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Abstract
Background: Recent years have seen an expansion in the use of Geographic Information Systems
(GIS) in environmental health research. In this field GIS can be used to detect disease clustering, to
analyze access to hospital emergency care, to predict environmental outbreaks, and to estimate
exposure to toxic compounds. Despite these advances the inability of GIS to properly handle
temporal information is increasingly recognised as a significant constraint. The effective
representation and visualization of both spatial and temporal dimensions therefore is expected to
significantly enhance our ability to undertake environmental health research using time-referenced
geospatial data. Especially for diseases with long latency periods (such as cancer) the ability to
represent, quantify and model individual exposure through time is a critical component of risk
estimation. In response to this need a STIS – a Space Time Information System has been developed
to visualize and analyze objects simultaneously through space and time.

Results: In this paper we present a "first use" of a STIS in a case-control study of the relationship
between arsenic exposure and bladder cancer in south eastern Michigan. Individual arsenic
exposure is reconstructed by incorporating spatiotemporal data including residential mobility and
drinking water habits. The unique contribution of the STIS is its ability to visualize and analyze
residential histories over different temporal scales. Participant information is viewed and
statistically analyzed using dynamic views in which values of an attribute change through time. These
views include tables, graphs (such as histograms and scatterplots), and maps. In addition, these
views can be linked and synchronized for complex data exploration using cartographic brushing,
statistical brushing, and animation.

Conclusion: The STIS provides new and powerful ways to visualize and analyze how individual
exposure and associated environmental variables change through time. We expect to see
innovative space-time methods being utilized in future environmental health research now that the
successful "first use" of a STIS in exposure reconstruction has been accomplished.
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Background
Geographic Information Systems are beneficial tools in
modelling static representations of reality; however they
fall short in their ability to handle time. The ability to store,
visualize, and analyze both the temporal and spatial
dimension of data continues to be a challenging task. Over
the past decade, there have been several attempts to include
time enabled capabilities into GIS. [1] and [2] proposed
amendment vectors to extend the vector data model to the
time dimension, while others enhanced the grid data
model to represent snap-shots of raster data at different
time intervals [3]. Although temporal extensions exist, e.g.
[2] commercial GIS packages do not properly support tem-
poral aspects of spatial data [4].

The importance of GIS for medical research and epidemiol-
ogy has long been recognized [5-7], and GIS is frequently
used for retrospective exposure reconstruction [8-10].
However the application of GIS to risk and exposure assess-
ment has historically focused on the hazard as the object of
interest – such as the locations of contaminated industrial
sites with high concentrations of carcinogens – instead of
the individual [3]. More recently exposure assessment
using GIS has targeted individuals in their present homes,
but relatively little attention has been placed on individual
exposure reconstruction involving residential histories and
past activities. This in large part is due to the poor ability of
current GISs to handle multitemporal geographic informa-
tion and the movement of individuals within the context of
putative exposure sources whose locations and output
change through time. Consequently, there have been few
attempts to expand on the 'static map' to provide a more
accurate view of exposure.

The ability to effectively represent, query, and model the
temporal dimension is expected to significantly enhance
researchers' abilities to undertake environmental health
research with georeferenced data. Studying an individual's
exposure over time is a key factor in determining risk, par-
ticularly for diseases with long latency periods such as
cancer [3], because individual exposure to environmental
contaminants (eg carcinogens) can change as people
move through space over time. Exposure assessment char-
acterizes the concentration of potential toxins, as well as
the frequency and duration of contacts between individu-
als and those toxins. Therefore, accurate exposure assess-
ment requires estimation of variation in contaminant
concentration as well as changes in geographic proximity
to contaminant sources over time. This requires models
that can account for residential histories and how residen-
tial location influences ambient contaminant concentra-
tions as well as exposure opportunities.

In this research we applied a STIS to visualize and analyze
data from a bladder cancer case-control study. The objective

of the epidemiologic research project is to identify a range
of factors that have contributed to bladder cancer incidence
in Michigan, with the focus on spatial and spatiotemporal
patterns of exposure to naturally occurring arsenic in drink-
ing water. Cases are recruited from the Michigan State Can-
cer Registry and diagnosed in the years 2000–2003.
Controls are frequency matched to cases by age (± 5 years),
race, and gender, and recruited using a random digit dialing
procedure from an age-weighted list. To be eligible for
inclusion in the study, participants must have lived in the
eleven county study area for at least the past five years and
had no prior history of cancer (with the exception of non-
melanoma skin cancer). The goal is to enroll 1400 partici-
pants in total. This is an ongoing five year project and only
some preliminary spatiotemporal datasets, visualization
tools, and results are shown here. Conclusive results will
not be available for a few more years, until data has been
collected and analyzed for all 1400 participants. The STIS is
being developed at BioMedware, in Ann Arbor Michigan
with funding from the National Institutes of Environmen-
tal Health Sciences and the National Cancer Institute. In
this paper STIS is used to visualize and analyze data from a
bladder cancer case-control study but it can also be used for
health/environment interactions or marketplace sales
trends. More information about the STIS and a free 30 day
download can be evaluated at http://www.terraseer.com/
products/stis.html.

