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Abstract 

 Azteca sericeasur is a keystone tropical arboreal ant species whose ecological 

interactions with mutualists and natural enemies are believed to determine a self-regulating 

(endogenous) spatial process. We inferred ecological processes from the spatial patterns of A. 

sericeasur in a 45-ha coffee farm plot from 2004 to 2012 using three types of analysis: (1) 

clustering statistics describing the range of significant spatial clustering; (2) stochastic spatial 

process models of cluster formation; and (3) tree-level logistic regressions predicting ant nest 

formation and disappearance. We fitted the latter two models with endogenous and exogenous 

(habitat and environmental) variables to investigate whether endogenous processes sufficiently 

explained nest clustering, or whether other exogenous variables also played a role. We found that 

nest clusters were predicted by nest density from the previous year and not consistently by any 

exogenous variables except tree density in later years. 

Nests were clustered to a scale of about 40m and new nests occurred within clusters of 

existing nests to a scale of approximately 30m. These patterns most likely reflected budding 

colonies, suggesting the ant’s preferred maximum dispersal range. Nest formation was positively 

related to measures of nest density and proximity, but nest disappearances could not be predicted 

by any combination of variables. Nest disappearances also had no significant clustering pattern 

with other nests. These results support our hypothesis that the A. sericeasur system is 

endogenously driven, although mainly through effects on new nests rather than nest 

disappearance. Tree density became a consistently significant predictor of nest clustering after 

the farm shifted toward more intensive agricultural management. Intensification resulted in 

thinning of host trees, which caused new nests to be spaced farther apart. This would have 

counteracted negative density-dependent interactions with natural enemy species if those species 

had a shorter dispersal range than A. sericeasur. These results have implications in coffee 

agroecological management, as this system provides important biocontrol ecosystem services. 
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1. Introduction 

Spatial patterns in ecology may represent a combination of interacting exogenous and 

endogenous processes (Fortin and Dale, 2005). Endogenously-driven spatial distributions are 

determined by local interactions with conspecific or other species, and are expected to be 

density-dependent on the distribution they influence. Exogenously-driven spatial distributions 

are determined by environmental heterogeneity that can be abiotic, such as slope or elevation, or 

biotic, such as extrafloral nectar resources for ants (Yitbarek et al., 2011) or trees for nesting. 

Exogenous processes are expected to be density-independent of the distribution they influence.  

The coffee agroecosytem is ideal for examining spatial patterns and process in ecology 

because of its relatively uniform managed environment and its well-documented complex 

ecological interactions (Perfecto and Vandermeer, 2008; Vandermeer et al., 2010). These 

systems exist on a scale of intensification that controls shade tree diversity and density. 

Diversified coffee farms are structurally similar to natural forests, while more intense farms have 

fewer species of shade trees in the canopy above the coffee understory (Moguel and Toledo, 

1999). Shade trees contribute to ecosystem services by providing habitat for natural enemies of 

pests, such as bird and bats species that prey on arthropods (Bael et al., 2008; Perfecto et al., 

2004; Williams-Guillén et al., 2008) and the arboreal ant Azteca sericeasur (previously Azteca 

instabilis, Longino, pers. com.), which provides several different biological control services 

(Gonthier et al., 2013; Perfecto and Vandermeer, 2006; Vandermeer et al., 2010). 

 

1.1 The spatial ecology of the A. sericeasur system 

Previous research in a 45-hectare plot of a shaded coffee farm in Chiapas, Mexico, 

suggests that A. sericeasur nest locations are influenced by several interactions that create 

opposing forces of growth and repression (Vandermeer et al., 2008, 2010). Colony growth 

results from nest ‘budding,’ whereby new nests split off from existing nests to colonize new trees. 

Colony repression results from attack by natural enemies including parasitoid flies (Pseudacteon 

spp.) that parasitize the ant; and a beetle (Azya obigera) and fungus (Lecanicillium lecanii) that 

attack the ant’s scale mutualist (Coccus viridis). Ants tend the mutualist scales, which produce 

sugar-rich waste product that the ants collect as a resource. Natural enemies attack scales, 

hampering resource collection by the ants. Field and experimental evidence suggest that intensity 
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of beetle, fly, and fungus attacks are density-dependent, and attacks increase at higher 

concentrations of ant nests (Liere et al., 2014; Philpott et al., 2009; Vandermeer et al., 2009). 

This system can be understood within the reaction-diffusion framework (Turing, 1952). 

Turing presented these interactions as an explanation of autonomous pattern formation between 

activating and repressing ‘chemicals,’ but the concept has applications in biology and ecology 

(Kondo and Miura, 2010; Vandermeer and Goldberg, 2013). Applied to the ecology of the A. 

sericeasur system, ant colony growth and budding acts as the activation process; but when a 

cluster of nests becomes too large, it attracts natural enemies that inhibit the continuous 

expansion of the ant nests and act as the repressing process. Thus, ant nest clusters tend to form 

due to budding, but cannot become overly large without increasing exposure to natural enemies.  

