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ABSTRACT 

Since the recognition that the adjuvant capacity of flagellin is better harnessed when 

both flagellin and the antigen are delivered to the same cell, there has been a need to 

exploit flagellin in ways that fulfill this constraint. We propose a liposomal delivery system 

functionalized with Salmonella typhimurium flagellin (fliC) as a way to meet this need. Our 

goal is to characterize the fliC-functionalized liposome as a vaccine adjuvant and evaluate 

its ability to target cells expressing Toll Like receptor 5 to enhance the vaccine potential of 

a liposome-encapsulated antigen. Proinflammatory cytokine secretion and preferential cell 

association were evaluated in murine alveolar macrophage cell line and bone marrow-

derived macrophages in vitro. Caspase-1 activation and IL-1β secretion were used to 

determine inflammasome activation in studies employing LLO to gain cytosolic access.  

After a prime-boost immunization regimen, humoral and CD8+ T cell adjuvant effect of 

functionalized liposomes in vivo were determined by quantifying antigen-specific IgG1 and 

IgG2c and tetramer staining of antigen-specific CD8+ T cells. We report that fliC-

functionalized liposomes are able to elicit the proinflammatory cytokine, IL-6, with 

comparable efficacy to soluble protein in a TLR5-mediated manner from an alveolar 

macrophage cell line but not from bone marrow-derived macrophages. FliC-functionalized 

liposomes also demonstrate the capacity to preferentially associate with flagellin-

responsive cells, enhance MHC class I –restricted peptide presentation in vitro, and elicit 

IgG1 and CD8+ T cell response specific to liposome-encapsulated antigen. Using LLO-

encapsulating flagellin-bearing liposomes, we demonstrate that fliC delivery to the cytosol 

enhances inflammasome activation and fliC-functionalized LLO liposomes are able to 

stimulate antigen-specific IgG1 in immunized mice. The physicochemical stability of the 
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flagellin-functionalized liposome and the immune profile it elicits recommend fliC-

functionalized liposomes as feasible for vaccine carrier and adjuvant function. 
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CHAPTER 1 Vaccine delivery to engage the innate and adaptive 
immune systems 

INTRODUCTION 

The goal of vaccination 

We are generally able to survive a host of pathogenic invasions because of the 

natural defenses put up by our immune system. However, there are times when the 

invading organism is able to evade these defenses, and this is consequently manifested as a 

disease process; vaccines insure the host against such an evasion should one ever be 

exposed to the corresponding pathogen.  The global eradication of small pox is a result of a 

successful global-scale vaccination and diseases such as, diphtheria, tetanus, yellow fever, 

pertusis, Hemophilus influenza type b, measles, mumps, rubella, and typhoid- have been 

largely controlled by vaccinations (1). The impact of vaccines on the global population has 

been so substantial that with the exception of the production of safe drinking water, no 

other intervention has had such an impact on reduction of mortality and population growth 

(1). 

Vaccination has been a cornerstone of disease prevention for years; while 

traditional vaccines have been associated with prevention of infectious diseases, with 

increasing morbidity and mortality from various diseases, the search for new vaccines has 

not been limited to those for use in combating infectious disease. The range of vaccine for 

preventable or treatable diseases has widened to include non-communicable diseases such 

as nicotine addiction, obesity, hypertension and cancers-with the hypothesis that active 
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vaccination against molecules implicated in the disease process will offer a chance to treat 

such disease (2). 

Despite the advances made in vaccine development, there are still diseases such as 

HIV and malaria, for which no vaccines exist; there are also existing vaccines that are 

suboptimal in their defense against their corresponding diseases. Several factors are 

responsible for these inadequacies in vaccine development, one of which is the lack of 

immunogenic potency of some vaccines (3). While each vaccine type has unique challenges 

associated, considering that the main goal of vaccination is to generate an immune 

response potent enough to create lasting immunological memory (3), a failure in this 

endeavor represents a major setback for any vaccine. In most natural infections, a 

repertoire of antigens from a pathogen stimulates a variety of interactions with the host’s 

immune system to create such a response. Thus, the ultimate aim for many vaccine 

research studies is to replicate the antigen exposure that occurs during natural infection 

without inducing the disease process seen in a natural infection. 

IMMUNE RESPONSE TO ANTIGENS 

The innate immunity presents the first line of defense that is activated within 

minutes of recognizing an invading pathogen (4) The mechanisms of innate defenses are 

mediated by chemical, physical and cellular processes for example stomach acidity, 

secretion of mucus on epithelial cells to prevent pathogen adherence, and activation of 

macrophages respectively (4). Upon infection by a pathogen, The innate immune system is 

alerted through the recognition of molecular motifs called pathogen- associated molecular 

patterns (PAMPs) by the pathogen recognition receptors (PRRs) expressed by the cells of 

the innate immune system. PAMPs such as bacterial lipopolysaccharide, lipoproteins and 
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mannose-containing molecules found in viruses and bacteria etc. are expressed 

constitutively by invading pathogens and not found in eukaryotes; the PRRs such as the 

scavenger receptors, mannose-binding lectin and the Toll-like receptors (TLRs) have 

evolved to enhance recognition of foreign bodies by the immune system (5, 6).  

When effector cells, such as macrophages residing in submucosal tissue layers and 

circulating neutrophils recognize a pathogen, they phagocytose the pathogen and secrete 

chemokines and cytokines, such as interleukins 1, 6 and 12, and a local inflammatory 

response is induced to recruit other effectors to augment the actions of the activated 

macrophages. Because the innate defenses are dependent on recognizing predetermined 

receptors, this defense mechanism is characterized by a rapid response but also by lack of 

specificity and inability to generate immunological memory (3). However, the production 

of cytokines and other effector molecules during the innate immune response, along with 

the antigen presenting function of macrophages and dendritic cells, induce and segue into 

the second line of defense, provided by the adaptive immune response. 

Unlike the PRRs that mediate recognition in the innate immune response, 

recognition in the adaptive immune response is through antibodies and T cell receptors. 

The adaptive immune response is generated and directed against the specific offending 

pathogen and usually results in protective immunity against re-infection with that same 

pathogen; this is mediated by T and B lymphocytes providing cell-mediated and humoral 

responses respectively (4). During the innate immune response, PRRs on macrophages and 

dendritic cells (DCs) recognize PAMPs and the antigens are displayed in association with 

the major histocompatibility complex (MHC) class I or MHC class II molecules. Since they 

possess the ability to migrate to a lymphoid organ, the APCs present this antigen to 
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stimulate the amplification, maturation and differentiation of naive lymphocytes (7). As 

pathogens can vary from intracellular bacteria, parasites and viruses to extracellular 

parasitic worms, bacteria and fungi, the cellular site of an infection leads to varying effector 

mechanisms of the adaptive immune response to remove the pathogen (4, 7).  

Processing of extracellular and intracellular pathogens and their antigens 

 Extracellular and intravesicular pathogens are inaccessible to the proteasome 

complex in the cytosol, and are degraded within the acidified endolysosomal pathway, 

where the peptides of the antigen are loaded on to MHC class II molecules and displayed on 

the cell surface. As CD4+ T cells have a high affinity for MHC class II molecules, these cells 

recognize the peptides in the context of the MHC molecules (8). The T helper 1 and 2 (Th1 

and Th2) functional subsets of CD4+ T cells produce cytokines to determine the outcome of 

the activation and are essential to induce high affinity antibodies and immunological 

memory (9). The Th17 and Tregs are relatively newly identified as subsets of CD4+ T cells 

that that help regulate protection against certain classes of pathogens (10). Factors that 

influence the differentiation to this subset of cells vary, but the cytokines that dominate at 

the time of the initial T cell priming has been shown to be the important determinant. 

Whereas the presence of the pro-inflammatory IL 12 dictates a Th1 differentiation and the 

presence of the anti-inflammatory IL 4 predisposes differentiation towards a Th2 response 

(5, 6). Th1 cytokines support activation of macrophages (BMM) and generation of T cells, 

while the Th2 cytokines support activation of B cells, production of antibodies and 

eradication of extracellular pathogens (11). In summary, activation of CD4+ T cells leads to: 

(1) activation of other effector cells to eradicate intravesicular pathogens and (2) activation 

of B lymphocytes to produce antibodies against extracellular pathogens.  
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On the other hand, antigens from intracellular pathogens in the cytosol are 

degraded by the proteasome, translocated into the endoplasmic reticulum, where they are 

bound to MHC class I molecules and shuttled through the Golgi apparatus and ultimately 

presented on the cell surface. CD8+ T cells, have a high affinity for peptides presented in the 

context of the class I molecules, hence they become activated leading to the death of the cell 

presenting the peptide MHC class I complex on its surface (4). The cytokine milieu enabled 

by CD4+ T helper cells is important in priming and the generation of CD8+ T cells and the 

protective antibody response. 

HOW VACCINES WORK, TRENDS IN VACCINE DESIGN 

Vaccines serve to mimic a pathogenic invasion without actually inducing the disease 

state; thus the goal is to create immunological memory that can act as surveillance against 

future exposure to pathogens. Vaccine design has taken multiple approaches to generate 

appropriate immune responses to achieve this goal.  Approximately 75% of vaccines 

licensed for use against human viral diseases are live- attenuated vaccines, which 

include vaccines against measles, mumps, rubella, and zoster (12). These vaccines are 

developed by adapting the virus to replicate in its non- natural host and as a result, emerge 

weakened in virulence (12). These vaccines most closely mimic natural infections, and thus 

have several advantages including (1) the ability to replicate in the host (2) frequent ability 

to target antigen presenting cells, (3) containing all the antigens of the pathogen in the 

native form and as such are able to elicit strong innate immune responses (4) when 

replicating intracellularly, they are also able to elicit cytotoxic CD8+ T cell responses, and 

eventually produce a large pool of memory B and CD8+ T cells (12). 
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 With these advantages come disadvantages that include a possible reversion to a 

pathogenic form and a limitation on potential recipients, for example, 

immunocompromised patients (4). The approach using vaccination with an inactivated 

whole organism or a protein subunit vaccine bypasses this disadvantage in that these 

vaccines cannot replicate in the host and thus cannot revert to a more virulent form. 

However, this safety assurance comes at a cost to desired immunogenicity, with many 

requiring the addition of an adjuvant to bolster the immune response and the need for 

booster doses to maintain immunity against the pathogen (4, 12), a major drawback to 

providing vaccination to people without regular access to healthcare.   

The need for enhanced activation of immune responses and cytotoxic T lymphocyte response 

It is now accepted, that for successful vaccines against diseases such as HIV, malaria 

and tuberculosis, robust T cell responses of sufficient magnitude and quality will need to be 

generated (13-15) Studies have shown that macaques challenged with simian 

immunodeficiency virus were partially protected by vaccines that stimulate CD8+ T cell 

immunity (15-17). Additionally, and one of the salient lessons from the failure of several 

HIV vaccines in clinical trials is the need, not only for neutralizing antibodies against HIV, 

but also HIV- specific CD8+ T cells response to generate persisting T cell responses and 

suppress the virus (15). Vaccines that stimulate a T cell response can ensure a more rapid, 

targeted immune response to eliminate viruses in the early stages of an infection. Other 

studies have shown a variety of infections for which CD8+ T cell responses are essential, 

such as in other retroviruses (18). 

Naturally, what constitutes a desired immune response profile necessary for the 

control of a pathogen will vary from pathogen to pathogen; however, most licensed 
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vaccines have relied on antibody titers as a strong immune correlate of protection (11, 19). 

It is clearer now, however, that a humoral response alone is not sufficient as an 

immunological outcome for certain diseases. Whatever the case, the option to a generate 

cell-mediated immune response to any pathogen for which it is required is of importance 

and getting access to the cytosolic pathway, MHC class I, which favors the activation of T 

cells is of priority in vaccine design for such diseases. Th1 cells secret IFNγ to promote 

activation of CD8+ T cells. 

VACCINE ADJUVANTS AND IMMUNOPOTENTIATORS 

The notion of improving vaccine response by the addition of certain compounds has 

been demonstrated by the addition of aluminum compounds to vaccines for about 70 years 

(20) and is present in vaccines against Hepatitis A, diphtheria and tetanus and more. Oil-in-

water emulsions, AS03 and MF59 are licensed for use in Europe, and AS04, a combination 

adjuvant of monophosphoryl lipid A (a TLR ligand) adsorbed onto alum, was recently 

licensed as a vaccine adjuvant in the United States (20). Materials under study for their 

adjuvant activity vary widely in properties and they range from small molecules, 

emulsions, mineral salts to bacterial compounds (21) A reflection of the classical definition 

of the adjuvant as “substances used in combination with a specific antigen that produced a 

more robust immune response than the antigen alone” (22). 

Logically, studies have shown that when antigens are co-administered with vaccine 

adjuvants, the resulting immune response is more potent. While adjuvants have been 

shown to improve immune response against co-administered antigens, broaden protection 

or potentially reduce the dose of antigen needed, or providing cross protection against 

antigens related to the administered antigen (23), the mechanisms by which they do are 
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not well elucidated. For example, mechanisms suggested for the adjuvant behavior of alum 

includes, forming a depot of antigen at inoculation site allowing gradual introduction of 

adsorbed antigen, presentation of adsorbed antigens in a more immunogenic multivalent 

form and induction of a local inflammatory environment that leads to recruitment of 

lymphocytes (21, 24).  The primary mode of action of an adjuvant can be used to classify it 

in to two broad categories. Immunostimulatory adjuvants have direct immunostimulatory 

effects on antigen presenting cells (APCs) and particulate adjuvants, such as emulsions, 

liposomes and virus-like particles, are those that function as delivery systems to enhance 

the uptake of antigens (22). 

Toll and NOD-like agonists as vaccine adjuvants 

It was observed that many successful vaccines seem to exhibit intrinsic adjuvant 

activity from motifs that are known to stimulate the toll like receptors and other pathways 

of the innate immune system (20), for example, the presence of lipopolysaccharide, a TLR 4 

ligand in the typhoid vaccine, the presence of single stranded RNA which is now known to 

stimulate TLRs 7 and 8 in the inactivated polio vaccine (25). TLR agonists have been 

identified and studied as vaccine adjuvants even though they have been present in vaccine 

formulations albeit unwittingly. This presents evidence that the search for a better 

adaptive cell-mediated response does not entirely discount the role of the innate immune 

system to reach this end. 

Toll-like agonists 

 Intracellular pathogens, for example viruses, need the cooperative interaction 

between the innate and the adaptive response to be eradicated. Toll like receptors, a main 

component of the innate immune system, and TLR recognition of PAMPs has been shown to 
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lead to signaling pathways that result in induction of inflammatory cytokines, trigger 

dendritic cell maturation that leads to increased antigen capacity to help direct adaptive 

immune response to antigens (8). The TLR9 agonist, CpG has been tested to enhance 

response in chronic viral infections and cancer (22).   The TLRs are the best characterized 

class of PRRs in humans and appear to specialize in the recognition of bacterial (TLRs 1, 2, 

4, 5) and viral (TLRs 3, 7, 8, 9) (26) PAMPs. Toll-like receptors (TLRs) are widely expressed 

by various immune cells including dendritic cells are among the main cells using this class 

of PRRs as a means for recognizing pathogens which may carry multiple TLR ligands (26). 

In vitro studies have shown that TLR agonists are able to directly activate the dendritic cells 

to stimulate T cell activation and differentiation (21, 26, 27) suggesting that the quality of 

the immune response induced against a particular pathogen may depend on engaging the 

specific PRRs expressed by cells at the infection site (23). There are studies exploring the 

potential of a variety of TLR agonists alone or in combination as adjuvants (Table 1.1) in 

hopes of finding strategies to enhance the immune response. 

Nod-like agonists 

 The Nod-like receptors (NLRs) are comprised of 22 human genes and more in 

mouse. Analysis of the NLR family reveals 3 subfamilies, the NODs, NLRPs and the IPAF 

families, which share similarities in domain structure (28). NLRP3 is the best characterized 

of the NLRs and it responds to range of compounds and particulates that have been 

implicated in enhancing immune response such as silica, chitosan, ATP and uric acid 

crystals(29). Because of the diversity and lack of common patterns of apparent agonists, 

NLRs are generally considered to perform cytosolic surveillance for danger-associated 

molecular patterns (DAMPs), such as reactive oxygen species (ROS), or PAMPs secondary 
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to the different stimuli (28-30). Muramyl dipeptide (MDP) of bacterial cell wall 

peptidoglycan is recognized by NOD2 and was found to be responsible for the ability of 

Complete Freund’s Adjuvant (CFA) to mount an optimal humoral and cellular response.  

MDP has been suggested to play a critical role in priming CD4+ T cell cells toward specific 

Th profiles and several derivatives have been synthesized and researched to enhance its 

adjuvant effect while managing its pyrogenicity (29). It is thought that NLR-mediated 

peptidoglycan synergizes with TLRs to elicit optimal adaptive immune response (31), 

prompting studies of combination of NLR and TLR agonists as a way to modulate Th1 or 

Th2 activity. However, there has been evidence to show that such combinations could 

potentially annul the effect of the component agonist sand or lead to anergy (32).     

Flagellin as both TLR and NLR agonist 

Flagellin is the main structural unit of the flagellum, the motility organelle in many 

bacteria such as Pseudomonas, Serratia, Proteus, Escherichia and others (33). Analysis of 

Gram- positive and -negative bacteria reveal It is a highly conserved at the amino and 

carboxy termini while the interspacing region, known as the hypervariable region exhibits 

substantial variability and length (34, 35). The 55 KDa protein has four major domains: (1) 

D0, which comprises approximately 50 residues each of the N and C termini involved in the 

NLR signaling (2), D1, contains highly conserved regions involved in signaling recognized 

by the TLR receptor, (3) D2 and (4) D3 the latter two which span the hypervariable region 

to which antibodies are directed (33, 35, 36) (Figure 1.1).   

Flagellin signals via TLR5, which is expressed on dendritic cells, endothelial cells, 

epithelial cells, and monocytes (37) (Table 1.2). The signaling cascade upon flagellin and 

TLR5 ligation is well studied. Ligation mobilizes nuclear factor NF-κB and stimulating 
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production of proinflammatory cytokines, and maturation and migration of dendritic cells 

to secondary lymphoid sites (5, 37). Like TLR 2, 4, 5, 7, 8 and 9, TLR5 signals through the 

IL-1R associated kinase (IRAK) signaling pathway governed by the adapter protein MyD88 

to activate various transcription factors  (23, 34). Signaling through this adapter protein 

leads to the activation of type 1 interferons (α and β) required for control of viral infections 

and production pro-inflammatory cytokines such as tumor necrosis factor α 

(23).  Intracellular flagellin, as in an infection with a flagellated bacterium, signals via IPAF, 

also called Nod-Like Receptor C4 (NLRC4), and Naip5 (38), making flagellin both a TLR and 

an NLR agonist.  Flagellin exhibits a couple of advantages that makes it attractive for use in 

vaccines such as, its effectiveness at low doses, lack of IgE production and flexibility with 

which it can be manipulated- in terms of fusion proteins- without any loss of signaling via 

TLR5 (39-42).   

USE OF NANOPARTICLES IN VACCINE DELIVERY  

Particulate delivery systems typically are of similar dimensions as the pathogen and 

can be used in combination with immunostimulatory adjuvants to affect the magnitude of 

the response of direct a certain immune profile (22).  Due to their ability to be targeted to 

immune cells of interests or loaded with immunostimulatory agents, nanoparticles have 

been of interest in vaccine delivery (43).  Inorganic nanoparticles such as gold, silicate of 

calcium phosphate nanoparticles are being examined though they are non-degradable and 

stay in the tissues for extended periods of time (43, 44).  Polymeric nanoparticles ranging 

from naturally derived polymers such as hyaluronic acid to polyesters such as poly (lactic-

co-glycolic acid) have been also been exploited in vaccine delivery to various degrees  (22, 

43, 45).  As biologically inspired systems, biomolecular materials such as virus-like 



 12 

particles, micelles and liposomes offer great advantages to vaccine delivery, they can be 

used to deliver encapsulated cargo, and their surface can be manipulated to display 

different moieties, which offers an advantage in targeting (43) Clinically viral particles have 

been used to deliver vaccines, with the vaccine against the human papillomavirus (HPV) 

being a recent one (46). This licensed vaccine contains the major capsid protein of HPV and 

an alum salt adjuvant. It has been determined to reduce the infection of HPV by 90% (44). 

This demonstrates the potential and attractiveness of bimolecular nanoparticles as vaccine 

carriers. Liposomes also present a benefit in delivery and there are a number of licensed 

liposome-based drugs on the market. Because of their relative immunogenicity, liposomes 

are considered the most useful for vaccine delivery (44). As spherical vesicles with a 

phospholipid bilayer, they are able to encapsulate either antigen or adjuvant and can be 

rendered immunogenic by functionalizing the surface for presentation to antigen 

presenting cells (APCs) (43, 44). 

Antigen presenting cells as a vaccine delivery targets 

Dendritic cells (DCs) and macrophages are antigen-presenting cells that play a 

major role in orchestrating responses of the innate and adaptive immune systems.  Their 

important role in instructing the immune system makes them strategic targets of vaccine 

delivery.  Antigens have been targeted towards DC surface receptors in vivo after ex vivo 

loading  (48) and protein antigens have been used to target the DEC-205, a dendritic cells 

receptor to enhance MHC class I antigen presentation (49).  

