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Abstract 

 
 During last glacial period, abrupt climate events were recorded in the Greenland ice core 

and North Atlantic sediment cores suggest major millennial scale variability in the northern North 

Atlantic, marked by a series of abrupt climate changes from 60 to 20 ka, first characterized by 

rapid shifts in the Greenland ice core oxygen isotope record. The use of high-resolution marine 

sediment cores in regions like the Pacific Ocean that are far afield from the region of climatic 

forcing allows us to evaluate different mechanisms for transmission of these major climate change 

events. The subarctic northeastern Pacific Ocean was also influenced by the growth and retreat of 

the smaller, western side of the North American ice sheet, the Cordilleran Ice Sheet (CIS).

 In Chapters 2 and 3, I use the δ18Ocalcite and the ratio of Mg/Ca in planktonic foraminifera to 

reconstruct sea surface temperatures and δ18Oseawater from high-resolution ocean sediment core 

MD02-2496 offshore of Vancouver Island in the subarctic Northeastern Pacific to reconstruct the 

effects of ocean temperatures on the marine margin of the CIS during the deglacial. The ice rafted 

debris record suggests an increase in calving events that coincide with the retreat of the CIS 

beginning around 17 ka. From 50 to 10 ka, surface ocean temperature and δ18Oseawater are compared 

with core sites to the south along the California margin, to examining the relative changes in 

surface ocean characteristics during Dansgaard-Oeschger events. Warm, relatively saline waters 

dominate offshore during these intervals, perhaps as a result of increased tropical waters from the 

south advected northward by the relative strengthening of the California Undercurrent.  
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 Chapter 4 is a characterization of sediments in modern Arctic sea ice from sites in the 

northern Canadian Arctic Archipelago and offshore from Point Barrow, AK. Sea ice aggregates 

sediments entrained during sea ice formation and may therefore contribute to surface ocean Fe 

concentrations. In Chapter 4, elemental data from sea ice cores collected from shallow coastal 

regions in the Beaufort/Chukchi Sea and the Canadian Arctic are presented, with the potentially 

bioavailable pool of filterable and particulate Fe from sea ice sediments in these regions.    
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Chapter 1 

 
Introduction  

 
1. Sediment geochemistry 
 

An estimated 6 to11 billion metric tons of sediment accumulate in ocean basins per year, 

constituting a vast potential archive of information about climate conditions in the surface ocean 

and near shore regions (Bradley, 2015). The geochemistry of marine sediments can be applied to 

address a variety of climate processes both in past and present settings. Marine sediments are 

primarily of biogenic or terrigenous origin. Biogenic sediments generated from the calcareous 

skeletal remains of organisms are often formed in equilibrium with seawater geochemistry and 

can be utilized to reconstruct past ocean processes such as circulation, temperature and salinity, 

dissolved oxygen, trace metal concentrations, and changes in export production. Calcareous 

skeletons formed in both surface (planktonic) and bottom water (benthic) environments are most 

commonly used to infer paleoclimate via δ18Ocalcite, characterization of species assemblages over 

time, and Mg/Ca ratios that can be used to reconstruct temperatures and to extract δ18Oseawater 

(Lea, 2014). 

Terrigenous sediments can often be applied to a different set of climate-related questions 

such as relative aridity, prevailing wind paths/strength, and the relative importance of different 

sediment transport pathways such as river runoff, ice rafting, and aeolian. The geochemistry of 

terrigenous sediments may also be used to trace sediment provenance using radiogenic isotope 
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signatures, rare earth element enrichment patterns, and trace element abundances. These in 

addition to grain size analyses can indicate transport mechanisms and distance. 

In addition to being passive records of climate information, sediments can play an active 

role in biogeochemical cycling both in the past and in modern systems. In high nitrogen/low 

chlorophyll (HNLC) regions like the Southern Ocean, iron (Fe) is an important limiting nutrient 

to primary productivity. Iron has a low solubility in seawater and is found at low concentrations 

throughout the ocean. Deep ocean sources of dissolved Fe come from sediment dissolution at 

continental margins, and from submarine hydrothermalism. Iron is thought to be delivered to the 

surface ocean primarily via mineral dust, but increasingly other sediment sources recognized to 

be important such as glacial weathering, ice rafted sediments, and sea ice that can act as a 

sediment reservoir, melting in spring and delivering nutrients during incipient blooms (Martin, 

1990; Tovar-Sánchez et al., 2010; Raiswell, 2011). 

Chapters 2 and 3 examine past ice-ocean-atmospheric in the Northeastern Pacific Ocean 

using the Mg/Ca ratios in biogenic sediments as a proxy for sea surface temperatures (SSTs). 

Chapter 4 is a study of modern sediments to better understand the role of Arctic sea ice 

sediments in surface ocean geochemistry and Fe bioavailability and cycling.   

2. Ice sheet-ocean temperature interactions  

 Changes in ocean circulation and advection of warm ocean waters have been invoked as a 

mechanism for significant ice sheet retreat during deglaciation at Termination 1 (Marcott et al., 

2011; Davies et al., 2011; Jennings et al., 2015), and have been increasingly observed in modern 

ice sheet retreat and loss (Motyka et al., 2003; Steig et al., 2009; Rignot et al., 2010; Joughin et 

al., 2012; Rignot et al., 2012; Xu et al., 2012). Reconstructions of past ice sheet mass balance 

changes have focused on the larger Laurentide, Greenland, and Antarctic Ice Sheets, but there is 
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also growing interest in understanding processes affecting the western component of the North 

American ice sheet, the Cordilleran Ice Sheet (CIS) and the details of its retreat. The CIS is 

thought to have been a temperate, wet based ice sheet with a marine margin made up of ice 

grounded on the continental shelf and coastal tidewater glaciers (Alley and Chatwin, 1979; 

Mosher and Hewitt, 2004). At maximum extent (local last glacial maximum, ~18 ka), it was 900 

km wide with an area of 1.5 million km2 reaching from southern Alaska to the north, through the 

Yukon Territory and British Columbia to Washington State, Idaho, and Montana in the south, 

and as far eastward as the Rocky Mountains (Margold et al., 2013).  Studies from the CIS 

interior have posited that the CIS decayed from downwasting and stagnation, and that the marine 

margin retreated as a result of eustatic sea level rise (Clague and James, 2002). Recent work 

suggests that the CIS ice divide shifted west to the Coast Mountains early in the deglaciation, 

and that the western margin of the ice sheet was removed rapidly by calving which would 

increase ice discharge and lower ice profiles to the west of the Coast Mountains (Hendy and 

Cosma 2008; Margold et al., 2012). 

 In Chapter 2, to better understand processes driving ice removal from the southern 

extent of the CIS marine margin during last deglaciation, planktonic foraminiferal Mg/Ca-based 

ocean temperature records were generated from glaciomarine sediments at deep sea core MD02-

2496, sited offshore of Vancouver Island in the Northeastern Pacific Ocean. These ocean 

temperature reconstructions are compared with IRD records (Hendy and Cosma, 2008) that are 

evidence for calving events from the same sediment core to determine the relative timing of IRD 

discharge and ocean warming through the deglacial. This chapter was published in Earth and 

Planetary Science Letters in October 2014 (Taylor et al., 2014). 

3. Teleconnections and abrupt climate change 
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In Chapter 3, the Mg/Ca-based temperature reconstruction from ocean sediment core 

MD02-2496 is extended, spanning 10-50 ka. This interval spans Marine Isotope Stage 3 (MIS 3), 

the deglacial transition, and the onset of the Holocene. The last glacial period, MIS 3, is 

characterized by abrupt, millennial scale climate variability, which is thought to originate in the 

North Atlantic Ocean. Dansgaard-Oeschger interstadials (DOIs) are rapid warming events first 

recognized in the Greenland Ice cores (Johnsen et al., 1992; Dansgaard et al., 1993). The cause 

of DOIs is still an area of active research, although most recent hypotheses are converging on 

some combination of changes in the strength of Atlantic Meridional Overturning Circulation 

(AMOC) and the extent of sea ice in the northern North Atlantic (Li et al., 2010; Petersen et al., 

2013; Zhang et al., 2015). Evidence of DOIs has been found in high-resolution records further 

afield in terrestrial and lower latitude sites (Schulz et al., 1998; Wang et al., 2001; Schmidt et al., 

2006; Leduc et al., 2007; Deplazes et al., 2013), and in the northeastern Pacific Ocean (Behl and 

Kennett, 1996; Hendy and Kennett, 1999; Hendy et al., 2004; Hendy et al., 2010; Pak et al., 

2012), and an outstanding question is how widespread are the effects of DOIs and by what 

means are they teleconnected from their presumed point of origin.    

The sedimentation rate at MD02-2496 was high enough during MIS 3 to capture 

millennial to sub-centennial climate events like Dansgaard-Oeschger. Sediment cores to the 

south have found evidence of bottom water oxygenation changes, benthic foraminiferal 

assemblage changes and SST warming during DOIs (Behl and Kennett, 1996; Cannariato and 

Kennett, 1999; Hendy and Kennett, 2000; Hendy et al., 2010; Pak et al., 2012; Ohkushi et al., 

2013). In Chapter 3, relative changes in δ18Ocalcite and Mg/Ca-based SSTs from foraminifera, 

reconstructed δ18Oseawater and bulk sediment δ15N are analyzed to place the northeastern Pacific 

Ocean in better context in terms of changing sea surface characteristics in response to North 
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Atlantic climate forcing. This chapter is currently in revision with Paleoceanography (Taylor et 

al., in revision). 

4. Modern sea ice processes 

In Chapter 4, modern processes are explored using sediments entrained in Arctic sea ice. 

Arctic sea ice extent is in rapid decline, with summer minimum extent reduced from 7.0-7.5 

million km2 to 3.5-4.5 million km2 since 1979 (Comiso et al., 2008), and thicker multi year pack 

ice replaced by first year ice (Maslanik et al., 2011). Loss of sea ice is driven by anthropogenic 

warming which is amplified in the Arctic through surface albedo feedbacks (Post et al., 2013). It 

is unclear what the effects of sea ice thinning and less sea ice cover will have on Arctic 

biological production. Recent estimates indicate a 20% increase (8.1 Tg C yr-1) in net primary 

productivity between 1998 and 2009 (Arrigo and van Dijken, 2011), however these estimates do 

not take into account changes in community structure that can affect ecosystem function. Sea ice 

acts as an inhibitor to primary productivity by attenuating solar radiation to phytoplankton living 

beneath the ice, but also functions as habitat to sea ice algae and diverse microorganisms 

(Arrigo, 2014). Moreover the surface ocean phytoplankton community structure is shifting from 

nanoplankton (2 to 20 µm) to picoplankton (< 2 µm) dominated in many regions (Lasternas and 

Agusti, 2010), which may lead to less export from the surface mixed layer and a less efficient 

Arctic food web in future (Li et al., 2009). 

Release of phytoplankton from the light limitations of permanent sea ice cover may 

increase productivity, but nutrient availability is another important factor—large-scale spatial 

heterogeneity in Arctic is dependent primarily on nitrogen supply (Tremblay and Gagnon 2009). 

With increased freshwater input to the Arctic Ocean, from runoff and sea ice melt, there is 

increased stratification that can restrict nutrient flux to surface waters (Bergeron and Tremblay, 
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2014), and a deepening of the nitracline in the Canadian Basin has been documented since 2003 

(McLaughlin et al., 2010). In shallow coastal regions, nitrate concentrations are projected to 

increase commensurate with enhanced winds and upwelling.  

The main factors known to limit primary productivity are light, especially in spring, and 

nitrate as it is drawn down throughout the growing season. It is not known whether the 

micronutrient Fe limits productivity in some regions of the Arctic (Taylor et al., 2013). Arctic 

primary producers may have a relatively high cellular Fe demand for assimilation of nitrate as 

well as photosynthesis under low light conditions (Taylor et al., 2013). Sea ice may have 

elevated concentrations of dissolved and particulate metals relative to seawater because it 

aggregates dust and ocean sediments during formation in the fall and throughout winter. Thus 

sea ice may contribute to surface ocean Fe concentrations during the early spring melt when 

surface nitrate concentrations are relatively high, especially in coastal regions (Aguilar-Islas et 

al., 200; Klunder et al., 2012; Wang et al., 2014). In Chapter 4, elemental data from sea ice 

cores collected from shallow coastal regions in the Beaufort/Chukchi Sea and the Canadian 

Arctic are presented, and sediment digestions constrain the potentially bioavailable pool of Fe 

from sea ice sediments in these regions. 
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Chapter 2 

Deglacial ocean warming and marine margin retreat of the Cordilleran Ice Sheet in the 

North Pacific Ocean 

 

Abstract 

A new, high-resolution planktonic foraminiferal Mg/Ca-based ocean temperature record 

has been generated for deep sea core MD02-2496, sited offshore of Vancouver Island, Western 

Canada during the last deglaciation (21-12 ka). The relationship between Cordilleran Ice Sheet 

(CIS) retreat and changing regional ocean temperatures has been reconstructed through 

glaciomarine sediments in MD02-2496 that capture tidewater glacier response to surface ocean 

thermal forcing. At CIS maximum extent, the marine margin of the ice sheet advanced onto the 

continental shelf. During this interval, ocean temperatures recorded by surface ocean dwelling 

Globigerina bulloides remained a relatively constant ~7.5°C while subsurface dwelling 

Neogloboquadrina pachyderma (s.) recorded temperatures of ~5°C.  These ocean temperatures 

were sufficiently warm to induce significant melt along the tidewater ice terminus similar to 

modern Alaskan tidewater glacial systems. During the deglacial retreat of the CIS, the N. 

pachyderma temperature record shows two distinct warming steps of ~2 and 2.5˚C between 

17.2-16 and 15.5-14 ka respectively, coincident with ice rafting events from the CIS, while G. 

bulloides records an ~3˚C warming from 15 to14 ka. We hypothesize that submarine melting 

resulting from relatively warm ocean temperatures was an important process driving ice removal 

from CIS tidewater glaciers during the initial stages of deglaciation.  
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1. Introduction 

Recent increases in ice discharge from the Greenland tidewater glaciers and Antarctic Ice 

Shelves (Rignot et al., 2012; Rignot et al., 2014) indicate that the effects of ocean thermal 

forcing on marine margin ice may be underestimated (Howat, 2007). Over the last decade, 

observed submarine melting of modern tidewater glaciers in response to warming sea surface 

temperatures have refocused investigations of ice sheet responses to climate forcing (Joughin et 

al., 2012; O’Leary and Christofferson, 2013; Seale et al., 2011; Straneo et al., 2010; Xu et al., 

2012).  For example Marcott et al. (2011) causally linked subarctic North Atlantic intermediate 

water warming of 2˚C at 17-16.5 ka to the collapse of the Laurentide Ice Sheet (LIS) resulting in 

the discharge of icebergs during Heinrich Event 1 (H1). Similarly ocean temperatures may have 

induced rapid climate change through the destabilization of the LIS during interstadials of the 

last glacial interval, wherein ocean warming caused rapid sea ice melt and ice shelf collapse, and 

the subsequent gradual cooling was then paced by ice shelf regrowth (Petersen et al., 2013).   

Ocean warming may have operated similarly at the marine margin of the Cordilleran Ice 

Sheet (CIS) in Western Canada, where ice rafted debris (IRD) deposition (Blaise et al., 1990; 

Cosma and Hendy, 2008; Hendy and Cosma, 2008) was coincident with CIS retreat at ~17 ka 

(Clague and James, 2002; Mosher and Hewitt, 2004; Porter and Swanson, 1998). Eustatic sea 

level rise has been implicated in destabilization and retreat of the marine margin CIS (Clague 

and James; 2002, Hendy and Cosma, 2008), but the role of ocean thermal forcing has not been 

directly investigated.  

 New high-resolution stable oxygen isotope and Mg/Ca-based ocean temperature 

reconstructions from deep-sea core MD02-2496 (48°58’47”N, 127°02’14”W; 38.38 m core 

length; 1243 m water depth) for the last deglacial interval (21 to 12 ka) have been generated 
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from ocean surface dwelling planktonic foraminifera Globigerina bulloides and subsurface 

dwelling Neogloboquadrina pachyderma (sinistral), providing a unique opportunity to explore 

the relationship between surface ocean thermal forcing and ice sheet behavior from 21 to 12 ka. 

Coeval changes in ocean temperatures, δ18Oseawater and glaciomarine sediment deposition in 

MD02-2496 provide a unique opportunity to constrain regional marine processes contributing to 

the timing and rate of CIS retreat from the Vancouver continental margin, Additionally 

planktonic δ18Oseawater records enable the possible detection of isotopically light meltwater 

discharge. Evidence for meltwater pulses into the Pacific Ocean from the CIS have proven 

elusive, even though large glacial lake outburst floods from proglacial Lake Missoula emptied 

into the North Pacific via the Columbia River (Brunner et al., 1999; Lopes and Mix, 2009; 

Normark and Reid, 2003). However recent studies in the North Pacific have found d18O 

anomalies suggestive of CIS meltwater input into the Gulf of Alaska during the late deglacial 

(Davies et al., 2011).  

 Here we use the coincidence of warming ocean temperatures and ice rafting debris (IRD) 

to suggest that submarine melting played a role in the initial deglacial retreat of the marine 

margin of the CIS between 17- 14.8 ka (Hendy and Cosma, 2008). Retreat from the continental 

shelf back onto land occurred rapidly, with ice retreating 250 km within ~3 kyr (Clague, 1981; 

Clague and James, 2002; Porter and Swanson, 1998), supported by the rapid postglacial rebound 

of Vancouver Island (James et al., 2009). Increasing deglacial ocean temperatures could have 

impacted calving rates primarily through submarine melting at the glacial terminus.  This process 

promotes calving both by undercutting subaerial ice, and direct melting of the ice terminus 

(Motyka et al., 2003; Rignot et al., 2010). The relationship between thermal forcing and 

submarine melting is expected to be linear, such that several degrees of surface ocean warming 
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could result in melt rates of hundreds of meters in a single season (Jenkins, 2011; Xu, 2012). 

However, such melting is restricted to tidewater outlet glaciers, where the terminus is submerged 

and susceptible to surface ocean warming. Understanding how surface ocean temperatures may 

have contributed to the destabilization of the marine margin of the CIS provides new insight into 

the deglacial history of the CIS. 

1.1 Core site and modern setting  

The MD02-2496 core site lies on the continental slope, within an oceanographic region where 

surface ocean circulation is presently highly variable (Figure 2.1). At ~50°N the eastward 

flowing North Pacific Current (NPC) bifurcates into the Alaskan Current System to the north and 

the California Current System to the south (Cummins and Freeland, 2007). It is likely the NPC 

bifurcation moved equatorward with the Westerlies during the last glacial (Nagashima et al., 

2007; COHMAP, 1988). The modern annual average surface salinity at the site is 32.5 ‰, and 

average sea surface temperature is 12°C, ranging from 8°C in winter to 14°C in summer 

(Antonov et al., 2005; Locarnini et al., 2005). Modern ocean temperature variability between 

core site MD02-2496 and the reconstructed CIS grounding line can be assessed using Line 

PAPA temperature surveys from 125˚ W to 128˚ W (Figure 2.1). The transect contains a surface 

ocean temperature range (0-10 m) from 11.4˚C to 14˚C, while temperatures at depth (40-50 m) 

range from 8.2˚C to 10.2˚C during the summer season (May-September). If the upwelling-

dominated summer months are removed from the average, cooling at the margin is reduced by 

~1˚C, from 11.2˚C at the surface and 8.8˚C at depth, to 12.1˚C at the surface and 9.3˚C at depth 

on the shelf edge (Figure 2.1 B and C) (Crawford et al., 2007). The seasonal thermocline depth 

ranges from 10 m in summer to 50 m in winter (Peña et al., 1999; Thompson and Fine, 2003). 
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Figure 2.1 
Location of core sites (red circles) MD02-2496 (48°58’48”N, 127°02’14”W, 1243 m water depth) and JT96-09 (Kienast and 
McKay, 2001) and PAR85-01 (Blaise et al., 1990) offshore from Vancouver Island. Black dashed line indicates maximum extent 
of the Cordilleran Ice Sheet at 19.5 ka (Clague and James, 2002). Dotted line marks the final ice retreat onto land at 14 ka (Hendy 
and Cosma, 2008). Arrows represent dominant modern current configurations, where the grey arrows represent the California and 
Alaskan Currents which extend from the continental slope to ~1000 km offshore. The blue arrow represents the core flow of the 
California Undercurrent, along the shelf break and at 200-300 m depth and upwelled onto the shelf. The small blue arrows show 
the northward coastal flow of the Vancouver Island Coastal Current, originating with the fresher water emanating from the Strait 
of Juan de Fuca. Station PAPA CTD survey transect is shown with a red line. Five years (2000-2005) of summer (May-
September) season B) temperatures and C) salinities versus depth are presented along the Line PAPA longitudinal transect 
(http://www.pac.dfo-mpo.gc.ca/science/oceans/data-donnees/line-p/index-eng.html). 
	
  

The summer season longshore coastal current system is composed of the California 

Current, the California Undercurrent, and the Vancouver Island Coastal Current (Masson and 

Fine, 2012). The core flow of the California Current is several hundred kilometers offshore, and 

the core of the poleward California Undercurrent flows over the continental slope, upwelling 

onto the shelf (Strub and James, 2002). Seasonal upwelling occurs after the spring transition 
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when wind forcing changes direction from southerly in winter to northerly dominance in summer 

around June-July (Hickey and Banas, 2008). Due to seasonal upwelling, summer coastal ocean 

temperatures are depressed relative to temperatures on the continental shelf edge (Crawford et 

al., 2007; Cummins and Masson, 2014). Modern nearshore currents on the continental shelf are 

driven by buoyancy forcing due to freshwater input from the Fraser River into the Georgia and 

Juan de Fuca Straits (Cummins and Masson, 1999). Fresh waters are tidally mixed with ocean 

currents entering the Straits, and this relative buoyant water flows northward out of the Straits 

over the continental shelf forming the Vancouver Island Coastal Current system (Cummins and 

Masson, 2014). The buoyancy driven current system described here would not have existed in its 

modern form during the LGM, when grounded ice on the Vancouver Island continental shelf 

filled the straits (Mosher and Hewitt, 2004) where tidal mixing would have occurred (Figure 

2.1). 

 The southwestern margin of the CIS advanced in two ice lobes during the LGM: A 

smaller, land locked Puget Lobe flowing south between the Olympic Mountains and the Cascade 

Range, into the Puget lowlands (Booth et al., 2004); and a westward flowing Juan de Fuca Lobe 

that overtopped southern Vancouver Island transporting ice through the Juan de Fuca Strait 

across the continental shelf to the Pacific Ocean (Mosher and Hewitt, 2004; Stumpf et al., 2000; 

Figure 2.1). Grounded ice extended as far as the shelf break south of MD02-2496 (~49.5˚N) 

where ice from the Juan de Fuca Strait and the Barkley Sound coalesced into a large piedmont 

glacial lobe. The continental shelf extending ~55 km from the Juan de Fuca Strait is indented by 

6 major submarine canyons (up to 300 m deep), some terminating at the shelf edge, likely 

scoured by the advancing Juan de Fuca Lobe (Alley and Chatwin, 1979). The southern 

Vancouver Island continental shelf is characterized by arcuate banks of exposed bedrock topped 
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by morainal/glacial materials providing evidence for this grounded ice lobe (~48˚30’ N; Herzer 

and Bornhold, 1982). South of 49˚N flat-topped banks of unsorted glacial sediments that are 

possibly morainal features have been planed off by the modern tidally-driven coastal current 

system (Herzer and Bornhold, 1982).  These described continental shelf features likely provided 

the morainal shoal (Herzer and Bornhold, 1982), which could have stabilized the marine margin 

of the CIS with tidewater outlet glaciers during its maximum extent (~20-17.5 ka; Porter and 

Swanson, 1998).   

The development of an ice shelf on the Juan de Fuca lobe was unlikely. Mean annual 

temperatures must be <5 ̊C to stabilize an ice shelf (Benn et al., 2007) Modern mean annual 

temperatures in the Pacific Northwest are temperate (Meier and Post, 1987), however, LGM 

climate models predict cooler conditions by 4-8˚C (Bush et al., 1999; Otto-Bliesner et al., 2009; 

Seguinot et al., 2013). Under these conditions floating termini might be expected, however, an 

embayment is also necessary to protect the ice shelf from wave and storm activity. No such 

protection for an ice shelf is afforded beyond the Juan de Fuca Strait and fjords of Vancouver 

Island.  

2. Methods 

2.1 Radiocarbon age model and core chronology  

Forty-seven mixed planktonic foraminiferal and bulk organic carbon radiocarbon dates 

were generated by Cosma et al., (2008). The original chronology for the deglacial has been 

modified using the MARINE13 calibration (Reimer et al., 2013) generating a new calendar-year-

based chronology through the deglacial interval displayed in supplementary information. A 

constant regional reservoir correction (DR) of 402.7 ±50 years was assumed (Robinson and 
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Thompson, 1981). The definition of named climate events is based on the dating of northern 

European vegetation response during deglaciation (Mangerud et al., 1974). 

Samples (2 cm) were collected at 5 cm intervals from 785 to 2025 cm (uncorrected) 

below core top in MD02-2496. Resolution of the sampling interval changes as a result of 

changing sedimentation rate within the core: between 21-19.4 ka, each interval represents 200 

years (± 124), from 19.4-14.7 ka the sample interval resolution is 50 years (± 128), and from 

14.7-12 ka the sedimentation rate decreases such that the sample resolution is 270 years (± 131).  

2.2 Foraminiferal stable isotope analysis 

Samples consisting of planktonic foraminiferal species N. pachyderma (s.) and G. 

bulloides were picked from the >125 µm fraction. 102 N. pachyderma and 103 G. bulloides 

samples were prepared using standard techniques for stable isotope analysis. Samples were 

baked at 200°C under vacuum for 1 hour and dissolved at 76°C with anhydrous phosphoric acid 

in a Finnigan MAT Kiel device for analysis in a Finnigan MAT 251 triple collector isotope ratio 

mass spectrometer at the University of Michigan Stable Isotope Laboratory. Machine precision 

was <0.1 ‰ and replicate δ18O values yielded a mean standard deviation of 0.14 ‰ for G. 

bulloides, and 0.149 ‰ for N. pachyderma. Samples are reported using standard δ notion relative 

to the Vienna Pee Dee Belemnite (VPDB) standard.  

2.3 Foraminiferal Mg/Ca analysis 

Samples were analyzed for major and trace metals (Ca, Mg, Sr, Fe, Mn). Approximately 

60 individual N. pachyderma (s.) and 25 G. bulloides were picked to achieve an average sample 

weight of ~300 µg for each analysis. These analyses were performed on separately picked 

samples instead of splits from samples analyzed for δ18Ocalcite. Poor carbonate preservation in the 

organic carbon-rich Holocene prevented Mg/Ca analysis for samples younger than~10 ka. Visual 
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inspection prior to analysis confirmed that foraminifera were well preserved prior to the 

Holocene. Samples were weighed and crushed before undergoing cleaning of contaminant 

phases via a multi-step protocol involving clay removal, and oxidative and reductive steps. 

(Martin and Lea, 2002). In this marginal basin environment, reductive cleaning is necessary to 

remove oxides potentially adsorbed after sedimentation. Although the reductive cleaning step 

can lead to sample loss due to dissolution, a cleaning study of N. dutertrei, which has a similar 

shell ultrastructure to N. pachyderma, indicated that reductive cleaning results in little lattice 

bound Mg loss (Bian and Martin, 2010). Cleaned samples were analyzed for trace metals using a 

Thermo-Finnigan Element II high resolution ICP-MS at the University of Michigan (Barker et 

al., 2003; Boyle and Keigwin, 1985; Keigwin and Boyle, 1989). The analytical precision of 

Mg/Ca based on 43 replicate analyses of external consistency standards is 0.074 mmol/mol (1 σ). 

