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ABSTRACT 

INTRACORTICAL NEURAL PROBES  

WITH POST-IMPLANT SELF-DEPLOYED ELECTRODES  

FOR IMPROVED CHRONIC STABILITY 

by 

Daniel Egert 

Chair: Khalil Najafi 

This thesis presents a new class of implantable intracortical neural probe with small recording 

electrodes that deploy away from a larger main shank after insertion. This concept is hypothesized 

to enhance the performance of the electrodes in chronic applications. 

Today, electrodes that can be implanted into the brain for months or years, are an irreplaceable 

tool for brain machine interfaces and neuroscience studies. However, these chronically implanted 

neural probes suffer from continuous loss of signal quality, limiting their utility. Histological 

studies found a sheath of scar tissue with decreased neural density forming around probe shanks 

as part of an ongoing chronic inflammation. This was hypothesized to contribute to the 

deterioration of recorded signals. The neural probes developed in this thesis are designed to deploy 
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electrodes outside this sheath such that they interface with healthier neurons. To achieve this, an 

actuation mechanism based on starch-hydrogel coated microsprings was integrated into the shank 

of neural probes. Recording electrodes were positioned at the tip of micrometer fine and flexible 

needles that were attached to the springs. Before insertion, the hydrogel dehydrates, retracting the 

springs. After insertion, the gel rehydrates, releasing the springs, which then deploy the electrodes. 

The actuation mechanism functions in a one-time release fashion, triggered by contact with 

biological fluids at body temperature. The deployment of the electrodes occurred over the course 

of two hours and can be divided into three stages: For the first 20 s, the electrodes did not deploy. 

Within the first three minutes they deployed by roughly 100 µm (0.5 µm/s). Tor the following two 

hours they deployed an additional 20 µm (0.17 µm/min). The employed design supported six 

deploying electrodes, each at the end of a 5 µm wide and thick, and 100 µm long needle. These 

were attached to a shank with 290 µm width, 12 µm thickness and 3 mm length. The shanks could 

be inserted into the cortex of rats through an opening in the pia without breaking. The acquired 

waveforms indicate that some of the deployed electrodes were able to record neural action 

potentials. 
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CHAPTER 1 

 

INTRODUCTION      

1.1   Interfacing with the central nervous system 

The mammalian central nervous system has an unmatched ability to interact with the environment 

and builds upon unmatched complexity. It became the distinguishing factor for human success; it 

can be inspiration for biomimetic systems or if malfunctioning, source of pain, impair senses, 

motor control or cognitive function. The central nervous system consists of the brain and the spinal 

cord. Its main active building blocks are neurons. The human brain contains some twenty billion 

neurons with some hundreds of trillion connections between them. Most of the cell bodies are 

positioned in the outer 2 mm of the cerebrum called the cerebral cortex. Their axons or dendrites, 

forming outgoing and incoming connections, run underneath. To transmit and process information, 

neurons use electrical potentials created by ion flows and modulated by other chemicals.  

There is great scientific and clinical interest in exploring, restoring and improving the functions of 

the human brain. Hence many tools have been developed to probe and modulate the activity of 

neurons. Amongst all of them, electrodes are to-date irreplaceable. Unlike most other methods, 

electrodes allow to resolve activity of single neurons with high speed and high spatial resolution 

in an almost arbitrary position in the brain. 



  

2 

 

Brain interfaces have been created using stimulating electrodes implanted into nuclei inside the 

cerebrum (deep brain stimulation), microelectrodes implanted into the cortex of the brain [1] 

(penetrating intracortical neural probes, as used in this thesis research), electrodes placed directly 

on the surface of the brain [2] (electrocorticography) or electrodes placed on the scalp 

(electroencephalography). A promising alternative to electrodes is enabled by optogenetics. In 

optogenetics, neurons are genetically rendered to become responsive to light or to express 

indicators that allow to optically detecting their activity [3]. However, optogenetic methods face 

some hurdles: genetically altering neurons (delivering viral vectors) in human patients comes with 

ethical issues [4]. Also, light does not penetrate deeply into nervous tissue without being perturbed. 

Hence it is not trivial to use light to interface with deeper lying structures on a cellular resolution. 

Furthermore, portable microscopes and lasers are not common practice [5]. Another way of 

interfacing with neurons makes use of the variety of chemicals neurons respond to and release. 

Small fluid channels and electrochemical sensors allow administering or extracting and analyzing 

fluids surrounding neurons [6]. 

An arising clinical application utilizes intracortical neural probes to form brain-computer 

interfaces [7]. For example, patients with tetraplegia can gain thought-control of a computer cursor 

[8] or a motor prosthesis [9]. These allow patients suffering spinal cord injuries to control 

motorized prostheses or their own muscles with signals recorded from their brain, bypassing the 

site of injury. This has been realized in humans and monkeys [10]. Another clinical application of 

neural interfaces that became common practice over the last few years is using the deep brain 

stimulation electrodes [11]. Deep brain stimulation can suppress tremors, obsessive compulsive 

disorders or chronic pain. It is based on the concept of modulating the activity of neural nuclei 
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using stimulating electrodes implanted into the brain. More specific, nuclei emitting faulty signals 

are reversibly silenced by rhythmic stimulation. 

Many applications require interfacing with single neurons and reaching neurons that are below the 

surface of the brain. Intracortical neural probes allow exactly that. They typically consist of 

millimeter-long, several tens to hundred micrometer wide, needle-like shanks that are implanted 

into the cortex [12] (Figure 1). The shanks support interfaces to neurons such as recording or 

stimulation electrodes, optical fibers or fluidic channels for drug delivery. Bringing these 

interfaces in close proximity of the neurons allows selectively recording from or stimulating 

neurons at a cellular resolution. 



  

4 

 

a) 

 

 

b) 

 

 

Figure 1: a) Drawing of neural probes implanted as array into the cortex [13] and b), drawing 

of a single neural probe shank with labels used in this thesis. 

Two representative examples of neural probes often seen in studies are the Michigan Probes and 

Blackrock Utah arrays. The Michigan probes are fabricated using a well characterized thin-film 

silicon process. They are shaped to 15 µm micrometer thin shanks with multiple electrodes along 

the length. This electrode arrangement allows recording along columns and layers of the cerebrum. 

Neural probe array

Electrodes Shank

Interconnects

1 mm
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These probes are often used in acute and several weeks lasting neuroscience studies. The probes 

are commercially available and are distributed by NeuroNexus (http://neuronexus.con) (Figure 2a).  

The Blackrock Utah arrays are famous for human pilot studies [9], (Figure 2b). These are multi-

year lasting experiments, allowing impaired patients control robot arms with electrode arrays. The 

neural probe array consists of insulated needles with exposed tips serving as electrodes. Multiple 

of these electrodes are arranged on a surface and allow recording from layers (instead of columns) 

of the cerebrum. 

Deep brain stimulating (DBS) electrodes are often implanted into deep cerebral structures, far 

underneath the cortex. Stimulating electrodes require a larger surface area than recording 

electrodes. The dimensions of electrodes for deep brain stimulation are about one order of 

magnitude larger than typical cortical recording neural probes. Their diameter can be more than 

one millimeter and their length can be more than 10 cm. Deep brain stimulation electrodes are 

distributed by Medtronic (http://medtronic.com). 
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a) 

 

b) 

 

Figure 2: a) Michigan neural probes shown in a configuration for parallel recording of 512 

channels in behaving rodents [14]. b) A 4mmx4mm, 96-channel Blackrock Utah array (top) 

[15] and its application in clinical studies (bottom) [9]. 

1.2   Decline of signal-to-noise ratio of recorded neural activity  

Several efforts have been made to investigate the chronic stability of neural probe recordings. 

Their common conclusion is that the signal-to-noise ratio of chronically implanted neural probes 

decreases continuously over time. To give three examples, the chronic performance of neural 

probes was investigated by implantation into rhesus macaque monkeys, into rats, and they were 

used in a 2.7 years lasting human trial. Blackrock Utah arrays were implanted into the motor cortex 

of three rhesus macaque monkeys for up to 30-month [10]. The recorded action potential 

amplitudes decreased by 2.4 % per month on average. Five intracortical electrode designs 

implanted into rat barrel cortices were compared in terms of their chronic recording function [16]. 

Employed designs were untethered (firmly connected to the skull) and 15 µm thick Michigan 
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probes (Neuro-Nexus, Ann Arbor, Michigan), Microwire Arrays with 50 µm diameter (Tucker-

Davis Technologies, Alachua, FL), tethered floating Microwire Arrays with 75 µm diameter 

(MicroProbes for Life Science, Gaithesburg, MD) and Utah Arrays (Blackrock Microsystems, Salt 

Lake City, UT). In all designs the electrode performance, measured as signal-to-noise ratio (SNR) 

was highest within the first days if indwelling and then dropped. In all designs except the 

Microwire Arrays with 50 µm diameter, the SNR dropped to or below a baseline of usefulness, 

defined as 1.25 times the standard deviation of the noise. The SNR of the Microwire Arrays, after 

dropping to the noise floor in the first week, remained at a level of 2 for two months but then 

continuously dropped until the termination of the experiment. The authors of [8] implanted the 

Utah Array into the motor cortex of a human patient with tetraplegia. Although cursor control was 

still possible after 1000 days of indwelling, the number of electrodes recording action potentials 

and the amplitude of the action potentials was significantly smaller (169 µV +-157µV std. dev. vs. 

63.1 µV +- 34 µV std.dev.).  

The precise control of motor prosthesis with multiple degrees of freedom such as joints resembling 

an arm and a hand is offering plenty of use for enhanced performance of neural probes in terms of 

reliable recorded signals and the number of neurons these signals are recorded from [17]. The 

application of neural prosthetics gains significantly in value if implants remain functional over a 

patient’s lifetime. The literature indicates that there is a strong need for chronic stability of neural 

probe recordings enhanced from months or years towards decades. 

1.3   Research objective and thesis contributions 

Histological studies investigating the biological failure mechanisms of chronic neural probes show 

the formation of a dense sheath of scar tissue and a decreased density of neurons around neural 

probe shanks. Neurons further away from the shank (on the order of 100 µm) suffer less tissue 
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reaction [18, 19, 20, 21]. This motivated the hypothesis that deploying electrodes away from the 

shank (Figure 3) will lead to more stable operation. To avoid extending the inflammation towards 

the electrodes, they are connected by fine needles, much smaller than the shank. The research 

objective of this thesis was to develop neural probes with integrated mechanical actuators that are 

capable of deploying electrodes after insertion.  

 

There are several benefits this concept is hypothesized to bring with it. Deployed electrodes, or 

“satellite” electrodes, interface with neurons further away from local inflammation around the 

shank, physical damage caused by implantation or electrical shielding. Deployed electrodes can 

be mechanically decoupled from the shank and left floating almost freely with the tissue. Since the 

 

Figure 3: Drawing of neural probes with deployable electrodes. The electrodes are not 

fabricated directly on the shank but at the end of fine and flexible needles. After implantation, 

these needles are deployed away from the shank to reach outside a dense sheath of scar tissue, 

allowing them to interface with more healthy neurons. 

After assembly

deploy 

electrodes 

away from the 

shank

electrodes at the 

end of 

micrometer 

small, flexible 

needles

After implantation
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electrode performance becomes less dependent on the shank design, the shanks can then be made 

larger. Large shanks are sufficiently robust for reliable implantation and handling without breaking, 

and they can carry channels for drug delivery or optical fibers. However, deploying electrodes is 

technologically extremely challenging and has so far not been realized in a practical device. The 

goal of this thesis was to develop technologies and demonstrate the feasible of neural probes with 

deployable electrodes. The resulting contributions can be introduced as: 

 Development of a new class of neural probes with deployable electrodes for improved 

chronic stability.  

 Exploration of starch gel as smart, biodegradable hydrogel for actuation of MEMS. 

 Development of Parylene neural probes with integrated stiffeners and sharp tips for 

improved insertion into cortical tissue. 

 Development of a specialized spring design featuring “roll-down” concept. Advantages 

include intimate contact between surfaces of spring arms which is favorable for operation 

by hydrogels or capillary action, extremely compact geometry, large travel, large reactive 

force and robustness. 

Chapter II describes the development of fully functional prototypes of neural probes with 

deployable electrodes. To deploy the electrodes, a novel actuation mechanism based on silicon 

springs coated with starch hydrogel was developed and tested.  

The experiments conducted for Chapter II indicate that starch hydrogel has unique and very useful 

properties. It can enhance or enable several applications other than deploying electrodes on neural 

probes. This lead to investigation of more general properties, preparation, processing, and 

patterning of starch-based hydrogels for use with MEMS, as discussed in Chapter III. In an effort 

to fabricate neural probes with deploying electrodes, first a Parylene substrate was chosen (and 
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later abandoned). Chapter IV discusses technologies developed for Parylene-based neural probes. 

Parylene is a promising material to form neural probes for its longevity and flexibility, but has not 

been used broadly due to troublesome insertion into tissue. Two mechanisms, namely a method to 

integrate vertical stiffeners underneath the shank of Parylene probes and a method of creating sharp 

tips are introduced. 
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CHAPTER 2 

 

INTRACORTICAL NEURAL PROBES  

WITH POST-IMPLANT, SELF-DEPLOYED ELECTRODES  

FOR IMPROVED CHRONIC STABILITY 

This thesis chapter discusses the development of prototypes of neural probes with the ability to 

deploy electrodes away from the shank after implantation. Deploying electrodes has been 

hypothesized to render the recording performance of neural probes less susceptible to an occurring 

immune reaction. It is technologically extremely challenging and has so far not been achieved in 

a practical device. Here, an implantable micro actuator was developed that moves a set of 

electrodes away from the shank after implantation. The actuator consists of silicon springs that are 

coated with a starch-based hydrogel. The hydrogel retracts and locks the springs before 

implantation, and gradually releases them when surrounded by bodily fluids as it swells. Models 

for the actuator were derived, the actuator was characterized in in-vitro experiments, and its 

practicality is demonstrated in an in-vivo experiment. 

2.1   Introduction 

The value of neural probes used in clinical applications increases considerably if they remain 

functional over a patient’s lifetime. Also, only chronic neuroscience experiments can shed light on 

certain mechanisms. However, the quality and quantity of recorded signals has been shown to 

decline over time [10, 22]. This has been linked to tissue damage during implantation and 
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indwelling of the neural probes [23]. The implantation causes mechanical trauma and damages 

neurons, supporting tissue and the dense vasculature. Indwelling triggers a chronic tissue response 

in form of inflammation and chronic blood brain barrier disruption [18, 19, 20, 21]. The chronic 

tissue response leads to encapsulation of the probe shank in a sheath of scar tissue. The sheath of 

scar tissue decreases the density of neurons, and remaining neurons are getting demyelinated in 

direct proximity to the probe shank [20]. Since electrical signals strongly decline with distance 

[24], this leaves less neurons that can be recorded from. The scar tissue has increased electrical 

impedance [25, 26] what furthermore decreases the signal amplitude. 

Following these findings, there were several approaches made to modify neural probes in order to 

extend their ability to form chronic high quality interfaces. Most of these studies show success to 

some degree. Some studies used quantitative histology as indicator for chronic inflammation, 

others used the electrical recordings from electrodes as performance measure. The approaches 

meant to enhance the chronic stability of neural probes can be divided into mechanical/geometrical, 

biological or computational modifications. The rest of this paragraph consists of a list of basic 

findings on how mechanical and geometrical properties of neural probes can be changed to 

improve the chronic stability of neural probes: It has been shown that the implant size correlates 

with the extent of the tissue reaction. Small geometries evoke less immune response than larger 

structures [27, 28]. Neural probes with flexible surfaces, for example those encapsulated in soft 

hydrogels [29] or consisting of ultra-flexible materials, [30, 31, 32] are hypothesized and in some 

cases were shown to work better. It was demonstrated that neural probes record more stably if they 

are not firmly connected to the skull [33]. Extremely slowly or fast inserted neural probes evoked 

less immune response than those that were inserted at a moderate rate [34]. Biological approaches 

make use of biologically active drugs. For instance, administering neural adhesion molecules that 
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promote the growth of neurons towards the electrodes or that demote the inflammation occurring 

around them. Computational approaches develop decoding algorithms used to generate control 

signals for prosthesis whose operation is less affected by the decline of the signal amplitude. For 

example, in [10] it was suggested that decoding threshold-crossing events is more favorable for 

this purpose than using isolated action potentials. These approaches are often not mutually 

exclusive and in next generation neural probes several of them can be combined. 

Following the finding that extremely small geometries, on the order of a few micrometers, barely 

or not at all accumulate scar tissue, neural probes were miniaturized to geometries with those 

dimensions. Table 1 shows a list of neural probe designs that follow this approach. These designs, 

however, are usually hyper-flexible and fragile and hence hard to insert into tissue. There appears 

to be an inherent trade-off, mediated by the probe dimensions between tissue damage and the 

reliability of the insertion. Some of these devices require insertion-aids such as biodissolvable 

delivery vehicles or insertion shuttles for successful implantation. Furthermore, some electrode 

designs reduce the shank width at the expense of electrode numbers. The extremely shallow carbon 

fibers, for example, only support one electrode at their tip. Some applications require recording 

using multiple electrodes in laminar distribution. Furthermore, some neural interfaces, such as the 

larger electrodes made for deep brain stimulation or those carrying an optical fiber, are inherently 

large and cannot be reduced to micrometer fine structures. 
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Table 1: Overview of intracortical neural probe designs specialized for chronic use by 

employing subcellular features around electrodes. The acronyms “hist.” stand for histology 

and “rec.” stand for recording. 

Citation Implan-

tation aid 

required 

Multiple 

electrodes 

per shank 

High 

density 

arrays  

Smallest 

features 

reported 

in-vivo data 

published 

Spring deployed 

(this ) 

No Yes No 5x5 µm No 

Carbon fibers, 

Patel ‘15  

Yes No Yes 9 µm 

diameter 

Yes (chronic, 

hist.+ rec.) 

Cui ‘14 [31] Yes Yes No 2.5x4x5 µm Yes (chronic, 

hist.) 

Open structure, 

Kipke ’07, [28] 

No Yes No 4x5 µm Yes (chronic, 

hist) 

Lattice, 

Tresco ’11, [27]  

No Yes Yes 12x15 µm Yes (chronic, 

hist + rec.),  

Nanowires, 

Kotov ’15, [35] 

No No Yes ≈100 nm 

radius 

Yes (acute, 

rec.) 

Silk Fishbone, 

Yoon ’11, [30] 

Yes Yes No 5x14 µm No 
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The strategy followed in this thesis chapter is to deploy very small satellite recording sites to 

locations outside of the sheath of scar tissue around the shank to connect with neurons that are 

least affected, all after implantation [36] (Figure 4). The deployed electrodes may then interface 

with neurons further away from the local inflammation around the shank, the physical damage 

caused by implantation and the electrical shielding around the shank. 

 

The electrodes can be mechanically decoupled from the shank and left floating almost freely with 

the tissue. The shanks on the other hand can then be made sufficiently robust for reliable insertion, 

to transport larger optical fibers or electrodes for deep brain stimulation, and for handling without 

breaking. Many approaches were targeted towards mitigating the immune response around shanks, 

the concept presented in this report makes the performance of electrodes less vulnerable to an 

immune response around the shank. 

 

Figure 4: Drawing of the concept of probes with deployed electrodes. The electrodes 

are not fabricated directly on the shank but at the end of fine and flexible needles. After 

implantation, these needles are deployed away from the shank.  
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Deploying structures of an inserted neural probe shank is technologically extremely challenging 

since it requires large displacement, force and biocompatibility. It has so far not been realized in a 

way leading to a device that is optimized for chronic implantation. This thesis chapter reports on 

developed technologies and fabricated prototypes of feasible neural probes with deployable 

electrodes. 

Mechanical actuation mechanisms were employed previously for operation in conjunction with 

neural probes in the central and peripheral nervous system. This paragraph reviews three reported 

actuation concepts, applied in six examples: Bi-stable structures that unfold during implantation, 

temperature triggered shape memory materials and electrically controlled conjugated polymer 

actuators (Figure 5). To render fine wire electrodes stiff enough for insertion, they were coated in 

dissolvable gelatin and designed to fan out during implantation [37] (Figure 5a). To increase the 

surface of wire electrodes it was suggested to deploy recording spikes after implantation. This 

could be done by partially retracting a probe with a bi-stable neural probe geometry after insertion 

[38] (Figure 5b). A similar mechanism (pulling back the neural probe shank after insertion) was 

suggested in order to deploy wings with electrodes off a polymer electrode [39] (Figure 5c). To 

allow moving electrodes after implantation to increase selectivity and lifetime of polyimide-based 

intrafascicular electrodes, the authors of [40] integrated heat-activated shape memory actuators 

based on TiNi embedded into the core or a shank (Figure 5d). Actuators were attached to the back 

of a neural probe shank allowing extremely slow implantation, for example using as epoxy-based 

shape memory materials [34] (Figure 5e). Parylene neural probe shanks were equipped with 

electrode projections that deploy during insertion. Conjugated polymer actuators were used to flex 

these projections inside before insertion and deactivated as the shank is inserted [41] (Figure 5f). 
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a) 

 

b) 

 

c) 

 

d) 

 

e)  

 

f) 

 

Figure 5: Illustrations of neural probe actuation mechanisms. a) gelatin embedded wire 

bundles [37], b) bi-stable recording tips [38], c) self-opening Parylene neural probe [39], d) 

and e) shape memory actuators [40, 34], f) conjugated polymer actuators on Parylene neural 

probes [41] 

A thought experiment suggests that there are preferable properties of actuation mechanisms for 

neural probes with deploying electrodes. If the connection to the electrodes softens or releases 

after deployment, they can better comply with the movement of tissue relative to the shank. 