Surface modification of liposomes to enhance delivery to antigen presenting cells 
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Studies of antigen attachment to liposomal vaccines show that physical association 

in some form to the liposome is required and surface conjugated antigen generally elicits 

greater antibody responses than encapsulated antigens, although, CTL responses are the 

same (50). In using liposomes are delivery vehicles; various parameters have to be 

considered. Parameters such as vesicle size, lamellarity, surface charge, lipid composition, 

fusogenicity, membrane fluidity and antigen attachment are important to the design of 

liposomes as vaccine carriers (50).  For the purpose of targeting, antigen attachment on the 

surface of the liposome is of particular importance and the antigen has to be physically or 

chemically associated with the liposome. These attachment strategies include covalent 

conjugation to the lipid surface via a lipid moiety, non-covalent surface attachment using 

biotin, NTA-Ni (II)-hexahistidine or exploiting antibody–epitope interactions and surface 

adsorption.  

Covalent conjugation is predominantly done via disulfide, amide or thioester bonds 

(50, 51) and usually involves multiple steps with buffers of varying pH that increases the 

potential of damaging protein activity and immunogenicity  (52). Surface adsorption as a 

mode of protein attachment has not been comprehensively studied (50). The use of non-

covalent attachment such as that of NTA-mediated protein association can be a good 

investigative tool. It only requires a simple modification of the protein- adding histidine 

groups -and it is mild enough to not affect the activity of the protein (52). This strategy 

exploits the relatively high affinity of histidine residues and Ni2+, which can be utilized in 

liposomes containing lipids with a Ni-chelating head group to immobilize hexahistidine- 

tagged proteins (53-55). Understandably, the strength of the interaction between the 

protein and the chelated nickel on the liposome surface is of importance to its ability to 
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make the desired interaction.  While some studies have raised the possibility that this 

interaction may not remain in the serum-containing environment in vivo (52), several other 

studies have demonstrated its usefulness in vivo  (55, 56). Indeed, the desorption kinetics 

of the histidine-tagged protein from chelator lipids have been explored experimentally and 

shown to be governed by the valency of protein surface binding, where polyvalently bound 

proteins have a significantly longer desorption time than monovalently bound proteins. 

This valency can be regulated by incubation times of the his-tagged protein with the lipid 

platform (57).  This effect of the incubation times can easily be taken into account in 

preparing surface modified liposomes using this non-covalent strategy. 

CONCLUSION 

The delivery of antigens and adjuvant on a liposomal delivery system requires 

various considerations. Notably, the behavior of the protein and the various interactions 

that will lead to desired response and also the potential of the liposome to serve as a 

suitable platform for attachment and delivery vehicle. We explore functionalization of 

liposomes with an adjuvant while considering the immunological relevance of the 

functionalization for both liposomes and the adjuvant. 
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Figure 1.1 Flagellin domains and associated activity 

D0 and D1 domains are conserved regions (D0 (IPAF) recognition site, D1: TLR5 
recognition site) D2 and D3: Hypervariable region, recognized by antibodies 
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Name Components Receptor/pathway Disease target 
Alum* Aluminum salts (aluminum 

hydroxide, aluminum phosphate) 
NLRP3 uric acid, 
DNA 

Diphtheria, tetanus, pneumococcus, HAV, HBV, 
anthrax, tick-borne encephalitis, MenC, MenB, 
HPV 

MF59*, AS03*, 
AF03, SE 

Oil-in-water emulsion squalene oil 
plus surfactants 

MyD88, ASC ATP Seasonal and pandemic influenza 

Virosomes* Liposomes plus influenza HA Unknown HAV 
AS04* Alum, MPL TLR4 HBV, HPV 
RC-529* Alum, TLR4 agonist TLR4 HBV 
Imiquimod Small molecule Imidazoqinoline TLR7 Cancer 

CpG Synthetic DNA alone or formulated 
with Alum 

TLR9 HBV, malaria, influenza, anthrax, cancer 

Poly ICLC Synthetic double strand RNA TLR3, MDA5 Cancer, HIV 
Flagellin Linked to HA TLR5 Influenza 
AS01 Liposomes, MPL, QS21 TLR4 Malaria 
AS02 Oil-in-water emulsions, MPL, QS21 TLR4 Malaria, TB, cancer 
AS15 Liposomes, MPL, CpG, QS21 TLR4 and TLR9 Cancer 
Iscomatrix Saponins, cholesterol Unknown HCV, influenza, HPV, cancer 
IC31 DNA, peptides TLR9 agonist TB 
CAF01 Trehalose-dibehenate, cationic 

liposomes 
C-type lectins 
Mincle and MCL 

TB 

GLA-SE Oil-in-water emulsion, synthetic 
MPL 

TLR4 Influenza 

Montanide 
(ISA51, ISA720) 
IFA 

Water-in-oil emulsion mineral oil, 
surfactants 

Unknown Malaria, HIV, cancer, influenza 

CT, LT, LTK63 Bacterial toxins GM1 Influenza (intranasal), ETEC (patch), cholera 
(oral) 

ETEC, enterotoxigenic Escherichia coli; HAV, hepatitis A virus; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human 
immunodeficiency virus; HPV, human papillomavirus; MenB, Meningococcal B, MenC, Meningococcal C; Mincle, macrophage 
inducible Ca2+-dependent (C-type) lectin; TB, tuberculosis.  (* adjuvants in licensed vaccines) (29) 
Table 1.1: Clinically tested human vaccine adjuvants  

Several studies have explored the use of TLR agonists and adjuvants; some are currently being tested for human vaccines 
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Table 1.2: Expression of TLR5 and responsiveness to flagellin in monocytes and dendritic cells 

 
 TLR5 shows variable expression across cell types and cell lines, adapted from (34) 
 

 Cell type Species TLR5 
mRNA 

TLR5 
protein 

Respond 
to flagellin 

Monocytes Peripheral Monocytes Human Yes Yes Yes 
 U1, U38 promonocytic cell lines Human   Yes 

THP1 promonocytic cell line Human   Yes 
Alveolar macrophages murine Murine Yes   
Peritoneal macrophages Murine Yes/No   
J774.1 macrophage cell line Murine Yes   
HeNC2 macrophage cell line Murine Yes   
GG2EE macrophage cell line Murine   Yes 
10ScNCr/23 macrophage line Murine   Yes 
RAW264.7 macrophage line Murine No  Yes* 

Dendritic cells Langerhans cells Human   Yes 
 Primary CD4+ blood DC Human   Yes 

Monocyte-derived DC Human Yes  Yes 
Peripheral plasmatoid DC Human No   
Splenic DC Murine Yes  No 
Bone marrow derived DC Murine Yes  Yes 
D2SC/1 splenic DC line Murine Yes  Yes 
FSDC fetal skin DC cell line Murine Yes   
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CHAPTER 2 Characterization of flagellin-functionalized liposomes as a 

vaccine carrier and adjuvant  

SUMMARY 

Since the recognition that the adjuvant capacity of flagellin is better harnessed when 

both flagellin and the antigen is delivered to the same cell, there has been a need to exploit 

flagellin in ways that fulfill this constraint. We propose a liposomal delivery system 

functionalized with Salmonella typhimurium flagellin (fliC) as a way to meet this need to 

engage both the innate and adaptive immune response. Our goal is to characterize flic-

functionalized liposomes as a vaccine adjuvant and evaluate their ability to simultaneously 

target cells expressing TLR5 to ultimately enhance vaccine potential of a liposome-

encapsulated antigen. We report that fliC-functionalized liposomes are able to elicit the 

proinflammatory cytokine IL-6 with comparable efficacy to soluble antigen in an alveolar 

macrophage cell line (MH-S), and the ability of the cells to respond to the liposomes is 

mediated by TLR5. The functionalized liposomes exhibit preferential cell-association with 

MH-S cells. In vivo, the functionalized liposomes are able to enhance antigen-specific CD8+T 

cell response and antigen-specific IgG1 response.  

INTRODUCTION 

Many successful vaccines seem to exhibit intrinsic adjuvant activity from motifs that 

are known to stimulate the Toll-like receptors and other pathways of the innate immune 

system (1). These motifs include lipopolysaccharide, a TLR4 ligand used in the typhoid 

vaccine, and the TLR7 and TLR8 ligand, single-stranded RNA, in the inactivated polio 
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vaccine (2). TLR agonists have been identified and studied as vaccine adjuvants even 

though they have been present in vaccine formulations, albeit inadvertently. Toll-like 

receptors play an important role in the assessment of pathogen at the cell surface and act 

as mediators between the innate and adaptive immune system by (a) stimulating signaling 

pathways that result in the induction of inflammatory cytokines, and (b) triggering 

dendritic cell maturation to direct adaptive immune responses to antigens(3). In vitro 

studies have shown that TLR agonists are able to directly activate dendritic cells to 

stimulate T cell activation and differentiation (4-6), suggesting that the quality of the 

immune response induced against a particular pathogen may depend on engaging the 

specific pattern recognition receptors (PRRs) expressed by cells at the infection site  (5). 

As the only TLR known to recognize a protein ligand, TLR5 is of interest in this 

study for the ease with which its ligand may be manipulated for the study of vaccine 

adjuvants. TLR5 is expressed on dendritic cells, epithelial cells, and monocytes (7). Its 

ligand flagellin, a 55 KDa protein, is known to prime the innate immune system in response 

to flagellated bacteria. As one of the best-characterized PRRs, the signaling cascade 

generated downstream of a TLR5/ligand interaction has been identified as an activation 

that mobilizes NFκB and stimulates proinflammatory cytokine production (8, 9). Studies 

have shown that the C- and N-terminal domains of flagellin are required for interaction 

with TLR5 (10, 11). Signaling through this adapter protein leads to the activation of type 1 

interferons (α and β) required to control viral infections and production of 

proinflammatory cytokines such as tumor necrosis factor α (5) Other than directed DC 

activation, the adjuvant activity of flagellin is thought to be due to a number of other 

processes such as generalized recruitment of T and B lymphocytes to secondary lymphoid 
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sites, direct activation of T lymphocytes, and the induction of proinflammatory cytokines 

and chemokines (12). The flagellin from Salmonella typhimurium has been widely used in 

studies of flagellin’s adjuvant activity since flagellin from Salmonella strains is generally 

one of the most potent inducers (13). When flagellin-expressing cells were co-administered 

with a plasmid that encodes for ovalbumin (OVA), it led to an enhanced humoral and cell-

mediated antigen-specific response after two DNA boosts (9).  A main limitation to the co-

administration approach is that co-administration does not guarantee that the same cells 

that take up the plasmid are primed. Although some studies of flagellin co-administered 

with antigen report enhanced responses, studies utilizing a fusion protein of an antigen and 

flagellin in comparison to the former approach suggest a greater benefit.  Additional 

studies show that priming the same cells that receive the antigen may actually be necessary 

to stimulate any response (12, 14).  

 Other studies of flagellin as an adjuvant in the context of flagellin-antigen fusion 

proteins have demonstrated CD8+ T cell and CD4+ T cell adjuvant effects (15-17). The 

usefulness of flagellin as an adjuvant for specific antigens can be restricted by limitations 

arising from their fusion proteins, the context in which flagellin has mainly been recognized 

for enhanced adjuvant properties. While antigen-flagellin fusion proteins, particularly 

antigens inserted in the hypervariable region, have demonstrated adjuvant ability, there 

are limitations specific to the antigen used, such as difficulty of producing the chimeric 

protein or inability to generate antibodies recognizing the native antigen (12). In spite of 

flagellin’s general flexibility in creating antigen–fusion proteins, this presents a 

quintessential drug delivery challenge to harness the adjuvant capacity of flagellin in such 

cases. 
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The liposomal approach offers the benefit of being a vehicle to deliver and protect 

its cargo from protease degradation (18). As a delivery platform, liposomes have been used 

in vaccine delivery systems due to their general lack of immunogenicity, ability to 

encapsulate antigens to enhance cell uptake, and capacity to be functionalized on the 

surface (19). A study demonstrated that liposomes engrafted with flagellin-related 

peptides (two peptides from the conserved N terminal regions of Salmonella typhimurium 

flagellin) enhanced liposomal binding to dendritic cells and further induced their 

maturation. Vaccination of mice with the engrafted liposomes containing ovalbumin (OVA) 

yielded an OVA-specific T cell response and an increased number of CD8+ T cells producing 

IFNγ (20) without contribution from the C motif. Liposomes engrafted with peptides from 

the C motif exhibited little binding to TLR5 (20). This study made a number of important 

observations, but did not expressly include portions of flagellin that may function 

independently of TLR5. The evidence that points to a TLR5 independent enhancement of 

antigen-specific CD8+ T cell response, underscores the role of TLR5 independent processes 

in the adjuvant capacity of flagellin. 

Considering that preexisting immunity to flagellin does not appear to result in 

immune suppression upon subsequent immunizations (21-23), it is worth examining 

flagellin as a full protein in the context of a liposomal delivery system to evaluate the 

adjuvant capacity of the full protein in both TLR5-dependent and independent pathways. In 

view of the established role of flagellin as an adjuvant for both innate and adaptive 

immunity and the need for simultaneous delivery to APCs, we sought to evaluate the role of 

a liposomal carrier functionalized with the full flagellin protein as both an innate and 

adaptive immunopotentiator. In the current study, the effect of the flagellin on properties 
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of the liposomes, its ability to target the antigen presenting cells, and the resulting immune 

responses are examined. We hypothesize that this functionalization serves multiple 

purposes. Firstly, expression of the ligand on the surface of the delivery vehicle allows for 

interaction of flagellin peptides with TLR5, an interaction found to be necessary for the 

desired proinflammatory immune response (10, 13). Secondly, to perhaps preferentially 

target TLR5-expressing cells while enhancing the delivery of flagellin to the cytosol of cells 

primed with an antigen to achieve enhanced adaptive immunity. Finally, to 

immunupotientiate a liposome-encapsulated antigen delivered to APCs in the style of 

flagellin fusion proteins.  

MATERIALS AND METHODS 

Expression and purification of recombinant proteins  

BL21 (DE3) RIPL were used as host strains for expression of the recombinant 

proteins fliC–his and YFP-his, both with a C terminal hexahistidine tag.  The E. coli strains 

carrying pET28a plasmids with FliC used in these studies was a gift from Dr. Russell Vance 

(University of California, Berkeley, CA) and the construct for the YFP citrine variant was a 

gift from Dr. Joel Swanson (University of Michigan, Ann Arbor, MI). The adenine nucleotide 

was inserted into the sequence via quik-change site-directed mutagenesis to orient the 

hexahistidine tag with the reading frame. The cells were transformed with DNA of fliC-his 

in pET28a and YFP-his in pET29b. Cells were grown in 37 ° C in TB broth. Protein 

expression was induced with 0.5mM isopropyl-beta-D-thiogalactopyranoside (IPTG) at 30 ° 

C and grown for another 6 hours. Cells were centrifuged at 4000xg for 30 min at 4 ° C. Cell 

pellets were store at -80 ° C till use. The pellets are suspended in wash buffer (50mM 
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sodium phosphate dibasic, 300mM sodium chloride, and 20mM imidazole) containing 

1mg/ml lysozyme and 1mM phenylmethylsulfonyl fluoride (PMSF) incubated for 30 

minutes on ice.  

Purification of fliC: After centrifugation at 20000xg for 30 minutes, the pellet was 

homogenized in 1M urea and 1% triton twice, followed by two washes in buffer containing 

1mM PMSF. The wash steps were performed between centrifugation steps at 20000xg at 4 

° C for 30 minutes. The pellet was homogenized in 6M guanidine hydrochloride containing 

1mM PMSF and centrifuged at 100000 x g at 4 ° C for 1 hour. The supernatant was applied 

to Ni-NTA agarose resin (Qiagen, MD) and incubated for 2 hours at 4 ° C. Bound his-tagged 

protein was eluted from a Ni-resin column against 400mM imidazole and dialyzed in 1x 

PBS pH 6.4 for 16 -20 hours.  

Purification of Yellow Fluorescent protein: YFP-his pellet in 1mg/ml lysozyme was lysed 

using a Digital Sonifier Cell disruptor (Emerson, Danbury, CT) eight times at 50% 

amplitude with a 30 second interval of sonication and 30 second incubation on ice. The 

lysate was centrifuged at 12000 x g for 1 hour at 4 ° C and the supernatant incubated with 

the Ni-NTA agarose resin (Qiagen, MD) for 2 hours on a shaker at 4 ° C. Bound his-tagged 

protein was eluted from a Ni-resin column against 400mM imidazole and dialyzed in 1x 

PBS, pH 8.4, for 16-20 hours.. Protein concentration was determined using a BCA protein 

assay (Pierce, Rockford, IL) according to the manufacturer’s instructions. Protein purity 

was evaluated using SDS gel electrophoresis and visualized using Krypton fluorescent stain 

(Thermo Scientific) per the manufacturer’s instructions and a Typhoon 9200 imager (GE 

Healthcare). 
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Removal and quantification of endotoxin 

The resulting protein was purified of endotoxin using a polymyxin B column (Pierce, 

Rockford IL) and further clarified of DNA and viral particles using an acrodisc Mustang Q 

filter (Pall, Ann Arbor MI). Endotoxin was quantified using the Limulus Amebocyte Assay 

(Associates of Cape Cod, MA). The endotoxin content was determined to be < 0.05EU/μg 

protein. 

Preparation of liposomes and protein-coated liposomes 

  The lipids 18:1 (Δ9-Cis) PE (DOPE) 1,2-dioleoyl-snglycero-3 phosphoethanolamine, 

cholesteryl hemisuccinate (CHEMS), 18:1 DGS-NTA(Ni) 1,2-dioleoyl-sn-glycero-3-[(N-(5-

amino-1-carboxypentyl)iminodiacetic acid)succinyl] (nickel salt)( Ni-NTA) were mixed at a 

2:1:0.02 ratio and dried down on a rotary evaporator and afterwards stored under vacuum 

for 12-16 hours. The dried lipid films were suspended in HEPES-buffered saline (HBS) 

(10mM HEPES, 140mM NaCl, pH 8.4) for subsequent protein coating. For liposomes 

encapsulating OVA, OVA was encapsulated at a concentration of 20mg/ml. Fluorescent 

liposomes for cell uptake were made using 18:1 (Δ9-Cis) PC (DOPC) 1,2-dioleoyl-sn-

glycero-3-phosphocholine, cholesterol, Ni-NTA lipid and 1,2-Dihexadecanoyl-sn-Glycero-3-

Phosphoethanolamine (Oregon Green® 488 DHPE) at 2:1:0.02:0.01 ratios.  All 

aforementioned lipids were acquired from Avanti Lipids, Alabaster, AL except for Oregon 

Green DHPE from Life technologies, Gaithersburg, MD. The resulting lipid films where re-

suspended in HBS, passed through 4 freeze/thaw cycles, and sonified in a bath sonicator 4-

5 times in 1-minute cycles. To coat with protein, the resulting liposomes were incubated 

with protein at a 20:1 Ni lipid to protein molar ratio for 1-2 hours at 4 ° C (with the 

exception of studies varying the Ni-NTA to fliC molar ratios, the Ni-NTA: fliC used in other 
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studies was 20:1). The free protein was purified from the liposomes via size exclusion 

chromatography on a CL4B (GE Healthcare) column and the eluted liposomes were 

evaluated by SDS gel electrophoresis to confirm the presence of protein and quantify the 

amount of protein on the liposomes. Liposome diameter was determined using dynamic 

light scattering on a Zetasizer instrument (Malvern, Westborough, MA). Phospholipid 

content of liposomes was quantified using Bartlett’s method of phosphate quantification 

(24). 

Trypsinization of functionalized liposomes 

Functionalized liposomes that were subsequently stripped of the protein coating 

were prepared by applying the liposomes to trypsin TPCK immobilized on agarose beads 

(Thermo Sci.) and incubated at 37° C for 8 hours according to manufacturer’s instructions. 

Membrane leakage and pH sensitivity assay 

PE: CHEMS: Ni lipid films were formed as previously described and rehydrated in 8-

hydroxypyrene-1, 3,6-trisulfonic acid (HPTS) and p-xylene-bis-pyridinium bromide (DPX) 

(35mM HPTS, 50mM DPX, 20mM HEPES, 0.5M NaOH, 290mOsm/kg).  After four freeze-

thaw cycles, the rehydrated lipid film was sonicated in a bath sonifier four times in 1-

minute pulse and rest cycles. The unencapsulated HPTS/DPX were separated from 

encapsulated HPTS/DPX on a Sephadex G-50 (GE health care) gel filtration column and 

phospholipid content quantified before protein functionalization at different Ni-NTA to 

protein ratios. Unencapsulated HPTS fluorescence associated with 10nmols of lipid in HBS 

pH 8.4 was determined using kinetic measurements every 10 minutes on a Synergy plate 

reader  (BioTek, Winooski, VT) using the filters passing light at the excitation and emission 
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wavelengths of 400(30) nm and 508(20nm), respectively.  Triton X-100 was added at a 

final concentration of 2% to lyse the liposomes and determine total fluorescence.  

To evaluate pH sensitivity, the liposomes were incubated in pH 5.5 (MES buffer) and HBS, 

pH 7.4, and the fluorescence of encapsulated HPTS was determined as previously described 

in the membrane leakage assay.   

Cell lines and Tissue culture 

Tissue culture media was purchased from Invitrogen (Carlsbad, CA) and all cells 

were maintained in a humidified incubator at 37° C and 5% CO2, unless otherwise stated. 

MH-S cell line (ATCC, Manassas, VA) was maintained in ATCC modified RPMI 1640 (with 

2mM L-glutamine, 25mM L-glucose, 1mM sodium pyruvate and 10mM HEPES) (Life 

technologies CA), supplemented with 10% heat-inactivated fetal bovine serum (HI-FBS), 

100μg/ml streptomycin, 100u/ml penicillin, and a final concentration of 50mM β- 

mercaptoethanol.  

