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Abstract
Background: Subcortical white matter hyperintensity on magnetic resonance imaging (MRI) of the brain,
referred to as leukoaraiosis, is associated with increased risk of stroke and dementia. Hypertension may
contribute to leukoaraiosis by accelerating the process of arteriosclerosis involving penetrating small
arteries and arterioles in the brain. Leukoaraiosis volume is highly heritable but shows significant inter-
individual variability that is not predicted well by any clinical covariates (except for age) or by single SNPs.

Methods: As part of the Genetics of Microangiopathic Brain Injury (GMBI) Study, 777 individuals (74%
hypertensive) underwent brain MRI and were genotyped for 1649 SNPs from genes known or
hypothesized to be involved in arteriosclerosis and related pathways. We examined SNP main effects,
epistatic (gene-gene) interactions, and context-dependent (gene-environment) interactions between these
SNPs and covariates (including conventional and novel risk factors for arteriosclerosis) for association with
leukoaraiosis volume. Three methods were used to reduce the chance of false positive associations: 1)
false discovery rate (FDR) adjustment for multiple testing, 2) an internal replication design, and 3) a ten-
iteration four-fold cross-validation scheme.

Results: Four SNP main effects (in F3, KITLG, CAPN10, and MMP2), 12 SNP-covariate interactions
(including interactions between KITLG and homocysteine, and between TGFB3 and both physical activity
and C-reactive protein), and 173 SNP-SNP interactions were significant, replicated, and cross-validated.
While a model containing the top single SNPs with main effects predicted only 3.72% of variation in
leukoaraiosis in independent test samples, a multiple variable model that included the four most highly
predictive SNP-SNP and SNP-covariate interactions predicted 11.83%.

Conclusion: These results indicate that the genetic architecture of leukoaraiosis is complex, yet
predictive, when the contributions of SNP main effects are considered in combination with effects of SNP
interactions with other genes and covariates.
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Background
Stroke and dementia are age-related neurological disor-
ders that cause considerable morbidity and financial bur-
den in the US, with a lifetime risk for developing one or
both of these disorders greater than 1 in 3 [1]. Risk factors
for stroke and dementia overlap in part with those for car-
diovascular disease (including age, sex, tobacco use,
hypertension, diabetes mellitus, and low physical activ-
ity), but it has been established that both disorders have a
significant genetic component that operates independ-
ently of these risk factors [2]. Although several rare genetic
variations have been identified that are associated with
significantly elevated risk of stroke or dementia, the vast
majority of genes that influence risk for these disorders
remain unidentified.

In an effort to increase the statistical power for detecting
genetic variants that have small effects on the develop-
ment of late-life endpoints, such as stroke and dementia,
quantitative endophenotypes are often used as an indica-
tor for risk of future disease. Endophenotypes may be
closer in the biological hierarchy to the underlying genetic
processes, including the influence of gene-environment
interactions, and thus may have a larger genetic compo-
nent than clinical disease endpoints.

Ischemic damage to the subcortical white matter that
manifests as white matter hyperintensity on magnetic res-
onance imaging (MRI) of the brain, referred to as leukoa-
raiosis, is associated with increased risk of stroke and
dementia [3-5]. One of the strongest predictors of leukoa-
raiosis is elevated blood pressure [6], in particular, inade-
quate blood pressure control in persons with
hypertension [7]. Hypertension is thought to contribute
to the pathology of leukoaraiosis through accelerating the
age-related process of arteriosclerosis resulting in ischemic
damage to penetrating small arteries and arterioles in the
subcortical white matter of the brain [8]. This connection
between hypertension and leukoaraiosis motivated the
measurement of this subclinical phenotype in a subsam-
ple of the Genetic Epidemiology Network of Arteriopathy
(GENOA) study of hypertensive sibships [9].

In the GENOA cohort, the heritability of the logarithm-
transformed measure of leukoaraiosis volume was 0.80,
which decreased to 0.68 after adjustment for sex, age,
systolic blood pressure, and brain volume [10]. In other
studies, the heritability of white matter hyperintensities
on MRI was estimated to be 0.73 in a study of male twins
[11] and 0.55 in the Framingham Heart Study [12].

To begin to explore the genetic architecture of this trait, we
identified SNPs (single nucleotide polymorphisms) in
268 genes that have been previously identified as playing

a role in processes related to arteriosclerosis including
blood pressure regulation, vascular wall biology, oxida-
tive stress, inflammation, obesity, diabetes, and lipopro-
tein metabolism. The goal of the present study was to
investigate the contributions, covariation, and interaction
among the many hypothesized genetic and environmen-
tal factors that may influence inter-individual variation in
leukoaraiosis. Using a systematic approach that simulta-
neously investigates the contributions of these factors (as
main effects or as part of interactions) and their underly-
ing covariation, this study is a first step toward under-
standing the complexity of the genetic architecture of
leukoaraiosis in order to begin to build multivariable
models that can reliably predict levels of structural brain
injury that may result from a person's unique combina-
tion of risk factors.

Methods
Study Population
The 777 study participants consisted of non-Hispanic
white adults (322 male and 455 female) from 357 sib-
ships that were initially enrolled in the Genetic Epidemi-
ology Network of Arteriopathy (GENOA) study, a
community-based study of hypertensive sibships that
aims to identify genes influencing blood pressure (BP)
[9,13]. The study was approved by the Institutional
Review Board of Mayo Clinic, Rochester MN, and written
informed consent was obtained from each participant. In
the initial phase of the GENOA study (9/1995 to 6/2001),
sibships containing ≥ 2 individuals with essential hyper-
tension diagnosed before age 60 years were selected for
participation. Participants returned for a second phase of
the study (12/2000 to 6/2004) which included a physical
examination and measurement of conventional and
novel risk factors.