 

1.2 Spatial analysis of endogenous and exogenous ecological forces 

The uniform distribution of the trees within the 45-hectare plot (Perfecto and Vandermeer, 

2008) as well as evidence of a negative density-dependent relationship of A. sericeasur clusters 

(Liere et al., 2012; Vandermeer et al., 2008) suggest the role of endogenous processes in 

determining the spatial distribution of A. sericeasur nests. However, environmental 

heterogeneity can play an important role in spatial distribution, and if left unaccounted for, may 

potentially distort the results of spatial analysis (Birkhofer et al., 2010; Waagepetersen and Guan, 

2009). Using a ‘space as surrogate’ inference approach (McIntire and Fajardo, 2009), we formed 

a priori hypotheses in spatial analysis to decompose the nest spatial patterns into component 

processes. This allowed us to compare the relative importance of endogenous and exogenous 

ecological forces. 

Certain management decisions and ecological interactions may act as exogenous factors 

to the processes hypothesized to control the spatial pattern of A. sericeasur nests, which we have 

considered in our hypotheses: (1) Increased tree spacing could allow new nests to escape the 

density-dependent repression effect. Agricultural intensification within the 45-hectare plot 

reduced tree density by approximately one third but despite this drastic decrease in potential nest 

sites, A. sericeasur nests increased notably (Jackson et al., 2014). Jackson and colleagues 

proposed that this was due to a mismatch between the effective dispersal ranges of repressing 

natural enemies and budding nests: new nests could perhaps more readily move farther from 

their source nest than the natural enemies concentrated at that source. (2) Nest distribution may 
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be associated with the exogenous variable of Inga genus tree distribution. The extra-floral 

nectaries of Inga trees are a known food source for some arboreal ants (Koptur, 1984). 

Additionally, because intensification increased the prevalence of Inga trees, A. sericeasur may 

have been more easily able to switch to Inga as its primary food resource. (3) Abiotic 

environmental variables, such as elevation and sun exposure, could have also affected 

microclimate and other nest site conditions. 

Our three interacting hypotheses of nest spatial distribution were: (a) if A. sericeasur nests were 

influenced by density-independent exogenous processes, they would correlate with 

environmental heterogeneity; (b) if endogenous processes played an important role, nests and 

nest activity would have density-dependent interactions over space and time; and (3) 

intensification (tree density reduction) would result in an observable change in the relative 

strength of these relationships, e.g. an increased importance of Inga trees, or the emergence of a 

correlation between lower tree density and decreased nest mortality,  reflecting a shift in 

ecological dynamics. 
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2. Methods 

2.1 Study plot 

 We conducted our study in a 45-hectare plot established in 2004 within an organic shaded 

coffee plantation located in the Soconusco region of Chiapas, Mexico. The farm is located at 

approximately 92° 20’ 29” West and 15° 10’ 6” North, ranging between 917 to 1079m above sea 

level. Like many areas of the tropics, this region experiences annual wet and dry seasons. The 

study farm is historically an organic, traditional polyculture coffee farm (see Moguel and Toledo 

(1999) classification), but began a shift to more intensified management (shade tree reduction) in 

2007, which continued to the end of the data collection period in 2012.  

 

2.2 Nest and tree points 

We mapped the locations and recorded the species of trees on the plot that were greater 

than 10 cm in circumference, in annual transect surveys from 2004 to 2012. Transect locations 

were later georectified using GPS (Trimble GeoXT) and a geographic information system (ESRI, 

2013). Because A. sericeasur only nests within trees, tree coordinates also served as nest 

locations, which could be determined during the tree surveys. Between each year, some trees 

were removed from the dataset because they died or were cut down, and some trees were added 

because they had grown large enough to be included in the tree survey. 

We interpreted basic life history stages from changes in annual presence/absence data. 

Trees without nests in year t that subsequently contained a nest in year t + 1 were considered to 

have a ‘new’ nest. Trees with a nest in t but no nest in t + 1 were considered a ‘disappeared’ nest, 

although it was not possible to tell from the data whether the colony moved to another tree or 

died. Trees which contained a nest in consecutive years were assumed to host the same persistent 

nest. 

 

2.3 Environmental covariates 

We used spatial grids of continuous environmental data to inform site conditions at tree 

point locations (Table 1). Four abiotic environmental covariates – elevation (elev), slope, south-

facing index (south), and topographical wetness index (wet) – were derived from a 20m 

resolution digital elevation model. The slope grid was calculated as a function of the neighboring 

values of each 20m cell of the digital elevation model using a GIS (ESRI, 2013). Topographical 
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wetness index, an approximation of water accumulation based on upstream catchment area and 

slope, was calculated by the function ln(Ac/s) for each cell, where Ac is the catchment area, and s 

is slope (Beven and Kirkby, 1979; Hjerdt et al., 2004). South-facing index quantifies the relative 

deviation of each cell's aspect from due south on a linear scale (Beers et al., 1966).  

Biotic environmental covariates were density surfaces based on point densities of tree and 

ant nest surveys. Covariates included: trees (trees), Inga trees (Inga), forest edges (edge), tree 

cutting (cut), and ant nests (nest). Density surfaces were based on a Gaussian kernel using a 

biologically-relevant bandwidth. For tree density, this bandwidth was estimated by a cross-

validation procedure to minimize mean-square error. We chose 15m, based on the mean optimal 

bandwidth across all nine years. For ‘Inga,’ ‘cut,’ and ‘nest’ density surfaces, we used a 

bandwidth of 30m, approximately the mean maximum distance of significant clustering of new 

nests, obtained from the clustering analysis. Forest edge was calculated as the standard deviation 

of a 9-cell (300m
2
) moving window of forest density. We created dummy variables representing 

five categories of nest density (cat1 - cat5) to allow our models to capture non-linear effects of 

nest density. The highest and lowest levels of these categories were open-ended, and the middle 

levels represented equal-interval ranges that were common through all years of the study. For the 

tree-level logistic regression, we also differentiated pre- and post-intensification data with a 

categorical variable (intens). 