Generation of bone marrow-derived macrophages 

Bone marrow was harvested from femur and tibia of 7-8 week old C57BL/6 mice as 

described in Stier et al.  (25). The bone marrow cells were differentiated into bone marrow-

derived macrophages (BMM) in DMEM containing 20% heat-inactivated fetal bovine serum 

(Hi-FBS), 30% L-929 cell conditioned media containing macrophage stimulating factor, 

100μg/ml streptomycin, 100u/ml penicillin, and 55μM β-mercaptoethanol. The cells were 

replenished with new medium on day 3, harvested on day 6 and stored in liquid nitrogen 

until use. Upon thawing, cells were maintained in DMEM (Invitrogen, CA), supplemented 

with 10% Hi-FBS, 100μg/ml streptomycin, 100u/ml penicillin and 2mM L-glutamine. 
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In vitro cytokine secretion analysis by ELISA 

 2x 105 MH-S cells and BMM from C57BL/6 mice were plated in 96-well plates in respective 

media 16-20 hours before liposome treatment. The cells were incubated with liposomes for 

3 hours, the treatment discarded, and the cells incubated in their respective media for 21 h. 

Cell supernatants were collected and analyzed via ELISA for IL-6 (eBioscience, San Diego, 

CA) secretion according to the manufacturer’s instructions.  

Cell association and uptake study by flow cytometry 

1x106 cells/ml of staining buffer (1xPBS with 10% Hi-FBS) were treated with 

fluorescent liposomes and dosed according to flagellin concentration. YFP coated and non-

coated fluorescent PC: CHOL: Ni liposomes were matched by intensity and used as controls. 

Cells were treated with liposomes at either 4 ° C or 37 ° C for 1 hour. Control cells were 

treated with either 1000ng/ml anti-mTLR5 (Invivogen, CA) or 1000ng/ml rat IgG2a for 

isotype control (Invivogen, CA) at 37 ° C for 1 hour before treatment with liposomes. Cells 

were fixed with 2% paraformaldehyde, washed in ice-cold staining buffer, and centrifuged 

at 500xg at 4 ° C. The wash step was repeated twice before cell pellets were suspended in 

staining buffer for flow cytometry analysis on FACSCALIBUR (BD biosciences, San Jose, CA). 

In vitro antigen presentation 

In vitro antigen presentation was performed as previously described in  (26). 

Briefly, 2 x 105 cells/well were plated in 96-well plates overnight before the day of the 

assay, cells were washed in serum-free media and treated with liposomes in serial dilutions 

with the highest concentration at 200μM phosphate in serum-free media for 2 hours.  BMM 

were washed and incubated in complete DMEM for 3 hours. The cells were fixed in 1% 
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paraformaldehyde for 15min at 4° C. The paraformaldehyde solution was prepared in 

warm 1X PBS and dissolved by adding drops of 0.1M NaOH; the pH of the solution was 

adjusted to 7, and the solution filtered through a 0.45μm filter. The paraformaldehyde was 

quenched by 0.2M lysine in DMEM for 20 minutes at RT. The cells were washed in DMEM 

after quenching, and 2 x 105 cells/well of B3Z cells in B3Z media (RPMI 1640 supplemented 

with 2mM L-glutamine, 25mM L-glucose, 1mM sodium pyruvate and 25mM HEPES) were 

added per well and incubated for 15 hours at 37° C and 5% CO2.  The plates were 

centrifuged at 1500rpm for 5 minutes, media was carefully removed and the cells washed 

in RT 1X PBS and centrifuged again. The PBS supernatant was removed carefully. CPRG 

substrate (0.15 mmol/L chlorophenol red-β-D-galactopyranoside (Calbiochem), 9 mmol/L 

MgCl2, and 0.125% NP40, and 100 mmol/L β-ME in PBS) was added to measure production 

of β-galactosidase by B3Z cells in response to BMM presentation of SIINFEKL in H-2Kb. The 

plates were incubated for 4 hours at 37°C and absorbance values were measured at 595nm 

using a spectrophotometer (BioTek, Winooski VT). 

Mice and Immunization protocol 

C57BL/6 mice, 8-10 weeks old (Jackson labs, Bar Harbor, ME) were used in this 

study and were handled according the University of Michigan Institutional Animal Care 

guidelines. Mice were immunized subcutaneously at the base of the tail with OVA-

encapsulated liposomes (OVA) and fliC -functionalized OVA ((OVA)-fliC) containing 10μg 

OVA and 7-8μg fliC, on day 0 and day 10.  Naïve mice were immunized with same volume of 

HEPES buffered saline pH 8.4 (HBS). Mice were euthanized on day 21 and blood was 

collected via cardiac puncture. 
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CD8+ T cell tetramer staining 

Seven days after immunization, blood was collected via the superficial temporal vein 

of immunized mice. The blood was collected in dipotassium EDTA coated microtainer tubes 

(BD, biosciences, Franklin, NJ).  After blood collection, the cells were resuspended by gentle 

pipetting. Red blood cells were lysed with ACK lysis buffer (Life Technologies) twice. The 

cells were centrifuged at 1500 x g for 5 minutes at 4° C between each lysis.  The cells were 

washed in FACS buffer (Ix PBS containing 1% BSA) and centrifuged at 1500 x g for 5 

minutes at 4° C.  The resulting pellet was stained for flow cytometry after CD16/32 Fc block 

(eBioscience, San Diego CA) and incubated for 10 minutes at room temperature (RT).  A 

small volume of each sample was collected for FACS negative and single controls. Cells 

were incubated with T-select H2Kb – OVA-tetramer SIINFEKL PE (MBL, Japan) for 30 

minutes and stained with anti-CD8, anti-CD44, and anti-CD62L. The incubation was 

followed by DAPI staining to discriminate live from dead cells. Cell fluorescence was 

evaluated via flow cytometry. 

Measurement of Antibody titers 

Blood was harvested from euthanized mice via cardiac puncture in microvette 500 

centrifuge tubes (Sarstedt, Germany). The sera were isolated by centrifugation at 10000 x g 

for 5 minutes and analysed by ELISA or stored at -80° C until use. To determine serum 

antibody titers, briefly, Maxisorp Nunc immunoplates (eBioscience, San Diego, CA) were 

coated with 10μg/ml OVA (Sigma-Aldrich, St Louis, MO) in 0.1M sodium phosphate pH 9.0, 

coating buffer overnight (12-16 hrs). The plates were washed in PBST (1x Phosphate 

Buffered Saline, 0.05% Tween) and then blocked overnight at 4° C with PBST containing 

1% BSA (blocking buffer). The plates were washed and incubated with serial dilutions of 



 35 

sera in blocking buffer overnight at 4° C. OVA-specific biotinylated goat anti-mouse IgG1 

and goat anti-mouse IgG2c (Southern Biotech, Birmingham, AL) were detected with Avidin-

Horseradish Peroxidase (eBioscience, San Diego, CA) and finally TMB substrate (KPL Inc., 

Gaithersburg, MD). Plates were washed 5 times in PBST between each step.  Conversion of 

substrate to colorimetric product was stopped by 2N sulfuric acid and absorbance at 

450nm was determined. Data were fit to a 4-parameter curve on the Gen5 data analysis 

software, (Biotek, Winooski, VT) to determine titer, defined as the dilution factor that 

yields an absorbance of 0.5.  The lowest dilution used was reported for samples below the 

limit of detection. 

RESULTS 

Liposomes functionalized with flagellin retain membrane integrity and maintain pH-

sensitivity 

In spite of the versatility of liposomes in drug delivery, it is essential to ensure that 

the surface functionalization does not alter its ability to serve as a delivery vehicle. To 

evaluate the effect of flagellin functionalization on the physicochemical properties of the 

nickel-containing liposomes, we evaluated the membrane integrity and the pH-sensitivity 

of these liposomes after functionalization. Liposomes were encapsulated with HPTS, a 

highly water-soluble membrane-impermeant pH indicator, and its cationic collisional 

quencher, DPX, and the membrane integrity was monitored by the change in HPTS 

fluorescence over time. As the content of the liposome leaks, DPX-mediated quenching of 

HPTS fluorescence is reduced due to DPX dilution into the surrounding buffer.  The 

liposomes were functionalized at different Ni-NTA lipid: fliC molar ratios.  The fluorescence 
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measurements from 10nM of liposomes show that the lower the Ni-NTA:fliC 

functionalization ratio, the higher the fluorescence observed in the liposomes, indicating a 

higher fraction of these liposomes leaked their content in comparison to liposomes coated 

at higher Ni-NTA:fliC ratios. However, the results are noteworthy for the stable 

fluorescence over time in the different functionalization ratios tested (Fig. 2.1A), which 

suggests that the functionalization process does not adversely affect the membrane 

integrity.   

To evaluate the effect of functionalization of liposomes on the pH-sensitivity, 

uncoated liposomes and liposomes functionalized at a various Ni-NTA:fliC molar ratios 

were compared. All tested liposome samples contained the HPTS/DPX fluorescent dye, and 

fluorescence in pH 5.5 buffer mimicking endosomal pH conditions was compared to buffer 

at physiologic pH 7.4.  Both coated and uncoated liposomes released little HPTS (<10%) in 

pH 7.4 buffer, however, rapid HPTS release occurred within ten minutes of adding both the 

uncoated and coated liposomes to pH 5.5 buffer (Fig. 2.1B). Addition of liposomes to pH 4.5 

buffer yielded >90% release of both functionalized and uncoated liposomes. While 

functionalization of the liposomes may reduce the pH sensitivity in comparison to uncoated 

liposomes, liposomes remain structurally stable and remain responsive to low pH upon 

functionalization with fliC.  

MH-S cells respond to flagellin 

The stimulation of TLR5 by flagellin initiates a signaling cascade that leads to NFκ B 

activation and subsequent secretion of proinflammatory cytokines such as IL-6 and TNFα. 

The variability of expression of TLR5 on different cell-types is documented in the literature  

(27, 28). Alveolar macrophages have been identified as a macrophage type expressing 
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TLR5 based on proinflammatory cytokine responsiveness  (29, 30). We therefore sought to 

evaluate the alveolar macrophages cell line, MH-S, as a possible cell type to evaluate the 

effects of flagellin on macrophages using the secretion of IL-6 as a marker of flagellin 

response (Fig. 2.2B).  To confirm that the proinflammatory IL-6 secretion observed was 

due to a protein-specific signal, and not endotoxin content of the protein, we compared 

recombinant flic (Fig. 2.2A) to equimolar concentrations of recombinant YFP, which was 

purified from E. Coli. and purified of endotoxin as was fliC. To ensure the cytokine secretion 

capability of the cells tested, equimolar concentrations of LPS were tested in comparison.  

Both BMM and MH-S are able to secrete IL-6 after exposure to 18nM LPS.  In contrast, 

neither cell type was able to exhibit IL-6 secretion in response to 18nM soluble YFP, 

confirming that both flagellin and YFP do not contain detectable endotoxin, the response to 

which could have been mitigated by TLR4.  MH-S cells secreted significant amounts of IL-6 

in response to flagellin while unresponsive to YFP treatment.  In our studies, BMM were 

unresponsive to flagellin in terms of IL-6 secretion, in agreement with previous studies that 

suggest that BMM do not express TLR5. Taken together, these results confirm the flagellin-

specific response of the alveolar macrophage cell-line and therefore its utility in evaluating 

the flagellin response in macrophages. 

Functionalized liposomes stimulate proinflammatory cytokine response in a protein-specific 

manner 

Given the response of MH-S cells to flagellin, we evaluated the effect of the flagellin- 

functionalized liposomes on MH-S cells.  Functionalized liposomes exhibited a similar 

response to soluble flagellin over the 10μg/ml-10ng/ml range (Fig. 2.2C). To ascertain that 

the IL-6 response was due to the attached protein, we evaluated the response after 
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digestion with trypsin immobilized on agarose beads. SDS-PAGE staining revealed a 

reduction of at least 82% in fliC content of functionalized liposomes after trypsin treatment 

(data not shown). The cytokine production as a response to functionalized liposomes was 

significantly diminished after cells were treated with functionalized liposomes that had 

been treated with trypsin (Fig. 2.3A). The result is consistent with the diminished response 

seen when MH-S cells are incubated with trypsin-digested soluble recombinant flagellin, 

confirming that the response to the liposomes is due to the attached protein on the surface 

of the liposomes. Response to YFP was unchanged regardless of trypsin digestion, an 

indication that the flagellin is responding as a result of a specific interaction on MH-S cells. 

Proinflammatory response to functionalized liposomes is mediated by TLR5 

To evaluate the specificity of functionalized liposome response, we needed to 

determine if the IL-6 response seen in MH-S cells could be attributed to the flagellin 

interaction with cell-surface TLR-5. We treated MH-S and BMM with mouse TLR5 

neutralizing antibody and assayed IL-6 cytokine secretion in response to the liposomes. 

There was an anti-TLR5 concentration-dependent reduction in IL-6 response to flagellin in 

MH-S cells (Fig. 2.3B), but not in BMM (data not shown). Treatment of anti-mTLR5 

inhibited cells with equimolar doses of soluble YFP or YFP-functionalized liposomes did not 

lead to changes in the minimal IL-6 response secreted, indicating that response or lack of 

response to YFP-his is not TLR5 mediated. 

FliC density on liposomes can be regulated by varying the Ni-lipid content to fliC ratio 

To evaluate the possibility that the protein density on the liposomes had an effect on 

the proinflammatory response from alveolar macrophages, we tested 1μg/ml of liposomes 
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functionalized at varying Ni-NTA lipid to fliC ratios, ranging from 20:1 to 100:1. After 

functionalization, the number of molecules per liposome was determined. The number of 

liposomes in solution was calculated as  

Nlipo= ((Mlipid x NA)/Ntot x 1000)) 

where Ntot = 17.69 x [(d/2) 2 +((d/2)-h 2)] in which d = diameter of the liposomes in nm and 

h= thickness of the bilayer, estimated to be about 5nm. Mlipid is molar concentration of lipid, 

NA is Avogadro’s number, and Ntot is number of lipid molecules in unilamellar liposome  

(31). FliC coating density decreased with decreasing Ni-NTA lipid to fliC ratio:  for 

liposomes in the 140nm range, 200 fliC molecules per liposome in the 20:1 ratio to about 

20 fliC molecules per liposome in the 100:1 functionalization ratio (Fig. 2.2D).  This 

underscores the range of achievable coating densities while keeping the Ni-NTA lipid 

concentration constant.  The proinflammatory response was comparable in the 20-75:1 

ratio, an indication that available TLR5 receptors may be saturated with fliC at this dose. 

However, at the same dose, the response elicited by the 100:1 functionalization ratio was 

significantly reduced when compared to the 20:1 ratio. The non-functionalized control 

groups for each treatment group did not elicit any measurable response from the MH-S 

cells (data not shown), an indication that the corresponding increase or decrease in the 

lipid amount presented to the cells was not responsible for the response observed. Our 

data showed that at various incubation ratios, the density of flagellin molecules/liposome 

could be achieved using a single Ni lipid concentration. This is important for keeping the Ni 

lipid content low and still achieve variable coating density since the biological effect of Ni-

NTA presence is not well studied, hence a desire for inclusion of a minimal amount in 

vaccine formulations (32). The results demonstrate that the functionalization process can 
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be used to control the protein density on the liposomes and could serve as a method of 

fine-tuning the innate immune response. 

Non-specific flagellin functionalization of liposomes yield proinflammatory response 

To test the effect of the specific his-tagged interaction with liposomes containing the 

Ni-chelated phospholipid head group, liposomes lacking in the Ni-NTA phospholipid were 

compared to NI-containing liposomes.  At a 20:1 (Ni-NTA) to flagellin molar ratio, the 

protein is attached to the liposomes with similar coating efficiency. Liposomes without 

phospholipid to mediate a specific protein interaction are able to elicit IL-6 response of 

similar magnitude as liposomes bearing flagellin via the specific Ni-6-his interaction over a 

dose range of 1μg/ml-1ng/ml.  While the proinflammatory response is similar to that seen 

in liposomes functionalized via the specific interaction, the possibility that dissociated 

protein from the liposome is causing the interaction, as would be in cells tested with 

soluble flagellin, is not tested. Given the poorer membrane integrity of these liposomes 

over time (data not shown) these liposomes were not used in further studies. 

Functionalized OVA liposomes preferentially associated with flagellin-responsive cells  

To evaluate the ability of the liposomal-anchored flagellin to preferentially target its 

receptor, we tested the association of liposomes containing phospholipids with 

fluorescently labeled head group to MH-S and BMM. Given the inability of BMM to produce 

IL-6 in a TLR-5-mediated fashion, the cells were treated as a control. To eliminate the risk 

of non-specific interaction mediated by negatively charged CHEMS in both functionalized 

and uncoated liposomes, we used the neutral DOPC:cholesterol-based liposomes to 

eliminate indiscriminate binding and discern actual differences in specific interactions 
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occurring with the cells. The fluorescent liposomes exhibit fluorescence quenching when 

coated with proteins. As such, doses of the control liposomes were determined by matching 

the fluorescence intensity of the flagellin-functionalized liposomes with uncoated and YFP-

coated liposomes of corresponding intensity. Uncoated liposomes were used as fluorescent 

intensity-matched control and YFP coated liposomes were also intensity matched as a 

protein-coated control.  BMM and MH-S cells were treated with 1μg/ml of flagellin 

functionalized liposomes dosed according to flagellin. MH-S cells demonstrated increased 

cell association with fliC-functionalized liposomes in contrast with the BMM that do not 

exhibit any fliC-influenced cell-association (Fig. 2.4). To ensure that the cell-specific 

association is mediated by binding to TLR5, we attempted to test the effect of anti-TLR5 

treatment on the ability of liposomes to associate with the cells.  This, however, showed no 

effect. The commercially acquired anti mouse TLR5 is described as a TLR5-neutralizing 

antibody and most commercially available antibodies are raised against the cytoplasmic 

intracellular domains of TLR5, and of no use in binding the TLR5 receptor.  

Flagellin functionalized liposomes activate OVA-specific CD8+ T cells 

We sought to evaluate the implication of our observations on the adaptive immune 

response in vivo. Mice were immunized subcutaneously ten days apart according to a 

prime/boost regimen with liposomal OVA (OVA) and fliC-functionalized OVA liposome 

((OVA)-fliC) at 10ug OVA. OVA-specific CD8+ T cell response was analyzed by direct 

tetramer staining of OVA-specific CD8+ T cells in peripheral blood mononuclear cells 7 days 

after immunization to determine the strength of CD8+ T cell response. Mice immunized 

with functionalized liposomes exhibited a moderate but significant increase in the 

frequency of circulating OVA-specific CD8+T cells (Fig. 2.6A). This effect was discovered to 
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be protein-specific as this enhancement holds true when compared to mice immunized 

with YFP-functionalized liposomes (data not shown).   

FliC-functionalized liposomes enhance OVA-specific Th2-mediated antibody isotype, IgG1 

production 

Several studies have demonstrated that soluble flagellin overwhelmingly induces 

Th2 type responses. To evaluate the adjuvant capabilities of the flagellin-functionalized 

liposomes as a delivery system, we tested whether mice immunized with functionalized 

OVA liposomes could develop an OVA-specific antibody response. Eleven days after the 

booster immunization, sera from mice immunized with fliC-functionalized liposomes 

exhibited significantly enhanced OVA-specific titers of IgG1 (Figure 2.6B). In contrast, the 

immunized mice generated low levels of IgG2c anti–OVA titers, and the addition of fliC to 

OVA liposomes did not enhance the low response observed (data not shown).  

Functionalized liposomes enhance MHC I specific antigen presentation in vitro  

To understand the CD8+ T cell enhancement mediated by flagellin, we wanted to see 

if the response could be seen in vitro and explained by antigen presentation. To this effect, 

we cultured BMM with OVA-containing pH-sensitive liposomes with and without 

functionalization with fliC. We determined whether the treated macrophages expressed the 

SIINFEKL-MHC-complex recognizable by B3Z cells, a lacZ-inducible CD8+ T cell hybridoma 

cell line specific for OVA257-264 (SIINFEKL) presented on the murine H-2Kb MHC class I 

molecule. We found that (OVA)-fliC liposome-treated cells show enhanced conversion of 

the β-galactosidase substrate, CPRG, to chlorophenol red as a surrogate for B3Z β-

galactosidase production. The measured absorbance of chlorophenol red at 595nm was 
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significantly enhanced (p<0.005) in functionalized liposomes in comparison to liposomal 

OVA (Fig. 2.7), though the amounts of OVA were comparable. This ability of fliC-

functionalized liposomes to present SIINFEKL-MHC complex to B3Z cells is independent of 

known cytosolic pathways because flic is unable to activate caspase-1 and IL-1β 

independently of any cytosolic delivery mediator (data not shown). However, the 

functionalized liposomes enhance MHC class I –specific antigen presentation. In addition, 

considering BMM presumably lacks TLR5, these data reaffirm reports that neither TLR5 

nor IPAF is required for flagellin-mediated CD8+ T cell effect against an accompanying 

antigen.   

 

DISCUSSION  

In comparison to coadministration of antigen and flagellin, colocalized delivery of 

flagellin and antigen has been observed to offer superior adjuvant properties, meanwhile 

some fusions have been observed to either be intractable to purification or the protective 

antibodies generated towards them do not recognize the native antigens(12). Having 

previously explored the various functional capacities of liposomes, including delivery of 

adjuvants (26), we studied liposomes as a platform to enable the simultaneous delivery of 

flagellin using ovalbumin as an antigen in a multifunctional delivery system. We monitored 

the ability of fliC-functionalized liposomes to retain their carrier ability and the ability of 

fliC attached to the liposomes to mediate innate and adaptive immune response in vitro and 

in vivo.  We observed that fliC-functionalized liposomes (a) retain the chemical and physical 

characteristics of the liposomes in terms of pH sensitivity and membrane integrity, 

respectively, (b) are able to induce fliC-mediated proinflammatory cytokine response in a 
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TLR5-specific fashion, (c) are able to preferentially associate with fliC-responsive cells, (d) 

and are able to enhance OVA-specific CD8+ T cells and mediated OVA-specific IgG1 

production.  

