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The chelate constructs are able to form a short Cu-S(Met) bond at ~2.2 Å, which indicates that 
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Abstract 

 Structural and biophysical characterization on de novo designed three-helical bundles is 

presented. The structure of a designed construct was determined to establish the physical 

integrity of a peptide scaffold. Subsequently, spectroscopic, electrochemical and photophysical 

studies were employed to characterize designed redox-active copper sites.  

α3D is de novo designed peptide that preassembles into an antiparallel three-helix bundle 

fold. This scaffold was previously functionalized with a triscysteine site to produce α3DIV. An 

integral step in de novo protein design is the establishment of a well-defined scaffold, which is a 

fundamental characteristic of native proteins. The NMR solution structure of apo α3DIV was 

solved to demonstrate this characteristic and to determine the effects of incorporating a metal 

binding site (Cys18, Cys28, and Cys67) into the framework of α3D. The structure of α3DIV (at 

pH 7.0) comprised 1067 NOE restraints derived from multinuclear multidimensional NOESY, as 

well as 138 dihedral angles (ψ, φ and χ1). The backbone and heavy atoms of the 20 lowest 

energy structures have an RMSD from the mean structure of 0.79 (0.16) Å and 1.31 (0.15) Å, 

respectively, demonstrating a high quality structure. Overall, the structure of apo α3DIV reveals 

a distorted triscysteine metal binding site, which offers a model for native proteins with thiol-rich 

ligands that function in regulating toxic heavy metals, as well as future designed constructs.  

Recent work in the Pecoraro group produced derivatives of the α3D scaffold that served 

as excellent functional models of a native metalloregulatory and catalytic protein, with 

symmetric/same-ligand metal binding sites. Efforts to functionalize the α-helical fold of α3D 

with a redox-active site, as well as an asymmetric/mixed-ligand site had not been attempted. The 

asymmetric metal binding site of electron transfer proteins, cupredoxins, which are naturally 

observed in a β-barrel fold, was incorporated in the helical fold of α3D. The preassembled fold of 

α3D provides a more direct incorporation of mixed-ligand/asymmetric metal center, which has 
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been a challenge in current de novo designed scaffolds. The overall objective is to examine 

whether an electron transfer site can be achieved in and whether the physical properties 

(absorption band at 600 nm, copper-sulfur bond of 2.1 – 2.2 Å and reduction potential of 180 – 

800 mV vs. NHE) of a cupredoxin center can be recapitulated in a markedly unrelated fold.  

The asymmetric 2HisCys(Met) residues of cupredoxins were incorporated in α3D to 

generate three distinct designs designated core (α3D-CR1), chelate (α3D-CH3 and α3D-CH4) and 

chelate-core (α3D-ChC2) constructs. The core construct incorporates the 2HisCys residues on 

three separate strands (His18, Cys28 and His67, as well as Met72). The chelate derivatives 

possess an L−Xn−L (L= His or Cys, n = #nonligating residues) chelate motif at the end of helix 1 

(positions 18 and 21, as well His28 and Met72), while the chelate-core design contains a Cys14-

X3-His18 chelate motif (and His31) deeper within the three-helix bundle.  Cu(II) binding to the 

core and chelate constructs displayed intense absorption bands between 380-400 nm (~2000 M−1 

cm−1); whereas, the chelate-core construct showed two intense absorption bands at 401 (4429 

M−1 cm−1) and 499 (2020 M−1 cm−1). Despite not retaining the spectroscopic profile for the Cu(II) 

state, XAS analysis on the Cu(I) adducts recapitulated the reduced state of cupredoxin proteins. 

These Cu(I) complexes revealed a short Cu-S(Cys) bond at 2.16 – 2.23 Å, as well as Cu-N(His) 

bond distances of 1.94 – 1.98 Å. Overall, these results showed that the lack of rigidity at the 

designed metal binding sites cannot enforce the proper constraints to achieve the appropriate 

Cu(II) chromophore, however the Cu(I) environment was retained within the α-helical bundle of 

α3D. 

The redox activity of the designed constructs was tested using electrochemical and 

photophysical methods. The electrochemistry studies showed that the core, chelate and chelate-

core derivatives possess reduction potentials of +362 – +462 mV (vs. NHE), which are in the 

range observed for native cupredoxins.  This result demonstrates that a copper-based redox 

center with a high positive potential can be achieved within an α-helical bundle protein. 

Moreover, photophysical studies, including the transient spectra and kinetic trace of the core and 

chelate constructs, revealed intermolecular ET activity with a photo-oxidant, 

ruthenium(III)trisbipyridine. The first-order and bimolecular rate constants of these constructs 

were determined to be 105 s−1 and 108 s−1 M−1, respectively.  
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 Overall, this work illustrates that the redox function of a native copper center in a β-

barrel fold can be achieved in the α-helical framework of α3D. Ultimately, this work provides a 

foundation for investigating long-range electron transfer reaction using de novo protein design.  
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Chapter I. Protein Design: from design to function 

Proteins acquire metal ions such as iron, copper or zinc to perform essential functions in 

biology, such as catalytic reactions, signal transduction, transport and storage of small molecules 

and redox chemistry.1 Metalloproteins play a central role in various biological system including 

photosynthesis and respiration, two systems that sustain all life on earth. Recent initiatives by the 

scientific community to find alternatives to carbon-based fuels have turned to the bioenergetics 

processes in photosynthesis for inspiration to create a “greener planet.” Before efficient artificial 

photosynthetic systems can be realized, fundamental research on the individual metalloproteins 

and metalloenzymes in this multifaceted system must be examined. Ultimately, the knowledge 

gained from this research will bring us one step closer to fully understanding and harvesting the 

rewards of many biological systems. 

 

Protein design is a biologically relevant approach used to study the concept of structure-

function relationship in native proteins.2-7 This emerging approach has two central design 

strategies: the first is protein redesign2, 5 and the second is de novo design.3, 5-7 Protein redesign 

involves modifying or incorporating a novel function in an existing native protein scaffold. 