 

2.4 Analyses 

 We took three approaches to analyzing and modeling ant nest spatial distributions: (1) we 

described significant clustering patterns of nests and nest events (nest formation and 

disappearance) over a range of clustering scales; (2) using information from the clustering 

analysis, we modeled the nest cluster process with a stochastic model that also considered 

endogenous and exogenous spatial covariates; and (3) we modeled nest formation and 

disappearance probability at the tree level, using endogenous and exogenous covariates in 

logistic regressions. For the clustering analysis (1) and subsequent cluster process modeling (2), 

we modeled point distribution of nests or nest events separately for each year. For the tree-level 

models of nest formation and disappearance (3), we combined all years together, but 

distinguished between before and after intensification with a categorical variable. 
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2.4.1 Spatial point clustering analysis with Pair Correlation Function (PCF) 

We used the pair correlation function (PCF, Perry et al., 2006; Wiegand and A. Moloney, 

2004) to quantify nest clustering within each year and a bivariate variant (Harkness and Isham, 

1983) to quantify clustering around nest events between consecutive years. The PCF test is 

similar to the Ripley’s K test (Ripley, 1976), but it quantifies clustering only at a specific radius r 

(i.e. a ‘ring’), rather than the cumulative clustering from 0 to r (i.e. a ‘disc’). The maximum r for 

our analyses was 100m. We performed four PCF analyses, which either compared within a point 

distribution (univariate) or between two point distributions (bivariate). These included analyses 

of: (1) clustering of existing nests within a year; (2) clustering of nests in one year to the sites of 

the next year’s new nests; (3) clustering of neighboring nests to disappeared nests, in the year 

before they disappeared; and (4) clustering of new nests to disappeared nests in the same year.  

To test for significance, we compared the observed PCF values at each distance of r to 

Monte Carlo simulations representing random nest or nest event placement. We generated null 

nest patterns by randomly sampling without replacement from a pool of ‘available’ locations to 

account for any spatial patterns within these locations themselves. When simulating all existing 

nests (not differentiating between new and persistent nests), the simulation placed random nests 

by selecting within all existing trees. For randomizing new nests, the simulation drew from the 

unoccupied trees of the previous year that were not cut the next year. For randomizing 

disappeared nests, it selected from all nests that were occupied in the previous year. We 

estimated a 95% confidence envelope based on 1000 simulations.  

 

2.4.2 Modeling nest clusters with a stochastic cluster model and environmental factors 

 We fitted annual nest point distributions to stochastic models based on the Thomas 

process (Thomas, 1949), a multi-level clustering process that has been used to quantitatively 

describe and model the clustering of seed dispersal in forest studies (Cheng et al., 2012; Seidler 

and Plotkin, 2006; Wang et al., 2011; Wiegand et al., 2007). It involves an initial placement of 

‘mother’ points that are subsequently replaced by ‘offspring’ clusters (Waagepetersen, 2007), 

which mirrors the budding process by which A. sericeasur forms new nests. Having this spatial 

process built into the stochastic model allowed us to account for spatial autocorrelation from nest 

colony spreading and better identify underlying spatial trends. 
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In the Thomas process ‘mother’ points (i.e. cluster centers) are placed randomly as 

spatially independent Poisson distributions of base intensity κ. Each distribution of ‘offspring’ 

points replacing the cluster centers has an isotropic Normal shape with standard deviation σ and 

mean intensity μ. We fit the data to a theoretical Ripley’s K function of the Thomas process 

using the method of minimum contrast (Diggle and Gratton, 1984) in the R package ‘spatstat’ 

(Baddeley and Turner). The function is defined by the clustering parameters κ and σ: 

𝐾(𝑟) = 𝜋𝑟2 +
1

𝜅
(1 − exp(−

𝑟2

4𝜎2
)) 

where r is the radius of the K analysis. The intensity of the fitted Thomas process, λ, is the 

product of the mother (κ) and offspring (μ) intensities. Assuming an inhomogeneous Thomas 

process (Waagepetersen, 2007), we estimated λ as a function of environmental covariates in a 

Poisson point process model, where probability of a nest at point x was defined by a Poisson 

distribution with the log intensity function: 

logλ(𝑥) =∑𝛽𝑗𝑧𝑗(𝑥)

𝑝

𝑗=1

 

where βj is the fitted coefficient of environmental covariate zj(x), j = 1,…, p (Bivand et al., 2013). 

Following Waagpeterson and Guan (2009), we used a backwards stepwise model reduction at 

alpha = 0.05 to select models for the years 2005 to 2012. 

When parameterizing the cluster models, we always included the previous year’s nest 

density as a predictor to account for the fact that some of the nests in the year being modeled 

were persistent from a previous year. This was because a majority of nests persisted between 

years, so nest density was expected to always be significant, with a positive linear relationship. 