Several studies suggest that both humoral and CD8+T cell adjuvant properties of 

flagellin are independent of TLR5  (33, 34). We anchored the full soluble protein on the 

liposomes to harness both the TLR5 dependent- and independent-potential of flagellin on a 

multifunctional delivery platform.  While the concept of multifunctional liposomes is not 

new, surface modification of liposomes introduces the risk of compromising the bilayer 

integrity and other properties of the liposomes. We had previously studied the effect of 

different methods of protein coating on the performance of liposomes including using the 

affinity his-tag of YFP-his and a Ni-chelating lipid in the liposomal membrane (35). These 

studies revealed that coating the liposome via this non-covalent method did not destabilize 

the membrane and did not alter the serum stability of the liposomes. In the case of pH-

sensitive liposomes, the protein coating did not significantly weaken the pH-sensitivity. In 

the present study, fliC-functionalized liposomes were found to retain the membrane 

integrity and pH sensitivity of the uncoated liposomes revealing that fliC-functionalized 

liposomes are reliable carriers of encapsulated cargo.  

The induction of chemokines and cytokines is a key step in the adjuvant effect of 

flagellin and this induction is mediated by TLR5.  TLR5-mediated signaling induces 

activation of NF-κB, which regulates the expression of proinflammatory cytokines such as 

IL-6, however the priming of other TLRs can result in this proinflammatory cytokine 

secretion as well. It has been proposed that the presence of endotoxin in flagellin 

preparations across studies may be responsible for the disparities in the flagellin effect on 
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murine dendritic cells and its precursors reported in the literature (12). As a recombinant 

protein purified form E. coli, we eliminated the potential of endotoxin or nucleic acid 

priming of other TLRs to isolate the effect of flic in functionalized liposomes.  We observed 

that the murine alveolar–derived macrophage cell line secrets proinflammatory IL-6 to fliC 

and fliC-functionalized liposomes in a protein- and TLR5-specific fashion, in contrast to 

BMM that serve as a control. This observation demonstrated the comparable ability of 

functionalized liposomes to fliC to induce the innate immune response over a wide dose 

range, showing that the attachment of liposome to the C terminal hexahistidine fliC had no 

effect on its interaction with or recognition by TLR5. This flexibility has been noted in many 

studies of immunopotentiating flagellin-antigen fusion proteins that have been created as N 

or C terminal fusions or by insertion into the hypervariable region of flagellin (12).   

Targeting to enhance drug delivery to a select group of cells, either cancer cells or 

antigen presenting cells, has long been one of the main aims of modifying liposomes at the 

surface(19). For example, the HER2–target liposomes are in clinical trials to deliver 

doxorubicin to HER-2 positive cells after seeing increase in HER-2 positive cell binding and 

internalization of the anti-Her2 liposomes (36).  Relatedly, we observed that fliC-

functionalized liposomes showed a significant preferential association to the fliC-

responsive MH-S cells and not in fliC-unresponsive BMM, further supporting the hypothesis 

that BMM do not express TLR5.  We did not confirm that TLR5 mediated the interactions of 

the fliC-functionalized liposomes, which we would have been able to determine if the 

increased cell association could be reversed by addition of free anti-TLR5, but most 

commercially available anti-TLR5 antibodies are raised against cytoplasmic domains of the 

receptor. However, this interaction was specific to fliC in comparison to interactions with 
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liposomes coated with YFP under similar functionalization conditions, as was seen in 

proinflammatory cytokine secretion.  

Previous reports have associated the CD8+ T cell adjuvant ability of flagellin with the 

ability of fusion proteins to prime APCs with both the adjuvant and the antigen.  For 

example, Cuadros et al. showed that flagellin-EGFP fusion protein developed EGFP-specific 

T cell responses in BALB/c mice immunized with the fusion protein or adenovirus-EGFP, 

but not EGFP alone (16). Another study showed that recombinant flagellin (fljB, the phase 

variant to fliC in Salmonella typhimurium) and OVA fusion was superior to the same doses 

of fljB administered with OVA in terms of antigen-specific antibody response and 

protective CD8 T+ cell response (14). Our observations of fliC-mediated enhanced antigen-

specific CD8+ T cell response is consistent with our hypothesis that the fliC-functionalized 

liposomes can exploit the adjuvant ability of flagellin in the context of antigen co-localized 

delivery. Given the cell association data, a possible explanation is that this is mediated by 

increased internalization through TLR5 in vivo, where the functionalized liposomes 

selectively target TLR5-expressing APCs, which in turn selectively present OVA to CD8+ T 

cells. Our findings in vitro show that this explanation is deficient.  Indeed, when fliC-

functionalized liposomes encapsulating OVA are exposed to BMM, liposomes are able to 

enhance MHC class I-specific antigen presentation.  We propose this ability is independent 

of TLR5-mediated enhanced antigen delivery because these macrophages are presumed to 

lack TLR5, seen as both inabilities to elicit proinflammatory cytokine to fliC and to 

engender preferential association to functionalized liposomes. The recognition that the 

theory of TLR5-mediated enhanced internalization is inadequate has also been raised in 

the literature.  There have been reports of liposome-mediated cross presentation (37), 
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however, in comparison to OVA liposomes, we were able to determine that the enhanced 

CD8+ T cell presentation is mediated by fliC. Bates et al. found that flagellin fusion proteins 

promoted antigen-specific CD8+ T cell response independently of TLR5 and its signaling 

adaptor protein MyD88.  In their studies, flagellin OVA fusion proteins were able to 

promote OVA-specific CD8+ T cell response in TLR5-/- and MyD88-/- mice. In addition, in 

vitro, both WT and TLR5-/- APCs were able to elicit significant OVA-specific CD8+T cell 

response that was significantly diminished by the proteasome inhibitor, lactacystin, but not 

the lysosomal acidification inhibitor choloroquine, suggesting the CD8+ T cell response 

involves proteasome-mediated antigen processing (33).  Endogenous antigens are subject 

to proteasome processing and the derived peptides are routed to the classical MHC class I 

pathway, where then will end up on MHC class I to be recognized by CD8+ T cells on the cell 

membrane. Considering the MHC class I-specific OVA peptide, SIINFEKL, was presented, 

our theory was that by virtue of the fliC being anchored on the liposome, if OVA were 

delivered in the cytosol, so would fliC, therefore we used markers of fliC in the cytosol, IL-

1β and active caspase-1, as surrogates for cytosolic delivery of OVA. From our observations, 

the CD8+ T cell response is also independent of the flic-functionalized liposomes’ ability to 

enhance cytosolic delivery, since functionalized liposomes are unable to elicit Il-1β 

secretion in BMM, even after priming by LPS, and also unable to activate caspase -1(data 

not shown). Outside the classical MHC class I and MHC class II antigen processing pathway, 

cross presentation has been recognized as a process that enables antigens derived from 

extracellular sources, such as liposomal antigens, (38) to be presented to CD8+ T 

lymphocytes via MHC class I (39-41). While the mechanisms of cross presentation have not 

yet been fully defined, proposed models of cross presentation include, simply, a cytosolic 



 48 

pathway where exogenous antigens gain access to the cytosol and are sensitive to 

proteasome inhibition or a vacuolar pathway where antigen processing onto MHC class I 

occurs in the endocytic compartment and sensitive to inhibition of lysosomal proteolysis  

(41). The source of MHC class I molecules in these models remains elusive  (39, 41, 42).   

The finding by Bates et al., which eliminates the likelihood of an endosomal model of cross 

presentation, does not account for the presence of flagellin fusion proteins in the cytosol, 

which would precede proteasome degradation. We did not probe the mechanism with 

which the fliC-functionalized liposomes enhance CD8+ T cell response, but the lack of 

cytosolic fliC markers and published evidence of fliC-enhanced proteasome-mediated 

processing may be a reflection of the classic conundrum of the mechanism of cross-

presentation. Additionally, TLR agonists have been reported to induce cross presentation 

in dendritic cells.  While flagellin was not reported to be one (43) it is worth noting that it 

was studied by coadministering the OVA and flagellin (44). Nevertheless, our results 

demonstrating that functionalized liposomes are able to enhance CD8+ T cell response 

aligns with reports of flagellin co-delivered with antigen as fusion proteins enhancing CD8 

T+ cell response.  

Furthermore, the benefits realized from the codelivery of antigen and adjuvant has 

not only been realized in the form of CD8+ T cell responses. Fischer et al. reported this 

phenomenon in the context of other adjuvants and antigen combination in a nickel-

containing nanolipoprotein delivery platform. In their study, they found that incorporating 

MPLA and the his-tagged recombinant influenza hemagluttinin 5 (H5) and CpG with his-

tagged LcrV of Yersinia pestis on Ni-chelating nanodiscs enhanced IgG production in vivo 

relative to coadministered formulations and non-adjuvanted nanodiscs (45). We observed 
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that fliC-functionalized liposomes demonstrated a high titer of OVA-specific IgG1 and little 

IgG2c production. This profile is consistent with reports of soluble fliC inducing a 

predominantly Th2 antibody phenotype and Th2-type CD4+ T cell cytokine response (16, 

46, 47). Operating under the presumption that functionalized liposomes have no access to 

the cytosol in vivo, and, as such, do not engage NLRC4, our data lends credence to the 

observation that NLRC4 is dispensable in flagellin-mediated humoral immunity as NLRC4-

deficient mice elicit comparable antibody titers as wild type mice  (48).   

The desire for antigen and adjuvant delivery to the same APC for enhanced immune 

response against the antigen presents a vaccine delivery challenge.  The in vitro and in vivo 

data presented in this report demonstrate that fliC-functionalized liposomes present a 

delivery option to meet this need, particularly in the context of protein antigens that can be 

encapsulated in liposomes.  
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CONCLUSION 

We have evaluated the characteristics of fliC-functionalized liposomes as a carrier 

and an adjuvant. Taken together, our results show that fliC-functionalized liposomes can be 

used successfully in the delivery of both antigen and adjuvant and can be used to deliver 

antigens where the adjuvant activity of flagellin is desired to enhance antigen-specific CD8+ 

T cell response and IgG1-response. Given the discoveries of TLR5 and NLRC4-responsive 

sites on flagellin, and their role or lack thereof in the adjuvant activity of flagellin, it was 

important to study flagellin as an intact protein. This study is significant as the first study to 

evaluate the usefulness of fliC as a full protein on a liposomal delivery vehicle for the 

delivery of antigen and adjuvant to APCs. 

  



 51 

(A)  

   

(B) 

 
Figure 2.1: Liposomes functionalized with fliC retain membrane integrity and pH-
sensitivity 

Liposomes functionalized with flagellin retain membrane integrity over time and retain 
similar pH sensitivity as uncoated liposomes: 10nM of uncoated and functionalized PE: 
CHEMS: Ni liposomes encapsulating HPTS/DPX were tested for HPTX/DPX leakage.  
Membrane integrity was assessed by increased HTPS fluorescence due to the dilution of the 
collisional quencher DPX upon leakage. (A) Liposomes functionalized at various NTA 
(Ni):fliC molar ratios were tested and compared to uncoated liposomes and HBS buffer, pH 
8.4. Fluorescence measurements were taken for one second every ten minutes over 6 
hours. (B) Functionalization does not alter pH-sensitivity of PE: CHEMS: Ni liposomes. 
Fluorescence associated with liposomes in buffer with pH 7.4 or pH 5.5 was measured. The 
measurements were normalized to the maximal fluorescence measurement taken from 
liposomes lysed in 2% Triton–X 100. Data displayed as mean ± SEM.  
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 (A)       (B) 

   
 
(C)        (D) 
     

         
Figure 2.2: Alveolar macrophage cell line responds to fliC      

(A) Various dilutions of purified recombinant flagellin visualized by Krypton. (B) MH-S cells 
and bone marrow-derived macrophages were incubated with 18nM soluble recombinant 
flagellin and soluble YFP for 3 hours.  Cells were also pulsed with equimolar amount of LPS 
as a positive control. The treatment was discarded and the cells were incubated in 
complete medium for 21 hours. (C) Liposomal fliC elicited comparable IL-6 to soluble fliC 
over a wide concentration range in MH-S cells. (D) Number of fliC molecules per liposome 
as a function of Ni-NTA:flagellin ratio. The coating density of liposomes and the associated 
proinflammatory response to functionalized liposomes-Liposomes were functionalized in 
the indicated Ni lipid:fliC ratio. MH-S cells are treated with 1 μg/ml of functionalized 
liposomes for 3-4 hours at 37° C. After discarding the treatment, the cell supernatant was 
then collected after 20-21 hours and assayed for IL-6. Cell supernatants were assayed for 
IL-6 by ELISA. Data represents average of triplicates ± SEM. 
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Figure 2.3: Trypsin and anti TLR5 treatment significantly diminish IL-6 secretion 

Trypsin and anti-TLR5 treatment significantly diminished pro-inflammatory response from 
fliC-functionalized liposomes. (A) FliC-liposomes that were stripped of the protein coating 
were prepared by applying the liposomes to trypsin TPCK immobilized on agarose beads 
and incubated at 37 ° C for 6 hours. Cell culture supernatants were analyzed for IL 6 
secretion using ELISA. (B) Anti-TLR5 antibody significantly reduces IL-6 secretion to fliC-
functionalized liposomes in MH-S cells. MH-S cells were treated with complete medium, 1 
μg/ml anti-mTLR5, or 1μg/ml isotype control for 1 hour at 37° C. Cells were then incubated 
with 1μg/ml soluble fliC, functionalized fliC (Lip. fliC), and equimolar amount of soluble 
YFP for 3 hours. The treatment was discarded and cells were further incubated in complete 
medium for 21 hours.  Data represents average of triplicates ± SEM. 
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(C)       (D) 
 

  
Figure 2.4: FliC liposomes preferentially associate with flagellin responsive cells 

FliC-liposomes preferentially associate with cells responsive to flagellin. Cell-specific 
association was assessed by flow cytometry after treatment of cells with fluorescent 
Oregon-Green 488 labeled DOPC:CHOL liposomes and labeled liposomes functionalized 
with fliC and YFP (fliC liposomes and YFP liposome respectively).  Control treatment with 
uncoated and YFP liposome matched the fluorescent intensity of the 1μg/ml fliC liposome 
treatment. The cells were incubated with the liposomes at 4° C for I hour.  The cells were 
washed and the degree of cell-associated liposomes was determined using flow cytometry. 
Upper panel shows overlaid histograms from (A) MH-S cells and (B) BMM. The lower panel 
shows mean fluorescence intensity (MFI) levels from (C) MH-S staining and (D) BMM 
staining with designated liposomes. Data represents mean ± SEM from an experiment 
representative of at least two independent experiments. (* p<0.05, ** p<0.01 analyzed by 
one-way analysis of variance) 
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Figure 2:5 Flowchart for immunization protocol 

 

Day 0 

• Primary immunization (5-6 mice/group) 
• 10ug OVA, 8ug fliC subcutaneously at base of tail 
• Treatment groups 

• (OVA) 
• (OVA)-fliC 
• HBS 

Day 7 

• Collect blood  
• Tetramer staining for OVA-specific CD8+ T-cells 

Day 10 

• Boost 
• Same as above 

Day 17 

• Collect blood 
• Tetramer staining for OVA-specific CD8+ T-cells 

Day 21 

• Euthanize mice 
• Collect serum for IgG1 and IgG2c analysis 
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Figure 2:6: Flagellin functionalized liposomes enhance frequency of OVA-specific 
CD8+ T cells 

Flagellin functionalized liposomes enhance the frequency of OVA-specific CD8+ T cells.  
C57BL/6 mice were immunized s.c. with liposomal OVA alone and (OVA)-fliC-
functionalized liposomal OVA. Dose was normalized to 10μg OVA and 5-7μg fliC.  Nine days 
later, the animals were boosted with the same formulation. On Day 16, frequencies of OVA-
specific CD8+T cells were evaluated by MHC-1 tetramer staining via flow cytometry. (A) 
Average percentage of OVA-specific CD8+T cells are shown as mean ± SEM, n=4 (*p<0.05, 
two-way analysis of variance). (B) Flagellin functionalized liposomes encapsulating OVA 
induce IgG1 antibody production. Sera from immunized mice were assayed for anti-OVA 
IgG1 and IgG2c (not shown) 21 days after immunization. Data represents mean ± SEM from 
one experiment representative of two independent experiments.  (**p<0.005, one-way 
analysis of variance, Tukey’s multiple comparisons test) 
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Figure 2.7: FliC-functionalized liposomes enhance MHC class I-restricted peptide 
presentation 

FliC-functionalized liposomes are able to deliver OVA to cytosol of BMM for MHC Class I–
specific antigen presentation. BMM were pulsed with 200nM liposomes with (13μg/ml 
OVA) liposomal OVA (OVA), and 11 μg/ml OVA fliC-functionalized liposomal OVA (OVA-
fliC) for 2 hours. 90nM SIINFEKL was used as positive control. Cells were washed and 
further incubated for 3 hours and fixed. The fixed cells were incubated with B3Z cells for 15 
hours. Presentation of SIINFEKL –MHC complex to B3Z cells was monitored by the 
conversion of CPRG substrate to chlorophenol red in primed B3Z cells, and absorbance at 
595nm was measured. Data represents mean ± SEM from one experiment representative of 
two independent experiments.  (* p<0.05 analyzed by one-way analysis of variance, 
Tukey’s multiple comparisons test). 
  

(O
V
A
)

(O
V
A
)-
fli

C

90
nM

 S
IIN

FE
K
L

0.00

0.02

0.04

0.06

0.08

0.10
F

lu
ro

e
s

c
e

n
c

e
 U

n
it
s

 
(a

b
s

o
rb

a
n

c
e

 a
t 
5

9
5

n
m

) (OVA)

(OVA)-fliC

90nM SIINFEKL

***



 58 

Liposomes Diameter (nm) (PDI)  

Unfunctionalized (DOPE: CHEMS: DGS NTA (Ni) 182.6 (0.225) 

FliC-functionalized (DOPE: CHEMS: DGS NTA (Ni)-fliC) 191.3 (0.173) 

Trypsinized flic-functionalized liposomes 177.1 (0.167) 

Table 2.1: Summary of representative liposomes size 

Summary of representative liposome size after functionalization and subsequent 
trypsinization of attached fliC. Hydrodynamic diameter was measured by dynamic light 
scattering and the polydispersity index (PDI), measure of width of particle size distribution, 
was calculated by square of standard deviation/mean diameter. 
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CHAPTER 3 Evaluation of the TLR5-independent contribution to fliC-

functionalized liposomes response in vitro and in vivo 

SUMMARY: 

The evidence that points to a TLR5-independent enhancement of antigen-specific 

humoral and CD8+ T cell response underscores the role of other signaling pathways in the 

adjuvant capacity of flagellin. Flagellin elicits response through another pathway in the 

cytosol via NLRC4. Using liposomes encapsulating the pore-forming protein, LLO, we 

propose to gain access to the cytosol to deliver surface-attached fliC to NLRC4. Our goal is 

to evaluate the contribution of the cytosolic recognition of fliC to its adjuvant capacity, and 

simultaneously introduce the model antigen ovalbumin to the cytosol to enhance its access 

to the MHC class I pathway and augment cell-mediated response. We report that LLO 

liposomes deliver flagellin to the cytosol to activate the inflammasome, seen as an 

enhanced activation of capase-1 and IL-1β secretion in LPS-primed BMM.  In vivo, the 

functionalized liposomes are able to enhance OVA-specific IgG1 response of LLO liposomes, 

however, and this enhancement is not seen in circulating CD8+ T cells. 
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INTRODUCTION 

 Apart from TLRs that sense conserved molecular patterns from a wide variety of 

pathogens, another class of pathogen recognition receptors is NOD-like receptors (NLRs). 

NLRs sense stimuli of microbial origins and endogenous markers of cellular damage in the 

cytosol, acting as a second line of defense in the cytosol for pathogens that evade the 

extracellular surveillance PRRs (1, 2). The inflammasome is formed in response to breaches 

of the cytosol by several pathogenic molecules and serves as a platform for pro-caspase-1 

cleavage into active caspase-1, which in turn induces maturation of IL-1β and IL-18 from 

their pro forms  (2, 3). Each inflammasome also contains either a caspase activation and 

recruitment domain (CARD) or a pyrin domain (PYD) that mediates the signaling event (4); 

hence the classic inflammasome contains an NLR, an PYCARD or ASC adaptor molecule and 

procaspase-1. The NLR involved in the inflammasome varies depending on the pathogen 

involved and non-NLR inflammasomes containing proteins such as AIM2 have also been 

described  (3, 5). Caspase-1 activation through a variety of inflammasomes such as NLRP3, 

NLRC4 andAIM2 has been shown to induce pyroptosis, a form of cell death.  

NLRP3 is a widely studied inflammasome that has been implicated in the adjuvant 

activity of alum. Until recently, alum was the only adjuvant licensed for use in human 

vaccines. It was determined that alum induced IL-1β and activated caspase-1 through the 

NLRP3 inflammasome, as LPS-primed BMM from NLRP3 -/- mice were unable to secret IL-

1β or activate caspase-1  (6). This study however reported that NLRP3 was dispensable for 

adjuvant activity in vivo. In another example, Li et al. reported that antigen-specific antigen 

production in vaccine containing alum was significantly diminished in NLRP3 deficient 

mice and suggested targeting NLRP3 activation as a way to enhance adjuvant efficacy  (7). 
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While these differences may be attributed to differing routes of immunization in the 

selected studies, the contradictory findings highlights the elusive understanding of the role 

the inflammasome plays in mediating adjuvant activity, in this case, of alum.  