Surgical procedures are critical and should not be unnecessarily complicated. The electrodes 

should only be surrounded by micrometer fine structures to mitigate built up of scar tissue. A 

straight deployment trajectory aligned with the geometry of the deploying structure minimizes 



  

18 

 

tissue damage compared to a curved trajectory or slicing. The actuator, furthermore, should not 

take up much space or enlarge the shank of the neural probe much. To the knowledge of the author, 

these properties have not been realized in any actuation concept employed to neural probes. 

Addressing these needs, this thesis chapter introduces an actuation mechanism based on hydrogels. 

Soft-actuators make use of the large and forceful change of geometry in hydrogels after coming 

into contact with water [42]. Such self-actuated materials can operate without control signals and 

electrical connections. Actuators made of resorbable hydrogels will reduce their volume after 

implantation and become soft. This thesis chapter revolves around design and fabrication of neural 

probes with integrated silicon springs that are coated in a starch-based hydrogel to deploy 

electrodes.  

2.2   Concept of electrode actuation  

Deploying electrodes poses two main performance requirements on the actuator: how far it should 

be able to deploy the electrodes and how fast it should do that. To interface with healthy neurons, 

the electrodes should be deployed far enough to reach outside the layers of tissue damaged by 

implantation and presence of the shank. For that the actuator needs to supply sufficient force 

throughout the required travel to advance the electrodes through the surrounding tissue. 

This paragraph discusses the choice of the amount of travel the actuator should support. This is to 

answer the question at what distance from the implanted shank the recording quality of the 

electrodes would be sufficiently less affected. This is a criterion difficult to determine. It is still 

not fully understood which and to what extent mechanisms lead to recording failure. Possible 

failure mechanisms include high impedance scar tissue and neural death or damage. These depend 

on many factors including shank size, anchoring or insertion method. The extent of the foreign 
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body response depends on the size and anchoring of the implanted device [28, 33, 27]. The health 

of neurons likely depends on many factors such as the density of nearby inflammatory cells, 

density of surrounding neurons and concentration of inflammatory factors. Histological studies 

like [20, 43] investigated the geometry of the immune response around silicon probes implanted 

for up to 12 weeks into rat brains. The authors of [43] used silicon neural probes with 200 µm 

width at the base, tapering down to 2 µm at the tip. The probes were firmly anchored to the skull 

for their quantitative histological study. The experiments show that the density of neurons (cells 

per volume) within 50 µm of the shank tissue interface drops by roughly 60 %, but recovers to 

normal in a bin further away (50-100 µm). Activated microglia and macrophages are present in 

high concentrations within 80 um of the shank. Other components of the immune response such 

as hypertrophic astrocytes extend several hundred microns into the tissue [44]. The authors of [28, 

33, 27] show that smaller implants evoke a more contained immune reaction. For example, the 

scar tissue around probe shanks reduced to a 15 µm wide lattice only extends by several tens of 

µm, while solid shanks are surrounded by more than 100 µm of scar tissue [27]. In conclusion, 

above mentioned studies suggest that if the developed neural probes are 200 µm wide at the base, 

tapering towards the tip and 15 µm thick and anchored to the skull, for the electrodes to record 

from outside the dense sheath of scar tissue formed around implanted shanks and from tissue with 

a density of neurons comparable to that found in brains without implanted shanks, they need to 

deploy by more than 100 µm. The design goal for the travel of the actuator is set to be at least 

100 µm.  

The actuation mechanism should delay deployment or be slow enough such that the probe can be 

fully inserted before the electrodes move outside the protected position. The speed of deployment 

should be chosen such that the tissue response is minimized. The time it takes for a probe shank to 
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be fully inserted depends on the insertion speed and depth. A wide range of insertion speeds is 

employed. Its choice depends on inserted device and type of tissue. For example, pneumatic 

insertion is extremely fast (≈10 m / s) and commonly used with Blackrock Uath Arrays [45]. The 

tissue response of neural probes inserted at 0.82 mm/s and 1 mm/40 min was compared in [34]. 

They concluded that the extremely slow insertion speed reduced astrocytosis, a component of the 

foreign body response. The authors of [46] compared the effect of two insertion speeds on long-

term tissue response. A Parylene-coated silicon probe was implanted into rat brains at 10 µm/s and 

100 µm/s, to a depth of 9 mm. The tissue response after 6 weeks showed no difference between 

the two insertion speeds. This literature review indicates that the range of practical insertion 

durations is wide and ranges from extremely fast (few ms) to extremely slow (hours). The design 

goal for the onset/speed of actuation was set such that the actuator would not deploy for several 

tens of seconds to allow for insertion with a reasonable speed and then deploy slowly within several 

tens of minutes to hours, in order to minimize tissue damage. The selected goals for the actuator 

performance are summarized in Table 2. 

 

Table 2: Summary of chosen actuator requirements 

Actuator requirements 

Travel more than 100 µm to deploy outside sheath of dense scar tissue 

Timing deploy slowly enough/delayed to allow for  implantation (several tens 

of seconds) 

Biocompatibility occupy tolerable volume, operate in isotonic liquid 

no excessive heat, no high voltages, no toxic materials 
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The concept of the designed actuator is as follows (Figure 6): The electrodes of the neural probes 

are at the tip of needles that are connected to a shank through micro-springs. Before implantation, 

the springs are coated with a hydrogel that retracts the springs as it dehydrates. After implantation, 

the gel comes in contact with bodily fluids and slowly releases the springs, allowing them to deploy 

the electrodes (Figure 6).  

 

The advantages of this actuation concept are that there is no need for external control signals, extra 

interconnects or a power supply. Furthermore, the actuation does not require changing the 

temperature of the surrounding tissue, applying voltages or using chemically reacting materials. 

 

Figure 6: 1. The probes are fabricated with springs in deployed state. 2. The springs are coated 

with a hydrogel. 3. As the hydrogel dehydrates, the springs retract, pulling the electrodes into 

a protected position close to the shank. 4. After implantation the hydrogel swells releasing the 

springs deploy and interface tissue away from the shank. 

 

 

fabricate 

springs in 

deployed 

state
1 coat in 

hydrogel

dehydrate 

gel, retract 

springs

implant, 

hydrogel swells 

and releases 

springs

2

3 4



  

22 

 

The springs are extremely compliant when fully deflected. In that state, they leave the electrodes 

floating almost freely inside tissue. The electrodes deploy in a straight trajectory. This minimizes 

the footprint of the deploying structures and likely causes less tissue damage that a curved 

trajectory or slicing. 

2.3   Spring design 

When designing springs, there are two properties to consider that likely have conflicting effects: 

The amount of space the springs take up scales with the number of electrical contacts they can 

support. The mechanical stress occurring during retracting of the springs (which needs to be 

provided by the hydrogel) scales with the force they provide to push the needles through tissue.  

Following design goals were made for the springs:  

 provide required travel and force  

 take up little volume, do not extend the shank width much 

 carry the electrical interconnects from the electrodes to the shank  

 allow to be retracted and released by a hydrogel 

A special spring design was developed that alleviates the above mentioned trade-offs. To get better 

insight in the developed design, a mechanical model of the spring deflection was developed. 

The springs consist of silicon and carry an electrically conductive trace on top that is insulated 

against the surrounding. One spring arm consists of two arcs facing in opposite directions (Figure 

7). Rather than bending across an anchor like a fixed-free beam loaded at the free end, they roll 

down on the shank and on the comb holding the needles as they deflect. This creates a uniform 

stress distribution along their length when deflected, allowing for large deflections without fracture 

(Figure 7). This also provides the hydrogel a large surface area to pull on. Capillary action has 
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larger effect on surfaces being in close contact. Instead of increasing the width of springs to fit 

multiple interconnects side-by-side on a single spring arm, several springs with small width are 

nested inside each other, and each carrying a single interconnect. Figure 8 shows the assembly of 

spring arms into sets of springs and typical dimensions of spring arms. 

 

a) 

 

The complete set of springs consists of three pairs of two nested springs connected in parallel. 

b) 

 

c) 

 

Figure 7: Drawings illustrating spring design and operation. a) A probe shank with a set of 

double-folded, double-nested springs b) A spring arm rolling down on a substrate as it retracts 

c) A spring arm consists of two connected arcs with a constant radius of curvature. 

F

Spring arms roll down on nearby surfaces
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a) 

 

A set of springs consists of a parallel 

connection of a serial connection of two spring 

arms  

b) 

 

Two spring arms in serial connection 

Figure 8: Spring assembly a) the label “set of springs” refers to a parallel connection of a serial 

connection of two spring arms. b) typical dimensions of two spring arms in serial connection. 

The springs should not exceed fracture stress during retraction. The stress during deflection of the 

springs is maximum when they are fully retracted; in that state the arced shaped spring arm rolls 

on the supporting structure to a straight shape. It can be approximated by equation ( 1 ): 

𝝈𝒎𝒂𝒙 =
𝑬 × 𝒉

𝟐 × 𝝆𝒂𝒓𝒄 
 ( 1 ) 

With E - the Young’s modulus, h – the width of the springs and ρarc – the radius of curvature of 

the arc. This yields the design implication that, in order to minimize the distance to the neutral 

plane, the width of the springs needs to be minimized. The minimum width of the spring is limited 

by the photolithographic minimum feature sizes and by the minimum required force the springs 

should exert to push the needles through tissue and starch gel (which increases with the spring 

width). Likewise, increasing the radius of curvature will decrease the maximum stress in the 

springs, but it will lower the travel for a given arc length and exerted force. 
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The force the springs exert at a given deflection determines how far they can deploy the needles 

through tissue. To approximate the force-displacement relation of the springs, a model based on 

the Euler-Bernoulli beam theory is derived [47]. Conclusions from the derived numerical model 

were calculated and plotted using Matlab (Mathworks, Natick, MA). One spring arm is modeled 

as a beam with fixed-guided support, deforming under a point load. A beam with fixed-guided 

support is modeled as a beam with half the length and fixed-free support (Figure 9). The spring is 

anchored only at its end. The tethering forces can be approximated by a point-load applied to the 

end of the spring arm. 

 

For the beam to reach equilibrium, the applied external moment needs to be matched at every 

section along the beam by a reactive internal moment (equation ( 2 )). The external moment of a 

section is proportional to the magnitude of a point load applied to the tip of the beam and to the 

distance of the segment to the tip of the beam (equation ( 3 ). The internal moment is proportional 

to the stiffness of the beam material, its bending moment of inertia, and to the inverse of the 

 

 

 

Figure 9: Modeled section of the spring arm. Four arcs in series forming one spring arm. Under 

the given boundary conditions, two arcs behave similar to a fixed-guided beam with twice their 

length. Modeling the deflection of one single arc is sufficient to describe the behavior of the set 

of springs. A single arc behaves similar to a fixed-free beam. 
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modeled section
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induced radius of curvature in that segment (equation ( 4 ). The beam is modeled to have a 

rectangular cross-section. Thus the bending moment of inertia is uniform along the length of the 

beam and can be calculated using equation ( 5 ). 

𝑴𝒆𝒙𝒕 = 𝑴𝒊𝒏𝒕 ( 2 ) 

𝑴𝒆𝒙𝒕 = 𝑭 × (𝑳 − 𝒙) ( 3 ) 

𝑴𝒊𝒏𝒕 =
𝑬 × 𝑰

𝝆(𝒙)
 ( 4 ) 

𝑰 =
𝒃 × 𝒉𝟑

𝟏𝟐
 ( 5 ) 

𝑴𝒆𝒙𝒕 and 𝑴𝒊𝒏𝒕 are the external and internal moments resulting from applied force F,  𝝆(𝒙) the 

curvature of beam at position x induced by the external load and I is the bending moment of inertia 

of the beam. 

This set of equations calculates the bending moment of inertia of the spring arms assuming a 

constant projected cross-section along their length. However, for large deflections or for pre-

curved beams with length that is comparable to their radius, this assumption is wrong. In the 

designs modeled, the change of projected thickness is small and hence neglected. It can be included 

with a minor modification when needed. Since the bending moment of inertia will then be 

dependent on the final beam shape, solving the differential equation can be done by iteration. The 

thickness of the beam needs to be changed to its projection, as shown in Figure 10b and in 

equation ( 6 ). 
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The projection 𝒉̅(𝒙) can be calculated by equation ( 6 ): 

𝒉̅(𝒙) =
𝒉

𝐜𝐨𝐬(𝐭𝐚𝐧−𝟏(𝒚′(𝒙)))
 ( 6 ) 

To include the effect of the spring rolling on the shank, the curvature ρ(x) is capped to that of the 

pre-curvature of the arc. If an applied force would curve a section of the spring further than its 

built-in curvature in the opposite direction, this section will only deflect to a straight shape equation, 

as described in equation ( 7 ). At this point it comes into contact with the support structure and the 

deflection is stopped.  

𝒚′′(𝒙) =

{
 

 
𝟏

𝝆(𝒙)
 𝒇𝒐𝒓 𝝆(𝒙) <  𝝆𝒂𝒓𝒄

𝟏

𝝆𝒂𝒓𝒄
 𝒆𝒍𝒔𝒆

    ( 7 ) 

𝑦′′(𝑥) stands for the second derivative of y, the position of the neutral plane of the spring at 

location x, with respect to x.  

a) 

 

b) 

 

Figure 10: a) spring dimensions with h, the width, and b, the thickness of springs. b) 𝒉̅ 𝒊𝒔 the 

projected width adjusting for the curvature. 

tan-1(y’(x))
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The beam deflection y is derived from the curvature y’’ by integration using appropriate boundary 

conditions: zero slope and zero deflection at the fixed end (y’(x=0) = 0 and y(x=0) = 0). 

The deflected beam shape for a given load is calculated by superimposing the built-in, arc shaped 

form of the spring without any load, to the deflection calculated as described above (equation ( 8 )). 

𝒚̅(𝒙) = 𝒚(𝒙) + 𝝆𝒂𝒓𝒄 × (𝟏 − 𝐜𝐨𝐬 ( 𝐬𝐢𝐧
−𝟏(

𝒙

𝝆𝒂𝒓𝒄
))) ( 8 ) 

To provide an example, these equations were solved for a spring with typical dimensions. The 

Young’s modulus of silicon is assumed to be 159 GPa [48]. Solving for 𝑦̅ with ρarc=1000 µm, 

L=173 µm, h=10 µm, w=5 µm, and applying a load of 500 µN at the free end of the beam yields 

following figures: Figure 11 contrasts the curvature of a fixed free beam with and without support 

(curvature not capped). Under the applied load, the maximum stress (close to the anchor and at the 

top of the beam) in the supported spring arm is with -380 MPa much smaller than the 2.1 GPa in 

the unsupported beam.  
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Figure 12 shows the deflection of the beams. The figure indicate that the supported beam can exert 

a larger force at the same displacement. Figure 13 shows the resulting beam shapes using he 

deflection shown in Figure 12. Figure 13 is generated by superimposing the deflections to the built-

in, curved shape of the beams. 

 

Figure 11: The modeled curvature and maximum stress of two pre-curved, fixed-free beams 

under applied load. One of the beams rolls down on a support (red, solid). The other one bends 

freely (blue, dashed). As the beam rolls on the support, its curvature (and with it the stress) is 

capped. The maximum curvature is dictated by the inverse initial curvature of the beam. Without 

support, the curvature increases linearly along the length of the beam. 

stress in beam with support >= -380 MPa

stress in beam 

without support

stress -2.1 GPa



  

30 

 

 

 

Figure 12: Deflected distance along the length of two fixed-free beams loaded with 500 µN. 

Again, one of the beams rolls down on a support (red, solid), the other one does not (blue, 

dashed). Without support, the deflection of the beam is strongly increased. 

with support

without support
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Figure 14 shows the load-deflection curve of a set of six springs in parallel, as used on the 

developed neural probes. Each spring consists of eight arcs in series. The load-deflection curve is 

non-linear, the springs are relatively soft when deployed and stiff when retracted. The springs will 

be inserted in retracted state (high deflection) where they exert the highest force. As they deploy 

after insertion, their force decreases until it matches the force exerted by surrounding tissue. For 

example, if the force needed to pierce tissue was 0.2 mN, the springs will deploy by 90 µm from 

their retracted position. The slope of the curve at low deflections indicates that springs become 

softer after deploying. The softer the springs are, the less resistance they offer the electrodes to 

‘float’ with the tissue. When the springs are retracted, they increase their stiffness. This provides 

sufficient force to pierce the needles through tissue. 

 

Figure 13: Shapes of a pre-curved beam with and without applied load (500µN), rolling on 

a support. The difference of the tip positions is taken as the deflection of the beam. This 

corresponds to the distance this spring segment can deploy the electrodes. 

 

beam without load

loaded beam 

(with support)
deflection
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Table 3 summarizes some calculated properties of one of the fabricated spring designs. 

 

Figure 14: Modeled load-deflection curve of a complete set of springs (eight arcs in series 

form one set of spring arms, six spring arms are connected in parallel). The load-deflection 

curve is non-linear. The springs are relatively soft when deflected, and relatively stiff when 

retracted. Softness allows the deployed electrodes to float with tissue. Stiffness provides 

sufficient force to advance electrodes through tissue. 

deployed distance ≈ 90 µm

exemplary 

minimum force 

needed to deploy 

(≈0.2 mN)

soft to allow floating 

with tissue

stiff to provide 

force to penetrate 

tissue
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Table 3: Calculated/Designed spring specifications 

Parameter  

Force when 

90% retracted 

/ spring 

constant at low 

deflections 

Length/ 

thickness/ 

width 

Maximum 

deflection 

Max.stress in springs 

(on surface, when 

fully retracted) 

Provided in a fabricated 

example 

0.96 mN / 

6.9 N/m 

346 µm/ 

10 µm/ 

5 µm 

 

120 µm       

0.425 GPa    

(fracture stress of 

silicon ≈2.8 GPa 

[49]) 

 

As described in paragraph 3.4   concerning starch-hydrogels compressing springs, the compression 

was strong enough to crack springs in characteristic locations close to an the edge. At the edges of 

the springs, the spring arms are close to another surface, allowing the starch gel to “pull on”. The 

springs were redesigned with two modifications to prevent them from forming cracks (Figure 15). 

Larger openings between spring arms were avoided such that they come into contact and stop 

bending before cracking occurs. Also, all corners of the spring arms were rounded to relieve stress. 
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An early attempt to form springs in a similar design in Parylene was abandoned for two reasons: 

Experiments on Parylene springs (Figure 16a), retracted by manipulators, showed that Parylene 

spring arms tend to stick together once they came into contact. Also, Parylene formed cracks very 

easily when under mechanical stress, especially along edges that were rough as a side-effect from 

fabrication (Figure 16b). 

a)

 

b)

 

Figure 16: Parylene springs retracted by manipulators formed cracks and often suffered stiction. 

 

Figure 15: Sketch of an early spring design that often cracked when retracted by starch. Two 

design modifications prevented that: A structure was added that allows the spring arms to roll 

down on, close to the edges, and all corners were rounded. 
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2.4   Starch-hydrogels for actuation of springs 

A mechanisms needed to be found to retract and lock the springs before insertion, and to release 

them after. Several mechanisms were considered for this purpose, including the capillary action of 

water, electrowetting, external manipulators and biodissolvable glues or hydrogels.  

Relatively weak springs can be retracted with capillary action of pure water. As they were 

immersed in water, they trapped small amounts of water between adjacent surfaces. When the 

water began to evaporate, the springs retracted, leaving only a thin film of water in between 

surfaces. When the retracted springs were immersed into water, the capillary action disappeared 

and the springs released. The capillary action of water was only able to retract springs as shallow 

as 2 µm. This seemed not practical, considering that the springs need to be strong enough to deploy 

the electrodes through tissue. 

Electrowetting bases on changes the contact angle of a water drop on a dielectric from the Young’s 

angle to the electrowetted contact angle [50]. This can be used to form actuators with large force 

and travel. The actuation mechanism would take advantage of capillary forces of water attracting 

a surface, and use electrowetting to move the water. To apply this concept to actuation of springs, 

however, would require to form dielectrics and electrodes along the sidewall of the springs. This 

would change the used fabrication process drastically. 

Another option considered was the use a combination of external manipulators to retract the 

springs and glues to lock and release them. There are various dissolvable glues, for example sugar 

syrup, polyethylene-glycol or poly(lactic-co-glycolic acid) (PLGA). These would release the 

springs after insertion, once biological fluids dissolved the glue. However, employing external 

manipulators appeared to likely require much individual handling of the delicate structures of the 
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probes. Also, the required access to those structures then limits their design. Furthermore, the used 

glues either released the springs immediately after contact with water (sugar syrup, polyethylene-

glycol) or unevenly, meaning one side long before the other, (PLGA) when in contact with water. 

One reason for this uneven release could be that the glues used had a relatively long dissolution 

time (hours). So a small variation in thickness or composition of the glue can have a large effect 

on the mechanics of the spring release. 