The analytical precision for Mg/Ca splits (6 pairs), reflecting both analytical and sample-

processing uncertainty is 0.16 mmol/mol (1 σ), corresponding to 1.5˚C uncertainty. 22% of 

samples were rejected due to low sample recovery (<10%), or high Mn/Ca and Fe/Ca ratios 

suggestive of sample contamination. 

2.4 Mg/Ca-based ocean temperatures and δ18Oseawater reconstructions 

G. bulloides and N. pachyderma Mg/Ca values were converted to temperatures using the 

Elderfield and Ganssen, (2000) calibration equation derived from core-top samples over a 

latitudinal transect from 30˚ to 60˚ N. While this equation actually reconstructs the temperature 

at which foraminiferal calcification occurred, for simplicity we will refer to calcification 

temperatures hereafter as ocean temperatures. This calibration equation is based on multiple 

temperate and subpolar species (Mean annual temperature 8˚-22˚C) including both G. bulloides 

and N. pachyderma (s.):  
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Mg/Ca = 0.52 * e(0.10*Temperature) (±0.7°C standard error)   (1) 

Other published calibration equations (Mashiotta et al., 1999; von Langen et al., 2005; Nürnberg 

et al., 1995; Kozdon et al., 2009) based on temperate and subpolar planktonic foraminiferal 

species have a similar exponential constant to the Elderfield and Ganssen (2000) calibration, 

therefore the choice of another calibration equation does not result in a significant difference in 

reconstructed temperature. As the species-specific G. bulloides Mg/Ca calibration equation 

(Mashiotta et al., 1999) is an extrapolation at the low temperatures observed at our study site, we 

opt to use a single calibration equation based on multiple temperate and subpolar species. In 

choosing a single calibration equation for both foraminiferal species, potential artifacts from 

propagated uncertainties in the species-specific calibration equations are avoided, but potential 

vital effects in the species-specific uptake of Mg relative to Ca are not. The use of species-

specific calibration equations leads to N. pachyderma Mg/Ca temperatures that are 

approximately 1˚C cooler, while the G. bulloides temperature are approximately 0.5˚C warmer 

than the temperatures reconstructed using the Elderfield and Ganssen (2000) calibration, leading 

to a greater apparent difference in near-surface and sub-surface temperature reconstructions (Fig. 

S3). However, the temperature trends remain the same. 

 Mg/Ca-based reconstructed temperatures and the δ18O of coeval samples were used to 

calculate δ18O-seawater during the deglacial era at MD02-2496. For this, we used the calibration 

for δ18O of foraminiferal calcite and temperature detailed by Shackleton (1974):  

T (°C) = 16.9 – 4.38 (δ18Ocalcite – δ18Oseawater) + 0.1 (δ18Ocalcite – δ18Oseawater)2      (2) 

δ18O values were converted from VPDB to VSMOW by the addition of 0.2 ‰ (Marchitto et al., 

2014). There is a reported offset of -0.5 to -1.6 ‰ when using Shackleton (1974) with N. 

pachyderma, which is the result of regional vital effects (Jonkers et al., 2013). The selection of a 
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different equation shifts the data by approximately -0.2 ‰ (e.g., Craig, 1965) or 0.4 ‰ (e.g., 

Kim and O’Neil, 1997), but does not change the trends reported. The effect of continental ice 

sheets on δ18Oseawater was corrected for using the stacked benthic isotopic records (Waelbroeck et 

al. 2002) and incorporating a full glacial-interglacial shift of 1.1‰ (Chappell and Shackleton, 

1986; Schrag et al, 1996).  

3. Results  

The dominant planktonic foraminiferal species in the subpolar waters of the Pacific 

Northwest are N. pachyderma (sinistral) and G. bulloides. N. pachyderma (dextral) is found in 

modern sediment traps, but almost entirely absent in pre-14 ka MD02-2496 sediments, likely 

because temperatures were cooler during the last glacial than the preferred 8-14°C range of the 

species (Sautter and Thunell, 1991; Reynolds and Thunell, 1985). G. bulloides are present from 

April to October, and N. pachyderma (both morphotypes) are present year round, with peak 

abundances in May and early June at the Station PAPA sediment trap (50˚N, 145˚W; Reynolds 

and Thunell, 1985).  G. bulloides is tolerant of a wide temperature range (6-26°C) but dominates 

in cool upwelling conditions and is found predominately in surface waters (0-20 m; Kuroyanagi 

and Kawahata, 2004, Sautter and Thunell, 1986).   The Mg/Ca and stable isotope geochemistry 

of G. bulloides in Southern California agrees with this preferred depth habitat  (Sautter and 

Thunell, 1989; Pak et al., 2004). N. pachyderma (s.) prefers ocean temperatures cooler than 8°C 

and dominates the foraminiferal fauna in weakly stratified subpolar water (Reynolds and 

Thunell, 1986). In the Japan Sea, this species is associated with the pycnocline (~20-40 m; 

Kuroyanagi and Kawahata, 2004). At MD02-2496, within the range of depth habitats occupied 

by N. pachyderma and G. bulloides, the difference in ocean temperatures may range from 0-5˚C. 
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Since the uncertainty in Mg/Ca-reconstructed temperatures is ±1.5˚C, our data may not be able to 

detect significant difference in temperature at depths inhabited by these species. 

3.1 Mg/Ca of N. pachyderma and G. bulloides 

The Mg/Ca record of both planktonic foraminiferal species at MD02-2496 varies through 

time as illustrated in the running 1-sigma standard deviation envelope displayed in Fig. 2. The 

full range of Mg/Ca values recorded by both N. pachyderma and G. bulloides is ~1 mmol/mol 

with G. bulloides Mg/Ca values greater than N. pachyderma by 0.25 mmol/mol on average. N. 

pachyderma and G. bulloides Mg/Ca ratios are within the uncertainties of one another, and 

display similar trends. Average Mg/Ca ratios of both species decrease by 0.2 mmol/mol from the 

LGM (21 ka) to the interval when the CIS became proximal to the core site (19.5 ka). From 17-

15 ka, the average Mg/Ca value of N. pachyderma increases by 0.2 mmol/mol from a minimum 

value of 0.7 mmol/mol. There is a second increase for both species of an average 0.3 mmol/mol 

at 14.7 ka (the initiation of the Bølling) to maximum values of 1.6 mmol/mol.  

3.2 Reconstructed temperatures from N. pachyderma and G. bulloides  

A nearby sediment trap study suggests that N. pachyderma- and G. bulloides-based proxy 

records should be biased towards recording the warmer season temperatures due to nutrient 

availability (Reynolds and Thunell, 1985). Surface dwelling foraminifera G. bulloides generally 

record warmer temperatures (2.7°C average, ranging from 4.1-12.1°C) than thermocline dweller 

N. pachyderma (temperatures range from 1.5-11.3°C) at MD02-2496 (Figure 2.2). The G. 

bulloides record a range of temperatures from 7.3-8.8°C from 21-14.7 ka. After the Bølling 

(14.7-12 ka) G. bulloides average temperatures indicate warming to 9.4°C. The N. pachyderma 

temperature record shows more variability during the glacial than the G. bulloides record with 

the coolest temperatures (average of 3.8°C) between 19.5-17.2 ka. During this interval, N. 
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pachyderma records temperatures ~4°C cooler than G. bulloides. N. pachyderma temperatures 

warm from ~3.5-5.5°C between 17.5-16.5. From 15.2 to 14.7 ka G. bulloides and N. pachyderma 

record similar temperatures (7-9°C), with a further warming of ~3°C from 15.5-14 ka. 

Throughout the record, changes in temperatures of both species are in phase with the exception 

of the pre-Bølling/Allerød warming. Here, warming in the N. pachyderma record occurs between 

 

Figure 2.2 
Calculated ocean temperatures (A) for G. bulloides (thin dotted red line and red circles) with smoothing (thick red dashed line) 
and N. pachyderma (s.) (thin blue line and blue circles) with smoothing (thick blue line). Calibrated radiocarbon tiepoints (black 
circles) with age model error are marked along the top axis. Measured Mg/Ca of the planktonic foraminifera species (C) G. 
bulloides (thin dotted red line and red triangles) and smoothed data (thick red dashed line), and (D) N. pachyderma (thin blue line 
and blue triangles) and smoothed data (thick blue line). Data were smoothed with a 150-year resampling and then a 5-point 
centered mean. Error envelope of 1 σ is calculated from a running standard deviation of samples.  
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16-15 ka, while warming of the G. bulloides record is gradual until after 15 ka, reaching peak 

values just after 14 ka. 

3.3 δ18Ocalcite and reconstructed δ18Oseawater of N. pachyderma and G. bulloides   

δ18Ocalcite records are displayed in Figure 2.3A. The N. pachyderma δ18Ocalcite record has 

been presented previously in Hendy and Cosma, 2008. In comparison to temperature 

reconstructions of the planktonic foraminifera at MD02-2496, the δ18Ocalcite values display less 

variability (Figure 2.3A). From the LGM to 17.8 ka the δ18Ocalcite values of both species ranged 

from 3.3 to 2.4‰, increasing at 16.8 ka to maximum values of 3.4‰ (N. pachyderma) and 3.5‰ 

(G. bulloides). From 16.8 to 14.7 ka, δ18Ocalcite values gradually decrease by 0.6-0.3‰ to ~3‰, 

and to 2.4-2.8‰ by 12.2 ka.  

The δ18Oseawater record of both species follows Mg/Ca-reconstructed temperatures through 

time, where high δ18Oseawater values correspond with warmer ocean temperatures (Figures 2.3B 

and 2.3C). Similar to reconstructed temperature, the G. bulloides reconstructed δ18Oseawater 

demonstrates little variability, ranging in values from a minimum of -1.3‰ around 19 ka to a 

maximum value of 1.2‰ around 13.8 ka  (Figure 2.3D).  N. pachyderma δ18Oseawater values range 

from minimum values of ~-2.0‰ at 19 ka to 1.0‰ at the initiation of the Bølling. Between 16-14 

ka the δ18Oseawater appear to be out of phase. Like the reconstructed temperatures, N. pachyderma 

δ18Oseawater increases after 16 ka to peak at 15 ka, while G. bulloides increases begin ~15 ka and 

reaches peak values after 14 ka.  

 



	
   26	
  

 

Figure 2.3 
(A) N. pachyderma (blue line) and G. bulloides (red dotted line) δ18Ocalcite data (‰, Vienna Peedee belemnite (VPDB)) against 
calibrated calendar years. (B) Reconstructed G. bulloides (thin dotted red line and red squares) δ18Oseawater (‰, Vienna Standard 
Mean Ocean Water (VSMOW)) with smoothing (thick red dashed line), and (C) N. pachyderma (thin blue line and blue squares) 
with smoothing (thick blue line). Data were smoothed with a 150-year resampling and then a 5-point centered mean. Error 
envelope of 1 σ is calculated from a running standard deviation of samples.  (D) Calculated ocean temperatures for N. 
pachyderma (thin blue line and blue circles) with smoothed data (thick blue line) and G. bulloides (thin dotted red line and red 
circles) with smoothed data (thick red dashed line). 
	
  
3.4 Vital and salinity effects on Mg/Ca-based temperature reconstructions 

Mg/Ca values in G. bulloides and N. pachyderma (d.) tests from a Santa Barbara Basin 

sediment trap demonstrate good agreement with measured ocean temperatures and with 
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previously published culture-based Mg/Ca-temperature equations (Pak et al., 2004).  A recent 

high latitude (59°N) North Atlantic sediment study shows that G. bulloides Mg/Ca and δ18Ocalcite 

follow summer surface ocean temperatures while the Mg/Ca of N. pachyderma (s) is invariant 

compared to δ18Ocalcite (Jonkers et al., 2013). An Arctic Mg/Ca temperature calibration study 

found, however, that N. pachyderma (s) d18O-derived calcification temperatures deviate from the 

d44/40Ca and Mg/Ca temperature proxies (Kozdon et al., 2009). In contrast, in MD02-2496 

sediments N. pachyderma (s.) Mg/Ca values vary through time. Additionally reconstructed 

temperatures produced from N. pachyderma test Mg/Ca closely follow those based on G. 

bulloides test Mg/Ca and another independent method of reconstructing temperature - alkenones 

(Kienast and McKay, 2001).  These results suggest N. pachyderma (s.) Mg/Ca is sensitive to 

temperature change in the temperate-subpolar Northeast Pacific.  

G. bulloides test Mg/Ca has no apparent salinity relationship based on core top 

calibrations in the Northeast Pacific, Southeast Atlantic, and North Atlantic (Martinez-Boti et al., 

2011; Patton et al., 2011).  Moreover, sediment trap data indicates salinity effects on other 

species increase Mg/Ca ratios at salinities (>36.5 ‰), significantly higher than average salinity 

in the North Pacific (~32.5 ‰) (Ferguson et al., 2008). Therefore any salinity bias is likely to be 

minor. Finally growth rate and specimen size can impact the relative Mg to Ca uptake in 

foraminiferal tests (Schmidt et al., 2004; Schmidt et al., 2008; Friedrich et al., 2012). G. 

bulloides, calculated Mg/Ca temperatures were shown to have varied by 4°C  between the 100 

µm and ~300 µm size fraction (Friedrich et al., 2012). In most species, Mg/Ca uptake decreases 

with increasing test size; therefore analysis of a narrow size fraction is preferred. In MD02-2496, 

the size fraction utilized was >125 µm, however, subpolar foraminiferal specimens fall within a 
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narrower size range than specimens found in warmer regions. Thus in MD02-2496 sediments test 

size-based bias is unlikely to be significant. 

4. Discussion  

 Given the proximity of MD02-2496 to the CIS marine margin and the homogeneity of 

ocean surface temperatures along the modern 3˚ longitudinal transect (Fig. 1), reconstructed 

temperatures at the core site should approximate those at the ice margin. A late deglacial (~15.5 

ka to present) alkenone-based temperatures reconstruction (core JT96-09; Fig. 1) from nearby on 

the continental slope of Vancouver Island supports the Mg/Ca-based temperatures reconstruction 

from MD02-2496 (Fig. 4) with temperatures of ~6˚C at 15.5 ka, increasing to ~8˚C at 14.5 ka, 

and ~9-10˚C by 14 ka (Kienast and McKay, 2001). Temperatures recorded by near-surface 

dwelling planktonic foraminifera G. bulloides indicate that local ocean temperatures from the 

LGM through the deglacial (20 to 15 ka) were ~7°C. Thus at the time of maximum CIS extent 

when the ice sheet was grounded on the continental shelf (~19.8 ka), temperatures would have 

been sufficient to induce significant melt at the ice terminus, most likely during the summer. The 

tidewater margin of the CIS on Vancouver Island can be compared to ocean thermal forcing in 

similar modern Alaskan tidewater glacier systems. In Leconte Bay, 6-13˚C seawater from the 

Alaskan Coastal Current (annual surface temperature = 10˚C; Locarnini et al., 2005) interacts 

with Leconte glacier, a grounded tidewater glacier whose mass is primarily below sea level 

(Motyka et al., 2003). Ocean temperatures are estimated to be 6˚C at the surface within 200-500 

m of the ice terminus, and up to 7.2˚C at depth, similar to our estimated temperatures. This ocean 

thermal forcing results in high summer season melt rates of ~12 md-1 (Motyka et al., 2003).  

4.1 CIS conditions at the LGM 
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The presence of coastal temperatures able to exert <8˚C thermal forcing ~ 2 kyr prior to 

the onset of retreat requires a reassessment of the stability of the western marine margin of the 

CIS. Based on our understanding of modern summer Alaskan tidewater systems and the 

similarity of our reconstructed temperatures to LeConte glacier we assume that ocean thermal 

forcing drove high melt rates on Juan de Fuca Lobe.  How then did the CIS maintain a marine 

margin and the maximum extent of the CIS lag the LIS? Modern temperate tidewater glaciers 

that lose volume during thinning, retreat rapidly from their marine margins (Hunter and Powell, 

1998; Motyka et al., 2003), yet the CIS maintained a marine margin for nearly 2 ka from ~19 to 

17 ka. We argue that there were two important features of the CIS that prevented substantial 

retreat before 17.2 ka: the presence of morainal shoals (Herzer and Bornhold, 1982) and a 

significant supply of ice from the Coast Mountains (Margold et al., 2013b).  

Ice rafted debris deposition was relatively rare between 19-17 ka. Either calving events 

were infrequent and/or minor from the time the CIS achieved a marine margin at 19.8 ka (16.7 

14C kyr BP; Clague et al., 1980) until 17.2 ka (Cosma and Hendy, 2008; Blaise et al., 1990) or 

ocean currents transported the icebergs outside the region. One exception occurs at ~18 ka where 

>250 µm grains increase to >10 grains g-1 following an ~1-2°C warm event that lasted ~500 

years. 

Bathymetric evidence for the presence of a morainal shoal stabilizing the ice sheet 

terminus provides a mechanism for reinforcing the western margin of the CIS against iceberg 

discharge (Hendy and Cosma, 2008; Porter and Swanson, 1998; Blaise et al., 1990; Herzer and 

Bornhold, 1982). The CIS was primarily a warm-based, temperate ice sheet (Clague and James, 

2002) with the ability to move stabilizing sediments to the grounding line relatively rapidly. 

There is evidence for extensive outwash sediments and infilling of trough scours with unsorted 
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till in addition to moraine-like banks on the continental shelf (Herzer and Bornhold, 1982). 

Additionally the extensive Juan de Fuca Lobe transported a significant supply of ice from the 

Coast Mountains and could have balanced thinning of the western CIS. The Juan de Fuca Lobe 

was a large reservoir of ice estimated to have covered ~75,700 km2 with ice up to 2 km thick, 

and supplied by ice flowing out of the glaciated Coast Mountains which are ~340,000 km2 

(Booth, 1986), 

4.2 Timing and magnitude of CIS calving events during the early deglacial (17-15 kyr) 

Eventually as northern hemisphere summer insolation increased, the balance between 

winter precipitation and summer ablation elevated the equilibrium line altitude, and increased 

subglacial discharge (Clark et al., 2009). An early deglacial shift in the CIS divide was produced 

by hypothesized ice lost from the grounded continental shelf-based margin of the ice sheet 

(Margold et al., 2013b). This increase in ice discharge via rapidly thinning outlet glaciers 

lowered ice-surface profiles on the west side of the Coast Mountains, shifting the ice divide to 

the east. Recent mapping of glacial meltwater landforms suggests that CIS retreat was an active 

process, comprised of frontal retreat at the margins and downwasting in central regions land 

(Margold et al., 2013a; Margold et al., 2013b). Thus CIS retreat on the landlocked western side 

of the Coastal Mountains requires significant marine ice removal and is consistent with modern 

studies implicating warm ocean temperatures in large-scale drawdown of land-based ice 

(Shepherd et al., 2004). 

From 17.2 to 16.5 ka N. pachyderma temperatures warmed by ~2°C coincident with the first 

significant deposition of ice rafted debris (IRD) and drop stones at MD02-2496 during the Fraser 

Glaciation (Figure 2.4B; Cosma and Hendy, 2008; Hendy and Cosma, 2008). During this 

interval the number of >250 µm grains, g-1 increased from a background of <1 to a maximum of 
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>500 grains, g-1 at 16.3 ka, abruptly ending at 16.1 ka. A similar trend was found in the 150-250 

µm size fraction. IRD provides direct evidence of CIS retreat by ice calving (Cosma and Hendy, 

2008), while physical evidence exists for CIS retreat through the Juan de Fuca Strait between 

17.5-16.2 ka (Mosher and Hewitt, 2004). During this interval, glaciomarine sediments at core 

site PAR85-01 in the Queen Charlotte Island region to the north in Hecate Strait (~400 km NW 

of MD02-2496; Figure 2.1) also provide evidence for a similar ice calving driven retreat. IRD is 

identified between 17.7–15.2 ka (15.6-13.6 14C ka), with a peak in IRD at 17.7 ka (15.6 14C ka), 

during which time sedimentation rates rose abruptly and IRD (grains >250 µm) increased from 0 

to >95% (percentage of rock and mineral grains >250 µm size fraction) for ~ 1 ka. (Blaise et al., 

1990). Thus, from ~17.5 to 15.5 ka retreat via calving is indicated along the tidewater margin of 

the CIS in western Canada as ocean thermal forcing increased.  

 As the ice retreated through the narrow Juan de Fuca Strait around 17 ka, and into 

complex fjords on the Vancouver coast (Mosher and Hewitt, 2004), subglacial discharge would 

be more narrowly focused and warm seawater increasingly entrained at the edge, resulting in 

higher rates of submarine melt (Bartholomaus et al., 2013). Moreover, water depth in the strait 

increases abruptly relative to the continental shelf from ~100 m to >250 m depth. Irreversible 

retreat can be triggered by the retreat of the ice margin from its morainal shoal into deeper waters 

like those of the Juan de Fuca and Georgian Straits (Ritchie et al., 2008), at which point the 

influx of ice is insufficient to counteract melting and iceberg discharge. Modern measurements 

show that summer upper ocean temperatures (>50 m) in the straits are consistent with those 

further offshore due to vigorous tidal mixing and likewise, warm seawater was probably mixed 

into the Straits during the deglacial (Hickey and Banas, 2003).  
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Figure 2.4 
Comparison of δ 18O seawater and temperature with IRD recorded at MD02-2496 and local CIS events. (A) Smoothed (thick blue 
line) and unsmoothed δ 18Oseawater (‰, Vienna Mean Ocean Water (VSMOW)) for N. pachyderma (thin blue line and blue 
squares), and smoothed (thick red dashed line) and unsmoothed δ 18Oseawater for G. bulloides (thin dotted red line and red squares). 
(B) Smoothed (thick blue line) and unsmoothed reconstructed ocean subsurface temperatures for N. pachyderma (thin blue line 
and blue circles), and smoothed (thick red dashed line) and unsmoothed G. bulloides (thin dotted red line and red circles). Data 
were smoothed with a 150-year resampling and then a 5-point centered mean. Alkenone-based temperatures from JT96-09 are 
shown for comparison (thick black line). (C) Ice rafted debris (IRD) measured as the number of grains > 250 µmg-1 (black bars), 
plotted on a logarithmic scale (Cosma and Hendy, 2008). The glacial history of the CIS is annotated on the graph (Clague and 
James, 2002; Porter and Swanson, 1998; Cosma and Hendy, 2008). 
 
4.3 Timing and magnitude of CIS calving events during the early deglacial (15-13 kyr) 

 CIS retreat continued on the eastern side of Vancouver Island such that by 15.5 ka (13 

14C ka BP) ice had receded into the deeper Georgian Strait (~400 m water depth) forming a 

second calving embayment (Clague, 1981; Huntley et al., 2001). A ~3°C temperature increase 

was recorded at MD02-2496 between 15.5-14 ka indicating further warming into the Bølling 
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with associated increased ocean thermal forcing on any remaining tidewater glacier systems. A 

final short IRD event that occurred at MD02-2496 between 14.85-14.79 ka (Hendy and Cosma, 

2008) coincident with ocean temperatures of~ 9.5°C recorded by both G. bulloides and N. 

pachyderma was likely associated with the Georgia Strait calving embayment. At the same time 

in the Hecate Strait, IRD-sized rock and mineral grains declined to ~40%, until the ice had 

retreated from the continental shelf (Blaise et al., 1990). Georgia Strait was ice-free by 14.6 ka 

(12.5 14C kyr; Guilbault et al., 2003).  

4.4 δ18Oseawater and meltwater from the CIS 

Reconstructed δ18Oseawater enables us to further deconvolve deglacial changes in seawater 

associated with the addition of fresh isotopically depleted glacial meltwater to the relatively 

saline open ocean water. Meltwater pulses into the Pacific Ocean from the CIS are limited to a 

few deep sea records. On the Gulf of Alaskan margin Davies et al., (2011) implicate meltwater 

input as a mechanism for freshening/warming in the surface ocean between 16.65 and 13.8 ka 

based on depleted δ18Ocalcite values of G. bulloides and N. pachyderma (s.). Additionally an 

abrupt 1 ‰ decrease in benthic δ18Ocalcite at ~14.2 ka provides evidence for the hyperpycnal flow 

of meltwater at intermediate water depths (~680 m). Large glacial lake outburst floods from 

proglacial Lake Missoula (Brunner et al., 1999; Lopes and Mix, 2009; Normark and Reid, 2003) 

provided freshwater that has been identified by the presence of fresh water diatoms in offshore 

southern Oregon sediments, indicating a freshening of <6 psu in distinct pulses between 31-16 ka 

(Lopes and Mix, 2009). 

No evidence for depleted d18Oseawater meltwater pulses can be detected at MD02-2496 as 

the CIS retreated. Through deglaciation, ocean temperatures and δ18Oseawater
 are generally in 

phase, however, enriched δ18Oseawater/higher relative salinity was associated with warmer water, 
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while depleted δ18Oseawater/ freshening occurred during cooling of surface waters (Figure 2.3). 

The most depleted δ18Oseawater values (~-1.5‰) are recorded by N. pachyderma (s.) between 19-

18 ka. The MD02-2496 benthic δ18Ocalcite record located 600 m deeper than the Gulf of Alaska 

example, displays a gradual shift to enriched isotopic values from the LGM into the Holocene 

(Cosma et al., 2008), but no abrupt isotopic shifts indicative of hyperpycnal flow. 

Several possibilities exist to explain the absence of depleted δ18Oseawater in a region where 

meltwater from the CIS was entering the Pacific Ocean. As CIS ice accumulated from snow 

falling at temperate latitudes with a proximal moisture source the isotopic composition of the 

CIS (-18 to -23‰) may not be sufficiently distinct from that of local seawater. Convection near 

the terminal ice face could also have reduced δ18Oseawater depletion from melt as fresh, cold 

subglacial discharge entrained warm, saline ocean water at depth, forcing mixing upward along 

the terminus (Motyka et al., 2003). 

Another possibility relates to how meltwater entered the ocean off western Canada 

compared to North Atlantic examples. Meltwater indicated by abruptly depleted δ18Oseawater, has 

been detected in the Gulf of Mexico (Williams et al., 2012; Flower et al., 2004) and in 

association with ice discharge into the Hudson Bay from the LIS (van Kreveld et al., 2000). 

Drainage of LIS meltwater via the Mississippi River into the Gulf of Mexico was recorded in a 

small, shallow offshore sedimentary basin that was protected from open ocean currents (Flower 

et al., 2004). In the northern North Atlantic, there is evidence that the marine margin of the LIS 

terminated in large ice shelves, where sea ice was commonly present (Petersen et al., 2013). As 

δ18Oseawater anomalies were often coincident with IRD in the North Atlantic, icebergs calving 

from the ice shelf may have melted in surface waters, leaving a surface meltwater plume to be 
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recorded by δ18Ocalcite of planktonic foraminifera (Marcott et al., 2011).  These environments are 

not characteristic of the marine CIS margin in Western Canada.  

5. Conclusions 

While the retreat of the LIS after the LGM (Last Glacial Maximum), corresponded with 

increasing both northern hemisphere summer insolation at mid- to high latitudes and rising sea 

level around 19 ka, the CIS growth and retreat lagged (Clark et al., 2009; Carlson and Clark, 

2012). Glacial deposits from Tofino on the west coast of Vancouver Island indicate that the ice 

sheet did not reach the continental shelf until after 19.8 ka (16.7 14C kyr BP; Clague et al., 1980), 

and began to retreat from its marine margin at 17.5 ka, leaving the Juan de Fuca Strait ice-free by 

16.2 ka (Mosher and Hewitt, 2004).  

Reconstructed ocean temperatures in the Northeast Pacific from the LGM through the 

deglacial (21-12 ka) demonstrate ocean thermal forcing was factor in initial Cordilleran Ice Sheet 

(CIS) retreat. The glaciomarine sedimentation at MD02-2496, and concomitant changes in 

Mg/Ca based temperatures and δ18Oseawater suggest possible mechanisms for ice removal and 

retreat. These results indicate that warm ocean temperatures (4-8°C) throughout deglaciation 

could have helped to destabilize the marine margin of the CIS. The stepwise ocean warming of 

~2°C at 17.2 was associated with significant iceberg calving that began the rapid retreat of the 

Juan de Fuca Lobe at 17.2 ka. The Bølling was associated with a further ~3°C ocean temperature 

increase from 15.5 to 14 ka coincident the removal of the ice embayment from Georgia Strait. 