Intracellular flagellin, as would be present in an infection with a flagellated 

bacterium, signals via IPAF, also called Nod-Like Receptor C4 (NLRC4)  (8-10)The NLRC4 

inflammasome is activated by gram-negative bacteria, such as Salmonella typhimurium, 

Legionella pneumophila and Pseudomonas aeruginosa, with functional type III (T3SS) and 

type IV secretion systems (T4SS) (8, 9). While cytosolic flagellin was the first identified 

NLRC4 ligand, there is some evidence that some non-flagellated bacteria also induce the 

NLRC4 inflammasome (11). Flagellin within the cytosol of macrophages triggers a cascade 

of events that helps to mount a response against an invading flagellated pathogen.  Chief 

mediators of the immune response subsequent to cytosolic invasion include, the 

proinflammatory cytokines, IL-1β and IL-18. Their activity is controlled by expression and 

secretion. The first as a result of priming by a TLR, resulting in the NF-κB-mediated 

secretion of the precursor forms, proIL-1β and proIL-18. The maturation and secretion is 

mediated by inflammasomes. 

Some flagellin-mediated adjuvant effects have been reported to be independent of 

the conserved regions of flagellin, known to be essential for TLR5 binding. However, the 

contribution of signaling outside this pathway to the adjuvant effect of flagellin is not 

commonly examined (9). Given our observation of the immune stimulating effect of fliC-

functionalized liposomes, in the current study, we examine the TLR5 independent 

contribution of the flagellin presented in context of liposomes using the pore-forming 

protein listeriolysin O (LLO). The LLO-containing liposomes have been shown to enhance 
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cytotoxic T lymphocyte activity when used to deliver immunostimulatory CpG 

oligonucleotides by virtue of LLO’s ability to provide access to the cytosol  (12). With 

flagellin fusion proteins, the adjuvant activity of which is a motivation for this investigation, 

fusion proteins also can’t access the cytosolic pathway, whereas the LLO liposomes acts as 

a truly multifunctional vehicle allowing s for compartmentalized delivery to gain access to 

the cytosol. We hypothesized that using LLO-containing liposomes with flagellin anchored 

to the liposome surface serves a dual purpose. First, the presence of LLO mediating 

cytosolic delivery allows for delivery of antigen to the cytosol and MHC-class I pathway to 

enhance cell-mediated immune response. Secondly, in delivering flagellin to the liposomes, 

we would be able to observe the effect of functionalized liposomes in the context of the 

non-TLR5 flagellin recognition pathway and the effect of activating the NLRC4 

inflammasome on the antigen-specific immune profiles observed.  

 

MATERIALS AND METHODS 

Expression and purification of recombinant proteins  

BL21 (DE3) RIPL were used as host strains for expression of the recombinant LLO 

protein. The construct for the recombinant LLO with an N-terminal His tag and AcTEV 

affinity tag (His-TEV-LLO) was a gift form Dr Jiayan Liu (University of Michigan, Ann Arbor, 

MI). His-TEV-LLO were expressed and purified as described by Mandal et al. with some 

modifications (13)Cells were grown in 37 ° C in TB broth. Protein expression was induced 

with 0.5mM isopropyl-beta-D-thiogalactopyranoside (IPTG) at 30 ° C and grown for 

another 6 hours. Cells were centrifuged at 4000xg for 30 minutes at 4 ° C. Cell pellets were 

stored at -80 till use. The pellets were suspended in wash buffer (50mM sodium phosphate 
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dibasic, 300mM sodium chloride, and 20mM imidazole) containing 1mg/ml lysozyme and 

1mM phenylmethylsulfonyl fluoride (PMSF) incubated for 30 minutes on ice.  

His-TEV-LLO pellet in 1mg/ml lysozyme was lysed using a Digital Sonifier cell disruptor 

(Emerson, Danbury, CT) four times at 50% amplitude with a 30 second interval of 

sonication and 30 second incubation on ice. The lysate was centrifuged at 12000 x g for 1 

hour at 4 ° C and the supernatant incubated with the Ni-NTA agarose resin (Qiagen, MD) for 

2 hours on a shaker at 4 ° C. Bound his-tagged protein was eluted from a Ni-resin column 

against 400mM imidazole and dialyzed in 1x PBS, pH 8.4 for 16 -20 hours. To remove the 

hexahistidine tag from the purified protein, his-TEV-LLO was added to ProTEV protease 

(Promega, Madison, WI) according to the digestion protocol given in the manufacturer’s 

instructions and incubated at room temperature overnight (12-16 hours). The eluate from 

the incubation of a Ni-Resin and digestion mixture incubated at 4 ° C for 2 hours was 

collected as the purified LLO. Protein concentration was determined using a BCA protein 

assay (Pierce, Rockford, IL) according to manufacturer’s instructions. Protein purity was 

evaluated using SDS gel electrophoresis and visualized using Krypton fluorescent stain 

(Thermo Scientific) per the manufacturer’s instructions and with a Typhoon 9200 imager 

(GE Healthcare)  

Hemolysis assay of recombinant LLO 

  LLO activity was determined by its ability to lyse sheep red blood cells (Lampire 

Biologicals, Pipersville, PA). Serial dilutions of LLO were made in MBSE   (10mM MES pH 

5.5, 140mM NaCl and 1mM EDTA pH 5.5) containing 1mg/ml BSA. The RBCs were washed 

in 1X PBS, then diluted in MBSE  and plated at 2 x 107 cells/100μl/well in a 96-well plate, 

DTT was added to the cell solution at a concentration of 2mM before plating the cells. The 
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LLO dilutions were added to the RBCs and the plate was sealed and incubated for 15 

minutes at 37° C while rotating. Cell debris was pelleted by centrifuging the plate at 1400 x 

g for 15 minutes at 4° C. 150μl of the supernatant were transferred in to a clean 96-well 

plate and the absorbance at 450nm was measured. Values were compared to the 

absorbance of the positive control LLO –his standard.  LLO was heat-inactivated by 

incubating at 70° C for 10 minutes. 

Preparation of liposomes and protein-coated liposomes 

  The lipids 18:1 (Δ9-Cis) PE (DOPE)1,2-dioleoyl-snglycero-3 phosphoethanolamine, 

cholesteryl hemisuccinate (CHEMS), and 18:1 DGS-NTA(Ni) 1,2-dioleoyl-sn-glycero-3-[(N-

(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] (nickel salt)( Ni-NTA) were mixed 

at a 2:1:0.02 ratio and dried down on a rotary evaporator and afterwards stored under 

vacuum for 12-16 hours. The dried lipid films were suspended in HEPES-buffered saline 

(HBS) (10mM HEPES, 140mM NaCl, pH 8.4) for subsequent protein coating.. The resulting 

lipid films were re-suspended in HBS, passed through 4 freeze/thaw cycles sonified in a 

bath sonicator 4-5 times in 1-minute cycles. For liposomes encapsulating a protein, the 

lipid films were suspended in a solution of LLO or fliC-his at a 0.3 μg/ml and 20mg/ml OVA 

protein concentration. All aforementioned lipids were acquired from Avanti Lipids, 

Alabaster, AL. To coat with protein, the resulting liposomes were incubated with protein at 

a 20:1 Ni lipid to protein molar ratio for 1-2 hours at 4 ° C. The free protein was purified 

from the liposome via size exclusion chromatography on a CL4B column (GE Healthcare) 

and the eluted liposomes were evaluated by SDS gel electrophoresis to confirm and the 

presence of protein and quantify the amount of protein on the liposomes. Liposome 

diameter was determined using dynamic light scattering on a Zetasizer instrument 
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(Malvern, Westborough, MA). Phospholipid content of liposomes was quantified using 

Bartlett’s method of phosphate quantification. 

Cell lines and Tissue culture 

Tissue culture media was purchased from Invitrogen (Carlsbad, CA) and all cells 

were maintained in a humidified incubator at 37° C and 5% CO2, unless otherwise stated.  

Generation of Bone marrow-derived macrophages 

Bone marrow was harvested from femur and tibia of 7-8 week old C57BL/6 mice as 

described in Stier et al.  (14). The bone marrow cells were differentiated into bone marrow-

derived macrophages (BMM) in DMEM containing 20% heat-inactivated fetal bovine serum 

(Hi-FBS), 30% L-929 cell conditioned media containing macrophage stimulating factor, 

100μg/ml streptomycin, 100u/ml penicillin, and 55μM β-mercaptoethanol. The cells were 

replenished with new medium on day 3, harvested on day 6 and stored in liquid nitrogen 

until use. Upon thawing, cells were maintained in DMEM (Invitrogen, CA), supplemented 

with 10% Hi-FBS, 100μg/ml streptomycin, 100u/ml penicillin and 2mM L-glutamine 

In vitro antigen presentation 

In vitro antigen presentation was performed as previously described in Andrews et 

al.  (12) with a few modifications. Briefly, 2 x 105 cells/well were plated in 96-well plates 

overnight before the day of the assay, cells were washed in serum-free media and treated 

with liposomes in serial dilutions with the highest concentration at 200μM phosphate in 

serum-free media for 2 hours.  BMM were washed and incubated in complete DMEM for 3 

hours. The cells were fixed in 1% paraformaldehyde for 15 minutes at 4° C. The 

paraformaldehyde solution was prepared in warm 1X PBS and dissolved by adding drops 
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of 0.1M NaOH; the pH of the solution was adjusted to 7, and the solution filtered through a 

0.45μm filter. The paraformaldehyde was quenched by 0.2M lysine in DMEM for 20 

minutes at RT. The cells were washed in DMEM after quenching, and 2 x 105 cells/well of 

B3Z cells in B3Z media (RPMI 1640 supplemented with 2mM L-glutamine, 25mM L-

glucose, 1mM sodium pyruvate and 25mM HEPES) were added per well and incubated for 

15 hours at 37° C and 5% CO2.  The plates were centrifuged at 1500rpm for 5 minutes, 

media was carefully removed and the cells washed in RT 1X PBS and centrifuged again. The 

PBS supernatant was removed carefully. CPRG substrate [0.15 mmol/L chlorophenol red-β-

D-galactopyranoside (Calbiochem), 9 mmol/L MgCl2,  0.125% NP40, and 100 mmol/L β-ME 

in PBS] was added to measure production of β-galactosidase by B3Z cells in response to 

BMM presentation of SIINFEKL in H-2Kb. The plates were incubated for 4 hours at 37°C and 

absorbance values were measured at 595 nm using a spectrophotometer (BioTek, 

Winooski VT). 

In vitro cytokine secretion analysis by ELISA 

  2x 105 BMM were played 12-16 hours in BMM media (DMEM supplemented with 

30% L-cell conditioned supernatant, 20% Hi-FBS, 2mM L-Glutamine, 0.055mM β-Me, and 

100ug/ml streptomycin and 100u/ml penicillin), 16-20 hours before liposome treatment. 

The cells were incubated with liposomes for 3-4 hours, the treatment removed and the 

cells incubated in their respective media for 21 hours. Cell supernatants were collected and 

analyzed via ELISA for Il-1β (eBioscience) secretion according to the manufacturer’s 

instructions.  
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Lactate Dehydrogenase assay 

After a 4-hour treatment of cells, the cell supernatant was applied to a 96-well plate 

and tested for LDH according to manufacturer’s instructions (Pierce, Rockford, IL). Briefly, 

the absorbance of at 490nm was measured and the % of maximum LDH released was 

calculated thus:  

((Experimental release - spontaneous release)/ (Maximum release - spontaneous release))  

where maximum release is the absorbance obtained from lysis of the macrophage the 

Triton X-100-based lysis buffer, and spontaneous release is the absorbance obtained from 

LDH released to the cytosol of untreated macrophages to account for serum effect. 

Measuring activation of Caspase-1 

Activation of inflammasome via activation of caspase-1 was measured as described 

by Jakobs et al. (15). Briefly, 2x 105  BMM from C57BL/6 mice were plated in 12-well plates 

in their respective media for 12-16 hours the day before treatment. In BMMs primed with 

LPS before treatment, the cells were incubated in 200ng/ml LPS for 4 hours before 

treatment. The cells are treated with various groups in corresponding 500μl serum-free 

media. for 6 hours. In the case of LPS positive control, the cells were treated with 200ng/ml 

LPS for 4 hours followed by an addition of 5mM ATP for 2 hours. After 6 hours, cell 

supernatant was collected. The supernatant was clarified of cell debris by centrifugation at 

1000 X g for 5 minutes. Protein was precipitated from the cell supernatant using methanol 

chloroform extraction. Briefly, 500μl methanol was added to the collected supernatant, 

followed by 125μl chloroform, the mixture was vortexed vigorously, and centrifuged for 5 

minutes at 7500xg. The solvent layer was discarded and the protein layer was resuspended 

in 500μl methanol and vortexed vigorously. The protein precipitate was centrifuged at 
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7500xg for 5 minutes. The methanol was discarded and the resulting pellet was dried for 

10 minutes at 55° C. The pellet was resuspended in 40μl 1x SDS sample buffer). Equal 

amounts of the extracted protein was run on SDS-PAGE on 10% BIS-TRIS gel (Life 

Technologies) in 1x MES buffer at 200V for 1 hour. The protein was transferred on the 

PVDF membrane (BioRad, Hercules, CA) at 200mA for 1 hour. The membrane was blocked 

for 90 minutes in 3% casein at room temperature, and incubated in anti-caspase-1 p20 

(Adipogen, San Diego, CA) in 1% casein for 12-16 hours at 4° C.  The membrane was 

incubated in anti-mouse HRP for 2 hours at RT. The membrane was washed 4 times in 1X 

PBS with 0.05% Tween between incubation steps. The membrane was incubated with ECL 

substrate (Pierce, Rockford, IL) for 5 minutes and chemifluorescence was detected on the 

Typhoon 9200 imager (GE Healthcare) using the 457 nm excitation laser and 520nm BP 40 

emission filters. 

Immunization protocol 

C57BL/6 mice, 8-10 weeks old (Jackson labs, Bar Harbor, ME) were used in this 

study and were handled according the University of Michigan Institutional Animal Care 

guidelines. Animals were immunized subcutaneously at the base of the tail with OVA-

encapsulated liposomes (OVA), OVA LLO encapsulating liposomes (OVA; LLO), and fliC-

functionalized liposomes (OVA LLO), containing 10μg OVA and 8μg fliC, on day 0 and day 

10.  Naïve mice were immunized with the same volume of HEPES buffered saline pH 8.4 

(HBS). Mice were euthanized on Day 21 and blood was collected via cardiac puncture. 
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CD8+ T cell tetramer staining 

Seven days after immunization, blood was collected via the superficial temporal vein 

of immunized mice. The blood was collected in dipotassium EDTA coated microtainer tubes 

(BD, Biosciences, Franklin, NJ).  After blood collection, the cells were resuspended by gentle 

pipetting. Red blood cells were lysed with ACK lysis buffer (Life Technologies) twice. The 

cells were centrifuged at 1500 x g for 5 minutes at 4° C between each lysis.  The cells were 

washed in FACS buffer (Ix PBS containing 1% BSA) and centrifuged at 1500 x g for 5 

minutes at 4° C.  The resulting pellet was stained for flow cytometry after CD16/32 Fc block 

(eBioscience, San Diego CA) and incubated for 10 minutes at RT.  A small volume of each 

sample was collected for FACS negative and single controls. Cells were incubated with T-

select H2Kb – OVA-tetramer SIINFEKL PE (MBL, Japan) for 30 minutes and stained with 

anti-CD8, anti-CD44, and anti-CD62L. The incubation was followed by DAPI staining to 

discriminate live from dead cells. Cell fluorescence was evaluated via flow cytometry. 

Measurement of antibody titers 

Blood was harvested from euthanized mice via cardiac puncture in microvette 500 

centrifuge tubes (Sarstedt, Germany). The sera were isolated by centrifugation at 10000 x g 

for 5 minutes and analyzed by ELISA or stored at -80° C until use. To determine serum 

antibody titers, briefly, Maxisorp Nunc immunoplates (eBioscience, San Diego, CA) were 

coated with 10μg/ml OVA (Sigma-Aldrich, St Louis, MO) in 0.1M sodium phosphate pH 9.0, 

coating buffer overnight (12-16 hours). The plates were washed in PBST (1x phosphate 

buffered saline, 0.05% Tween) and then blocked overnight at 4° C with PBST containing 

1% BSA (blocking buffer). The plates were washed and incubated with serial dilutions of 

sera in blocking buffer overnight at 4 ° C. OVA-specific biotinylated goat anti-mouse IgG1 
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and goat anti-mouse IgG2c (Southern Biotech, Birmingham, AL) were detected with Avidin-

Horseradish Peroxidase (eBioscience, San Diego, CA) and finally TMB substrate (KPL Inc., 

Gaithersburg, MD). Plates were washed 5 times in PBST between each step.  Conversion of 

substrate to colorimetric product was stopped by 2N sulfuric acid and absorbance at 

450nm was determined. Data were fit to a 4-parameter curve on the Gen5 data analysis 

software, (Biotek, Winooski, VT) to determine titer, defined as the dilution factor that 

yields an absorbance of 0.5.  The lowest dilution used was reported for samples below the 

limit of detection. 

RESULTS 

Flagellin functionalized LLO liposomes enhances caspase-1 activation and secretion of IL-1β 

We examined the role of the cytosolic flagellin-signaling pathway through NLRC4 in 

its adjuvant properties in the context of the functionalized liposomes. It is well documented 

in the literature that flagellin triggers activation of the NLRC4 inflammasome in the cytosol. 

We wanted to evaluate the ability of functionalized liposomes to activate the 

inflammasome when flagellin is introduced into the cytosol with the aid of the pore-

forming listeriolysin O encapsulated in the liposomes (referred to as LLO liposomes). We 

have previously confirmed the ability of LLO liposomes to mediate access to the cytosol to 

deliver liposomal cargo. Flagellin functionalized LLO liposomes and heat-inactivated LLO 

liposomes where compared to reveal LLO-mediated delivery of fliC into the cytosol. 

Liposomal LLO activated the inflammasome and functionalizing LLO liposomes with 

flagellin enhanced inflammasome activation seen as the presence of a subunit of activated 

caspase-1, p20 (Figure 3.1A).  Separate treatment with soluble LLO and soluble fliC and the 
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combined treatment with soluble fliC and soluble LLO display the same enhancement 

pattern (data not shown) that is absent in soluble fliC treatment alone. When BMM without 

LPS priming before exposure to different treatments are activated, the activation pattern 

seen remains the same (Figure 3.1B), an indication that TLR priming is inconsequential to 

the process of caspase-1 activation.  The enhancement in the p20 subunit, while slight, can 

be observed visually, however we went further to examine IL-1β secretion.  

The fliC-mediated enhancement of caspase-1 activation translates 

disproportionately into IL-1β secretion from LPS treated BMM exposed to functionalized 

liposomes (Figure 3.2A), where we demonstrate that access to the cytosol is mediated by 

LLO, which induces slight but significant IL-1β by itself, but the secretion of IL-1β is 

significantly enhanced by the presence of fliC in the cytosol. The magnitude of caspase-1 

p20 in the LPS+ATP treated cells is similar to fliC-functionalized LLO liposomes, while the 

secreted IL-1β in both treatment groups are not wide apart with LPS-ATP secreting > 22 

times more IL-1β than the functionalized LLO liposomes. The disproportionate translation 

of caspase-1 activation to IL-1β secretion may not be of consequence as different 

inflammasomes are involved in LPS and ATP activation, but this can perhaps be attributed 

to varying efficiencies of different inflammasomes in the processing of IL-1β. Together, 

these results demonstrate the ability of fliC-functionalized liposomes to activate the NLRC4 

inflammasome when given access to the cytosol. In the absence of LPS priming, the BMM 

were not able to secret IL-1β, a demonstration of the principle of the two-signal process 

necessary for IL-1β secretion (Figure 3.2B). 

To ensure surface-attached fliC remained active in the cytosol, we compared it to 

liposomes encapsulating LLO and fliC. We found that fliC-functionalized on the surface of 
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liposomes is able to activate the inflammasome as determined by similar caspase-1 

activation and IL-1β secretion as the LLO and fliC encapsulated liposomes.  The alveolar 

macrophage cell line, MH-S, did not activate caspase-1 or secret IL-1β even in response to 

positive controls, LPS and ATP (data not shown). Considering that it is known that 

activation of the inflammasome is independent of TLR5, this comparison is evaluated in 

BMM, which presumably lacks TLR5. Hence, this does not indicate that post-TLR5 

interaction does not alter the activity of fliC in the cytosol, but it does show that surface-

functionalized fliC remains active after passing through the endosome before it gains 

access to the cytosol.  

Encapsulation of LLO in liposomes protects macrophages from LLO-induced cell death 

Since the activation of inflammasomes is known to lead to pyroptosis, a form of cell 

death dependent on caspase-1, we measured the release of lactase dehydrogenase (LDH) as 

a marker of pyroptosis after the treatment of cells for 4 hours.  We observed that soluble 

fliC did not mediate significant LDH release, while soluble LLO by itself, and in combination 

with soluble fliC, elicited high amounts of LDH from BMM irrespective of 4-hour LPS 

priming. LDH elicited from liposomal formulation of these proteins was significantly 

diminished.  Liposomes prepared for immunization with encapsulated OVA showed a 

similar pattern (Fig. 3.3B). 