Several hydrogels were investigated for their ability to retract and release the springs. Agar, gelatin, 

glycogen and polyethylene glycol were dip-coated on the springs. They were able to retract weak 

springs, but released them instantaneously when in contact with water. Hydrogels based on various 

origins of starch such as corn rice, tapioca or potato plants were also investigated. Only corn starch 

was able to fully retract springs that were likely strong enough to deploy sufficiently far through 

tissue. Hence corn starch was further investigated. For the experiments, a modified corn starch 

called “Crisp Film Starch” obtained from National Starch was used. Pure starch releases the 

springs readily when in contact with water at body temperature. It was found that iodizing the 

starch gel leads to it swelling slowly and gradually. A detailed explanation of the phenomenon is 

discussed in Chapter 3. Although iodine can have a beneficial effect on wound healing [51], free 

iodine is cytotoxic, increasing with its concentration. To reduce the concentration of free iodine, 

Povidone iodine (an iodine slow-release agent) [51] is used for iodizing.  

It is critical that the springs do not deploy much during insertion. Iodized, starch coated springs 

deploy with an initial jump right after coming in contact with water as explained in paragraph 3.6  . 

To minimize this initial jump, PLGA is coated on top of the iodized starch. PLGA is a FDA-

approved, biodissolvable material that has been used as neural drug-delivery vehicle [52] and in 

conjunction with neural probes as dissolving scaffold [52]. A sketch of the assembly used is show 
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in Figure 17, along with explanations of the function of the 

individual components. In summary, the springs are meant 

to provide the force to deploy the electrodes, starch gel is 

used to retract the springs and to slow their deployment, 

and PLGA is used to delay the deploy of the springs 

sufficiently to allow for complete insertion. 

Starch-hydrogel needs to be sterilized before implantation 

when used with chronic, biological experiments or any in 

clinical applications. Biodissolvable materials are often 

hard to sterilize because they tend to be soluble in water, 

heat-sensitive, radiation sensitive and to absorb toxic 

chemicals. However, in case of starch-hydrogel, there might be a few options to address the 

requirement of sterilization: It is likely useful that starch is used in conjunction with iodine. Iodine 

has been used as antiseptic in clinical applications [53]. Furthermore, starch hydrogel appears to 

still fulfill its desired function even after exposure to hot air (100 °C) for 10 min (data shown in 

section 3.6  ). Another possibility is to sterilize the starch-granules before preparing the gel. 

Experiments showed (data not shown) that starch granules can be exposed to air at 160 °C for 

30 min without losing the ability to form a gel. 

Table 4 compares the developed actuator to two other autonomous, implantable actuators. It is 

somewhat difficult to compare actuation mechanisms relying on published designs since they were 

likely optimized for different applications. One apparent property of starch-gel is that it does not 

take up much volume and hence is favorable for implantation. It is furthermore biodissolvable, 

what can be an advantage. In case of the epoxy shape memory and the bilayer actuators, the onset 

 

Figure 17: Sketch illustrating 

intended function and location of 

starch and PLGA on the springs. 
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of actuation after contact with biological tissue is not documented in sufficiently high resolution 

(seconds) to determine if they would be able to provide sufficient delay for insertion of neural 

probes. As is seems, this is not the case and considerable actuation commences right away. The 

epoxy shape memory actuation shows potential for large travel (several hundred micrometers, 

depending on beam dimensions). This mechanism is furthermore providing actuation in the 

direction of lateral translation, what might be preferable in case of deploying electrodes of neural 

probe. The bilayer actuators can be made extremely small. With the proposed fabrication process, 

they can only provide out-of-plane rotation. 
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Table 4: Biocompatible, temperature triggered, autonomous, large displacement micro 

actuators and some of their typical/published properties 

Author, 

Reference, 

Material 

Translation 

/ Rotation 

Force Speed / 

Delay 

Softening 

when 

deployed 

typical size 

of active 

layer 

(This work) 

Starch-gel 

coated 

springs 

120 µm 

Translation 

200 µN at 

120 µm 

deflection 

20 s onset –

hrs for full 

deployment 

Yes 5 µm thick 

before, tens 

of µm after 

hydration 

Restrepo 

‘06), [34], 

epoxy shape 

memory 

400 µm, 

Translation 

100 µN Exponential 

with time, ≈ 

100 µm after 

1hr 

No 100 x 

200 µm 

Gracias ’08, 

[72], bi-layer 

Cr/Cu, 

cresnel 

novolak  

> 90 ° 

Rotation 

Can cut 

connective 

tissue 

Not 

published, 

presumably 

seconds 

No 7 µm thick 
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2.5   Needles and shank design 

The dimensions of the needles result from a compromise between small size for reduced tissue 

encapsulation, minimum features given by fabrication limitations and required mechanical 

stability. As mentioned earlier, the biological encapsulation reduces strongly around implants with 

sub-cellular size (5-10 µm) [27, 28, 33, 54, 55]. A lower limit for the width and thickness of the 

needles is given by the ability to pattern and align a conductor across the needle with enough 

clearance to each side such that it can be covered from all sides with an insulator. The needles can 

be very flexible, since the tissue inside the brain is not offering much mechanical resistance. 

However, if the needles become too flimsy, the deployment might not happen in a straight 

trajectory and needles could buckle and break during insertion or starch dehydration. The needles 

along with the springs used in the experiments are designed to be 5 µm wide and 5 or 10 µm thick 

for reliable and simple fabrication. More shallow designs with 2 µm width and 5 µm thickness 

were also fabricated. Needle designs up to an order of magnitude smaller are possible using e-

beam lithography [56]. The length of the needles is set to be 100 µm such the electrodes are able 

to reach outside the encapsulation sheath around the shank. 

The shank needs to be wide enough to harbor the electrical interconnects, springs, needles and 

electrodes. It also needs to provide sufficient stiffness to penetrate through tissue. The main 

contributors of the width of the shank are the needles and the springs. The stiffness of the shank, 

required for reliable insertion, can be enhanced without increasing the width much. For example 

by forming vertical stiffeners [57]. Electrical interconnects can be patterned on silicon with sub-

micron pitch [56] so the shank width will not increase by more than a few microns per interconnect. 

A wider shank will induce a larger inflammation, and lower the acceptable pitch to neighboring 

shanks. If the width of the shank can be reduced, the electrodes likely do not need to be deployed 
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as far. A more shallow shank is preferable because it minimizes the overall tissue damage and it 

allows for other shanks to be implanted in closer proximity. An optimum shank design will be as 

shallow as possible while still deploying the electrodes just outside the sheath of scar tissue.  

The above mentioned minimization of the shank width was out of scope for this thesis; a shank 

width sufficient for reliable insertion is chosen (Figure 18). The spring configuration employed for 

the design used in the described experiments adds about 50 µm width to the shank (cumulative 

width of the spring beams in retracted position). The needles add 100 µm. The rest of the shank is 

designed to be 140 µm wide. 

 

Other designs were fabricated as well. In some, the shank width was reduced together with the 

distance the electrodes deploy, resulting in dimensions shown in Figure 19a. Another design 

increased the electrode count to 16 (Figure 19b). 

 

Figure 18: Neural probe dimensions chosen for most of the experimental work. 
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2.6   Finite-element model of the tissue stress induced by neural probes with 

deployed electrodes 

Motivation 

Deploying electrodes after implantation might improve chronic stability if the scar tissue around 

the deployed electrodes is reduced compared to that accumulating around the shank. It seems 

plausible that reducing the mechanical stress that neural probes induce into the surrounding tissue 

(caused by respiration, pulse, head movements) will reduce the amount of scar tissue accumulated. 

a) 

 

b) 

 

Figure 19: a) Shank dimensions of a more shallow design. The width was reduced at the cost of 

reducing the deployed distance. b) Layout of a shank with 16 deployable electrodes. Both designs 

were fabricated and are electrically functional. 

Spring travel: 50 µmNeedle length: 45 µm

Shank width: 100 µm

16 Electrodes

Shank width: 270 µm
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It was hypothesized, and in some cases found, that neural probes, that are not firmly anchored to 

the skull [33], and flexible neural probes [30, 31, 32], reduce some components of the tissue 

response. For this thesis project, a FEM simulation was conducted to analyze the effect of springs 

and fine needles on the mechanical stress induced into tissue. Finite element method (FEM) 

simulations of mechanical interaction between neural probes and brain tissue were conducted 

previously [44, 58, 59]. 

Setup 

The stress inside the brain tissue around deployed needles is caused by (undesired) movement 

between the two. In order to isolate the effect of employing flexible springs and needles, three 

shank geometries (Figure 20) were compared: a traditional square shaped shank (referred to as 

“shank”), a shank with needle extensions with springs (referred to as “spring”) and a shank needles 

but without springs (referred to as “needle”). A cube of brain tissue with dimensions 

500x500x500 µm3 (500x500x700 µm3 in case of “spring”) is surrounding the silicon probe 

geometries. The probe geometries consist of a 400 µm long, 14 µm thick and 140 µm wide silicon 

shank. The “needle” geometry has 5 µm-wide, 14 µm-thick and 100 µm-long needles attached. 

The “spring” geometry has a spring with120 µm travel inserted between the needles and shank. 

COMSOL Multiphysics 4.4., (COMSOL, Inc., MA, USA) was used as simulator.  
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The mechanical boundary conditions were defined as follows (Figure 21): The tissue is assumed 

to be firmly connected to the springs (no slip). This is presumably more accurate once dense scar 

tissue built up around the implant than soon after insertion or while the electrodes deploy. To 

induce movement, one side of the brain tissue block is displaced by 5 µm towards the silicon shank. 

This distance is arbitrarily chosen, extracted values are meant to be interpreted in relation to each 

other. Two scenarios were simulated: The tissue is displaced along a trajectory parallel to the width 

of the shank (referred to as “side”, Figure 21a). In the other case, the tissue is displaced along the 

thickness of the shank (referred to as “front”, Figure 21b). The long side (case of “side”) or the 

short side (case of “front”) of the silicon shank is fixed and does not move. 

a) “shank” 

 

b) “needle” 

 

c) “spring” 

 

Figure 20: Simulated probe geometries surrounded by cube-shaped brain tissue. a) Geometry 

referred to as “shank” design, modelling a typical neural probe shank b) “needle” design, 

modelling needles attached to a shank c) “spring” design, modelling needles connected to a 

shank by springs as used in this thesis. 
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The material properties were defines as follow: If the brain tissue is white matter and undergoing 

slow compressions (on the order of 0.5 mm/s), it can be modeled to have a uniform, isotropic 

Young’s modulus of 12,500 kPa and a Poisson ratio of 0.49 [60]. Frequency dependent effects 

(damping, inertia) are not considered, only the steady state solution is extracted. Silicon is modeled 

to have an averaged isotropic Young’s modulus of 159 GPa and an averaged Poisson’s ratio of 

0.23 [48]. 

Results 

a) “side” 

 

b) “front” 

 

Figure 21: Boundary conditions of the simulation. Two scenarios were simulated for all 

designs. The scenario in a) shows the brain tissue displacing along a trajectory parallel to the 

width of the probe (referred to as “side”). Here the long side of the probe shank is 

immobilized. The scenario in b) shows the brain tissue displacing along a trajectory parallel 

to the thickness of the probe (referred to as “front”). Here the short side of the probe shank 

is fixed. 

fix

5 µm prescribed 

displacement

fix

5 µm prescribed 

displacement
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Figure 22 shows the results for the “shank” geometry, for tissue-displacement in both “side” 

(Figure 22a) and “front” (Figure 22b) direction. Figure 23 shows these results for the “needle” 

geometry, Figure 24 shows these results for the “spring” geometry. Figure 25 shows the 

displacement of the springs. The stresses and displacements are color-coded. The relative relation 

between magnitude and color is shown above the tables. An absolute value of the color red is listed 

above each plot.  

Figure 26 shows a graph of the magnitude of the stress along a path (Figure 26a for tissue-

displacement in “side” direction, Figure 26b for tissue-displacement in “front” direction). In Figure 

26a, the shank-tissue interface is located at x=0. In Figure 26b, the shank extends from x=-7 to 7. 

The tissue was displaced towards positive x-values. 
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a) “side”, red-800 N/m² 

 

b) “front”, red-800 N/m² 

 

Figure 22: Simulated stress inside tissue around the “shank” geometry. a) results for tissue-

displacement in “side” direction and b) results for tissue-displacement in “front” direction. The 

stresses are color-coded. The relative relation between magnitude and color is shown on top of the 

figure, and an absolute value of the color red is listed above each plot. 

 

100%50%0
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c) red-3000 N/m² 

 

d) red-1800 N/m² 

 

Figure 23: Simulated stress inside tissue around the “needle” geometry. a) results for tissue-

displacement in “side” direction and b) results for tissue-displacement in “front” direction. 

The stresses are color-coded. The relative relation between magnitude and color is shown on 

top of the figure, and an absolute value of the color red is listed above each plot. 

 

100%50%0
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a) “side”, red-1100 N/m² 

 

b) “front”, red-400 N/m² 

 

Figure 24: Simulated stress inside tissue around the “spring” geometry. a) results for tissue-

displacement in “side” direction and b) results for tissue-displacement in “front” direction. 

The stresses are color-coded. The relative relation between magnitude and color is shown on 

top of the figure, and an absolute value of the color red is listed above each plot. 

100%50%0
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a) “side”, red-2 µm 

 

b) “front”, red-2 µm 

 

Figure 25: Simulated displacement of the “spring” geometry. a) results for tissue-displacement 

in “side” direction and b) results for tissue-displacement in “front” direction. The 

displacements are color-coded. The relative relation between magnitude and color is shown on 

top of the figure, and an absolute value of the color red is listed above each plot. 

 

100%50%0
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a) “side” 

 

b) “front” 

 

Figure 26: This graph shows the magnitude of the stress along a path - a) for tissue-

displacement in “side” direction, and b) for tissue-displacement in “front” direction). In a), 

the shank-tissue interface is located at x=0, in b), the shank extends from x=-7 to 7. The tissue 

was displaced towards positive x-values. 

Discussion 

The resulting simulated stress inside the tissue around the shank and needle geometries can be 

lumped into a near (<30 µm) and a far (>30 µm) zone. The near zone is containing a large portion 

of neurons that are recorded from. In the near zone, the stress around needles is about a factor 4 
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higher than that around the shank. This illustrates how smaller structures, that are somewhat fixed 

in position, potentially cause higher stress inside tissue in response to relative displacement. The 

reduced stress around larger structures might be a reason that allowed relatively large microwire 

electrodes with 50 µm diameter to record with a high SNR stably over 80 days [23]. Even if less 

scar tissue is accumulated around smaller implants, they still might cause more damage to the fine 

neural structures due to the higher stress they induce. The stress in the tissue in the far-zone of all 

geometries is very similar. The simulation furthermore shows that the springs are flexible enough 

to partially compensate for the displacement in the tissue around them: The tip of the needles 

(location of deployed electrodes) that are attached by springs moves about 2 µm in response to 

5 µm tissue displacement. The stress induced in tissue in the near-zone is reduced by 1/3 to 1/2 

compared to that around needles without springs. In the far zone, the stress drops slightly below 

that around the other two geometries. 

2.7   Fabrication 

The silicon probes were fabricated using the well-established Michigan probes process, described 

by [61]. In short (Figure 27): the thickness of the probe shanks, needles and springs is defined by 

the depth of an etch-stop formed by boron doping of silicon. The outline of the shanks is defined 

by deep reactive ion etching. The electrical interconnects between electrodes and contact pads 

consist of 6000 Å thick phosphorous-doped polysilicon, insulated by a stress compensated 

3000/1500/3000 Å thick silicon oxide/nitride/oxide stack. The electrode metals consist of 200/700 

Å thick sputtered Ti/Pt. 
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Most fabricated probes have a uniform thickness of around 15 µm. Some probes were fabricated 

to have reduced thickness in the needles. Figure 28 shows a SEM close-up on needles with reduced 

thickness. The transition between thick and thin silicon has a smooth slope. This can also be used 

to sharpen the tip of the probe shank, or to create smooth edges along the shank to reduce stress 

induced into the tissue. 

 

a) Boron doping of the surface of 

a silicon wafer 

 

b) LPCVD polysilicon between two stacks of silicon 

oxide and silicon nitride. Sputter metals to form 

electrodes and contact pads. 

 

c) DRIE to pattern silicon 

 

d) Release in EDP 

 

Figure 27: Fabrication of silicon neural probes using the dissolved wafer process developed 

at the University of Michigan. 
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Previously, neural probes were fabricated such that they separate from the wafer during wet 

etching in ethylenediamine pyrochatechol (EDP). A design modification used in this work leaves 

all neural probes attached to a frame by small pins (Figure 29). This protects the delicate needles 

and springs, facilitates handling, and allows for post-release wafer-level. To release individual 

probes, the pins can easily be broken.  

 

Figure 28: Micrograph of a fabricated probe shank with two SEM close-ups on the springs, 

needles and the electrodes at the end of the tips. 



  

55 

 

 

2.8   Insertion and deployment experiments 

This section describes experiments that evaluate how the springs on neural probes can be retracted 

by starch hydrogel, and how far and fast the springs deploy after insertion. It is important that the 

electrodes deploy far enough to reach outside the sheath of scar tissue. Furthermore, the 

deployment should leave sufficient delay for the shank to be fully inserted. Since most brain tissues 

are non-transparent, the electrodes cannot be directly observed after insertion. Hence a brain model 

consisting of transparent agar gel was used. Neural probe shanks were inserted into this brain 

model and observed through a camera with attached zoom lens. 

Methods 

The springs were first retracted in air using a micromanipulator. This allowed observing the shape 

of the retracted spring.  

 

Figure 29: Neural probes connected by a frame, fabricated on a 4” wafer. 
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A transparent brain phantom was prepared from agar gel. According to [62], 0.6 % agar gelled in 

water resembles several mechanical and rheological properties of brain tissue. The agar brain 

phantom was prepared by heating 1.2 g powdered agar in 200 ml de-ionized water to 90 °C. To 

minimize precipitation, the solution was cooled quickly. This was done by boiling agar gel in 2x 

concentration and once done, thinning it with cooled water to the appropriate concentration. The 

heated solution was then poured into a glass container with planar walls for observation. The gelled 

agar was covered with a thin film of water to prevent drying of the surface. For the experiments, 

the gel was heated to 37.5 ⁰C on a hotplate, controlled with temperature feedback. For observation, 

a camera with zoom lens, connected to a computer with a USB video adapter for recording was 

used. 

Two neural probe designs with integrated springs with different dimension were investigated. They 

were called “Assembly 1” and “Assembly 2”. Their properties are listed in Table 5. “Assembly 1” 

is an iterated design, altered for better performance. 

 

The starch hydrogel was prepared by boiling starch granules in water. It was then manually 

dispensed on the springs using a syringe with a fine needle, under a microscope. The starch gel 

Table 5: Characteristics of compared assemblies 

 Springs Starch coating 

Assembly 1 160 µm travel Starch iodized in Povidone iodine (for better compatibility) 

and coated with PLGA (to delay deploying) 

Assembly 2 120 µm travel Starch iodized in Lugol’s solution 
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was then dipped into Povidone iodine to iodize it. Finally, the starch gel was coated with PLGA 

by first dissolving PLGA in acetone (1 g/20 ml, stir for 24 hrs) and then dip-coating the starch-

coated springs with it. Before that, the starch-coated springs were allowed to dehydrate for 

24 hours. This process is described in more detail in section 3.3  . 

Both probe assemblies were inserted into agar gel using a manually controlled z-stage at 

approximately 1 mm/s. 

Results 

The image in Figure 30 shows a part of a spring in air that was retracted using a micromanipulator. 

 

Figure 31 shows neural probes from “Assembly 2” before and after coating with starch hydrogel. 

Relatively small, free standing structures like the needles and the tip of the probe did not retain 

much starch. The middle section of the shank and the springs retained most of it. The needles 

retracted by almost their full travel of 120 µm or 160 µm, but a small gap (around 5 µm) remained 

between adjacent surfaces. 

 

 

Figure 30: Silicon springs fully retracted by an external manipulator.  

50µm
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Figure 32 and Figure 34a show “Assembly 1” inserted into agar gel and monitored for two hours 

and thirty minutes. Figure 33 and Figure 34b show this data for “Assembly 2”. 

 

 

  

 Figure 31: Retracting springs on neural probes from “Assembly 2”. a) micrograph of a probe 

before coating with starch b) after coating with starch, iodizing and dehydrating. c) SEM image of 

springs, needles and tip and d) close-up on the tip. 

a)

100 µm

b)

c) d)

2 µm
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In air 

 

In agar at 37°C 

 

   

 

Figure 32: Images showing a neural probe from “assembly 1” deploying in agar gel. The time 

stamps correspond to the amount of time passed since insertion.  
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In agar at 37°C 

 

 

Figure 33: Images showing a neural probe from “assembly 2” deploying in agar gel. The 

time stamps correspond to the amount of time passed since insertion. The starch gel was 

iodinzed in Lugol’s iodine, no PLGA coating was employed. 

10 s

5 hrs
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a) 

 

b) 

 

Figure 34: Measured distance of springs deployed in agar vs. time after insertion. a) 

“Assembly 1” and b) “Assembly 2”. 
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Discussion 

Coating and Retracting 

The springs could be retracted completely and without cracking by micromanipulators. In that state, 

they contributed little width to the shank. 

The starch gel distributed between the springs and on top of the shank surfaces. It did not, or just 

minimally, cover the tip of the shank or the needles with electrodes. This has the advantage that 

the tips of the shank and needles remain sharp, and that the electrodes are not covered in thick 

starch gel. 