As an ancillary study of GENOA conducted between
August 2001 and May 2006, the Genetics of Microangio-
pathic Brain Injury (GMBI) study was undertaken to
determine susceptibility genes for ischemic brain injury.
Leukoaraiosis was quantified by magnetic resonance
imaging (MRI) in 916 non-Hispanic white subjects who
participated in the second phase of the GENOA study, had
a sibling willing and eligible to participate in the GMBI
study, and had no history of stroke or neurological disease
and no implanted metal devices. The median time
between the second GENOA examination and the GMBI
brain MRI was 11.9 months. Brain MRIs were suitable for
analysis in 883 of the 916 participants; in the 33 without
analyzable data, the most common reasons were unsus-
pected prior brain infarctions, masses, metallic artifacts,
and failure to complete the MRI. After removing individ-
uals who did not have genotyping data available, the final
analysis subset consisted of 777 GMBI participants.
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Clinical Assessments and Covariate Definitions
The diagnosis of hypertension was established based on
BP levels measured at the study visit (>140 mmHg average
systolic BP or >90 mmHg average diastolic BP) or a prior
diagnosis of hypertension and current treatment with
antihypertensive medications. Height was measured by
stadiometer, weight by electronic balance, and body mass
index (BMI) was calculated as weight in kilograms divided
by the square of height in meters. Resting systolic blood
pressure (SBP) and diastolic blood pressure (DBP) were
measured by a random zero sphygmomanometer, and
pulse pressure was calculated as the difference between
SBP and DBP. A person was considered having ever
smoked if they had smoked more than 100 cigarettes in
their lifetime, was considered to have coronary heart dis-
ease if they had ever experienced a myocardial infarction
or had surgery for a blocked artery in the heart or neck
(carotid artery), and was considered obese if they had a
BMI > 30 kg/m2.

Blood was drawn by venipuncture after an overnight fast.
Serum triglycerides (TG), creatinine, total cholesterol, and
high-density lipoprotein (HDL) cholesterol were meas-
ured by standard enzymatic methods on a Hitachi 911
Chemistry Analyzer (Roche Diagnostics, Indianapolis
IN), and low-density lipoprotein (LDL) cholesterol levels
were calculated using the Friedewald formula [14]. Five
novel vascular risk factors including C-reactive protein,
homocysteine, fibrinogen, Lp(a), and LDL particle size
were also measured. C-reactive protein was measured by a
highly sensitive immunoturbidimetric assay [15], fibrino-
gen was measured by the Clauss (clotting time based)
method [16], and plasma homocysteine was measured by
high-pressure liquid chromatography. Lp(a) in serum was
measured by an immunoturbidimetric assay using the
SPQ™ Test System (Diasorin, Stillwater MN) as previously
described [17], and LDL particle size was measured by
polyacrylamide gel electrophoresis [18]. Level of physical
activity was calculated as a continuous variable based on
the self-reported average number of hours per day that the
subject engaged in heavy, moderate, and sedentary activi-
ties according the following formula: 2*Heavy + Moder-
ate – 2*Sedentary.

Leukoaraiosis volume (cm3) was obtained via magnetic
resonance imaging (MRI) in a separate clinical visit. All
MRI scans were performed on identically equipped Signa
1.5 T MRI scanners (GE Medical Systems, Waukesha, WI,
USA) and images were centrally processed at the Mayo
Clinic. Symmetric head positioning with respect to
orthogonal axes was verified by a series of short scout
scans. Total intracranial volume (head size) was measured
from T1-weighted spin echo sagittal images, each set con-
sisting of 32 contiguous 5 mm thick slices with no
interslice gap, field of view = 24 cm, matrix = 256 × 192,

obtained with the following sequence: scan time = 2.5
min, echo time = 14 ms, repetitions = 2, replication time
= 500 ms [19]. Total brain and leukoaraiosis volumes
were determined from axial fluid-attenuated inversion
recovery (FLAIR) images, each set consisting of 48 contig-
uous 3-mm interleaved slices with no interslice gap, field
of view = 22 cm, matrix = 256 × 160, obtained with the
following sequence: scan time = 9 min, echo time = 144.8
ms, inversion time = 2,600 ms, repetition time = 26,002
ms, bandwidth = +/- 15.6 kHz, one signal average. A
FLAIR image is a T2-weighted image with the signal of the
cerebrospinal fluid nulled, such that brain pathology
appears as the brightest intracranial tissue. Interactive
imaging processing steps were performed by a research
associate who had no knowledge of the subjects' personal
or medical histories or biological relationships. A fully
automated algorithm was used to segment each slice of
the edited multi-slice FLAIR sequence into voxels assigned
to one of three categories: brain, cerebrospinal fluid, or
leukoaraiosis. The mean absolute error of this method is
1.4% for brain volume and 6.6% for leukoaraiosis vol-
ume, and the mean test-retest coefficient of variation is
0.3% for brain volume and 1.4% for leukoaraiosis volume
[20]. White matter hyperintensities in the corona-radiata
and periventricular zone, as well as central gray infarcts
(ie, lacunes) were included in the global leukoaraiosis
measurements. Brain scans with cortical infarctions were
excluded from the analyses because of the distortion of
the leukoaraiosis volume estimates that would be intro-
duced in the automated segmentation algorithm.

Genotyping
One thousand nine hundred and fifty six SNPs from 268
genes known or hypothesized to be involved in blood
pressure regulation, lipoprotein metabolism, inflamma-
tion, oxidative stress, vascular wall biology, obesity and
diabetes were identified from the genetic association liter-
ature and positional candidate gene studies [21]. SNPs
were chosen based on a number of different criteria
including the published literature, non-synonymous
SNPs with a minor allele frequency (MAF) > 0.02, and tag
SNPs identified using public databases such as dbSNP
http://www.ncbi.nlm.nih.gov/SNP/ and the Seattle SNPs
database http://pga.mbt.washington.edu.

