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Abstract
Background: Statistical interactions between disease-associated loci of complex genetic diseases
suggest that genes from these regions are involved in a common mechanism impacting, or impacted
by, the disease. The computational problem we address is to discover relationships among genes
from these interacting regions that may explain the observed statistical interaction and the role of
these genes in the disease phenotype.

Results: We describe a heuristic algorithm for generating hypothetical gene relationships from loci
associated with a complex disease phenotype. This approach, called Prioritizing Disease Genes by
Analysis of Common Elements (PDG-ACE), mines biomedical keywords from text descriptions of
genes and uses them to relate genes close to disease-associated loci. A keyword common to, and
significantly over-represented in, a pair of gene descriptions may represent a preliminary hypothesis
about the biological relationship between the genes, and suggest the role the genes play in the
disease phenotype.

Conclusion: Our experimentation shows that the approach finds previously published
relationships, while failing to find relationships that don't exist. The results also indicate that the
approach is robust to differences in keyword vocabulary. We outline a brief case study in which
results from a recently published Type 2 Diabetes association study are used to identify potential
hypotheses.

Background
In the study of the genetics of complex diseases such as
Bipolar Disorder, we see statistical interactions between
disease-associated loci such as the interacting linkage
peaks depicted in Figure 1, or interactions between pairs
of SNPs in a genome-wide association study. These obser-

vations suggest that one or more genes from these inter-
acting loci are somehow involved in a common
mechanism that impacts the disease. To better understand
the disease, we want to discover relationships among the
blocks of genes implied by the interacting loci that explain
the statistical interaction and the role of the genes in the
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disease. We consider this task as one of finding hypothet-
ical genetic influences on the disease phenotype, and
approach the problem by finding biomedical keywords
common to Entrez Gene [1] descriptions of pairs of genes
from the interacting regions. Each such keyword relates
the gene pair, and may lead to a novel hypothesis about
how the genes contribute to the disease phenotype.

Other candidate-gene finding tools use similar strategies
(see the survey by Oti and Bruner [2]), but the majority of
these approaches use some form of formal annotation
(e.g., GO terms) instead of text features. For instance,
POCUS [3] uses GO terms together with InterPro
domains to find candidate gene interactions; Endeavour
[4] and NARADA [5] use common GO terms to define
gene networks; and BITOLA [6] uses MeSH terms as con-
cepts that are related to genes by co-occurrence. Other
tools that use text mining, such as PDQ Wizard [7] use co-
occurrence of genes in the literature to infer relationships,
which provides different information than our approach.

We believe that our approach of mining unstructured
gene descriptions for keywords is novel, and complemen-
tary to these other approaches.

Results
This paper describes our strategy and its implementation
in a tool called PDG-ACE (Prioritizing Disease Genes by
Analysis of Common Elements). Here, we discuss how
Entrez Gene records are mined, and describe the algo-
rithm and statistical tests. We describe validation and
parameter tuning experiments, as well as a case study
using the genes identified in a recent Type 2 Diabetes
(T2D) study [8].

Mining gene descriptions
The PDG-ACE algorithm uses an association of keywords
with genes mined from Entrez Gene records. We have
developed tools that build these associations in two ways:
matching Entrez Gene text against a dictionary of key-
words, and naïve recognition of phrases within the text.

Interacting linkage peaksFigure 1
Interacting linkage peaks. Linkage peaks with statistical interaction suggest pairs of regions of the genome in which genes 
that co-contribute to a disease may be found.
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The first method finds all longest full matches to the dic-
tionary. The second finds the longest non-stopword
phrases within the text. In both cases, stopwords are fil-
tered out, using a stopword list consisting of common
English words.

We constructed three vocabularies. For each, we first
derived an initial vocabulary, and then filtered the key-
words to keep only those that are rare in Entrez Gene
records. The first vocabulary is based on Medical Subject
Headings (MeSH), from which we created a vocabulary by
splitting headings to make phrases likely to be seen in text.
We created the second vocabulary, meant to eliminate
bias due to a particular dictionary, by extracting naïve key-
phrases directly from Entrez Gene records. The third
vocabulary was created to emphasize keywords related to
neurological disorders. To do this, we extracted naïve key-
phrases from OMIM [9] records containing the substring
"neuro". Figure 2 illustrates the differences among the
three vocabularies, which we refer to as the MeSH, NAÏVE
and OMIM vocabularies.