Functionalized LLO liposomes promote MHC class I-restricted presentation of OVA-specific 

peptides by Bone Marrow macrophages 

In our previous studies using LLO to mediate cytosolic delivery, we showed the 

ability of pH-sensitive LLO liposomes to mediate delivery of antigens into the cytosol to 
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elicit an immune response via MHC class I presentation. We wanted to explore the effect 

that the presence of flagellin in the cytosol would have on MHC class I presentation of 

antigen encapsulated in fliC-functionalized LLO liposomes. To this effect, we cultured BMM 

with OVA-containing pH-sensitive LLO liposomes with and without functionalization, and 

OVA-containing liposomes functionalized with fliC. We determined whether the treated 

macrophages expressed the SIINFEKL-MHC-complex recognizable by cells B3Z, a lacZ-

inducible CD8+ T cell hybridoma cell line specific for OVA257-264 (SIINFEKL) presented on 

the murine H-2Kb MHC class I molecule.  As expected, we found that OVA LLO liposome-

treated cells showed enhanced conversion of the β-galactosidase substrate, CPRG, to 

chlorophenol red as a surrogate for B3Z β-galactosidase production. The measured 

absorbance of chlorophenol red at 595nm was normalized to OVA concentration in 

respective treatment groups. However, cells exposed to the fliC-functionalized counterpart 

did not enhance β-galactosidase production from B3Z cells, though the liposomes exhibited 

similar β-galactosidase induction and had equivalent OVA to LLO ratios encapsulated (Fig. 

3.4). We did not observe any additional fliC effect in presenting MHC class I–restricted 

peptides over a range of doses and did not determine the contribution of fliC to this 

response.  

Functionalized liposomes do not enhance OVA-specific CD8+ T cell response in the presence of 

LLO  

We have previously demonstrated the efficacy of LLO liposomes to promote a Th1-

type response and enhance CD8+ T cell lytic activity. It is accepted that the circulating CD8+ 

T cells may not necessarily reflect functional cellular immune response as we have shown 

in the past. Given the accessibility to the MHC class I pathway, the expectation that OVA 
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LLO liposomes would enhance the frequency of SIINFEKL tetramer positive CD8+ T cells is 

reasonable. However this expectation was not realized in the results of the tetramer 

staining 7 days after the booster immunization, as it appears that activation of the 

inflammasome correlates with a reduced frequency of OVA-specific CD8+ T cells (Fig. 3.5A).  

One different variable in the LLO liposomes used in this study than our previous studies is 

the presence of the NTA (Ni) lipid component used for the non-covalent surface attachment 

to the his-tagged fliC. Evidently, this also does not correlate with the results seen in MHC 

class I SIINFEKL presentation data that shows significantly better MHC class I presentation 

in OVA LLO liposomes and functionalized OVA LLO liposomes than liposomal OVA.  

Addition of LLO to OVA-containing functionalized liposomes enhances the fliC-mediated IgG1 

production   

Several studies have demonstrated that soluble flagellin overwhelmingly induces 

Th2 type responses. To evaluate the adjuvant capabilities of the flagellin functionalized 

liposomes as a delivery system, we tested whether mice immunized with functionalized 

OVA liposomes could develop an OVA-specific antibody response. Eleven days after the 

booster immunization, sera from mice immunized with fliC-functionalized liposomes, with 

and without LLO, exhibited significantly enhanced OVA-specific titers of IgG1 (Fig. 3.5B). 

While the addition of LLO and, by extension, activation of the inflammasome, significantly 

enhanced the IgG1 response in fliC-functionalized LLO liposome-immunized mice, this 

response was independent of LLO. In contrast, the immunized mice generated low IgG2c 

anti–OVA titers, and the addition of fliC to LLO liposomes did not enhance the low response 

observed (data not shown). These results are consistent with the studies that show fliC-

mediated humoral responses are independent of IPAF. Our data demonstrate that fliC-
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functionalized liposomes exhibit similar humoral characteristics as flagellin antigen fusion 

in the literature.  
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DISCUSSION 

The goal of this study was to investigate the effect of fliC-functionalized liposomes 

on the immune response against encapsulated antigen, ovalbumin, in the context of fliC 

delivered in to the cytosol. We proposed that by using pH-sensitive LLO liposomes, LLO-

mediated cytosolic delivery of ovalbumin and identified adjuvant fliC would engage the fliC 

cytosolic signaling pathway and augment the CD8+ T cell response engendered by the 

increased access of OVA to the MHC class I antigen presentation pathway. Although 

flagellin has been shown to display a predominantly Th2- biased humoral response (16-

18), we also proposed that the humoral response to enhancing the cytosolic delivery of 

OVA would be skewed towards a Th1 type. We determined that fliC-functionalized LLO 

liposomes enhanced caspase-1 activation in BMM and secretion of IL-1β from LPS-primed 

BMM. Furthermore, fliC-functionalized liposomes encapsulating OVA and LLO enhanced 

the OVA-specific IgG1 response but did not have an augmenting effect on the frequency of 

circulating antigen-specific CD8+ T cells.   

 The pH-sensitive liposomes used in this study were instrumental in the delivery of 

encapsulated cargo. CHEMS (cholesteryl hemisucccinate), a component of the liposomes, 

was used to engender pH-sensitivity to the liposomes. It serves to stabilize PE 

(phosphoethanoloamine) in a bilayer state and it is negatively charged at neutral pH. In the 

acidifying environment of the endosome, CHEMS is protonated at pH < 6.0, which 

destabilizes the liposomes by promoting the formation of the hexagonal phase  (19). We 

have previously used LLO-containing liposomes as a strategy to enhance CD8+ T cell 

response against encapsulated antigen and even of more relevance to this study, to deliver 

protein antigen and, adjuvant to the same APC  (12, 13). The rationale behind this approach 
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is that liposomes would be taken up via endocytosis, and, as the endosome acidifies, the 

pH-sensitive liposomes lose their membrane integrity and expose LLO to allow it breach 

the endosome to deliver its contents to the cytosol. In this study, the presence of the 

endosomal content in the cytosol serves a dual purpose: first to introduce the cargo, 

ovalbumin, to the classical MHC-class 1 antigen presentation pathway, and secondly to 

allow for the fliC to be accessible in the cytosol to activate the inflammasome.  

As the mediator of cytosolic access, we observed that LLO liposomes are able to 

activate caspase-1. Presumably, LLO itself mediates inflammasome activation. Listeria 

monocytogenes, from which LLO is derived, has been implicated in the activation of 

multiple inflammasomes, NLRP3, AIM2 and NLRC4 (20-22). Furthermore, fliC-

functionalized LLO liposomes slightly enhanced caspase-1 activation mediated by LLO. 

Although we did not ascertain the NLRC4 contribution to this enhancement, flagellin is 

widely regarded an inducer of the NLRC4 inflammasome  (10, 23, 24).  Likewise, LPS-

primed BMM produced modest and significant IL-1β in response to LLO liposomes when 

compared to empty liposomes. The magnitude of this response was significantly enhanced 

in the presence of fliC. And this observation occurred over a dose range of LLO liposomes 

(not shown). We propose that the active caspase-1 and IL-1β enhancements are indications 

of activating the NLRC4 inflammasome.  

Caspase-1 activation through inflammasomes has been shown to lead to pyroptosis, 

indicated by membrane pore formation and rupture that leads to loss of intracellular 

materials and proteins (25, 26), such as LDH (27), which was used as a marker for cell-

death. We observed varying levels of LLO-mediated toxicity regardless of LPS-priming, This 

toxicity was not enhanced by the presence of fliC on the liposomes even at the dose at 
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which fliC enhances IL-1β.  We saw that encapsulating LLO in liposomes minimized LLO-

mediated cell death when compared to soluble protein, an observation that aligns with past 

observations (28).  LLO is has been involved in both caspase-1 and caspase-3 dependent 

cell death (29, 30), however, we determined this secretion is driven by pyroptosis because 

caspsase-3 mediated cell-death is apoptotic, a process which is not considered 

inflammatory or lytic (26, 31), hence would not expect to see LDH form other sources of 

LLO-mediated toxicity (Table 1). Overall, we observed that by measuring markers of 

inflammasome activation, active caspase-1 and IL-1β secretion, LLO liposomes activate the 

inflammasomes, and the functionalization with fliC, enhances the activation of 

inflammasomes. Incidentally, our observation of soluble LLO-mediated cell death is in 

contrast with the reports of Molofsky et al. who reported that soluble LLO induced similar 

levels of LDH as soluble flagellin from different sources  (32). The differences in dose, they 

used 10 times lower LLO concentration, and exposure time, 2 versus 4 hours in our study, 

may be responsible for the differing observation. As mentioned above, we did not observe 

the fliC- enhanced cell death from the liposomal formulation of this protein either.  

In addition, we observed that IL-1β secretion was not proportional to cell death.  

Both LLO liposomes and functionalized LLO liposomes elicit similar levels of LDH, yet 

significantly different levels of IL-1β. This observation supports the hypothesis that the cell 

death that mediates the clearance of invading pathogens is independent of IL-1β secretion  

(4, 33). 

In step with this fliC-mediated enhancement we observed, in vivo, that fliC 

functionalization of (OVA;LLO) led to high titers of anti-OVA IgG1 in immunized mice, an 

indication that fliC mediates antibody response in the presence of inflammasome activation 
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and that inflammasome activation, and this may be beneficial to the humoral adjuvant 

activity of fliC. Mice immunized with (OVA;LLO) produced significantly higher IgG1 than 

(OVA), a confirmation of previously observed data by Andrews et al.  Production of IgG2c, 

while slight, was enhanced in (OVA;LLO) as compared with (OVA) but was not enhanced by 

functionalization. With regard to frequency of circulating CD8+ T cells, mice immunized 

with (OVA;LLO)-fliC had similar circulating CD8+ T lymphocytes as (OVA;LLO) and (OVA). 

Without the LLO and apparent activation of the inflammasome, we had observed that fliC 

enhanced the circulating CD8+ T cell frequency, leading us to consider that activation of the 

inflammasomes was responsible for the lack of response seen in mice immunized with 

(OVA;LLO)-fliC.  Furthermore, the lack of LLO response in mice immunized with (OVA;LLO) 

was unexpected and is in conflict with previously published reports from our group (12, 

13).  

We expected enhanced CD8+ T cell response in these mice because we proposed that 

the LLO liposome would deliver OVA into the cytosol, enhance OVA’s access to the MHC 

class I pathway, and improve CD8+ T cell response. To ensure that the LLO remained 

functional and able to mediate delivery into the cytosol, we evaluated the ability of BMM 

treated with the LLO liposomes to present antigen to T cells in the context of the MHC class 

I peptide complex in vitro. The treated BMM were able present class-I restricted OVA 

peptide to T cells in an LLO-mediated fashion. We have identified differences between the 

liposomal vehicle and recombinant LLO from the differences between previous studies 

versus the current study. In contrast to previous studies, the liposome formulation 

contained the Ni-chelating lipid and the LLO did not contain the hexahistidine tag.  While 

we observed that the LLOhis liposomes presented antigens better in vitro in comparison to 



 84 

the same dose of LLO, the LLO liposomes were still able to significantly mediate delivery of 

OVA into the cell (data not shown). The concentration of encapsulated LLO used in the 

current study was increased to account for this observation (300μg/ml versus 200μg/ml in 

previous studies).  The other difference was in the method of determining CD8+ T cell 

response, which had been determined in previous studies via functional assays measuring 

cytokine secretion and antigen-specific lysis.  However, we have previously employed 

tetramer staining as we did in the current study to examine antigen-specific CD8+ T cell 

response to a clinically relevant antigen, Influenza nucleoprotein (NP).  In this case, LLOhis 

liposomes mediated NP-specific CD8+ T cell response in comparison to liposomal NP alone. 

To further complicate the comparisons, a study using NP-specific cytotoxic T cell lysis and 

ex vivo IFNγ secretion to monitor the CD8+ T cell response did not observe an LLO effect  

(34).  

The presence of Ni-chelating lipid in the liposomes presents a prime variable in this 

study. Indeed, recent studies have implicated Ni2+ in the NLPR3 inflammasome pathway 

and even TLR4 activation  (35-37). Interestingly, the effect has been seen as activating 

NLRP3 inflammasomes. Multi-walled carbon nanotubes were reported to elicit increasing 

IL-1β from primary alveolar macrophages (primed with LPS) with increasing Ni2+ 

contamination. The ability of the nanotubes to elicit this response is attenuated by caspase-

1 inhibition and cathepsin B inhibition. This study proposed that Ni2+ is able to mediate this 

activation by contributing to the rupture of the phagolysosome to release the lysosomal 

protease, which has been proposed as a ligand for NLRP3 inflammasome in the cytosol  

(35). Similarly, in another recent study, the authors found that PMA-primed THP1 cells  and 

LPS-primed human PBMC, murine BMM and BMDC produced increasing IL-1β to increasing 
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Ni2+ concentrations in a capase-1, NLRP3 and ASC-dependent fashion but independently of 

the phagolysosomal pathway  (36).  

Cathepsin B, a ligand for the NLRP3 inflammasome, was reported to be the medium 

through which particulates such as aluminum salts, silica and asbestos activate the NLRP3 

inflammasome  (38).  These particulates are thought to induce lysosomal rupture, which 

exposes cathepsin B to the cytosol. Being an endosomal pore-forming protein, this implies 

LLO has a potential to mediate a similar effect. Indeed, the purpose of LLO is to mediate the 

release of endosomal contents, which include cathepsin B into the cytosol. In fact, this has 

been reported to be the case, where human PBMCs infected with Listeria monocytogenes 

displayed an LLO-dependent release of cathepsin B, which led to IL-1β secretion  (20). 

More relevantly, this study also noticed purified LLO-mediated IL-1β release was 

independent of cathepsin B  (20). Some of the studies showing independence of cathepsin 

B, particularly when using cathepsin B-deficient mice, have been able to allow other 

researchers to infer that the cathepsin B inhibitors used in studies may have off-target 

effects on cathepsin B, hence the main ligand resulting from the particulate-mediated 

inflammasome activation may be unidentified  (38).  While we do not observe 

inflammasome activation in non-LLO nickel containing liposomes, we cannot discount the 

role that Ni2+ may play in the presence of other activators of the inflammasome. The 

biological fate and effect of Ni2+ in a formulation such as the one used in this study has not 

been characterized in detail.  It was assumed that the observations from our previous 

studies that used non-nickel containing LLOhis liposomes would apply to this study, which 

used nickel-containing LLO liposomes. However, there is no experimental basis for this 

assumption; a detailed comparison particularly in the context of inflammasome activation 
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is needed to check this notion. We observe activation of the inflammasome in the presence 

of LLO and this was enhanced by the presence of fliC in the cytosol, the mechanism 

notwithstanding.  

The foregoing reflects the intricate nature of the mechanisms and contributors in 

the activation of an inflammasome; it has however not proffered any rationale for the 

discordance in data we observed in vitro and in vivo. Although we observed inflammasome 

activation and enhanced presentation of MHC class I-restricted antigen in vitro, this 

enhancement did not translate to enhanced CD8+ T cells in immunized mice, which 

prompts a consideration of the role of the inflammasome, perhaps NLRP3 and NLRC4 in 

(OVA;LLO)-fliC and (OVA;LLO) in vivo. Many pathogens have developed strategies to avoid 

the effects of activating the inflammasome to promote their survival and virulence. These 

evasion strategies include inhibiting caspase-1 activity or activation, inhibiting IL-1β and 

preventing inflammasome recognition of the virulence factor  (5). Based on this, activation 

of the inflammasomes is thought to be required for protective immunity against a number 

of pathogens, including Salmonella typhimurium, Listeria monocytogenes, Pseudomonas 

aeruginosa and Influenza A  (39).  

With regard to NLRC4 inflammasomes, a notable study by Sauer et al. has indicated 

that Listeria monocytogenes engineered to activate NLRC4 inflammasomes decreased the 

induction of antigen-specific T-cells  (40).  In their study, L. monocytogenes was engineered 

to ectopically secrete L. pneumophila flagellin restricted to expression in cytosolic bacteria. 

These engineered bacteria activated the inflammasome, and the intracellular growth was 

severely attenuated in BMM in vitro and in vivo where the engineered bacteria produced 

fewer colony-forming units in the spleen and liver of immunized mice; this attenuation is 
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rescued in NLRC4-/-/Naip5-/- mice. While activation of the inflammasome controlled the 

infection, they further observed that mice immunized at both low and high doses of the 

engineered bacteria showed decreased protection to subsequent L. monocytogenes 

challenge in terms of bacterial burden in both spleen and liver, when compared to mice 

immunized with an unengineered strain. They also reported that mice immunized with the 

engineered strain induced defective CD8+ T cell response as determined by ex vivo 

stimulation of splenocytes with peptides and tetramer staining. Both the defective 

protective response and defective T cell development were reversed in caspase-1 -/- mice, 

correlating the response with inflammasome activation  (40).  Observations of the Sauer et 

al. study supported the hypothesis that intracellular pathogens evade activating the 

inflammasome to promote their virulence and reported the role the inflammasome plays in 

infection control in vitro and in vivo. However, in alignment with our observation that mice 

immunized with inflammasome-activating formulations exhibit no significant antigen-

specific CD8+T cells, they also demonstrated that inflammasome activation was deleterious 

to generating protective immunity.  

Irrespective of fliC functionalization, in our study comparing both (OVA;LLO) and 

(OVA;LLO)-fliC, of the triad of parameters we evaluated (IL-1β secretion, caspase-1 

activation and pyroptosis) the inefficient pyroptosis (and ranging from < 20% after 4 hours 

of  incubation versus < 10% in formulations used in cytokine studies ) was instigating. Our 

observation may have been mediated by exposure times. In the presence of active caspase-

1, which is understood to be required for cytokine secretion in NLRC4 inflammasomes and 

presumably led to IL-1β secretion, we did not observe efficient cell-death. In the NLRC4 

inflammasome, pyroptosis can occur independently of caspase-1 processing as Broz et al. 
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determined that pyroptosis can be triggered by catalytically active but unprocessed 

caspase-1 (33). Pyroptosis functions to eliminate the replicating intracellular pathogens, 

making them susceptible to phagocytosis and killing by a secondary phagocyte, notably 

neutrophils  (4, 26).  

We propose that in vitro, antigen-presenting BMM not primed with LPS – as was in 

the antigen presentation assay- would not produce IL-1β since there is no pro-form of IL-

1β.  BMMs do not express TLR5, hence the need to prime with LPS to generate pro-IL-1β in 

our cytokine secretion studies. However, the caspase-1 activation is independent of TLR 

priming and unaffected by the lack of TLR5 in BMM, so in the presence of LLO, caspase-1 is 

activated. According to our observations, there is caspase-1 activation; potentially 

inefficient pyroptosis at four hours and the cells are not subject to any effect of IL-1β. 

Because these BMM are able to present class I –restricted antigens to T cells in this 

scenario, this leads us to propose caspase- 1 activation may not be of significance in the 

antigen presentation observed in vitro and the BMM presents the cytosolic content as it 

would, while the lack of IL-1β in this environment cues us to its potentially important role 

in the lack of response seen in vivo.  The role of IL-1β and IL-18 in innate and adaptive 

immunity have been relatively well studied. IL-1β induces the expression of many genes, 

including IL-6 and TNFα, and plays a vital role in the induction of Th17 in humans and the 

antigen-driven expansion and differentiation of CD4 T cells  (39).  Depending on the 

cytokine milieu, IL-18 in combination with IL-12 or IL-2 can induce differentiation of either 

Th1 or Th2 cell types  (39, 41). When introducing the formulation in vivo, where 

presumably the (OVA;LLO)-fliC encounter TLR5-expressing APCs,  ligation of fliC and TLR5 

leads to the pro-form of IL-1β present for cleavage by caspase-1 upon inflammasome 
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activation. Since pyroptosis mediated by this formulation appears diminished, we propose 

that, in the absence of pyroptosis, IL-1β could dictate the inflammatory milieu that governs 

the course of cell-mediated immunity. (OVA; LLO) in vivo would not interact with TLR5 to 

produce the precursor to IL-1β and our observation is not accommodated in our proposed 

model. Considering we are unsure what inflammasome is being activated in this 

formulation, there are perhaps other unknown elements driving the immune profile 

observed but this remains unanswered. Studying the effect of inflammasome activation 

results in an intricate web of determinants that is not easily deconstructed especially in the 

face of activating multiple inflammasomes.  

CONCLUSION 

Our results have demonstrated that in the presence of LLO and, by extension, 

activation of the inflammasome, fliC-functionalized liposomes enhance IgG1 production. 