Results and discussion
Data from a case-control study of bladder cancer in south
eastern Michigan was used to evaluate the efficacy of the STIS
for documenting and visualizing space-time relationships
between cases, controls and putative risk factors. Lifetime
exposure to arsenic in drinking water (an element that has
been associated with bladder cancer at high levels [12,13])
was reconstructed for each individual by incorporating spati-
otemporal information about residential mobility (every
address inhabited since birth), occupational history (every
full time job since the age of 16), drinking water patterns,
and concentration of arsenic in drinking water.

Space time information system
The motivation for this system comes from the idea that
the 'what and where' of conventional GIS needs to be
extended to the 'what, where, and when' of reality and
spatiotemporal modelling. Based on similar spatiotempo-
ral approaches (e.g. [4], [18], [19]), objects are imple-
mented using the space time model: {object, space-time
coordinate, attributes} where object identifies the mod-
elled entity (e.g. person X); space-time coordinate is a
spatiotemporal location which may be a space-time point
(e.g. latitude, longitude, altitude, date, movement model)
or a space-time polygon (e.g. polygon centroid, polygon
boundary, date, movement model); and attributes are
observations on objects (e.g. income).
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Within the space time coordinate, in addition to the well
known descriptors (e.g. latitude, longitude), we also spec-
ify a movement model that defines how the object moves
through space as a function of time. Among the simplest
of movement models is an instantaneous displacement
such that the object ceases to exist at one location and
immediately reappears at another location. We use this
simple model to describe residential histories.

Morphing describes how the shape of geographic features
(such as lines and polygons) changes through time. Here
an object is comprised of multiple vertices changing shape
through time by the addition, deletion and movement of
vertices. This is called network morphing (for lines) and
polygon morphing (for polygons). Morphing can be grad-
ual, in which case the change in the object's shape occurs
over a defined time interval; or it can be abrupt. In our
research we utilize this approach to model cadastral sys-
tems and the realignment of administrative and political
boundaries. This allows us to track, for example, how
municipal water districts change through time, and to
then estimate arsenic exposure from drinking water for
individuals on municipal water supplies.

Attributes are observations on variables describing the
modelled entity and its environment (e.g. case/control
identifier, population size, ethnicity, etc.) Our data model
assumes observations occur at discrete times at which the
attributes of an object are quantified. Attribute change
models describe how the values of attributes change
between observation times. The simplest attribute change
model is a step function that updates an attribute's value
when a new observation is made on that attribute. More
complex change functions that obtain values from nearby

locations are used to interpolate values through space and
time for both categorical and continuous data [14]. These
include techniques from the field of geostatistics that pro-
vide a probabilistic framework for space-time interpola-
tion by building on the joint spatial and temporal
dependence between observations [15]. In this research
we use the step function approach to model, for example,
change in arsenic concentration in potable water when an
individual's water supply source is switched from one
source of supply to another. We also use geostatistics to
model how arsenic concentration in ground water
changes spatially and as a function of geology (described
in [16]).

Study data
We reconstructed individual exposures by incorporating
spatiotemporal data on residential mobility (where people
have lived throughout their lives), water supplies (private
well, city well water, or city surface water), and drinking
water habits. Only locations in which the participants have
lived or worked for longer than one year were collected and
geocoded. Data about diet, smoking, and medical history
were also collected by a phone interview or written ques-
tionnaire. A point file (where each point represents a partic-
ipant) was then imported into the STIS along with
associated database files containing attribute information
such as address and primary source of drinking water. Table
1 is an example of the drinking water and residential mobil-
ity database. Even though information for only three partic-
ipants is shown, seven different addresses and nine
different sources of drinking water are represented. (Street
addresses are not shown to protect participant's identity).
Therefore, a change in address or primary source of water
warrants a new row in the database.

Table 1: Part of database of participant addresses and water source information Information for four participants is shown. For each 
change in address or primary source of water a new row is entered in the database. Therefore there are 16 rows in this sample database.