Existing native scaffolds offer a thermodynamically stable frame that is amenable to mutations, 

deletions and insertions. Further, this stable scaffold allows for facile spectroscopic and X-ray 

crystallographic characterization. The protein redesign process involves a close analysis of a 

solved protein structure. Followed by specific active site mutations yielding a desired construct- 

that hopefully can function. In a step-wise manner one can interchange functions between 

proteins with similar cofactors and ligand environment to discover the important amino acid 

residues (in the primary and secondary coordination sphere) and forces (electrostatic or 

hydrophobic) allowing for proper protein function. This approach also allows one to investigate 
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the evolutionary hierarchy of proteins that have similar functions but distinct structures (and vice 

versa). 

 

The second approach, which is unquestionably the most challenging strategy, employs 

first principles to design peptide or protein scaffolds from scratch with an amino acid sequence 

not found in nature. It allows one to tailor-design an original sequence that forms the proper 

hydrophobic, electrostatic and hydrogen bonding interactions that will manifest into a well-

defined peptide scaffold, an important characteristic of native proteins. De novo protein design 

offers a novel approach in studying the mechanisms behind protein folding and exploring the 

active sites of native proteins in a simplified or unrelated fold. The knowledge gained from this 

approach could ultimately provide insight into the fundamental processes of biological systems, 

thus allowing the possibility to produce new metalloproteins with higher stability and superior 

efficiency than native proteins for many biotechnological applications. Protein design strategies 

have been employed for a wide range of metalloproteins.  

 

The Pecoraro group is actively involved in the de novo protein design of peptide scaffolds 

to understand the metal active sites of metalloenzymes (Figure I-1A), as well as metalloproteins 

involved in electron transfer (Figure I-1B),8 metal regulated gene expression1, 9 and 

metallochaperones.1 These later systems are a subset of metalloproteins used by microorganisms 

to control the levels of essential transition metal ions (Fe, Cu, Zn and Mn), decrease levels of 

toxic metals (Hg, As, Pb and Cd) within their cells and to ensure proper trafficking and insertion 

of metals into enzymes or secretory vesicles. The first half of this chapter will focus on a de novo 

designed scaffold α3D,10 a single polypeptide chain that folds into a three-helix bundle (THB) 

The latter half will transition into a description and protein design of copper electron transfer 

proteins, cupredoxins. Overall, this chapter is comprised of 7 sections. In section 1, I will briefly 

cover the work and progress with three stranded coiled-coil (3SCC) constructs. It will then be 

followed with a discussion of the achievement of DeGrado and coworkers in producing a THB 

scaffold. In section 2, I will discuss the Pecoraro and co-workers’ first approach in 

functionalizing the α3D scaffold through the incorporation of symmetric metal binding sites to 
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yield peptides α3DIV11 and α3DH3.12 Section 2 will also briefly introduce my work in 

incorporating the asymmetric metal binding site of native cupredoxins within the α3D scaffold. 

This work will be fully described in Chapter 3.  Section 4 of this chapter will introduce and 

discuss the physical properties of cupredoxin proteins. The following two sections, 5 and 6, will 

cover my attempts in examining cupredoxin centers using protein design. For the sake of brevity, 

only those systems that have been developed in the Pecoraro group and other research groups to 

investigate cupredoxin proteins will be discussed in this introduction. Readers more generally 

interested in this topic are referred to recent reviews for more exhaustive coverage of the topic.2, 

5, 6 

Figure I-1. A) Crystal structure of a zinc metalloenzyme human carbonic anhydrase II (PDB code 
3KS3).13 B) Crystal structure of a copper electron-transfer metalloprotein plastocyanin (PDB code 
1PLC)14, which is part of the cupredoxin family. 

 

1. Development of de novo designed scaffolds 

1.1. Three-stranded coiled-coil constructs  

The most common de novo designed peptides use a heptad repeat sequence (abcdefg) that self-

assemble into a parallel 3SCC tertiary structure (Figure I-2A).15-17 Much of our effort and success 

in the de novo design field has been carried out using the 3SCC scaffold of TRI,18-33 Grand (Gr)26, 

27, 34, 35 and BABY20, 34, 36 peptides, as well as in CoilSer (CS),23, 29, 33, 34, 37-39 which serves a 

A B 
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crystallographic analogue for TRI (Table I-1). A metal binding site is generated by incorporating 

a cysteine or penicillamine residue at the “a” (Figure I-2B) or “d” (Figure I-2C) position in a 

3SCC scaffold.38 It was discovered that the subtle difference between the “a” and “d” positions 

can produce distinctive outcomes in heavy metal binding affinity and geometry, which can be 

attributed to the preorganization of the sulfur ligands prior to metal binding.16, 19 Overall, a deeper 

understanding in the metallobiochemistry of heavy metals was gained, including as As(III),21, 33, 37 

Cd(II),16, 21-24  Hg(II)18-21, 23, 25, 28, 29, 36 and Pb(II)24, 33, 34, 40 in a tristhiolate site. This work 

demonstrated how to control the coordination number and geometry of Cd(II)16, 26, 27, 35 and 

Hg(II),20, 21, 25, 28 determined the affinity for Cd(II)24 and Pb(II)24, 36 based on site preferences for 

“a” or “d” sites of  the Cys residues and elucidated the effects of the core aliphatic groups in the 

second coordination sphere on the molecular recognition of Cd(II)16, 26, 27 and Pb(II).34 This work 

on heavy metal chemistry in 3SCC is a culmination of over 10 years of research and has given us 

a solid foundation to model catalytic sites of natural metalloenzymes.  