DNA was isolated using the PureGene DNA Isolation Kit
from Gentra Systems (Minneapolis MN). Genotyping,
based on polymerase chain reaction (PCR) amplification
techniques, was conducted at the University of Texas-
Health Sciences Center at Houston using the TaqMan
assay and ABI Prism® Sequence Detection System (Applied
Biosystems, Foster City CA). Primers and probes are avail-
able from the authors upon request. Quality control
measures for genotyping assays included robotic liquid
handling, separate pre- and post-PCR areas, standard pro-
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tocols and quality control analyses including 5% dupli-
cates, positive and negative controls, computerized
sample tracking, and data validity checks. After removal of
SNPs that were monomorphic in the study sample, 1649
SNPs remained for analysis (see Additional file 1).

Statistical Analysis
All analyses were carried out using the R statistical lan-
guage, version 2.8 [22]. Covariate correlations were esti-
mated using Pearson's product moment correlation.
Linkage disequilibrium (LD), as measured by r2 [23], was
estimated using an expectation maximization (EM) algo-
rithm. Hardy-Weinberg Equilibrium was assessed using a
chi-square test or Fisher's exact test if a genotype class had
less than 5 individuals [24]. Variables that showed a large
deviation from a normal distribution in diagnostic plots,
including leukoaraiosis, were transformed by taking the
natural logarithm. The outcome variable for all models is
the residual value of the natural logarithm of leukoaraio-
sis volume (cm3) after adjustment for age, sex, and total
brain volume.

In the first stage of the analysis, we tested for association
between leukoaraiosis and each of the predictor variables
(SNPs and quantitative covariates) using least-squares lin-
ear regression methods [24,25]. Categorical covariates
were modeled using logistic regression [25]. We also
tested for association between each SNP and covariate to
identify potential confounders. To determine whether
interactions among predictors explained additional varia-
tion in the outcome, we tested pairwise interactions
among all possible pairs of predictors (i.e. SNP-SNP, SNP-
covariate, and covariate-covariate interactions) for all cov-
ariates and the 444 SNPs that had a model p-value < 0.2
in the association testing described above. Associations
involving interactions were assessed with a partial F test,
which compares a full model that includes both the inter-
action terms and the main effects of the variables compris-
ing the interaction terms to a reduced model that includes
only the main effects. Models with a p-value < 0.1 (for sin-
gle variable models) or a partial F p-value < 0.1 (for mod-
els with interaction terms) were evaluated in the next stage
of analysis.

To reduce false positives we used three different
approaches: 1) adjustment for multiple testing using the
False Discovery Rate (FDR) < 0.30 [26], 2) internal repli-
cation with two subsets of the data (constructed so indi-
viduals were unrelated within subset), and 3) four-fold
cross-validation (repeated 10 times) [27]. To create inter-
nal replication subsets, we randomly selected one sibling
from each sibship without replacement to create subset 1
and then randomly selected another sibling from each
sibship to create subset 2. The GMBI cohort contained a
small number of singletons (ie, subjects who had no

enrolled sibling) that were equally divided between the
two samples. Associations that had a p-value < 0.1 in both
subsets were considered internally replicated if the effect
of the genotype was homogeneous among subsets (the
partial F p-value > 0.05 from a test of the interaction
between subset designation and the predictors(s) under
consideration).

Cross-validation significantly reduces false positive results
by eliminating associations that lack predictive ability in
independent test samples. For each association, we per-
formed four-fold cross-validation by dividing the full
sample into four equally sized groups. Three of the four
groups were combined into a training dataset, and the
modeling strategy outlined above was carried out to esti-
mate model coefficients. These coefficients were then
applied to the fourth group, the testing dataset, to predict
the value of the outcome variable for each individual in
this independent test sample. This process was repeated
for each of the four testing sets. Predicted values for all
individuals in the test set were then subtracted from their
observed values, yielding the total residual variability

(SSE), . The total variability in the outcome

(SST) – the difference between each individual's observed
value and the mean value for the outcome – was then cal-

culated, . In order to estimate the proportion

of variation in the outcome predicted in the independent
test samples, the cross-validated R2 (CV R2) was calculated

as follows: . This cross-validation

method provides a more accurate measure of the predic-
tive ability of the genetic models and will be negative
when the model's predictive ability is poor. Because ran-
dom variations in the sampling of the four mutually
exclusive test groups can potentially impact the estimates
of CV R2, this procedure was repeated 10 times and the CV
R2 values were averaged [27].

Univariate associations were considered cross-validated if
the average percent variation predicted in independent
test samples was greater than 0.5% and interactions were
considered cross-validated if the difference in average per-
cent variation predicted in independent test samples
between the full model containing the interaction term
and the reduced model containing only main effect terms
was greater than 0.5%. Using permutation testing on the
models investigated in this paper, we found that the prob-
ability of observing a CV R2 × 100 greater than 0.5% by
chance alone was less than 5%. That is, Pr(CV R2 × 100 >
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0.5%) < 0.05 under the null hypothesis of no association.
Due to small cell sizes (<4 subjects in a particular class),
0.3% of the SNP-covariate interaction models and 2.3%
of the SNP-SNP interaction models were unable to com-
plete the cross-validation procedure.

All single SNP or interaction models that passed the three
different approaches for reducing false positives (FDR,
internal replication, and cross-validation) were modeled
using linear mixed effects (LME) [28], which accounts for
the sibship structure among GMBI study participants
while retaining a valid type I error rate [29]. Associations
with a p-value <0.1 in the F test (described above) but a p-
value >0.1 from the likelihood ratio test of the appropriate
full and reduced mixed effects models were considered to
be associations due to family structure and were removed
from the results.

To visualize the genetic architecture of leukoaraiosis vol-
ume, we applied a novel data visualization scheme, the
KGraph, described in Kelly et al. [30]. The KGraph was
developed for the visualization of genetic association
results and the underlying relationships among predictors
such as SNP-SNP frequency correlations (i.e. LD), SNP-
covariate associations, and covariate-covariate correla-
tions. It simultaneously displays both significant univari-
ate associations and pairwise interactions with the
outcome of interest, leukoaraiosis volume, as well as the
underlying correlation structure among the predictor var-
iables.