We were interested in whether any of the levels of nest density dummy variables would also be 

significant, as this would indicate an additional effect of particular density levels over the 

expected linear relationship from year to year. This was defined against a baseline at the least 

dense areas (density category 1: < 5 nests/ha). We then assessed the ability of the cluster process 

models to recreate the observed spatial patterns using Monte Carlo goodness-of-fit tests to 

compare the nearest-neighbor statistic (G) of 1000 simulations of the predicted nest to the 

observed nest distribution.  
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2.4.3 Modeling nest events with logistic regressions 

 Conceptualizing nest events as binary outcomes allowed us to model them as two 

independent logistic regressions. We treated nest formation as a positive outcome for empty trees 

within 30m of existing nests (the negative outcome being trees remain empty), and nest 

disappearance as the positive outcome for trees occupied by a nest. All available sites for each 

event were included for every year that they remained available as negative outcomes for the 

model’s dataset; so all nearby empty trees were included in the nest formation regression for all 

years they were empty, and likewise for occupied trees in the nest disappearance regression. 

Positive events (nest formation or nest disappearance) were included in their respective dataset 

on the year they occurred, but were not repeated for subsequent years. All the years were used 

for the regressions except 2004, which did not have prior data to define new and disappeared 

nests. 

 Since the logistic regressions modeled nests at the level of the individual tree, we also 

considered point-based covariates: a binary factor identifying each tree as Inga or non-Inga 

(treeID), the distance of each tree to the nearest occupied tree in the past year (nn), and the nest 

cluster size that the tree fell within in the previous year, using a 30m radius cluster definition 

(prclus). We built the models over the entire study period’s dataset and created a factor for pre- 

and post-intensification periods (intens). We added an interaction between pre- and post-

intensification and nearest past neighbor (intens:nn) for the hypothesized effect of tree thinning 

on ant and natural enemy dispersal, and an interaction between intensification and Inga/non-Inga 

variables (intens:treeID) to account for a possible effect of intensification on A. sericeasur use of 

Inga trees. 

 We performed backwards and forwards-stepping model fitting to select the best model 

for nest formation and disappearance, using the Bayesian Information Criterion (BIC) to gauge 

performance. BIC, as opposed to Akaike’s Information Criterion (AIC), was chosen as a more 

conservative standard for comparing models by parsimony and explaining power (Weakliem, 

1999). Model fit was assessed with the area under curve (AUC) value of receiver operator 

characteristic (ROC) plots, which are a measure of model fit for logistic regression that is 

independent of a probability threshold (Manel et al., 2001). We created stochastic nest event 

distributions based on the predicted probabilities for the available sites of each year, using the 

logistic regression models. Goodness-of-fit of these simulated distributions was evaluated with 
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Monte Carlo tests that compared the PCF statistic of the observed distributions to the 95% 

envelope of 1000 realizations of the simulated patterns and to simulations of random patterns of 

new nests placed within 30m of existing nests. 
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3. Results 

3.1 General population patterns 

Tree population remained constant for the three-year period before intensification, 

followed by a period of tree thinning. Larger culls occurred every other year, with the initial cull 

in 2007 as the largest. A simple linear regression confirmed that the total number of nests 

increased significantly over the study period (slope=46 nests/year, p<0.001, R
2
=0.85). Analyzing 

the new nests, persistent nests, and disappeared nests within the total population for each year in 

their own linear regression, we saw that persistent nests had the strongest and most significant 

trend of 27 more persistent nests every year (p<0.001, R
2
=0.86). The number of new nests also 

had an increasing trend, although it was only marginally significant (slope=10 new nests/year, 

p=0.07, R
2
=0.34). The trend of disappeared nests had an increasing slope of 10 disappeared nests 

per year, but this was not significant (p>0.10, R
2
=0.27). Note that disappeared nests were not 

simply the difference of persistent nests from total nests, because we did not include nests that 

were destroyed from tree cutting. Annual per capita birth, death, and survival rates did not have 

significant non-zero linear trends (p>0.10). Tree populations are tabulated in Appendix 1 and A. 

sericeasur nest populations are tabulated in Appendix 2. 

 

3.2 Clustering analysis results  

The univariate PCF (Fig. 1) showed that nests were clustered, with ranges of significant 

clustering extending from 30 to 60m from each nest, depending on the year. Other portions of the 

range of analysis crossed the threshold for significance for some years, but the general 

qualitative trend was that nest distribution patterns became closer to random beyond a range of 

30m.  

New nest clustering around the existing nests in the previous year (Fig. 2a) had a clear 

trend of significant clustering within 30-40m of existing nests for every year. Nest patterns 

beyond this distance of analysis were not significant or were very close to random for all years. 

Nests that disappeared (Fig. 2b) did not have any consistently significant patterns of nest 

clustering around them prior to disappearing. New nests were significantly clustered around 

disappeared nests for all years, but the strength of clustering decreased in the last three years to 

be much closer to a random nest distribution (Fig. 2c). 

3.3 Stochastic cluster modeling results 
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Coefficients of significant predictor variables are plotted graphically in Fig. 3 and 

tabulated in Appendix 3. The cluster models did not select abiotic environmental variables as 

significant predictors, except elevation in 2005 and south-facing index in 2010. Tree density was 

the only biotic exogenous variable that was significant, with a positive effect on nests in the 

latter four years (2009-2012); however, the magnitude of this effect was small (Fig. 3). Density 

of Inga was not a significant predictor in any year. 

We always used the continuous variable of the previous year’s nest density as a predictor 

representing persistent nests, so dummy density category variables showed whether certain 

categories deviated from the expected linear relationship between nest densities. Several years 

had multiple nest density category dummy variables that were significant. All significant density 

category coefficients were positive, with overlapping confidence intervals. Most commonly, 

areas of 10-15 nests/ha (category 3) were significant. All significant categories predicted more 

nests than expected from the previous year’s nest alone, but never decreased the expected 

number of nests. 