There is no evidence of a significant (>1 ‰) decrease in δ18Ocalcite of planktonic or benthic 

species, nor in the reconstructed δ18Oseawater record at MD02-2496 in association with meltwater 

input to the region. We hypothesize that ocean thermal forcing was, through submarine glacial 

melt processes similar to modern tidewater glacier systems, an important driver of the initial CIS 
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retreat from its western marine margin. As summer insolation increased through deglaciation, 

high seasonal subglacial discharge alongside the warm ocean temperatures recorded at MD02-

2496 would have produced submarine melting in the tidewater glacier systems of the CIS. These 

results support evidence for significant, rapid ice removal during early deglaciation that shifted 

ice divides in the CIS (Margold et al., 2013a; Margold et al., 2013b) and produced rapid isostatic 

rebound in western Canada (Clague and James, 2002). These results are also consistent with 

modern studies implicating warm ocean temperatures in increasing ice discharge from ice 

shelves and the large-scale drawdown of land-based ice (Shepherd et al., 2004; Rignot et al., 

2014; Jacobs et al., 2011).  
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Chapter 3 

The California Current System as a transmitter of millennial scale climate change on the 

northeastern Pacific margin from 10-50 ka 

 

Abstract 

	
   A high resolution record of δ18O and Mg/Ca-based temperatures spanning 10-50 ka has 

been reconstructed from the Vancouver margin of the northeastern Pacific Ocean (MD02-2496) 

from two planktonic foraminiferal species, Neogloboquadrina pachyderma (s.) and Globigerina 

bulloides. While δ18Ocalcite is synchronous with Dansgaard-Oeschger Interstadials (DOIs) 

throughout the record, sea surface temperatures (SSTs) and reconstructed δ18Oseawater are out of 

phase with Greenland climate after 30 ka as the Cordilleran and Laurentide Ice Sheet reached 

their maximum extent. Prior to 30 ka, through the warmest interval of Marine Isotope Stage 3 

(MIS 3), changes in water mass characteristics such as δ18Oseawater and enriched δ15N events 

apparently responded to millennial-scale climate change, such that warmer SSTs and higher 

δ18Oseawater coincided with heavier δ15N values associated with DOIs.  

These water mass characteristic shifts are suggestive of the presence of surface water 

advected from the Eastern Tropical North Pacific (ETNP) by relative strengthening of the 

California Undercurrent (CUC) bringing warm, salty tropical waters poleward during DOIs. The 

linkage between the strength of the CUC on the NE Pacific margin and DOIs may be related to 

increased sea surface heights off Central America as the Intertropical Convergence Zone (ITCZ) 

shifted northward in response to changes in North Atlantic Ocean circulation.  However, this 
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linkage appears to weaken from 30 ka through deglaciation. This could result from either a 

significant local climate overprint from the expanding Cordilleran Ice Sheet (CIS), and/or the 

increasing topographic height of the Laurentide Ice Sheet (LIS) that influenced atmospheric 

circulation over western North America.  

1. Introduction   

Reconstructions of oceanographic conditions on the northeastern Pacific margin during 

the last glacial interval have displayed a high coherence with abrupt millennial scale climate 

events recorded in the North Atlantic deep sea and Greenland ice cores (Behl and Kennett, 1996; 

Cannariato and Kennett, 1999; Hendy and Kennett, 2000; Seki et al., 2002; Hendy et al., 2004; 

Hendy and Pedersen, 2005; Chang et al., 2008; Hendy and Cosma, 2008; Hendy, 2010; Pak et 

al., 2012; Ohkushi et al., 2014) despite their position distal to the LIS and regional North Atlantic 

climate forcing. Floral and faunal temperature proxies from ocean sediment cores at Santa 

Barbara Basin (Behl and Kennett, 1996; Hendy and Kennett, 2000), Point Conception (Seki et 

al., 2002; Hendy, 2010; Pak et al., 2012), Northern California (Mix et al., 1999), and Vancouver 

Island (Chang et al., 2008; Hendy and Cosma, 2008) display shifts suggesting warming during 

DOIs and cooling during stadials. Furthermore, changes in northeastern Pacific subsurface water 

mass characteristics (eg: warm and relatively salty waters during DOIs, cold and relatively fresh 

waters during stadials) and upwelling related productivity are also coherent with DOI events 

(Cannariato and Kennett, 1999; Hendy et al., 2004; Hendy and Pedersen, 2005; Chang et al., 

2008; Chang et al., 2014; Ohkushi et al., 2014).  

The mechanism responsible for SST/isotopic shifts in the extratropical North Pacific in 

response to DOI warming is not well understood, although the rapidity of the North Pacific 

oceanic response to the abrupt DOI climate events implicates atmospheric reorganization over 
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the Pacific Ocean (Hendy and Kennett, 2000; Hendy et al., 2002). An atmospheric response can 

be linked to North Atlantic climate change via shifts in the ITCZ (Leduc et al., 2009; Okumura et 

al., 2009). Model simulations and proxy reconstructions indicate that cooling in the North 

Atlantic leads to a southward shift in the ITCZ, resulting in reduced precipitation in the North 

Pacific, while abrupt warming is associated with a northward movement of the ITCZ (Zhang and 

Delworth, 2005; Leduc et al., 2009; Denton et al., 2010; Deplazes et al., 2013). Other Atlantic to 

Pacific Ocean basinal connections could be the result of anomalously cool westerly winds during 

North Atlantic stadials causing larger surface heat fluxes and southward Ekman transport in the 

central Pacific (Okumura et al., 2009), and/or relative changes in the strength of pressure systems 

such as the Arctic Low (Manabe and Stouffer, 1988).  

Planktonic foraminiferal faunal and δ18Ocalcite shifts during DOI climate events suggest 

that the northeastern Pacific Ocean surface waters responded to rapid climate change with a 

simple temperature response (Hendy et al., 2002). However, recent Mg/Ca-based SST 

reconstructions from planktonic foraminifera off California at ODP Site 1017, revealed warming 

of 3˚ to 7˚C during DOI events that was also associated with higher δ18Oseawater (Pak et al., 2012), 

suggesting that incursions of relatively warm and saline waters during interstadial warming in 

the North Atlantic could be ascribed to changes in the relative strength of the California Current 

System (CCS). Thus interstadials were associated with warm, high δ18Oseawater water due to an 

increased contribution of saline, tropically sourced CUC water, while stadials were associated 

with increased contribution of fresh, subpolar water in the California Current System (CCS) (Pak 

et al., 2012).  

Paired proxies to measure temperature and δ18Oseawater in paleoceanographic studies 

provide a powerful tool for reconstructing ocean circulation response to rapid climate change. 
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The temperature-salinity characteristics of surface waters have been used as a conservative tracer 

to assess the modern ratio of ETNP to North Pacific water masses within the coastal current 

along North America with increasing temperature and salinity referred to as “spiciness” 

(Flament, 2002; Meinvielle and Johnson, 2013). Presently relatively warm, saline or spicy CUC 

water is detectable as far north as the Gulf of Alaska (Thomson and Krassovski, 2010), and is 

estimated to comprise up to ~20-40% of the upper water column offshore of Vancouver Island 

(Meinvielle and Johnson, 2013). Additionally the δ15N composition and oxygen concentration of 

ETNP oxygen minimum zone waters influence water mass characteristics along the coast of 

North America. In the modern ocean, low oxygen, denitrified water enriched in δ15N moves 

northward from the ETNP via the CUC (Liu and Kaplan, 1989), and is associated with salinity 

maxima. 

Here we investigate abrupt climate changes in the northern Northeast Pacific using the 

deep-sea core MD02-2496 (48°58’47”N, 127°02’14”W; 38.38 m core length; 1243 m water 

depth) retrieved from the continental slope, offshore from Vancouver Island, Canada. This 

sediment core represents the northernmost core site within the CCS yet studied, spanning the last 

50 ka. High resolution planktonic foraminiferal δ18Ocalcite  (This study; Cosma et al., 2008) and 

Mg/Ca based ocean temperature records were generated from the surface dwelling Globigerina 

bulloides and thermocline dwelling Neogloboquadrina pachyderma (sinistral). δ18Oseawater 

records for the two foraminiferal species have been generated using the coeval δ18Ocalcite and 

Mg/Ca-based ocean temperature records in order to reconstruct SST and salinity changes 

connected with poleward undercurrent flow during the last glacial in association with millennial 

scale climate variability.  

1.1 Core site and modern setting  
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 The MD02-2496 core site lies within the transition zone between subtropical and 

subpolar gyral circulation, and is sensitive to changes in gyral strength and wind forcing, which 

may affect ocean temperatures by increased advection of surface waters or changes in upwelling 

regime (Freeland, 2006; Cummins and Freeland, 2007). The North Pacific Current (NPC) forms 

the northern branch of the North Pacific gyre, advecting colder, fresher surface waters from the 

western to the eastern North Pacific (Figure 3.1). The NPC bifurcates near the northeastern 

Pacific coast at ~50˚N latitude to form the Alaskan Coastal Current to the north and California 

Current to the south (Chelton and Davis, 1982). On the eastern boundary of the North Pacific 

Ocean, locally driven changes in ocean surface temperature and salinity are thought to be 

regulated primarily by the strengthening and weakening of the CCS, which makes up the eastern 

branch of the North Pacific gyre (Lynn and Simpson, 1987), and is driven by the strength and 

position of the NPH. The relative strength of the CCS/CUC is among the most important factors 

controlling variability in surface water characteristics along the Pacific margin. Wind field 

strength affects the amount of NPC entering the CCS from the north as well as the return flow of 

the CUC (Strub and James, 2002; Douglass et al., 2006; Freeland, 2006).  

While the mechanisms for generating enhanced CUC flow are not fully understood, sea surface 

height at the southern CCS boundary is known to be important (Connolly et al., 2014). In the 

modern climate system, the development of increased sea surface heights off Central America 

due to northward shifts in the ITCZ or Walker circulation result in enhanced poleward flow of 

surface waters in the northeastern Pacific originating in the tropics (Strub and James, 2002).  

Upwelling/wind stress along the California coast also strengthens the CUC significantly in the 

northern CCS, where increased upwelling at ~40˚N creates a steeper density gradient to the 

north, enhancing poleward undercurrent flow (Connolly et al., 2014). The North Pacific High  
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Figure 3.1 
Location of core sites (black circle, this study) MD02-2496 (48°58’48”N, 127°02’14”W, 1243 m water depth), (white circle) 
ODP-1017E (34°32’N, 121°06’W, 966 m water depth) (Pak et al., 2012; Hendy, 2010), and (grey circle) ODP-893A (Hendy and 
Kennett, 2000) (34°17’15”N, 120°02’12”W, 576.5 m water depth) along the northeastern Pacific margin. Dashed lines indicate 
annual average SSTs (Auad et al., 2011). Arrows represent dominant modern current configurations, where the light grey arrows 
represent the North Pacific Current. The California Current (dark grey arrow) extends from the continental slope to ~1000 km 
offshore. The northward pointing dark grey arrow represents the core flow of the California Undercurrent, along the shelf break 
and at 200-300 m depth and upwelled onto the shelf.  
	
  
(NPH) is thought to have strengthened and moved northward during DOIs, commensurate with 

more upwelling favorable winds (Hendy et al., 2004) and strengthened flow of the CUC (Hendy 

and Kennett, 2003). Thus multiple mechanisms exist that could drive the poleward flow of 

tropical surface waters in the northeastern Pacific during DOI climate events. 

 The modern annual average salinity at the site is 32.5 PSU, and average surface ocean 

temperature is ~12°C, ranging from 8°C in winter to 14°C in summer (Antonov et al., 2005; 

Locarnini et al., 2005). The summer season longshore coastal current system is composed of the 

California Current, the CUC, and the Vancouver Island Coastal Current (Masson and Fine, 
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2012). The central flow of the California Current is several hundred kilometers offshore, while 

the core of the poleward CUC flows over the continental slope, upwelling onto the shelf (Strub 

and James, 2002). Seasonal upwelling occurs after the spring transition when wind forcing 

changes direction from southerly in winter to northerly dominance in summer around June-July 

(Hickey and Banas, 2008). Modern nearshore currents on the continental shelf are driven by 

buoyancy forcing due to freshwater input from the Fraser River into the Georgia and Juan de 

Fuca Straits (Masson and Cummins, 1999). Fresh waters are tidally mixed with ocean currents 

entering the Straits, and this relatively buoyant water flows northward out of the Straits over the 

continental shelf, forming the Vancouver Island Coastal Current system (Cummins and Masson, 

2014). 

2. Methods 

2.1 Core Chronology   

 Samples were analyzed at 5-10 cm intervals from 695 (uncorrected) to 3835 cm below 

core top in MD02-2496. Resolution of the 5 cm intervals ranges from ~15 to 160 years as a 

result of changing sedimentation rate within the core; the sedimentation rate is highest during the 

deglacial (15-20 ka). 

Core chronology was established by Cosma et al., (2008), and is based upon forty-seven 

mixed planktonic foraminiferal and bulk organic carbon radiocarbon dates. The original 

chronology has been modified using the MARINE13 calibration (Reimer et al., 2013) generating 

a new calendar year based chronology (Taylor et al., 2014). Age model errors were estimated 

using a Bayesian model, Bacon 2.2 (Blaauw and Christen, 2011) and range from ± ~0.2 to 2 ka. 

A constant regional reservoir correction (∆R) of 402.7 ±50 years was assumed (Robinson and 
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Thompson, 1981). Greenland climate events date assignments were made according to Blockley 

et al. (2012). 

2.2 Stable isotope and Mg/Ca analysis 

Oxygen isotope analyses were performed on the surface dwelling foraminifera G. 

bulloides. Samples consisting of planktonic foraminiferal species G. bulloides were picked from 

the >125 µm fraction, and 190 G. bulloides samples were prepared using standard techniques for 

stable isotope analysis. Samples were baked at 200°C under vacuum for 1 hour and dissolved at 

76°C with anhydrous phosphoric acid in a Finnigan MAT Kiel device for analysis in a Finnigan 

MAT 251 triple collector isotope ratio mass spectrometer at the University of Michigan Stable 

Isotope Laboratory. Machine precision was <0.1 ‰ and replicate δ18O values yielded a mean 

standard deviation of 0.14 ‰ for G. bulloides. Samples are reported using standard δ notion 

relative to the Vienna Pee Dee Belemnite (VPDB) standard.  

Samples were analyzed for major and trace metals (Ca, Mg, Sr, Fe, Mn). Approximately 

60 individual N. pachyderma (s.) and 25 G. bulloides were picked to achieve an average sample 

weight of ~300 µg for each analysis. Poor carbonate preservation in the organic carbon-rich 

Holocene prevented Mg/Ca analysis for samples younger than~10 ka. Visual inspection prior to 

analysis confirmed that foraminifera were well preserved prior to the Holocene. Samples were 

weighed and crushed before undergoing cleaning of contaminant phases via a multi-step protocol 

involving clay removal, and oxidative and reductive steps (Martin and Lea, 2002). In this 

marginal environment, reductive cleaning is necessary to remove oxides potentially adsorbed 

after sedimentation. Although the reductive cleaning step can lead to sample loss due to 

dissolution, a cleaning study of N. dutertrei, which has a similar shell ultrastructure to N. 

pachyderma, indicated that reductive cleaning results in little lattice bound Mg loss (Bian and 
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Martin, 2010). Cleaned samples were analyzed for trace metals using a Thermo-Finnigan 

Element II high resolution ICP-MS at the University of Michigan (Barker et al., 2003; Boyle and 

Keigwin, 1985; Keigwin and Boyle, 1989). The analytical precision of Mg/Ca based on 43 

replicate analyses of external consistency standards is 0.074 mmol/mol (1 σ). The analytical 

precision for Mg/Ca splits (6 pairs), reflecting both analytical and sample-processing uncertainty 

is 0.16 mmol/mol (1 σ), corresponding to 1.5˚C uncertainty. 22% of samples were rejected due 

to low sample recovery (<10%), or high Mn/Ca and Fe/Ca ratios suggestive of sample 

contamination.  

G. bulloides and N. pachyderma Mg/Ca values were converted to temperatures using the 

Elderfield and Ganssen (2000) calibration equation derived from core-top samples over a 

latitudinal transect from 30˚ to 60˚ N. This calibration equation is based on multiple temperate 

and subpolar species (Mean annual temperature 8˚-22˚C) including both G. bulloides and N. 

pachyderma (s.):  

Mg/Ca = 0.52 * e(0.10*Temperature) (±0.7°C standard error)   (1) 

While the error based on Mg/Ca analysis is well constrained, the error associated with the pre-

exponential and exponential constants in the Mg/Ca-temperature calibration are not. Propagation 

of this error would overwhelm any real variability in the temperature record. We therefore 

confine our error estimates to variance in the raw Mg/Ca values, and while we assign absolute 

temperatures to these values, we emphasize here that we are most confident in the relative 

magnitude of changes rather than definitive temperature reconstructions.  

 Mg/Ca-based temperature reconstructions and the δ18Ocalcite of coeval samples were used 

to calculate changes in δ18Oseawater at MD02-2496. For this, we used the calibration for δ18O of 

foraminiferal calcite and temperature detailed by Shackleton (1974):  



	
   54	
  

T (°C) = 16.9 – 4.38 (δ18Ocalcite – δ18Oseawater) + 0.1 (δ18Ocalcite – δ18Oseawater)2      (2) 

δ18O values were converted from VPDB to VSMOW by the addition of 0.2 ‰ (Marchitto et al., 

2014). There is a reported offset of -0.5 to -1.6 ‰ when using Shackleton (1974) with N. 

pachyderma (Jonkers et al., 2013). The selection of a different equation shifts the data by 

approximately -0.2 ‰ (e.g., Craig, 1965) or 0.4 ‰ (e.g., Kim and O’Neil, 1997), but does not 

change the trends reported. 

 The effect of continental ice sheets on δ18Oseawater was corrected for using the stacked 

benthic isotopic records of Waelbroeck et al. (2002) and incorporating a full glacial-interglacial 

shift of 1.1‰ (Chappell and Shackleton, 1986; Schrag et al, 1996).  

3. Results 

3.1 N. pachyderma and G. bulloides stable isotopes 

 The δ18Ocalcite values recorded by both species of planktonic foraminifera are similar, 

showing decreased (~1 ‰) values during MIS 3 interstadials (Figure 3.2H and I). The average 

and ranges of the 2 species are statistically indistinguishable until 14.5 to 10 ka where the 

variability of G. bulloides increases, and the running standard deviation (calculated from a 3 kyr 

moving average) increases from 0.15 to 0.50 (Figure 3.2H). During the Bølling/Allerød, N. 

pachyderma δ18Ocalcite values decrease from ~ 3.2 to 1.5 ‰, increase to 2.5 ‰ during the 

Younger Dryas, and decrease to ~1.7 ‰ moving into the Holocene (Figure 3.2I). 

3.2 Mg/Ca and ocean temperatures 

 N. pachyderma Mg/Ca values ranged between 0.594 mmol/mol at 31.9 ka during 

Heinrich event 3, and 1.74 mmol/mol at 41.2 ka during DOI 10. G. bulloides Mg/Ca values 

ranged between 0.79 after the Last Glacial Maximum (LGM) at 19.2 ka, and 1.74 during the 

deglacial at 18.4 ka. Due to low abundance in sampled intervals between 30-40 ka, the analytical 
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resolution of the G. bulloides Mg/Ca data set is too low to capture centennial scale variations. N. 

pachyderma samples were analyzed at sufficient resolution to reveal a high degree of variability 

in Mg/Ca values, >1 standard deviation (exceeds 0.2), between 46.7 to 46.2, 41.2 to 40, 37.3 to 

36, 34.7 to 30.1, 28.9 to 27.7, 25.8 to 25, 24.3 to 22.9 and 14.4 to 11.4 ka. Positive excursions of 

>1 standard deviation from mean temperatures occur in short (<100 year) intervals (Figure 3.2B 

and C). These intervals of high variability, with the exception of 25.8-25 ka, coincide with DOIs 

(specifically DOI 12, 9, 8, 6, 5, 4, 3 and 2) and the Bølling/Allerød as measured in NGRIP 

(NGRIP members, 2004; Blockley et al., 2012). 

 Between 35 and 51 ka, anomalously warm ocean temperatures (7-12˚C) occur during 

DOI 7-13 (Figure 3.2D and E). From 24-35 ka, warm ocean temperatures are coincident with 

DOI 3-6, but also frequently occur during DO stadials. From 17-24 ka, ocean temperature 

variation is muted, and maximum ocean temperatures are cooler (mean value: 8.3˚C). Ocean 

temperatures warm after 17 ka, reaching a maximum of ~11˚C during the Bølling/Allerød 

warming at 14.8 ka, and then cooling to 3˚C at 12.2 ka during the Younger Dryas.  

3.3 Reconstructed δ18Oseawater 

 Reconstructed δ18Oseawater (ice volume corrected) values are positively related to the 

record of ocean temperatures, where relatively light (heavy) values are coincident with cooler 

(warmer) ocean temperatures (Figure 3.2F and G). Values range from 1.21 ‰ to -1.93 ‰ (N. 

pachyderma) and from 1.27 ‰ to -1.23 ‰ (G. bulloides). For comparison, modern surface 

δ18Oseawater in the northeastern Pacific varies between 0.2 ‰ in the ETNP, and -0.3 ‰ on the 

California margin to -1.0 ‰ offshore of Vancouver Island (LeGrande and Schmidt, 2006). The 

variability in N. pachyderma δ18Oseawater from one sample interval to the next is consistently 

lowest (<0.4 ‰) between 25 and 15 ka (Figure 3.2G). It is also lower during this interval for  
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Figure 3.2 
Top panel (A) NGRIP δ18O (black line) and DOIs numbered in red and shaded in gray (NGRIP members, 2004; Blockley et al., 
2012). For panels B-I, G. bulloides samples are red circles and red lines. Width represents running (2 kyr) standard deviation. N. 
pachyderma samples are blue circles and blue lines. Width represents running (2 kyr) standard deviation of samples. Measured 
Mg/Ca of the planktonic foraminifera species (B) G. bulloides and (C) N. pachyderma. Calculated SSTs for G. bulloides (D) and 
N. pachyderma (E), and calculated δ18Oseawater for G. bulloides (F) and for N. pachyderma (G). Bottom panels show δ18Ocalcite for 
G. bulloides (H) and N. pachyderma (I) (Hendy and Cosma, 2008) with calibrated radiocarbon tie points (black circles) and age 
model error calculated from Bacon 2.2 (Blaauw and Christen, 2011) marked along the bottom axis. 
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G. bulloides although it is also low between 40 and 30 ka, probably as the G. bulloides record is 

poorly resolved through this interval due to insufficient specimens (Figure 3.2F). 

4. Discussion 

The preferential habitats of the two planktonic foraminiferal species, G. bulloides and N. 

pachyderma (s.), employed at MD02-2496 have not been directly observed within the Vancouver 

margin. Generally G. bulloides tolerate a wide temperature range (6-26°C) and are found in 

surface waters, but also dominate during cool upwelling conditions (0-20 m; Kuroyanagi and 

Kawahata, 2004, Sautter and Thunell, 1989).   This depth habitat is confirmed by measurements 

of Mg/Ca and stable isotope geochemistry of G. bulloides in Southern California (Sautter and 

Thunell, 1989; Pak et al., 2004). N. pachyderma (s.) live within the pycnocline in the Japan sea, 

and is associated with ocean temperatures cooler than 8°C (~20-40 m; Kuroyanagi and 

Kawahata, 2004). This species dominates the foraminiferal fauna in weakly stratified subpolar 

water (Reynolds and Thunell, 1986). While the calibration equations used actually reconstructs 

the temperature at which foraminiferal calcification occurred, for simplicity we will refer to 

calcification temperatures hereafter as sea surface temperatures (SSTs). At MD02-2496, the 

reconstructed temperatures of G. bulloides are an average of 2.5˚C warmer than N. pachyderma 

(s.), although the standard deviation of both sets of temperatures (N. pachyderma stdev = 2.1˚C, 

G. bulloides stdev = 1.6˚C) frequently overlap, suggesting that the two species occupy a similar 

depth habitat or that the water column is weakly stratified (Figure 3.3). Additionally 

reconstructed SSTs from MD02-2496 are in good agreement with a shorter (0-16 ka) alkenone-

based sea surface temperature record taken approximately 13 km to the southeast (JT96-09mc) 

(Kienast and McKay, 2001; Taylor et al., 2014). The ocean temperatures recorded off the 

Vancouver margin over 45 ka have a broad range (1˚ to 12˚C) encompassing abrupt SST 
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warming and glacial-interglacial climate change. For reference, the modern annual surface ocean 

temperature range is 8-14˚C, recorded at the nearby Station Papa for the past 50 years 

(http://www.pac.dfo-mpo.gc.ca/science/oceans/data-donnees/line-p/index-eng.html). 

4.1 MD02-2496 records of DOI events 

 We compare 300-year running averages of δ18O calcite reconstructed δ18O seawater, and SSTs 

from MD02-2496 and ODP-1017E in order to minimize the effects of outliers on interpretation 

of noisy records (Figure 3.3, 3.4, 3.5). Within age model error, normalized SSTs and δ18Oseawater 

from MD02-2496 show relatively warm/saline surface conditions during DOIs 12, 11, and 9-10 

(Figure 3.4).  δ18O calcite values are more negative during these DOIs, although the excursions are 

less pronounced than in the SST and δ18Oseawater records (Figure 3.6). SST and δ18O seawater 

reconstructions show a lesser response than δ18O calcite during DOI 8 with weakly warm/saline 

conditions (Figure 3.4). Generally during this interval, SSTs are warming from ~3-6˚C to 6-8˚C, 

or an amplitude (from the 300-year smoothing) of 3˚C, which is consistent with records to the 

south at ODP-1017E where 300-year running average G. bulloides reconstructed SST warming 

from ~7-8˚C to 11-12 ˚C, or an amplitude of 4˚C (Figure 3.3). Cross correlation analysis between 

N. pachyderma δ18O calcite and SSTs at MD02-2496 show that they are often strongly negatively 

correlated (> 0.9) between 50 and 30 ka, with exceptions during DOI 12 and 8 where the 

amplitude and duration of these intervals are mismatched (Figure 3.5). The δ18O calcite record 

shows a sequence of 3 negative excursions during DOIs 6-7, that are smaller than those during 

previous DOIs, and generally decreasing into Greenland stadial/H3 (Figure 3.4 and 3.5). In 

contrast reconstructed SSTs and δ18O seawater show increased warming/salinity starting after DOI 7 

and sustained throughout the stadial/H3 around 30 ka (Figure 3.4 and 3.5). 
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Figure 3.3 
Top panel (A) NGRIP δ18O (black line) and DOIs numbered in red and shaded in gray (NGRIP members, 2004; Blockley et al., 
2012). Reconstructed SSTs (B) and δ18Oseawater (C) from G. bulloides (red circles) and red line width represents running (2 kyr) 
standard deviation at site ODP-1017E, Point Conception, CA (Pak et al., 2012). Reconstructed SSTs (D) and δ18Oseawater (E) from 
G. bulloides (red circles) from core site MD02-2496 are plotted in red circles and red line width represents running (2 kyr) 
standard deviation. Reconstructed SSTs (F) and δ18Oseawater (G) from N. pachyderma (blue circles) and blue line width represents 
running (2 kyr) standard deviation of samples. Calibrated radiocarbon tie points (black circles) and age model error calculated 
from Bacon 2.2 (Blaauw and Christen, 2011) are marked along the bottom axis. 
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Figure 3.4 
All panels (A-E) normalized to zero mean and unit variance. Top panel (A) NGRIP δ18O (black line) and DOIs numbered in red 
and shaded in gray (NGRIP members, 2004; Blockley et al., 2012). B) Normalized N. pachyderma δ18Ocalcite (blue line) (Hendy 
and Cosma, 2008) and running (1 kyr) average (black line), (C) normalized N. pachyderma SST (blue line) and running (1 kyr) 
average (black line), (D) normalized N. pachyderma δ18Oseawater (blue line) and running (1 kyr) average (black line), and (E) 
normalized δ15N of bulk sediments (green line) and running (1 kyr) average (black line) (Chang et al., 2012) from MD02-2496, 
with calibrated radiocarbon tie points (black circles) and age model error calculated from Bacon 2.2 (Blaauw and Christen, 2011) 
marked along the bottom axis. 
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The SST shifts in N. pachyderma increase during this time to 5˚C, warming from an average of 3 

to 8˚C, while the magnitude of SST increase does not change for G. bulloides at MD02-2496 or 

in ODP-1017, suggesting that either subsurface warming has increased or that the N. 

pachyderma record is noisier during this interval (Figure 3.3).  