Once the initial association is mined, we screen the vocab-
ulary to eliminate keywords that are very rare or very com-
mon in Entrez Gene records. Keywords with fewer than
three occurrences are eliminated. The threshold for elimi-
nating common keywords uses an approximation to the
statistical significance test used in the algorithm. Letting G
be the total number of genes, and N be the total number

of keywords, and assuming a Bonferroni correction of

0.05/N, we want keywords with at most 

occurrences. This narrows the vocabulary to words that
are likely to be common across gene pairs and also pass
the significance test for over-representation.

Our association-building tools are able to mine from dif-
ferent text elements of the Entrez Gene records. For the
MeSH and OMIM vocabularies, we mined the official full
name (gene-ref_desc), aliases (gene-ref_syn_E), summary
(Entrezgene_summary), annotation from other databases
(other-source_anchor), and Gene RIF (gene-
commentary_text) elements. For the NAÏVE vocabulary
we did not mine the synonyms and other sources, because
of the large number of unique terms. Note that in preproc-
essing we build a list of genes and their locations from an
authoritative source. Results presented here are based on
hg18 data tables from the UCSC genome browser [10].
Genes are also filtered to include only current Entrez Gene
records.

Algorithm
The primary input to PDG-ACE is a pair of disease-associ-
ated loci and a delta in basepairs from each locus. These
inputs define a pair of chromosomal regions from which
genes are considered. The algorithm does one run using
this observed pair of disease-associated loci, then per-
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Differences in vocabularyFigure 2
Differences in vocabulary. The differences among the three vocabularies are illustrated for the Entrez Gene description of 
SLC18A3.

N
ai

ve
O

M
IM

M
eS

H This gene is a member of the vesicular amine transporter family. 
The encoded transmembrane protein transports acetylcholine into secretory vesicles for 
release into the extracellular space. 
Acetylcholine transport utilizes a proton gradient established by a vacuolar ATPase. 
This gene is located within the first intron of the choline acetyltransferase gene.

This gene is a member of the vesicular amine transporter family. 
The encoded transmembrane protein transports acetylcholine into secretory vesicles for 
release into the extracellular space. 
Acetylcholine transport utilizes a proton gradient established by a vacuolar ATPase. 
This gene is located within the first intron of the choline acetyltransferase gene.

This gene is a member of the vesicular amine transporter family. 
The encoded transmembrane protein transports acetylcholine into secretory vesicles for 
release into the extracellular space. 
Acetylcholine transport utilizes a proton gradient established by a vacuolar ATPase. 
This gene is located within the first intron of the choline acetyltransferase gene.
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forms permutations to determine the significance of the
observed results.

In each run, each keyword is scored with the number of
possible pairs of genes, across the loci, that the keyword
describes. All keywords common to at least one gene in
each region will have a nonzero score. The observation
run assigns a score to each keyword at the observed inter-
acting locus pair, and keywords that have a zero score are
filtered prior to the permutation runs. The permutations
are run on blocks consisting of the same number of
sequential genes as the observed loci. A block is selected
by randomly choosing a chromosome arm then randomly
picking a block of sequential genes on that arm. If the arm
is too small, then another arm is chosen until one that has
enough genes is found.

As permutations are run, the rank of each observed key-
word score is determined. If, on completion of the permu-
tation runs, the score of a keyword ranks above a user
provided threshold, the keyword, its rank, and the corre-
sponding genes from both loci are reported. The p-value
for a keyword is the proportion of scores for permutation
runs that are greater than or equal to the observation run
score. In post-processing, a Bonferroni correction can be
applied so the threshold for significance is 0.05/N, where
N is the number of keywords in the vocabulary.

Validation testing
We validated our approach using published studies as
positive controls and randomly selected locus pairs as
negative controls. Two control studies used microsatellite
markers as loci, and the rest used genes.