In the final step, multivariable linear regression models
combining the most predictive SNPs, covariates, and their
interactions were constructed. The top four single SNP,
SNP-covariate, and SNP-SNP interaction models were
chosen for multiple variable modeling based on the fol-
lowing criteria: 1) passed all three filters to reduce false
positive associations (FDR, internal replication, and cross-
validation), 2) had the highest CV R2 values of the partic-
ular modeling strategy, and 3) didn't involve SNPs in
strong LD with SNPs already included in the multiple var-
iable model. Percent variation in leukoaraiosis volume
explained by each model was assessed with the adjusted
R2 value, and predictive ability of the models was assessed
by four-fold, ten-iteration cross-validation (CV R2 value).

Results
Descriptive Statistics
Descriptive statistics of the clinical covariates and out-
comes are shown in Table 1. The mean age of the partici-
pants was 59.7 years and 58.6% of participants were
female. Participants had a mean BMI of 30.5 kg/m2, waist-
to-hip ratio of 0.91, SBP of 131.4 mmHg, and DBP of 74.0
mmHg. The distribution of leukoaraiosis is shown in Fig-
ure 1. The mean volume of leukoaraiosis was 7.80 cm3

(median = 5.92 cm3) and the mean brain size was 1159
cm3. Allele and genotype frequencies, rs numbers from
dbSNP, SNP positions and annotations (synonymous,
non-synonymous, intron, etc), and test results for Hardy-
Weinberg equilibrium are reported in Additional file 1.

Associations
Table 2 shows a summary of the results from testing for
SNP main effects, SNP-covariate interactions, and SNP-
SNP interactions. Of the 1649 SNPs that were evaluated
for their association with leukoaraiosis, 37 had FDR<0.3,
15 internally replicated, 23 cross-validated, and only four
met all three criteria. In tests for SNP-covariate interac-
tion, 1561 interactions had a FDR<0.3, 834 internally rep-
licated, 1887 cross-validated, and only 12 met all three
criteria. In tests for SNP-SNP interactions, one hundred
and seventy three SNP-SNP interactions passed all three
criteria, and the top 20 most predictive of these interac-
tions are listed in Table 3 along with the single SNP main
effects and 12 SNP-covariate interactions that met all
three criteria (see Additional file 2 for a complete list of
SNP-SNP interactions that passed all three criteria).

Figure 2 shows a KGraph, a visual representation of the
complex associations among genetic, demographic, and
biochemical factors that underlie variation in leukoaraio-
sis volume. Using both color and spatial relationships, the
KGraph presents both associations with leukoaraiosis and
the correlation structure of the predictors that underlie
those associations. A key to the eight regions of the
KGraph is located in the lower left corner of Figure 2.
Included on the KGraph are all of the covariates that were
investigated in the study, SNPs that were involved in a sin-

The Distribution of Leukoaraiosis Volume (cm3) in GENOA-GMBI Study ParticipantsFigure 1
The Distribution of Leukoaraiosis Volume (cm3) in 
GENOA-GMBI Study Participants.
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gle SNP or SNP-covariate association that passed all three
filters, and SNPs that were involved in at least one of the
20 most highly predictive SNP-SNP interactions that
passed all three filters. All associations involving these
SNPs and covariates are presented on the KGraph, and
those that passed all three filters are indicated by a hori-
zontal black bar.

Region 1 in Figure 2, shown in green, displays the associ-
ation between the SNPs and covariates, one source of
information about the underlying pathways. The majority
of SNP-covariate associations were accounted for by three
SNPs in the factor VIII (F8) gene that were associated with
log serum creatinine, height, HDL cholesterol, waist-to-
hip ratio, and weight. Region 2, shown in grey, illustrates
the correlations between the covariates. The majority of
the covariates are significantly associated with one
another (p-value < 0.05). Region 3, in red, shows the
observed LD, estimated in a sample of 357 unrelated indi-
viduals from the study sample. As expected, significant LD
(r2 > 0.5) occurs only between SNPs that are within the
same gene.

The remaining regions are colored blue, indicating that
they represent associations with the outcome of interest,
leukoaraiosis. Region 4, which displays the univariate

association between the covariates and leukoaraiosis,
shows that only age had an association that met all three
criteria. Region 5, which illustrates univariate associations
between the SNPs and leukoaraiosis, shows that four
SNPs have significant, replicated and cross-validated asso-
ciations (F3_rs3917643, CAPN10_rs7571442,
MMP2_rs9928731, KITLG_rs995029). Region 6 displays
the covariate-covariate interactions that are significantly
associated with leukoaraiosis, but no interactions of this
type passed all three filters. Region 7 displays the interac-
tions between the SNPs and covariates that were associ-
ated with leukoaraiosis. Overall, we detected 12
interactions that replicated and cross-validated, though
two pairs of SNP-covariate interactions appear to be mark-
ing the same association, due to strong LD between the
involved SNPs. Region 8 displays the epistatic (SNP-SNP)
interactions significantly associated with leukoaraiosis.
We detected 173 replicated and cross-validated, statisti-
cally significant pairwise interactions between SNPs. The
most predictive interactions included those between SNPs
in RHAG and GLS, F8 and MPO, SLC20A1 and IL22RA,
KITLG and TLR4, NMUR1 and GPR55, ACCN4 and
TNFSF10, and CX3CR1 and F2. Interactions between two
genes that appear more than once in the SNP-SNP results
are almost entirely due to strong LD between involved
SNPs.