 

 
Figure I-2. X-ray crystal structure of de novo desgined peptides. A) Crystal structure of 
[Hg(II)]S[Zn(II)(H2O/OH-)]N(CSL9PenL23H)3

n+ (PDB code 3PBJ),29, 31 which is used as cystrallographic 
model  for [Hg(II)]S[Zn(II)(H2O/OH-)]N(TRIL9CL23H)3

n+ CA model. This bimetallic 3SCC construct 
contains a Zn(II) and Hg(II) atom bound to a His-N3 and Pen-S3 site, respectively. B) Symmetric “a” site 
Cys residues in CSL9C (PDB code 3LJM)38 contain Sγ ligands that orient inside the core. C) Symmetric 
“d” site Cys residues in CSL19C (PDB code 2X6P)38 include Sγ ligands that orient towards the 
interhelical interface forming a larger metal binding site than Cys “a” sites. 

B 
3.3 Å!

3.3 Å!
3.4 Å!

C!
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3.4 Å!

A 
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Table I-1. Amino acid sequence of de novo designed 3SCC analogues.  
Peptide             Sequence 
      abcdefg abcdefg abcdefg abcdefg abcdefg 
CoilSer Ac-E WEALEKK LAALESK LQALEKK LEALEHG –NH2 
Baby Ac-G LKALEEK LKALEEK LKALEEK G-NH2 
TRI Ac-G LKALEEK LKALEEK LKALEEK LKALEEK G-NH2 
Grand Ac-G LKALEEK LKALEEK LKALEEK LKALEEK LKALEEK G-NH2 

Leucine residues at the “a” or “d” positions are mutated to metal binding residues such as cysteine, 
penicillamine or histidine. Mutation of Leu residues to Cys and His at the 9th and 23rd, respectively, is 
designated as TRIL9CL23H. 

 

Using the 3SCC scaffold, our work has progressed into modeling the symmetric tris(histidine) 

metal binding site found in carbonic anhydrase (CA)29, 31 and nitrite reductase (CuNiR).30, 32 The 

[Hg(II)]S[Zn(II)(H2O/OH-)]N(TRIL9CL23H)3
n+ CA model (Figure I-2A) of Zastrow et. al. 

contains a structural Hg(II)S3 site towards the N-terminal end of the TRI fold (Figure I-3A) and a 

Zn(II)N3O catalytic site at the C-terminal end (Figure I-3B).29 This construct is an artificial 

metalloenzyme that catalyzes the hydration of CO2 with an efficiency faster than any other small 

molecule model and is within ~500-fold of CAII, the most active isoform of carbonic anhydrase. 

Further, the CuNiR models of Tegoni et. al.30 and Yu et. al.32 is capable of multiple turnover 

catalysis for the one electron reduction of nitrite using ascorbate, and is the first mononuclear 

redox enzyme that was isolated via de novo protein design. Nevertheless, the metal binding sites 

of native proteins, such as the ET site in curpredoxins, are often asymmetric and contain a 

mixed-ligand (O, N or S) environment (Figure I-3C).14 Further, the coordination environment 

contains secondary residues that participate in hydrogen bonding networks (Figure I-3D) like in 

CA13, 41 or electrostatic interactions, which are essential in the catalytic or redox activity of many 

metalloproteins. Even though a variety of metal centers were successfully modeled and 

performed the desired catalytic reactions in the 3SCC scaffolds, its self-assembling nature makes 

it challenging to obtain asymmetric constructs. Therefore, to achieve an asymmetric metal 

binding site, the work in the Pecoraro group was expanded to acquire, and then later developed, a 

single polypeptide sequence that folds into a preformed three-helix bundle (THB) fold.  
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Figure I-3. Enlargement of metal binding sites in de novo designed and native proteins. A) Top-down 
view of the trigonal Hg(II)S3 site in [Hg(II)SZn(II)N(TRIL9CL23H)3] that serves as a structural motif in 
the scaffold.29 B) Top-down view of the Zn(II)N3O site in [Hg(II)SZn(II)N(TRIL9CL23H)3] that is capable 
of CA activity.29 C) 2His, Cys and Met copper binding site in plastocyanin, illustrating an asymmetric 
metal center.14 D) Zinc metal binding site in CAII, which contains a tris(histidine) site and hydrogen 
bonding residues such as Thr199 that are essential in catalysis.13, 41 Reprinted with permission from ref 5. 
Copyright 2014 American Chemical Society. 

 

1.2. From three stranded coiled-coil to a three-helix bundle fold  

The THB fold is used as a molecular recognition domain found in many biological systems 

including immunoglobulin G, DNA binding proteins and various enzymes. Inspired by its 

universal presence and diverse function in nature, DeGrado and coworkers aimed to create a de 

novo designed antiparallel THB scaffold. Bryson et. al. used the sequence of CS as foundation 

because its X-ray crystal structure42 was observed to pack in an antiparallel manner, where the 

helices orient in up-up-down manner, instead of a predicted parallel style.43 Using a hierarchical 

approach, α3D10 was the final product and isolated through a step-wise process (3 design rounds) 

of modifying helix-capping interactions that dictate the topology of the bundle, electrostatic 

interactions that orient the desired helix-helix pairing to avoid alternative states and hydrophobic 

interactions to achieve a well-packed core. 

 

In the first round, Byrson et. al. shortened the sequence of CS by one heptad repeat to yield 

three 21-residue helices in α3A (Table I-2).43 To achieve an antiparallel strand, Glu and Lys 

His94!

D 

His96!

His119!

Thr199!

C 

Met92!

His87!

Cys84!

His37!

A B 
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residues in helix 2 at the “e” and “g” positions were reversed from the original positions in CS.  

Next, two simple loops of Gly-Asn and Pro-Gly-Asn were incorporated between helix 1 and 2 

and helix 2 and 3, respectively, to serve as hairpin loops. This motif is essential for directing the 

topology of the bundle, which can adopt clockwise or a counterclockwise orientation. α3A was 

observed to form monomer/dimer/trimer species in solution, indicating that the hairpin loops 

were not successful in stabilizing intermolecular interactions. Round two designs were a direct 

response to these issues.  