The dehydrating starch-gel retracted the springs sufficiently for the needles to be shielded by the 

tip of the shank during insertion. 

Deploying 

The needles on either assembly did not bend considerably during insertion or during deploying. 

Most likely, due to their short length, they would rather slice through the agar gel than bend. During 

insertion, the needles are only subjected to forces that would make the bend in case they are not 

completely covered by the tip of the shank. 

In case of “Assembly 1”, the electrodes deployed by roughly 120 µm over the course of two hours. 

The deployment can be divided into three parts: For the first 20 s they deploy less than a few 

microns, within the first three minutes they deploy linearly by roughly 100 µm (0.5 µm/s) and for 

the following two hours they deploy additional 20 µm (0.17 µm/min). 

In case of “Assembly 2”, two shortcomings were observed: as shown in Figure 33a, the springs 

deployed with an initial jump, on the order of several tens of microns, as soon as they came into 
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contact with the agar gel. Furthermore, as shown in Figure 33b, the electrodes did not deploy by 

more than 70 µm. This is likely not enough to position them outside the sheath of scar tissue 

formed around the shank.  

The starch/PLGA combination experiments suggest that these shanks can be inserted for about 

20 s before the needles move by more than a few microns, leaving the protected position close to 

the shank. For a 2 mm long shank, this would allow for a minimum insertion speed of 100 µm/s 

which is within the range of common practices. Pure starch (no PLGA coating), even when it was 

iodized, deployed with an initial jump almost coincidental with coming into contact with water. 

In the designs investigated, all deploying needles were connected to a bar that is connected to all 

springs. One concern with deploying these needles is, that this should happen evenly. No one side 

should deploy faster than the other. A straight deployment trajectory should be maintained. The 

results indicate that this happened in the experiments. Early experiments showed, though, that 

when starch was applied unevenly, some needles would deploy delayed or not at all. Applying 

starch using a syringe, as it is described here, allowed for fine control over the amount of starch 

distributed. Furthermore, starch-coated springs can be deployed multiple times. The behavior of 

the springs that are deployed multiple times did not change severely (given that they were re-

iodized after each time). This provides for a reliable way to ensure even release of the springs (by 

doing a test run, and adding starch if necessary). 

2.9   Electrode design considerations and impedance tests 

Adding the capability to deploy electrodes off the shank of neural probes poses restrictions on the 

size, number, density and distribution of the deployed electrodes compared to those fabricated 

directly on the shank. It furthermore needed to be investigated if the coating of the probes with 
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starch and PLGA is detrimental to the electrode performance. This section discusses design 

considerations of electrode size and number, and electrical impedance testing of the deploying 

electrodes.  

One design concern was if it is possible to form useful electrodes at the end of the micrometer-

small needles. It was shown previously that it is possible to form electrodes with dimensions on 

the order of several micrometers, capable of single-unit recording: The authors of [63] simulated 

recording performance of electrodes in neural tissue. According to their results, the area of 

electrodes does not impact the signal-to-noise ratio (SNR) much- rather the electrode-tissue 

impedance matters. Their smallest investigated geometric area was 177 µm2 and it recorded with 

the highest SNR (even though larger electrodes performed only slightly worse). The majority of 

the noise picked up from electrodes originates from neural background activity, but the electrode 

interface also contributes some noise. The lower the impedance, the lower the noise amplitude 

[64]. The electrode impedance scales with the electrode surface area which can be increased 

without increasing their geometric area by roughening their surface, for example by depositing 

conducting polymers [65].  

The required count, density and spatial distribution of electrodes depends on the application. 

Electrodes are capable of recording from single neurons within a 140 µm radius [66] (depending 

on the type of neuron and orientation of the electrode). Increasing the pitch between electrodes 

beyond that (such that the same neurons are recorded by multiple electrodes) facilitates or allows 

spike-sorting [67] (assigning individual neurons to recorded spike forms). This can be done, for 

example using a tetrode configuration [24]. When recording from the neocortex, it can be of 

interest to distribute electrodes to record from brain layers (planes parallel/lines perpendicular to 



  

65 

 

the brain surface in gyri/sulci) or brain (lines perpendicular/ planes parallel to the brain surface in 

gyri/sulci). 

The number of deployed electrodes is limited by electrical routing. Electrical interconnects from 

the electrodes to the shank need to be routed across the springs or across separate flexible traces 

(Figure 35 a) and b)). The springs were designed to be shallow and do not fit multiple traces side-

by side (although moderately simple process modifications are possible that would allow stacking 

several traces on top of each other). Leaving out stacking interconnects, an inherent trade-off 

would set the number of electrodes to be less or equal to the number of springs. With current spring 

designs, the length of two nested springs (projected on the length of the shank) is 450 µm. 

According to that, for every 450 µm of shank length there can be two electrodes connected. The 

electrodes can be arranged freely along the length of the shank, with one electrode per needle 

(meaning that the electrodes can be distributed freely along the length of the shank with the 

exception for multiple electrodes in the same plane perpendicular to the shank length). The pitch 

between needles and the length of needles can be arbitrary chosen.  
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The impedance of an electrode can be lowered without increasing its geometric surface area by 

coating it with a conductive material, forming a rough surface [68]. A lower electrode impedance 

can lower the noise, and the detrimental effect of parasitic impedances. One of the materials used 

to do that is PEDOT (poly(3,4-ethylenedioxythiophene)) [69]. PEDOT is a polymer that can be 

doped to become electrically conductive. In case of this project, PEDOT was doped with para-

a) 

 

b) 

 

c) 

 

Figure 35: Drawings of interconnect routing and electrode distribution - a) a shank with six 

springs can connect six electrodes that are arbitrarily distributed along the length of the shank 

connecting to the springs - b) A single set of springs with interconnects routed on top of them - 

c) a single needle with one electrode. 

 

Shank

Springs
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Interconnect
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toluensulfonate (pTS). This is indicated as PEDOT:pTS. PEDOT associated with pTS was shown 

to have superior adhesion to substrates [65].  

Methods 

The electrodes on the shank have an area of 130 µm2, and the electrodes at the end of needles have 

an area of 177 µm2. 

The electrodes were coated with PEDOT:pTS as follows: a solution of 0.01 M 3,4-

ethylenedioxythiophene (483028, Sigma-Aldrich, St. Louis, MO) and 0.1 M sodium p-

toluenesulfonate (152536, Sigma-Aldrich, St. Louis, MO) was electrodeposited on them by 

applying 100 pA/electrode for 600 seconds. This forms a layer of poly(3,4-

ethylenedioxythiophene):sodium p-toluensulfonate (PEDOT:pTS).  

The impedance of the electrodes was measured with a PGSTAT12 Autolab (EcoChemie, Utrecht, 

Netherlands), controlled by a vendor-supplied NOVA software. The electrodes were submerged 

in an isotonic phosphate buffered saline (PBS) solution (BP3994, Fisher, Waltham, MA). A 

stainless steel rod was used as the counter electrode, and an Ag|AgCl electrode (RE-5B, BASi, 

West Lafayette, IN) was used as the reference electrode. The impedance measurements were 

performed by applying 10 mVRMS swept from 10 Hz to 31 kHz. A custom Matlab (Mathworks, 

Natick, MA) script was used to analyze and plot the output data. The impedance of the electrodes 

was measured as fabricated, after plating with PEDOT:pTS, after coating with starch, iodizing, 

and adding PLGA. To investigate the effect of starch and PLGA on electrodes, with and without 

PEDOT, both versions were tested separately. 

Results 
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Figure 36 and Figure 37 show the impedance of electrodes without PEDOT:pTS plating. Figure 

38 and Figure 39 show the impedance of electrodes plated with PEDOT:pTS. Electrodes at the 

end of needles and those directly on the shank are listed separately. The magnitude and phase was 

averaged over 4 electrodes. Spectrum plots and non-averaged impedances can be found in the 

appendix (Figure 85 - Figure 92). 
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Figure 36: Average electrode impedance magnitudes at 1 kHz without PEDOT:pTS 

 

Figure 37: Average electrode impedance phases at 1 kHz without PEDOT:pTS 
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Figure 38: Average electrode impedance magnitudes at 1 kHz with PEDOT:pTS 

 

Figure 39: Average electrode impedance phases at 1 kHz with PEDOT:pTS 
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Discussion 

The impedances of electrodes on the shank were initially higher than those at the end of needles. 

This is likely because their area is smaller by design (130 µm² vs. 177 µm²). As fabricated, the 

electrode impedance was around 1.5-2 MOhms. For many recording setups this is too high and 

hence PEDOT:pTS was deposited. This lowered the impedance values to well acceptable values. 

After depositing PEDOT:pTS, the electrodes on the needles had slightly higher impedances than 

those on the shank (300 kOhm vs. 180 kOhm). There are two possible reasons for that: The 

electrodes on needles (unlike those on the shank) are connected by shallow polysilicon traces 

across springs and needles. When the electrode impedance is lowered sufficiently, the resistance 

of these traces becomes considerable. Furthermore, during electroplating PEDOT:pTS, all 

electrodes were connected in parallel. Since the electrodes on the shank are smaller, the deposited 

PEDOT:pTS will likely have different electrical properties on either electrode design. 

The measurements indicate that PEDOT:pTS lowers the electrode impedance from 1-1.4 MOhm 

to below 300 kΩ. This should be sufficiently low for high quality recordings. Neither coating with 

starch, povidone iodine nor PLGA increased the impedance of electrodes coated with PEDOT:pTS 

much (valid for electrodes on the needles and on the shank).  

The impedance of electrodes on the shank that are not plated with PEDOT:pTS did increase 

considerably after coating with starch. The reasons for this different behavior are unknown. 

PEDOT:pTS might be porous and only its surface might accumulates fragments of starch gel. 

Since, in that case, a large area of the PEDOT below the surface is still exposed to water, the 

impedance would not suffer much. 
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2.10   Piezoresistive gauges to estimate deployed distance 

Once the probes are implanted into brain tissue, it will be important to determine if and how far 

the springs deploy. Since brain tissue is nontransparent in most cases, this is not straightforward. 

One way to do this is to integrate a sensor that measures the deployed distance. To realize such a 

sensor, the polysilicon leads on some springs were distributed in a way to increase the change in 

their electrical resistance as the springs deflect (Figure 40). This was done by shifting the traces to 

positions closer to the outside of the spring –increasing the stress magnitude, and routing the traces 

on sides of the springs building up either all compressive or all tensile stress under deflection. The 

piezoresistive tracks on springs are meant to provide a means of indicating the position of the 

springs after insertion.  
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a) 

 

b) 

 

Figure 40: Polysilicon (blue) on silicon springs (gray) routed to form piezoresistors serving as 

sensors for the distance the springs deployed. a) full set of springs, b) spring with piezoresistive 

polysilicon routed to compress as springs retract. 

Design and analysis 

The resistance of the polysilicon route was calculated using a similar model as was used for the 

spring deflection in section 2.3  . The model is also based on the Euler-Bernoulli beam theory, 

derived from [47]. The mechanical stress, σ(x), in an element of the polysilicon track is, to first 

order, proportional to the curvature of the deformation of the spring ρ(x), and to the distance z 

between the center of the track and the neutral axis of the spring (equation ( 9 ) and Figure 41a and 

b): 
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𝝈(𝒙) =
𝒛 × 𝑬

𝝆(𝒙)
≈ 𝒛 × 𝑬 × 𝒚′′(𝒙) ( 9 ) 

The electrical resistance, ρel(x) of an element of piezoresistive material is linked to the stress by 

the piezo coefficient 𝜋: 

𝝆𝒆𝒍(𝒙) = 𝝆𝟎𝒆𝒍 × (𝟏 + 𝝅 × 𝝈(𝒙)) ( 10 ) 

The electrical resistance of the whole track is derived by integration over its length L: 

𝑹𝒔𝒑𝒓𝒊𝒏𝒈 = ∫ 𝝆𝒆𝒍(𝒙) 𝒅𝒙/𝑨
𝑳

𝟎

 ( 11 ) 

with E–the Young’s modulus of polysilicon. Solving equation ( 11 ) yielded Figure 41c. 
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When the springs are implanted, their temperature will change from room temperature to body 

temperature. In mammals, this can be more than 16 °C. The resistance of the polysilicon track does 

a)

 

b) 

 

c)

 

Figure 41: Piezoresistor dimensions and results from analytical modeling of characteristics. 

a) illustration of the meaning of “z” as the average height of interconnects above the neutral 

plane. b) dimensions of interconnect width and spring width. c) Analytically derived plot of 

spring interconnect resistance vs. spring deflection (for springs with 120 µm travel). 
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not only change with stress but also with temperature. A first-order approximation of the amount 

of the change is: 

𝝆𝒆𝒍(𝒙) = 𝝆𝟎𝒆𝒍 × (𝟏 + 𝜶 × 𝜟𝑻) ( 12 ) 

With α, the temperature coefficient of resistance and 𝛥𝑇 the temperature change. For phosphorous 

doped polysilicon, α is between -1000 and -2000 ppm/K [70]. For a temperature change of 16 °C, 

this results in a resistance change of -1.6 % (assuming -1500 ppm/K). This would lower the 

resistance of a polysilicon loop with 41.52 kOhm resistance at room temperature by 664 Ohm. 

This change is similar to that caused by 80 µm deflection (although opposite in sign, for the 

example chosen). Hence compensation for temperature induced resistance changes is necessary. 

For that, a dummy polysilicon interconnect, Rd, is looped on the shank where it is not exposed to 

the mechanical stress caused by spring deflection. The spring and shank interconnects are 

connected in a voltage divider configuration. The output voltage of the sensor is read out at the 

point of their connection (Figure 42). Since this voltage is proportional to the ratio of both 

resistances, their temperature induced resistance changes cancel, and only the stress modulates the 

output voltage (equations ( 13 ) and ( 14 )). 

𝑽𝒐𝒖𝒕 = 𝑽𝒅𝒄 ×
𝑹𝒅 × (𝟏 + 𝜶 × 𝜟𝑻)

𝑹𝒅 × (𝟏 + 𝜶 × 𝜟𝑻) + 𝑹𝒔𝒑𝒓𝒊𝒏𝒈(𝝈(𝒙)) × (𝟏 + 𝜶 × 𝜟𝑻)
 ( 13 ) 

= 𝑽𝒅𝒄 ×
𝑹𝒅

𝑹𝒅 + 𝑹𝒔𝒑𝒓𝒊𝒏𝒈(𝝈(𝒙))
 ( 14 ) 
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Methods 

To get some insight into their functioning, the piezo gauges were calibrated in air. This was done 

by moving the springs with a micromanipulator, while 2 V dc were applied. The output voltage 

was recorded at defined positions. This was done on four probes named P1-P4. 

In another experiment, the piezo gauges were tested how they perform under more realistic 

conditions. For that, a section of lamb cadaver brain is heated to 37 °C in a temperature-controlled 

saline water bath. A neural probe shank with springs, one of which has a piezoresistive track routed 

on top, is coated with iodized starch and inserted. Figure 43 shows the setup used to measure the 

deployment of springs through cadaver lamb brain. 

a) 

 

b) 

 

Figure 42: Temperature compensation for piezo-resistive spring. A dummy loop out of 

polysilicon is formed on the shank and used in a voltage-divider configuration, cancelling-in 

first order, the effects of the temperature coefficient of resistance on the output voltage. 
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Rshank
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To read out the piezoresistive gauge, 1 V is applied across the piezoresistive track and the loop for 

temperature compensation. Although the sensitivity of the sensor is, according to equation ( 13 ), 

proportional to the applied voltage, only 1 V was chosen. A voltage low enough to not hydrolyze 

water at a fast rate is safer for use in biological applications. The output voltage of the voltage 

divider was recorded. The voltages were supplied and recorded using a Lab VIEW program 

controlling a NI-DAQ. The voltages were sampled at 1 kHz, and 1000 samples were averaged to 

produce one measurement. 

Results 

The fabricated springs with polysilicon tracks routed as piezoresistors are shown in Figure 44. The 

figure shows two examples of extreme alignments. About 30 % of the piezoresistors were properly 

aligned. Even though the samples that were misaligned by more than 0.5 µm did not have silicon 

dioxide/nitride protecting the polysilicon tracks during EDP etching (see paragraph 2.7  ), almost 

none of the tracks were etched and still formed coherent electrical connection. 

 

Figure 43: Neural probes with piezo-resistive springs inserted into a cadaver lamb brain. 
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The resistance of polysilicon looped through one set of springs was measured to be around 20 kΩ. 

The resistance changes for full retraction of the springs were around 200 Ω.  

 

a) 

 

b) 

 

 

Figure 44: Piezoresistive interconnects on a spring with proper (a) and bad alignment (b). 

5µm

polysiliconsilicon dioxide
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The results of the calibration of the piezo-gauges are shown in Figure 45. Here springs of an earlier 

design with approximately 200 kΩ resistance were used. The calibration measurements show that 

the output voltage of the voltage divider changes by 0.6-1.2 mV. 

  

The output voltages recorded over time of the piezoresistors inserted into the lamb cadaver brain 

are shown in Figure 46. 

 

Figure 45: Calibration data of piezoresistive gauges. The change of the output voltage of the voltage 

divider while applying 1 V is plotted against the distance the springs are deflected. 
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Discussion 

Although only about 30 % of the fabricated springs were aligned properly (the polysilicon did not 

protrude the edge of the spring), most of them did provide electrical functionality. This might have 

been due to passivation provided by Teflon deposited during DRIE etching for sidewall-

passivation. The misaligned samples appeared to be useful for acute measurements. However, for 

chronic use, precise alignment is necessary since the side-wall passivation might not provide 

reliable protection against bodily fluids for long. Using more careful alignment or tools with 

 

Figure 46: Output voltage of the voltage divider between piezo-gauge and temperature 

compensation resistor. The probe with both resistors was inserted into a lamb-cadaver brain 

soaked in saline water that was heated to 37 °C. For the read-out, 1 V was applied across 

both resistors. 
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precise automated alignments like that provided in many steppers, a repeatable alignment within 

200 nm should be achievable with reasonable cost.  

The calibration data suggests a change in output voltage on the order of one milli-Volt for a full 

deflection of the spring. Compared to the noise-level at the given sample rate (≈0.15 mV), this is 

a reasonable resolution. With averaging the noise level will reduce further. 

The output voltage of the voltage divider in the in-vitro experiment shows three clear sections. 

Initially, there is a sharp increase in voltage visible. This might be caused by the jump in 

deployment, as observed in the deployment experiments described in paragraph 2.4  . The rapid 

change in temperature and immersion into water might also have contributed to this jump. After 

the jump, a slow and gradual voltage increase became apparent. This could be caused by the 

springs deploying though brain tissue. The deployment lasted around 90 min, which is somewhat 

longer than what was observed in experiments using agar-gel instead of brain tissue. This could 

be caused by different diffusion coefficients and mechanical resistance of agar gel and brain tissue. 

After 90 min of deployment, the output voltage settled and did not continue changing. 
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One disadvantage of the piezoresistors in their current form is that they require two leads across 

the springs that could be used for electrodes. The electrode count is limited by space available for 

interconnects, since they need to be routed across the springs. This can be improved by connecting 

the two leads to one electrode, so only one electrode needs to be sacrificed. Alternatively, the 

resistors could be formed in a metal layer that is deposited over the springs. This would still allow 

for polysilicon tracks to be formed underneath. 

 

Figure 47: Time-course of the output voltage of the voltage divider and interpretations of 

the three sections.  
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2.11   Pilot in-vivo study of neural probes with deployable electrodes 

This section reports on an in-vivo experiment investigating if the developed neural probes with 

deployable electrodes can be implanted into rat motor cortices (M1 left, M1 right, S1 right) without 

breaking and if they are capable of recording action potentials. This study was done in 

collaboration with Dr. Paras Patel. 

Methods 

Three neural probes were used in this experiment. All had integrated springs with 120 µm travel 

that were coated with starch that was iodized with Povidone iodine. These springs were not coated 

with PLGA since this was not available at the time of the experiment. The neural probes were 

glued to a printed circuit board. Electrical connections were wirebonded to immersion gold tracks 

on the PCB, and insulated using epoxy glue (353ND-T, EPO-TEK, Massachusetts, USA). 

For these experiments, adult male Long Evans rats weighing 300 – 350 g were used. Anesthesia 

was initialized with 5% isoflurane (v/v). The rats were maintained under anesthesia with an 

intraperitoneal injection of ketamine (50 mg/mL) / xylazine (5 mg/mL). A dosage of 0.125 mL per 

100 g of body weight was never exceeded. Regular intraperitoneal injections of ketamine 

(50 mg/mL) were given. The head was shaved at and around the area of the incision site. The 

shaved area was swabbed using alternating applications of betadine and 70% ethanol. Ointment 

was applied to the eyes to keep them from drying during surgery. Ear bars were mounted in both 

ears and fixed in a stereotax. After making an incision, the skin flaps were pulled apart using 

hemostats and the skull surface was cleaned using cotton swabs and 2% hydrogen peroxide (v/v). 

A burr bit (19008-07, Fine Science Tools, Foster City, CA) was used to drill a hole around the 

periphery of the skull for a bone screw (19010-00, Fine Science Tools, Foster City, CA). Next, 
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three 2 mm x 3 mm craniotomies were made over the right and left hemisphere’s motor cortices, 

and over the right somatosensory cortex using coordinates from a reference atlas [60]. Reference 

and ground wires originating from the PCB were electrically shorted and attached to the bone 

screw. Recordings took place while the rats were under ketamine/xylazine anesthesia.  