Year moved in Year moved out Sample ID City Primary Source of Water

9/12/1935 1/1/1953 1 Swartz Creek Private well
1/1/1956 1/1/1958 1 Swartz Creek Private well, softener
1/1/1958 1/1/1963 1 Swartz Creek Private well
1/1/1963 1/1/1974 1 Swartz Creek Private well, reverse osmosis
1/1/1974 1/1/1990 1 Swartz Creek new private well
1/1/1990 1/1/2002 1 Swartz Creek Community Supply
1/1/2002 1/1/2004 1 Swartz Creek Community Supply, softener
1/1/1976 1/1/1990 2 Livonia Community Supply
1/1/1990 1/1/2004 2 Brighton CS (township well and treatment plant)
1/1/1953 1/1/1961 3 Jackson Community Supply
1/1/1961 1/1/1971 3 Jackson Well (30 ft)
1/1/1971 1/1/1984 3 Michigan Centre Private well
1/1/1984 1/1/1993 3 Vandercook Lake Private well
1/1/1993 1/1/2004 3 Horton Well (280 feet)
1/1/1943 1/1/1958 4 Ferndale Community Supply
1/1/1982 1/1/2004 4 Waterford Community Supply
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Other point files were imported including present and
historical data on industries and contaminated sites in the
study area. A township map and water supply boundary
map were imported as polygons. In addition to temporal
changes in attributes such as township population, source
of community's water supply, and number of people
served, town boundaries and water supply boundaries
changed with time. New towns were incorporated, com-
munity systems expanded their borders, and occasionally,
communities were combined and town boundaries dis-
solved. All of these temporal changes were handled using
attribute change models and morphing.

Importing spatiotemporal datasets
We imported shapefiles describing the above data using
the STIS data import facility that allows the variables to be
time stamped. The user is prompted to import vector
information into a new geography or an existing geogra-
phy (if new information is to be added to an already exist-
ing geographic layer the latter will be chosen). The user
must tell the system whether the data is (1) a time slice
(similar to a collection of GIS static maps) where changes
take place at specified times for all objects in the dataset,
or (2) a time series where data varies asynchronously and
objects move or change attributes at different times. For
example Census data are time slice data – attributes
remain constant for a decade (1980–1990) and then all
attributes are updated with the next decade's census infor-
mation (1990–2000). On the other hand, data associated
with tracking residential histories are time series data,
with household moves occurring at different times for
each individual. The system imports data at temporal
granularities varying from seconds to years; and the data
may then be analyzed at these different time scales.

Visualization procedures
Being able to visualize changes in boundaries and
attribute values over time is an effective approach to better
understanding and exploring data. Because time is a
dimension of the data rather than an attribute all views of
the data are easily animated. Analogous to a static GIS,
attributes of data are visualized by specifying colour,
shape, and size of graphical elements (e.g. symbols).
However, in contrast to a GIS, the STIS easily facilitates
visualization of changing polygon shapes and attribute
values over time by animating maps, histograms, and
tables simultaneously. Valuable information that might
be lost in an atemporal GIS is captured and can become
the focus of analysis in the STIS. There are four major vis-
ualization views – maps, graphs (histograms, scatter plots,
box plots), tables, and time plots.

(1) The map view displays spatial data and the user inter-
acts with the maps by zooming, panning, selecting, and
querying. The added feature of the STIS is the animation

toolbar. It is employed to show individuals changing
place of residence through time; arsenic-emitting indus-
tries being founded, operating, and going out of business;
municipal water supply districts growing and coalescing;
and attribute values, such as arsenic concentrations,
changing through time.

(2) In the STIS histograms, scatter plots, and box plots are also
animated over time. An individual or group of individuals
(e.g. cases vs. controls) may be selected at one point in
time and the user can explore how that selection's values
change through time. For example, we used this feature to
explore how individual arsenic exposure changed over a
participant's lifetime. We also used it to compare esti-
mated arsenic burdens for the cases to those of the control
population.

(3) Table views also are animated, as the given value of a
variable (such as the arsenic concentration in a municipal
water supply) will change through time. Tables thus show
how data values change over time by updating a given
objects value when it increases or decreases.

(4) The time plot graphs time on the x-axis and the value of
a variable, such as estimated arsenic exposure, on the y-
axis. Objects of interest, such as cases and controls, then
map into this bivariate time plot to explore time depend-
encies in arsenic exposure. Unlike the other views, the
time plot is not animated because it already shows the
entire time range of the data on the x-axis.