Table 1: Descriptive Statistics for Study Participants

Full Sample Subset 1 Subset 2 Association with Outcomea in Full Sample
N Mean (± SD) N Mean (± SD) N Mean (± SD) β estimate

Leukoaraiosis volume (cm3) 777 7.80 (6.31) 316 7.90 (6.18) 316 7.95 (6.49) NA
Age, yearsb 777 59.7 (10.1) 316 59.9 (10.4) 316 59.9 (9.7) 0.0295***
BMI, kg/m2 777 30.5 (5.8) 316 30.3 (5.8) 316 30.8 (5.7) -0.003
Height, cm 777 168 (9.2) 316 169 (9.6) 316 169 (9.4) -0.0003
Weight, kg 777 86.3 (18.6) 316 86.9 (18.8) 316 87.9 (18.5) -0.0009
Waist-to-hip ratio 777 0.91 (0.11) 316 0.92 (0.12) 316 0.92 (0.10) 0.2162
SBP, mm Hg 776 131.4 (16.5) 316 131.8 (17.0) 315 131.6 (16.3) 0.0015
DBP, mm Hg 776 74.0 (9.0) 316 73.9 (8.6) 315 74.5 (9.1) 0.0052**
Pulse pressure, mm Hg 776 57.4 (15.3) 316 57.9 (15.8) 315 57.1 (15.0) 8.1 E-06
Total cholesterol, mg/dL 777 197.4 (33.7) 316 193.4 (33.4) 316 197.4 (32.3) -0.0008
Triglycerides (log), mg/dL 777 4.93 (0.52) 316 4.92 (0.54) 316 4.99 (0.48) 0.0354
HDL cholesterol, mg/dL 777 51.9 (14.6) 316 51.4 (14.8) 316 50.0 (13.6) 0.0007
LDL cholesterol, mg/dL 777 120.1 (31.9) 316 116.9 (31.7) 316 121.1 (31.5) -0.0011*
LDL particle size, Å 777 270.2 (5.0) 316 270.3 (5.1) 316 269.8 (4.8) -0.0041
Lp(a), mg/dL 777 2.71 (1.21) 316 2.76 (1.17) 316 2.63 (1.22) -0.0047
C-reactive protein (log), mg/L 775 -1.33 (0.97) 314 -1.41 (0.91) 316 -1.30 (0.98) -0.0015
Fibrinogen, mg/dL 772 319.9 (76.1) 314 316.8 (71.4) 314 323.5 (77.2) 9.9 E-05
Homocysteine (log), μmol/L 777 2.25 (0.25) 316 2.26 (0.25) 316 2.26 (0.25) 0.0499
Creatinine (log), mg/dL 777 -0.16 (0.26) 316 -0.14 (0.27) 316 -0.13 (0.25) 0.0453
Physical activity 777 -9.89 (7.53) 316 -10.11 (7.71) 316 -9.74 (7.50) -0.0018
Female, n (%)c 777 455 (58.6%) 316 161 (50.9%) 316 163 (51.6%) -0.0524
Ever smoker, n (%) 777 378 (48.6%) 316 166 (52.5%) 316 151 (47.8%) -0.0187
Coronary heart disease, n (%) 777 57 (7.3%) 316 25 (7.9%) 316 25 (7.9%) 0.0722
Hypertension, n (%) 777 575 (74.0%) 316 241 (76.3%) 316 240 (75.9%) -0.0061

a The β estimates and significance values shown are for association with leukoaraiosis volume transformed using the natural logarithm and adjusted for age, sex, and total brain 
volume.
b The β estimate and significance value shown are for association with leukoaraiosis volume transformed using the natural logarithm and adjusted for sex and total brain 
volume.
c The β estimate and significance value shown are for association with leukoaraiosis volume transformed using the natural logarithm and adjusted for age and total brain 
volume.
*p < 0.05; **p < 0.01; ***p < 0.001
BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HDL, high density lipoprotein; LDL, low density lipoprotein; Lp(a), lipoprotein A
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Predictive Modeling
To begin to assess the combined predictive ability of the
top SNPs, covariates, and their interactions, we con-
structed multiple variable models as described in the
Methods section (Table 4). The four single SNPs that met
all three criteria explained 5.99% of variation in leukoa-
raiosis (adjusted R2) and had a CV R2 × 100 value of
3.72%. A model that included the main effects and inter-
action terms from the top four SNP-covariate interactions
explained 7.88% of the variation in leukoaraiosis (CV R2

× 100 = 4.53%), while a model including only the SNP
and covariate main effect terms had a negative CV R2,
indicating poor predictive performance. A model consist-
ing of the top four SNP-SNP interactions explained
14.73% of variation in leukoaraiosis (CV R2 × 100 =
9.59%), while the model containing only the SNP main
effects explained only 6.12% (CV R2 × 100 = 2.27%), indi-
cating that the SNP-SNP interaction terms explained an
additional 7.61% of variation (difference in CV R2 × 100
= 7.32%). Finally, a model that contained both the top
four SNP-covariate and the top four SNP-SNP interactions
explained 19.18% of the variation in leukoaraiosis (CV R2

× 100 = 11.83%), while the reduced model containing
only the SNP and covariate main effects terms explained
7.18% (CV R2 × 100 = 1.30%). Therefore, the combina-
tion of SNP-SNP and SNP-covariate interactions was the
most predictive model, explaining an additional 12.00%
variation in leukoaraiosis (difference in CV R2 × 100 =
10.80%).

Discussion
Although there have been several studies of the influence
of polymorphisms in candidate genes on essential hyper-
tension, stroke, and dementia, little research has been
done on the impact of specific candidate gene polymor-
phisms on leukoaraiosis. Our motivating hypothesis for
this work was that polymorphisms in underlying arterio-
sclerotic pathways may influence leukoaraiosis both
directly and through interactions with environmental,

demographic, and behavioral risk factors or other genetic
polymorphisms.