All acquisition of electrophysiology recordings were taken using a ZC16 headstage, RA16PA pre-

amplifier and RX5 Pentusa base station (Tucker-Davis Technologies, Alachua, FL). During data 

acquisition the pre-amplifier high pass filtered at 2.2 Hz, anti-aliased filtered at 7.5 kHz, and 

sampled at a rate of ~25 kHz. Recordings at each surgical site were divided into blocks lasting 

2 min. The neural probe depth was adjusted between multiple recording blocks on the same site. 

After band pass filtering between 250 and 5 kHz using a 4th order Butterworth filter, the recorded 

waveforms were inspected and plots extracted. The noise level was calculated by taking the root-

mean-square voltage of the channel across a 16 s period not containing visible spikes, after filtering, 

and multiplying it with a factor of 3. This was done similarly in related work [16]. 

The implantation coordinates and depths (targeting large pyramidal cells in layer V and VI ) were:  

Site1: depth: 2mm, anterior : 2.5 mm, interaural: 11.5mm of bregma targeting M1, left 

Site2: depth: 2.3mm, anterior 1.8mm, interaural 7.2mm of bregma, targeting S1, right 

Site3: 3mm. anterior : 2.5 mm, interaural: 11.5mm of bregma targeting M2, right 

These sites are illustrated in Figure 48. 
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Results 

Figure 49 shows a neural probe shank before, during and after implantation. During this 

experiment, the right S1 area was targeted. No shank buckling was observed during implantation. 

The shank was inserted with retracted needles. After the recording session, the shank was 

explanted. During explantation, the needles appeared fully deployed. Furthermore, all needles of 

the shank appeared to be intact after explantation (visual inspection). 

Figure 50 shows exemplary transient waveforms of selected channels.  

 

Figure 48: Map of sutures on the skull illustrating insertion sites. The left and right primary 

motor cortices and the primary right sensory cortex are targeted. 
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a)  

 

b) 

 

c) 

 

Figure 49: Images of probe insertion, indwelling and explantation. a) the right sensory cortex 

s1 is exposed b) the probe is inserted, no bleeding observed, c) after recording, the probe is 

explanted and still appears to be intact. A small amount of bleeding is observed. 
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Site 1, Electrode 2 

Channel RMS (16 s): 2.3  µV 

→6.6 µV noise 

Signal amplitudes ≈ 40 and 

90 µVpp  

Site 3, Electrode 1 

Channel RMS (16 s): 7.9 µV → 

23.7 µV noise 

Signal amplitudes ≈ 110 µVpp 

 

Site 1, Electrode 3 

Channel RMS (16s): 5 µV → 

15 µV noise 

Signal amplitudes ≈ 40 and 

110 µVpp  

Location of electrodes  

on shank 

 

Figure 50: Exemplary waveforms and corresponding location of electrodes they were 

recorded from. Electrodes 1-3 recorded similar signals on all three implantation sites. The 

other electrodes did not record signals distinguishable from noise. 
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Discussion 

The probes explanted with deployed electrodes after being inserted with retracted electrodes. This 

indicates that the electrodes did deploy. It furthermore indicates that, in this acute experiment, the 

probes can be explanted with deployed electrodes without the needles breaking. This means that 

the needles were strong and flexible enough to move through tissue perpendicular to their length. 

Allowing complete explantation without leaving debris behind can be a requirement for implants 

used in clinical applications. 

The insertion did not cause excessive buckling of the shank, or dimpling of the brain. This was a 

concern since the shank is unusually wide. The insertion, furthermore, was performed with a 

typical, manually operated z-stage. It certainly is an advantage that these neural probes do not 

require extremely fast insertion. 

The recorded neural signals indicate that the fabricated neural probes with deployable electrodes 

are capable of acutely recording action potentials. The starch gel, iodized with Povidone iodine, 

did not render the PEDOT:pTS-coated electrodes incapable of recording. Although not verified in 

this experiment, electrodes coated with PLGA had similar impedances and are assumed to perform 

similarly. The noise levels of the recordings shown are between 6.6 µV and 23.7 µV. This allowed 

the spikes, presumably originating from neural action potentials, to be clearly distinguished. The 

recorded signals came, in all cases, only from electrodes #1-3. These are the three upper deployed 

electrodes. There might be several circumstances causing that. The electrodes further back on the 

shank might not have picked up signals because they did not reach the large pyramidal neurons in 

layer IV and V of the motor cortex. Another reason might be tissue damage and hemorrhage caused 

by insertion of the relatively wide shanks. 
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2.12   General discussion 

The main motivation of deploying electrodes away from the shank after implantation is to position 

them such that they become less susceptible to the immune response and insertion damage around 

the shank. The structures connecting to electrodes can be made extremely fine and flexible, as they 

are protected by the shank during insertion (and do not need to provide force for insertion). Hence 

the electrodes likely interface with healthier neurons. This does not compromise the mechanical 

stability of the shank. Disadvantages include the increased shank width compared to traditional 

neural probe designs and constraints on the number, position and local density of electrodes due 

to reduced space for routing. 

To deploy the electrodes, an actuator was developed that is based on silicon springs that are 

retracted and released by a starch-based hydrogel. This constitutes a practical and easy-to-use 

mechanism. It does not require specialized equipment to be operated for implantation. It also does 

not increase the process complexity much (no extra steps/materials required for microfabrication, 

starch hydrogel is easy-to-use). Since the springs deploy until their reactive force balances the 

resistance of the tissue, and the hydrogel coating them is biodegradable, the deployed electrodes 

are floating almost freely inside tissue. A flexible connection between the probe shank and the 

skull was shown to reduce the tissue damage caused by relative motion between the brain and the 

skull [33]. Since in the case of spring-deployed electrodes the electrodes are tethered to the shank, 

micromotion of the shank might be more tolerable. Floating electrodes also might pick up less 

motion artifacts. There are some disadvantages of the developed autonomous one-time actuation. 

Once the electrodes deployed, repositioning the probe shank vertically becomes troublesome. 

Since in that state the needles slice tissue along their length, they will induce a larger amount of 

tissue damage (this also applies to removing the shank with deployed electrodes from the brain). 
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Also, this will bring the needles at risk of breaking. The concept considerably increases the width 

of the shank. This will induce a larger amount of tissue damage during insertion of the shank. A 

wider shank puts constraints on the formation of shank arrays in order to monitor a volume of 

tissue. This can be required for some applications, especially for brain-machine interfaces, due to 

the distribution of the neurons of interest. Furthermore, since the electrode interconnects are routed 

on top of the springs, the number, density and distribution of electrodes is limited. Stacking 

multiple interconnects on top of each other could alleviate this limitation. 

The experiment on monitoring deploying needles through an agar brain model showed that the 

electrodes deployed by more than 100 µm. This is, according to studies investigating the geometry 

of the immune response, sufficient to reposition the electrodes outside the dense sheath of scar 

tissue forming around the shank. The onset of the deployment was delayed by around 20 s. This 

should leave sufficient time for a typical implantation of the probe shank (without the need for a 

pneumatic inserter). This experiment demonstrated that the developed actuation mechanism 

provides enough travel, force and appropriate timing. 

The impedance of the fabricated electrodes, after plating PEDOT:pTS, was lowered to below 

300 kOhm. This should suffice for most recording systems. The application of starch gel, Povidone 

iodine and PLGA did not increase the impedance of these electrodes much. This shows that 

electrodes with practical impedances can be fabricated at the end of the fine needles. Also, the 

hydrogel coatings appear to be compatible with the PEDOT:pTS plated electrodes.  

The in-vivo experiment showed that neural probes with deploying electrodes can be inserted 

without causing much bleeding and explanted without breaking. The recorded waveforms indicate 

that the upper three electrodes picked up action potentials. Although no empirical evidence that 
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the electrodes indeed deployed after insertion was found, the experiments conducted on agar brain 

models, the piezoresistors measurements on the cadaver lamb brain, and the probes explanting 

with deployed electrodes during the in-vivo study, strongly suggest that the electrodes deployed 

after insertion. 

2.13   Conclusions 

This thesis chapter describes the development of the first practical prototypes of neural probes 

with deployable electrodes for enhance chronic stability. The experiments indicate that suitable 

mechanisms for this purpose were developed. 

The developed mechanical actuation mechanism is based on hydrogel coated springs. The springs 

were coated with a starch based hydrogel for retraction and controlled deployment. The hydrogel 

is strong enough to almost completely retract the springs. After iodizing the starch and adding a 

layer of PLGA, the springs deploy delayed by 20 s after coming in contact with agar brain 

surrogate. This leaves sufficient time for insertion of a shank with many commonly used methods.  

A special spring design based on a “roll on” deflection was developed. Using an agar brain 

surrogate, the springs were shown to provide sufficient force and travel to deploy electrodes by 

more than 120 µm. Literature indicates that this is sufficient to reach outside the dense sheath of 

scar tissue forming around the shank. 

A FEM simulation was conducted that models the stress inside tissue around neural probes in 

response to the tissue moving with respect to the electrodes. The simulation compared the stress 

around a shank, around a shank with needles and around shank with springs and needles. The 

results indicate that the small geometries, like needles, amplify the stress compared to the shank 
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by a factor of 2-3. However, using flexible springs decreases the stress, in some cases to values 

slightly below those around the larger shank of traditional neural probes. 

The impact of the developed starch and PLGA coatings on the electrodes was investigated by 

measuring impedance spectra. If the electrodes were plated with PEDOT:pTS the impedance only 

increased marginally and remained in a usable magnitude around 350 kΩ. 

A pilot in-vivo study was conducted with the developed prototypes (omitting the PLGA coating 

since that was not employed until after the study was conducted). The study revealed that the 

developed prototypes could be inserted into nervous tissue and handled without requiring 

uncommon methods. The electrodes at the end of needles were able to record transient waveforms 

that are likely neural action potentials. 
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CHAPTER 3 

 

STARCH HYDROGELS  

FOR ACTUATION OF MICROMECHANICAL DEVICES 

This chapter discusses starch hydrogels as mechanical actuators for micro-mechanical applications, 

especially in biomedical areas. Starch gel can be used for micro-machined sensors and actuators 

that need non-electrically triggered and driven one-time actuation or release mechanisms (e.g., 

stents, valves, one-time release devices). As exemplary application, starch hydrogel is used to 

retract and deploy silicon microsprings.  

 Micrometer-thin starch hydrogel can compress a set of six 12 µm thick, 5 µm wide and 

350 µm long silicon springs with 160 µm travel by approximately 140 µm. According to 

an analytical model, at this deflection, the springs collectively react with 1.2 mN. 

 Immersed in water at or above room temperature (21 °C), the starch coated springs 

deploy within a few seconds. However, if the starch gel is iodized after dehydration, the 

springs deploy slowly and gradually (over the course of several tens of minutes) in water 

around body temperature (37 °C), after an initial jump of several tens of micrometers. If 

the water is at room temperature (21 °C) the springs deploy only partially and then stall.  

 Starch hydrogel tolerates temperatures of 100 °C for 10 min without drastically changing 

the timing of the deployment of the springs. If the hydrogel was heated in air to 160 °C for 
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30 min, it dissolves quickly in water. If the gel was heated to 200 °C, the springs do not 

deploy at all. This property can be used to permanently fold structures in a self-assembly 

fashion. 

 Starch is biodissolvable, it can be micromachined, it is currently employed in clinical 

applications for drug-delivery, and it is easy-to-use. 

This chapter furthermore reports on mechanisms of applying, patterning and removing starch 

hydrogel, and ways of tailoring its properties.  

3.1   Introduction 

Hydrogels are polymer networks that are swollen with water, which can make up a large portion 

of their mass. Hydrogels have immense potential to form mechanical transducers, since changes 

in their amount of swelling are accompanied by large forces, travel, and are sensitive to various 

stimuli such as temperature or presence of ions [71].  

Starch is a natural polymer found in grains of plants. It can form a hydrogel after being heated in 

presence of water. When coated on surfaces in hydrated state, it enacts strong forces on them 

during its dehydration. Starch hydrogel remains in compressed state until exposed to water. Then 

it swells at a controllable, temperature dependent rate.  

There is a range of biomedical applications involving self-regulated devices involving mechanical 

actuation on the micro-scale, whose function depends on a slow or delayed (by several tens of 

minutes) response to the presence of water. For example, tetherless micro-grippers for biopsy [72], 

temporarily stiffening structures for implantation [73], valves for uptake/delivery, self-expanding 

stents [74], pacemaker electrode anchors, or self-implanting devices [34]. These applications will 

benefit from micrometer-thin materials that enable deployment during or shortly after positioning, 
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while minimally increasing device volume. However, materials with these properties are rare. 

While on the centimeter scale or larger, many hydrogels swell slowly due to long and slow 

diffusion paths [75], on the micrometer scale they gain in speed and operate within seconds [42]. 

Micrometer-thin, biodegradable gels made from agarose, gelatin, cellulose [31] or polyethylene 

glycol [52] tend to swell on a time scale of seconds, whereas materials that need to undergo 

chemical reactions for swelling or dissolving such as poly(lactic-co-glycolic-acid) tend to react 

abruptly and within several hours or even days [52]. As part of this thesis work, starch-based 

hydrogels are investigated for their ability to passively actuate micromechanical structures.  

Starch is found in most green plants and is used for energy storage. It occurs in granular form and 

is stored in the chloroplasts in the leaves. Starch is commercially available as powder (Figure 51). 

a)  

 

b)  

 

Figure 51 a) SEM image starch granules in cross-section of a stem [76] b) commercially 

available starch powder. 

Starch granules consist of laminated sheets of bound glucose molecules. There are two molecules 

found in starch granules, distinguished by the way these glucose molecules are joined (Table 7). 

One is called amylose and is a linear molecule, the other one is called amylopectin and is branched. 

Both are formed by hundreds to thousands of cross-linked glucose molecules. Amylose and 
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amylopectin are very similar to glycogen, which serves as energy storage in animal cells. Starch 

is digested by many animals using a family of enzymes called amylase, which is cleaving it into 

small and soluble polysaccharides [77]. 

Starch granules become soluble in water heated above 60 °C. This process is called gelatinization 

[78]. When cooled after heating in water, starch forms a network that retains water, acting as a 

sticky gel [79]. This process is called retrogradation. Table 6 shows the arrangement of amylose 

and amylopectin during gelatinization and retrogradation. In this process amylose irreversibly 

leaches out of the granules, solving in water. The amylose and amylopectin molecules associate 

with each other using hydrogen bonds, still carrying water molecules. Micrometer thin layers of 

this retrograded starch gel undergo strong shrinking during dehydration. And conversely, dried, 

retrograded starch gel swells strongly when exposed to water.  
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Table 6: Sketch of the molecular structure of starch during gelatinization and retrogradation 

–adapted from [80]. 

 

  

Dry starch granule consisting 

of amylose and amylopectin 

molecules. 

Gelling starch granules -  

During heating in water 

amylose leaches outside 

the grains. 

Retrograded starch gel - 

Amylose molecules form 

network and link amylopectin 

molecules. 
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Table 7: Chemical structure of starch, consisting of amylose and amylopectin. 

Amylose molucules consist of  300-3000 ɑ(1,4) linearly linked glucose units arranged in a 

helical structure 

 
 

Amylopectin molucure consisting of ɑ(1,4) linked glucose units arranged in a helical structure 

with occasional branches formed by ɑ(1,6) bonds 

  

 

 

ɑ-(1,4)-glycosidic bonds

glucose unit

300-

3000
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Starch has been used to test for the presence of iodine and vice versa; together they complex, 

triiodide enters the helical structure of starch, producing a purple-black color (Figure 52a and b) 

[81]. The starch iodine complex is stable up to 40 ⁰C. Interestingly, iodine is hydrophobic and 

iodizing starch can restrict swelling in water [82]. 

a) b) 

 

Figure 52: a) Sketch illustrating the structure of the starch-iodine complex based on [81] b) 

characteristic dark blue color of the starch-iodine complex. 

This property led to the concept investigated in this thesis: Modulating the swelling of starch gel 

in water by iodizing. It is hypothesized that the relatively fast water diffusion is not an appropriate 

time-determining step for desired swelling of the starch gel. However, after iodizing, first the 

iodine concentration needs to drop sufficiently before considerable water swelling can commence. 

Hence relatively slow iodine diffusion becomes the time-determining step of gel swelling. This 

concept is summarized in Figure 53: 
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a) b) 

Figure 53: Illustration of the concept of modulating the swelling of starch gel by iodizing. One 

interpretation is that iodizing restricts swelling of starch gel. Until the concentration of iodine 

inside the starch gel sufficiently dropped, the gel does not swell much. This makes the relatively 

slow iodine diffusion the time-determining step, rather than the fast water diffusion. 

Starch has been well researched and used in a wide variety of applications. It is an attractive 

substrate for biomedical and pharmaceutical uses, such as bone fixation and replacement because 

of its biodegradability and mechanical robustness [83, 76]. It is used as carrier for controlled 

release of drugs [84] - for example in form of cadexomer-iodine, a starch-based iodine continuous-

release material developed to cleanse wounds and exert an anti-bacterial effect without damaging 

surrounding tissue [85]. In industrial applications starch is used as biodegradable adhesive in the 

papermaking process. In food production starch is used in staple foods and serves as a nutrient or 

as a thickener. The shape memory property of starch has been employed to form mechanical 

actuators on the centimeter-scale for biomedical applications [86]. Starch is easy-to-use, and 

reagent grade starch is commercially available at low cost from various suppliers, including Sigma 

Aldrich. 

This thesis chapter contains an investigation of the properties of starch hydrogel relevant to form 

mechanical micro-actuators on the millimeter to micrometer-scale, especially for bioMEMS 

(micro electromechanical systems) applications. As exemplary substrate, microfabricated neural 

probes with integrated springs are used, which are discussed in Chapter 2. The purpose of this 
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actuator is to deploy electrodes away from a neural probe shank after insertion into cortical tissue 

(Figure 6). The deployed electrodes are hypothesized to interface with neurons that are least 

impaired by the implantation. In this application, starch gel serves multiple purposes: it is 

retracting springs, locking them in place and slowly releasing them. 

 The investigations in this chapter include methods of coating and patterning starch on micrometer 

sized devices, characterization of the ability of starch to compress or retract structures during 

dehydration and the ability of starch to release these structures during swelling. Furthermore, some 

investigations of the process compatibility of starch gel are presented. 

The following section is divided into five parts: 

 Description of the springs, serving as exemplary substrates  

 Preparation of starch gel, and how it is applied to substrates  

 Starch gel compressing springs during dehydration 

 Patterning and process compatibility of starch gel  

 Starch-coated springs deploy in water as a function of water temperature 

3.2   Springs 

The experiments were performed on springs with 120, 160 and 200 µm travel. All springs were 

5 µm wide and 12 µm thick. The springs consisted in sets of six, all in parallel connection. The 

spring arms were connected by a bar (Figure 54 and Figure 55). All springs were made out of 

silicon. Figure 56 shows SEM images of fabricated springs. 
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a) 

 

b) 

 

Figure 54: Dimensions of the silicon springs used as exemplary substrate. All designs had 

12 µm uniform thickness and 5 µm width. a) drawing of a set of six springs with 160 µm travel 

b) close-up on one pair of springs 

a) 

 

b) 

 

Figure 55: Close up on a set of springs with a) 120 µm travel b) 200 µm travel to show the 

dimensions. 

 

 

340 µm

160 µm

1.3 mm

ρ=750 µm

5 µm

80 µm

ρ=500 µm

5 µm

100 µm

310 µm

5 µm

ρ=1000 µm

60 µm

350 µm



  

104 

 

a) 

 

b) 

 

Figure 56: SEM images of silicon microsprings. a) and b) show different perspectives. 

The springs are modeled to have a fairly linear force-deflection curve until almost fully retracted 

(Section 2.3  includes a detailed description of this model). The approximated spring constant of 

the springs with 160 µm travel (most frequently used), at low deflections, is 6.7 N m-1. They 

collectively exert 1.26 mN when retracted by 140 µm. Figure 57 shows the load-deflection curves 

of these three spring designs. 
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Figure 57: Analytically modelled force-deflection curves of the three spring designs used. 

3.3   Starch gel preparation 

All experiments were conducted with a modified high amylose corn starch called “Crisp Film 

Starch”, obtained from Ingredion (Bridgewater, USA). The starch gel was prepared by boiling 5 g 

of starch granules in deionized water under stirring at 300 rpm on a hotplate for 90 min. The water 

was replenished as it evaporated. After approximately one hour of heating, the starch was poured 

through a strainer with a 500 µm pore size in order to achieve a finer gel.  

In some cases starch gel was iodized after coating: For that, the starch coated probes were first 

immersed into deionized water for 5 s, then into 0.5 % iodine/potassium-iodide solution for 10 s 

(Lugol’s solution), then back into deionized water for 5 s, and finally left air-drying for at least 

2 hrs.  

3.4   Starch gel: Coating and Compression 

Methods 
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The coating setup consisted of a microscope with a camera mount, a fan and a fine syringe (Figure 

58). The starch was dispensed on the springs using a fine needle. The springs were mounted to a 

printed circuit board (PCB) which was glued on a glass slide. The springs were observed through 

the microscope. A fan blew air on the springs to accelerate dehydration after coating. After boiling, 

a small part of the hot starch gel was filled into the syringe. Starch gel remained solved in water 

for several tens of minutes (but then needed to be freshly drawn from the remaining heated supply). 