A novel feature of the STIS is the ability to time-link visual-
ization windows. Maps, statistical graphics, and tables
may be time-linked so that all of the views are synchro-
nized to the same point in time. Animating the time-
linked windows then displays the views simultaneously
changing through time. We use this feature to display the
changing residential locations of the cases and controls
along with the locations and emission volumes of arsenic-
producing industries. All of this is done within the context
of municipal water districts whose boundaries morph and
whose arsenic concentrations are dynamic. While this
map visualization is occurring we observe how the fre-
quency distributions of modelled arsenic exposure are
changing for the cases relative to that of the controls. Par-
ticipants (cases or controls) are thus easily evaluated and
compared to other participants in terms of their residen-
tial histories, and population-level characteristics, such as
the mean and dispersion for arsenic exposure estimates,
may be compared statistically as they evolve over time.

Statistical and Cartographic Brushing is employed to link
together the views associated with a given dataset. This is
made possible by using unique identifiers (such as the
Page 4 of 10
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participant ID's of the cases and controls, or the names of
the municipal water districts) to link together correspond-
ing values on the maps and statistical graphics. Statistical
brushing is used to select objects (such as the points on a
scatter plot) and to then highlight the corresponding
objects on maps and other statistical graphics. Carto-

graphic brushing occurs when objects are selected on a
map, and their corresponding values on the statistical
graphics are highlighted. We used statistical brushing to
select participants with high arsenic exposures, and to
then identify their locations on maps of their residential
histories. We use cartographic brushing to explore possi-

Change in water supply systems over 50 years (1935, 1965, 1995)Figure 1
Change in water supply systems over 50 years (1935, 1965, 1995) Over the years many towns in Oakland County and 
Genesee County begin to purchase surface water (from Detroit).

Participant movement over 20 yearsFigure 2
Participant movement over 20 years Cases (circles) and controls (squares) continue to move in, out, and around the 
study area. In 1960 there were two cases and one control. By 1982 four more cases and two more controls moved into the 
study area and in 2001 the same number of cases and controls remain in the area however one case and one control have 
moved addresses.
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ble associations between proximity to arsenic emitting
industries and the local densities of cases relative to the
controls.

Application of visualization procedures
We first investigate changes in the water supply systems
(Figure 1). It is clear that over a 50 year interval (from
1935–1995) private well owners and some community
ground water systems replaced their private wells or
ground water systems with a purchased surface water sys-
tem (hooking up to a larger system such as the Detroit
Sewer and Water System). Visualizing this information
over time is valuable as it shows areas that historically
might have been associated with high arsenic levels. It
also is used to help assign arsenic concentrations to previ-
ous residences. For some public ground or surface water

systems historic arsenic concentrations have been
recorded. For participants on such water supply systems
we therefore can directly assign water source arsenic con-
centrations. Historic arsenic concentrations for well water
supplies often are not available, and for these we interpo-
late arsenic concentration values using geostatistical pro-
cedures that account for values in nearby wells, spatial
covariance in these values, and their dependency on pre-
dictors such as groundwater geology [16].

Visualizing the movement of bladder cancer cases and
controls through time is crucial in our analysis of arsenic
exposure and how it relates to the incidence of bladder
cancer. Figure 2 presents participants at three different
time points (1960, 1982, 2001). A case is represented by
a circle and a control by a square. In 1960 there were two

Box plot of arsenic exposure in 1988 for cases (left) and controls (right)Figure 3
Box plot of arsenic exposure in 1988 for cases (left) and controls (right) The median is the black line that bisects the 
box. The upper and lower quartiles, the medians of the upper and lower halves of the data, are the edges of the black box. The 
"whiskers" on the box, the bars at the top and bottom, are 1.5X the interquartile range.
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cases and one control. By 1982 four more cases and two
more controls moved into the study area and in 2001 the
same number of cases and controls remain in the area.
Note that one case and one control have moved resi-
dences. The animated map thus informs us regarding the
residential mobility of the cases and controls. Spatial and
temporal subsets of these populations can then be
selected and statistically analyzed and summarized using
other visualization windows and statistical methods.

Analysis of arsenic exposure
In this analysis we are interested in the temporal variabil-
ity in arsenic exposure in cases versus controls as well as
clusters of high arsenic values. Arsenic exposure was calcu-
lated by multiplying arsenic concentration (µg/L) by
home consumption of water and beverages made with
water (L/day) at each residence and for each change in
water consumption. Data regarding water and beverage
consumption was obtained via survey [17]. We utilize the
box plot to look at means and interquartile ranges
through time (Figure 3 for 1988). The windows are time
linked and show cases (on the left) and controls (on the
right). A more evenly distributed exposure to arsenic in
the case subset is indicated by the large interquartile, and
1.5X interquartile range.