For validation, the positive controls were from seven pub-
lished studies showing statistically significant gene-gene
interactions. These include two breast cancer studies
[11,12], and studies of osteoporosis [13], anorexia ner-
vosa [14], colorectal cancer [15], asthma [16], and neural
tube defects [17]. Each of these studies found statistical
evidence of gene-gene interactions. Our expectation was
that PDG-ACE would find keywords that are over-repre-
sented and consistent with genetic interactions predispos-
ing these diseases. The negative controls were pairs of
randomly selected genes from Entrez Gene, with the
expectation that PDG-ACE would not find over-repre-
sented common keywords.

For each locus pair, we tested loci defined by deltas from
103 basepairs (KBP) to 106 basepairs (MBP) from each
gene's transcription start site. At each delta, we ran PDG-
ACE in duplicate, and performed trials to ensure a suffi-
cient sample as described below. Tests were performed in
parallel, using all three vocabularies (OMIM, MeSH, and
NAÏVE). In all but one case, results for deltas greater than
500 KBP showed no significant keywords; we report only
smaller regions.

Several trials may be needed to determine the number of
permutations at which the sample of the genome yields a
consistent measure of significance for rare keywords. Each
test is run in duplicate starting with one million iterations.
The sample is considered sufficient if the top three key-
words are identical, and in the same order in both runs. If
that criterion is not met, we increase the number of per-
mutations and re-run the test in duplicate until the crite-
rion is met.

Table 1: Validation results for positive controls. Results of validation experiments on positive controls from previous genetic studies. 
The p-values are from the original study, and the numeric column labels refer to the delta from the loci in KBP.

Phenotype Locus Locus P-Value 1 100 250 500

Breast Cancer7 XPD IL10 0.007 ✔ ✔ ✔ ✔

Breast Cancer7 GSTP1 COMT 0.007 ✔ ✔

Breast Cancer7 COMT CCND1 0.014 ✔

Breast Cancer7 BARD1 XPD 0.014 ✔

Breast Cancer7 CYP17 GADD45g 0.062
Breast Cancer7 TNFa p27 0.079 ✔

Breast Cancer7 BARD1 ESR1 N/A
Breast Cancer7 BARD1 p27 N/A
Breast Cancer8 GSTM1 CYP2e1 0.05 ✔ ✔ ✔

Osteoporosis9 NR3C1 ESR2 0.047 ✔

Osteoporosis9 NR3C1 HDC N/A
Osteoporosis9 RANK TNFR2 N/A ✔

Anorexia Nervosa10 MAOA SLC6A2 0.019 ✔ ✔ ✔ ✔

Colorectal Cancer11 ALDH2 ADH1B 0.001 ✔ ✔ ✔ ✔

Asthma12 CD14 IL4Ra 0.001 ✔

Neural Tube Defect13 CbetaS MTHFR 0.007 ✔ ✔ ✔

Neural Tube Defect13 MTRR MTHFR 0.003 ✔ ✔ ✔

Neural Tube Defect13 MTRR FOLH1 0.004 ✔
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Table 1 shows hits for the positive controls and Table 2
shows hits for the negative controls, both using the MeSH
vocabulary of 2531 keywords. Note that the pattern of hits
in the positive controls is significantly different from the
negative controls (χ2 p-value < 0.01). In general, the
strongest evidence for multi-gene effects is near the
observed loci (+/-1 KBP), and the pattern of hits is consist-
ent with p-values from the control studies. As expected, in
most, but not all, cases, significantly over-represented,
common keywords are consistent with disease etiology.
For example, in the first breast cancer study, the COMT-
CCND1 genetic interaction is significant (p-value 0.014 in
the interaction study) and the over-represented, common
keyword is "estradiol" (p-value 0.041). "Estradiol" is used

in the same context at both loci, and may offer insight into
hormone sensitive breast cancer etiology.