The estimated Thomas clustering parameters, κ (cluster center Poisson distribution 

intensity) and σ
2
 (standard deviation of offspring cluster size), for the selected models had 

increasing trends over the course of the study (Appendix 3). When fit to a linear regression, κ 

increased significantly at a rate of 0.0002 nests/m
2
 a year (p<0.003, R

2
=0.77) and σ

2
 increased 

significantly by 3m a year (p<0.02, R
2
=0.57). These trends indicated that the clustering process 

created larger and more numerous nest clusters over time, which aligned with our observations 

of the changes in nest population and spatial distribution. 

Monte Carlo nearest neighbor (G) goodness-of-fit tests comparing the observed data to 

the selected model (Appendix 4) indicated that there was a range of spatial clustering that the 

fitted inhomogeneous Thomas process models could not replicate in years 2005 to 2007. For 

these years, predicted patterns were too clustered at scales less than 10m. After 2007, however, 

this unaccounted clustering was reduced and became largely insignificant by 2010. After 2007, 

empirical G values remained within or close to the 95% confidence interval of model predictions. 

 

3.4 Logistic regression results 

 The new nest model performed better than the disappeared nest model in receiver 

operator characteristic (ROC) fit assessments (Appendix 6). ROC plots of the predicted new 
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nests by year had an average area under curve (AUC) of 0.76 (sd = 0.06). In contrast, the yearly 

nest disappearance models had an average AUC of 0.56 (s.d. = 0.03). Values of AUC over 0.7 

indicate that the model has “useful applications” while values closer to 0.5 indicate little 

difference from random predictions (Manel et al., 2001). Thus, we only report results from the 

nest formation model in this text, though nest disappearance results can be accessed in 

Appendices 5, 6, and 7. 

 The significant variables of the nest formation logistic regression are plotted in Figure 4 

and tabulated in Appendix 5. Among the significant covariates, a closer nest in the previous year 

(lower nn) increased new nest probability (Fig. 4). There was a positive interaction between 

distance to nearest nest and before and after intensification, which suggested that following 

intensification, the negative effect of nearest nest distance (i.e. the positive effect of closer nests) 

became weaker. Post-intensification (intens(after)) was significant and had a negative 

relationship with new nests, suggesting that the probability of a new nest was lower per tree in 

the post-intensification period, all other variables being equal. The square of the previous year’s 

cluster size (prclu^2) was also a significant negative predictor of new nests. New nest formation 

was predicted by lower tree density (tree) and greater standard deviation of tree density (edge), 

i.e. in sparser and more variably-forested areas.  

Monte Carlo simulations of new nests based on the logistic regression do not account for 

clustering under 20m, but above this distance the observed clustering appears within or very near 

the predicted envelope (Appendix 7a). Comparing these predictions to randomly-selected new 

nests within 30m of existing nests (dotted envelope in Appendix 7) suggests the logistic 

regression does perform better than random. Not surprisingly, the disappeared nest logistic 

regression predicted distributions that were nearly identical to random selections of nests 

(Appendix 7b).   
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4. Discussion 

Azteca sericeasur spatial distribution appears to be driven mainly by its own budding 

activity and suppression by natural enemies (endogenous forces), rather than in response to 

environmental drivers (exogenous forces). Spatial distribution was most commonly predicted by 

variables related to the previous year’s distribution; an exception to this was that tree distribution 

also played a significant, but limited role. This is most logically explained by the ant’s use of 

trees as nest hosts, but there was also evidence to support the hypothesis that trees mediated the 

endogenous interactions between ant colonies and natural enemies through inter-nest spacing. No 

other exogenous variable consistently predicted the occurrence of ant nests, including Inga trees, 

which were hypothesized to be an alternative resource due to its extrafloral nectaries. We were 

also unable to identify any useful model for nest disappearances; they appeared to occur 

randomly or were not strongly determined by any endogenous or exogenous variables considered 

in this study. 

 

4.1 Clustering analysis conclusions 

The spatial relationship of new nests to existing nests (clustering up to a scale of about 

30m, Fig. 2a) reflected the pattern of overall nest clustering (Fig. 1). This suggested that the 

process of budding was the main driver of spatial distribution, as opposed to more random forms 

of dispersal, such as reproductive alate flights. Nests on a whole were clustered at a greater scale 

than new nests to existing nests because clustering analysis of all nests would have included 

multi-year persistent nests, whose inter-generational offspring may have dispersed farther away 

than a single budding event distance. 

There was no significant pattern of nest clustering that preceded disappearance the next 

year (Fig. 2b). This suggested that nest disappearance was not different from our null hypothesis 

of random occurrence. This conclusion was the same as our logistic regression of disappeared 

nests, and the implications of this conclusion will be discussed later. Decreased clustering 

between new nests and disappeared nests (Fig. 2c) may have reflected greater spacing between 

nests due to tree cutting, as well as the higher number of new nests over disappeared nests, which 

would have decreased the likelihood of one of the former being located near the latter, especially 

when nests were spaced farther apart.  
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Previous work has shown that nest distributions are clustered at a 20m scale of inter-nest 

distance (Vandermeer et al., 2008). This distance was thought to be the maximum distance that 

new nests could form from a source nest based on informal natural history observations, but 

subsequent Ripley’s K analysis demonstrated that clustering extended to 75m (Jackson et al., 

2014). Our use of the PCF instead of the Ripley’s K is likely the reason that our conclusions 

differed from previous results. Because the PCF is not cumulative over distance (PCF uses ‘rings’ 

instead of ‘discs’), it is more sensitive to changes in clustering behavior than the Ripley’s K 

(Perry et al., 2006). It is likely that the very strong local nest clustering in the plot often exceeded 

the expected mean random number of nests assumed by Ripley’s K discs out to much greater 

radii than would be significant for the PCF. Another advantage of our approach was that we 

judged significance against null distributions based on actual tree positions, which allowed us to 

account for the inherent clustering of nest host sites. 