Time graph of arsenic exposure in cases (top) and controls (bottom)Figure 4
Time graph of arsenic exposure in cases (top) and controls (bottom) Notice the increase in arsenic for both sets 
after 1951. The increase in arsenic is much larger for controls and remains high for at least two individuals.

Arsenic in drinking water (2003/2004)Figure 5
Arsenic in drinking water (2003/2004) Each point repre-
sents an arsenic value taken from the kitchen tap at the 
present residence of each participant.
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The time plot is another visualization method and pro-
vides information over the entire time range (Figure 4 x-
axis equals time, y-axis represents arsenic exposure). This
graph shows general trends in this preliminary dataset. In
the early 1960's arsenic exposure was actually greater for
controls (bottom graph) than for cases (upper graph). We
also notice that the highest arsenic value (51 µg/L)
occurred for a control in 1964 and lasted until the end of
the study period. The highest value for a case (38 µg/L)
occurred later in the study period (1990). All records are
linked to the map view and an investigation of geograph-
ical clustering can occur in tandem with the temporal
analysis of the time plot.

In addition to the graphical analysis we employed statisti-
cal clustering methods to identify spatial clusters of
homes with high arsenic concentrations in their water
supplies. The Univariate Local Moran is a statistical
method used to detect local spatial autocorrelation by

decomposing Moran's I into contributions for each loca-
tion. Here, each location refers to an arsenic value sam-
pled at the home of each participant. Moran's I is a
weighted correlation coefficient that is used to determine
whether neighbouring areas are more similar than would
be expected under the null hypothesis. In this study the
local Moran statistic is used to detect where there are
statistically significant clusters of high (or low) arsenic
values in participants' drinking water. Data regarding
arsenic in drinking water was collected at the kitchen tap
of each participant from their present residence. Water
samples were stored on ice, acidified with 0.2% trace
metal grade nitric acid, and refrigerated until analysis.
Water samples were subsequently analyzed for arsenic
using an inductively coupled plasma mass spectrometer
(ICP-MS, Argilent Technologies Model 7500 c) [17]. A
map of arsenic values from participants' drinking water is
shown in Figure 5. The Local Moran analysis was per-
formed on this arsenic dataset resulting in a map of signif-

Local Moran analysis at two spatial scalesFigure 6
Local Moran analysis at two spatial scales Local Moran analysis with five nearest neighbours is on the left, and with ten 
nearest neighbours is on the right. Notice the appearance of the high-high cluster to the north, and the increase in size of the 
low-low cluster to the west as the size of the local neighbourhood is increased
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icant clusters (identifying areas as high-high clusters, low-
low clusters, low-high outliers, high-low outliers, and
areas not significant from background), and a local moran
scatterplot. Figure 6 is the result of the local Moran analy-
sis using spatial weights of five (left) and ten (right) near-
est neighbours, with 999 randomizations, at the alpha
level of 0.05. Generally the two maps look similar, and
this is corroborated by similar Global Moran's I values of
0.126279 for five nearest neighbours and 0.129596 for
ten nearest neighbours. However, there are differences
that arise from analysing spatial pattern at two different
local spatial scales. For example, in the northern region of
the ten nearest neighbour map we find high-high values
indicating high arsenic values surrounded by other high
arsenic values. We also see an area of low-low values in the
western part of the map, around Lansing. Households in
these low-low locations are generally on community
water supplies where arsenic values are kept below 50 µg/
L to comply with Environmental Protection Agency stand-
ards. Conducting the Local Moran analysis at different
neighbourhood sizes allows one to evaluate the sensitivity
of clustering to different spatial scales.

Conclusions
In this paper we presented a novel application of a space
time information system to analyze some preliminary
data in an ongoing case-control bladder cancer study. This
approach is significant in that it not only visualizes the
movement and attribute changes of spatial objects
(including cases, controls, arsenic producing industries,
and municipal water supplies) but also allows the user to
compare values of these objects over time by time-linking
windows. This ability to handle high temporal resolution
data is enabling new approaches to exposure assessment.
In the near future the STIS will be able to integrate expo-
sure assessment models using an Application Program-
mers Interface (API). Users will have the flexibility to
program specific models outside the software and then
visualize their outcome in the STIS using the API. For less
technically sophisticated users, a methods toolbar will be
included, where common modelling algorithms will be
made available using a simple calculator-type interface.
Other plans for the software include importing and sup-
porting raster files, exporting animated maps as movies
(for presentations), visualizing geospatial lifelines [18,19]
in a separate window once objects are selected, and
adding spatiotemporal clustering statistics to the methods
toolbar.
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