In two cases, gene families provide the strongest evidence
at a locus pair. For the BARD1-XPD (a.k.a. ERCC2) inter-
action in the first breast cancer study (p-value 0.014),
BARD1 as well as paralogs ERCC2 and ERCC1 refer to key-
word "dna repair" (p-value 0.009). Since ERCC2 and
ERCC1 are adjacent in the genome, evidence of the multi-
gene effect extends beyond the bounds of the XPD gene,
out to +/-100 KBP. Arguably, cancer-related effects of var-
iations in ERCC2 may be influenced by variations in
ERCC1, so both of the ERCC genes should be evaluated
for genetic variation related to breast cancer. A similar
effect is seen for RANK (a.k.a. TNFRSF11)-TNFR2 (a.k.a
TNFRSF1B) in the osteoporosis study, where TNFRSF1B
and TNFRSF8 are adjacent in the genome. The authors of
the previous study did not find significant evidence for a
genetic interaction. However, all three genes refer to "mar-
row" (corrected p-value 0.033), consistent with bone dis-
ease, so the true genetic interaction may have been hidden
in the previous study, but revealed by PDG-ACE. In both
the breast cancer and osteoporosis studies, evidence is
consistent with gene family effects on the phenotype, as
expected in complex diseases.

These validation experiments show that findings from
PDG-ACE are generally consistent with the strength of
prior evidence, as seen by comparing p-values found in
the interaction analyses and the pattern of significant key-
words found by PDG-ACE. In general, evidence of com-
monality falls off as delta grows larger. This observation
coincides with the experiments for the two interaction

Table 3: Vocabulary comparison. Hits for OMIM, NAÏVE and MeSH vocabularies.

OMIM NAIVE MeSH

LOCUS x LOCUS 1 100 250 500 1 100 250 500 1 100 250 500
IL10 XPD ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

GSTP1 COMT ✔ ✔ ✔ ✔

COMT CCND1 ✔ ✔ ✔ ✔ ✔ ✔

BARD1 XPD ✔

CYP17 GADD45g
TNFa p27 ✔ ✔ ✔

BARD1 ESR1
BARD1 p27
GSTM1 CYP2e1 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

NR3C1 ESR2 ✔ ✔ ✔ ✔ ✔ ✔

NR3C1 HDC
RANK TNFR2 ✔ ✔

MAOA SLC6A2 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

ALDH2 ADH1B ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

CD14 IL4Ra ✔ ✔ ✔ ✔ ✔

CbetaS MTHFR ✔ ✔ ✔ ✔ ✔ ✔

MTRR MTHFR ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

MTRR FOLH1 ✔

Table 2: Validation results for negative controls. Results of 
validation experiments on negative controls of randomly 
selected gene pairs.

Locus Locus 1 100 250 500

ATG4C TBX21
HLA-C CYP27B1
ITGAM GNPTAB
MBD4 ATP4A
PPIE FBXO17
SEPW1 USP9X
SERPINA13 BCL3 ✔

VKORC1 FUT1
CFHR1 ATP6V0A1
GCSH SRPK2
CCDC64 MNAT1 ✔

HRAS PRNPIP
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studies [18,19] based on variation in microsatellite mark-
ers. Results of these experiments (not shown) indicate
that PDG-ACE is not effective for this type of prior infor-
mation. Negative controls generally show no evidence of
common effects, as expected (Table 2).

We also did experiments to study the impact of choosing
a particular vocabulary by repeating the positive control
experiments using each of the three vocabularies (MeSH,
OMIM, and NAÏVE). We ran the experiments in triplicate,
using identical parameter settings for each of the vocabu-
laries. Table 3 shows the results from these experiments.
Interestingly, the pattern of hits is quite similar for all
three vocabularies, even though the specific keywords in
the vocabularies are different. For example, for the
GSTM1-CYP2e1 locus pair at 1 KBP in the second breast
cancer study, the common over-represented keywords for
the MeSH vocabulary are: "cyp2e1", "ethanol", "smoke",
"area", "stomach"', "toxicity", and "xenobiotics". For the
NAÏVE vocabulary the corresponding list is: "alcoholics",
"cigarette smoke", "high-risk area", "stomach cancer",
"incomplete intestinal metaplasia", "non-small cell lung
carcinoma", and "pancreatitis". For the OMIM vocabu-
lary, the keywords are: "workers", "metabolizing", and
"increased susceptibility". We speculate that if there are
any relevant biomedical keywords in common between
two gene descriptions, then there are likely to be other
keywords in common. Our conclusion from these experi-
ments is that PDG-ACE is relatively robust to the vocabu-
lary used.

