Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015.

Supporting Information

for Adv. Funct. Mater., DOI: 10.1002/adfm.201501712

Development of a Multifunctional Platform Based on Strong, Intrinsically Photoluminescent and Antimicrobial Silica-Poly(citrates)-Based Hybrid Biodegradable Elastomers for Bone Regeneration

Yuzhang Du, Meng Yu, Juan Ge, Peter X. Ma, * *Xiaofeng Chen, and Bo Lei**

Supporting Information

Development of a multifunctional platform based on strong, intrinsically photoluminescent and antimicrobial silica-poly (citrates)-based hybrid

biodegradable elastomers for bone regeneration

Yuzhang Du^a, Meng Yu^a, Xiaofeng Chen^a, Peter X Ma^{a, b, c, d, e}, Bo Lei^{a*}

^a Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China

^b State Key Laboratory for Manufacturing Systems Engineering, Xi'an, China

^c Department of Biologic and Materials Sciences, The University of Michigan, Ann Arbor, USA

^d National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, China

^e Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA

^f Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, USA

^g Department of Materials Science and Engineering, University of Michigan, Ann Arbor, USA

*Corresponding author:

B Lei, rayboo@xjtu.edu.cn or leiboaray@gmail.com, Tel. +86-29-83395361,

Homepage: http://rayboo.gr.xjtu.edu.cn

Samples	CA(mol)	OD(mol)	Si (mol)	M_n (g/mol)	$M_{\scriptscriptstyle W}\left({ m g/mol} ight)$	PDI
PC	1.0	1.1	0	4291	5004	1.1662
MSPC(0.2)	1.0	1.1	0.2	21743	22312	1.0262
MSPC(0.3)	1.0	1.1	0.3	24764	24927	1.0066
MSPC(0.4)	1.0	1.1	0.4	28710	28726	1.0005

Table S1. The monomers composition and molecular weight distributions of PC, MSPC hybrid prepolymers

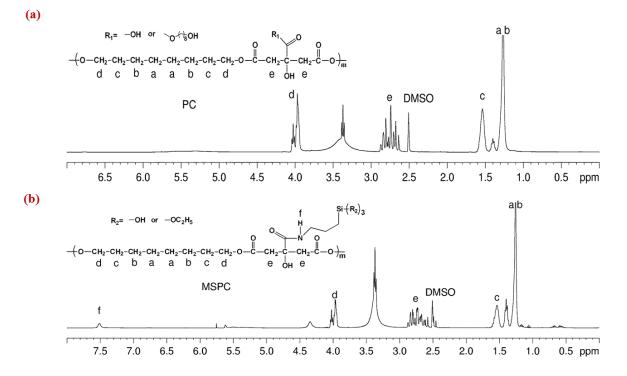


Figure S1. ¹H NMR spectra of PC and MSPC hybrid pre-polymers. (a) PC; (b) MSPC.

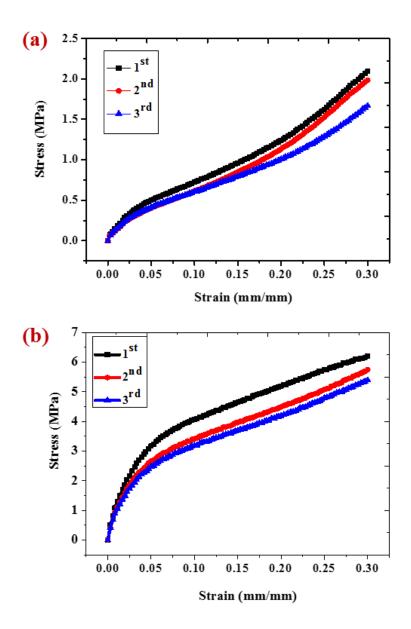


Figure S2. Anti-fatigue mechanical behavior of CPC and CMSPC hybrid pre-polymers. (a) CPC; (b) CMSPC(0.4).

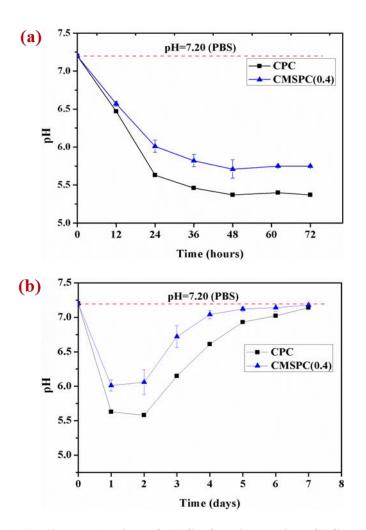


Figure S3. Acidic and alkaline evaluation of PBS after immersing CPC and CMSPC hybrid elastomers. (a) pH test under static condition at 37° C without changing PBS;(b) pH test under dynamic condition at 37° C with refreshing PBS.