Except for age and blood pressure, conventional risk fac-
tors do not significantly predict leukoaraiosis in our study.
However, these covariates predict a large fraction (~30%)
of variation in leukoaraiosis. After adjustment for age and
sex, four SNPs passed all three filters to reduce false posi-
tives and significantly predicted this phenotype. These
SNPs represent several distinct physiological pathways,
including blood coagulation (F3) [31], endothelial and
hematopoietic stem cell proliferation (KITLG) [32], pro-
tease pathways contributing to diabetes (CAPN10) [33],
and extracellular matrix remodeling (MMP2) [34]. This
result emphasizes that leukoaraiosis is a complex pheno-
type that is influenced by genetic variation in several
underlying biological processes, in part accounting for
inability to predict an individual's leukoaraiosis volume
with information regarding conventional and novel risk
factors for arteriosclerosis.

In addition to having a significant main effect, the KIT
tyrosine kinase receptor ligand (KITLG) shows context-
dependent effects through interaction with homocysteine
and with toll-like receptor 4 (TLR4), a mediator of
immune response. Several other interactions also suggest
a role for immune response and inflammation in the
development of leukoaraiosis including gene-environ-
ment interactions between IL28RA (class II cytokine
receptor) and small dense LDL size, IL22RA1 (class II
cytokine receptor) and coronary heart disease, and both
LTA4H (leukotriene hydroxylase) and PCSK9 (which
plays a role in LDL receptor degradation) and homo-
cysteine. Gene-gene interactions that support a role for
immunity and inflammation in the disease process
include an interaction between IL22RA1 and SLC20A1 (a
receptor for retroviruses) and several interactions between
an immune factor and a platelet factor such as that
between MPO (myeloperoxidase, responsible for microbi-

Table 2: Quantitative summary of genetic associations with leukoaraiosisa that replicated internally, cross-validated, and passed FDR 
criterion

SNP Main Effects SNP-Covariate Interactions SNP-SNP Interactions

Number of tests in full sample 1649 10625 96053
Model p < 0.10 on full sample 286 1344 12673
FDR (q<0.30) on full sample 37 71 1561
Replication (Model p < 0.10 in both subsets) 15 103 834
Cross-validation (CV R2 > 0.005) on full sample 23 189 1887
FDR and Replication 7 20 281
FDR and Cross-validation 22 39 763
Replication and Cross-validation 4 30 249
FDR and Replication and Cross-validationb 4 12 173

a For all associations, the outcome was leukoaraiosis volume transformed using the natural logarithm and adjusted for age, sex, and total brain 
volume.
b All associations remained significant (p-value < 0.1) in a linear mixed effects model with family as a random effect.
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cidal activity) and platelet factor 8 (F8) and between
CX3CR1 (a cytokine for leukocytes) and platelet factor 2
(F2). An interaction between NMUR1 (a G-protein cou-
pled activator that appears to be involved in regulation of
food intake) and GPR55 (a G-protein coupled receptor)
also points to genetic variation in signal transduction
pathways playing a role in leukoaraiosis development.

Recent work has suggested a number of new potential cel-
lular mechanisms (e.g. endothelial dysfunction, mito-
chondrial energy metabolism, protein transport) that may
play a role in the development of leukoaraiosis and have
not been considered previously in candidate gene selec-
tion [35,36]. Several unexpected context-dependent
effects have also been shown to consistently impact the

Table 3: Genetic effects that replicated internally, cross-validated, and passed FDR criterion

Main Effects (4) SNP Subset 1 p-value Subset 2 p-value Full Sample p-value R2 × 100 CV R2 × 100

F3_rs3917643 0.0477 0.0270 0.0021 1.58 1.05
KITLG_rs995029 0.0001 0.0921 0.0001 2.33 0.96
CAPN10_rs7571442 0.0856 0.0318 0.0021 1.70 0.59
MMP2_rs9928731 0.0161 0.0383 0.0032 1.48 0.56

SNP-Covariate 
Interactions (12)

SNP Covariate Subset 1 p-value Subset 2 p-value Full Sample p-value R2 × 100 CV R2 × 100

KITLG_rs1492347 Log homocysteine 0.0002 0.0640 0.0003 4.37 1.57
ITGB3_rs3851806 Height 0.0286 0.0101 0.0010 2.54 1.51
TGFB3_rs2284791 Log C-reactive 

protein
0.0073 0.0173 0.0003 2.92 1.51

TGFB3_rs2284791 Physical activity 0.0885 0.0015 0.0007 2.69 1.46
TGFB3_rs2268622 Log C-reactive 

protein
0.0026 0.0360 0.0003 2.86 1.42

KITLG_rs995029 Log homocysteine 0.0002 0.0621 0.0003 4.42 1.40
IL28RA_rs11587500 LDL particle size 0.0026 0.0014 0.0004 2.79 1.26
ACCN4_rs1872858 Fibrinogen 0.0494 0.0339 0.0010 2.59 1.24
LTA4H_rs17025079 Log homocysteine 0.0006 0.0709 0.0001 3.41 1.16
PCSK9_rs10888896 Log homocysteine 0.0239 0.0567 0.0009 2.33 1.13
IL22RA1_rs3795299 CHD 0.0859 0.0138 0.0009 2.41 0.70
SERPINE1_rs2227672 Body mass index 0.0113 0.0219 0.0003 2.69 0.54

SNP-SNP 
Interactions 
(20 of 173)

SNP1 SNP2 Subset 1 p-value Subset 2 p-value Full Sample p-value R2 × 100 CV R2 × 100