 

Sequence α3B was designed to contain stronger helix stop signals to accurately direct the 

formation and conformation of the loops. This was achieved by lengthening residues in the loops 

and adding Asn residues as a helix stop signal in the form of helix capping boxes (Asn-Pro-Asp-

Glu between helix 1 and 2 and Asn-Pro-Glu between helix 2 and 3). α3B is monomeric in 

solution but still retains some characteristics of a molten globule, an undefined folded state with 

several energetically equal conformations.  

 

Lastly, the final round of design focused on repacking the hydrophobic core, reordering the 

residues involved in interhelical electrostatic interactions and further enhancing helix-capping 

interactions to prevent nonnative characteristics in α3B. First, an Asn was replaced with a Ser as 

the helix-capping residue between helix 1 and 2.  Next, the positions of the Lys and Glu residues 

were redesigned to force a counterclockwise topology in the bundle (Figure I-4). The clockwise 

form was destabilized by careful placement of charged residues at the “e” and “g” positions. In 

helix 1, only positively (+) residues were placed both at the “e” and “g” positions; while in helix 

3, negatively (-) charged residues were assigned in those corresponding sites.  For helix 2, the 

“e” sites were given only - charged residues, whereas the “g” sites received + charged residues. 

Furthermore, some Lys residues were changed to Arg to reduce redundancy in the sequence and 

provide added stability gained from an Arg-Glu salt-bridge interaction. Lastly, using a genetic 

repacking algorithm, the hydrophobic residues at the “a” and “d” positions were altered to 

include various nonpolar residues such Ala, Val, Ile, Leu and Phe residues. The native-like 

property of α3C was characterized in tandem with α3B, and it was demonstrated to exhibit 

thermodynamic and spectroscopy properties of a well-defined and folded protein.   



 8 

Table I-2. Amino acid sequence of THB analogues. 

Peptide              Sequence Design Purpose/Function 
      abcdefg abcdefg abcdef loop  
α3A     EWEALEKK LNALESK LQALEK G 

    NWEALKKE LNALKSE LQALKK PG 
    EWEALEKK LNALESK LQALEHG 

Iteration of CS 

 
α3B     EWEALEKK LAALESK LQALEK GG 

 NPDEWAALKKE LAALKSE LQALK  GKG 
  NPEWEALEKK LAALESK LQALEHG 

Iteration of α3A 

 
α3C     SWAEFKER LAAIKSR LQAL   GG 

 SEAELAAFEKE IAAFESE LQAYK  GKG 
  NPEVEALRKE AAAIRSE LQAYRHN 

Iteration of α3B 

 
α3D   MGSWAEFKQR LAAIKTR LQAL   GGS                                                               

  EAELAAFEKE IAAFESE LQAY   KGKG   
  NPEVEALRKE AAAIRDE LQAYRHN 

Molecular recognition domain 
 

α3DIV   MGSWAEFKQR LAAIKTR CQAL   GGS                                                               
  EAECAAFEKE IAAFESE LQAY   KGKG   
  NPEVEALRKE AAAIRDE CQAYRHN 

Heavy metal peptide 
Cd(II), Hg(II) and Pb(II) 

 
α3DH3   MGSWAEFKQR LAAIKTR HQAL   GGS                                                               

  EAEHAAFEKE IAAFESE LQAY   KGKG   
  NPEVEALRKE AAAIRDE HQAYRVNGSGA 

Carbonic anhydrase model 

 
The sequences are prepared in heptads. Residues that are underlined and bolded were changed from 

previous design. The α3A was altered from the CS sequence.   
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Figure I-4. A) Carton scheme representing interhelical electrostatic interactions between α-helices.43 The 
circles symbolize α-helices and illustrated from either the N- or C- terminal end. The numbers correspond 
to their sequential positions in the THB. The “−“ signs denote negatively charged Glu residues in either 
the “e” or “g” positions, while “+” signs indicate positively charged Lys and Arg residues at the same 
positions. Solid and dashed lines represent loops that connect helices. a) CS was designed to form a 
parallel dimer, instead it was observed to pack into an antiparallel trimer with unfavorable interactions 
with like charges. B) In α3A and α3B, the arrangement of the interhelical electrostatic interactions allow 
for both topologies to be possible. C) The clockwise form was destabilized by careful placement of 
charged residues at the “e” and “g” positions. In helix 1, only positively (+) residues were placed both at 
the “e” and “g” positions; while in helix 3, negatively (-) charged residues were assigned in those 
corresponding sites.  For helix 2, the “e” sites were given only - charged residues, whereas the “g” sites 
received + charged residues. Reprinted with permission from ref 43. Copyright 1998 The Protein Society. 

 

1.3. Solution structure of α3D, the final iteration in the THB design 

DeGrado and coworkers work had a significant impact on the field of de novo protein design 

through the design, preparation and characterization of α3D, a 73-residue peptide with a single 

conformation in solution and a unique native-like fold.10 Its well-packed core and single topology 

led to a solution structure, at the time this was a very challenging feat to achieve (Figure I-5). In 

contrast to its predecessors (α3A, α3B and α3C), which were chemically synthesized, Walsh et. 

al. expressed α3D in E. coli. Met1, Gly2, Gln9, Thr16, and Asp65 were changed in α3C to 

generate the sequence of α3D (Table I-2). Thermodynamic studies (chemical and thermal 

denaturation) showed a scaffold that is fully folded at room temperature (pH 3 -7) with a melting 

A 
CoilSer!

B 
α3A, α3B!

C 
α3C!
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temperature (Tm) in the range of 80 – 95 °C, heat capacity (ΔCp) of 10 - 12 cal mol−1 K−1 per 

residue, Gibbs free energy of unfolding (ΔGU) of 5.1 kcal mol−1, and an enthalpy (ΔHDSC) value 

of -44 kcal mol−1.  