 Coincident with DOIs 3-4, the δ18O calcite went negative by ~1 ‰ (Figure 3.6) while 

coeval SSTs and δ18O seawater were relatively cool/fresh and weakly warm/saline (Figure 3.4). 

δ18O calcite increases and remains relatively stable from ~ 25 to 17 ka, while SSTs and δ18O seawater 

show increased warming/salinity through Greenland stadial/H2, which can also be seen in a 

coincident warming in the record at ODP-1017 to >12˚C (Figure 3.3 and 3.4).  After DOI 2, at 

around 20 ka, SSTs and δ18O seawater indicate relatively warm/saline conditions (warming of ~2˚C 

of all records), followed by a cooling just before Greenland stadial/H1 and then a significant 

warming during the Bølling/Allerød (Figure 3.3 and 3.4). Alkenone derived SSTs from the 

Okhotsk Sea in the subpolar northwestern Pacific showed increases during DOIs between 20-60 

ka of between 6-8˚C, although these SST anomalies were accompanied by surface ocean 

freshening that is not observed in the northeastern Pacific (Harada et al., 2008).  

 δ18O seawater exhibits relatively large, high frequency δ18Oseawater shifts (> 0.4 ‰) in records 

at MD02-2496 and ODP-1017 occur approximately twice per kyr in coherence with SST 

warming (Figure 3.3) (Pak etal., 2012). While these shifts are less frequent in the G. bulloides 

record, notably in the low resolution interval of the record, shifts in excess of 0.4 ‰ do persist 

(Figure 3.3). Although it might be argued that the variability in the δ18O seawater records is an 

artifact of the variable SST record, large shifts (>1‰) δ18O calcite that occur between 30-25 ka 

support real variability in the SST and δ18O seawater records (Figure 3.2H and I,; Figure 3.6B). 

Assuming a similar geographical δ18Oseawater distribution during the last glacial, δ18Oseawater shifts  
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Figure 3.5 
Top panel (A) NGRIP δ18O (black line) and DOIs numbered in red and shaded in gray (NGRIP members, 2004; Blockley et al., 
2012). MD02-2496 records of calculated N. pachyderma SST (B) N. pachyderma δ18Ocalcite (Hendy and Cosma, 2008) (C) were 
resampled at 300-years (blue lines) and a running cross correlation was measured between N. pachyderma SST and δ18Ocalcite for 
a 1 ka moving window (black line) with calibrated radiocarbon tie points (black circles) and age model error calculated from 
Bacon 2.2 (Blaauw and Christen, 2011) marked along the bottom axis. 
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Figure 3.6 
Top panel (A) NGRIP δ18O (black line) and DOIs numbered in red and shaded in gray (NGRIP members, 2004; Blockley et al., 
2012).  B) δ18Ocalcite of N. pachyderma (blue line) (Hendy and Cosma, 2008) and G. bulloides (red line) from core site MD02-
2496, Vancouver Island, CA, C) δ18Ocalcite of N. pachyderma  (blue line) and G. bulloides (red line) at site ODP-1017E, Point 
Conception, CA (Hendy 2010), D) δ18Ocalcite of N. pachyderma (blue line) and G. bulloides (red line) at site ODP-893A, Santa 
Barbara, CA (Hendy et al., 2002), and E) δ18Ocalcite of G. ruber (orange line) from MD02-2529, Costa Rica (8˚12.33’ N latitude, 
84˚ 7.32’ W longitude, 1619 m water depth) (Leduc et al., 2007) with calibrated radiocarbon tie points (black circles) and age 
model error calculated from Bacon 2.2 (Blaauw and Christen, 2011) marked along the bottom axis. 
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 of 0.5 ‰ would imply waters coming from offshore Baja, CA, while larger shifts fall outside 

modern observations (Legrande and Schmidt., 2006).  

 Global scale mechanisms, such as expansion of sea ice in the northern North Pacific, 

could influence δ18Oseawater at MD02-2496. During the Heinrich 1 and Younger Dryas stadials, 

the sea-ice boundary was shifted southward in the Okhotsk and western Bering Seas (Max et al., 

2013). Records in the Okhotsk Sea have shown millennial scale expansion of sea ice during 

stadials and sea surface freshening corresponding to interstadials extending back to the beginning 

of MIS 3 (Harada et al., 2008; Riethdorf et al., 2013). However, recent modeling has shown that 

the isotopic shifts from interglacial to glacial intervals due to sea ice expansion were small, 

increasing by 0.12 ‰ in the North Atlantic surface waters (Brennan et al., 2013).  

Changes in the tropical hydrologic cycle in response to shifts in the average position of 

the ITCZ and intensity of the Asian monsoon could also influence δ18Oseawater at MD02-2496.  

Gibbons et al. (2014) estimate a shift in surface water δ18Oseawater during deglacial stadials of up 

to ~0.6 ‰ in the eastern tropical Pacific via southward movement of the ITCZ resulting in 

decreased water vapor export from the Atlantic to the Pacific tropical basins and resulting in 

increased salinity in the eastern equatorial Pacific (Figure 3.6E) (Leduc et al., 2009; Leduc et al., 

2010).   

 δ18Ocalcite values have been employed in a number of paleoceanographic studies to 

characterize DOI events in the North Pacific (Leduc et al., 2009; Kennett et al., 2000; Hendy and 

Kennett, 2000). Similarly the δ18Ocalcite records of both G. bulloides and N. pachyderma at 

MD02-2496 demonstrate rapid climate variability during DOIs (Hendy and Cosma, 2008) 

(Figure 3.6B). δ18Ocalcite at MD02-2496 appears to be influenced strongly by both temperature 

and changes in salinity, and δ18Oseawater shifts towards positive values often coincide with warmer 
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ocean temperatures. During the minimal ice sheet extent of  ~30 and 50 ka and during the 

deglacial, SSTs and δ18Ocalcite were often in phase (negatively correlated) while, during intervals 

of ice sheet growth the records were strongly anti-correlated (Figure 3.5). Moreover, SST 

warming and positive δ18Oseawater values were not expressed in the δ18Ocalcite record during some 

NGRIP stadials after 30 ka (Figure 3.4) (NGRIP members, 2004). As large shifts in both salinity 

and temperature are implied in the SST reconstruction at MD02-2496, the δ18Ocalcite record alone 

is insufficient to understand the surface water characteristics in the NE Pacific. Recent 

observations of isotopic decoupling during the deglacial in the Gulf of Alaska showed that 

δ18Ocalcite became inversely correlated with NGRIP δ18O from 18 to 16 ka, and then became 

significantly synchronized during the Bølling/Allerød and Holocene (Davies et al., 2011; 

Praetorius and Mix, 2014). At MD02-2496, after the LGM, δ18Ocalcite becomes strongly 

decoupled from the NGRIP δ18O record, suggesting that dynamic coupling between North 

Atlantic and North Pacific climate extends beyond the Gulf of Alaska (Figure 3.2A, H, I).  

4.2 A Spicy California Undercurrent water mass 

The CUC is characterized as warm, salty (spicy), nutrient-rich, oxygen-poor waters in 

contrast with the California Current, which is cold, fresh, nutrient poor and oxygen rich 

(Meinvielle and Johnson, 2013). Contribution of tropically sourced waters from the CUC is 

another modern driver of decadal salinity variability along the Vancouver margin, where saline 

intermediate waters consisting of at least 30% ETNP waters advected poleward by the CUC are 

pumped to the surface via upwelling (Foreman et al., 2008; Thomson and Krassovski, 2010). 

With modern climate warming, increased ETNP water advection into higher latitudes via the 

CUC has been established by observations of a sharp decrease in subsurface dissolved oxygen 

concentration and increase in spicy water along the west coast of North America between 25˚ 



	
   66	
  

and 50˚ N latitude (Meinvielle and Johnson, 2013). This is consistent with both an increase in 

transport of the CUC, and shoaling of the core CUC such that a greater proportion of ETNP 

waters are upwelled onto the continental shelf (Meinvielle and Johnson, 2013).  

High bulk sedimentary δ15N values are produced by denitrification within the ETNP 

oxygen minimum zone, and carried northward with the CUC along the eastern Pacific margin, 

thereby operating as a proxy for the relative strength of the current (Kienast et al., 2002; Chang 

et al., 2008). The general coherence of the δ15N records along the northeastern Pacific margin is 

suggestive of large-scale processes dominating the δ15N signal (Kienast et al., 2002; Hendy et al., 

2004; Chang et al., 2008; Galbraith et al., 2008). The CUC brings relatively denitrified, low 

oxygen spicy waters to the extratropics, with a core flow along the continental slope, upwelling 

onto the continental margin. Records on the North American margin have demonstrated 

coherence between millennial scale climate change and δ15N of bulk sediments at MD02-2496 

(Chang et al., 2008), indicating that sediments were more enriched in 15N during DOIs of MIS 3. 

This has been interpreted as a higher influx of ETNP-sourced, denitrified waters during DOIs, 

with the California Current System serving to physically link the ETNP to the northeastern 

Pacific from the Mexican margin as far north as the Vancouver Margin (Kienast et al., 2002; 

Galbraith et al., 2008; Chang et al., 2008; Hendy et al., 2004).  

Comparison of normalized bulk sediment δ15N at MD02-2496 with coincident SST and 

stable isotope samples provides a more robust identification of changes in CUC strength on the 

Vancouver margin (Figure 3.4), where coeval enrichments in both MD02-2496 bulk sedimentary 

δ15N (Chang et al., 2008) and relatively warm/saline waters support increased ETNP advection to 

the Vancouver Margin. Variations in δ15N and N. pachyderma δ18Ocalcite, δ18Oseawater , and SST 

records (Figure 3.4) indicate that positive anomalies in both records were co-incident within age 
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model error with DOIs 6-11. δ15N values are higher during DOI 6/7 and then decrease slightly 

from ~32 ka to 29.5 ka, during the NGRIP stadial/H3 (NGRIP members, 2004). Values increase 

again after 30 ka, roughly coinciding with DOIs 3 and 4 until ~26 ka, decline again briefly 

during another NGRIP stadial/H2, and increase again during DOI 2 and at 20 ka, and during the 

Bølling/Allerød warming. These more enriched δ15N values generally coincide with relatively 

warm SSTs/salinity, although enrichment decreases during NGRIP stadials (Figure 3.4). During 

the last deglaciation (15-17 ka), the penultimate deglaciation after 45 ka, depletion in δ15N at 

MD02-2496 resulted from increased terrestrial organic carbon flux to the sediments as the CIS 

retreated (Chang et al., 2014). Thus surface water chemical characteristics indicate that during 

large DOI events, there was a greater influence of CUC water in surface waters off Vancouver 

Island, Canada but as the ice sheets grew during the last glacial, this relationship was lost. To the 

south, at ODP-1017E, millennial scale variability in surface waters through the last glacial was 

also dominated by changes in water mass spiciness (Hendy et al., 2004; Pak et al., 2012). These 

trends support the presence of the CUC during early DOIs, and then intermittent and less 

predictable CUC flow through the LGM as local ocean circulation dominated the Vancouver 

Margin.  

Several possible mechanisms driving CUC strengthening during past DOIs exist. A 

relationship between abrupt warming in the North Atlantic and northward movement of the 

ITCZ has been identified in paleoclimate records (Leduc et al., 2009; Deplazes et al., 2013), 

which may have enhanced the sea surface height at the southern boundary of the CCS, increasing 

poleward flow of the CUC. Upwelling is also associated with interstadials along the California 

margin and may serve to strengthen the CUC on the northern end of the CCS (Hendy et al., 

2004). It is also possible that warm saline water may also be advected to the site via the North 
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Pacific Drift (NPD). A SST reconstruction from the Northwestern Pacific (MD01-2404) exhibits 

warming during similar intervals after 30 ka, which has been attributed to dynamic heat transport 

of the Kuroshio Current in response to Antarctic warming (Chen et al., 2010). As the Kuroshio 

Current feeds into the NPD, this reconstruction provides an additional mechanism to explain 

warm saline water at MD02-2496, however, water advected via the NPD does not contain 

enriched δ15N.  

4.3 Local influences and conditions 

Regional influences on δ18Oseawater at MD02-2496 may offer one explanation for the lack 

of coherency between MD02-2496 and other proxy records along the NE Pacific margin between 

30 and 20 ka. These regional factors include changes in precipitation/evaporation balances and 

changes in ocean circulation, while local variability in the wind stresses could produce the high 

frequency temperature variability on the Vancouver margin during this interval. On the modern 

ice-free Vancouver Margin, fresh waters are tidally mixed with ocean currents entering the 

Straits, mixing with seasonally upwelled waters flowing onto the continental shelf (Cummins 

and Masson, 2014). However, the effect of the ice sheet growth during the interval from 30 to the 

LGM could have played an important role in overprinting global climate events. With the growth 

of the CIS, the buoyancy driven current system would not have existed in its modern form 

(Taylor et al, 2014). During the LGM grounded ice on the Vancouver Island continental shelf 

filled the straits (Mosher and Hewitt, 2004) where tidal mixing would have occurred. Grounded 

ice extended as far as the shelf break south of MD02-2496 (~49.5˚N) where ice from the Juan de 

Fuca Strait and the Barkley Sound coalesced into a large piedmont glacial lobe.  

Modern ocean temperatures in this region are also influenced by the latitudinal position 

of the NPC, which can vary considerably over short times scales (~8˚ latitude in 2002) as a result 
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of stochastic wind forcing (Sydeman et al., 2011), leading to sea surface cooling of ~1˚C 

(Freeland et al., 2003). The average latitude of NPC bifurcation is 42-52˚N. Bifurcation of the 

NPC to the north of its average position results in enhanced advection of cool/fresh subarctic 

waters into the CCS (Sydeman et al., 2011). It is possible that the bifurcation of the NPC moved 

south as global climate cooled towards the LGM. 

At present, variability in ocean temperatures and salinities along the Vancouver margin 

are in part a manifestation of noisy atmospheric forcing and coastal precipitation/runoff with 

SST and salinity anomalies ranging by ±2 (˚C, PSU) over the last 70 years (Cummins and 

Masson, 2014). Ocean temperature anomalies are significantly correlated with fall/winter wind 

stress, while local salinity is primarily controlled by fluctuations of coastal freshwater runoff 

(Cummins and Masson, 2014). The seasonal input of freshwater runoff changed dramatically as 

the Cordilleran Ice Sheet grew from 30 to the LGM as winter precipitation entered coastal waters 

during summer. 

Thus, while seawater proxies on the Vancouver margin are recording broad scale changes 

in circulation via atmospheric reorganization during the last glacial, surface ocean characteristics 

such as salinity and temperature may also be subject to overprinting by very local processes such 

as variable inshore upwelling and freshwater runoff via meltwater.  

4.4 North Atlantic and North Pacific teleconnections 

Alternatively, the breakdown of coherency between North Atlantic and North Pacific 

climate may be related to changes in large scale atmospheric circulation coincident with the 

growth of the LIS and CIS after 30 ka. Modeling studies have shown that ice sheet topography is 

a dominant factor altering northern hemisphere extratropical atmospheric circulation, and may 

change the strength and position of the subtropical jet, thereby altering storm tracks (COHMAP 
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members, 1988; Pausata et al., 2011; Beghin et al., 2014; Zhang et al., 2024). The westerly winds 

are posited as one method of teleconnection between the North Atlantic and North Pacific, 

communicating SSTs changes between basins (COHMAP members, 1988; Timmerman et al., 

2004). Small changes in ice sheet topography have also been posited as a mechanism for DOIs as 

a result of splitting and shifting westerly winds to the North in the Atlantic (Zhang et al., 2014). 

As North American ice sheets grew to maximum extent at the LGM, model results suggest that 

the westerlies could have weakened, causing a warming in the eastern North Pacific (COHMAP 

members, 1988; Timmermann et al., 2004). The topographic barrier formed by the LIS and the 

CIS alters atmospheric circulation in the North Pacific, Northern Canada, and Alaska during the 

LGM (Timmermann et al., 2004; Justino et al., 2005) that is coincident with apparent warming, 

independent from climate events in the North Atlantic, recorded by Mg/Ca-SSTs between 20 and 

30 ka.  

5. Conclusions 

 A 50 ka record of G. bulloides δ18Ocalcite and Mg/Ca-based SSTs from the Vancouver 

margin (MD02-2496) coupled with the previously published N. pachyderma δ18Ocalcite record 

(Hendy and Cosma, 2008), reveals a complex relationship between isotopic and SST records as 

ice sheets expanded during the last glacial. Large shifts in δ18Oseawater were recorded, of at least 

0.5 ‰. If the geographical δ18Oseawater distribution during the last glacial was similar to the 

modern, δ18Oseawater increases of 0.5 ‰ would imply waters coming from offshore Baja, CA, but 

larger positive shifts cannot be explained by advection of tropical waters alone. At MD02-2496 

and ODP-1017, large variability in the reconstructed SST records show that on the NE Pacific 

margin δ18Ocalcite records alone may not be sufficient to resolve simultaneous temperature and 

salinity shifts. 
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Millennial-scale warming frequently coincided with positive anomalies in the δ15N 

record, indicating that SST warming was associated with changes in water mass characteristics 

including spiciness and denitrification suggestive of increased transport of waters from the 

Eastern Tropical North Pacific via the California Undercurrent (CUC). Higher δ15N values are 

recorded in sediment cores along the NE Pacific margin, suggestive of temporally coherent, large 

scale changes in the California Current System (CCS) and transport of tropical water northward 

(Kienast et al., 2002; Chang et al., 2008; Galbraith et al., 2008). Previous studies indicate a 

strong teleconnection between North Atlantic climate forcing, and the position of the 

Intertropical Convergence Zone (ITCZ) in the tropical North Pacific (Leduc et al., 2009; 

Okumura et al., 2009; Leduc et al., 2010; Deplazes et al., 2013). This may result in an increase in 

the relative strength of the CUC during SST warming at DOIs. CUC strengthening could have 

developed as sea surface heights increased at the southern end of the CCS when the ITCZ was 

displaced northward. While this teleconnection was communicated along the Pacific margin as 

far north as 50˚N latitude during early MIS 3, at MD02-2496 the teleconnection breaks down 

after 30 ka as ice sheet growth at mid- and high latitudes, increasingly impacted northern 

hemisphere atmospheric circulation patterns. 

 The interval between 20-30 ka displays an apparent decoupling between SSTs and 

δ18Ocalcite. We interpret this lack of coherency as either an increase in the influence of local ocean 

circulation on seawater geochemistry as Cordilleran Ice Sheet growth changed local surface 

ocean circulation and the timing and composition of freshwater. Additionally the vertical 

expansion of the Laurentide Ice Sheet topography impacted westerly wind strength, causing SST 

anomalies in the North Pacific independent from DOIs (Timmermann et al., 2004; Justino et al., 
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2005). At the Bølling/Allerød (14.7 ka), proxies for increased advection of ETNP sourced water 

mass become coherent once again.  
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Chapter 4 

High concentrations of potentially bioavailable iron on Arctic sea ice particles 

 

Abstract 

 High spring primary productivity has been documented in association with 

relatively high nitrate concentrations on the extensive Arctic continental shelf as sea ice 

thickness and extent has declined (Arrigo et al., 2012). Simultaneously sea ice contributes the 

micronutrient iron to surface ocean waters during the early spring melt especially in coastal 

regions. Nitrate (NO-
3) concentrations are projected to increase in the shallow Arctic Ocean shelf 

regions as winds and upwelling are enhanced on a warmer planet. As Fe is required by primary 

producers to assimilate NO-
3, it may become an important co-limiting factor for algal blooms 

under sea ice during early spring. Elemental concentrations are presented from sea ice cores 

collected from shallow coastal regions in the Beaufort/Chukchi Sea and the Canadian Arctic. We 

report high proportions of labile Fe (~75%) within particulate Fe (pFe) concentrations. As the 

majority of pFe in sea ice is labile and therefore potentially bioavailable, it constitutes a 

significant flux to the surface ocean during spring sea ice melt. Elemental ordination suggests the 

source of bioavailable pFe may be Fe-Mn crusts associated with clays either from atmospheric 

dust or resuspended continental shelf sediments. A warmer Arctic Ocean, and associated decline 

in sea ice extent, may provide less bioavailable Fe during the spring algal bloom.  

1. Introduction 
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Iron cycling within Arctic sea ice is not yet well characterized, and the few observations 

report large spatial heterogeneity of iron (Fe) concentrations (Aguilar-Islas et al., 2008; Tovar-

Sánchez et al., 2010; van der Merwe et al., 2011). The seasonal flux of Fe and other bio-essential 

trace metals in the Arctic Ocean are strongly linked with sea ice sediments, where sea ice 

aggregates a reservoir of potentially bioavailable Fe to be released in surface waters during 

spring melt season. The relative importance of sediment sources to sea ice may depend on 

location and thickness of the ice. Filterable Fe (defined as the sum of soluble, nanoparticulate, 

and colloidal Fe, <0.2 µm) can be enriched in sea ice by entrainment of particulate detrital and 

living organic matter that may be degraded into dissolved Fe, and may also be transferred from 

seawater to bottom layers of sea ice via uptake by sea ice algae (Wang et al., 2014). Particulate 

Fe (pFe) is delivered to sea ice through dry and wet atmospheric deposition of dust (Tovar-

Sánchez et al., 2010) – this deposition is assumed to be especially important in open ocean sites, 

further from terrestrial sediment sources and dominated by multi-year ice (MYI). In coastal and 

shelf environments where annual sea ice formation occurs, labile Fe is assumed to derive from 

glacial melt (Bhatia et al., 2013; Hawkings et al., 2014; Werhmann et al., 2014), sediments 

resuspended in shallow shelf waters and river runoff (Klunder et al. 2012). Biogenic pFe may be 

incorporated during sea ice formation, and/or via algae inhabiting the bottom layers of floating 

sea ice (Deal et al., 2011; Planquette et al., 2013).  

Direct measurements of Arctic sea ice sediment trace metal geochemistry and 

bioavailability are rare, but crucial to understanding the role of sea ice in Arctic marine 

productivity. Here we present major and trace element concentrations from particles in multiple 

size fractions within sea ice profiles, offshore from Point Barrow, AK (PB) and in the Canadian 

Arctic (CAA) between Bathurst and Ellef Rignes Islands, to improve understanding of the role 



	
   82	
  

that Arctic sea ice plays in Fe cycling (Figure 1). Particulate Fe bioavailability was estimated 

from sea ice sediments using sequential chemical leaches. Potential oceanic and atmospheric 

sources of bioavailable Fe are suggested based on the elemental ordination from principle 

component analysis with the relative contribution of atmospheric dust constrained with a global 

aerosol simulations conducted with the Community Earth System Model (CESM).  

2. Methods 

2.1 Sample Collection 

 Samples for total dissolved and particulate metals analysis were collected in first year fast 

ice (Point Barrow Far Shore (PB FS), 71˚ 24.169169’ N, 156˚ 21.402402’ W, ~4 km from shore, 

core length 106 cm; Point Barrow Near Shore (PB NS), 71˚ 22.885885’ N, 156˚ 30.637637’ W, 

and ~1 km from shore, core length 153 cm) near Barrow, Alaska in March-April 2014. Pack ice 

(Canadian Arctic Archipelago First Year Ice (CAA FYI), 77˚ 21.887 N, 99˚ 9.471 W, core length 

175 cm; and multiyear ice cores Canadian Arctic Archipelago Multi-year Ice (CAA MYI), 77˚ 

20.337 N, 99˚ 56.082 W, core length 242 cm, were collected ~50 km offshore from Ellef 

Ringnes Island in the Norwegian Bay) north of Resolute Bay, Canada in April 2014. Snow was 

sampled in polyethylene (PE) containers that had been acid washed and rinsed 3 x with ultra high 

purity water (UHP; 18.2 MΩ DI water). Ice cores were drilled and then decontaminated in the 

field. Cores were sectioned and decontaminated at the field sampling sites. To decontaminate ice, 

10 cm of ice was removed from the ice core surface on all sides using 10% HNO3 rinsed titanium 

chisels. Sections were placed in acid cleaned PE containers and melted at ambient temperature 

before processing. Seawater was sampled directly from the coring sites PB NS and CAA MYI 

into a 1 L acid cleaned LDPE Nalgene bottle. All ice, snow, and seawater samples were filtered 

using a peristaltic pump using acid washed savillex filtration unit in a glove bag in the field. 
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Filtrate was collected in acid washed LDPE Nalgene bottles. The residue were collected onto 

acid cleaned (sequentially in HCl, HNO3, HF + HNO3 for 5 days, rinsed 5 X in SDIS water, and 

stored in acid cleaned centrifuge tubes in SDIS) hydrophobic polytetrafluoroethylene (PTFE) 

filters (0.2µm, 5µm, 10µm, >30µm pore sizes) and stored in pre-cleaned centrifuge containers in 

UHP. Filtered sample volumes ranged from 500 to 1000 mL depending on the sample.  

2.2 Sample Analysis 

The labile particulate leach procedure followed Berger et al. (2008).  Filters were 

transferred from centrifuge containers to 180 mL acid-cleaned FEP beakers. Filters were heated 

in solution (25% acetic acid and 0.02 M hydroxylamine hydrochloride) on hot plates at ~95˚C 

for 10 minutes, and then cooled to room temperature for 2 hours. Leachate was removed to acid 

cleaned beakers and dried down. Limitations of sample size prevented more than 2 successive 

leaches-separating acetic acid + hydroxylamine leachable from total Fe. The labile Fe leach 

extracts both crystalline and amorphous Fe (Berger et al., 2008) therefore we report both 

crystalline and amorphous Fe-oxide phases. As low as 50% of the amorphous Fe leached is 

estimated to be bioavailable and can be taken up by phytoplankton in culture experiments 

(Sunda, 2001). Crystalline Fe is more aged and therefore less bioavailable, so the potentially 

bioavailable Fe pool reported here is an approximation.  

 All filters were rinsed with UHP water after the leach procedure and then digested with 

sequential acid additions and then dry downs as follows: 4 mL of concentrated HNO3 + 0.5 mL 

of HF were added to the filters in 180 mL FEP beakers and heated for for 3 days. Samples were 

dried down and redigested in 1 mL aqua regia and heated overnight. Samples were then dried 

down and rinsed with 1 mL 6 M HCl, the filters were discarded and the remaining solution was 
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heated overnight. Samples were dried down, and then digested in 2.5 N HNO3, where an aliquot 

of 10% concentration by weight was used for ICP-MS analysis. 

 We report data for 16 element concentrations measured from the digested particulate 

samples (refractory and leachable) (Al, Ti, Si, Fe, Cu, Mn, Co, Mo, Ni, Zn, Ca, K, Cr, Mg, Cd, 

P). Some elements were measured using a Thermo-Finnigan Element2 high resolution ICP-MS 

at the University of Michigan (Si, Ca, K, P), and the rest were determined on a Thermo-Finnigan 

Element2 high resolution ICPSF-MS at The Ohio State University by using an apex Q desolvant 

nebulizer as introduction system to increase sensitivity and reduce spectroscopic interferences 

(Uglietti et al., 2014). Field blanks were processed and filtered using the savillex filtration 

system the samples in the field. Field blanks consisted of UHP water brought from the University 

of Michigan.  Blanks that were greater than the limit of detection were subtracted from the 

measurements (Table S4). Instrumental precision was determined by calculating the relative 

standard deviation of the element concentration from multiple replicate sample analysis and 

varied from less than 2% for Si, P, K, and Ca, and from 2-5% for Fe, Cu, Mn, Co, Mo, Ni, Zn, 

Cr, and Cd. Relative 1σ uncertainties were less than 10% for Al and Mg, and less than 20% for 

Ti. 