A small drop was formed at the tip of the needle and was then dispensed on the substrates by 

drawing the drop across them. To achieve thicker coatings, the drop was drawn over the springs 

multiple times (allowing the gel to dehydrate between each cycle). For the spring retraction and 

deployment experiments, the starch gel was allowed to further dehydrate for at least 2 hrs. 
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In early experiments, the springs were coated with starch gel by dip-coating. For that, the springs 

were immersed multiple times into boiling starch gel and then pulled back at approximately 

2 mm/s. Since dispensing starch gel from a syringe produced more desirable results, dip-coating 

was abandoned. All other experiments were conducted with dispensed starch. 

 

Figure 58: Setup for coating starch onto neural probes with springs mounted on a printed 

circuit board. 
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Spin-coating is a method often used in microfabrication. Hence it was explored how starch gel can 

be spun on glass cover slips. For that, boiled starch gel was dispensed on glass cover slips mounted 

on a spin coater and spun for 30 s at 1 to 5 krpm in steps of 1 krpm.  

Results 

Figure 59 shows SEM images of silicon springs coated with starch gel by dispensing from a syringe. 

The starch gel distributed across larger surfaces of the substrate and in between the springs. It did 

not stick to the 5µm narrow needles or to pointy the tip of the shank. 

 

Figure 60 shows a series of micrographs of springs coated in starch that were retracting while the 

starch dries. With increasing starch thickness, it took increasingly longer for the starch to dehydrate. 

For thicknesses in excess of several microns, the starch appeared to be dehydrated after 2–

3 minutes. The springs retracted increasingly further with increasing starch thickness. 

 

Figure 59: Starch-gel coated silicon neural probe shank. The starch distributed across larger 

surfaces and did not cover micrometer fine, freestanding structures. The shank remained 

straight after the starch dehydrated. 

 

 

dehydrated starch
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Table 8 shows how starch gel compressed springs with different maximum travel.  

  

 

 

 

   

Figure 60: The springs retracted increasingly further with increasing the amount of starch gel coated 

on them. The images were taken after the starch dehydrated. The starch gel was applied in several 

separate coatings using a small syringe. Springs with 160 µm travel are shown. 
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Figure 61 shows how iodizing the starch gel lead to additional compression of the springs. This 

effect was more pronounced in large travel springs. In extreme cases, iodizing lead to the starch 

peeling off the silicon springs, or forming cracks. 

Table 8: Springs with varying travel, before and after coating with starch. 

Before coating After coating 

Spring design: 120 µm travel Springs retracted by 91 µm 

  

Spring design: 160 µm travel Springs retracted by 106 µm 

 
 

Spring design: 200 µm travel Springs retracted by 128 µm 
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Figure 62 shows images of silicon neural probes coated with starch gel by dip-coating. The starch 

gel completely coated the springs and bridged larger gaps. 

 

a)   Dehydrated  ≈ 128 µm retracted b)   Iodized  ≈ 143 µm retracted 

  

Figure 61: Starch-coated springs before and after iodizing (springs with 200 µm travel). 

a) 

 

b) 

 

Figure 62: Images of silicon springs after four repeated starch gel dip-coats a).right after 

coating, during dehydration b) after dehydration 
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In some cases, starch gel applied by dip-coating lead to undesired bending of the substrate (Figure 

63a). Starch applied with a syringe in a controlled way, was used to fold the springs in a 90 ° angle 

(Figure 63b and Figure 63c).  

 

a) 

 

c) 

 

b) 

 

Figure 63: a) Starch gel applied by dip-coating lead to undesired bending of the substrate, b) 

and c) Starch applied with a syringe in a controlled way used to fold springs in a 90 ° angle. 
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90⁰
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Figure 64 shows edges of springs, in an early design, that were retracted by starch-hydrogel. The 

springs cracked in characteristic locations. 

a) 

 

b) 

 

Figure 64: Images a) and b) show edges of springs that cracked during retraction by starch-

hydrogel. 

The average thickness of the starch spin-coated on glass slides was 1 μm (5 krpm), 0.8 μm 

(4 krpm), 0.7 μm (3 krpm), 0.6 μm (2 krpm) and 0.5 μm (1 krpm), measured after dehydration. 

It was sometimes observed that the starch formed cracks when stored at room temperature for 

several days after dehydration. However, if the dried gel was stored at –7°C, that was prevented.  

Discussion 

Starch is easy, cheap and fast to acquire. Processing starch gel does not require unusual equipment 

or long preparation times.  

Applying starch 
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Dip-coating starch allows surfaces with complex, hard accessible geometries to be coated. It is a 

fast process that can be applied to multiple devices in parallel. However, the distribution of starch 

gel was not very uniform in many cases, often the tips and one side of the springs were coated with 

a thicker layer that led to undesired bending. Also, it was hard to repeatedly achieve layers with 

exactly the same thickness. 

Dispensing starch with syringes allows for precise control of the distribution of starch (on the order 

of 50 µm). The process is still relatively fast. This method is only applicable when all structures 

to be coated can be easily reached by a syringe. Therefore, they cannot be spaced too closely. The 

tips of the shanks and the needles did not retain much starch gel and remained sharp. This is likely 

caused by the surface tension of the drop of water that distributes the starch. The water drop 

distributes itself in a way that minimizes surface energy. If the surfaces were extremely 

hydrophilic, the starch would most likely distribute more evenly and also cover tips and needles.  

The experiment involving spin-coating starch gel shows that it can be spun to micrometer thin 

layers. This might be of value for wafer-level processing, especially when only one side of the 

substrate needs to be covered. For example, this is the case when starch-gel is used to fold 

structures in a self-assembly fashion. Spin-coating might offer a more repeatable, parallel and fast 

way of coating substrates with starch-gel. 

Compressing 

Micrometer thin layers of starch gel seem well suited to quickly (within seconds) enact strong 

compressive stress (mN) over relatively large distances (160 µm) on coated structures during 

dehydration. When the coated structures deform, dehydrating starch gel is able to almost 

completely collapse them, leaving only micrometer sized gaps in between. The 5-µm-wide silicon 
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springs had to be reinforced in regions exposed to high leverage in order to prevent them from 

breaking during starch dehydration. One limitation became obvious: as structures with larger gaps 

were coated with starch, the dehydrating gel left larger gaps in between these structures. The 

experiments compare, for example, a spring design with 160 µm of travel to a spring design with 

120 µm travel. The former, although having 40 µm more travel, only retracted 15 µm further. 

Another design with 200 µm of travel only provided 27 µm additional retracted distance. It appears 

that increasingly more starch gel remained trapped between the structures. This prevented them 

from collapsing further. In general, springs with narrow gaps compressed leaving smaller gaps 

than springs with wide gaps. 

Compressing starch could serve applications reaching from compressing, folding, breaking or 

destroying structures. 

3.5   Patterning 

Methods 

Various methods of removing starch gel after it has been coated were investigated. Once applied, 

starch gel was etched using various wet etchants. These include boiling water, diluted hydrochloric 

acid (20%) and an α-amylase solution at 37 ⁰C. α-amylase is used by humans and some other 

mammals to break down starch into small, soluble polysaccharides [77]. The α-amylase solution 

was prepared as 0.1% v/v concentration with 0.9 % w/v NaCl and DI water (physiological saline). 

The starch coated springs were dipped into the respective etchants (several minutes for the boiling 

water and the hydrochloric acid solutions, and 10 hours for the α-amylase solution).  

Starch was also dry-etched in oxygen plasma at room temperature. For that, starch gel was spin-

coated to glass cover slips and dehydrated. The starch was then partially covered with polyimide 
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film. To etch it, it was exposed to reactive ion etching in oxygen plasma at 250 mT, 800 W, with 

an oxygen flow rate of 100 scc for 240s using a Glen 1000P Asher (Glen Technologies Inc.).  

Another way of patterning starch was investigated. Instead of conformally applying starch and 

removing it from undesired locations, it was attempted to prevent starch from coating certain areas 

of the substrate in the first place. In order to prevent starch from coating parts of a substrate, a thin 

layer of extremely hydrophobic fluorpolymers, distributed under the name Cytop 

(Bellexinternational, Wilmington, DE, USA) was applied. 

Results 

Figure 66 shows probe shanks that were coated with starch and subsequently etched. Boiling water 

and hydrochloric acid (20%) were able to completely remove starch from the springs within a few 

minutes. The ɑ-amylase solution removed most parts of the starch from springs within several 

hours, leaving back some residues. CYTOP prevented starch gel from wicking on pads adjacent 

to springs. Oxygen plasma cleanly etched exposed starch gel spin-coated on a glass slide (Figure 

65). The portion of the gel that was covered by Kapton foil did not get etched. 
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a) etched in HCl

 

b) etched in amylase solution 

  

c) applied on silicon

 

d) applied on CYTOP 

 

Figure 65: Micrographs of starch gel patterned by a) hydrochloric acid, b) amylase. c) Starch 

coated on silicon springs is also covering adjacent structures. d) Prior to starch-coating, 

adjacent structures covered with a hydrophobic polymer coating (CYTOP). In this case, starch 

does not spread past the springs. 

 

Figure 66: SEM picture of starch gel that was spin-coated on a glass slide, partly masked with 

Kapton tape and subsequently etched in oxygen plasma. The top part of the image shows starch 

gel that was covered by the Kapton tape. 
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Discussion 

Starch can be removed from substrates using many dry or wet etching methods. The choice of etch 

mask is likely the more tricky aspect. Photoresist, as common etch mask in microfabrication, 

requires a high temperature baking step and developing in water-containing solutions. The 

exposure to water likely makes the starch gel underneath the etch mask swell. This could distort 

patterns and cause delamination of the photoresist. Alternatively, patterned polyimide tape, similar 

to the Kapton tape used here, could be used as etch mask. Starch is fairly tolerant to exposure to 

typical conditions during processing. The experiments showed that starch gel did not dissolve in 

water at 21 °C, and dry starch gel could tolerate temperatures of 100 °C in air for several minutes 

without changing properties dramatically. 

3.6   Deploying 

The set of experiments shown in this section explores how fast and far starch coated springs deploy 

in water and some factors that influence the deployment. 

Methods 

The starch coated springs were deployed in a temperature controlled water bath. They were 

observed using a camera with zoom lens, connected to a computer with a USB video adapter for 

recording (Figure 67). The springs were observed through a custom-made container with a planar 

glass side facing the camera. Releasing the springs may be caused by softening, rupturing or 

swelling of the starch gel. The temperature of the water bath was regulated using a PID controller 

(HYDROFARM, USA), controlling the power to a hotplate. The water bath was kept at 

temperatures of 21 ⁰C, 37 ⁰C or 70 ⁰C.  
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It was also investigated how exposing dehydrated starch gel to hot air changed the deploying 

characteristics. Three sets of experiments were conducted. For that, the starch coated springs were 

first exposed to: 

 100 ⁰C (10 min) and were iodized subsequently 

 160 ⁰C (30 min) and were not iodized 

 200 ⁰C (2 min) after iodizing 
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In summary the following experiments concerning deploying starch were conducted in this section: 

 Deploy springs coated with starch gel (not iodized) in water at 37 ⁰C 

 Deploy springs coated with iodized starch gel in water at 21 ⁰C, 37 ⁰C and 70 ⁰C 

 

Figure 67: Setup to video-record starch-coated springs in a temperature controlled water 

bath. 
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 Deploy springs coated with iodized starch gel in water at 37 ⁰C after being exposed to air 

temperatures of 100 ⁰C for 10 min, to 160 ⁰C for 30 min, and to 200 ⁰C for 2 min 

Results 

When retracted springs, coated with starch gel, were immersed in water at 37 °C, they deployed 

almost fully within a few seconds (Figure 68). Dehydration and deploying of starch coated springs 

in water at 37 °C could be cycled without changing the apparent behavior much. 

 

When the starch was iodized before immersion into water, the springs deployed considerably more 

slowly in water at 37 °C (Figure 69 and Figure 70). The graph in Figure 70 shows the distance the 

springs deployed, averaged over four trials. Each individual measurement is shown in Figure 98 

in the appendix. 

 

 

Figure 68: Springs coated with dehydrated starch gel, few seconds after immersion into water 

at 37 °C. 

 

Water at 37 ⁰C
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Figure 69: Deployment of iodized-starch coated springs in water at 37 °C. The first image shows 

retracted springs in air. After an initial jump, the springs deployed gradually and the starch 

became transparent. Springs with 120 µm travel were used for this experiment. 
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An initial jump in deployment was evident: Within the first few seconds of contact with water, the 

springs (160 µm travel) deployed between 40 and 60 µm. Subsequently, the springs continued to 

deploy slowly and gradually to 110 -130 µm, within several tens of minutes. During this soaking 

time the starch became transparent. If the starch was iodized again after deploying and dehydration, 

the springs deployed similarly in an additional cycle. If the starch was not re-iodized, the springs 

deployed similarly to those that were not iodized in the first place. 

The speed the springs, coated with iodized starch, deployed with, was strongly dependent on the 

temperature of the water. Around 21 °C the springs deployed to some extent. But after this initial 

quick deployment they stalled. At 70 ⁰C the springs were released almost instantaneously, similar 

to springs coated with starch gel that was not iodized (Figure 71) – these measurements were also 

averaged over four runs. 

 

Figure 70: Graph showing the deployed distance of the springs versus time soaked. The 

measurements were averaged over four runs. Springs with 160 µm travel were used for this 

experiment. 
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Starch gel that was exposed to various air temperatures after dehydration and coating, deployed as 

follows: 100 °C for 10 min did not change the deployment characteristics fundamentally, 160 °C 

for 30 min lead to the springs deploying almost instantaneously and exposure to 200 °C for 2 min 

lead to the springs not deploying at all (Figure 72). The individual measurements of springs 

deploying after air exposure at 100 °C are shown in the appendix in Figure 97. Figure 73 shows 

springs coated with iodized starch gel that was exposed to 200 °C for 2 min.  

 

 

Figure 71: The deployment of springs, coated with iodized starch, was strongly dependent on 

the temperature of the water bath: they deployed only partially at 21 ⁰C, slowly and almost 

fully at around 37 ⁰C, and almost instantaneously and fully at 70 ⁰C . The measurements were 

averaged over four runs. 
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The volume change of starch gel during swelling was occurring in all directions. The few-

micrometer-thick dehydrated starch gel expanded to 40 µm thickness (Figure 74a and b).  

 

Figure 72: Starch gel, heated in air to 100 °C, 120 °C and 200 °C, deploying springs in water at 

37 °C. For comparison, a curve showing deploying without hot air exposure is also plotted. 
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Figure 73: Starch coated springs after heating in air at 200 °C for 2min. The starch showed a 

caramel-transparent color. 
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Discussion 

In the experiments, the position of the springs was used to conclude properties of the swelling 

starch gel. Releasing the springs may be caused by softening, rupturing or swelling of the starch 

gel. 

Pure starch gel 

Springs coated with micrometer-thin, pure starch gel released within a few seconds in water at 

37 °C. The springs were almost fully, but not completely deployed. Since the starch gel did not 

dissolve, dehydration and deployment can be cycled. This can be desirable in applications where 

a) 

 

b) 

 

Figure 74: a)-side view and b) front view of starch coating swollen to several tens of microns 

in thickness. 

100 µm

50 µm
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a fast response time is needed, or a triggered release is needed. The swelling occurs isotropically; 

as the springs release, the starch gel also expands sideways, by several tens of micrometers. A 

possible advantage of that is that it forms a soft buffer layer. A disadvantage could be, that the 

volume of the device is increased. When implanted into tissue, surrounding tissue/material is 

pushed away.  

Iodized starch gel 

Previous work shows that hydrogels were modified to swell slowly in water by creating long 

diffusion paths, if enough volume is available, or by making the diffusion paths slow by adding 

hydrophobic groups [75, 87]. This might be troublesome to apply to micrometer thin gels with 

large surface to volume ratios, which are to respond within minutes rather than seconds. The 

experiments described here indicate that iodized starch gel slowly releases coated springs in water 

at 37 °C. It is known that the starch-iodine complex is stable up to temperatures of 40 °C [88]. 

With water temperature approaching this value, iodine appears to slowly diffuse outside the starch 

gel. During that process the springs deployed most. The cleavage of the starch-iodine complex and 

the diffusion of iodine might be occurring on a time-scale slow enough to sufficiently delay the 

swelling of starch. This might also help to explain why the springs did only deploy by a small 

fraction in water around room temperature. There the starch-iodine complex did not destabilize 

sufficiently. In water at 70 °C breaking and diffusion might have occurred quickly. 

Air-heated starch gel 

The experiments indicated that swelling of starch could be modified by heating dried starch gel 

after coating. Temperature exposure can be a side-effect of processing after application of starch 

gel or heat sterilization for implantation, or done on purpose as a means of achieving a desired 
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property. The changes in swelling behavior might be caused by changes to the structure of the 

starch gel.  Three characteristic responses of starch gel to hot air exposure and their temperature 

range are listed in Table 9. The swelling behavior does not change much if the starch gel is heated 

to 100 °C, as long as the starch is iodized after this step. Exposure to this temperature might break 

or weaken some of the physical bonds formed during retrogradation of the gel. After the 

temperature exposure, swelling in water and dehydration might form new bonds, restoring the gel 

strength to a level similar is was at before. 

Temperatures around 160°C might break a large portion of the physical bonds of the gel, and leave 

it less well connected. In these samples, there is no subsequent exposure to water before the actual 

swelling step that could allow new bonds to form. In that state, the gel releases the springs more 

quickly and also dissolves almost completely within a few minutes after immersion in water.  

In contrast to that, exposure to air temperatures of around 200 °C, additional chemical bonds might 

form in the gel. These prevent the starch from swelling. In that form, starch can serve as stiff glue 

that permanently compresses or folds the substrate into a desired shape. Table 9 summarizes these 

explanations and mentions possible use of these characteristics. 
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3.7   Conclusions 

Starch gel was investigated for properties useful for actuating micromechanical structures. As an 

exemplary structure neural probes with spring-deployed electrodes were used. Three spring 

designs were used. They had 120, 160 or 200 µm travel. All springs were 5 µm wide and 12 µm 

thick. 

Table 9: Three characteristic responses of starch gel to hot air exposure, and their temperature 

range.  

Possible

effect 

on gel 

bonds 

Minor damage (phys. 

bonds), mostly repaired 

during dehydration after 

iodizing 

Major damage (phys. 

bonds), no repair, 

separated starch chains 

become soluble 

New chemical bonds 

formed  

Air 

tempera

ture 
 

Spring 

deploy-

ing 

Slowly & gradually Instantaneously, starch 

became soluble 

No deploying observed 

Possible 

use 

Process compatibility, 

heat-sterilization 

One-time quick release 

and disappear 

Permanent folding  

 

100 °C 160 °C 200 °C
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Starch gel coated to micrometer-thin layers was able to retract springs with 160 µm travel as it 

dehydrated by approximately 140 µm. At this deflection, the springs collectively reacted with 

1.2 mN, according to an analytical model. 

When immersed into water at 37 °C, the starch gel swelled but did not dissolve. The springs 

deployed within seconds. If the starch gel was iodized before immersion, the deployment became 

strongly dependent on the water temperature. The springs deployed slowly and gradually within 

several tens of minutes after an initial jump (40-60 µm). At 21 °C, the springs only deployed 

partially (40 µm) and then stalled. At 70 °C, the springs deployed instantaneously and almost 

completely. Since 37 °C is close to many mammalian body temperatures, this could be a useful 

characteristic. 

In another set of investigations, the hydrogel was exposed to hot hair. The starch gel, after coating 

and dehydration, was exposed to 100 °C for 10 min without changing properties related to 

deploying springs much. Exposure to 160 °C rendered the starch gel such that it dissolves almost 

instantaneously in water. Exposure to 200 °C prevented the springs from deploying at all. This 

might be useful to permanently fold structures. 

Furthermore, several methods of applying and patterning starch were investigated. Starch was 

applied by painting, dip-coating and spin-coating. Starch gel was etched in oxygen plasma. An 

etch mask was formed out of Kapton foil. Starch was stripped in boiling water, HCl (20%) and α-

amylase (with residues). Hydrophobic coatings like Cytop were used to prevent starch from 

wicking into undesired areas. These results indicate that starch gel is compatible with methods 

typically used in micromachining. 
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In summary, the experiments indicate that starch gel has enabling properties for micro-mechanical 

applications. It can serve as non-electrically triggered one-time actuator providing large travel and 

force.  Starch is easy to acquire and process, and it can be patterned with methods commonly used 

in microfabrication.
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CHAPTER 4 

 

PARYLENE NEURAL PROBES  

WITH ENGINEERED STIFFNESS AND SHAPE  

FOR IMPROVED INSERTION  

This thesis chapter a fabrication technology developed to improve the insertion of Parylene neural 

probes into cortical tissue by implementing vertical stiffeners with a small footprint, and probe 

shanks with sharp tips. Taking advantage of the benefits of using a polymer as structural material 

for neural probes is often prevented by their troublesome insertion due to hyper-flexible shanks 

and dull tips. The fabrication process described here addresses both of these issues by integrating 

vertical stiffeners into the shank of Parylene neural probes, and by sharpening the probe tip by 

thinning its outer edge. Both modifications are achieved by minor adjustments to standard Parylene 

probe fabrication. According to an analytical model, these allow reducing insertion footprint for a 

given required stiffness, and are hypothesized to reduce the load on the shank and the dimpling of 

the brain surface during insertion. Several 30-µm-deep and 10-20-µm-narrow stiffeners are 

integrated into electrically-functional, 2-mm-long, 20-µm-thick, and 250-µm-wide Parylene 

neural probes. These were fabricated in a process requiring only three lithographic masks. The 

probes are strong enough for insertion into cadaver lamb brain through the pia mater. They are 

tested for electrical functionality by measuring the electrical impedance of the electrodes in saline 
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solution. Similar vertical stiffeners can be also used as hinges for folding structures, or wells for 

drug delivery. 