 

 
Figure I-5. Solution structure of α3D (PDB code 2A3D) demonstrating a THB fold.10 

 

The solution structure of α3D was obtained from several three-dimensional (triple resonance, 

TOCSY and NOESY) NMR experiments at pH 5.5. About 1260 experimental restraints were 

used in solving the structure, which comprises of 1191 distances and 69 dihedral angles (φ and 

χ1). The ensemble of 13 structures demonstrate a high quality structure with RMSD values of 

1.06, 0.75 and 1.61 Å for the backbone atoms (residues 1-73, N, Cα, C), backbone atoms in the 

structure regions (residues 4-21, 24-45, 51-70, N, Cα, C) and heavy atoms (residues 1-73), 

respectively. The helical bundle adopts a counterclockwise topology, which is confirmed by the 

interhelical tilt angles of the lowest energy structure (Ω1,2 = -165°, Ω1,3 = 17° and Ω2,3  = -171°). 

Further, the χ1 torsional angles of 14 core residues assumed a single conformation in the 

ensemble demonstrating a well-packed apolar core. Ultimately, the success of α3D demonstrates 

that the de novo design strategy could now serve as a practical method in constructing complex 

and multistranded scaffolds from a single sequence.  

 

Furthermore, additional solution studies revealed that the backbone 15N and 13C atoms are well-

ordered with restrictive motion on the pico to nanosecond scale,44 the relative hydration of the 

backbone amides45 and the folding time scale of α3D to be in the 1 – 5 μs range.46 In addition, 
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mutation studies showed that replacing Ala60 to a Leu or an Ile resulted in 1.5 kcal mol−1 net 

gain in stability.47  

 

2. Functionalizing the α3D framework 

2.1. Construction and structure of a symmetric heavy metal binding peptide  

α3D offers a novel opportunity to add function to a well-defined de novo designed scaffold 

(Figure I-6A). The sequence of α3D was redesigned by introducing a tris(cysteine) motif to 

emulate the type of MS3 environments that have been proposed for the metalloregulatory 

proteins MerR,48-50 ArsR/SmtB51 and CadC/CmtR51-53 (an MS4 or MS3O environment). At the C-

terminal end of the bundle, three Leu residues at positions 18, 28 and 67 are inside a “hydrobic 

box” which is formed by Ile14, Leu21, Phe31, Ile63 and Tyr70. Chakraborty et. al. 

functionalized α3D by mutating the “a” site Leu residues to Cys (Leu18Cys, Leu28Cys and 

Leu67Cys) to produce α3DIV (Figure I-6B).11 This forms a metal binding site with two “a” Sγ 

ligands and one pseudo “a” site at the 28th position in the antiparallel strand.  

 

Figure I-6. A) Schematic representation of designing a metal center into the α3D scaffold. B) Top-down 
view of the tris(cysteine) site in α3DIV modeled from the α3D structure. C) Top-down view of the 
tris(histidine) site in α3DH3 modeled from the α3D structure. 

 

2.2. Characterizing heavy metal binding properties of α3DIV 

Chakraborty et. al. determined that apo α3DIV is well-folded in solution between pH 6-9 via 

circular dichroism studies and has a chemically-induced ΔGU of 2.5 kcal mol−1.11 This ΔGU is 

Leu to X!
Mn+!

Mn+ = heavy metals Cd(II), Hg(II), Pb(II)!
!   transition metals Fe(III/II), Cu(II/I), Co(II), Zn(II)!
!!

X = Cys, His, or Glu!

A B! C!
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half of the reported value for α3D, exhibiting a lost in stability after removing packing Leu 

residues. α3DIV stoichiometrically binds Hg(II), Pb(II) and Cd(II) in a pH dependent manner. 

The tris(cysteine) site forms a linear [Hg(II)S2(SH)] below pH 6.0 and a trigonal  [Hg(II)S3]− 

complex above pH 8.5; and a mixture of both species were observed under intermediate pH 

conditions (~pH 7.5). Above pH 5.0, Pb(II) and Cd(II) bind α3DIV to generate a trigonal 

pyramidal [Pb(II)S3]− and pseudotetrahedral [Cd(II)S3(N/O)]– geometry, respectively. These 

coordination modes were determined using various spectroscopic methods and compared to the 

physical properties of 3SCC analogues (Table I-3). The absorption features of all three 

metallated species were characterized via UV/Vis spectroscopy. 113Cd and 199Hg NMR and 111mCd 

and 199mHg Perturbed Angular Correlation Spectroscopy (PAC) were obtained for Cd(II)− and 

Hg(II)−α3DIV to confirm their binding modes in solution. These NMR54, 55 techniques allow us 

to study the coordination environment at the millisecond timescale, while the PAC56 techniques 

can further confirm and elucidate speciation behavior at the micro to nanosecond timescale. The 

chemical shift environment of 113Cd− and 199Hg−NMR are especially sensitive to the 

coordination environment. The combination of metal-NMR and PAC provides a powerful tool in 

identifying the primary ligand environment, as well additional coordinating ligands, such as 

solvent molecules or residues that are several layers removed. Furthermore, the development of 
207Pb-NMR34, 40 was significantly advanced using the TRI and CS peptides by proving how 

extremely sensitive this nucleus is to subtle changes in the apolar layer above the Pb(II)S3 

complex, with a chemical shift range of 5800 – 5500 ppm.  

 

 

 

 

 

 

 

 

 



 13 

Table I-3. Physical parameters of metallated α3DIV compared to 3SCC constructs. 