The inflammasome-activating formulations minimized pyroptosis, enhanced MHC-class I-

restricted antigen presentation in vitro, and did not engender the CD8+ T cell response in 

immunized mice. Understanding the role of pyroptosis in vivo may be significant in 

understanding how delivery of fliC in the cytosol affects its CD8+ mediated immunity, 

particularly in the context of a delivery vehicle that minimizes pyroptosis.  
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(A)              (B) 

 

Figure 3.1: Flagellin enhances LLO-mediated activation of caspase-1 

 Flagellin-enhances LLO-mediated activation of caspase-1.- BMM were stimulated 
according to LLO and fliC concentration (10μg/ml), and caspase-1 extracted from cell-free 
supernatants was immunoblotted on the following lanes, lane 1: untreated cells; lane 2, 
200ng/ml LPS for 4 hours, followed by a 2 hour 5mM ATP incubation; lane 3, blank 
liposomes; lane 4, fliC-functionalized liposomes; lane 5, LLO liposomes; lane 6, heat-
inactivated LLO liposomes; lane 7, fliC-functionalized LLO liposomes; and lane 8, 
functionalized heat-inactivated LLO liposomes. LLO-inactivated liposomes were made by 
incubating LLO liposomes at 70 ° C for 10 minutes. Encapsulated content of the liposomes 
is in parentheses, and protein attached after formation of liposomes is represented by 
hyphens. (B) BMM not primed with LPS. Lane 1: untreated cells; lane 2, LPS+ATP; lane 3, 
blank liposomes; lane 4, fliC-functionalized liposomes; lane 5, LLO liposomes; and lane 6, 
fliC-functionalized LLO liposomes.  
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(A) 

 

(B) 

 

Figure 3.2: FliC enhances LLO-mediated secretion of IL-1β 

Flagellin-enhances LLO-mediated secretion of IL-1β. A) Bone-marrow derived 
macrophages were treated with 200ng/ml LPS for 4 hours and the primed cells were 
exposed to 5mM ATP, 10μg/ml LLO, and 8ug/ml fliC for 4 hours. B) IL-1β is mediated by 
LPS priming. BMM were not primed with LPS before the same treatment was applied. The 
treatment was discarded, cells were pulsed in complete media, and the cell supernatants 
were assayed for IL-1β via ELISA after 20 hours. Data shows mean of triplicates ± SEM and 
analyzed by one-way analysis of variance (*p<0.05). 
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(A) 

     

(B) 

 

Figure 3.3: FliC does not enhance LLO-mediated toxicity regardless of LPS priming 

FliC does not enhance LLO-mediated cell death regardless of LPS-priming. (A) Bone-
marrow derived macrophages were treated with 200ng/ml LPS for 4 hours and the primed 
cells were exposed to 10μg/ml LLO and 8ug/ml fliC for 4 hours. (B) BMM were not primed 
with LPS before the same treatment was applied. The cell supernatants were assayed for 
LDH. Data shows mean of triplicates ± SEM and analyzed by one-way analysis of variance 
(*p<0.05). 
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Figure 3.4: Encapsulation in liposomes minimizes toxicity of soluble LLO 

Encapsulation in liposomes minimizes toxicity of soluble LLO: Bone-marrow derived 
macrophages were treated with 200ng/ml LPS for 4 hours and the primed cells were 
exposed to formulations with 10μg/ml LLO and 8μg/ml fliC either in soluble form or in 
liposomes for 4 hours. The cell supernatants were assayed for LDH. 
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Figure 3.5: In the presence of OVA, LLO-mediated toxicity is not apparent 

In the presence of OVA, LLO-mediated toxicity is not apparent. Bone-marrow derived 
macrophages were treated with 200ng/ml LPS for 4 hours and the primed cells were 
exposed to formulations with 10μg/ml LLO and 8μg/ml fliC for 4 hours. The cell 
supernatants were assayed for LDH.  Data shows mean of triplicates ± SEM 
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Figure 3.6: Functionalization with fliC does not inhibit LLO-mediated cytosolic OVA 
delivery in vitro 

 BMM were pulsed with liposomal OVA (OVA), OVA-LLO liposomes (OVA; LLO), fliC-
functionalized liposomal OVA, and fliC-functionalized LLO OVA liposomes [(OVA; LLO)-fliC] 
for 2 hours. Cells were washed and further incubated for 3 hours and fixed. The fixed cells 
are incubated with B3Z cells for 15 hours. Presentation of SIINFEKL–MHC complex to B3Z 
cells was monitored by the conversion of CPRG substrate to chlorophenol red in primed 
B3Z cells and absorbance at 595nm. Data shows mean of triplicates ± SEM of one 
representative experiment of two independent experiments and analyzed by one-way 
analysis of variance (*p<0.05) 
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Figure 3.7: FliC-functionalized LLO liposomes enhance OVA-specific IgG1 titers 

(A) C57BL/6 mice were immunized s.c. with liposomal OVA alone (OVA), fliC- 
functionalized liposomal OVA (OVA-fliC), OVA LLO liposomes (OVA; LLO), or fliC-
functionalized OVA LLO liposomes [(OVA; LLO)-fliC]. N=4 Dose was normalized to OVA 
concentration at 10μg, 4-5μg LLO, and 5-7μg fliC. Nine days later, the animals were boosted 
with the same formulation. On day 16, frequencies of OVA-specific CD8+ T cells were 
evaluated by MHC-1 tetramer staining via flow cytometry. Average percentage (± SEM) of 
OVA-specific CD8+T cells from 4 mice per group is shown. (B) Flagellin functionalized 
liposomes encapsulating OVA induce IgG1 antibody production independently of LLO 
inclusion. Eleven days after the booster immunization was administered, sera were 
collected on day 21 and OVA-specific immunoglobulin determined by ELISA 
(****p<0.0001) 
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  Apoptosis Pyroptosis 

Initiating Programmed Programmed 
Signaling pathway Caspase-2/3/6/7/8/9 Caspase-1/11 
Terminal event Non-lytic Lytic 
Effect on tissue Non-inflammatory Inflammatory 

Table 3.1: Comparison of apoptosis and pyroptosis 

 (adapted from  (26)) 
Pyroptosis is characterized by formation of membrane pores that lead to plasma 
membrane lysis, releasing the cytosolic content into the extracellular space. Specific 
markers for this lysis are useful in vitro, for example, lactate dehydrogenase release is 
readily detected by enzyme assay. On the other hand during apoptosis, plasma membrane 
integrity is maintained and cellular contents are not released (31). 
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CHAPTER 4 Significance and Future directions 

SIGNIFICANCE 

This study is the first to design and evaluate the immune profile of full flagellin, in 

the context of liposomes. Tactically, using the full protein affords the ability to harness 

properties of flagellin as both a TLR and an NLR ligand, abilities that are contingent on 

specific separate locations on the protein. Liposomes are particularly suited for delivery of 

flagellin, because their surface can be modified to display flagellin, as though it were being 

expressed on a pathogen, and allow flagellin interact with its receptor.  In the case of fliC, 

not only does this interaction enhance delivery to APCs responsive to flagellin, the ligation 

of fliC and TLR5 initiates innate immune cascade that will produce the cytokine milieu that 

will govern the pattern of the adaptive immune response.  

When compared to the conventional approach of using fusion proteins to target the 

antigen and the adjuvant to the same APC, the functionalized liposomes eliminate the 

limitations of a. inability to create stable fusion protein and b. altered immunogenicity of 

the antigen such that generated antibodies lack recognition for native antigens, which 

make them a suitable system to deliver virtually any antigen that can be encapsulated in 

liposomes to APCs while exploiting the adjuvant ability of flagellin. The functionalization 

process poses an inherent risk to the capabilities of both the liposomes as a vehicle and fliC 

as an adjuvant, however both fliC and the liposomes retain their individual characteristics. 

FliC-functionalized liposomes provides the benefit of targeting the adjuvant and the 

antigen to the APC, as flagellin-adjuvant fusions would, seen as an enhanced Th2-biased 
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humoral and cell-mediated response attributable to fliC and the liposomes retain their 

integrity and ability to deliver encapsulated cargo.  

Finally the studies demonstrated the ability of LLO to mediate the delivery of 

surface-attached fliC to the cytosol to engage the inflammasome and evaluate flagellin 

actions in when present as both a TLR5 and NLRC4 ligand. Activating the inflammasome 

may be beneficial for fliC-mediated humoral immunity and the studies elucidate some of 

the complexities of trying to deconstruct the role of the inflammasome in fliC-mediated 

immunity. 
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FUTURE DIRECTIONS 

The use of flagellin-functionalized liposomes in the context of a clinically relevant 
antigen 
 

The foremost finding of the study presented in chapter 2, is the ability of fliC-

functionalized liposomes to activate the innate immune response, enhance MHC-class I-

restricted antigen presentation, and elicit humoral response and CD8+ T cell response 

against an encapsulated antigen. Given the range of antigens that can be encapsulated in 

liposomes, future studies should focus on a clinically relevant protein antigen to test the 

range of this delivery system. In addition to antigen-specific CD8+ T cell tetramer staining, 

functional assays should also be performed to better characterize the nature and polarity of 

the immune profile.  

Establishing (OVA;LLO) as an appropriate positive control and exploring potential 

influences of experimental differences on CD8 + T cell response 

 
In the studies described in chapter 3, we expected (OVA;LLO) to serve as a positive 

control for OVA delivery to the cytosol and MHC class I pathway  and expected to see 

enhanced CD8+ T cell response in comparison to (OVA). We did not observe this in two 

independent experiments. While the different methods of monitoring CD8+ T cell response 

may have contributed to the difference, the inability to demonstrate an LLO-mediated CD8+ 

T cell response in vivo discouraged any subsequent functional assays and may not be a 

pressing source of difference at this time. The effect of differences in the formulations of 

previous studies and the current study, lack of hexahistidine tag and Ni-lipid content, while 

they appear inconsequential, will need to be probed. Being a bioactive protein, one cannot 

discount the role that differences such as LLO potency can have. Hemolytic activity can 
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vary from one purification batch to another, hence using a measure of biological 

effectiveness rather than absolute quantitative measure may exclude the additional 

complexity of varying delivery efficiency when comparing observed results to prior 

observations. In Chapter 3, we observed that the Ni-containing (OVA;LLO) activated an 

inflammasome. Since nickel has been implicated in inflammasome activation  (1, 2), and the 

main goal of using LLO liposomes was to engage the NLRC4 inflammasome with fliC, this 

line of investigation would compare the formulations with regard to the ability to activate 

caspase-1, and the ability to secret IL-1β from LPS-primed and unprimed BMM. Secretion 

of LDH should also be monitored as an indication of pyroptosis. The results of this 

comparison will dictate if the formulations are comparable in the context of activating cell-

mediated immune response.  

The use of LLO liposomes presents the potential of activating multiple 

inflammasomes. In this scenario, regardless of the agonist, we are able to study the effect 

activating inflammasomes and TLR5 has on the adaptive immune system in a crude sense.  

At the finest, we should be able to determine the immunological relevance of combining the 

agonist of specifically NLRC4 inflammasome and TLR5 to be able to exploit this to optimize 

vaccine response. In this vein, it may be practical to determine what inflammasome is being 

activated in cells treated with (OVA;LLO). To start with, the caspase-1 activation 

measurement should be assessed in NLRC3-/- and NRLC4-/- BMMs to determine the relative 

contributions of each inflammasome in (OVA;LLO) and (OVA;LLO)-fliC.  

Exploring the potential role of proinflammatory cytokines 

In an effort to reconcile the in vitro antigen presentation assay results with our in 

vivo observations, we proposed that minimal pyroptosis and the lack of IL-1β allowed 
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MHC-class I –restricted peptides to be presented to T cells. To test the effect of IL-1β in 

antigen presentation, we recommend modifying the antigen presentation assay by priming 

BMM with LPS for 4 hours prior to the assay. The goal is to generate a pool of the pro IL-1β 

form, before cells are pulsed with (OVA;LLO), (OVA;LLO)-fliC and (OVA) for 4 hours (to 

match the exposure time we used to evaluate LDH-secretion) cells in which caspase-1 is 

activated, would cleave the pro IL-1β form in to IL-1β. The BMM should then be incubated 

for another 3 hours without treatment in media before they are exposed to T cells for 

antigen presentation. Unprimed BMM as we have studied in chapter 3 can serve as controls 

for cells with no IL-1β present. If the MHC class I- restricted peptide presentation is 

diminished, then IL-1β is an important link between in vitro and in vivo response observed. 

Subsequently, the importance of IL-1β in vivo can be evaluated using IL-1β-/-/IL18-/- 

mice.  In the inflammasome activation pathway, IL-1β and IL-18 are the main 

proinflammatory cytokines resulting from the proteolytic activity of processed capase-1.  It 

is understood that these two cytokines exert pleiotropic effect that can promote Th1, Th2 

or Th17 responses  (3). In this test, the mice will be immunized with (OVA), (OVA;LLO), 

(OVA;LLO)-fliC. Both the antibody titer for IgG1 and IgG2c and the CD8+ T cells via tetramer 

staining should be evaluated. The splenocytes from immunized mice can be stimulated ex 

vivo for cytokine secretion in the presence of OVA MHC class I and class II peptides to 

evaluate generated immune profile. If in the absence of the influence of IL-1β and IL-18, the 

same immunologic profile is observed, then another factor, potentially, pyroptosis is 

influencing T cell response.  The role of the inflammasome in the observed CD8+ T cell 

response is salient when comparing response elicited from (OVA)-fliC, to the 
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inflammasome-activating formulations. Alternatively, the caspase-1-/- mice can be 

immunized with these treatments to confirm the role of the inflammasome.   

Exploring the potential role for pyroptosis in vitro and in vivo responses 

We observed minimized toxicity in comparison to soluble protein after a 4-hour 

exposure time.  With this observation, we were not able to ascertain the practicality of 

measuring at that this time, so at the very least, we can suggest that encapsulated 

liposomes may delay the kinetics of pyroptosis and this is likely biologically relevant hence 

determining the relationship between exposure time to inflammasome-activating 

treatment and LDH secretion is worth exploring in future studies. The range of exposure 

time in the literature has been cited as reason for the disparity in the observations of 

inflammasome activation by L. monocytogenes in vitro  (3). 

In the in vitro antigen presentation, we observed minimal pyroptosis from the 

liposomal treatment, and this did not appear to affect MHC class I presentation to T cells.  

Pyroptosis could be insignificant in vivo and the cytokine response dictates the 

immunologic profile. What may hold the key to this answer may be determining the 

underlying source of how the inflammasome-dependent cytokines are released. The exact 

mechanism of secretion of IL-1β and IL-18 is debated. There is the suggestion that they are 

released during pyroptosis. In contrast, there are reports that show that while secretion 

may be temporally associated with caspase-1 dependent formation, secretion does not 

require lysis. Mechanisms like caspase-1 independent lysosome exocytosis and 

microvesicle shedding have been proposed (4). There has been evidence of cross talk 

between caapase-1- dependent and other cell death pathways that may compensate for 

lack of pyroptosis in vivo. What signifies the need to compensate for cell death in this 
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scenario is not well elucidated. Nevertheless, cell death in this instance has been described 

as kinetically slower than pyroptosis  (5). A fact that suggests that if in fact pyroptosis is 

“rescued” in vivo, the secreted IL-1β and IL-18 may still govern the immunologic profile 

observed. 

Finally, regardless of the kinetics of cell-death, we observed that in the same time 

frame the differences the soluble version of the LLO and LLO fliC combination has on 

pyroptosis. Attempts to further study the role of pyroptosis in vivo may aim to compare 

liposomal proteins with soluble protein form, with LLO liposomes, functionalized and 

unfunctionalized compared to fliCOVALLO and OVALLO fusion proteins respectively.  To 

mitigate potential problems that may occur in the process of expressing the recombinant 

proteins, the first strategy would be to explore the main reasons that lead to lack of protein 

expression or lack of activity of the required protein which could be due to toxicity of the 

recombinant protein to the cell or insolubility of recombinant protein resulting in 

aggregation in inclusion bodies in the cell. Various optimization methods such as changing 

growth medium, temperature and length of induction or switching from the BL21 

expression strain to another expression strain.  If protein is being expressed, but the 

activity of each component is not detectable, an alternative approach to the proposed 

recombinant protein will be to synthesize a fusion protein that exploits the sulfhydryl of 

LLO needed for pore forming activity. One such approach is to utilize the lone cysteine of 

LLO (C484) as reported by Saito et al  (6). Hence, the final protein will consist of a disulfide-

bonded heterodimer that would be cleavable in the endosome, and as such the LLO would 

be cleaved from the fusion to exert its pore‐forming activity, while the fliCOVA would 

emerge from the endosome, free of the LLO.  It should be noted that flagellin ovalbumin 
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fusions have been expressed in studies in the literature and may not pose a challenge in 

purification. 

Correlating the presence of protein-specific immune response to other components 

of the vaccine vehicle to encapsulated antigen-specific immune responses 

The vaccine delivery vehicle presented in this thesis is multicomponent. This is most 

relevant in vivo when two to three proteins are associated with the liposomes at a given 

time. In chapter 2 immunization studies, OVA and fliC and in chapter 3, OVA, LLO and fliC 

are present. These components are proteins, to which protein-specific immune responses 

can be generated. The studies only focused on the antigen-specific immune responses to 

the encapsulated antigen, OVA. While studies suggest that preexisting immunity to fliC does 

not affect the subsequent adjuvant activity of flagellin (7), and pre-existing LLO immunity 

does not inhibit functionality of LLO-containing vaccine formulations  (8), vaccine efficacy 

can be limited or enhanced by preexisting carrier immunity. Hence, it may be worthwhile 

to explore and evaluate the anti-fliC and anti-LLO immune responses in an endeavor to 

correlate the anti-carrier profiles to that observed with the immune profile against 

encapsulated protein, specifically in an immunization regimen that consists of a booster 

dose. 

Exploring alternative ligand attachment methods to surface of liposomes 

The concept of multifunctional liposomes in the context of surface functionalization 

is not new. There have been many studies of liposome–associated antigens and various 

modes of antigen attachment to liposomes ranging from covalent conjugation to adsorption 

exist. These methods are generally effective in inducing immune response while some body 

of evidence show an advantage for covalently attached surface proteins in generating 
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antibody response towards the attached protein  (9). The choice of using the Ni-NTA 

affinity for the his-tagged flagellin in this study was to have a platform for fliC to be stably 

tethered to interact with its receptor not to modulate the strength of the immune response 

against the surface protein. 

Given the potentially incriminating role of Ni in inflammasome activation and the 

unknown effect it may have on activating CD8+ T cell response in vivo, it is worth pursuing 

how to minimize the amount of nickel-containing lipid in future formulations.  In chapter 2, 

we observed a wide range of coating densities using a single Ni-lipid concentration. Future 

experiments should explore a minimum concentration that elicits innate immune response 

but potentially non-deleterious to cell-mediated response. Regardless, the safety profile of 

the nickel-containing lipid is undetermined. Lipid nanoparticles with accessible nickel have 

been used to deliver multiple his-tagged HIV antigens, and the toxicity of these 

nanoparticles on a dendritic cell line was found to be reduced in comparison to charged 

nanoparticles (10).  Similarly, in vitro studies suggest that NTA-functionalization of 

microparticles regardless of the presence of nickel does not influence toxicity in cardiac 

myocytes and macrophages. However, nickel nanoparticles have been implicated in 

enhanced lung inflammation and toxicity in inhalation exposure with a mechanism that is 

proposed to correlate with its capability to induced free radical damage to plasmid DNA  

(11).  

 The relevance of such fore mentioned findings on the vaccine and clinical potential 

of nickel-containing liposomes is unknown and have not been duly explored. Nevertheless, 

there are options for liposomal surface modification that can be explored to avoid the use 

of Ni-lipid, particularly covalent conjugation methods. Options for covalent conjugation 
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include conjugation through an amide bond and a disulfide or thioether bond  (9).  

Phospholipids with amine or carboxyl functional groups such as carboxyacyl derivative of 

phosphoethanolamine can be conjugated to proteins  (12). Lipids for disulfide or thioether 

conjugation, such as 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[3-(2-

pyridyldithio)propionate (PDP-PE) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-

[4-(p-maleimidophenyl)butyramide] (MPB-PE) respectively, can be conjugated to thio-

containing proteins.  A comparison of PDP and MPB conjugates suggest that the MPB 

conjugate retain better serum stability (13).  To effect functionalization via a thioether 

bond, the ligand to be attached to the surface of the liposomes-which contain lipids with a 

sulfhydryl-reactive maleimide group conjugated to the head group- should have an affinity 

for the maleimide moiety on the lipid. This is done either by exploiting the sulfhydryl 

groups present in the ligand, which in the case of fliC are lacking, or by introducing 

protected, yet exposable sulfhydryl groups via alternative means using reagents such as N-

Succinimidyl S-Acetylthioacetate (SATA) to react with the free amines in the protein (14, 

15). Alternatively, fliC can be mutated using standard PCR methods to introduce a cysteine 

at the C-terminus.   
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APPENDIX Histone H2A enhances the capability of LLO LPDII as a 

nuclear delivery vector in vitro 

INTRODUCTION 

DNA vaccines, potential and limitations 

DNA delivery is usually classified as viral vector-mediated or non-viral vector-

mediated. The viral-mediated methods employ genetically engineered viruses as drug 

delivery vectors. As in live-attenuated vaccines, viral vector-mediated delivery is efficient 

at delivering DNA for expression; however, this efficiency comes at the cost of safety to the 

recipient. As demonstrated in gene therapy clinical trials, the cost of the acute immune 

response that is induced, the possibility of insertional mutagenesis, and immunogenicity 

against the carrier  (1) underscored the need for alternatives to viral vector-mediated DNA 

delivery. Considering that DNA vaccines are able to express antigens in the cells for 

immunogenic purposes, DNA vaccines are well suited for targeting the MHC class I 

pathway. DNA-based vaccines often consist of bacterial plasmids that contain the cDNA for 

an antigenic protein to be transcribed and translated after administration to the subject, 

just as a natural infection would mediate the transcription of its genetic material in the 

nucleus and translation in the cytosol.  

Despite the promise of the DNA-based vaccines, there is no DNA therapeutic 

modality licensed for human use. Three DNA vaccines have been licensed for veterinary 

uses including a canine melanoma vaccine and another DNA-based gene therapy product 

for use in pigs  (2, 3). This paucity can be attributed to a number of factors that retards the 
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development of DNA vaccines. The ineffective delivery of DNA vaccines and lack of a potent 

immune response, in terms of creating the magnitude and quality of response needed for 

protection, in large animals and humans are the greatest hurdles to development  (3). 

Studies are ongoing to make improvements in other areas such as optimizing DNA 

expression through codon modification, chemical modification of linkages to enhance 

resistance to nucleases and developing new manufacturing processes to produce highly 

concentrated DNA  (3). 

Strategies to enhance DNA vaccine potential 

Enhancing the delivery of DNA vaccines has taken various approaches to 

overcoming physiological limitations imposed on a DNA vaccine introduced to the 

physiological space, such as barriers of the cell membrane, the endosomal membrane and 

the nuclear membrane and nuclease degradation in plasma and cells  (1). Approaches to 

enhance the immune response, have led to the use of adjuvants in vaccine design, usually in 

the context of protein subunit vaccines  (3) To enhance the immunogenicity of DNA 

vaccines, plasmids encoding cytokines such as interferons, interleukins, tumor necrosis 

factors and colony stimulating factors have been tested  (4). Some of these cytokines are 

able to act on lymphocytes to influence patterns of Th1 and Th2 differentiation or act on 

antigen-presenting cells to enhance the T cell-mediated response  (4, 5).  