4.1   Introduction 

This paper reports a fabrication technology to improve the insertion of Parylene neural probes into 

cortical tissue by implementing vertical stiffeners and sharp shank tips (Figure 1). Neural probes 

are small, needle-like shanks that are implanted into the cortex in order to interface with neurons. 

They are used in zoological experiments in neuroscience [14] and for neuroprosthetics in clinical 

applications [89]. They can be fabricated using a variety of materials. Traditionally, hard and in 

some cases brittle materials have been used such as metal wires [90], silicon [1] or diamond [91]. 

More recently, flexible polymers like Parylene [92, 93], polyimide [94], SU-8 [95], liquid crystal 

polymer [96] or silicone [97] have been used. Polymeric materials are especially attractive for 

chronic implantation. They have advantages in material properties and fabrication: unlike their 

counterparts made of silicon, they are flexible and unlikely to break, they can be fabricated 

alongside and seamlessly integrated with cables, and they are pliable so they can be deformed 

during implantation to match biological topography. 
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Flexible neural probes have been fabricated using various polymers. Often Parylene is the 

preferred material due to its unique properties: it can be deposited conformally, pure and void-free 

using vapor deposition on a substrate kept at room temperature [98], it is chemically and 

biologically inert and it has a long history of use as implant material [99]. Furthermore, Parylene 

layers can be bonded together to form fluid channels on neural probes [100]. A simple way to 

increase the buckling load of polymer probe shanks is to increase their thickness. However, unlike 

polymers that can be spin-coated to thicknesses in excess of 20 µm and photo-structured [94], the 

thickness of Parylene layers that can be practically achieved is limited to a few tens of micrometers. 

One of the main reason is that etch masks used to patterning Parylene quickly erode or form 

composite layers that do not etch. Hence there is need for more sophisticated ways of stiffening 

polymer probes, especially those made of Parylene. 

 

Figure 75: 3D drawing showing three different profiles of the Parylene neural probe: the sharp 

edge around the tip, the stiffeners underneath the shank and the flexible cable. 
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Several ways to stiffen flexible polymer probes have been published. Some examples are depicted 

in Table 1. These can be grouped into three approaches. Approach 1 is to integrate a stiffer material, 

such as silicon or metal, into critical parts of the probe [101]. This allows reduction of the cross-

section of the polymer shank without sacrificing stability. However, it also compromises some of 

the advantageous material properties of polymers. Approach 2 is to temporarily stiffen the probe 

shank for insertion. A stiff shank facilitates insertion into tissue; a more flexible shank likely 

mitigates stress induced into tissue by micromotion occurring inside the brain. This has been 

achieved in at least in two ways. For example, by coating bio-dissolvable materials onto a flexible 

polymer shank [102, 31, 73]. After insertion, they soften and dissolve, and the only flexible part 

of the shank remains. Although this is a very promising principle, there still are major hurdles to 

be overcome. Many bio-dissolvable materials are extremely soft before insertion and tend to soften 

further during insertion. Hence they were made large in order to increase the probe stiffness 

sufficiently. This can lead to dull tips, large probe dimensions, restrictions on insertion methods, 

and degraded electrode performance. Another way to temporarily stiffen the shank is to use a 

retractable insertion shuttle [97, 103]. In principle, the shuttle consists of a stiff carrier that is 

reversibly attached to a flexible shank. Both are inserted together. Shortly after insertion, the 

carrier is retracted, leaving the flexible shank behind. However, system assembly can be complex. 

The flexible shank needs to be well aligned to the carrier. This might be even harder when using 

combs or arrays of neural probe shanks. Also, it is not trivial to secure the probe to the carrier and 

to detach it after insertion. Approach 3 is to form a strategic shank design. For example, curving 

planar-fabricated polymer probes widthwise increases the moment of inertia without altering the 

footprint of the probe shank. A curved shank geometry is realized by thermal annealing in a 

custom-made mold after fabrication [104]. 
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This thesis chapter reports a technology to stiffen Parylene neural probes by integration of narrow 

and deep vertical stiffeners. This does not add much process complexity and allows reducing the 

shank footprint. The stiffeners are made by trench refill. Trench refill has been developed to make 

high aspect-ratio polysilicon structures in silicon [105]: Deep and narrow trenches can be etched 

into silicon and refilled with silicon dioxide/polysilicon to form large conductive surfaces with 

narrow gaps for capacitive transducers. Similar trench refill has been used to form thin and high 

vertical beams of polysilicon for microprobes [106]. Parylene refill of silicon trenches (formed by 

deep reactive ion etching) has been used for high-aspect ratio structures for accelerometers [107]. 

Here, a new method to integrate vertical Parylene stiffeners into the shank of Parylene neural 

probes using refill of photoresist trenches is reported. 
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Table 10: Compared to other methods, integrating vertical stiffeners into shanks strongly 

increases the inertia without increasing the thickness of the shank or the process complexity 

much. 

 

Ref. 

 

Shank Footprint 

Geometry 

Inertia per 

Footprint 

Ease of 

Fabricatio

n 

Integrati

on in 

Arrays 

Reference 

[93]  
Rectangular 

- 

Requires 

large 

thickness  

Easy 

Approach 1: Permanent integration of a stiffer material 

[101] 
 

Integrate Hard 

Material 

+ + Reasonable Easy 

Approach 2: Temporary stiffening of the shank 

[102, 31, 

73]  
Coated Dissolvables 

-  - 
Individual 

assembly 
Hard 

[97, 103]  
Insertion Shuttle 

+ 
Individual 

assembly 
Hard 

Approach 3: Strategic shank design for increased stiffness 

[104]  
Curved Widthwise 

+ + 
Individual 

processing 
Hard 

This Work  
Vertical Stiffeners 

+ Easy Easy 

 

A new method to fabricate sharp tips of Parylene probes is also presented here. Sharp tips are 

shown to reduce the load on the shank during insertion. Sharp tips also induce less dimpling of the 

brain surface during insertion [108], what likely mitigates tissue damage. Typically, polymers 

cannot be machined as precisely as silicon. Shanks made of polymers need to be thicker, which 

leads to duller tips. To work around this constraint, others have patterned silk to a sharp tip inside 

a mold [73], or have integrated sharp silicon tips into an array of Parylene probes [109]. Both 
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require manual assembly and integration of hard materials into the polymeric probe. Here an 

integrated method to create a thinner and sharper tip in Parylene probes is introduced.  

4.2   Materials and Methods 

Design and Analysis 

A neural probe needs to be designed large enough to provide sufficient stiffness for reliable 

insertion and electrical insulation. Minimizing shank dimensions decreases tissue damage and 

allows for a more narrow pitch between adjacently implanted shanks. The length, width and 

thickness of stiffeners and shank need to be chosen. The width of the probe is typically set to be 

as narrow as possible, meeting the required width for electrical interconnects. The thickness of 

Parylene cannot be increased arbitrarily; very thick layers (in excess of 20 µm) require long 

deposition times and are troublesome to etch. Too thin layers do not insulate well and are too 

flimsy for insertion and handling. Stiffeners add material in strategic positions away from the 

neutral plane of the shank. This considerably increases the bending moment of inertia. For a given 

minimum buckling load of the shank, stiffeners allow reducing its volume (compared to a shank 

with a rectangular cross section). The length of the probe is typically dictated by the physiological 

depth of the desired neurons. For example, electrodes placed 2 mm below the surface of the brain 

allow the detection of the highest number of discernable spikes in the macaque motor cortex. 

Probes that are only 1.5 mm long do not reach layer V neurons, which are preferable for 

extracellular recording [110].  

The following analysis of buckling loads of neural probes with integrated stiffeners illustrates the 

feasibility of increasing the buckling load and provides a design guide. The model is based on 

concepts derived in [47]. The minimum axial load on a shank that causes buckling can be 
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approximated by Euler’s formula for beam buckling: 

 ( 15 ) 

FE is the maximum longitudinal load on the shank that does not make it buckle, c is a factor taking 

mechanical boundary conditions into account, E is the Young’s modulus of the shank material, L 

is the length of the shank and Imin is the bending moment of inertia across the axis of buckling. This 

analytical model is based on concepts derived in [47]. The bending moment of inertia of a section 

of the probe shank is calculated in two steps: 

 The bending moment of inertia of rectangular segments of the shank (shank, stiffener, 

metal trace) around their own neutral axis is calculated. 

 The bending moments of these segments are then combined using the Transfer Formula 

[47] to calculate the bending moment of the composite shank. 

The bending moment of inertia of rectangular sections around their own neutral axis is: 

𝑰 =
𝒘𝒊𝒅𝒕𝒉∙𝒉𝒆𝒊𝒈𝒉𝒕𝟑

𝟏𝟐
  ( 16 ) 

The Transfer Formula states that the inertia of the compound shape (IC) calculates from that of the 

segments (Ii) as follows: 

𝑰𝑪 =∑𝑰𝒊
𝒊

+∑𝑨𝒊 ∙ 𝒅𝒊
𝒊

 ( 17 ) 

with Ai the area of segment i and di the distance of the neutral axis of segment i to the neutral axis 

of the compound shape. The position of the neutral axis of the compound shape is its center of 

gravity and calculated with respect to a reference axis. This axis is chosen to be located at the 

2
min

L

IE
cFE



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bottom of the stiffeners. The position of the neutral axis with respect to that reference is: 

𝒅𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆=
∑ 𝑨𝒊 ∙ 𝒓𝒊𝒊

∑ 𝑨𝒊𝒊

 ( 18 ) 

with ri being the distance of the neutral axis of segment i to the bottom of the stiffeners. 

To give a practical example, this analysis is performed for a shank with length of 2 mm and a 

width of 100 µm. The Young’s modulus for Parylene was measured to be 4.75 GPa [111]. The 

variable ‘c’ is approximated to 20.2 for a fixed-hinged mechanical boundary condition of the probe 

shank [47]. Note that the lateral location and distribution of the stiffeners underneath the shank 

does not influence the bending moment of inertia in this simplified model. Their contribution can 

be determined according to their cumulative width.  

Table 2 illustrates the effect of different numbers of 10 µm- wide stiffeners (the effect of metal 

interconnects is not included in this analysis). Typical maximum insertion forces of neural probes 

have been reported to be around 5 mN [112] (this value changes with a variety of factors such as 

insertion speed and tissue preparation). 
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Table 11: Adding stiffeners to shanks allows increasing their length or reducing their 

volume while maintaining their buckling load. This analysis does not take the effect of metal 

interconnects into account. 

 
 

 
 

Geometry: 20 µm shank 

thickness, 30 µm height of 

stiffener, 10 µm width of 

stiffener, 100 µm shank width, 

2 mm shank length, 4.75 GPa 

Young’s modulus [111]. 

 

 

 Standard One stiffener 

(10µm width) 

Four 10 µm-wide 

stiffeners 

(40µm cumulative 

width) 

 

  

 
 

 
 

 

 

 

 Bending Moment of Inertia  

 6.7·10-20 m4 2.5·10-19 m4 6.3·10-19 m  

 Euler buckling load for one end of the shank fixed and the 

other one pinned. 

 

 1.6 mN 6 mN 15 mN  

 Approximate length of this shank compared to length of a 

shank with quadratic cross section and equal buckling load 

 

 100% 200% 300%  

 Thickness of a shank with rectangular cross section and the 

same buckling load as this shank 

 

 20 µm 32 µm 42 µm  

 Ratio of volume between shank with stiffener and shank with 

rectangular cross section and with increased thickness to 

match bending moment 

 

 100% 72% 76%  

 

Figure 76 shows a plot of the modeled buckling load as a function of width and thickness of 

stiffeners. The graph shows that the buckling load of the shank can be increased from 1.6 mN to 

12.5 mN by integrating one stiffener, with 30 µm width and 30 µm thickness. 
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The metal layer used for electrical interconnects can also have an influence on the buckling load 

of the shank, especially when stiffeners are present. The reason for that is, once stiffeners are 

implemented, the location of the relatively stiff metal layers can be further away from the neutral 

plane of the shank. Following analysis describes how large that influence is, and how it depends 

on vertical position and thickness of the metal layer. The shank geometry and mechanical boundary 

conditions are set as before. A 50 µm wide metal trace is placed inside the upper part of the shank, 

accounting for the cumulative width of several traces. The Young’s modulus of the metal forming 

interconnects was assumed to be 139.7 GPa, corresponding to thin film platinum [113]. As before, 

 

Figure 76: Adding stiffeners with 30 µm cumulative width and 30 µm height increases the 

buckling load of a shank from 1.6 mN to 12.5 mN, according to this analytical model. The 

dashed line shows how the buckling load of a 100 µm wide and 2 mm long shank changes with 

the width of a stiffener with 30 µm thickness. The solid line shows how it changes with the 

thickness of a stiffener with 30 µm width. 

Without 

Stiffener

Stiffener 

Thickness

Stiffener 

Width
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the Young’s modulus for Parylene was set to 4.75 GPa [111] Two scenarios are modeled. In one, 

the thickness of a metal trace placed in the neutral plane of the shank is swept from 0 to 5 µm. In 

the other, the vertical position of a 1 µm thick metal trace is swept from the lower end of the shank 

(30 µm height) to the upper end of the shank (50 µm height) of the shank, above a 30 µm high and 

20 µm wide stiffener. 

To calculate the effect of the metal trace on the buckling load, equation (1) is used. The probe 

shank consisting of different materials (Parylene, Platinum) is modeled by a shank consisting of 

one material only (Parylene). This is done by weighting the width of parts consisting of Platinum 

with the ratio of the Young’s moduli of Platinum and Parylene. The ratio of the Young’s moduli 

of Platinum and Parylene is 29.41. The width of the metal trace is 50 µm, the weighted width 

becomes 1471 µm. 

The analysis shows that the buckling load does not change much when the metal trace is centered 

in the neutral plane of the shank, even if the thickness of the metal is increased considerably. 

However, the buckling load increases by more than 50 % if a 1 µm thin metal trace is placed close 

to the upper end of the shank (Figure 77).  
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This strong increase in buckling load is caused by the relatively stiff metal being further away 

from the neutral plane of the shank which amplifies the stress during buckling.  

Another factor impacting the buckling load of the shank is the way the probe is anchored during 

insertion. The effect of mechanical clamping of the shank is represented by ‘c’ in equation (1). It 

can be approximated by 20.2 for one end of the shank fixed, and one end hinged. For both ends 

hinged, its value drops to 9.8 [47]. This example shows that a secure support for the backend of 

the probe (providing a fixed rather than a hinged boundary condition) could double the buckling 

load. One design consideration drawn from this observation is that the stiffeners should extend 

underneath the area where the probe is clamped during insertion. 

 

 

Figure 77: Analytically modeled buckling load of a shank as a function of the thickness of a 

metal trace in the neutral plane (dashed line, top x-axis) and as a function of vertical position 

of a 1 µm thick metal trace (solid line, lower x-axis). 

50 µm

30 µm

0
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Being very well established, this beam buckling analysis was not experimentally verified in this 

report. 

Furthermore, a method to create sharp tips in Parylene probes is introduced. To pierce the surface 

of the brain, a certain pressure is required [114]. The pressure the probe exerts on the surface of 

the brain during implantation corresponds to the load on the shank distributed across the area of 

the tip in contact with the tissue. This area is proportional to the thickness of the probe tip. Here, 

the top Parylene layer around the tip is removed. This roughly doubles the pressure the probe exerts 

on the surface of the tissue. Besides lowering the load on the shank during insertion, sharper tips 

also lower the amount of dimpling of the surface of the brain [112].  

Fabrication 

Probes were fabricated in pairs of two or three identical shanks connected by one common backend 

for handling during transport and implantation, and one Parylene cable. Probe shanks were 

fabricated with three different widths and two different lengths. The widths were set to be 180 µm, 

300 µm, or 380 µm, and the lengths were either 2 mm or 3 mm.  

The main fabrication steps are depicted in Figure 78. The process requires three lithographic masks. 
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A silicon carrier wafer is used. After HMDS priming, two layers of photoresist AZ9260 are spun 

sequentially for 2 s at 300 rpm to produce a 25-30 μm-thick layer (depending on the distance to 

the center). The thickness of the stiffeners is defined by the thickness of this photoresist. Its 

thickness is controlled by the amount of resist dispensed on the wafer, and the duration and speed 

of spinning. The resist is exposed for 160 s on an MA/BA-6 Mask/Bond Aligner, (Süss Microtech, 

Garching, Germany) with 30 mW/cm2, and developed in AZ400k/DI = 1:4 for 2 min. It is 

important to minimize outgassing from the thick resist during further process steps. For that, an 

intermediate and a final softbake step on a hotplate for 5 min at 90 ºC are performed after spin 

coating. Then the wafer is flood-exposed and stored in vacuum for two hours. The trenches are 

refilled with a 12.5 µm-thick Parylene layer using a PDS2035 (Specialty Coating Systems, 

Indianapolis, USA) (Figure 78a). The photoresist is protected by Parylene during further 

fabrication. A metal layer to form interconnects, electrodes, pads and an etch-stop, consisting of 

Ti/Au/Ti or Ti/Pt/Ti 800/3000/800 Å, is evaporated. To pattern it, lift-off using 2-µm-thick 

SPR220 resist is used (Figure 78b). A second Parylene layer with 16 µm thickness is deposited. 

 

a) Pattern thick 

photoresist, deposit 

Parylene. 

 

 
b) Evaporate Ti/Au/Ti. 

 

 
c) Deposit Parylene. 

 

d) Pattern Parylene. 
 

 

e) Release in acetone. 

 

 

 
 

  

Figure 78 : Fabrication steps of Parylene probes with integrated stiffeners and sharp tip edges. 
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Finally, the Parylene is etched in oxygen plasma. An etch mask consisting of Ti/Al 2000/3000 Å 

is evaporated and patterned via lift-off (Figure 78d). The tip is sharpened in this step, using a 

simple design change. The outline of the shank of the probe, and the inner portion of the tip are 

defined by etching Parylene through a metal etch mask. The metal layer sandwiched between the 

two Parylene layers, which forms interconnects and electrodes, is used as an etch stop around the 

outer potion of the tip. This allows creation of a recess, rendering the tip thin and sharp. The probes 

are released in acetone by dissolving the photoresist. A gentle method of releasing the probes off 

the carrier is advantageous, because, in order to achieve a high buckling load it is critical that the 

probes remain straight. 

One fabrication challenge is that the deposition rate of Parylene is lower at the bottom of trenches. 

This can lead to the trenches sealing off at the top during Parylene deposition, before the trench is 

completely refilled. This would leave a permanent void in the center, what is detrimental to the 

mechanical stability and might cause biological complications after implantation. Also, as trenches 

refill, a notch forms in between them (Figure 78b). It is important that this notch does not hinder 

continuous metal deposition for interconnect formation. The authors of [107] addressed these 

problems by repeatedly etching and depositing Parylene. Here, trenches with a slight outward slope 

are created. This was done by calibrating exposure dose and developing time. The sloped sidewalls 

can be completely refilled with Parylene and form a less pronounced notch. The depth of the notch 

decreases as the Parylene layer thickness increases. As a rule of thumb, if the photoresist sidewall 

has a slight slope, the thickness of the Parylene layer should be 1.5 times the maximum width of 

the trench.  

4.3   Results 

Fabricated Probes 
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Released probes can be seen in Figure 79. The images show the top and bottom sides of the neural 

probes. 

 

An image of the cross-section of a refilled photoresist trench is shown in Figure 79. The slope of 

the sidewalls of the trenches was measured to be 78 deg. The photoresist trenches were completely 

 

 

Figure 79: a) top of the probe showing electrodes and sharp tip edges, b) backside of a probe 

with 5 stiffeners. 
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refilled and void-free. Figure 80 shows metal traces deposited across the notches above the 

stiffeners. 
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Figure 80: a) Photoresist trench refilled with Parylene; b) interconnects and electrodes deposited 

across the notch formed above trenches and c) chamfered tip of a stiffener. 

≈78°

a)

30µm

b)

c)
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Mechanical and Electrical Testing 

The probe shanks were evaluated in insertion tests, and the impedance of their electrodes was 

measured in a saline solution. All probe designs could be inserted manually into 0.6% agar brain 

surrogate and into a cadaver lamb brain when the pia was nicked (the probes were inserted through 

an opening in the pia). Probes with 380 µm width, 2 mm length, and five integrated stiffeners could 

be inserted into a cadaver lamb brain through the pia (Figure 81).  

 

To contact the electrodes, the probes were connected to OMNETIC connectors on PCBs using 

rivet bonding [115]. The electrode impedance was measured in 0.9% saline solution using a large 

platinum counter electrode. The solution and interconnects had relatively small resistance (less 

than 100 Ω), much less than the electrode impedance. Table 12 summarizes the results. 

 

 

Figure 81: The probes with stiffeners inserted through the pia into a cadaver lamb brain. 