 Filtered samples were acidified with HNO3 to pH 2.5 for one month. Depending on 

salinity, samples were diluted for major element determination. Samples were analyzed using a 

Thermo-Finnigan Element2 high resolution ICP-MS at the University of Michigan. 

 Particle size samples were collected at the CAA sites (MYI and FYI) from subsamples of 

cores. Samples were collected in acid cleaned vials and kept frozen until analysis at Milano-

Bicocca University. Analyses of dust size and concentration (number and volume) were 
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performed at the University of Milano-Bicocca using a Beckman Coulter-Multisizer™ 3 Coulter 

Counter®, following Albani et al., 2012. The size range of measurements is 1–30 µm. 

 

Figure 4.1 
Sampling locations within the Arctic. Black boxes represent map inserts of A) first year fast ice core sites (orange circles) 
offshore of Point Barrow, AK (PB FS 1, 71˚ 24.169 N, 156˚ 21.402 W, ~4 km from shore, core length 106 cm; PB NS 2, 71˚ 
22.885 N, 156˚ 30.637 W, ~1 km from shore, core length 153 cm); B) pack ice core sites (orange circles) in the Canadian Arctic 
Archipelago (CAA FYI 3, 77˚ 21.887 N, 99˚ 9.471 W, core length 175 cm; CAA MYI 4, 77˚ 20.337 N, 99˚ 56.082 W, core 
length 242 cm, both cores are ~50 km offshore from Ellef Ringnes Island in the Norwegian Bay). 2012 minimum ice extent is 
shown by a red line, while 2014 is shown by a thick grey line and transparent white shading. Black arrows represent generalized 
multiyear sea ice circulation. Dark blue shading represents sea floor >500m water depth. 
 
Modeling 

 Dust mixing ratios in snow and sea ice are simulated using the Community Earth System 

Model version 1.1.1 (CESM1) with the Bulk Aerosol Model (BAM), which simulates dust in 
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four size bins.  We run CESM fully coupled with all active components and present day radiative 

forcing (B_2000 compset) for 11 years.  We include the final ten years of output in our analysis 

to allow for temporal averaging with one year of spin-up to allow aerosol fluxes to equilibrate.  

To calculate monthly mean dust mixing ratios, we take area-weighted means from the nine 

nearest oceanic gridcells to each location of interest.  Values presented here thus represent 

spatially and temporally averaged monthly dust mixing ratios within snow and sea ice prognosed 

by the Community Ice Code (CICE) component of CESM. 

3. Results and Discussion 

3.1 Sediment characterization and provenance 

There have been few measurements made characterizing Fe concentrations within Arctic 

sea ice sediments (Figure 4.2).  Sedimentary Fe can be partitioned into particulate (pFe) size 

fractions (>0.2 µm) and filterable phases (<0.2 µm consisting of the sum of nanoparticulate, 

colloidal, and soluble Fe) (Cullen et al., 2006; Raiswell and Canfield, 2012). In this study, pFe 

concentrations were orders of magnitude higher than filterable Fe concentrations, and high 

relative to other Arctic sea ice studies (Figure 4.2). Sea ice was significantly enriched in 

filterable Fe relative to seawater at the PB sites but not at the CAA sites (Figure 4.3). Filterable 

Fe in sea ice can be affected by many processes including biological uptake from seawater by sea 

ice algae within the lower layers of sea ice or as detrital or living organisms are degraded by 

heterotrophic processes within the ice (Lannuzel et al., 2011). While concentrations of non 

bioessential elements in filterable sea ice samples (K, Mg, Mo) were linearly related with Na 

concentrations (as a proxy for bulk sea ice salinity) bioessential trace metals like filterable Fe in 

sea ice samples at both sites were non-linear when plotted against Na concentrations. This 



	
   87	
  

deviation from bulk sea ice salinity is suggestive of some bioactive cycling of filterable Fe 

within sea ice at these sites (Figure 4.3). 

Sediment grain size distributions characterized at the CAA core sites indicate sediments 

from the first year pack ice (FYI) and the multi year ice (MYI) were dominated by grain sizes 

between 10-30 µm (Figure 4.4). Larger pFe size fractions (>20 µm) tend to be dominated by 

lithogenic input (Frew et al., 2006), and a relatively high proportion of total pFe (50-95%) are 

within the >10 µm grain size fractions in this study (Figure 4.5). Principle component analyses of 

sediments in the particulate size fractions (>0.2 µm) and filterable size fractions (<0.2 µm) 

identify two main factors: elements (Fe, Cu, Mn, Mo, Co and Ni) associated with Fe-, Mn- 

oxyhydroxides and elements (P, Ca, Si, K, Mg, and Ti) associated with clays (Figure 4.6), 

supporting a predominately lithogenic origin. However, a biogenic Fe source component cannot 

be ruled out, as samples with high biogenic pFe can still contain < 68% lithogenic Fe, potentially 

obscuring the presence of biogenic pFe (Frew et al., 2006). 

Assuming a dominant lithogenic sediment source, atmospheric dust deposition, 

riverine/melt water run off, or coastal upwelled shelf sediments can all enrich sea ice with 

sediments (Wang et al., 2014). Results presented here cannot distinguish between these sources 

as significant overlap in atmospheric dust (0.1 to 10 µm) and shelf sediment grain sizes (0.2 to 

>30 µm), and trace metal abundance patterns common to Fe-Mn crusts occur in both sediment 

types (Thiagarajan and Lee, 2004; Mahowald et al., 2011; Planquette et al., 2013). However, 

CESM simulated dust concentrations in sea-ice suggest that although dust is unlikely to be a 

dominant sediment source in nearshore FYI, it may contribute significantly to offshore MYI. In 

the CAA sites, the CESM simulates a mean April total dust concentration of 6.0 ppb (+/- 2.5 

ppb) in sea-ice, potentially accounting for 10% of the sediments in the CAA pack ice (754 ppb), 
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and up to 55% of sediments in the MYI (151 ppb) (Figure 4.7). Consistent with the potential for 

atmospheric Fe deposition, Fe concentrations are higher in snow at the CAA sites than in 

seawater (Figure 4.2). Modeled dust accumulation peaks in the summer at PB, when FYI extent 

is limited or absent, and concentrations are low during winter months (~ 3 ppb), indicating that 

atmospheric dust input is insignificant at the site (Figure 4.7).  

Where sea ice formation extends onto the continental shelf at water depths < 50 m, 

sediments are commonly incorporated in sea ice by suspension freezing. Resuspended seafloor 

sediment (wave and tidal activity, currents or wind-driven upwelling) is lifted to the ice-free 

ocean surface by ice crystals forming at depth (Darby et al, 2011). Potential sources of seafloor 

sediment at PB include the suspended load of May-June Colville River runoff and other smaller 

rivers (Reimnitz, 2002). Located over deeper water, sea ice containing resuspended bottom 

sediment can only be advected to the CAA core sites, however ice rafted glacial sediments from 

the tidewater glaciers on nearby Axel Heiberg and Ellesmere Islands are another potential 

advected source.   



	
   89	
  

 

Figure 4.2 
Total, leachable, and filterable iron concentrations (nM) in sea ice (ranges in solid lines, averages as diamonds), snow (averages 
as stars) and seawater (ranges in dashed lines, averages as circles, surface water as triangles, bottom water as squares) for Point 
Barrow and the Canadian Arctic are compared on a log scale to the Laptev sea (Hölemann et al., 1999), Bering Sea (Aguilar-Islas 
et al., 2008; Hurst et al., 2010), West Beaufort Sea (Aguilar-Islas et al., 2013), Gulf of Alaska (Lippiatt et al., 2010), Chukchi Sea 
(Nakayama et al., 2011), and Fram Strait (Tover- Sánchez et al., 2010).    
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Figure 4.3 
Filterable Fe (<0.2 µm) plotted against filterable Na concentrations for CAA cores (A) and Point Barrow, AK, cores (B). 1:1 line 
is drawn in for reference in both plots. 
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Figure 4.4 
Concentration (ppb) of insoluble particles (A) from the Canadian Arctic cores CAA FYI (gray line, first year ice) and CAA MYI 
(black line, multiyear ice) versus sediment particle sizes (µm). Profiles of sea ice core sediment concentrations (ppb) with depth 
for Canadian Arctic core sites CAA FYI (B) and CAA MYI (C) for different grain sizes (1-30 µm). 
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Figure 4.5 
Labile to total Mn and Fe ratios in cores CAA MYI  (A), CAA FYI (B) in the CAA (red), and in cores PB NS (C) and PB FS (D) 
at Point Barrow, AK (blue), plotted against core depths. Sediments are plotted by grain size from 0.2 to 5 µm (diamond symbol), 
5 to 10 µm (circle symbol), 10 to 30 µm (square symbol) and >30µm (triangle symbol). 
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Figure 4.6 
Panels show principle component analysis results for 1 and 2 axes for ratios of labile to total metals for all Barrow (A) and 
Canadian Arctic (B) cores, labile metals normalized to Al for all Barrow (C) and Canadian Arctic (D) cores, and filterable metals 
all Barrow (E) and Canadian Arctic (F) cores. Coefficients of variance are reported in Tables S1, S2, and S3. 
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Figure 4.7 
CESM –simulated dust concentration in Barrow, AK sea ice (A) and the Canadian Arctic (B) plotted by month and binned by 
particle diameter (black, 0.1-1.0 µm; dark gray, 1.0-2.5 µm; light gray, 2.5-5.0 µm; white, 5.0-10.0 µm). Simulated dust 
concentrations in snow at Barrow, AK (C) and the Canadian Arctic (D) plotted by month and binned by particle diameter (black, 
0.1-1.0 µm; dark gray, 1.0-2.5 µm; light gray, 2.5-5.0 µm; white, 5.0-10.0 µm). 
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Sediment composition impacts biogeochemical cycling as biogenic pFe is more readily 

available for uptake by phytoplankton than lithogenic pFe (Frew et al., 2006; Lannuzel et al., 

2014). Furthermore, the lability of lithogenic pFe is dependent on grain size, mineralogy, and 

surface reactivity of Fe-oxyhydroxide species, which depends on crystal structure, related to 

aging of coatings, and temperature (Poulton and Raiswell, 2005; Sugie et al., 2013). Sea ice at 

both sites was found to have elevated labile Fe concentrations, ranging from ~32 to 218,000 

nmol L-1, or approximately 75% of the total pFe (Figure 4.8). The Barrow cores average 77% 

and 89% pFe lability, while in the CAA, FYI averages 75%, with MYI containing the least labile 

pFe (54% the pFe). Lability of pFe relative to total decreases with increasing particle size (Figure 

4.5). The highest percent labile pFe in Barrow cores is found in the 0.2 µm size fraction. The 

pool of labile Fe within sea ice on the shallow continental shelf at CAA and PB is high relative 

to bioavailable pFe measured from shelf sediments and seawater in other regions (Figure 4.2), 

suggesting that both FYI and MYI may represent a significant source of bioavailable Fe during 

spring melt season when algal productivity is highest (Deal et al., 2011). For example, labile pFe 

measured in seawater in the Gulf of Alaska was found to make up to 32% of the total pFe, which 

ranged from 2.7 to 10,500 nmol L-1 (Lippiatt et al., 2010), while in the coastal Bering Sea, 

measurements of pFe in shelf sediments yielded total pFe concentrations of up to 312 nmol L-1, 

80% of which was considered labile (Hurst et al., 2010). In Spitzbergen highly reducible Fe and 

Mn oxides generated from benthic recycling of dissolved Fe in sediments were found released 

into fjord bottom waters providing another source of bioavailable Fe (Wehrmann et al., 2014). 

Principle component analyses were conducted to determine elemental associations to 

constrain the major sources of pFe as the samples were too small to allow for mineral 

identification. Three analyses are presented: ratios of labile to total elemental concentrations  
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Figure 4.8 
Labile versus total Fe (A) plotted on a logarithmic scale from Barrow core samples (blue) and Canadian Arctic core samples 
(red), with a 1:1 line. Regression of percent particulate labile Mn and Fe (B) from Barrow core samples (blue) and Canadian 
Arctic core samples (red). Outlier not included in regression is enclosed in a box. 
 
 (Figure 4.6; Table 4.1), labile elemental concentrations normalized to labile Al concentrations 

(Figure 4.6; Table 4.2), and filterable metals (Figure 4.6; Table 4.3). PCA results of all analyses 

indicate that elements associated with Fe-, Mn- oxyhydroxides (Fe, Cu, Mn, Mo, Co and Ni) are 

grouped separately from elements associated with clays. (P, Ca, Si, K, Mg, and Ti). Composition 

based upon PCA results suggest the sea ice sediments consist of clay minerals coated with Fe-
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(Poulton and Raiswell, 2005), where labile Fe is concentrated in the finer grain size fractions 

dominated by clays.  

Generally smaller size fractions are considered more bioavailable. Mechanically 

weathered glacial flours from the European Alps, southwest Greenland, and Signy Island in 

Antarctica found the greatest concentrations of bioavailable ferrihydrite in finer grain size 

fractions (<63 µm; Hopwood et al., 2014).  However, here sea ice samples with a relatively low 

fraction of labile pFe do not appear to be associated with changes in either size fraction or 

elemental associations. The CAA samples generally have lower labile pFe fractions, perhaps 

reflecting differences in the sediment source and/or degree of aging of Fe-Mn oxyhydroxides 

such that they are more crystalline and therefore less bioavailable (Figure 4.5).  

Perhaps the environmental conditions of Fe-Mn oxyhydroxides coated grains 

encapsulated within sea ice play a role in the high lability of pFe. The bioavailability of 

lithogenic pFe in seawater can be enhanced by photochemical reduction or by biological 

processing (eg: ingestion of colloidal ferrihydrite by phagotrophic protists) (Borer et al., 2009). 

Finer grain size fractions have a longer residence time in the surface waters enabling chemical 

transformations that enhance bioavailability (Frew et al., 2006; Lannuzel et al., 2014). 

It is not known how primary producers access pFe in this form, but recently Fe isotopes 

used as a tracer in the South Pacific Ocean demonstrated that a fraction of lithogenic pFe (>0.2 

µm) was processed into dissolved Fe and utilized by phytoplankton during a spring algae bloom 

(Ellwood et al., 2015). Mesocosm experiments also showed that 60-80% of Fe bound to the 

surface of particulates of various size fractions (0.2 to 2, 2 to 20, >20 µm) was removed by 

phytoplankton uptake (Ellwood et al., 2015), suggesting that surface-bound pFe may be an 

important source of bioavailable iron.  
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This study indicates that under current conditions significant concentrations of labile pFe 

in FYI and MYI are potentially available allowing phytoplankton to live in an Fe replete habitat 

during spring melt. Increased NO-
3 availability projections in coastal, shallow upwelling zones 

(Tremblay et al., 2011), may not affect primary productivity in the short term as long as seasonal 

sea ice releases this labile pFe when there is light availability. These trends may be counteracted 

in a warming Arctic (Perovich and Richter-Menge, 2009) as maximum ice extent decreases and 

sea ice melts earlier in the year and more rapidly such that (1) primary producers are unable to 

take advantage of surface ocean nutrient enrichments when light availability is high (2) sea ice 

formation no longer occurs in regions where freeze up incorporates resuspended shelf sediments, 

and (3) the flux of potentially bioavailable pFe from sea ice decreases as the sea ice “reservoir” 

decreases. 

Table 4.1 
Principle component axes for labile/total elemental data from cores CAA FYI and CAA MYI at CAA, and cores PB FS and PB 
NS from Point Barrow, AK. 

	
  
	
  
	
  
	
  
 
 
 

Labile/Total Canadian Arctic Point Barrow, AK
Variability 
explained Axis 1 Axis 2 Axis 1 Axis 2

69.4 16.7 66.2 12.1
Elemental 

coefficients
Al -0.38 0.83 -0.48 -0.66
Co 0.98 0.03 0.98 -0.12
Cu 0.96 -0.10 0.99 -0.07
Fe 0.97 -0.15 0.92 0.13
Mn 0.98 -0.07 0.98 -0.11
Mo 0.95 0.12 0.98 -0.12
Ni 0.95 0.12 0.94 -0.19
P 0.74 0.37 -0.62 0.16
Si -0.74 0.24 0.64 0.56
Ti 0.32 0.85 -0.19 0.57
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Table 4.2 
Principle component axes for labile metal/Al data from cores CAA FYI and CAA MYI at CAA, and cores PB FS and PB NS 
from Point Barrow, AK. 
	
  

	
  
 

Table 4.3 
Principle component axes for filterable (<0.2 µm) elemental data from cores CAA FYI and CAA MYI at CAA, and cores PB FS 
and PB NS from Point Barrow, AK. 
 
	
  

	
  
   

Labile Me/Al Canadian Arctic Point Barrow, AK
Variability 
explained Axis 1 Axis 2 Axis 1 Axis 2

37.6 21.7 43.2 34.6
Elemental 

coefficients
Ca 0.93 -0.29 0.99 0.16
Co -0.24 -0.10 -0.21 0.92
Cr 0.32 0.73 -0.22 0.96
Cu 0.43 -0.30 -0.09 0.59
Fe 0.45 0.77 -0.27 0.95
K 0.93 -0.31 0.99 0.16

Mg 0.91 -0.37 0.99 0.16
Mn 0.43 0.67 -0.02 0.85
Mo -0.05 -0.15 -0.11 0.15
Ni 0.24 0.59 -0.21 0.95
P 0.94 0.01 0.98 0.17
Si 0.37 0.75 0.98 0.17
Ti 0.92 -0.35 0.99 0.16
Zn -0.20 -0.06 -0.01 0.10

Filterable Canadian Arctic Point Barrow, AK
Variability 
explained Axis 1 Axis 2 Axis 1 Axis 2

44.1 19.2 56.7 23.0
Elemental 

coefficients
Ca 0.99 0.04 0.94 -0.31
Cd -0.24 0.65 0.39 0.68
Cr 0.34 -0.33 0.61 0.75
Cu -0.21 0.75 0.39 0.71
Fe -0.01 0.07 0.34 0.57
K 0.99 0.05 0.94 -0.31

Mg 0.99 0.03 0.94 -0.31
Mn -0.11 0.73 0.58 0.47
Mo 0.98 0.07 0.97 -0.21
Na 0.99 0.03 0.94 -0.30
P 0.77 0.29 0.91 -0.21
Si -0.08 0.40 0.96 -0.03
Zn 0.13 0.78 0.16 0.68
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Chapter 5 

Conclusions 

The interaction between climate, and ocean and atmosphere circulation can be 

reconstructed from sediments. In ice forming regions, this interaction can amplify climate change 

responses or potentially fuel marine productivity. The sensitivity of the marine environment to 

these changes can be amplified or muted by the amount of ice present in the region.  A better 

understanding of both past and present ice forming regions is needed to improve future 

predictions of environmental change in polar regions in response to anthropogenic climate 

forcing. 

In Chapter 2, ocean sediments were used to reconstruct a high-resolution history of the 

retreat of the southern marine margin of the Cordilleran Ice Sheet (CIS). It appears that the 

marine margin of the CIS was grounded and relatively stable despite warm SSTs after 19.8 ka, 

which is also supported by the lack of IRD during this interval. The combination of a grounded 

ice margin and a relatively high accumulation rate supplying ice from the Coast Mountains may 

have stabilized against retreat for almost 2 ka from 19.8 to 17.5 ka. Sedimentation at the end of 

modern tidewater glacial may build a morainal shoal that reduces iceberg calving (Meier and 

Post, 1987), and there is evidence from baythmetric features on the continental shelf that similar 

stabilizing processes were similarly important on the southern marine margin of the CIS (Mosher 

and Hewitt, 2004). Thus the retreat of the CIS was may have been forestalled despite the warm 

surface and subsurface ocean temperatures that exerted substantial thermal forcing along the 

tidewater ice terminus (Motyka, 2003; Rignot et al., 2010), similar to modern Alaskan and 
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Greenland tidewater glacial systems. However, the reconstructed deglacial history of the CIS is 

also consistent with modern studies implicating rapidly warming ocean temperatures in 

increasing ice discharge and the large-scale drawdown of land-based ice (Shepherd et al., 2004; 

Rignot et al., 2014; Jacobs et al., 2011).  

 A significant increase in iceberg calving from the CIS between ~17 to 15 ka has been 

observed around the margin of the eastern North Pacific. The CIS retreat from its marine margin 

began at 17.5 ka during significant pulse of IRD, which corresponded with ice rafting to the 

north where glaciomarine sediments in the Queen Charlotte Island region to the north in Hecate 

Strait where IRD appeared between 17.7–15.2 ka. New evidence from Alaskan Gulf sediment 

cores indicate large pulses of IRD along with brief surface water freshening occurred between 

17.5 and 16.5 ka (Praetorius and Mix, 2014). Thus, from ~17.5 to 15.5 ka retreat via calving is 

indicated along the tidewater margin of the CIS in western Canada as ocean thermal forcing 

increased off shore of Vancouver Island. Such a coordinated discharge of IRD along several 

points of the CIS separated by hundreds of kilometers suggests that this phenomenon is not an 

accident of iceberg routing but instead that there is a major change in CIS dynamics along the 

marine margin. This interval of peak IRD discharge from the CIS occurs during Heinrich Event 

1, when IRD from the Laurentide Ice Sheet (LIS) is also abundant in the North Atlantic 

(Hemming et al., 2004; Hendy and Cosma, 2008; Praetorius and Mix, 2014; Taylor et al., 2014). 

However, how the CIS ice margin may be responding uniformly to distal forcings is unclear. 

Work on the Alaskan margin cores is ongoing by another team of researchers, and should yield 

more information about the large-scale deglacial history of the CIS beyond the relatively warm 

southern margin of the ice sheet.  
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In the North Pacific Ocean there remain outstanding questions about the presence of fresh 

water from melting of the CIS. The occurrence of Lake Missoula outburst flooding which 

entered the ocean via the Columbia River, OR (Atwater, 1986; Brunner et al., 1999) and the 

presence of IRD in the North Pacific (Blaise et al., 1990; Hendy and Cosma, 2008; Praetorius 

and Mix, 2014) provides evidence of processes delivering freshwater to the North Pacific. 

However, there is little isotopic evidence of a significant meltwater such as has been recorded in 

δ18Oseawater records from the Gulf of Mexico (Flower et al., 2004; Williams et al., 2012).  

Reconstructed δ18Oseawater record at MD02-2496 shows no indication of isotopically depleted 

meltwater in the surface waters off Vancouver Island, BC. The absence of a meltwater signal in 

the δ18Oseawater record despite clear evidence for meltwater input might be due to mixing of 

meltwater with warmer seawater near the glacial terminus. It is also likely that the isotopic 

composition of the CIS is less distinct from seawater than the LIS given its temperate latitude 

and proximity to moisture source. 

  The source of warm surface waters to the NE Pacific during the LGM off Vancouver 

Island became the focus of the next research question. In Chapter 3, reconstructed surface water 

characteristics indicate increased advection of waters from the Eastern Tropical North Pacific 

(ETNP) by relative strengthening of the California Undercurrent (CUC) that brought relatively 

warm, salty tropical waters poleward during Dangaard Oeschger Interstadial (DOI) events. 

Surface water reconstructions along the eastern and western Pacific margins are dominated by a 

warm, salty and cold, fresh dichotomy (Chen et al., 2010; Pak et al., 2012; Taylor et al., in 

revision) that have been interpreted to reflect changes in the relative proportion of southern 

versus northern sourced waters. Surface circulation is driven by changes in wind forcing, and 

atmospheric circulation, therefore proxy data showing changes in southern versus northern 
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sourced waters between DOI and Dangaard Oeschger stadials supports a reorganization of 

ocean/atmospheric circulation in the North Pacific. North Pacific ocean/atmosphere circulation 

reorganizations are teleconnected to climate change in Greenland (Timmerman et al., 2005; 

Zhang and Delworth, 2005; Menviel et al., 2014) and therefore could be forced by changes in 

North Atlantic meridional overturning circulation (MOC) and/or possibly changes in ice sheet 

topography (Li et al., 2010; Petersen et al., 2013; Zhang et al., 2014). In the modern ocean, the 

strength of the CUC responds to changes in sea surface heights in the tropical Pacific. I posit that 

the linkage between the strength of the CUC on the NE Pacific margin and DOIs may be related 

sea surface heights off Central America that increase when the Intertropical Convergence Zone 

(ITCZ) shifted northward. Northward movement of the ITCZ has been attributed to northern 

hemisphere atmospheric warming (Zhang and Delworth, 2005; Leduc et al., 2009).  

 The Mg/Ca records along the eastern North Pacific margin are noisy relative to their 

corresponding δ18Ocalcite records (Leduc et al., 2007; Pak et al., 2012, Taylor et al., in revision). A 

further complication for Pacific SST reconstructions involves the lack of SST calibrations for N. 

pachyderma Mg/Ca values.  Additionally at MD02-2496 specimen scarcity prevented multiple 

analyses of outlier values to reduce data variability. In the future, increasing use of secondary ion 

mass spectrometry (SIMS) and laser ablation mass spectrometry will be enable the refining of 

Mg/Ca calibrations and analysis in foraminifera (Vetter et al., 2013). However, despite these 

issues the overall coherence between two species at MD02-2496, N. pachyderma and G. 

bulloides, indicated that temperature trends were robust in the record and demonstrated the utility 

of the use of multiple species in SST reconstructions. 

 In 2013, the Integrated Ocean Drilling Program (IODP) collected 3420 meters of core 

material from the margin of the Gulf of Alaska to establish the timing of advance and retreat 
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phases of the northern marine margin of CIS. These cores were drilled in a depth transect from 

the continental shelf to deeper sediments beneath the subartic gyre (IODP report, 2014). This 

new collection of cores will provide a northern perspective on changes in surface water 

circulation, bottom water oxygenation, productivity, ice-ocean interactions, and intermediate 

water masses during MIS 3 and the deglacial.  

 Annual and multiyear sea-ice creates another significant body of ice that plays a major 

role in the regional climate and biogeochemistry of the polar surface ocean. Chapter 4 contains 

the results of a novel study characterizing sediment composition within Arctic sea ice in shallow 

continental shelf settings offshore from Barrow, AK and in the Canadian Arctic Archipelago.  

Here I investigated whether these sediments deposited onto and within sea ice constitute a 

reservoir of bioessential metals for surface dwelling primary producers. Continental shelves are 

projected to be regions of increased NO3
- availability in a future warmer planet due to increased 

upwelling in shallow regions (Tremblay et al., 2011), especially in spring during the early 

phytoplankton bloom.  It has been hypothesized that there is a greater likelihood of Fe limitations 

to primary producers in oceanic areas where more intense upwelling bring NO3
- to surface waters 

(Taylor et al., 2013). In order to estimate the proportion bioavailable Fe in sea-ice sediments, we 

used a sediment leach protocol designed to extract “labile”, or easily accessible crystalline and 

amorphous Fe-oxyhydroxides and biogenic Fe (Berger et al., 2008). Average sea ice sediment 

concentrations were ~150 to 750 ppb in the CAA cores, and were likely higher in the Barrow, 

AK cores. The ratio of labile to total Fe at these sites was high relative to the few measurements 

that have been made in the Arctic. Here I established an important baseline geochemistry for an 

environment that is rapidly changing due to anthropogenic climate change (Post et al., 2013). 