Case study
As an example of how PDG-ACE can aid in the under-
standing of complex disease etiology, we discuss its appli-
cation. A recently published study [8] identified ten T2D-
associated loci; five corresponding to genes previously
associated with T2D, and five that had no prior associa-
tion with T2D. Two of the loci are excluded, because one
(rs9300039) is more than 1 MBP from the nearest anno-
tated gene, and the other (rs8050136) is near the FTO
gene, which is annotated as provisional in Entrez Gene
and so was excluded by PDG-ACE. Using the remaining
T2D-associated genes as input (IGF2BP2, CDKAL1,
CDKN2A/CDKN2B, PPARG, SLC30A8, HHEX, TCF7L2,
KCNJ11) we ran PDG-ACE with the MeSH vocabulary. We
performed at least one million iterations for each test, and
confirmed that each sample was sufficient, as described
above. We searched up to +/-500 KBP from the transcrip-
tion start site for each locus.

As shown in Figure 3, PDG-ACE found significant com-
monality between the CDKN2A/CDKN2B locus and three
other T2D candidate genes (PPARG, HHEX, and TCF7L2).
No significant multi-gene effects were found for the
PPARG-HHEX, PPARG-TCF7L2, and HHEX-TCF7L2 locus

pairs. Notably, the CDKN2A/B locus was newly discov-
ered by Scott, et al. [8], while all three of the genes related
to CDKN2A/B by PDG-ACE were previously established
as T2DM candidates. Here, PDG-ACE was able to fill in
missing relationships among these genes.

The observation that the CDKN2A/B gene pair shows sig-
nificant multi-gene effects with all three of these other
T2D associated genes led us to the hypothesis that these
genes form a cluster that may participate in a larger multi-
gene effect that could be related to T2D susceptibility. To
test this hypothesis, we used MetaCore from GeneGo, Inc.
[20] to assess over-representation of the PDG-ACE identi-
fied gene set in Gene Ontology (GO) processes. Parameter
settings used in GeneGo's "analyze networks" algorithm
were to use only curated interactions, where the interac-
tions included binding, direct/indirect, or unspecified
types. GeneGo separates CDKN2A transcripts into two
isoforms, p14ARF and p16INK4, yielding six entities.
GeneGo finds that all six entities fit into the GO process
GO:0050794, and the input set is significantly over-repre-
sented in this process, with a p-value < 0.01.

Conclusion
The PDG-ACE algorithm takes a simplified approach to
complex disease analysis. Assuming that multiple genetic
influences converge on a single phenotype in complex dis-
eases, PDG-ACE searches for common elements of text
describing genes at disease-related loci, revealing poten-

Relationships discovered for FUSION genesFigure 3
Relationships discovered for FUSION genes. PDG-
ACE discovered relationships between CDKN2A/B and 
known T2DM genes from the FUSION study. Edge labels are 
keywords and their p-values.
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"mortality"
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tial underlying genetic influences on the phenotype of
interest. Existing tools look for common elements of
annotation among multiple genes including pathways,
gene ontology, and expression. However, for most genes
the annotation of these details is incomplete. The heuris-
tic employed in PDG-ACE overcomes this shortcoming by
using available text descriptions for genes, and is promis-
ing for generating hypotheses for genetic influences on
complex disease. Clearly, however, PDG-ACE implements
only an initial step in the refinement of such hypotheses,
and other existing tools complement the approach.

We should also make note of possible limitations of PDG-
ACE. The first is that it depends on descriptions that may
not yet exist, and when they do may have a bias toward
information garnered in studies of well-funded diseases.
We believe that our experiments with different vocabular-
ies indicate this bias is weak if there is any at all, but,
clearly, are not conclusive. Another issue is that we make
no attempt to identify the context of keywords computa-
tionally in order to decide equivalence of keywords. This
has the advantage that the output is easy to understand,
but also increases the false positive rate. We consider a
keyword, common and significantly over-represented at a
locus pair, to be a false positive if it is used in different
contexts in the Entrez Gene records. Some subjectivity is
involved in assessing the context of a keyword, but we
informally estimate that 10% of keywords selected by
PDG-ACE fall into this category. An additional challenge
is in assessing a keyword that is clearly used in the same
context across a locus pair, but the keyword cannot be
placed into the context of the disease. These keywords
may not be related to the disease or may reflect disease eti-
ology that is not yet revealed by any other assessments.
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