Intact Pia

Tissue Cut After Insertion to Inspect Shank.
1 mm

Cadaver Lamb Brain
Two Inserted Shanks
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4.4   Discussion 

The technology introduced here allows the creation of stiff, sharp and flexible regions that can be 

distributed along the probe shank, cable and connector. Since the tip, shank and cable have 

different requirements for cross section and stiffness, the use of stiffeners provides a very useful 

design “knob.” The tip needs to be thin and shallow to easily pierce tissue, the shank needs to be 

stiff enough for insertion and have a small size, and the cable needs to be flexible (Figure 82). 

Table 12: Summary of mechanical, and electrical properties of fabricated probes. 

Geometry  
Three designs: Shallow/Medium/Robust 

Shank Width 180/300/380 µm 

Shank Length 3/3/2 mm 

Total 

Thickness 

55 µm including stiffeners  

25 µm without stiffeners  

Width of 

Stiffeners 
5–10 µm 

Number of 

Stiffeners 
3/3/5 

Mechanical Properties 

Successful 

Insertion  

Experiments 

all: agar gel brain model, cadaver lamb 

brain with pia nicked. 

“Wide” design: insertion w. pia intact. 

Electrical Properties  

(measured in 0.9% saline @ 1 kHz, site area: 900 µm2) 

Gold 

electrodes: 

Zavg./Phase  

1.5 MΩ/−75° 

Plat. 

electrodes: 

Zavg./Phase  

350 kΩ/−65° 
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The introduced modifications to conventional fabrication do not require manual assembly, non-

standard materials and are scalable to arrays of probes. 

The following paragraphs discuss some considerations of how the presence of stiffeners might 

affect the tissue reaction around chronically implanted neural probes, and their chronic stability. 

Clinical applications of neural probes, related to prosthetics, require them to function over 

extended periods of time. However, the signal quality of chronically implanted neural probes is 

known to decrease over time [22, 10]. It was found that a chronic inflammation around the shanks 

of neural probes forms with increased density of immune cells and decreased density of neurons 

[115]. The further away a neuron is from an electrode, the lower the amplitude of the recorded 

signal [24]. Furthermore, some components of the immune reaction can contribute to an increased 

electrical impedance of the tissue surrounding neural probes. This also can decrease the amplitude 

of recorded signals and contribute noise [116]. 

 

Figure 82: Micrograph of a Parylene probe pressed against a surface. The probe has three 

different cross sections along its length (illustrate above), allowing for sharp tips, stiff shanks 

and flexible cables. 

Stiff ShankFlexible Cable Sharp Tip

Stiff Shank
Sharp 

Tip
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The extent of the chronic tissue reaction around implanted neural probes has been shown to depend 

on the size of the implant [33]. Probe shanks with rectangular cross section and those with 

stiffeners and equivalent bending moment of inertia, will likely cause similar extend of scarring 

and tissue damage. Although the stiffeners allow reducing the cross-section, the right angles 

between stiffeners and shank are not likely to foster tissue survival or ingrowth in that area. The 

main advantage of integrating stiffeners lie in an easy method of rendering Parylene neural probes 

stiff enough for unaided insertion. Nontraditional shanks that employ means of reducing the size 

of the indwelling part of the shank (e.g. with biodissolvable materials [31, 73] or retractable 

insertion shuttles [97, 103]), allow for extremely small shank sizes. Some of the published 

examples show great promise but currently still face major practical limitations (extended tissue 

damage during insertion due to large insertion footprint and reduced sharpness of the tips, foreign 

body response to the biodissolvable materials, and dependence on an extremely fast insertion). 

The flexibility of the anchor of implanted neural probes has also been shown to modulate the tissue 

response [33]. In case of neural probes are anchored to the skull, when the brain moves inside the 

skull, tethering stress is induced in the tissue. Flexible anchors are likely to decrease this stress. 

The stiffeners can be integrated selectively only under the shank and leave a very flexible cable 

connecting the back of the probe. Hence the stiffeners do not necessarily influence the stiffness of 

the anchoring.  

Another component of micromotion originates from within the brain and is caused by pulse and 

respiration [117]. Similar to anchoring to the skull, this can also induce stress in the tissue. 

However, brain tissue is more than two orders of magnitude softer than Parylene [60]. This 

suggests that the increase in structural stiffness in one dimension due to the integration of stiffeners 
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might only cause a small increase in the induced stress in response to micro motion originating 

from within the brain. 

The vertical stiffeners can also serve other purposes in neural probes. It may be desirable to 

transport drugs or cells into the brain [92]. Stiffeners can form a series of freely distributed wells 

or closed channels, allowing the secure transport of their content during implantation. Additionally, 

there have been some efforts to fold planar fabricated polymer probes into three dimensional probe 

arrays [92]. To achieve this, several connected shanks were fabricated in plane and then bent out 

of plane. Stiffeners like those described here can form hinges creating a preferred line for bending 

(Figure 83).  

 

4.5   Conclusions 

This thesis chapter explains the design, analysis and fabrication of Parylene neural probes with 

integrated vertical stiffness and sharp tips. Both features are meant to improve the insertion of the 

  

Figure 83: The developed process can also form (a, micrograph) shanks with wells e.g., for 

drug delivery or (b, 3-D drawing) hinges e.g., for bendable probe arrays. 

a)

100 µm
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probe shanks into tissue. The mechanical and electrical practicality of the developed probes was 

experimentally verified. 

A theoretical model revealed design choices that can have a large effect on the buckling load of 

the probe shank: 

 The formation of a vertical stiffener underneath a Parylene shank can, employing typical 

dimensions, increase its buckling load from 1.6 mN to 6 mN. 

 The buckling load can be further increased from 6 mN (Parylene shanks with metal 

interconnects and stiffeners) to more than 9 mN by depositing interconnect metal away 

from the mechanical neutral bending plane of the probe and close to the top. 

 Anchoring the backend of the probe (providing a mechanically fixed rather than a hinged 

support) is doubling the buckling load. 

Taken together, these modifications were shown to be sufficient to design electrically functional 

neural probes capable of insertion into cadaver brain.  

The stiffener fabrication technique can also form open wells, channels or hinges integrated into 

the shank of neural probes. The wells or channels can be used for drug delivery, while hinges can 

establish a preferred bending axis for folding structures. 
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CHAPTER 5 

 

GENERAL CONCLUSION AND SUGGESTED FUTURE WORK 

This thesis presents a new class of intracortical neural probes with small electrodes that self-deploy 

from the large after insertion, which is hypothesized to prolong their chronic function. For that 

purpose, an actuation mechanism based on starch- hydrogel coated springs was developed. This 

concept may be used to form chronically stable brain-machine interfaces for clinical applications. 

Beyond that, properties of this starch-hydrogel actuation mechanism were explored for more 

general applications in MEMS. Furthermore, a Parylene neural probe design for improved 

insertion is elaborated. The thesis contributions can be concluded as follows: 

 Neural probes with post-implant, self-deploying electrodes 

An implantable, one-time compression and release actuation mechanism was developed and 

integrated in shanks of neural probes. The actuator consists of silicon microsprings that are 

retracted and released by a biodegradable, starch-based hydrogel coating. The deploying springs 

drive electrodes away from the shank after its insertion into tissue, triggered by contact of the 

dehydrated gel with biological fluids and body temperature. 

Six electrodes on silicon neural probe shanks that were 3 mm long, 12 µm thin and 290 µm wide 

were shown to deploy by more than 120 µm through an agar brain model. This is, according to 

published studies, sufficient to reach beyond the dense scar tissue depleted of neurons, which is 
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accumulating around the shank over time and thus hypothesized to enhance the chronic operation. 

A specialized spring design was developed to have surfaces of spring arms coming into contact 

during deflection. This was implemented in order to facilitate coating and actuation by hydrogels. 

The springs were designed to have an extremely compact geometry when retracted, minimizing 

the increase in width of the neural probe shank. The springs were coated with iodized starch gel, 

which almost completely retracted them during dehydration. The springs slowly released (after an 

initial “jump”) after insertion into an agar brain model. To delay the onset of the deployment until 

after the insertion of the neural probe shank, a second coating consisting of poly(lactic-co-glycolic-

acid) was applied. With that, the onset of the deployment was delayed by 20 s. This delay is likely 

sufficient for insertion of a neural probes into cortical tissue under typical circumstances. The 

starch-coated springs then deployed within three minutes by 100 µm, and additional 20 µm over 

the next two hours. A set of experiments, including an acute in-vivo study, indicated that the 

fabricated devices are practical to use, and are able to record signals from neurons. 

 Starch hydrogel for actuation of MEMS 

Starch-based hydrogels were further investigated for actuation of structures on the micro-scale. 

Starch gels showed a diverse set of properties that could be harnessed for temperature-dependent 

self-actuation (triggered by the presence of water), such as retraction, compression, release, 

expansion or permanent folding. 

Micrometer-thin layers of starch-hydrogel were shown to strongly compress silicon springs, used 

as exemplary devices. Coated springs with 12 µm thickness, 5 µm width and 160 µm travel were 

retracted by more than 140 µm during dehydration of the gel. At that deflection, they react with 

1.2 mN, according to an analytical model.  
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Pure starch gel released the springs almost instantaneously after coming into contact with water. 

Iodized starch gel slowly (on the order of several tens of minutes) released the springs in water at 

37 °C. The speed of deployment was strongly dependent on the temperature of the water. At room 

temperature, the springs only released partially but then stalled. Exposing starch gel to hot air 

(200 °C for 2 min) prevented coated springs from deploying in water. This property could be used 

to permanently fold structures. Starch hydrogels were found to be compatible with patterning and 

coating procedures commonly used in microfabrication. 

 Parylene neural probes with integrated stiffeners and sharp tips 

Two technologies to improve the insertion of hyper-flexible Parylene neural probes into neural 

tissue were introduced. A fabrication process was developed to form shallow and deep vertical 

stiffeners underneath planar Parylene shanks. According to an analytical mode, the stiffeners 

considerably increase the buckling load of the shanks. These stiffeners could also be used to form 

wells for drug or cell delivery, or hinges for folding around a preferred axis. Furthermore, a method 

was developed to create a thin and sharp tip on Parylene shanks. This is hypothesized to lower the 

amount of dimpling of the brain surface and the load on the shank during insertion. Fabricated 

2 mm long and 180 µm wide Parylene probes with stiffeners and sharpened tips could be inserted 

into cadaver lamb brain. 

5.1   Suggested Future Work 

There are several stages for the research to continue in: Evaluation of efficiency and efficacy in 

chronic animal experiments of the developed prototypes of neural probes with deploying 

electrodes, optimization of the developed designs, and translation of the developed technologies 

into other applications. 
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The driving motivation for the research conducted in this thesis was to provide technologies to 

extend the lifetime of implanted neural probes. Chronic studies could help to evaluate the 

developed technologies in two ways. They could test the hypothesis that deploying electrodes 

away from the shank increases the chronic stability of neural probes. Also, they could allow 

investigating how the developed technologies allowing to deploy electrodes behave during chronic 

implantation. This includes investigating the fate of starch and PLGA in the central nervous system. 

The first studies should investigate if the developed probes are operating chronically and if not, 

what their failure mechanisms are. Studies investigating the chronic performance of neural probes 

are complex and their outcome often depends on multiple factors. Some aspects to consider are:  

 Animal model: The community that has been focusing on investigating the chronic stability 

of neural probes is using rat as animal models. Comparably few published research 

involves chronic recording from large animals such as monkeys. This might have ethical 

and financial reasons. Larger animal models might provide more insight valuable for 

clinically applications since behavior, immune reaction and physiology are a closer match 

to humans. To gain first insight into the chronic performance of the developed neural 

probes, and to eliminate as many failure mechanisms as possible, rat models might be a 

good choice. This will also allow to benchmark the results with published work from the 

community. 

 Anchoring of the neural probe: The way the neural probe remains anchored after 

implantation can have a critical impact on its chronic performance. An easy way of 

anchoring neural probes, often used when employing a small animal model, is to secure 

the probes to a firm substrate that is cemented to the skull. However, this can aggravate 

tissue damage since the probe will displace along with the skull. An alternative is to leave 
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the probe floating with the brain, connected by a flexible cable or not at all. This requires 

a back end with a very low-profile (fitting between the brain and the skull/cap), and flexible 

or wireless connections between the probe and the head stage. For smaller animals like rats, 

this is very challenging. For the first study, tethered probes might be the better option. 

Since the deployed electrodes might be able to compensate for some motion between the 

brain and the skull, this might enhance their performance compared to controls without 

deployed electrodes. 

 Controls: Scientific studies often gain meaning by adding an experiment in order to observe 

the outcome if the method under investigation is not used. The performance of neural 

probes with deploying electrodes will likely depend on many circumstances, some of which 

cannot be controlled: the surgery for implantation, the behavior of the animal in between 

and during measurements, the choice of size, distribution and impedance of electrodes, and 

the means and methods used to evaluate their recording performance. Some meaningful 

control experiments in a chronic study could be: evaluating the performance of non-

deploying electrodes that are formed on a shank and at the end of needles without springs, 

formed on a shank also holding deploying electrodes. Furthermore, shanks with similar 

dimensions and electrode distributions that do not carry any deploying electrodes could be 

implanted contralateral. The shanks without deploying electrodes should be, in some cases, 

coated in starch and PLGA in order to isolate their impact on the performance. 

 A common duration of chronic experiments investigating the tissue response around neural 

probes is 12 weeks. In rats, the tissue response was shown to stabilize after that time. 

However, experiments lasting longer than that showed a continuous decrease in signal 

quality. This suggests the existence of failure mechanisms other than the formation of a 
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chronic scar. Initial experiments should be done with a duration of 12 weeks to allow 

comparing to published work, but follow-up experiments should extend beyond that. 

Deployed electrodes might alleviate failure mechanisms other than the formation of scar 

tissue, such as damage induced by micromotion. 

 Collected data: The impedance between electrodes should be measured regularly, as this 

gives insight into several failure mechanisms including biofouling (deposition of biological 

films with high impedance) or lead breaking. The amplitude and frequency of recorded 

action potentials is a good measure since this is often the intended use of neural probes in 

brain-machine interface applications. However, electrodes could be able to pick up action 

potentials while accidentally not being close enough to neurons to do so. A measure for the 

ability of an electrode to pick up action potentials is the power of the recorded noise in the 

frequency band of action potentials. This might be especially relevant to the present 

laminar neural probe design, where some electrodes are likely placed closer to layers of 

larger neurons. Histology of brain slices after termination of the experiment will also 

provide useful data. The extent of the tissue reaction, indicated by the density of immune 

cells, can be directly quantified. It should be investigated how the presence of starch and 

PLGA, and the geometry of the probe shank, needles and springs modulate the formation 

of the scar tissue. 

The most useful design optimizations for the developed neural probes with deployable electrodes 

will likely be to reduce the shank width. The shank width composes of a minimum width required 

for mechanical stability, the cumulative width of retracted springs, and the length of the needles. 

Vertical stiffeners underneath the shank [57] can reduce the width of the shank required for 

mechanical stiffness to probably tens of micrometers. Rearranging or redesigning the springs, for 
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example such that the whole shank behaves like a spring, will reduce their contribution to its width. 

If the needles are oriented along the length of the shank during implantation, only their width and 

not their length will contribute to the width of the shank. Once the shank is fully inserted, they 

could fold out and align perpendicular to the shank. Alternatively, similar to [97], the shank could 

be reinforced by a recoverable inserter, leaving only deployed electrodes and flexible electrical 

traces behind. The distance electrodes deploy does increase the width of the shank in most designs 

and needs to be optimized.  

Chronically implanted neural probes can suffer biological failure mechanisms, but also failure of 

the implanted materials. Parylene is inert, it does not dissolve inside the body and it is unlikely to 

break. Hence developing neural probes with deployable electrodes that consist of either a silicon 

core that is coated with Parylene, or solid Parylene, or having a detachable, indwelling Parylene 

component might reduce the frequency of material failures. 

After optimization and evaluation, neural probes with deploying electrodes should be translated 

into clinical/scientific applications. This could include changing the type of interface from 

electrodes to optical waveguides or light emitting diodes, or integrating the spring actuation into a 

shank of a probe developed for deep brain stimulation. This might be especially beneficial, since 

their large footprint might evoke an even larger encapsulation preventing successful recording. 
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APPENDICES 

A.1 Parylene cables 

The electrical signals recorded from electrodes on neural probes can be routed to a connector 

through flexible cables made from polymers [118, 119]. One motivation to use flexible cables 

instead rigid anchoring is to allow to probe shank to move more freely with the brain tissue. This 

was shown to decrease the brain tissue response [120]. 

For this thesis the general compatibility of the fabricated neural probes with deployable electrodes 

with tethering cables was demonstrated. To increase the yield of the neural probe fabrication on 

silicon wafers, the relatively large Parylene cables were fabricated in a separate process and then 

individually assembled to probes. 

Flexible polymer cables were fabricated by sandwiching metal interconnects between two 

Parylene layers. First, a 3 µm thick layer of Megaposit SPR-220 photoresist (MicroChem Corp., 

MA, USA) was spun on the wafer, serving as sacrificial release layer. The resist was flood-exposed 

and hard-baked to reduce outgassing. Then a 5 µm thick layer of Parylene is deposited using a 

PDS2035 (SCS, IN, USA) without adding any adhesion promoter. A layer of Cr/Au/Cr 

(300/3000/300 Å) was patterned using e-beam evaporation and lift-off. To facilitate the lift-off the 

photoresist was formed to have an undercut. This was done using a short TMAH dip after spin-

coating to create an inhibition layer at the surface [121]. A second layer of Parylene is deposited 
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(5 µm). The stack is then etched in RIE with oxygen plasma using ti/al (750/2000 Å) and 10 µm 

thick photoresist (SPR220) as etch mask. This was followed by an annealing step: The wafer was 

covered with a several mm thick glass plate and heated on a hot-plate to 115 °C for 30 min. After 

cooling and stripping the etch mask the cables were gently released by dissolving the photoresist 

in acetone. 

The cables were connected to the silicon probes using rivet bonding [115]. For the bonding process 

the probes (starch coating was done after this procedure) were temporarily glued to a silicon dice 

using photoresist. The cables then were manually aligned to bonding pads on the probes. It was of 

great help to apply a small drop of water between the cable and the dice. The mechanical and 

electrical connection was made by bonding gold bumps on bonding pads on the silicon probes 

through perforations in the Parylene cable. The pitch between adjacent bond pads was 150 µm, the 

area of the perforation in the Parylene cable was 40 µm². A ball bonder K&S4522 (Kulicke and 

Soffa, Singapore) was used. The cables were then connected in similar fashion to a printed circuit 

board (PCB). The connection between probe and cable was insulated with EPO_TEK 353ND 

epoxy glue (Epoxy Technology, MA, USA). The probes with cables were clamped on a bump 

consisting of clay. A small drop of epoxy glue was dispensed on the desired location and allowed 

to distribute. The glue wicked between cable and probe. Subsequently the assembly is cured on a 

hotplate. 

The resistance of the metal lines on the cables was measured to be around 100 Ohms, the bonding 

was high yield. The epoxy was able to withstand short time soaking in salt water. No long time 

soak tests were performed.  
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a) 

 

b) 

 

Figure 84: a) silicon probe after rivet-bonding to a Parylene cable. b) neural probe with springs 

bonded to a Parylene cable, connection insulated using epoxy glue. 
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A.2 Electrode impedance spectra 

Figure 85 through Figure 92 show the averaged (4 electrodes) impedance magnitude/phase spectra 

of electrodes on the shank and on needles, with and without plated PEDOT:pTS. Figure 93 through 

Figure 96 show the non-averaged impedances at 1 kHz, of probes with and without plated 

PEDOT:pTS. 
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Figure 85: Impedance magnitude spectrum of needle electrodes with PEDOT:pTS 

 

Figure 86: Impedance magnitude spectrum of shank electrodes with PEDOT:pTS 
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Figure 87: Impedance phase spectrum of needle electrodes with PEDOT:pTS 

 

Figure 88: Impedance phase spectrum of shank electrodes with PEDOT:pTS 
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Figure 89: Impedance magnitude spectrum of shank electrodes without PEDOT:pTS 

 

Figure 90: Impedance magnitude spectrum of shank electrodes without PEDOT:pTS 
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Figure 91: Impedance phase spectrum of needle electrodes without PEDOT:pTS 

 

Figure 92: Impedance phase spectrum of shank electrodes without PEDOT:pTS 
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Figure 93: Individual values of needle electrode impedances measured at 1 kHz (without PEDOT:pTS). 

 

Figure 94: Individual values of shank electrode impedances measured at 1 kHz (without PEDOT:pTS) 
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Figure 95: Individual values of needle electrode impedances measured at 1 kHz (with 

PEDOT:pTS). 

 

Figure 96: Individual values of shank electrode impedances measured at 1 kHz (with 

PEDOT:pTS). 
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A.3 Electrode deploying curves without averaging 

Figure 97 and Figure 98 show the measured deployed distances of starch coated springs in water 

heated to 37°C. These figures show the individual measurements for each trial, while the data 

shown in paragraph 3.6   shows their averaged value. 
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Figure 97: Starch-coated springs, iodized, deploying in water at 37 °C after air exposure at 

100 °C for 10 min. Four separate series are shown. 

 

 

Figure 98: Starch-coated springs, iodized, deploying in water at 37°C. Four separate series 

are shown. 
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