RHAG_rs11759060 GLS_rs1921913 0.0032 0.0225 8.0 E-06 5.49 2.61
F8 _rs7053448 MPO_rs34704261 0.0354 0.0279 0.0001 4.10 2.58
RHAG_rs11759060 GLS_rs3771316 0.0032 0.0225 8.0 E-06 5.49 2.55
MPO_rs34704261 F8_rs1800291 0.0362 0.0279 0.0001 4.10 2.44
SLC20A1_rs10758 IL22RA1_rs12093987 0.0439 0.0085 4.0 E-05 5.44 2.35
SLC20A1_rs3827758 IL22RA1_rs12093987 0.0315 0.0915 0.0004 3.88 2.27
KITLG_rs995029 TLR4_rs1927911 0.0035 0.0586 5.0 E-05 5.58 2.27
SLC20A1_rs1053652 IL22RA1_rs12093987 0.0237 0.0045 5.0 E-05 5.07 2.22
MPO_rs34704261 F8_rs4898399 0.0433 0.0315 0.0002 4.18 2.11
RHAG_rs2518100 GLS_rs1921913 0.0029 0.0534 0.0001 4.50 2.11
MMP2_rs243834 IL28RA_rs4330872 0.0136 0.0856 0.0002 4.46 2.09
RHAG_rs2518100 GLS_rs3771316 0.0029 0.0534 0.0001 4.50 1.95
MPO_rs8077532 F8_rs1800291 0.0417 0.0802 0.0003 3.93 1.93
NMUR1_rs10933376 GPR55_rs2969126 0.0945 0.0022 4.3 E-05 5.03 1.90
ACCN4_rs3770234 TNFSF10_rs3136596 0.0246 0.0007 0.0001 4.65 1.84
PRKAR2B_rs257376 PKRAR2B_rs3729877 0.0085 0.0027 4.8 E-05 3.55 1.84
CX3CR1_rs2853712 F2_rs3136435 0.0153 0.0480 0.0010 3.31 1.82
KITLG_rs1492347 TLR4_rs10116253 0.0049 0.0577 0.0001 5.44 1.81
F8_rs7053448 MPO_rs8077532 0.0417 0.0802 0.0003 3.93 1.81
MPO_rs8077532 F8_rs4898399 0.0515 0.0822 0.0006 4.04 1.81

For all associations, the outcome was leukoaraiosis volume transformed using the natural logarithm and adjusted for age, sex, and total brain volume.
P-value refers to the model p-value (SNP main effects) or the partial F-test p-value of the interaction terms (SNP-Covariate interactions and SNP-SNP interactions).
For SNP-Covariate and SNP-SNP interaction models, CV R2 × 100 refers to the difference in CV R2 × 100 between the full model (including interaction terms) and the 
reduced model (including main effects only).
ACCN4 amiloride-sensitive cation channel neuronal 4;CAPN10 calpain 10 (cysteine protease); CX3CR1 chemokine, CX3C motif, receptor 1; F2 coagulation factor 2; F3 
coagulation factor 3; F8 coagulation factor 8; GLS glutaminase, phosphate activated; GPR55 G protein-coupled receptor 55;IL22RA1 interleukin 22 receptor, alpha-1;IL28RA 
interleukin 28 receptor; ITGB3 integrin, beta-3; KITLG KIT tyrosine kinase receptor ligand; LTA4H leukotriene A4 hydroxylase; MMP2 matrix metalloproteinase 2 (72 kDa type 
IV collagenase); MPO myeloperoxidase; NMUR1 neuromedin U receptor 1 (G protein-coupled receptor 66);PCSK9 proprotein convertase, subtilisin/kexin-type, 9;PRKAR2B 
protein kinase, cAMP-dependent, regulatory, type II, beta; RHAG rhesus blood group-associated glycoprotein; SERPINE1 plasminogen activator inhibitor 1; SLC20A1 solute 
carrier family 20 (phosphate transporters), member 1; TGFB3 transforming growth factor, beta 3; TLR4 toll-like receptor 4; TNFSF10 tumor necrosis factor ligand superfamily, 
member 10
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leukoaraiosis phenotype [37]. In addition, animal and
plant studies have recently shown more gene-gene (epi-
static) interactions than previously expected [38]. Given
the biological complexity of the leukoaraiosis phenotype,
it is not surprising that epistatic interactions and context-
dependent effects play a large role and explain a larger
proportion of variation in the phenotype than single cov-
ariate or SNP effects alone in this study. In accordance

with this notion, multiple variable predictive modeling
that was performed with the most highly ranked single
SNP associations, SNP-covariate interactions, and SNP-
SNP interactions shows that the variation explained by
the SNP-covariate and SNP-SNP interactions (19.18%, CV
R2 × 100 = 11.83%) was much higher than that explained
by the main effects of these variables alone (7.18%, CV R2

× 100 = 1.30%).

KGraph: Genetic Architecture of Log LeukoaraiosisFigure 2
KGraph: Genetic Architecture of Log Leukoaraiosis. Using 8 regions, the KGraph shows the relationships between the 
SNPs, covariates, and outcome by displaying the results from tests of correlation, linkage disequilibrium, association and FDR/
Replication/Cross-validation. The key at the bottom of the graphic shows the test criterion for each region and the colors 
associated with the test result. The region number key in the lower left corner shows the location of each region, and indicates 
whether the results in the region were assessed using FDR/Replication/Cross-validation (shaded regions). A black bar in the 
cell indicates that the association passed all three of these criteria. Region 1 displays the association between the SNPs and the 
covariates, region 2 displays the correlation between the covariates, and region 3 displays the linkage disequilibrium between 
the SNPs. Region 4 displays covariate association with leukoaraiosis, region 5 displays SNP association with leukoaraiosis, 
region 6 displays covariate-covariate interactions predicting leukoaraiosis, region 7 displays SNP-covariate interactions predict-
ing leukoaraiosis, and region 8 displays SNP-SNP (epistatic) interactions predicting leukoaraiosis. Included on the KGraph are 
all of the covariates that were investigated in the study, SNPs that were involved in a single SNP or SNP-covariate association 
that passed all three filters, and SNPs that were involved in at least one of the 20 most predictive SNP-SNP interactions that 
passed all three filters.
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Failure to find replicated SNP effects across studies has sig-
nificantly limited the utility of genetic association results.
Manly [39] suggests that internal validation methods,
such as cross-validation, can be implemented as one way
to avoid false positives. Cross-validation is an established
method for discriminating between true associations and
false positives that is based on predictive performance in
independent test cases [40], and it has been used in a
number of fields that deal with high-dimensional "omics"
data [41-44]. Another popular method for reducing false
positive associations is to control the false discovery rate,
for example, using Storey's q-value [26]. There is a rela-
tively low level of agreement between results filtered
through different methods of reducing false positives
(FDR q-value < 0.3, internal replication, and cross-valida-
tion), emphasizing the need for multiple false positive
reduction methods.