More work needs to be done to better constrain both community structure of primary producers 
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and to better establish the cellular demand for nutrients of these organisms before the importance 

of the high labile Fe concentrations found in sea ice sediments can be assessed. However, given 

the spatial and temporal variability of surface nutrients and uptake by phytoplankton as well as 

export from the surface mixed layer over the course of the growing season constraining Arctic 

primary production requirements may be difficult (Popova et al., 2012). Iron isotopes have been 

utilized during algal blooms to map these processes in situ, and also in shipboard mesocosm 

experiments in the subtropical Pacific Ocean through programs like GEOTRACES (Ellwood et 

al., 2014). Similar experiments conducted in the Arctic would likewise be informative. 

 More work also needs to be undertaken to constrain sediments sources, in addition to 

sediment transport and delivery mechanisms in order to understand the dominant processes 

enriching sediments in sea ice. Processes concentrating sediments in sea ice are likely dependent 

the age and thickness of sea ice which will dictate the length of time over which these processes 

operate. Additionally the location will play a role. Sea ice closer to shore and in shallower seas 

likely have greater influx of terrigenous sediments from runoff, ice caps or glaciers, or upwelled 

shelf sediments. Sea ice further from shore may have a great component of dust relative to these 

other inputs. Finally, Fe speciation would be useful to determine biogenic versus inorganic 

sediments as well as bioavailability.  
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Appendix A 

Supplementary Figures and Tables for Chapters 2 and 3 

 

 

 

 

 

Figure A.1 
Age in calendar years B.P. versus core depth (corrected cm below core top). Age model was generated using calibrated mixed 
planktonic species and bulk organic carbon (purple marks) radiocarbon dates (Cosma et al., 2008).  The previously published 
radiocarbon dates were recalibrated using the MARINE13 calibration (Reimer et al., 2013). The age model (red dotted line) is a 
Bayesian interpolation between dates generated with Monte Carlo simulated age model errors (width of black line) using Bacon 
2.2 (Blaau and Christen, 2011). 
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Figure A.2 
Fe/Ca (µmol/mol) (blue diamonds) and Mn/Ca (µmol/mol) (red squares) ratios versus Mg/Ca (mmol/mol) ratios for (A) N. 
pachyderma and (B) G. bulloides. Sr/Ca (mmol/mol) ratios (green triangles) versus Mg/Ca (mmol/mol) ratios for (C) N. 
pachyderma and (D) G. bulloides. 
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Table A.1 
Radiocarbon dates, calibrated calendar ages datum in core MD02-2496 
 

	
  
	
  

ID Sample Interval Depthß (cm) 14 C age¥ Lab error 
(years)

Calendar Age 
(years)

1 Sigma range 
(years)

2 Sigma range 
(years) Depth (cm) Datum 

(years)

UCIAMS 31569 60-61.5 48 3080Ï ±15 2374.5 67.5 126

UCIAMS 31570 75-76.5 63 3295 Ï ±15 2690.5 52.5 201

UCIAMS 31571 85-86.5 73 3525 Ï ±15 2898.5 73.5 135

UCIAMS 31572 110-111.5 98 3890 Ï ±15 3382 62 150

UCIAMS 31573 205-206.5 185 4175 Ï ±15 - -

UCIAMS 31574 574-576.5 - 7210 Ï ±20 - -

UCIAMS 31569 700-701.5 412 9215 Ï ±25 10354.5 60.5 88

CAMS 107298 700-701.5 412 10065 ±45 10693 92 145

CAMS 120938 740-741.5 452 11850 ±150 - -

CAMS 118214 800-801.5 512 11565 ±40 12660 55 102

CAMS 107299 820-821.5 532 11790 ±45 12840.5 88.5 160

CAMS 120937 840-841.5 552 14025 ±50 - -

CAMS 118215 880-881.5 592 13305 ±40 14736 228 449 592 14736

CAMS 107300 960-961.5 672 13340 ±50 - -

CAMS 118216 1045-1047 757 13390 ±180 - -

CAMS 118217 1125-1127 837 13695 ±45 15385 132.5 222.5

CAMS 107302 1140-1141.5 852 13920 ±60 15741 146 340

CAMS 118218 1280-1281.5 992 14340 ±45 16290 118 224

CAMS 118219 1333-1335 1045 14660 ±70 16781 164 339

CAMS 118220 1430-1432 1142 14695 ±45 16830.5 141.5 295.5

CAMS 118222 1440-1441.5 1152 14970 ±50 17242 127 238

CAMS 118221 1530-1532 1242 14900 ±150 - -

CAMS 107303 1600-1601.5 1312 14855 ±45 - -

CAMS 107304 1640-1641.5 1352 15310 ±60 17678.5 120.5 219.5 1352 17679

CAMS 118223 1745-1747 1457 15765 ±50 18183 111 225 1457 18183

CAMS 107305 1880-1881.5 1592 16510 ±60 18938 91 161 1592 18938

CAMS 118224 1945-1947 1657 16800 ±60 19308 128 259 1657 19308

CAMS 118225 2050-2052 1762 18650 ±60 21632.5 133.5 270.5 1762 21633

CAMS 107306 2140-2141.5 1852 20420 ±90 23636 154 319 1852 23636

CAMS 118226 2195-2197 1907 21370 ±90 24747.5 200.5 338.5 1907 24748

CAMS 118227 2265-2267 1977 22780 ±100 26165 137 227 1977 26165

CAMS 107307 2340-2341.5 2052 23150 ±120 26614.5 231.5 399.5 2052 26615

CAMS 118229 2345-2347 2057 25190 ±140 - -

CAMS 118228 2412-2413.5 2124 24930 ±120 28144.5 178.5 311.5 2124 28145

CAMS 107308 2520-2521.5 2232 26380 ±200 29718 315 562 2232 29718

CAMS 118230 2588-2590 2300 29010 ±200 32016.5 360.5 548.5 2300 32017

CAMS 118231 2688-2690 2391 33150 ±320 36220 372 765 2391 36220

CAMS 118233 2860-2861.5 2563 38590 ±640 - -

CAMS 118232 3032-3034 2735 38430 ±600 41980.5 424.5 972.5 2735 41981

CAMS 118234 3144-3146 2847 41900 ±930 44544.5 812.5 1561.5 2847 44545

CAMS 120936 3325-3327 3028 >44900 - -

CAMS 120935 3390-3392 3093 >51300 - -

CAMS 120934 3480-3481.5 3183 >50500 - -

CAMS 120933 3560-3561.5 3263 >48900 - -

CAMS 118235 3620-3621.5 3323 43100 ±1060 45596 982 1960 3323 45596

CAMS 118236 574-576 14720 ±280 - -
ß  Depth was corrected for voids and disturbed sediments (see Table 1).
¥  14C ages were not corrected for reservoir effect by 807 years (Robinson and Thompson, 1981).
ƒ 

Calendar ages between 22
14

C Kyr and present were determined by CALIB04 (Stuiver et al., 2004). 

Calendar ages beyond 22
14

C Kyr were calibrated using the radiocarbon data of Hughen et al., (2004). 

Calibrations were generated using interpolation between data points. 

* Ages and depths were averaged.
 14C age was generated from mixed benthic foraminiferal species.

Ï
 14C age was generated from bulk organic carbon.

70.5* 2836*

412 10524*

522* 12750*

845* 15563*

1147* 17036*

1018.5* 16536*
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Table A.2 
Neogloboquadrina pachyderma data for MD02-2496 
 

 
 
 
 

Corrected 

Depth Age Mg/Ca SST
18

Ocalcite

Ice volume 

corrected 
18

Ocalcite  
18

Oseawater

Corrected 

Depth Age Mg/Ca SST
18

Ocalcite

Ice volume 

corrected 
18

Ocalcite  
18

Oseawater

(cm) kyr (mmol/mol) (˚C) (VPDB) (VPDB) (VSMOW) (cm) kyr (mmol/mol) (˚C) (VPDB) (VPDB) (VSMOW)

407 9.826 0.84 4.8 1.38 1.00 1747 21.255 0.83 4.7 2.96 1.88 -0.83

467 11.395 0.91 5.6 2.17 1.60 -0.88 1757 21.475 0.74 3.5 2.90 1.82 -1.22

482 11.821 1.36 9.6 2.39 1.82 0.37 1767 21.700 1.01 6.7 2.64 1.56 -0.64

487 11.964 0.88 5.2 2.36 1.79 -0.79 1777 21.927 0.72 3.2 2.85 1.77 -1.33

497 12.264 0.73 3.4 2.82 2.15 -0.92 1782 22.039 0.82 4.5 2.89 1.84 -0.93

517 12.702 1.23 8.6 1.74 1.07 -0.65 1782 22.039 0.85 4.9 2.89 1.84 -0.84

532 12.936 0.97 6.2 1.69 1.02 -1.30 1787 22.150 0.75 3.7 2.84 1.79 -1.21

537 13.082 1.03 6.9 1.80 1.02 -1.13 1792 22.257 0.82 4.5 2.85 1.80 -0.96

547 13.373 0.97 6.3 1.62 0.84 -1.47 1797 22.364 0.76 3.7 2.74 1.69 -1.29

562 13.746 1.38 9.8 2.03 1.25 -0.17 1807 22.581 0.79 4.2 3.12 2.07 -0.78

567 13.868 1.29 9.1 2.19 1.41 -0.18 1817 22.805 0.83 4.6 2.84 1.79 -0.95

577 14.032 1.05 7.0 1.71 0.84 -1.28 1822 22.917 0.75 3.7 2.88 1.83 -1.16

587 14.186 1.36 9.6 1.87 1.00 -0.47 1827 23.030 0.89 5.4 2.95 1.93 -0.60

599 14.275 1.60 11.2 2.01 1.14 0.07 1837 23.252 0.80 4.3 2.63 1.61 -1.22

622 14.412 1.61 11.3 3.01 2.14 1.09 1847 23.474 0.95 6.0 2.90 1.88 -0.49

627 14.439 0.98 6.3 3.13 2.26 -0.04 1867 23.928 0.82 4.6 2.62 1.60 -1.15

667 14.649 1.11 7.6 2.88 2.01 0.03 1872 24.032 1.08 7.3 3.19 2.21 0.17

677 14.700 0.99 6.4 1877 24.134 1.25 8.8 3.06 2.08 0.41

697 14.799 1.32 9.3 2.54 1.67 0.13 1887 24.336 1.32 9.3 3.21 2.23 0.70

707 14.847 1.24 8.7 2.52 1.65 -0.06 1897 24.535 0.83 4.6 2.55 1.57 -1.17

722 14.918 0.88 5.3 2.44 1.57 -1.00 1907 24.733 0.87 5.2 2.96 1.98 -0.61

797 15.297 0.97 6.2 2.83 1.87 -0.45 1917 24.938 0.69 2.8 3.10 2.12 -1.11

802 15.323 1.05 7.0 2.85 1.89 -0.22 1922 25.039 0.79 4.1 2.84 1.90 -0.98

807 15.349 1.03 6.9 2.80 1.84 -0.31 1927 25.139 0.70 3.0 3.10 2.16 -1.01

812 15.374 1.02 6.7 2.81 1.85 -0.34 1932 25.238 0.95 6.0

817 15.400 0.96 6.1 2.94 1.98 -0.37 1937 25.336 0.70 3.0 3.28 2.34 -0.84

847 15.564 0.89 5.3 2.72 1.76 -0.79 1942 25.434 0.60 1.5 3.30 2.36 -1.24

852 15.591 0.98 6.4 2.95 1.99 -0.30 1947 25.532 1.02 6.8 3.18 2.24 0.05

882 15.746 0.87 5.2 2.59 1.63 -0.96 1952 25.632 1.02 6.7 2.88 1.94 -0.26

902 15.847 1.04 7.0 2.69 1.73 -0.40 1962 25.832 1.25 8.8 2.91 1.97 0.29

942 16.053 0.91 5.6 2.98 1.95 -0.53 1967 25.931 0.87 5.1 2.78 1.84 -0.78

967 16.181 0.91 5.6 2.95 1.92 -0.55 1972 26.021 0.74 3.5 3.09 2.18 -0.85

972 16.207 1.08 7.3 3.22 2.19 0.14 1977 26.109 0.68 2.7 3.00 2.09 -1.17

992 16.309 0.83 4.6 2.97 1.94 -0.80 1987 26.287 0.71 3.1 2.77 1.86 -1.30

997 16.334 1.10 7.5 3.20 2.17 0.17 1992 26.356 0.81 4.4 3.04 2.13 -0.66

1012 16.407 1.04 7.0 3.04 2.01 -0.12 2002 26.483 1.12 7.7 2.98 2.07 0.12

1017 16.432 0.86 5.0 3.05 2.02 -0.62 2007 26.545 1.04 6.9 2.73 1.82 -0.33

1022 16.456 0.84 4.8 3.01 1.98 -0.70 2017 26.673 0.89 5.4 2.78 1.87 -0.68

1027 16.481 0.66 2.5 2.94 1.91 -1.41 2022 26.737 0.71 3.1 2.80 1.89 -1.26

1037 16.526 0.89 5.3 3.00 1.97 -0.58 2027 26.801 0.73 3.4 2.74 1.83 -1.25

1042 16.549 0.68 2.7 3.37 2.34 -0.90 2047 27.053 0.88 5.2 2.39 1.50 -1.08

1067 16.643 1.04 7.0 3.04 2.01 -0.12 2067 27.408 0.79 4.2 2.16 1.27 -1.58

1127 16.861 0.75 3.7 3.00 1.97 -1.02 2077 27.550 1.13 7.8 2.49 1.60 -0.33

1137 16.898 0.92 5.7 3.12 2.09 -0.37 2087 27.689 0.86 5.0 2.56 1.67 -0.96

1147 16.937 0.78 4.1 2.94 1.91 -0.97 2092 27.759 0.65 2.2 3.05 2.16 -1.22

1152 16.954 0.71 3.1 3.02 1.99 -1.14 2092 27.759 0.68 2.6 3.05 2.16 -1.11

1182 17.049 0.72 3.2 3.07 1.99 -1.13 2120 28.148 0.70 2.9 3.10 2.22 -0.98

1207 17.124 0.84 4.7 3.13 2.05 -0.65 2132 28.327 0.75 3.7 2.34 1.46 -1.52

1212 17.139 0.79 4.2 2.89 1.81 -1.05 2152 28.661 0.73 3.4 3.09 2.21 -0.86

1252 17.261 0.74 3.6 3.21 2.13 -0.88 2156 28.729 0.80 4.3 3.10 2.22 -0.60

1257 17.276 0.83 4.7 3.02 1.94 -0.78 2168 28.933 1.46 10.3 3.25 2.37 1.08

1267 17.308 0.69 2.8 2.92 1.84 -1.38 2172 29.001 0.72 3.3 2.89 2.02 -1.08

1277 17.339 0.72 3.3 3.19 2.11 -0.98 2176 29.069 0.94 5.9 3.28 2.41 0.00

1282 17.355 0.68 2.7 3.13 2.05 -1.19 2180 29.137 0.74 3.5 3.30 2.43 -0.61

1287 17.371 0.74 3.5 3.14 2.06 -0.98 2188 29.272 0.74 3.5 3.14 2.27 -0.77

1302 17.419 0.70 3.0 2.99 1.91 -1.26 2200 29.477 0.75 3.6 3.02 2.15 -0.85

1307 17.435 0.66 2.4 3.18 2.10 -1.25 2204 29.545 1.03 6.8 3.21 2.34 0.18

1312 17.456 0.67 2.6 3.29 2.21 -1.08 2208 29.612 0.73 3.4 3.15 2.28 -0.79

1317 17.479 0.64 2.1 3.26 2.18 -1.23 2212 29.680 0.89 5.3 3.35 2.48 -0.07

1322 17.502 0.68 2.7 3.23 2.15 -1.11 2216 29.748 0.74 3.5 3.27 2.40 -0.64

1327 17.526 0.85 4.9 3.18 2.10 -0.55 2220 29.816 0.81 4.4 3.20 2.33 -0.46

1332 17.552 0.61 1.6 3.01 1.93 -1.61 2224 29.883 0.79 4.1 3.15 2.28 -0.59

1337 17.580 0.66 2.4 3.18 2.10 -1.23 2224 29.949 0.79 4.2 3.15 2.28 -0.58

1342 17.608 0.85 4.9 3.13 2.05 -0.60 2232 30.045 0.65 2.2

1382 17.822 0.79 4.2 3.18 2.10 -0.75 2236 30.145 0.70 2.9 3.01 2.15 -1.05

1402 17.926 0.62 1.7 2.94 1.86 -1.67 2240 30.242 0.88 5.3 2.79 1.93 -0.64

1417 18.004 0.71 3.1 3.08 1.98 -1.17 2240 30.242 1.17 8.1 2.79 1.93 0.09

1427 18.057 0.61 1.5 3.08 1.98 -1.59 2252 30.558 0.72 3.3 2.89 2.03 -1.06

1432 18.083 0.79 4.1 3.21 2.11 -0.75 2256 30.682 0.78 4.1 3.15 2.29 -0.60

1437 18.109 0.65 2.3 3.05 1.95 -1.42 2260 30.807 0.74 3.6 2.99 2.13 -0.90

1447 18.161 0.82 4.6 2.97 1.87 -0.89 2264 30.931 0.88 5.2 3.06 2.20 -0.38

1452 18.187 0.97 6.2 2.65 1.55 -0.77 2268 31.055 1.27 8.9 2.81 1.95 0.31

1457 18.214 0.82 4.6 2.74 1.64 -1.11 2272 31.180 1.08 7.4 2.99 2.13 0.10

1467 18.267 0.77 3.9 2.93 1.83 -1.09 2280 31.431 1.06 7.1 2.72 1.86 -0.23

1472 18.296 0.82 4.6 2.44 1.34 -1.41 2284 31.553 1.52 10.7 2.96 2.10 0.90

1478 18.331 1.03 6.9 2.60 1.50 -0.65 2288 31.676 0.65 2.3 3.19 2.33 -1.04

1482 18.355 0.99 6.5 2.60 1.50 -0.75 2292 31.809 0.75 3.6 3.02 2.16 -0.85

1487 18.384 0.89 5.4 2.64 1.54 -1.00 2296 31.943 0.59 1.3 3.06 2.20 -1.43

1492 18.413 0.91 5.6 2.49 1.39 -1.10 2300 32.078 0.80 4.4 2.98 2.12 -0.69

1507 18.500 0.85 4.9 2.90 1.80 -0.88 2304 32.214 0.62 1.8 3.02 2.16 -1.33

1512 18.530 0.81 4.5 2.99 1.89 -0.89 2312 32.508 1.15 7.9

1517 18.560 0.67 2.6 2.63 1.53 -1.75 2316 32.668 1.11 7.6 3.04 2.18 0.21

1522 18.590 0.74 3.6 2.78 1.68 -1.34 2320 32.825 0.69 2.9 2.77 1.91 -1.29

1527 18.620 0.90 5.4 2.97 1.87 -0.65 2324 32.981 1.18 8.2 3.04 2.18 0.36

1537 18.678 0.62 1.7 3.05 1.95 -1.57 2328 33.135 1.65 11.6 3.05 2.19 1.21

1542 18.707 0.70 3.0 2.90 1.80 -1.37 2332 33.295 1.59 11.2 2.82 1.96 0.89

1547 18.736 0.66 2.3 3.26 2.16 -1.20 2332.5 33.295 0.88 5.3

1552 18.766 0.68 2.7 2.65 1.55 -1.71 2333 33.335 0.74 3.5

1557 18.795 0.66 2.4 3.01 1.91 -1.44 2337 33.494 1.45 10.3 2.63 1.77 0.47

1562 18.826 1.11 7.6 2.93 1.83 -0.15 2341 33.653 0.76 3.8 2.63 1.77 -1.18

1567 18.855 0.70 2.9 2.57 1.47 -1.72 2343 33.734 0.81 4.5 3.02 2.16 -0.62

1577 18.912 0.72 3.2 2.93 1.83 -1.28 2343 33.734 0.87 5.1 3.02 2.16 -0.44

1597 19.038 0.72 3.3 2.85 1.75 -1.34 2343 33.734 1.41 10.0 3.02 2.16 0.79

1607 19.107 0.76 3.8 3.00 1.90 -1.07 2347 33.894 0.77 3.9 2.86 2.00 -0.93

1612 19.142 0.87 5.1 2.76 1.66 -0.95 2351 34.052 0.72 3.2 2.89 2.03 -1.09

1617 19.177 0.66 2.4 2.52 1.42 -1.93 2355 34.212 1.05 7.0 2.96 2.10 -0.01

1627 19.247 0.76 3.8 2.95 1.85 -1.12 2363 34.532 0.88 5.2 2.97 2.11 -0.46

1637 19.319 0.81 4.4 2.73 1.63 -1.16 2367 34.690 0.72 3.3 2.88 2.02 -1.08

1652 19.437 1.05 7.0 2.79 1.69 -0.43 2371 34.849 1.39 9.9 2.43 1.57 0.17

1657 19.488 1.08 7.3 2.60 1.50 -0.55 2375 35.006 0.84 4.8 2.49 1.63 -1.06

1662 19.538 0.86 5.0 2.88 1.78 -0.86 2379 35.164 0.82 4.6 2.50 1.64 -1.11

1672 19.680 0.77 4.0 2.45 1.35 -1.56 2383 35.320 0.91 5.6 2.73 1.87 -0.62

1682 19.887 1.14 7.9 2.82 1.72 -0.17 2387 35.475 0.88 5.3 2.83 1.97 -0.60

1692 20.094 0.93 5.8 2.84 1.75 -0.68 2391 35.585 0.94 5.9 2.64 1.78 -0.61

1702 20.305 1.19 8.3 2.86 1.77 -0.03 2397 35.723 0.78 4.1 3.01 2.15 -0.74

1707 20.410 0.88 5.3 2.94 1.85 -0.72 2403 35.860 0.71 3.1 2.71 1.85 -1.31

1717 20.624 0.84 4.8 2.86 1.77 -0.93 2411 36.030 0.73 3.4 2.88 2.02 -1.05

1727 20.839 0.87 5.1 2.94 1.85 -0.77 2419 36.180 0.74 3.5 2.97 2.11 -0.92

1737 21.047 0.73 3.4 2.77 1.69 -1.38 2427 36.333 0.86 5.0 2.96 2.10 -0.53
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Table A.2 continued  
	
  
 

 

Corrected 

Depth Age Mg/Ca SST
18

Ocalcite

Ice volume 

corrected 
18

Ocalcite  
18

Oseawater

(cm) kyr (mmol/mol) (˚C) (VPDB) (VPDB) (VSMOW)

2435 36.485 0.70 2.9 3.09 2.23 -0.97

2451 36.788 0.79 4.2 2.88 2.02 -0.85

2459 36.940 1.06 7.2 2.88 2.02 -0.06

2467 37.092 0.73 3.4 3.00 2.14 -0.92

2479 37.325 1.33 9.4 2.50 1.64 0.11

2483 37.402 0.71 3.2

2491 37.557 0.68 2.6 2.94 2.08 -1.20

2499 37.708 0.87 5.1 3.03 2.17 -0.45

2508 37.875 0.83 4.7 2.83 1.97 -0.75

2516 38.027 0.78 4.1 2.36 1.51 -1.38

2523 38.162 0.87 5.2 2.64 1.79 -0.81

2527 38.239 0.80 4.3 2.78 1.93 -0.89

2539 38.467 0.88 5.3 2.96 2.11 -0.46

2551 38.697 0.88 5.3 2.40 1.55 -1.01

2555 38.773 1.26 8.8 2.25 1.40 -0.26

2563 38.926 0.75 3.7 2.21 1.36 -1.63

2575 39.119 0.71 3.1 2.49 1.65 -1.49

2583 39.228 0.86 5.0 2.81 1.97 -0.68

2591 39.339 0.78 4.1 2.91 2.07 -0.82

2599 39.451 0.79 4.1

2607 39.563 0.94 5.9 3.07 2.23 -0.18

2615 39.677 0.76 3.8 2.81 1.97 -1.00

2623 39.790 0.81 4.5 2.94 2.10 -0.69

2631 39.903 0.88 5.3 2.76 1.92 -0.65

2639 40.017 0.80 4.3 2.43 1.60 -1.22

2639 40.017 0.83 4.6 2.43 1.60 -1.14

2647 40.130 0.82 4.5 2.75 1.92 -0.85

2655 40.242 0.99 6.5 2.89 2.06 -0.19

2675 40.517 0.89 5.3 2.33 1.50 -1.05

2683 40.629 1.08 7.3 2.40 1.57 -0.47

2691 40.739 0.96 6.1 2.15 1.32 -1.03

2699 40.849 0.72 3.3 2.19 1.36 -1.74

2703 40.904 1.18 8.2 2.49 1.66 -0.17

2707 40.959 1.59 11.2 2.64 1.81 0.73

2711 41.014 0.68 2.7 2.52 1.70 -1.54

2719 41.125 0.82 4.6 2.58 1.76 -0.99

2723 41.181 0.73 3.4 2.76 1.94 -1.13

2727 41.235 0.85 4.9 2.64 1.82 -0.84

2727 41.235 0.90 5.5 2.64 1.82 -0.69

2727 41.235 1.74 12.1 2.64 1.82 0.96

2731 41.288 0.73 3.4 2.44 1.62 -1.45

2739 41.393 0.76 3.8 2.51 1.69 -1.26

2763 41.686 1.12 7.7 2.36 1.54 -0.41

2767 41.732 0.80 4.4 2.49 1.67 -1.14

2771 41.779 0.88 5.3 2.67 1.85 -0.71

2775 41.824 0.81 4.5 2.75 1.93 -0.85

2779 41.869 0.71 3.1 2.69 1.87 -1.27

2783 41.916 0.73 3.4 2.76 1.94 -1.13

2787 41.961 0.91 5.6 2.62 1.80 -0.69

2795 42.055 0.71 3.1 2.87 2.06 -1.09

2799 42.100 0.75 3.7 2.90 2.09 -0.90

2803 42.146 0.77 3.9 2.90 2.09 -0.83

2811 42.239 0.79 4.2 2.98 2.17 -0.68

2819 42.331 0.74 3.5 2.71 1.90 -1.13

2827 42.425 0.69 2.9 3.23 2.42 -0.79

2835 42.516 0.73 3.3 2.87 2.06 -1.02

2839 42.562 0.69 2.8 2.93 2.12 -1.11

2839 42.562 0.69 2.9 2.93 2.12 -1.08

2851 42.693 0.67 2.5 2.97 2.16 -1.15

2851 42.693 0.72 3.3 2.97 2.16 -0.93

2859 42.771 0.76 3.8 2.99 2.18 -0.77

2867 42.847 0.65 2.2 3.23 2.42 -0.97

2875 42.921 0.80 4.4 2.87 2.06 -0.74

2883 42.994 0.78 4.1 3.10 2.29 -0.59

2891 43.069 0.72 3.3 3.11 2.32 -0.78

2903 43.178 1.20 8.3 3.20 2.41 0.62

2913 43.272 0.74 3.6 3.13 2.34 -0.69

2923 43.366 0.68 2.7 3.08 2.29 -0.96

2933 43.459 0.97 6.3 3.00 2.21 -0.10

2958 43.686 0.90 5.5 3.03 2.24 -0.28

2963 43.733 0.94 5.9 2.96 2.17 -0.24

2993 44.010 1.18 8.2 2.94 2.16 0.35

3003 44.105 0.82 4.5 2.73 1.95 -0.82

3008 44.153 0.96 6.1 2.47 1.69 -0.65

3023 44.287 0.92 5.8 2.36 1.58 -0.86

3033 44.377 0.80 4.4 2.75 1.97 -0.84

3043 44.469 0.82 4.6 2.80 2.02 -0.74

3048 44.516 0.84 4.8 2.86 2.08 -0.62

3063 44.653 0.74 3.6 2.92 2.14 -0.88

3083 44.838 0.85 4.9 2.99 2.21 -0.46

3088 44.885 0.89 5.4 3.13 2.35 -0.19

3093 44.931 0.74 3.5 3.05 2.27 -0.77

3103 45.023 0.73 3.3 2.99 2.22 -0.86

3113 45.117 0.79 4.2 2.95 2.18 -0.67

3138 45.348 0.74 3.5 3.30 2.53 -0.50

3188 45.806 1.06 7.1 2.81 2.04 -0.06

3203 45.948 0.88 5.3 2.92 2.15 -0.42

3223 46.134 0.69 2.8 2.83 2.07 -1.17

3233 46.227 1.05 7.0 2.87 2.11 -0.01

3243 46.320 0.82 4.6 2.92 2.16 -0.59

3258 46.463 1.31 9.3 2.83 2.07 0.52

3283 46.697 0.89 5.3 2.84 2.08 -0.47

3293 46.790 0.92 5.7 2.78 2.02 -0.44

3303 46.881 0.93 5.9 2.62 1.86 -0.56

3323 47.065 0.89 5.3 2.51 1.76 -0.80

3333 47.155 1.33 9.4 2.91 2.16 0.63

3338 47.200 1.26 8.9 2.82 2.07 0.42

3348 47.290 0.98 6.3 2.77 2.02 -0.28

3357 47.380 1.30 9.1 2.73 1.98 0.40

3363 47.425 1.11 7.5 2.77 2.02 0.04

3423 47.965 1.18 8.2 2.92 2.17 0.34

3498 48.640 1.19 8.3 2.92 2.17 0.37

3498 48.640 1.19 8.3 2.92 2.17 0.38

3523 48.865 0.91 5.6 2.64 1.89 -0.58

3533 48.955 1.10 7.5 3.09 2.34 0.35
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Table A.3 
Globigerina bulloides data for MD02-2496 