Complex λ [nm] 
(Δε [M−1 cm−1]) 

δ (ppm) 
113Cd  199Hg   207Pb 

ω0 (rad/ns), η         νQ(GHz), η       
111mCd PAC            199mHg PAC  

Cd(α3DIV) 232 (18 200) 
583 
595 
 

0.350(6), 0.00(1) 
0.268(4), 0.18(7) 
0.170(2), 0.50(2) 

Hg(α3DIV) 
3-coordinate 
 
2-coordinate 

 
247 (12 500), 265 (8400), 
295 (3900), 240 (850) 
240 (850) 

           
           −244 
 
           −938 

                               
                              1.11(2), 0.40(3) 
 
                              1.48(2), 0.15(5) 

Pb(α3DIV) 
 

236 (18 000), 260 (14 400), 
278 (9100), 346 (3150) 

  

Cd(TRIL12C)3 
 
Cd(TRIL16C)3 
 

231 (20 600) 
 
232 (22 600) 

619 
 
625 

0.233(8), 0.25(12) 
0.468(9), 0.12(10) 
0.337(2), 0.23(2) 
0.438(4), 0.20(3) 

Hg(TRIL9C)3 
Hg(TRIL9C)2 

            −185 
           −908 

1.164(5), 0.25(2) 
1.558(7), 0.23(1) 

Hg(TRIL12C)3 230 (21 300)            −316  
Hg(TRIL16C)3 

Hg(TRIL16C)2 

247 (16 800), 265 (10 600), 
295 (5000) 
240 (2700) 

           −179 
 
           −834 

 

Pb(TRIL12C)3 
238 (17 000), 278 (12 300), 
343 (3700)                       5814a  

Pb(TRIL16C)3 
236 (18 500), 260 (16 500), 
278 (14 500), 346 (3400)                       5612b  

UV/Vis, metal (113Cd, 199Hg and 207Pb) NMR and (111mCd and 199mHg). L9C and L16C are “a” site 
constructs, while L12C are “d” sites. a 207Pb chemical shift for Pb(CSL12C)3.b 207Pb chemical shift for 
Pb(CSL16C)3. 

 

The ligand-to-metal charge transfer (LMCT) bands of metallated α3DIV11 in the UV/Vis 

studies exhibited metal-thiolate transitions that are comparable to the reported values for its TRI 

counterparts (Table I-3). The Cd(II)−α3DIV species has a λmax at 232 nm (18,200 M−1 cm−1) and 

Pb(II)−α3DIV exhibits four absorption bands with a λmax at 236 nm (18,000 M−1 cm−1) and a 

characteristic band at 346 nm (3150 M−1 cm−1). The trigonal complex that forms in Hg(II)-α3DIV 

demonstrates three bands with a λmax at 247 nm (12,500 M−1 cm−1), while the linear species 

contains one λmax at 240 nm (850 M−1 cm−1). From further UV/Vis work, the [Pb(II)S3]− complex 

was determined to have a lower limit binding constant of 2.0 x 107 M−1, while the 

[Cd(II)S3(N/O)]– complex has a lower limit value of  3.1 x 107 M−1. 

 

The linear complex of 199Hg(II)-α3DIV has a chemical shift of −938 ppm, whereas the trigonal 

form experiences a downfield shift to −244 ppm. The 199Hg-NMR spectrum at an intermediate 
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pH (7.5) contains both the linear and trigonal planar species. The 199mHg−α3DIV spectra from the 

PAC analysis confirm this pH dependent speciation behavior (Figure I-7). The PAC parameter 

νQ was determined to be 1.48(2) and 1.11(2) GHz for the linear and trigonal complex, 

respectively, which matches well with the reported νQ values for 2 and 3 coordinate Hg(II) in 

3SCC constructs.25 These νQ values were also observed at pH 7.5, demonstrating the presence of 

both linear and trigonal planar species. In hindsight, these results show a peptide scaffold that 

can finely control the coordination environment of Hg(II) ions. Additionally, Chakraborty et. al. 

observed that the addition of 2 equivalents of Hg(II) induced the formation of a dimer species, 

where Hg(II) atoms bridge two peptides through a linear complex.57 This dimer species was 

confirmed with both 199Hg(II)−NMR and 199mHg(II)−PAC. 

 

 
Figure I-7. Schematic representation of the pH and stoichiometric dependent behavior of Hg(II) species 
in α3DIV.11, 57 

 

The 113Cd-NMR spectrum of 113Cd-α3DIV shows overlapping resonance peaks at 583 and 595 

ppm. Based on these chemical shift positions, this result indicates the presence of two 4 

coordinate Cd(II) species. 111mCd-PAC was again collected to supplement the 113Cd-NMR result, 

but in this case, it was used to define the two species observed in the NMR time scale. The 
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111mCd-PAC showed three nuclear quadrupole interactions at 0.35, 0.27 and 0.17 rad ns−1. The 

peaks at 0.35 and 0.27 rad ns−1 agree well with a CdS3O complex with two conformations, endo 

and exo. The frequency value at 0.17 rad ns−1 fitted well with CdS3N species, where the N ligand 

was determined to originate from the imidazole ring of His72. Overall, not only did the 

combination of metal−NMR and PAC provide a way to accurately characterize our de novo 

designed peptides, it also gives powerful insights into how toxic heavy metals may interact with 

native proteins.  

 

2.3. Constructing a symmetric metalloenzyme site in α3D 

Our work with α3D was further expanded to incorporate a tris(histidine) metal binding site 

reminiscent of carbonic anhydrase (Figure I-6C). This metalloenzyme plays a vital role in 

respiration, vision, cancer metathesis, regulation of acid-base equilibria and other processes in 

animals, plants and bacteria. Human carbonic anhydrase II is one the most efficient enzymes 

(approaching the diffusion limit) catalyzing the reversible interconversion between CO2 and 

HCO3
–.58 Even though the mechanism, structure and inhibition have been previously studied, de 

novo protein design still offers a novel approach to study and replicate an important function of a 

native metalloenzyme in a simplified peptide system. A carbonic anhydrase (CA) model was 

previously demonstrated in a bimetallic 3SCC construct [Hg(II)]S[Zn(II)(H2O/OH-

)]N(TRIL9CL23H)3
n+ and Zastrow et. al. reported this model to be within 500-fold of the fastest 

isozyme (CAII), which is the fastest CA-model to date (Figure I-2A).29, 31 Nevertheless, CAII 

contains residues that participate in hydrogen bonding networks and the self-associating nature 

of our 3SCC constructs limits its use in preparing asymmetric sites. Thus, the zinc catalytic site 

of CA was modeled into α3D to recapitulate CA activity.  Now that this was established, future 

work will focus on adding hydrogen bonding residues in the second coordination sphere of the 

Zn(II) complex in CA designs of α3D. 