While cytokines and chemokines used as adjuvants such as IL12, IL2, IFN γ and 

others possess these advantages  (6) there have been suggestions that they may not be able 

to stimulate the immune system to the same extent or in the way, as components of an 

infection would (Ljunggren, 2008). Other approaches to enhance the potency of the 

immune response have been through immunization regimens of priming the immune 
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system with a DNA vaccine and boosting with the protein or DNA, sometimes requiring 

designing two vaccines  (3). A vaccine delivery system that is sufficiently immunogenic 

could eliminate the need for this. 

Enhancing nuclear delivery of DNA vaccines 

Unlike live-attenuated vaccines and vaccine delivery using viral vectors, non-viral 

delivery systems are unable to utilize inherent machinery to transfer of genetic material 

across the cell compartments for transcription in the nucleus  (7). As a consequence of the 

multiple processes involved for an antigen encoded by a DNA vaccine to be expressed, non-

viral vectors that are lacking intrinsic properties or unable to utilize host machinery are 

not very efficient in delivery despite the relative gain in safety when compared to viral 

vectors.   

Transfer of DNA into the nucleus is fundamental in achieving the goal of DNA vaccination 

and gene therapy; as such, there have been several approaches to overcome the barriers in 

put in place by the cell and essentially replicate the functionalities that enable pathogens to 

bypass these barriers. The ideal DNA vaccine should remain stable in the extracellular 

space, gain access to the cytosol, be stable in the cytosolic milieu upon exposure to a 

myriad of enzymes, and enter the nucleus for transcription, an expectation that is checked 

by the presence and selectivity of the nuclear membrane  (8). This ideal scenario is 

sabotaged by the endocytic pathway, through which the DNA will most likely be 

internalized by the cells. 

 Thus, approaches to enhance transfection efficiency of DNA vaccines have been 

aimed at improving the efficiency of at least one of these processes. The methods have 

varied from the physical, such as the use of gene guns  (9) ultrasound  (10) and 
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electroporation  (11) to the more widely studied chemical methods such as cationic lipids 

or polymers to condense the DNA to enhance cell entry (1). The latter approach is of direct 

relevance to this proposal. 

Many studies have employed lipids, polymers, and peptides with the goal of 

neutralizing and condensing the polyanionic, large molecular weight DNA to protect the 

DNA from enzymatic degradation and thereby increase transfection efficiency  (12). 

Polycationic polymers and polypeptides such as polyethylenimine, poly-L-lysine, and 

protamine have been shown to condense DNA to yield polyplexes, which have been 

reported to improve transfection efficiency to varying magnitudes  (1). However, the need 

for large amounts of these polycations to realize better transfection efficiency usually leads 

to cytotoxicity, the extent of which varies from one cationic polymer to another, limiting 

their use  (1). The cationic lipids that have been explored, while biodegradable still exhibit 

cytotoxicity; in addition, they tend to be unstable in physiological spaces- such as in the 

presence of serum, reducing their potential for use in vaccine delivery systems  (13, 14). 

Polycationic moieties enhance DNA delivery as a result of their ability to condense DNA, 

which leads to a reduction in DNA size, enhanced cell uptake, and increased protection 

from cytosolic nucleases  (15, 16).  

Due to their cytotoxicity, however, there is the need to further explore the use of 

other proteins in the delivery of plasmid DNA for therapeutic uses and vaccine purposes. 

The use of protein for DNA delivery provides several advantages, such as ease of 

production, and homogeneity in production and purity  (17). In principle, an endogenous 

protein that possesses the ability to sufficiently condense DNA exhibits potential in 

enhancing safe DNA delivery. 
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The potential and use of histone proteins for DNA condensation and nuclear delivery 

Histones, the main protein component of chromatin, are very basic proteins that 

consist of   the linker histone H1 and four core histones H2A, H2B, H3 and H4  (18). 

Histones are translated in the cytoplasm and transported into the nucleus, and are rich in 

arginine and lysine  (19), a characteristic shared with the synthetic polycations. Not only do 

they condense DNA, studies have shown that histones also undergo post-translational 

modifications such as acetylation, methylation and phosphorylation that enable them to 

regulate the availability of several transcription factors  (20). The attractiveness of histones 

as a DNA delivery method lies in their properties as the endogenous DNA condensers that 

also possess intrinsic nuclear localizing signals that facilitate their nuclear import.  Histone- 

mediated DNA delivery has been studied with various core histones as well as  with H1, 

and studies point to them being able to mediate DNA delivery by condensing the DNA and 

enhancing cell uptake, a process termed histonefection   (21). 

Enhanced transfection has been associated with each of the core histones and the 

linker histones  (22). With some studies differing in their findings on which of the histones 

enhances transfection, it has been suggested that these differences could be a result of the 

cell lines tested or histone source  (17).  To date, the linker histone, H1, and the core 

histone, H2A, have been the most studied.  

The histone linker proteins have been thought of as more mobile than the core 

histone proteins, even referred to as the “nomads” of the nucleus  (20) and in comparison 

to core histones have a relatively low DNA binding affinity  (23). However, they have been 

shown to enhance DNA delivery into a variety of cell lines with and without agents such as 

chloroquine  (17). The linker histone H1 consists of a short N- terminal domain, a central 
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globular domain that is highly conserved and an arginine and lysine-rich, C- terminus (23). 

Studies show that the sequence of the human H1 protein that imparts its gene delivery 

activity resides in the C terminus as GFP fusion to C-terminus of histone H1 results in a less 

stable (reduced binding of histone to chromatin) protein in vivo than fusion to the N 

terminus  (23) and gene fragments corresponding to the C-terminus display a higher 

efficiency of DNA, dsRNA and siRNA transfection into mammalian cells  (24).  

Studies have also shown the core histone H2A from calf thymus to mediate DNA 

transfer in cells and generate an antitumor response in a neuroblastoma tumor model 

challenge after vaccination  (22, 25). A fragment of H2A consisting of the N-terminal 37 

amino acids has been found to be able to condense DNA and function as a nuclear 

localization signal. The N-terminus of H2A contains a nearly equal number of lysines and 

arginines clustered in this region (19). Characterization of the nuclear localization signal of 

H2A confirmed the transfection abilities of the N-terminus and that of the globular domain, 

which although it does not contain basic amino acids, is able to mediate DNA delivery and 

localize DNA in the nucleus, indicating the presence of two nuclear localizing signals in the 

H2A core protein  (19). 

In spite of the delivery potential of endogenous proteins like histones, these groups 

of proteins are not without their specific concerns. While the Puebla study showed that 

fragments of H1 mediated gene delivery was associated with low cytotoxicity, there are 

concerns associated with the safety of histones with regard to immunogenicity. It is known 

that patients with systemic lupus erythematosus (SLE) develop autoantibodies against 

histones, particularly, H1 and H2B  (26) and level of anti-histone antibodies correlates with 

disease activity. A subsequent study localized the prominent autoantigens on histones H1 
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and H2B  (27) while a comparatively recent study determined H1  to be the major B cell 

and T cell autoantigen in SLE  (28). As such it will not be considered for the proposed study.  

In the studies characterizing SLE patients’ autoantibodies, the autoantibodies from 

patients’ sera where directed against calf thymus histones. There is a shortage of 

information on the diversity of histones between species. The calf thymus histone has been 

popularly used to study histone-mediated delivery but the ultra-pure forms are expensive  

(17). Although large quantities can be generated from cultured mammalian cells, there is a 

limitation to the use in studies due to lack of homogeneity resulting from varied 

posttranslational modifications  (29). This underscores the usefulness of recombinant 

histones expressed in bacterial systems for histone mediated DNA delivery studies  (17, 

29). 

The knowledge of histone immunogenicity is however, being used to harness 

immune protection against pathogens. For example the histones of Leishmania have been 

found to be highly immunogenic and there have been studies investigating histone-

encoding DNA as the DNA in a DNA-based vaccine against Leishmania  (30, 31). Due to the 

association of histone proteins with SLE and the potential implication of histone 

immunogenicity for repeated vaccinations, it is of interest to investigate the impact of using 

histone from the host species for enhancing delivery and using histone from the pathogen. 

In principle, if the administered histones cause histone-specific responses to the 

pathogenic histone, any immunogenicity induced against the histone would be against the 

antigen, a benefit to developing a repertoire of immune cells specific for that antigen. 

Considering, that histones are mainly features of eukaryotic cells  (32, 33) this approach 

may be of potential application to eukaryotic pathogens such as the malaria-causing 
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plasmodium or histone from a eukaryotic pathogen or an identified bacterial histone-like 

protein may be used to deliver viral antigen-encoding DNA such as HIV gag.   

Utilizing listeriolysin O (LLO) to enhance DNA vaccination and gene delivery 

Despite the potential of DNA condensing agents, the effect of these agents and the 

potential for useful therapeutic applications are limited if the DNA complex is trapped in 

the endosome and degraded in the endocytic pathway. This necessitates the use of an 

endosomolytic to mediate the endosomal escape of the complex. To achieve this, studies of 

DNA delivery have sometimes been performed in the presence of compounds such as 

chloroquine  (34) and ammonium chloride  (35). These compounds’ ability to enhance 

endosomal escape has been attributed to the proton sponge effect. In fact, 

polyethylenimine is also reported to cause a buffering of the endosome to induce its 

rupture via this proton sponge effect (Behr, 1997). There have also been studies exploring 

the mechanisms by which pathogens escape the endosomes in an attempt to exploit the 

functionalities for use in delivery systems. Various proteins and peptides derived from 

bacteria, viruses, plants, and even animals have been explored to enhance the mechanisms 

of pore formation and fusion for endosomal escape of antigens  (36). 

One of such proteins is the pore-forming listeriolysin O (LLO), a pH-dependent, 

sulfhydryl-activated cytolysin that mediates the escape of the gram-positive bacterium, 

Listeria monocytogenes, from the acidified endosome  (37) This escape is necessary for the 

growth and pathogenesis of Listeria  (38).  The use of LLO has been studied in vitro and in 

vivo when incorporated in a liposomal delivery system and has been shown to enhance 

cytosolic delivery of an antigenic viral protein and plasmid DNA and it has been shown to 

enhance antigen-specific cytotoxic T lymphocyte responses  (39, 40). Because of its ability 
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to mediate delivery of DNA vaccines to the cytosol and the MHC class I pathway, LLO holds 

potential for use in any delivery system that aims to generate cytotoxic T lymphocyte 

response.  

Considering the fore-mentioned, the histone of study for the proposed vaccine 

delivery system to enhance DNA condensation and nuclear delivery, will be the human core 

histone H2A. With LLO being able to mediate enhanced gene expression in the context of 

anionic liposome -PN-DNA complex LPDII in vitro, and the demonstrated effect on 

enhancing antigen-specific cytotoxic T lymphocyte response in vivo. Our goal was to use 

H2A to enhance gene expression using the previously tested LLO LPDII for potentially 

better immune response.  The rationale being that H2A is a better mediator of gene 

expression than PN for it dual NLS and DNA condensing properties. If it enhances 

expression in the context of LLO LPDII, it would augment cytotoxic T cell response.  

MATERIALS AND METHODS 

Cell line, proteins 

The murine macrophage cell line P388D1 (ATCC, Manassas, VA) and cultured in RPMI-1640 

supplemented with 10% Hi-FBS, 100U/ml penicillin, 100μg/ml streptomycin, and 1mM 

sodium pyruvate. Cells were plated 12-16 hours before transfection and grown at 37 ° C in 

a 5% CO2.  H2A was acquired commercially (NEB, Ipwisch, MA), protamine (PN) (Sigma 

Aldrich, St. Louis, MO).  

GFP-Luc expression 

The plasmid pNGLV3 encoding firefly luciferase and green fluorescent protein, under the 

control of the cytomegalovirus promoter was a gift of Dr Gary Nabel (Vaccine Research 
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Center, MD). The plasmid was expanded in E. coli and purified using the Qigaen Giga 

Endofree plasmid purification kit (Qiagen, Valencia, CA).  Concentration of the purified 

plasmid was determined spectrophotometrically using absorbance of 260nm and A 260 

280 nm rations > 1.8.  

Preparation of LLO LPDII complexes 

Liposomes were prepared using the thin lipid film hydration and freeze/thaw 

technique at descried in Sun et al.  (39). Briefly, Phophatidyethanolamine (PE) (Avanti 

Polar lipids, Alabaster, AL) and Choleteryl hemosuccinate (CHEMS)  

were mixed in a 2:1 molar ratio and the organic solvent was evaporated to a thin film  on a 

rotary evaporator and allowed to dry under vacuum for 12-16 hours. The lipid film was 

rehydrated in 200μg/ml LLO in 1 ml HEPES-buffered glucose (HBG; 10mM HEPES, 280mM 

Glucose, pH 8.4) and vortexed. The liposomes were subjected to 4 freeze/thaw cycles in 

ethanol bath and sonicated 5 times for 1 minute in a bath sonicator. Unencapsulated LLO 

was separated from encapsulated LLO on Sepharose CL4B column (GE Healthcare) 

equilibrated with HBG. The phosphate concentration was measured using the method of 

Bartlett  (42). 

pDNA:cationic protein complex were prepared as described previously  (43) Briefly, DNA 

and H2A (New England Biolabs, Ipswich, MA)  or PN or  PN LLO where diluted from stock 

with HBG in equal volumes were mixed to achieve a final DNA contribution of 150μg/ml at 

a 1.8 amine to phosphate charge ratio. In samples containing certain percentages of % of 

H2A and PN, the proteins are mixed in ratios that contributed the desired percentage to the 

charge. 
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Preformed LLO liposomes were added to the DNA/cationic polyplexes at room 

temperature and mixed with mild vortexing to achieve the desired final component 

concentrations and ratios. Heat–inactivated liposomes are obtained by heating liposomes 

at 70° C for 10 minutes. In samples where DNA polyplexes charge ratio was evaluated, the 

charge ratio was defined as the amine to phosphate ratio was  

Briefly, H2A, is a 15.45 KDa protein, 1μg =64.63pmol; 1 molecule contains 12 arginine 

residues, and 14 lysine residues making total of 26 positively charge residues/molecule; 1 

μg H2A therefore contains 26 positive residues * 0.064 nmols of positive charge. = 

1.66nmol positive charge/ μg. Similarly, protamine is calculated to contain 4.2nmol/ μg 

and 1μg pDNA has been determined to contain 3 nmols of negative charge. 

In vitro transfection 

P388D1 cells were plated at a density of 1.5 x 105 cells/well in a 24-well plate. Cells 

were grown at 37 °C in a 5% CO2 humidified atmosphere for 16 hours before treatment and 

were typically about 70% confluent at the time of transfection. On the day of treatment, 

200ul of the (LLO)LPDII containing 2μg of DNA is added dropwise to each well and 

supplemented with complete media for a final media containing 5% Hi-FBS. The cells were 

incubated for 4 hours at 37 ° C and 5% CO2. After 4 hours, the transfection mix is discarded 

from the wells and wells are replenished with complete cell media. The cells were 

incubated for another 48 hours.  The cells were washed in 1 X PBS and the luciferase gene 

expression is determined using a luciferase assay system according to the manufacturer’s 

instructions (Promega, Madison, WI).  The luminescence is determined on 

spectrophotometer (BioTek, Winnoski, VT) and the values are normalized to total protein 

in each well as determined by BCA assay. 
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Gel retardation assay 

The mixture of pDNA and cationic protein were mixed together at room 

temperature and incubated for 1 hour to form the polyplexes. The resulting polyplex was 

then applied to 1% agarose gel containing 0.1μg/ml ethidium bromide, which had been 

poured and left to solidify. The polyplexes were electrophoresed through the gel at 100V 

for 30 minutes. DNA location on gel was visualized under UV light using a UV 

transilluminator. 

 

RESULTS AND DISCUSSION 

H2A exhibits DNA-condensing potential when in excess  

We sought to evaluate DNA condensing potential of H2A in the presence of a 

plasmid. We demonstrated that when DNA is in excess, H2A exhibits DNA condensing 

potential (Figure A.1). When DNA is completely condensed, the ethidium bromide cannot 

intercalate into the backbone and fluoresce under UV light; hence the disappearance of 

bands in the wells with increasing positive charge is due to this phenomenon. However, 

there is the potential that at certain higher concentrations, the protein aggregates and the 

retardation assay may not be indicative of the behavior mentioned. At charge neutral 

ratios, the status of the electrostatic complex is unclear and this may be indicative of the 

behavior seen.   

(LLO)LPDII enhances H2A-mediated transfection 

We evaluated the efficiency of H2A LLOLPDII in vitro in comparison to the 

previously studied PN- LLO-LPDII.  To assess the LLO-mediated enhancement of the 

complexes, we used liposomes encapsulating heat-inactivated LLO to condense the pDNA 
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polyplexes. In the presence of LLO, transfection to the macrophage cell line increased 

significantly in the comparison to heat-inactivated LLO liposomes. 

H2A (LLO) LPDII offered an advantage to transfection efficiency than PN (LLO)LPDII, 

however, we demonstrated that  supplementation of protamine with percentage of H2A 

yielded better transfection than 100% H2A (Figure A.2). 

Incremental supplementation of protamine with H2A enhances transfection efficiency 

Considering H2A is demonstrated to possess; 1. nuclear localization signal and 2. 

DNA condensing ability, we sought to evaluate the contribution of H2A and PN to DNA 

complexation and gene expression. The rest of the studies employed a charge ratio of 1.8. 

This charge ration was determined as one where differences in H2A and PN transfection 

efficiency were distinctive enough (data not shown).  We supplemented PN with 25 or 50% 

with H2A, buy using H2A to contribute 25 or 50% of the positive charge to be present in 

the complex. We observed that H2A consistently enhances the transfection efficiency of PN-

mediated transfection. PN is not known as a nuclear localizing signal, it is known to be 

efficient at DNA condensation because of its high density of positive charge. However, by 

the addition of H2A, we indicated that H2A may have bestowed an additional property to 

PN to cause this enhancement. Interestingly enough, this enhancement was usually seen to 

be better in the combinations than 100% H2A alone, an indication that H2A characteristic 

was benefitting from being a co-cationic protein with PN. The interaction between H2A and 

protamine could be responsible for this augmentation. Indeed, protamine has a higher 

positive charge density than H2A 4.2nmol/μg versus 1.66nmol/μg. It is possible that in the 

presence of a nuclear localizing signal, the increased charge density of PN outmaneuvered 

the benefit of H2A as a carrier of both characteristics. 
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Increasing net charge of lipid complex reduces transfection efficiency 

In spite of being relatively poor gene-expressing mediators, an advantage of anionic 

liposome-based delivery system like the LPDII is better compatibility with the physiologic 

environment by virtue of their anionic nature. We wanted to test the effect of increasing 

the net charge on transfection efficiency, bearing in mind that the transfection medium 

contains 5% serum. We observed that the increase from -3-4 nmoles negative charge /μg of 

pDNA was detrimental to transfection (Figure A.3) and was comparable to transfection 

efficiency observed in the HI-LLOLPDII iteration of both PN and H2A.  This was an 

indication that while some anionic charge can be beneficial, there likely exists a range at 

which this benefit is applicable. Further studies may be warranted in other cell types, as 

they may have varying requirement for interactions and may have an implication in 

targeting specific cell populations. 

CONCLUSION 

The enhancement in transfection efficiency that H2A in (LLO) LPDII is offers over 

PN is apparent; however the physiological significance of this was not studied. More 

interestingly, PN-mediated transfection in (LLO)LPDII complexes benefited from the 

addition of H2A. This presumably occurs by a combination of an adding a nuclear localizing 

signal to a protein with higher positive charge density. Further studies should look into this 

relationship by studying combinations of H2A with cationic proteins of varying charge 

densities.  
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Figure A.1: Gel retardation assay of H2A condensed-pDNA 

Gel retardation assay of H2A: pDNA polyplex. The samples were mixed in a w/w ratio with 
1.8:1 equivalent to a charge neutral ratio, the ratio where the amines form the cationic 
protein at the phosphate form the pDNA are the same. There is an excess of the negative 
charge below charge neutral position and an excess of positive charge above the charge 
neutral positions. 0.25μg pDNA; lane 1: 0.1:1; ratio increases in an increment of 0.1 until 
lane 7:  and then in increment of 0.3 till lane 14 at 3.0 and finally lane 15 at 3.6:1. pDNA 
polyplexes were run on 1% agarose containing ethidium bromide and visualized under UV 
light 
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Figure A.2: Incremental supplement of PN with H2A enhances transfection efficiency  

P388D1 cells were treated for four hours H2A (LLO) LPDII, PN(LLO)LPDII and PN 
supplemented with either 25% H2A of 50% H2A. After 4 hours, the transfection mix is 
dumped from the wells, and complete cell media is added to cells and incubated for another 
44 hours. Luciferase expression is determined by luciferase assay system and data 
normalized to total protein present well. 
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Figure A.3: Increasing net charge of lipid complex reduces transfection efficiency 

P388D1 cells were treated for four hours. With the PN and H2A (LLO)LPDII. The 
formulations were prepared with PN or H2A with LLOLPDII with increasing concentration 
to have an overall theoretical charge of -3nmoles/μg pDNA or -4nmoles/ μg pDNA . The 
theoretical charge of the (LLO) LPDII being -2nmoles/ μg pDNA . After 4 hours, the 
transfection mix is dumped from the wells, and complete cell media is added to cells and 
incubated for another 44 hours. Luciferase expression is determined by luciferase assay 
system and data normalized to total protein present well. 
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