	
  

Corrected 

Depth Age Mg/Ca SST
18

Ocalcite

Ice volume 

corrected 
18

Ocalcite  
18

Oseawater

Corrected 

Depth Age Mg/Ca SST
18

Ocalcite

Ice volume 

corrected 
18

Ocalcite  
18

Oseawater

(cm) kyr (mmol/mol) (˚C) (VPDB) (VPDB) (VSMOW) (cm) kyr (mmol/mol) (˚C) (VPDB) (VPDB) (VSMOW)

407 9.826 1.49 10.5 1.32 0.94 -0.30 1707 20.410 1.13 7.8 3.01 1.92 0.00

497 12.264 1.18 8.2 3.03 2.36 0.54 1717 20.624 1.30 9.2 2.53 1.44 -0.14

517 12.702 1.17 8.1 1.96 1.29 -0.56 1727 20.839 1.50 10.6 2.95 1.86 0.63

537 13.082 1.48 10.4 2.08 1.30 0.05 1737 21.047 1.10 7.5 2.84 1.76 -0.24

542 13.228 1.57 11.1 2.42 1.64 0.54 1747 21.255 1.24 8.7 2.71 1.63 -0.06

547 13.373 1.21 8.5 2.31 1.53 -0.21 1757 21.475 1.37 9.7 2.97 1.89 0.45

562 13.746 1.66 11.6 3.02 2.24 1.27 1767 21.700 1.06 7.1 2.87 1.79 -0.31

567 13.868 1.65 11.6 2.82 2.04 1.06 1777 21.927 1.02 6.7 2.97 1.89 -0.30

599 14.275 1.37 9.7 2.89 2.02 0.57 1787 22.150 1.01 6.6 3.16 2.11 -0.10

602 14.295 1.16 8.0 2.87 2.00 0.14 1797 22.364 1.01 6.6 2.74 1.69 -0.53

622 14.412 1.22 8.5 2.96 2.09 0.36 1807 22.581 1.13 7.7 2.82 1.77 -0.17

627 14.439 1.27 8.9 3.25 2.38 0.74 1817 22.805 1.21 8.4 2.99 1.94 0.18

662 14.622 1.29 9.1 3.1 2.23 0.63 1827 23.030 0.93 5.8 3.13 2.11 -0.32

667 14.649 1.21 8.4 2.8 1.93 0.16 1837 23.252 0.97 6.2 2.76 1.74 -0.57

677 14.700 1.24 8.7 3.02 2.15 0.45 1847 23.474 1.20 8.3 2.78 1.76 -0.02

682 14.726 0.97 6.2 1857 23.700 1.25 8.7 2.68 1.66 -0.02

697 14.799 1.16 8.1 2.75 1.88 0.02 1867 23.928 1.09 7.4 2.83 1.81 -0.21

707 14.847 1.14 7.8 2.79 1.92 0.01 1877 24.134 1.18 8.2 2.85 1.87 0.06

722 14.918 1.39 9.8 2.75 1.88 0.47 1887 24.336 1.16 8.0 3.35 2.37 0.51

747 15.039 1.04 7.0 2.86 1.90 -0.23 1897 24.535 1.31 9.3 2.82 1.84 0.29

797 15.297 1.08 7.3 3.19 2.23 0.18 1907 24.733 1.09 7.4 2.93 1.95 -0.06

802 15.323 1.09 7.4 3.11 2.15 0.13 1917 24.938 1.15 7.9 2.69 1.71 -0.18

807 15.349 1.28 9.0 2.89 1.93 0.32 1927 25.139 1.12 7.7 2.8 1.86 -0.10

812 15.374 1.34 9.4 3 2.04 0.54 1937 25.336 1.40 9.9 3.02 2.08 0.68

817 15.400 1.14 7.9 2.98 2.02 0.12 1947 25.532 1.01 6.6 2.89 1.95 -0.28

847 15.564 1.09 7.4 3.22 2.26 0.25 1992 26.356 1.09 7.4 3.23 2.32 0.30

882 15.746 1.20 8.4 3.01 2.05 0.28 2027 26.801 0.97 6.2 2.82 1.91 -0.41

897 15.821 1.10 7.4 2.88 1.92 -0.09 2037 26.926 1.02 6.7 2.99 2.08 -0.12

902 15.847 0.99 6.5 3.03 2.07 -0.18 2047 27.053 1.07 7.2 2.63 1.74 -0.34

927 15.975 1.05 7.0 2.89 1.93 -0.19 2057 27.227 0.86 5.0 3.15 2.26 -0.38

942 16.053 1.08 7.3 3.07 2.04 0.00 2062 27.318 0.98 6.3 2.18 1.29 -1.00

982 16.258 1.03 6.9 3.43 2.40 0.24 2067 27.408 1.05 7.0 2.43 1.54 -0.58

997 16.334 1.00 6.5 3.25 2.22 -0.02 2082 27.619 1.31 9.2 2.91 2.02 0.46

1007 16.383 1.29 9.1 2.93 1.90 0.31 2087 27.689 1.13 7.8 3.14 2.25 0.33

1022 16.456 1.48 10.5 3.1 2.07 0.81 2097 27.830 1.38 9.8 2.9 2.01 0.58

1027 16.481 0.96 6.1 3.22 2.19 -0.16 2112 28.040 0.99 6.5 2.99 2.11 -0.15

1037 16.526 1.07 7.2 2.99 1.96 -0.11 2120 28.148 0.89 5.4 2.74 1.86 -0.68

1042 16.549 0.92 5.7 3.01 1.98 -0.47 2124 28.204 1.02 6.7 2.55 1.67 -0.53

1067 16.643 1.10 7.5 3.21 2.18 0.20 2140 28.461 1.17 8.1 3.05 2.17 0.32

1127 16.861 0.99 6.5 3.26 2.23 -0.03 2152 28.661 0.95 6.0 2.92 2.04 -0.33

1137 16.898 0.93 5.8 3.08 2.05 -0.39 2172 29.001 1.04 6.9 3.24 2.37 0.22

1147 16.937 0.90 5.5 2.96 1.93 -0.57 2180 29.137 1.21 8.4 3.03 2.16 0.40

1152 16.954 0.93 5.8 2.92 1.89 -0.53 2272 31.180 0.85 4.9 3.08 2.22 -0.45

1157 16.970 0.93 5.9 3.15 2.12 -0.30 2284 31.553 1.06 7.1 2.87 2.01 -0.09

1182 17.049 0.96 6.2 2.97 1.89 -0.44 2341 33.653 0.96 6.1 2.68 1.82 -0.52

1202 17.109 1.04 6.9 3.41 2.33 0.20 2363 34.532 1.15 8.0 2.92 2.06 0.19

1207 17.124 0.99 6.5 3.4 2.32 0.06 2371 34.849 1.02 6.7 2.6 1.74 -0.45

1237 17.214 0.91 5.6 2383 35.320 1.17 8.1 2.3 1.44 -0.40

1247 17.245 1.04 7.0 3.12 2.04 -0.08 2523 38.162 1.02 6.8 2.19 1.34 -0.85

1252 17.261 0.97 6.2 3.12 2.04 -0.28 2563 38.926 1.18 8.2 1.86 1.01 -0.81

1257 17.276 0.97 6.3 3.19 2.11 -0.19 2583 39.228 1.28 9.0 2.7 1.86 0.24

1262 17.292 0.96 6.1 3.29 2.21 -0.13 2615 39.677 1.02 6.7 3.04 2.20 0.01

1267 17.308 0.93 5.8 2.88 1.80 -0.63 2623 39.790 0.87 5.1 3.1 2.26 -0.35

1272 17.323 0.94 5.9 3.39 2.31 -0.09 2655 40.242 1.09 7.4 3.02 2.19 0.18

1277 17.339 1.36 9.6 3.2 2.12 0.66 2703 40.904 1.16 8.0 2.8 1.97 0.11

1282 17.355 1.14 7.9 3.41 2.33 0.44 2723 41.181 1.17 8.1 2.7 1.88 0.05

1302 17.419 0.93 5.8 3.27 2.19 -0.24 2763 41.686 0.83 4.7 2.56 1.74 -0.97

1307 17.435 1.09 7.4 3.35 2.27 0.25 2787 41.961 1.27 8.9 2.96 2.14 0.51

1312 17.456 0.88 5.3 3.5 2.42 -0.15 2803 42.146 1.07 7.2 3.07 2.26 0.20

1317 17.479 0.89 5.4 3.12 2.04 -0.49 2883 42.994 1.06 7.2 3.3 2.49 0.41

1322 17.502 0.94 5.9 2.89 1.81 -0.60 2891 43.069 0.96 6.1 3.18 2.39 0.04

1327 17.526 1.06 7.2 3.22 2.14 0.07 2903 43.178 1.01 6.7 3.24 2.45 0.24

1332 17.552 1.05 7.0 3.15 2.07 -0.04 2913 43.272 1.03 6.9 3.21 2.42 0.26

1337 17.580 1.06 7.1 3.18 2.10 0.01 2933 43.459 1.27 8.9 3.25 2.46 0.82

1382 17.822 0.90 5.5 3.31 2.23 -0.29 2973 43.826 1.15 7.9 2.87 2.08 0.19

1387 17.848 1.18 8.2 3.04 1.96 0.14 2983 43.917 1.05 7.1 3.04 2.25 0.14

1427 18.057 1.38 9.8 3.17 2.07 0.65 2993 44.010 1.17 8.1

1432 18.083 1.27 8.9 3.27 2.17 0.54 3003 44.105 1.04 6.9 3.08 2.30 0.16

1437 18.109 0.95 6.1 3 1.90 -0.46 3023 44.287 1.10 7.5 2.05 1.27 -0.73

1447 18.161 1.10 7.5 3.13 2.03 0.04 3033 44.377 1.20 8.3 2.99 2.21 0.43

1452 18.187 1.12 7.7 3 1.90 -0.04 3093 44.931 0.97 6.3 3.17 2.39 0.08

1462 18.241 1.29 9.1 3.21 2.11 0.52 3103 45.023 0.99 6.5 3.02 2.25 0.00

1467 18.267 1.02 6.7 2.99 1.89 -0.31 3143 45.395 0.99 6.5 3 2.23 -0.03

1472 18.296 1.59 11.2 2.79 1.69 0.61 3223 46.134 0.95 6.1 2.87 2.11 -0.25

1478 18.331 1.13 7.7 2.97 1.87 -0.06 3233 46.227 1.03 6.8 2.93 2.17 0.00

1487 18.384 1.74 12.1 2.95 1.85 1.00 3243 46.320 1.08 7.3 3.01 2.25 0.20

1492 18.413 1.10 7.5 2.84 1.74 -0.25 3253 46.415 1.32 9.3 3.03 2.27 0.74

1507 18.500 1.20 8.3 2.92 1.82 0.04 3258 46.463 0.95 6.0 2.97 2.21 -0.17

1512 18.530 0.91 5.6 2.78 1.68 -0.80 3273 46.604 1.14 7.9 2.78 2.02 0.13

1527 18.620 1.12 7.7 3.13 2.03 0.09 3283 46.697 1.25 8.8 2.96 2.20 0.53

1542 18.707 1.00 6.5 3.21 2.11 -0.14 3333 47.155 1.01 6.6 2.99 2.24 0.02

1552 18.766 0.98 6.3 3.1 2.00 -0.30 3338 47.200 1.16 8.0 2.89 2.14 0.27

1557 18.795 1.02 6.7 2.94 1.84 -0.35 3348 47.290 1.04 7.0 2.92 2.17 0.04

1562 18.826 1.14 7.8 2.95 1.85 -0.05 3357 47.380 1.72 11.9 2.63 1.88 0.99

1567 18.855 1.14 7.9 2.76 1.66 -0.23 3363 47.425 1.47 10.4 2.94 2.19 0.91

1577 18.912 0.97 6.2 3.03 1.93 -0.39 3378 47.560 1.50 10.6 2.94 2.19 0.97

1582 18.941 1.09 7.4 2.7 1.60 -0.40 3498 47.740 1.69 11.8 2.92 2.17 1.24

1607 19.107 0.95 6.0 3.14 2.04 -0.34 3508 48.730 1.45 10.3 2.86 2.11 0.81

1612 19.142 1.08 7.3 2.87 1.77 -0.27 3518 48.820 1.57 11.1 2.94 2.19 1.09

1617 19.177 1.06 7.2 2.91 1.81 -0.27 3523 48.865 1.28 9.0 3.08 2.33 0.72

1632 19.283 0.79 4.1 2.74 1.64 -1.23 3533 48.955 0.94 6.0 2.73 1.98 -0.41

1637 19.319 0.99 6.5 2.76 1.66 -0.59 3538 49.000 1.39 9.8 2.92 2.18 0.77

1652 19.437 0.95 6.1 2.94 1.84 -0.52

1662 19.538 1.22 8.5 2.95 1.85 0.12

1677 19.784 1.73 12.0 2.74 1.64 0.77

1682 19.887 1.07 7.3 2.81 1.71 -0.35

1692 20.094 1.07 7.2 3.07 1.98 -0.09

1697 20.200 1.30 9.2 2.77 1.68 0.11

1702 20.305 1.12 7.6 2.81 1.72 -0.24
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Appendix B 

Supplementary Table for Chapter 4 

Table B.1 
Concentrations of grain size diameters from core S4, CAA 

	
  
 

 

 

 

 

 

 

 

 

 

 

Core depth 1-2 m 1-5 m 1-10 m 1-20 m 1-30 m
(cm) (ppb) (ppb) (ppb) (ppb) (ppb)

0 37.4 120.1 185.9 232.6 252.3
9 23.4 68.8 113.6 176.4 201.5

18 26.4 120.2 217.5 328.8 356.2
27 33.6 100.1 154.5 272.0 305.7
36 16.0 51.8 87.3 126.4 137.0
45 11.8 35.1 53.4 63.3 84.5
54 11.2 35.0 58.7 82.5 82.5
63 9.4 31.8 66.9 115.4 136.8
72 20.2 62.6 110.1 160.6 176.1
81 6.1 15.0 26.7 41.2 41.2
90 17.2 56.8 114.0 173.4 191.8
99 9.1 26.2 44.0 68.7 68.7
108 9.4 25.6 46.0 68.2 68.2
117 12.8 28.8 45.9 77.3 77.3
126 21.4 69.4 114.0 166.2 173.0
135 19.9 48.3 69.3 102.3 102.3
144 26.9 81.1 131.4 224.3 230.6
153 23.4 64.2 95.4 137.1 137.1
162 27.1 66.8 97.9 133.8 133.8
171 12.5 46.1 85.5 160.7 175.8
180 18.2 49.1 80.0 150.8 170.5
189 27.8 78.3 118.6 153.3 168.2
198 24.8 100.0 197.7 314.7 345.0
207 8.9 24.4 32.3 36.4 36.4
216 12.3 47.5 84.1 107.0 107.0
225 11.5 31.5 48.6 58.2 58.2
234 8.5 28.0 47.5 60.7 69.1
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Table B.2 
Concentrations of grain size diameters from core S3, CAA 

	
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Core depth 1-2 m 1-5 m 1-10 m 1-20 m 1-30 m
(cm) (ppb) (ppb) (ppb) (ppb) (ppb)

0 51.7 235.1 496.4 721.1 781.8
9 123.5 372.7 687.6 868.0 888.8

18 162.6 601.8 1316.8 1963.8 2050.0
36 24.9 123.1 256.8 400.6 412.1
45 64.8 239.0 449.0 726.5 829.5
54 142.4 494.8 809.0 1160.2 1247.8
63 52.1 201.7 461.2 843.3 911.8
72 52.0 177.5 302.4 419.1 432.2
81 84.0 352.5 723.2 1203.1 1405.1
90 24.6 108.4 243.3 409.6 440.2
99 128.6 355.4 529.8 689.7 698.4
108 161.8 461.5 754.9 1039.0 1061.3
117 85.0 244.3 392.2 552.4 572.8
126 113.7 303.3 424.4 544.0 552.9
135 101.5 320.6 453.6 557.7 593.1
144 102.9 280.6 413.3 580.8 594.6
153 44.2 156.4 260.2 358.8 387.1
162 23.6 82.5 146.6 198.3 198.3
171 29.0 118.4 228.1 371.7 437.3
190 43.6 126.4 198.9 275.9 299.4
189 201.9 622.3 889.7 1027.6 1034.0
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Table B.3 
Labile elemental data for core S2, Point Barrow, AK 

	
  
	
  
 

 

 

 

 

 

 

 

 

 

 
 
 
 

Core depth Grain size Si Ti Al Fe Mn Mg Ca K P Cd Co Cr Cu Mo Ni Zn
(cm) ( m) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM)

5 0.2 - 5 2224.8 16.7 211.7 357.6 19.4 20103.9 0.0 0.0 515.6 0.1 0.2 1.7 7.5 0.0 0.1 4.0
20 0.2 - 5 0.0 10.1 0.0 84.4 1.1 11272.6 0.0 0.0 0.0 0.0 0.0 9.5 3.5 0.0 0.0 0.0

63.5 0.2 - 5 1200.0 12.0 26.1 51.1 1.2 16928.6 6455.9 7013.5 77.9 0.0 0.2 0.5 6.5 0.0 0.0 7.3
90 0.2 - 5 98282.5 10.1 110.9 153.0 3.2 15679.6 226210.2 62607.6 35860.9 0.0 0.0 0.0 3.7 0.0 0.0 0.0
113 0.2 - 5 2202.7 10.8 256.8 484.7 21.0 14019.6 8651.5 8697.9 131.2 0.1 0.7 2.6 11.7 0.0 0.1 3.3
127 0.2 - 5 1165.9 3.8 0.0 115.8 8.6 5303.7 12021.7 13124.3 105.3 0.0 0.0 0.2 0.7 0.0 0.0 0.0

Seawater 0.2 - 5 1434.9 0.0 0.0 0.0 0.0 0.0 7752.3 7782.7 106.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 5 - 10 1100.3 12.8 0.0 39.7 2.1 20046.9 0.0 0.0 282.5 0.0 0.0 0.0 13.2 0.0 3.7 4.2
20 5 - 10 18686.9 13.6 17.9 68.7 1.9 10174.5 31141.3 22147.4 2697.2 0.0 0.0 0.3 2.0 0.0 0.0 0.2

63.5 5 - 10 1684.1 6.8 0.0 0.0 0.0 10866.2 8920.3 8476.7 243.1 0.0 0.3 0.0 0.0 0.0 0.0 0.0
90 5 - 10 32860.4 13.6 0.0 12.8 1.0 19757.6 46161.3 23782.9 2715.4 0.0 0.0 0.0 0.6 0.0 0.0 0.0
113 5 - 10 2580.0 3.0 0.0 54.5 6.7 5086.3 35543.8 36635.4 311.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
127 5 - 10 1097.5 6.7 0.0 115.9 8.8 9339.6 0.0 0.0 131.9 0.0 0.0 1.2 1.1 0.0 0.0 0.0

Seawater 5 - 10 1583.6 0.0 0.0 0.0 0.0 0.0 10100.7 9504.0 280.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 10 - 30 1724.4 84.8 2930.2 4739.1 204.9 53465.7 9587.6 9495.3 223.8 0.3 3.4 27.6 18.1 0.2 3.8 36.3
20 10 - 30 0.0 446.3 10882.5 15342.7 524.8 53115.4 0.0 0.0 0.0 0.5 7.5 50.1 56.3 0.9 9.8 85.2

63.5 10 - 30 1135.0 65.5 2482.8 4625.6 357.8 55196.7 9364.3 9172.9 80.9 0.3 4.4 10.5 38.9 0.3 2.8 57.9
90 10 - 30 1187.6 218.2 23033.0 76297.3 7439.1 83999.8 8395.0 8816.4 148.4 1.4 41.9 19.7 114.1 0.7 26.6 206.7
113 10 - 30 0.0 1010.4 64547.9 218342.7 21480.2 209643.5 0.0 0.0 0.0 38.3 133.3 110.3 253.8 1.5 125.3 776.2
127 10 - 30 12955.6 39.5 1211.7 1530.7 62.1 32984.1 58224.9 34852.3 1835.2 0.4 1.2 9.1 11.9 0.2 1.7 13.4

Seawater 10 - 30 15168.3 0.0 0.0 0.0 0.0 0.0 37834.7 33221.5 1036.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 > 30 842.0 9.7 0.0 0.0 0.2 14609.3 0.0 0.0 25.9 0.0 0.0 0.0 0.3 0.0 0.9 0.0
20 > 30 0.0 19.2 232.8 292.7 5.2 18029.6 0.0 0.0 0.0 0.0 0.1 0.0 1.4 0.0 0.0 14.0

63.5 > 30 1088.1 21.8 3.2 0.0 0.7 24095.1 11200.8 11378.2 144.8 0.0 0.0 0.0 0.1 0.0 0.0 1.1
90 > 30 1214.7 36.7 2614.9 6276.7 530.2 25231.4 3097.8 3299.7 146.7 0.1 8.3 3.4 16.6 0.1 2.3 27.0
113 > 30 79240.0 62.7 3665.5 95782.1 3053.3 23597.6 1244830.7 132739.4 80055.2 0.8 106.7 27938.1 942.0 74.9 15140.3 693.4
127 > 30 1312.5 24.6 0.0 1455.1 34.4 32663.6 1930.2 1609.8 209.2 0.1 1.2 383.7 11.8 1.3 173.9 8.5

Seawater > 30 1932.7 0.0 0.0 0.0 0.0 0.0 7796.2 7079.1 393.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table B.4 
Total elemental data for core S2, Point Barrow, AK 

	
  
 

 

 

 

 

 

 

 

 

 

 

 

 

Core depth Grain size Si Ti Al Fe Mn Mg Ca K P Cd Co Cr Cu Mo Ni Zn
(cm) ( m) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM)

5 0.2 - 5 3383.6 17.2 346.3 357.6 19.4 20121.7 8920.3 8476.7 54.5 0.1 0.2 1.7 7.8 0.0 0.1 4.0
20 0.2 - 5 1811.6 10.1 0.0 84.4 1.1 11272.6 4879.5 4920.1 127.2 0.0 0.0 9.5 4.9 0.0 0.0 0.0

63.5 0.2 - 5 2457.1 12.4 26.1 51.1 1.2 16945.8 7752.3 7782.7 173.1 0.0 0.2 0.5 6.5 0.0 0.0 7.3
90 0.2 - 5 2486.1 16.8 257.9 156.6 3.2 15692.1 9587.6 9495.3 343.4 0.0 0.0 0.0 4.1 0.0 0.0 0.0
113 0.2 - 5 2997.4 15.9 354.1 484.7 21.0 14034.5 7796.2 7079.1 597.4 0.1 0.7 2.6 11.7 0.0 0.1 3.9
127 0.2 - 5 2829.9 8.2 91.5 115.8 8.6 5317.0 5874.1 5374.7 348.1 0.0 0.0 0.2 0.7 0.0 0.0 0.9

Seawater 0.2 - 5 2112.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 445.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 5 - 10 4485.1 22.8 136.4 72.9 2.2 20088.8 8395.0 8816.4 221.8 0.0 0.0 0.0 13.2 0.0 3.7 17.1
20 5 - 10 2395.0 13.6 17.9 68.7 1.9 10181.6 7999.2 4735.8 161.1 0.0 0.0 0.3 2.6 0.0 0.0 0.2

63.5 5 - 10 1983.9 6.8 18.5 22.9 0.0 10919.4 5460.6 6528.5 105.7 0.0 0.3 0.0 2.1 0.0 0.0 21.4
90 5 - 10 2024.5 13.6 0.0 12.8 1.0 19757.6 9364.3 9172.9 165.1 0.0 0.0 0.0 0.6 0.0 0.0 0.0
113 5 - 10 2096.9 3.0 0.0 54.5 6.7 5086.7 3097.8 3299.7 265.8 0.0 0.0 0.0 0.1 0.0 0.0 0.0
127 5 - 10 2493.4 7.1 15.2 115.9 8.8 9343.2 10100.7 9504.0 339.6 0.0 0.0 1.2 1.1 0.0 0.0 0.0

Seawater 5 - 10 1939.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 182.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 10 - 30 13921.3 86.4 2930.2 33029.0 1148.6 53492.6 58224.9 36579.4 1905.5 0.4 38.0 8955.0 276.0 23.3 5159.9 285.5
20 10 - 30 37038.1 532.8 13224.1 16085.2 530.9 53311.5 49365.2 29314.2 4179.8 0.5 7.7 50.1 57.1 0.9 9.8 98.6

63.5 10 - 30 10162.6 224.8 5292.1 5511.6 364.2 55604.2 35496.7 29378.5 1661.1 0.3 4.7 10.5 39.9 0.4 2.8 59.5
90 10 - 30 99703.2 3603.4 64394.5 100535.5 7599.3 86027.8 227673.4 122321.9 37498.9 1.4 49.7 84.8 126.8 1.1 47.8 246.8
113 10 - 30 80655.0 16942.4 515442.9 351250.1 22558.8 271873.4 1299239.6 605357.9 98468.2 38.9 173.8 486.6 310.5 4.1 246.0 980.0
127 10 - 30 16161.4 52.7 1301.5 1597.1 62.1 32993.9 37834.7 33221.5 1125.4 0.4 1.2 9.1 12.1 0.2 1.7 13.5

Seawater 10 - 30 3217.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 586.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 > 30 2173.4 11.4 0.0 1849.7 67.8 14668.4 6455.9 7013.5 111.3 0.0 2.6 562.7 22.8 5.4 391.1 18.6
20 > 30 3685.5 19.2 232.8 292.7 5.2 18029.9 8651.5 8697.9 197.5 0.0 0.1 0.0 1.6 0.0 0.0 73.9

63.5 > 30 2045.4 21.8 3.2 0.0 0.7 24095.1 12021.7 13124.3 147.6 0.0 0.0 0.0 0.2 0.0 0.0 1.1
90 > 30 19823.1 96.7 3442.6 6802.3 532.1 25319.0 31141.3 24513.5 2809.6 0.1 8.4 3.4 17.1 0.1 2.3 27.1
113 > 30 34122.6 96.1 5589.2 96224.3 3055.5 23904.0 46161.3 27211.4 3026.0 0.8 106.8 27938.1 942.2 74.9 15140.3 693.4
127 > 30 3509.5 24.8 0.0 1455.1 34.4 32667.7 35543.8 36635.4 365.7 0.1 1.2 383.7 13.3 1.3 173.9 8.5

Seawater > 30 2059.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 221.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table B.5 
Labile elemental data for core S1, Point Barrow, AK 

	
  
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Core depth Grain size Si Ti Al Fe Mn Mg Ca K P Cd Co Cr Cu Mo Ni Zn
(cm) ( m) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM)