 

 Cangelosi et. al. incorporated a tris(histidine) site in  α3D to yield α3DH3 (Figure I-6C), a de 

novo designed metalloenzyme model that exhibited CA activity.12 The sequence of α3DH3 (Table 

I-2) was expanded by four residues (77 in α3DH3), which led to a peptide with increased yields 

during expression from ~100 to 230 mg/L. His residues were substituted at positions 18, 28 and 
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67, while a His72Val mutation to eliminate a competing ligand was completed. At pH 9.0, the 

apo form folds well in solution (82% folded) according to the 208 and 222 nm bands that were 

observed in the CD spectrum and has a chemically induced ΔGU of 3.1 kcal mol−1. The Zn(II)-

α3DH3 complex was characterized using UV/Vis and X-ray absorption spectroscopies, while its 

CA activity was determined with Khalifah’s stopped-flow indicator technique. 59 

 

Using a UV/Vis Zincon colorimetric assay,60 the apparent Zn(II) binding constant to α3DH3 

was determined to be 150 ± 40 nM at pH 7.5 and strengthens to 59 ± 9 nM at pH 9.0. When 

compared to CA, these affinity values are only two orders of magnitude weaker than the recent 

value determined for CAII (0.45 nM)58 and stronger than the [Hg(II)]S[Zn(II)(H2O/OH-

)]N(TRIL9CL23H)3
n+ (0.8 ± 0.1 μM at pH 7.5 and 0.22 ± 0.06 μM at pH 9.0)31 CA model. From 

extended X-ray absorption fine structure spectroscopy, the Zn(II)-α3DH3 coordination 

environment (at pH 9.0) fitted well to a site that contains 1 oxygen (from an exogenous H2O or 

OH molecule) and 3 nitrogens from each His residue bound to a Zn(II) atom at 1.90 and 1.99 Å, 

which matches well with the Zn complex in CAII with Zn-N/O of 1.98 Å (pH 7.0).58  

 

To demonstrate the success of α3DH3 as a metalloenzyme, Cangelosi et. al. performed a 

stopped-flow CO2 hydration assay using Khalifah’s indicator technique. The maximal catalytic 

efficiency (kcat/KM), which was derived from the kcat/KM values for pH 8-9.5, and kinetic pKa for 

the deprotonation of Zn(II)-bound water to yield the active [Zn(II)N3O]1+ hydroxide complex 

were worked out to be 6.9 x 104 L mol−1 s−1 and 9.4, respectively. When compared to two small 

molecule models Zn(II)(tris(4,5-di-n-propyl-2-imidazolyl)-phosphine)61 and Zn(II)nitrilotris(2-

benzimidazolylmethyl-6-sulfonate)62 that both have a Zn(II)N3O complex and show CA activity, 

Zn(II)-α3DH3 significantly outperformed these models exhibiting a second-order rate constant 

(k2) that is 14-fold higher. The CO2 hydration efficiency of Zn(II)-α3DH3 is 2.6 fold slower than 

its 3SCC counterpart,29 1400-fold less efficient than CAII63 but only 11-fold slower than CAIII.64 

The decrease in the catalytic activity as compared to our 3SCC CA model could be as a result of 

a weaker dipole, less-symmetric environment for the imidazole rings and difference in the 

electrostatics at the metal binding site in the antiparallel bundle of α3DH3. Furthermore, a 
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product inhibition assay was performed on Zn(II)-α3DH3 using acetate since it serves a more 

probable mimic of bicarbonate. At pH 8.5, the first-order rate constant (kcat) experienced a 

modest decrease from 82 ± 6 to 66 ± 4 s−1. This inhibition result indicates no significant loss in 

catalytic activity and illustrates a CA model capable of preventing product inhibition, which is a 

major problem in small molecule models of enzymes. Overall, Zn(II)-α3DH3 exhibits a de novo 

designed model that is successful in recapitulating the primary active site and the function of 

carbonic anhydrase in a simplified antiparallel THB scaffold, a metalloenzyme that is found in a 

twisted β-sheet fold in nature.  

 

2.4. Introduction to the design of a copper electron transfer site in α3D 

Electron transfer (ET) is the simplest chemical transformation, involving the transfer of 

electrons from one molecule to another.8, 65-78 This reaction is an essential step in numerous 

biological processes: from collagen synthesis, the immune response and the nitrogen cycle to two 

fundamental bioenergetics processes that sustain life on earth, aerobic respiration and 

photosynthesis.79-82 The latter two processes are complementary, that is photosynthetic organisms 

release oxygen (O2) gas that is then consumed by aerobic bacteria and animals. In turn, the final 

products of aerobic respiration (CO2 and H2O) are used by photosynthetic organisms. This 

continues the global cycle of vital elements C, H and O. Furthermore, electron transfer centers 

are central components in multifaceted electron transport chains responsible for energy 

production and serve as an intramolecular electron source in enzymatic reactions. The reactions 

involve the chemical transformation of a substrate bound to the catalytic site, often a 

metalloprotein (e.g., biosynthesis of DNA catalyzed by ribonucleotide reductase and 

monoxygenase reactions in drug activation by cytochrome P-450s).  

 

Cupredoxins or Type 1 copper proteins (CuT1) are biological electron transfer agents isolated 

from Bacteria, Archaea and Eukarya. These copper centers were discovered to function in 

bioenergetic electron transport chains (e.g. photosynthesis) as a freely diffusible electron carrier 

(Figure I-8A) or membrane-bound via a N-terminal lipid tether or C-terminal 

glycosylphosphatidylinositol (GPI) anchor.83 Further, they take part in the chemical reactions of 

larger proteins  (Figure I-8B), where the copper center provides an electron sink to the catalytic 
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site (e.g. copper nitrite reductase and laccase).84-86 CuT1 proteins have been extensively studied 

to understand their fundamental function in nature.87 The copper ion is coordinated to a well-

defined and pre-organized asymmetric metal binding site that is encapsulated by a β-barrel fold. 

