 dpm sense or
antisense riboprobe and was treated with Rnase (10 micro
litters/ml) for 1 h at 37°C.

After different washings [63], sections were air dried and
coated with a liquid NBT2 emulsion (Kodak, Integrabio-
sciences, Eaubonne, France) diluted twice with sterile
demineralized water, and exposed for 6 weeks.

The number of silver grains per neuron marked in the pre-
mammillary hypothalamus was counted with a compu-
terized image-analysis system (Biocom Histo 500, Les
Ulis, France). A cell was considered as positively labeled if
it contained at least 5 silver grains. A minimum number
of 100 labeled neurons was recorded for each ewe distrib-
uted on both sides of the third ventricle. All sections were
included in an area which fitted the maximum of 3H-Ket-
anserin binding sites [20] and of silver grains in in situ hy-
bridization with the same probes [21]. All determinations

were done under blind observations. Results are expressed
as the mean number of silver grains per neuron and as the
distribution of neurons per class of number of silver
grains.

Autoradiography for 3H-Ketanserin binding studies
Autoradiographies were perfomed as described by Le
Corre et al. [20]. Six pairs of animals (each pair with one
ewe from each group) were constituted at random. Incu-
bation conditions for 3H-Ketanserin were performed ac-
cording to Pazos et al. [66]. Briefly, slide-mounted tissue
sections were preincubated for 15 min in 0.17 M Tris-HCl
(pH = 7.7) buffer at room temperature. After dripping, the
sections were incubated for 2 h at room temperature with
3 nM 3H-Ketanserin (64.1 Ci/mmol) in 0.4 ml preincuba-
tion buffer on each section. The incubation was terminat-
ed by washing the sections twice for 5 min in ice-cold
preincubation buffer (4°C). The non-specific binding was
defined in the presence of 10-6M methysergide. At the end
of the washing period, tissues were dried with a stream of
air. Sections and tritiated standards (specific activity 0.06–
35 nCi/mg tissue equivalent, Amersham, France) were
then placed in X-ray cassettes and apposed to Hyperfilm
[3H] (Amersham, France) for 4 weeks at -72°C. Films
were developed in D19 (Kodak) for 6 min at room tem-
perature, rapidly rinsed with running water, fixed for 20
min (AL4, Kodak) and washed with distilled water.

Quantitative determination of 3H-Ketanserin binding
sites were performed using densitometric measurements
of autoradiographs with the computerized image-analysis
system (Biocom). Reference curves derived from the [3H]
standard were used to convert gray level readings into
fmol/mg tissue equivalent [67]. Multiple readings (4 to 8)
were made in a tissue section and the mean optical density
was measured from at least 4 sections per ewe. Non spe-
cific binding was similarly determined in adjacent sec-
tions. Specific binding was obtained by substracting non-
specific from total binding. All determinations were done
under blind observations.

LH assays and LH pulse identification
In experiment 1, LH was measured in duplicate in a dou-
ble-antibody radioimmunoassay [68] as modified by
Montgomery et al. [69]. The sensitivity of the assay was
0.1 ng/ml and the intra- and inter-assay coefficients of var-
iation were 9.2 and 9.8 %, respectively. LH values are ex-
pressed in terms of CY-LH-S12. In experiment 2, LH was
measured in duplicate in 10- to 200-µl aliquots of serum
using a modification [70] of a previously described
radioimmunoassay [71,72]. LH values are expressed in
terms of NIH-LH-S12. Assay sensitivity averaged 0.65 ±
0.19 ng/ml. Within and between assay coefficients of var-
iation (CV) averaged 6% and 10%, respectively. In both
experiments, pulses were identified by an adaptation of
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the method described by Wallace and MacNeilly [73].
Briefly, a pulse was defined as a value exceeding 1 ng/ml
of plasma that had a concentration greater than the mean
of the two previous concentrations by at least 3 standard
deviations. Standard deviation was estimated for each
point from the mean intraassay coefficient of variation. If
consecutive samples were identified as a pulse, only the
one having the highest concentration was considered as a
pulse.

In experiment 2, circannual LH cycles in each ewe were
identified by a cluster cycle detection algorithm [74]. LH
cycles were divided into high and low stages using a prob-
ability level of 5 % or less to discriminate between contig-
uous clusters of high and low LH values. For analysis,
ewes were allocated to the low or high group according to
their neuroendocrine stage (low or high LH secretion) at
the time of sacrifice as determined by the cluster analysis.
Only ewes showing a well defined state using this algo-
rithm were kept in the study (12 ewes, 6 with high LH and
6 with low LH).

Statistical tests
LH pulse frequency, and density labeling in in situ hybrid-
ization and binding density of 3H-Ketanserin were com-
pared between groups using unpaired T-test. Distribution
of neurons according to staining density was analyzed by
the way of the Chi2 method. (Statview®, Abacus Concept,
Berkeley, Ca, USA).
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