Snow 0.2 - 5 36054.8 3.5 222.2 311.1 1.3 4662.4 49365.2 27421.9 4087.4 0.0 0.1 1.2 8.1 0.0 0.3 1.4
5 0.2 - 5 9171.3 15.2 0.0 9807.4 246.9 8489.3 35496.7 27475.5 1539.9 0.0 9.5 2770.9 85.0 14.4 1387.2 72.4

34.5 0.2 - 5 3982.7 4.8 0.0 0.0 0.0 7847.5 19079.7 10214.2 650.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
59 0.2 - 5 24455.6 3.4 0.0 371.0 8.6 4073.7 23712.6 9630.3 90.6 0.0 0.3 109.2 2.7 0.7 46.2 1.2
106 0.2 - 5 915.2 5.1 0.0 0.0 0.0 8541.8 6706.8 5919.3 251.0 0.0 0.0 0.0 3.3 0.0 0.0 0.0

Snow 5 - 10 1853.3 4.7 0.0 0.0 0.0 7295.5 6628.0 5617.1 239.6 0.0 0.0 0.0 1.1 0.0 0.0 4.5
5 5 - 10 1432.1 36.3 1486.8 3354.3 130.7 27747.0 7999.2 4735.8 105.9 0.1 1.1 0.3 4.5 0.1 0.0 13.2

34.5 5 - 10 1007.8 11.0 47.6 210.4 18.8 13911.2 7732.1 6665.4 343.4 0.0 0.2 0.6 0.0 0.0 0.0 0.2
59 5 - 10 1098.9 11.5 0.0 3297.8 120.9 15251.7 5252.9 3685.5 217.1 0.0 5.0 946.0 43.6 4.8 713.3 36.1
106 5 - 10 1199.5 5.8 0.0 31.8 0.0 9516.4 10458.6 11168.7 285.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Snow 10 - 30 1076.2 38.2 5941.5 2278.6 36.7 24591.0 5460.6 6528.5 50.1 1.5 4.2 18.2 30.1 0.3 4.6 26.4
5 10 - 30 0.0 3.5 0.0 0.0 0.0 5781.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.7 0.0

34.5 10 - 30 4214.5 5.4 0.0 0.0 0.5 7168.7 11649.7 7457.0 127.8 0.0 0.0 0.0 0.0 0.0 0.9 0.0
59 10 - 30 0.0 4.7 0.0 142.8 11.5 4891.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
106 10 - 30 11631.0 6.0 0.0 0.0 1420.7 0.0 40093.4 37422.7 364.8 204.5 1.8 87.9 17.6 0.4 104.7 0.0

Snow > 30 1416.2 27.2 1025.7 313.3 4.0 15939.1 5874.1 5374.7 198.9 0.1 0.7 2.8 3.0 0.1 2.4 3.6
5 > 30 2595.6 26.9 777.2 522.7 9.8 26983.4 3221.9 2907.6 66.7 0.0 0.0 0.0 0.0 0.0 0.0 0.3

34.5 > 30 962.1 19.5 278.6 54.8 3.2 23821.1 0.0 0.0 143.8 0.0 0.3 1.1 0.0 0.0 0.0 0.0
59 > 30 2418.4 12.1 0.0 0.0 0.1 16933.4 16501.3 16184.9 150.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

106 > 30 3776.6 2.2 0.0 0.0 1488.2 0.0 45997.1 44864.8 277.4 54.6 0.5 20.5 0.0 0.0 18.7 0.0
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Table B.6 
Total elemental data for core S1, Point Barrow, AK 

	
  
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Core depth Grain size Si Ti Al Fe Mn Mg Ca K P Cd Co Cr Cu Mo Ni Zn
(cm) ( m) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM)

Snow 0.2 - 5 2414.2 4.8 302.2 322.2 1.6 4681.7 1930.2 1609.8 300.1 0.0 0.1 1.2 9.8 0.0 0.3 1.5
5 0.2 - 5 25509.7 15.2 0.0 10054.3 261.8 8514.1 23712.6 9630.3 133.6 0.0 10.0 2856.4 89.3 14.7 1476.3 75.9

34.5 0.2 - 5 2818.6 4.8 0.0 0.0 0.0 7847.5 7732.1 6665.4 425.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
59 0.2 - 5 2041.4 3.4 0.0 371.0 8.6 4073.7 5252.9 3685.5 295.5 0.0 0.3 109.2 2.7 0.7 46.2 1.2
106 0.2 - 5 2351.5 5.1 0.0 0.0 0.0 8549.5 10458.6 11168.7 368.5 0.0 0.0 0.0 3.3 0.0 0.0 0.0

Snow 5 - 10 3609.1 4.7 0.0 0.0 0.0 7306.0 3221.9 2907.6 171.5 0.0 0.0 0.0 1.4 0.0 0.0 4.5
5 5 - 10 22100.8 156.0 1742.4 4298.4 133.5 27762.3 65146.3 38061.4 3993.9 0.1 1.1 -20.4 4.5 0.1 0.0 13.2

34.5 5 - 10 3920.6 11.0 47.6 210.4 18.8 13911.2 19801.9 18662.9 382.8 0.0 0.2 0.6 0.0 0.0 0.0 0.2
59 5 - 10 21232.8 11.5 0.0 3297.8 120.9 15251.7 17592.6 17718.5 293.3 0.0 5.0 946.0 43.6 4.8 713.3 36.1
106 5 - 10 2398.7 5.8 0.0 31.8 0.0 9577.6 11200.8 11378.2 174.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Snow 10 - 30 5268.7 103.9 6218.0 2918.7 39.0 24635.8 19079.7 10214.2 726.5 1.6 4.4 18.2 31.3 0.4 4.6 27.3
5 10 - 30 1849.6 3.5 0.0 0.0 0.0 5781.0 6706.8 6258.9 312.6 0.0 0.0 0.0 0.0 0.1 1.7 0.0

34.5 10 - 30 2009.9 5.4 0.0 0.0 0.5 7168.7 7783.1 7577.0 157.3 0.0 0.0 0.0 0.0 0.0 0.9 0.0
59 10 - 30 2871.2 4.9 0.0 142.8 12.7 4891.8 6628.0 5617.1 310.6 0.0 0.0 7.0 0.0 0.0 4.4 0.0
106 10 - 30 6373.0 6.0 0.0 0.0 1420.7 0.0 34008.7 29610.4 1043.4 204.5 1.8 87.9 17.6 0.4 104.7 0.0

Snow > 30 5394.1 118.8 1768.9 1130.0 7.1 16005.9 11649.7 7457.0 168.2 0.1 0.9 2.8 3.7 0.1 2.4 4.3
5 > 30 12648.9 26.9 777.2 522.7 9.8 26983.4 40093.4 37422.7 393.7 0.0 0.0 0.0 0.0 0.0 0.0 0.3

34.5 > 30 4823.9 20.1 278.6 57.9 3.2 23828.6 31785.6 29398.4 309.1 0.0 0.3 11.1 0.0 0.3 0.0 0.0
59 > 30 3614.1 12.1 0.0 0.0 0.1 16933.4 16501.3 16184.9 185.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
106 > 30 4741.3 4.4 0.0 0.0 1488.2 47.9 45997.1 44864.8 324.2 54.6 0.5 20.5 0.0 0.0 18.7 0.0
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Table B.7 
Labile elemental data for core S4, CAA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Core depth Grain size Si Ti Al Fe Mn Mg Ca K P Cd Co Cr Cu Mo Ni Zn
(cm) ( m) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM)

Snow 0.2 - 5 11665.0 0.0 15.9 42.3 2.5 28.5 0.0 0.0 117.5 0.0 0.0 3.3 0.0 0.0 1.9 0.0
10 0.2 - 5 598.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 94.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 0.2 - 5 1920.6 1.1 0.0 0.0 0.0 1740.5 1846.0 1583.3 182.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
117 0.2 - 5 2545.7 0.0 0.0 0.0 0.0 1291.9 1682.9 1236.9 105.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
176 0.2 - 5 25889.6 0.0 0.0 0.0 0.0 1849.0 1938.6 1771.9 88.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
227 0.2 - 5 778.1 0.0 0.0 0.0 0.0 2292.0 2119.1 2071.6 157.7 0.0 0.0 0.0 0.4 0.0 0.0 0.0

Seawater 0.2 - 5 887.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 120.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Snow 5 - 10 13561.8 0.0 0.0 24.7 2.3 8.8 0.0 0.0 217.2 0.0 0.0 3.2 0.0 0.0 1.5 0.0
10 5 - 10 9231.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 88.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 5 - 10 35661.0 0.1 0.0 0.0 0.0 1486.5 1665.0 1444.1 84.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
117 5 - 10 1021.8 3.6 0.0 7970.7 484.0 552.1 4047.2 9136.6 205.3 0.3 35.9 2334.0 52.7 126.2 2347.6 14627.7
176 5 - 10 30579.9 0.0 0.0 0.0 0.0 1670.7 1827.6 1580.1 103.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
227 5 - 10 14229.6 0.0 0.0 18.2 0.0 940.6 1032.7 849.8 146.7 0.0 0.0 7.2 0.0 0.0 2.7 0.0

Seawater 5 - 10 935.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 112.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Snow 10 - 30 21029.1 66.2 6233.1 2330.6 18.1 1529.5 1494.1 2251.4 314.3 0.0 0.5 4.1 4.5 0.1 2.6 3.6
10 10 - 30 15609.9 8.6 1986.3 754.8 9.8 1164.0 3076.8 979.1 573.2 0.3 1.9 55.7 8.2 2.5 27.2 2178.8
20 10 - 30 27659.5 3.3 222.3 148.8 3.2 5069.2 7966.4 5458.7 179.1 0.0 0.0 1.4 4.9 0.0 1.7 0.0
117 10 - 30 28973.9 9.2 547.5 75.7 2.1 8785.2 18536.1 8906.9 368.9 0.0 0.0 1.3 2.3 0.0 1.9 0.0
176 10 - 30 31647.1 12.1 70.0 193.8 3.8 12540.2 16787.3 12869.6 257.1 0.0 0.0 3.5 1.8 0.0 2.4 0.0
227 10 - 30 1309.5 3.7 0.0 8.3 0.2 6368.1 7963.9 6782.4 373.6 0.1 0.0 0.2 1.0 0.0 0.0 0.0

Seawater 10 - 30 1742.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 218.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Snow > 30 14346.3 2.2 312.1 112.7 0.3 83.7 0.0 229.5 207.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 > 30 15945.7 24.6 2373.8 319.1 2.8 1785.1 12269.3 477.3 308.1 0.1 0.0 43.6 7.4 0.0 2.1 0.0
20 > 30 34156.7 7.5 365.8 87.9 3.4 11337.4 17135.4 12409.5 276.0 0.0 0.0 2.2 3.5 0.0 1.1 0.0
117 > 30 33316.3 12.0 928.4 54.5 2.1 9834.1 17133.6 8009.7 640.0 0.0 0.0 1.6 2.5 0.0 0.7 0.0
176 > 30 48167.7 11.1 131.7 92.3 3.0 13226.1 16561.3 11871.8 328.8 0.0 0.0 2.1 2.2 0.0 1.7 0.0
227 > 30 27005.7 6.2 0.0 0.0 0.3 10488.6 13244.7 10462.9 359.8 0.0 0.0 0.0 0.4 0.0 0.0 0.0

Seawater > 30 1584.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 168.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table B.8 
Total elemental data for core S4, CAA 

	
  
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Core depth Grain size Si Ti Al Fe Mn Mg Ca K P Cd Co Cr Cu Mo Ni Zn
(cm) ( m) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM)

Snow 0.2 - 5 12459.3 0.7 111.7 42.3 2.5 53.8 0.0 0.0 296.8 0.0 0.0 3.3 0.1 0.0 1.9 0.0
10 0.2 - 5 1205.0 0.0 14.2 183.4 5.8 7.2 0.0 379.9 307.7 0.0 1.1 49.7 0.6 2.6 26.2 1006.9
20 0.2 - 5 2938.7 1.1 0.0 0.0 0.0 1758.6 1846.0 1583.3 282.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
117 0.2 - 5 3026.8 0.0 0.0 0.0 0.0 1302.4 1682.9 1236.9 228.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
176 0.2 - 5 26499.4 0.0 0.0 0.0 0.2 1858.1 1938.6 1771.9 240.7 0.0 0.0 13.8 0.0 0.2 0.0 0.0
227 0.2 - 5 1885.3 0.0 0.0 806.9 18.1 2292.0 2119.1 2071.6 261.4 0.0 0.6 284.0 4.5 1.4 105.7 0.0

Seawater 0.2 - 5 1795.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 190.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Snow 5 - 10 14357.8 0.0 0.0 24.7 2.3 8.8 0.0 0.0 320.4 0.0 0.0 3.2 0.0 0.0 1.5 0.0
10 5 - 10 9919.3 0.0 0.0 0.0 0.0 29.1 0.0 0.0 217.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 5 - 10 36786.8 0.1 0.0 1763.6 37.0 1492.0 1665.0 1444.1 195.0 0.0 1.4 524.7 12.0 2.4 225.5 0.0
117 5 - 10 1827.8 3.6 0.0 7970.7 484.0 570.6 4047.2 9136.6 305.2 0.3 35.9 2334.0 52.7 126.2 2347.6 14627.7
176 5 - 10 31340.1 1.3 0.0 3694.4 78.3 1689.4 1827.6 1580.1 266.3 0.0 3.0 1029.2 27.4 5.7 472.1 21.0
227 5 - 10 15216.1 0.0 0.0 18.2 0.0 952.3 1032.7 849.8 254.4 0.0 0.0 7.2 0.0 0.0 2.7 0.0

Seawater 5 - 10 2012.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 228.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Snow 10 - 30 22090.4 72.0 6287.9 3618.4 45.9 1535.5 1494.1 2251.4 434.2 0.0 1.5 376.0 14.3 1.5 152.6 3.6
10 10 - 30 16372.3 12.8 2133.0 754.8 9.8 1190.1 3548.6 1061.8 702.9 0.3 1.9 55.7 8.2 2.5 27.2 2178.8
20 10 - 30 28499.2 3.6 222.9 2435.9 52.5 5089.3 7966.4 5458.7 345.2 0.0 1.9 692.3 21.6 2.9 292.1 0.0
117 10 - 30 29681.1 11.6 598.0 1001.1 22.5 8815.5 18536.1 8996.8 522.9 0.0 0.7 289.9 7.4 1.4 118.5 0.0
176 10 - 30 32331.0 13.6 70.0 193.8 3.8 12589.2 16787.3 12869.6 393.4 0.0 0.0 3.5 1.8 0.0 2.4 0.0
227 10 - 30 1999.3 2.5 0.0 11256.5 231.1 6368.1 7963.9 6782.4 478.5 0.1 9.1 3398.3 86.1 14.8 1369.3 16.0

Seawater 10 - 30 2646.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 438.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Snow > 30 15220.2 5.8 402.7 987.5 18.9 93.8 0.0 229.5 297.3 0.0 0.7 192.7 6.4 0.9 102.9 0.0
10 > 30 16642.8 28.9 2473.7 319.1 2.8 1808.5 12269.3 477.3 401.7 0.1 0.0 43.6 7.4 0.0 2.1 0.0
20 > 30 34843.3 9.3 376.4 87.9 3.4 11350.3 17135.4 12409.5 396.7 0.0 0.0 2.2 3.5 0.0 1.1 0.0
117 > 30 34012.6 12.0 928.4 54.5 2.1 9839.7 17133.6 8009.7 750.6 0.0 0.0 1.6 2.5 0.0 0.7 0.0
176 > 30 48901.8 12.8 131.7 395.3 9.5 13235.4 16561.3 11871.8 434.8 0.0 0.2 68.1 1.4 0.8 35.1 0.0
227 > 30 27830.1 6.2 0.0 147.5 3.5 10490.4 13244.7 10462.9 405.4 0.0 0.0 73.5 0.4 1.0 15.4 0.0

Seawater > 30 2730.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 231.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table B.9 
Labile elemental data for core S3, CAA  

	
  
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Core depth Grain size Si Ti Al Fe Mn Mg Ca K P Cd Co Cr Cu Mo Ni Zn
(cm) ( m) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM)

5 0.2 - 5 1099.2 63.6 2254.1 1637.5 62.9 92329.8 9245.3 7838.0 144.0 0.7 1.3 22.2 42.9 0.3 9.8 33.1
15 0.2 - 5 1082.5 9.7 0.0 22.9 0.0 7041.2 2337.3 2014.3 77.5 0.0 0.0 0.0 4.8 0.0 0.0 0.0
30 0.2 - 5 39568.8 2.1 0.0 0.0 0.0 7345.2 2439.2 2286.4 124.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
103 0.2 - 5 1795.3 6.5 0.0 0.0 0.0 10594.0 3379.1 3084.2 130.4 0.0 0.0 0.6 0.7 0.0 0.0 0.0
175 0.2 - 5 782.9 13.2 0.0 7.3 0.0 27000.9 9342.5 7817.3 507.9 0.0 0.0 1.8 16.3 0.0 0.0 0.0

5 5 - 10 1042.4 18.0 0.0 83.4 0.0 33863.3 11457.7 9301.1 206.1 0.0 0.0 3.7 17.7 0.1 0.0 0.0
15 5 - 10 735.6 3.1 0.0 23.9 0.0 6962.2 2337.6 1971.2 150.2 0.0 0.0 0.5 0.0 0.2 3.9 0.0
30 5 - 10 31408.4 3.9 0.0 0.0 0.0 11108.7 3656.4 3289.0 119.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
103 5 - 10 719.6 3.3 0.0 0.0 0.0 4744.5 1579.1 1440.8 108.4 0.0 0.0 0.0 0.4 0.0 0.0 0.0
175 5 - 10 843.8 3.1 0.0 0.0 0.0 9637.5 3141.3 2687.1 253.5 0.0 0.0 0.1 7.6 0.0 0.0 0.0

5 10 - 30 1252.4 73.8 426.5 600.3 6.2 103085.9 41254.3 31376.3 332.6 0.2 0.0 30.5 28.0 0.2 12.7 34.4
15 10 - 30 1785.2 55.4 485.5 936.0 5.1 84462.1 32839.6 24932.0 394.4 0.1 0.0 13.3 11.0 0.1 111.2 42.5
30 10 - 30 41071.9 43.3 2673.0 364.0 7.0 64090.4 25034.2 19278.1 207.8 0.1 0.0 20.5 15.0 0.1 9.1 23.4
103 10 - 30 1673.3 26.3 252.5 507.2 12.0 37577.9 16712.4 12640.3 354.5 0.4 0.0 23.1 14.6 0.1 14.4 7.9
175 10 - 30 8579.2 32.6 113.5 153.4 6.1 54919.3 19688.4 16300.3 283.4 0.1 0.0 7.3 24.0 0.1 3.3 0.0

5 > 30 1610.1 108.3 1423.9 315.7 4.1 150083.2 74366.1 53053.6 297.6 0.2 0.0 29.7 16.9 0.2 7.3 11.8
15 > 30 81120.5 32.3 940.5 337.3 11.3 43388.3 17299.3 12708.9 371.9 0.1 0.0 14.0 10.0 0.1 15.8 11.5
30 > 30 2313.2 66.8 4381.5 908.9 8.0 83620.6 39203.8 23818.4 386.5 0.1 0.0 30.5 12.8 0.2 126.0 83.5
103 > 30 1763.2 30.9 626.6 239.5 6.5 44057.4 18906.6 14236.3 190.6 0.1 0.0 19.0 10.0 0.1 7.2 0.0
175 > 30 2862.4 32.3 37.9 21.4 1.9 56824.7 22342.6 20218.3 570.2 0.1 0.0 0.7 11.3 0.0 0.6 0.0
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Table B.10 
Total elemental data for core S3, CAA 

	
  
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Core depth Grain size Si Ti Al Fe Mn Mg Ca K P Cd Co Cr Cu Mo Ni Zn
(cm) ( m) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM)

5 0.2 - 5 1817.9 63.6 2254.1 1637.5 62.9 92335.1 9245.3 7838.0 243.2 0.7 1.3 22.2 42.9 0.3 9.8 33.1
15 0.2 - 5 1725.2 9.7 0.0 22.9 0.0 7063.0 2337.3 2014.3 163.1 0.0 0.0 0.0 4.8 0.0 0.0 0.0
30 0.2 - 5 40251.1 21.6 0.0 5011.7 99.9 7373.0 2439.2 2655.7 207.8 0.0 4.1 1517.4 41.0 10.8 639.0 0.0
103 0.2 - 5 2370.1 6.5 0.0 0.0 0.0 10598.9 3379.1 3185.8 306.2 0.0 0.0 0.6 0.7 0.0 0.0 0.0
175 0.2 - 5 1881.3 13.2 0.0 7.3 0.0 27000.9 9342.5 7936.0 632.4 0.0 0.0 1.8 16.3 0.0 0.0 0.0

5 5 - 10 2405.1 18.0 0.0 83.4 0.0 33863.3 11457.7 9301.1 357.0 0.0 0.0 3.7 17.7 0.1 0.0 0.0
15 5 - 10 1994.5 3.1 0.0 23.9 0.0 6989.8 2337.6 2053.4 257.1 0.0 0.0 0.5 0.0 0.2 3.9 0.0
30 5 - 10 32175.6 3.9 0.0 19119.8 387.9 11131.5 3656.4 3445.3 233.5 0.1 15.3 5798.8 133.8 24.8 2350.0 77.7
103 5 - 10 1441.3 3.3 0.0 0.0 0.0 4744.5 1579.1 1440.8 238.1 0.0 0.0 0.0 0.4 0.0 0.0 0.0
175 5 - 10 1557.2 3.1 0.0 0.0 0.0 9637.5 3141.3 2687.1 350.9 0.0 0.0 0.1 7.6 0.0 0.0 0.0

5 10 - 30 1911.7 73.8 426.5 600.3 6.2 103097.4 41254.3 31376.3 417.1 0.2 0.0 30.5 28.0 0.2 12.7 34.4
15 10 - 30 2521.5 55.4 485.5 936.0 5.1 84493.2 32839.6 24932.0 461.3 0.1 0.0 13.3 11.0 0.1 111.2 42.5
30 10 - 30 41800.5 43.3 2673.0 757.2 16.6 64138.8 25034.2 19278.1 321.7 0.1 0.3 165.4 15.0 0.9 61.8 23.4
103 10 - 30 2345.7 26.3 252.5 7920.0 420.7 37590.0 17524.0 14418.6 523.4 0.6 25.8 2038.1 63.7 96.5 2117.2 9020.2
175 10 - 30 9244.6 32.6 113.5 153.4 6.1 54922.4 19688.4 16300.3 418.4 0.1 0.0 7.3 24.0 0.1 3.3 0.0

5 > 30 2265.3 108.3 1423.9 315.7 4.1 150090.6 74366.1 53053.6 386.1 0.2 0.0 29.7 16.9 0.2 7.3 11.8
15 > 30 81828.0 32.9 940.5 337.3 11.3 43400.6 17299.3 12708.9 460.7 0.1 0.0 14.0 10.0 0.1 15.8 11.5
30 > 30 2983.9 66.8 4381.5 4274.6 78.5 83620.6 39203.8 23818.4 487.6 0.1 2.7 1070.9 40.6 4.9 547.1 83.5
103 > 30 2479.8 30.9 626.6 239.5 6.5 44064.4 18906.6 14236.3 315.0 0.1 0.0 19.0 10.0 0.1 7.2 0.0
175 > 30 3580.2 32.3 37.9 21.4 1.9 56824.7 22342.6 20218.3 682.8 0.1 0.0 0.7 11.3 0.0 0.6 0.0
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Table B.11  
Filterable (<0.2 µm) elemental data for cores S4 (top) and S3 (bottom), CAA 

	
  
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Core depth Si Al Fe Mn Mg Ca Na K P Cd Cr Cu Mo Zn
(cm) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM)

5 6.1 206.6 14.9 12.5 9546.5 1844.8 83195.2 1677.3 0.4 4.7 1.3 3.7 62.2 28.2
20 4.8 71.5 19.3 17.3 6646.9 1287.4 57034.9 1171.3 0.4 9.1 1.3 8.0 46.1 68.7

63.5 3.5 78.3 8.5 35.8 6203.9 1200.2 54834.8 1106.3 0.3 2.8 0.7 4.4 43.1 67.5
90 91.6 290.1 317.6 81.6 6065.4 1166.1 52103.5 1066.5 0.3 2.2 1.0 35.4 29.5 95.4
113 4.2 118.5 15.3 120.9 6107.9 1177.1 52466.6 1029.5 0.5 24.8 1.7 5.8 44.8 58.3
127 2.1 139.6 20.9 8.8 6349.3 1195.1 55038.3 1069.9 0.3 5.1 5.9 2.7 46.8 28.1

Seawater 14.3 441.3 31.3 16.4 43616.6 8301.2 390299.4 7647.1 1.8 18.0 12.4 26.9 303.1 108.2

Core depth Si Al Fe Mn Mg Ca Na K P Cd Cr Cu Mo Zn
(cm) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM)

Snow 2.4 173.5 33.9 16.6 2740.1 514.8 22901.9 464.9 0.3 13.9 0.8 6.8 19.0 73.3
5 5.8 52.2 10.8 11.7 7903.3 1563.9 68534.5 1426.5 0.3 0.7 0.6 1.2 41.8 19.1

34.5 3.5 42.5 3.5 7.5 6764.8 1289.9 58180.3 1109.3 0.3 0.5 0.7 1.1 41.6 12.6
59 2.8 66.8 114.4 6.2 7601.2 1497.6 64572.0 1307.2 0.3 0.9 0.7 1.6 47.4 25.7
106 2.0 329.0 20.3 9.9 7913.1 1482.1 67740.1 1349.2 0.4 6.7 1.9 6.6 48.6 99.2
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Table B.12 
Filterable (<0.2 µm) elemental data for cores S2 (top) and S1 (bottom), Point Barrow, AK 
	
  

	
  

Core depth Si Al Fe Mn Mg Ca Na K P Cd Cr Cu Mo Zn
(cm) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM)

Snow 0.4 36.0 9.1 3.4 6.5 2.1 35.7 1.0 0.0 0.2 0.6 0.8 4.3 5.8
10 0.4 111.9 9.6 4.2 52.5 12.4 489.5 10.3 0.0 2.3 4.9 11.4 4.3 39.5
20 0.6 250.9 2.0 2.6 2957.0 568.3 25849.3 514.1 0.1 0.7 1.2 6.5 19.6 38.0
117 0.8 345.9 2.0 2.6 2221.3 430.7 19747.6 400.4 0.3 0.6 1.2 6.2 15.4 109.9
176 0.9 197.2 4.4 2.3 4671.1 895.7 41546.1 800.5 0.2 1.3 1.2 3.8 28.8 51.0
227 1.3 124.4 3.5 1.9 4829.5 904.6 43986.0 833.1 0.3 3.3 2.3 5.1 36.8 29.7

Seawater 13.9 426.0 46.4 30.9 51079.7 9886.3 441767.0 8722.2 3.3 4.6 12.4 22.6 327.9 75.3

Core depth Si Al Fe Mn Mg Ca Na K P Cd Cr Cu Mo Zn
(cm) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM) (nM)

5 1.3 951.3 9.4 5.9 10254.1 1966.7 93083.7 1750.8 0.4 3.5 4.0 7.4 74.4 58.5
15 1.1 422.0 4.9 3.3 7233.6 1403.8 61607.0 1252.9 0.2 1.0 1.4 3.0 54.5 22.4
30 1.1 493.9 1.8 3.1 7663.8 1471.7 67164.9 1321.3 0.2 1.1 1.6 3.4 50.6 22.8
103 1.1 216.5 2.8 3.7 5579.2 1074.5 49431.9 947.3 0.2 2.3 2.4 9.2 40.3 40.8
175 0.8 130.7 2.1 2.4 6248.8 1225.3 57113.9 1109.6 0.3 1.4 1.5 6.5 47.6 34.6