 

4.2 Stochastic clustering model conclusions 

 When accounting for nest aggregation using the Thomas cluster process, nest clusters 

correlated consistently with the preceding year’s nest distribution. The spatial relationship of 

nests between years was consistent with the known biology of nest budding and persistence, 

which again emphasized the importance of endogenous interactions between nests. Beyond a 

linear relationship of nests existing and growing from one year to the next, areas with a medium 

nest density had an additionally higher probability of having nests the following year, suggesting 

that these areas had a greater rate of survival, nest formation, or both.  

Once intensification began, higher local tree density significantly raised the probability of 

nest occurrence. Two other exogenous variables were significant for single years, but the 

uniqueness of their significance suggested that they only played an incidental role or were a 

result of a spatial coincidence. That tree density was only significant following intensification 

suggested that once intensification reduced the number of trees below a certain threshold, trees 

became a limiting resource and could positively influence the number of nests in the area. This 

was most likely through their role as a host site for nests, but also possibly as foraging sites.  

Inga tree density was not a significant factor for nest probability, despite evidence that 

Inga trees can act as a resource for this guild of ants (Koptur, 1984). However, during the 

intensification cuttings, Inga trees were often spared for their nitrogen fixing services, so their 
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relative numbers may not have been reduced enough to act as a limiting resource, as trees 

generally did for nesting sites; alternatively, the ants may have been indifferent to their proximity 

to Inga and did not have to depend on this resource when it was not nearby. 

 

4.3 Logistic regression conclusions 

 The local nature of budding was evident in the higher probability of new nests for trees 

that were closer to existing nests. New nest probability decreased with the square of the size of 

the nearby nest cluster, which could be explained by a higher natural enemy presence in larger 

nest clusters (Philpott et al., 2009; Vandermeer et al., 2009). Following intensification, new nests 

became more likely to occur farther away from the nearest existing nest, reflecting the increased 

spacing between trees.  

From the exogenous variables, decreased tree density and increased tree variability were 

related to higher nest formation probability in the model. These relationships applied to all years 

of data (there was no interaction between the intensification period and tree variables), but would 

have become more prevalent once intensification reduced tree density. The negative relationship 

between tree density and nest formation probability does not conflict with the positive 

relationship between tree density and nest probability in the latter years of the stochastic cluster 

model because these models describe different processes. The stochastic cluster models were fit 

to each year independently and modeled all nests rather than only new nests.  

We could not show that the nest disappearance logistic regression model performed any 

better than random, so these results did not signify very strong trends. In addition, the new nest 

logistic regression could not account for all spatial clustering, especially at close (<20m) 

distances (Appendix 7a). This could be because the model did not account for spatial interactions 

between new nests. These interactions could be due to especially productive nests that sent out 

multiple budding nests within the same year. As in the stochastic cluster model, Inga did not play 

a significant role; in this case, Inga trees were no more or less likely to host a new nest, or have 

an existing nest disappear. 

4.4 How trees affect endogenous nest processes 

Prior to our analyses, the paradoxical observation of increased A. sericeasur nests 

following a gross reduction of their host trees was attributed to increased nest spacing due to 

fewer trees, which reduced connectivity for the natural enemies of the ants and their associated 
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mutualists (Jackson et al., 2014). Our results support this hypothesis, but we observe the effect in 

terms of increasing new nests rather than decreasing disappeared nests, which may stem from the 

limited temporal resolution of our data. Between the available annual time points, budding nests 

may have already been established and disappeared as a result of suppression by natural enemies, 

and the ‘new’ nests we observed may have largely represented successfully established nests. 

Thus, the nests that were most susceptible to density-dependent effects may have already 

perished between data collections, so nest ‘deaths’ actually represent a longer-term process of 

senescence that is less density dependent. That the number of nest disappearances does not have 

a significant trend over time, that disappearances are not correlated with higher nest clustering, 

and that it had no strong relationship with any of our endogenous or exogenous variables appears 

to support this idea. 

Through thinning the trees, the coffee farmer has inadvertently forced more budding 

nests to travel farther, increasing the survival rate of new nests by placing them outside of the 

range of natural enemies. Since nests can only occur in host trees, and because of the presence of 

natural enemies, the offspring nests were in effect subject to a Janzen-Connell effect (Connell, 

1971; Janzen, 1970), whereby the mother nest is also a source of natural enemies. If we assume 

that budding nests typically travel from the mother nest to the nearest tree, we would expect most 

new nest attempts to fail in very dense coffee agro-forests with closely-spaced trees. Data 

collection at a finer temporal resolution is needed to confirm whether the increase we have 

observed is due to higher rates of survival of new nest propagules. Further stochastic point 

process-based and theoretical modeling of this proposed spatial process could also provide a 

better understanding of its anticipated spatial structure and verify it against our  observations. 