Our study has several limitations. The design of the study
is based on the premise that susceptibility alleles for com-
mon diseases are not under strong selective pressures and
are relatively abundant in the population (i.e., the "com-

mon disease, common variant" hypothesis). Since the
entire allelic spectrum for genes associated with quantita-
tive measures of leukoaraiosis has not been fully deline-
ated, our study was limited to candidate gene choices
based on physiological and biological knowledge of leu-
koaraiosis. In addition, it is possible that multiple rare
polymorphisms in the positional and biological candi-
date genes we studied also influence the phenotype; how-
ever, this study was underpowered to detect this type of
effect. Since this study was conducted in a cohort of pri-
marily hypertensive non-Hispanic white adults, the infer-
ences may not be generalizable to individuals who are
younger, normotensive, or of other ethnicities. Despite
these limitations, our approach illustrates the use of poly-
morphisms in candidate genes to formulate a more com-
plete understanding of the genetic architecture of complex
traits such as leukoaraiosis.

Conclusion
The genetic architecture of complex traits such as leukoa-
raiosis, a marker of increased risk of stroke and dementia,
is comprised of SNP and covariate main effects, gene-gene

Table 4: Multivariable analysis to assess combined predictive ability of the best SNPs, covariates, and interactions

Model Adjusted R2 × 100 CV R2 × 100

1. Top Single SNPs 5.99 3.72

2. Top 4 SNP*Covariate Interactions
Full Model 7.88 4.53

Reduced Model 2.64 -0.06
Differencea 4.53

3. Top 4 SNP*SNP Interactions
Full Model 14.73 9.59

Reduced Model 6.12 2.27
Difference 7.32

4. Top 4 SNP*Covariate Interactions + Top 4 SNP*SNP Interactions
Full Model 19.18 11.83

Reduced Model 7.18 1.3
Difference 10.8

5. Single SNPs + Top 4 SNP*Covariate Interactions + Top 4 SNP*SNP Interactions
Full Model 21.32 11.6

Reduced Model 9.99 2.16
Difference 9.34

a In calculating the difference in CV R2 between full and reduced models, the CV R2 of the reduced model was considered to be zero if it had a negative value.
For all associations, the outcome was leukoaraiosis volume transformed using the natural logarithm and adjusted for age, sex, and total brain volume.
1. Model:F3_rs3917643 +KITLG_rs995029 +CAPN10_rs7571442 + MMP2_rs9928731
2. Full model: KITLG_rs1492347*Log Homocysteine + ITGB3_rs3851806*Height +TGFB3_rs2284791*Log CCRP + TGFB3_rs2284791*Physical Activity; Reduced 
model:KITLG_rs1492347 + Log Homocysteine + ITGB3_rs3851806 + Height + TGFB3_rs2284791 + Log CCRP + Physical Activity
3. Full model:RHAG_rs11759060*GLS_rs1921913 + F8_rs7053448*MPO_rs34704261 + SLC20A1_rs10758*IL22RA1_rs12093987 + 
KITLG_rs995029*TLR4_rs1927911; Reduced model: RHAG_rs11759060 + GLS_rs1921913 + F8_rs7053448 + MPO_rs34704261 + SLC20A1_rs10758 + 
IL22RA1_rs12093987 + KITLG_rs995029 + TLR4_rs1927911
4. Full model: KITLG_rs1492347*Log Homocysteine +ITGB3_rs3851806*Height + TGFB3_rs2284791*Log CCRP +TGFB3_rs2284791*Physical Activity + 
RHAG_rs11759060*GLS_rs1921913 + F8_rs7053448*MPO_rs34704261 + SLC20A1_rs10758*IL22RA1_rs12093987 + KITLG_rs995029*TLR4_rs1927911; Reduced 
model: KITLG_rs1492347 + Log Homocysteine + ITGB3_rs3851806 + Height + TGFB3_rs2284791 + Log CCRP + Physical Activity + RHAG_rs11759060 + 
GLS_rs1921913 + F8_rs7053448 + MPO_rs34704261 + SLC20A1_rs10758 + IL22RA1_rs12093987 + KITLG_rs995029 + TLR4_rs1927911
5. Full model: F3_rs3917643 +KITLG_rs995029 +CAPN10_rs7571442 + MMP2_rs9928731 +KITLG_rs1492347*Log Homocysteine + ITGB3_rs3851806*Height + 
TGFB3_rs2284791*Log CCRP + TGFB3_rs2284791*Physical Activity + RHAG_rs11759060*GLS_rs1921913 + F8_rs7053448*MPO_rs34704261 + 
SLC20A1_rs10758*IL22RA1_rs12093987 + KITLG_rs995029*TLR4_rs1927911; Reduced model: F3_rs3917643 +KITLG_rs995029 +CAPN10_rs7571442+ 
MMP2_rs9928731+KITLG_rs1492347 + Log Homocysteine + ITGB3_rs3851806 + Height + TGFB3_rs2284791 + Log CCRP + Physical Activity + 
RHAG_rs11759060 + GLS_rs1921913 + F8_rs7053448 + MPO_rs34704261 + SLC20A1_rs10758 + IL22RA1_rs12093987 + TLR4_rs1927911
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interactions, and gene-environment interactions from a
variety of biological pathways. Our findings indicate that
systematic investigation of the context-dependent effects
of genetic variation is critical for a more thorough under-
standing of the multidimensional architecture of complex
diseases.
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