 

4.5 Implications and conclusions 

Understanding the endogenous and exogenous interactions of spatial processes of A. 

sericeasur is relevant to biocontrol in the coffee agroecosystem. The interaction between A. 

sericeasur and its mutualist green coffee scale (Coccus viridis) allows the beneficial fungi L. 

lecanii to reach epizootic levels, which in turn reduces the outbreak intensity of its alternate host, 

the coffee rust (Hemileia vastatrix) in the proximity of scale aggregations (Jackson et al., 2009, 

2012; Vandermeer et al., 2009, 2014). Furthermore, the ant aggressively patrols the coffee 

bushes where it tends C. viridis, indiscriminately removing intruders including the coffee berry 
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borer, Hypthenemus hampei (Vandermeer et al., 2010). The beetle, Azya orbigera, can provide 

effective biological control over C. viridis, which is also a pest of coffee. However, the beetle’s 

effectiveness is conditioned on a complex interaction network that is also dependent on A. 

sericeasur nest clusters (Hsieh and Perfecto, 2012; Liere and Larsen, 2010; Liere and Perfecto, 

2008). Given the biocontrol services of A. sericeasur and its associates, understanding the 

ecological drivers of this system’s spatial distribution is important for supporting diversified 

farming systems, which aim to decrease reliance on external inputs (Kremen et al., 2012). 

We have demonstrated that this endogenous system of interactions is also connected to 

the exogenous management of the agroecosystem through the spatial structure of the agro-forest. 

As a dynamical system, the ecological interactions surrounding A. sericeasur must be understood 

to be at a state that is the result of a balance of processes (Scheffer, 2009). By changing the 

underlying spatial structure that we propose helped regulate the system previously, this system 

could enter into a critical transition towards another unknown steady state. Other research in 

intensification and biodiversity suggest that simplification of agriculture leads to increased pest 

species and decreased biodiversity (Matson et al., 1997; Tscharntke et al., 2005). It is unclear 

how this complex system of relationships between pest and beneficial biodiversity will change as 

a result of intensification, and whether this change will allow the system to continue providing its 

ecosystem service of biocontrol. 
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5. Tables & Figures 

 

Table 1: Descriptions of model covariates. Covariates of type ‘grid’ were continuous surface 

grids. ‘Point’ type covariates were calculated only at nest and tree points. Grid covariates were 

used to parameterize stochastic cluster models, while grid and point covariates were used to 

parameterize logistic regressions. 

Variable Type Description 

trees grid Tree density surface, bandwidth standard deviation = 30m 

Inga grid Inga spp. tree density surface, bandwidth standard deviation = 30m 

edge grid Standard deviation of tree density in a 5 cell (300m
2
) window 

cut grid Density of thinned trees, bandwidth standard deviation = 30m 

elev grid Elevation of 20x20m pixel (m above sea level) 

slope grid Slope of 20x20m pixel (%) 

wet grid Topographical wetness index 

south grid South-facing index 

nest grid Nest density surface at t-1, bandwidth standard deviation = 30m 

cat1-cat5 grids Dummy categories of nest density at t-1:  

cat1 <= 5 < cat2 <= 10 < cat3 <= 15 < cat4 <= 20 < cat5 (nests/ha) 

nn point Distance to nearest neighboring nest at t-1 

treeID point Whether or not a tree is in genus Inga 

prclu point Size of attached nest cluster (30m radius cluster definition) 

intens time Categorical variable indicating before or after start of intensification 
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Figure 1: PCF statistic for nest annual nest distributions, plotted as the difference from the 

theoretical value based on the average expected value given random placement. Dotted line 

represents the observed PCF – theoretical PCF. The gray areas represent the 95% confidence 

envelope from 1000 random nest allocations. The colored bars below each panel indicate 

significance at that distance (green = clustered, red = dispersed, grey = not significant). 
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Figure 2: Bivariate PCF between nest event locations and the previous year’s nest distribution 

compared to random nest allocation. Bivariate comparisons are: (a) spatial association of new 

nests in year t around existing nests in year t-1, (b) association of nests in t-1 around the nests 

that disappeared by year t, and (c) association between new nests and disappeared nests in year t. 

Year t is identified at the top of each panel. Plotting conventions are the same as Figure 1. 

Figure 2a

 

Figure 2b
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Figure 2c

 

  



25 
 

Figure 3: Significant predictors of annual nest distributions, 2005-2012, with 95% confidence 

intervals. Endogenous variables are represented by empty shapes while exogenous variable are 

represented by solid shapes. Elevation (elev) and tree density (trees) are multiplied by a factor of 

10 to for clarity. Parameter fit statistics are in Table 2. 
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Figure 4: Significant regression coefficients of new nest logistic regression model. Model was 

chosen through backwards and forwards selection procedures based on the Bayes Information 

Criterion (BIC). Parameter fit statistics are in Table 3. 
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6. Appendices 

 

Appendix 1: Population of trees (all species), Inga spp., and trees thinned since the previous 

census, >10cm circumference at breast height. No changes in tree population were observed 

from 2004 to 2006 because no thinning occurred.  

 

Year trees Inga cut 

2004 10595 6009 NA 

2005 10595 6009 0 

2006 10595 6009 0 

2007 8834 4950 2690 

2008 8560 4820 274 

2009 6425 3533 2135 

2010 7294 3960 183 

2011 6145 3505 1149 

2012 5876 3420 554 
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Appendix 2: A. sericeasur annual nest populations and population change. Shown are total nests, 

new (i.e. nest formation), disappeared, persistent nests, per capita ‘birth’ rate, and per capita 

survival rate. Disappeared nests numbers do not include nests lost due to tree thinning. Nests lost 

due to thinning account entirely for the difference between the total ‘nest’ column and the ‘new’, 

‘disappeared,’ and ‘persistent’ subsets. 

 

Year nests new disap. persist birth rate survival rate 

2004 282 NA NA NA NA NA 

2005 378 152 56 226 0.54 0.80 

2006 350 92 120 258 0.24 0.68 

2007 322 107 54 215 0.31 0.61 

2008 513 254 54 258 0.79 0.80 

2009 506 199 91 306 0.39 0.60 

2010 624 192 148 330 0.38 0.65 

2011 581 211 153 367 0.34 0.59 

2012 644 222 110 412 0.38 0.71 
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Appendix 3: Fitted stochastic clustering coefficients and 95% confidences intervals for 

inhomogeneous Thomas cluster models of nests in years 2005-2012. Clustering parameters κ and 

σ
2
 give the fitted Poisson process intensity of the ‘mother’ points and the standard deviation of 

offspring cluster size (m), respectively. 

Year Endogenous variables Exogenous variables κ σ
2
(m) 

2005 nest: 0.142 (0.076, 0.208) 

cat2: 0.608 (0.042, 1.173) 

cat3: 0.970 (0.239, 1.700) 

elev: -0.012 (-0.022, -0.003) 

 

0.00036
 

8.26 

2006 nest: 0.122 (0.084, 0.161) 

cat3: 0.785 (0.295, 1.276) 

 0.00045 1.06 

2007 nest: 0.079 (0.045, 0.112) 

cat3: 0.932 (0.426, 1.437) 

cat4: 0.714 (0.016, 1.413) 

 0.00051 9.00 

2008 nest: 0.105 (0.073, 0.136)  0.00056 2.58 

2009 nest: 0.035 (0.000, 0.069) 

cat3: 0.448 (0.038, 0.857) 

cat4: 1.163 (0.626, 1.700) 

cat5: 1.208 (0.391, 2.025) 

trees: 0.007 (0.004, 0.010) 0.00113 16.7 

2010 nest: 0.089 (0.071, 0.107) trees: 0.005 (0.003, 0.008) 

south: 0.343 (0.020, 0.666) 

0.00153 15.5 

2011 nest: 0.074 (0.059, 0.090) 

cat3: 0.482 (0.200, 0.763) 

trees: 0.005 (0.002, 0.008) 0.00182 14.4 

2012 nest: 0.048 (0.012, 0.084) 

cat2: 0.907 (0.180, 1.635) 

cat3: 1.182 (0.406, 1.958) 

cat4: 1.369 (0.507, 2.231) 

cat5: 1.663 (0.627, 2.698) 

trees: 0.006 (0.003, 0.010) 0.00133 30.6 
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Appendix 4: Nearest neighbor (G) function of nest distributions, shown as the difference from 

the theoretical G function of a random distribution of points. Plotting conventions are the same 

as Figures 1 and 2. Where the observed G value is outside the envelope indicates that the spatial 

structure of the estimated cluster process does not account for the observed nest distribution at 

that scale. 
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Appendix 5: Significant coefficients of final nest formation and disappearance logistic 

regression model.  

 Estimate Std. Error z value Pr(>|z|) 

New nests     

intens(after) -0.395 0.141 -2.798 0.005 

tree -0.004 0.001 -7.707 < 0.001 

edge 0.169 0.038 4.424 < 0.001 

nest 0.034 0.004 8.912 < 0.001 

prclu^2 -0.00003 0.00001 -3.363 < 0.001 

nn -0.172 0.011 -16.030 < 0.001 

intens(after):nn 0.073 0.012 6.163 < 0.001 

Disappeared nests 

intens(after) -0.310 0.125 -2.488 0.013 

slope 0.013 0.004 3.285 0.001 

prclu^2 0.00003 0.00001 3.717 < 0.001 

nn -0.013 0.008 -1.607 0.108 

intens(after):nn 0.027 0.010 2.791 0.005 
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Appendix 6: The receiver operator characteristic (ROC) plots of logistic regression model 

predictions for (a) new nests and (b) disappeared nests by year. ROC plots compare the true 

positive rate (sensitivity) to the false positive rate (specificity) of the prediction model over the 

entire range of discrimination thresholds. Models are assessed by the area under curve (AUC) 

value, with AUC > 0.7 indicating a useful prediction and AUC = 0.5 indicating no better than 

random prediction. AUC values are shown in the lower right corner of each graph. 
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Appendix 6a

 

Appendix 6b
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Appendix 7: Pair correlation function of predicted nest events based on logistic regressions of (a) 

new and (b) disappeared nests. Dotted line represents the observed PCF – theoretical PCF. The 

gray areas represent the 95% confidence envelope from 1000 simulations based on selecting 

from available sites with the logistic regression model. The colored bars below each panel 

indicate significant deviation of spatial structure from the model predictions at that distance 

(green = clustered, red = dispersed, grey = not significant). Dark gray dotted lines indicate an 

envelope of 1000 nest distributions selected at random. 
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Appendix 7a

 

Appendix 7b
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Appendix 8: Significant regression coefficients of disappeared nest logistic regression model. 

Models were chosen through backwards and forwards selection procedures based on the Bayes 

Information Criterion (BIC). Parameter fit statistics are in Appendix 6.
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