It contains two histidines, one cysteine and one or two more weakly bound residues to form a 3-5 

coordinate copper complex.  The preassembled α3D offers a viable framework in achieving an 

asymmetric cupredoxin site. Now knowing that cysteine ligands in α3DIV and bulky His 

residues in α3DH3 can be accommodated by this framework, I designed several CuT1 constructs 

to investigate if the properties and function of an electron transfer site that is naturally found in 

β-barrel fold can be achieved in an unrelated α-helical fold. Ultimately, these designed 

constructs will provide a novel approach for investigating biological long-range electron transfer. 

This work will be fully described in Chapter 3 and 4 of this thesis.  

 

 
Figure I-8 Electron transfer role of copper centers in biological reactions. A) CuT1 protein relays 
electron in in photosynthesis.78 Reprinted with permission from Ref 78. Copyright 2005 Elsevier B.V.B) 
CuT1 provides an electron to a CuT2 catalytic site that reduces nitrite in copper nitrite reductase.   

 

3. Cupredoxin proteins 

The CuT1 superfamily can be subdivided into three classes. Class 1 is comprised of a 

single CuT1 copper-binding domain in the mature state and is known as cupredoxins (which is 

analogous to iron ferredoxins). This class includes plastocyanin,14, 88-92 azurin,93-95 pseudoazurin96, 

97 and rusticyanin.98-100 Cupredoxins are soluble proteins or bound to the cell surface. 

Plastocyanin89 and azurin93 were the first two to be structurally characterized through X-ray 

crystallography in 1978, setting the stage for further research that characterized the structure-

function relationships of these proteins. Further, the azurin gene was the first to be cloned101 and 

became the platform for many mutagenesis studies that aim to understand the coordination 
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environment of CuT1 proteins and electron transfer further.102-104 The second class is composed 

of multidomain blue copper proteins such as nitrite reductase,85 laccase,86 ascorbate oxidase,105 

and ceruloplasmin.106 These copper proteins also referred to as “blue copper oxidases” because 

CuT1 centers, which provide electrons to copper catalytic sites that react with dioxygen, 

dominate the spectroscopic feature of these proteins. Finally, the third class, the phytocyanins, 

shows a chimeric domain organization, where the blue copper domain is attached to structurally 

unrelated sequence motifs. This plant derived CuT1 class is bound to the cytoplasmic membrane 

through a GPI-anchor and includes stellacyanin,107-111 umecyanin110, 112 and plantacyanin.110, 111, 113 

Stellacyanin was one of the first of the phytocyanins to be characterized using biochemical and 

biophysical studies and was determined to possess spectroscopic and structural features that 

uniquely differ from plastocyanin and azurin. By and large, CuT1 proteins function as ET 

proteins but their redox partners, with the exception of photosynthetic plastocyanin, are unclear 

(Table I-4).  

 

Table I-4. Copper electron transfer proteins. 
Protein Family Source Redox Partners 

Plastocyanin114, 115 

Class 1: 
Cupredoxins 

Plants Cytochrome f & Cytochrome b6/f complex 
Azurin116, 117 Bacteria C-type Cytochrome c and Nitrite Reductasea 

Pseudoazurin97 Bacteria Blue copper site of nitrite reductase 
Rusticyanin98, 100, 118 Bacteria Iron proteinsa 
Nitrosocyanin119, 120 Bacteria Ammonia-oxidizing proteinsa 

Stellacyanin, Uclacyanin, 
Plantacyanin110, 111 

Class 3: 
Phytocyanins Plants Unknown 

aProposed redox partners.  

 

3.1. Structure of native cupredoxin  

Overall, CuT1 proteins are single polypeptide chains that are composed of 91-155 

residues. This single chain folds into a Greek β-barrel with eight parallel or antiparallel β-strands 

that divides into two β-sheets (Figure I-9A). CuT1 proteins that contain more residues posses 

one or two more β-strand such as amicyanin and rusticyanin, respectively. The β-barrel fold is 

ubiquitous in nature. It is adopted and modified by native metalloproteins, including copper-zinc 

superoxide dismutase, lacacase, beta-amylase and immunoglobin. The copper center (Figure I-
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9B) is encompassed within the hydrophobic environment of the β-barrel fold, and the metal 

binding ligands are in a pocket between loops, protected from solvent access. The copper center 

is located at the “northern,” C-terminal end of the β-barrel. The amino acid sequence, the number 

of strands, as well as the make up of the loops and the hydrogen-bonding network surrounding 

the copper center vary among the CuT1 proteins. However, structural interactions provided by 

the loop elements and the hydrogen-bonding network are conserved across the family, including 

the metal binding residues. Furthermore, in many CuT1 proteins, particularly in plastocyanin, the 

“northern” end of the fold includes a hydrophobic patch (Figure I-9C) that was proposed to serve 

as a recognition site for redox partners.114, 115, 121-127 This patch consists of 5-10 apolar residues that 

surround one of the His ligands bound to the copper ion. Figure I-10 displays the X-ray crystal 

structures of several CuT1 proteins, including plastocyanin,14 azurin,128 stellacyanin,109 cucumber 

basic protein113 and nitrosocyanin,119 demonstrating the shared Greek β-barrel fold and a variety 

in the length of the sequence.  

 

 

Figure I-9. Structure of cupredoxin proteins. A) Topology illustration that show the connections of the 
eight extended polypeptide strands in the β-barrel fold of CuT1 proteins. The filled squares demonstrate 
the locations of the common ligands and the filled circle signifies the carbonyl oxygen found in azurin.83 
B) The constraint applied on the Cys residue in azurin by the protein fold via hydrogen bonding residues 
from neighboring residues or residues located on a nearby loop. The distances are for the oxidized form, 
while the distances within the parentheses are for the reduced state. 83 The minimal change in these values 
exhibits the rigidity of the Cys ligand. Figure A and B were reprinted with permission from Ref 83. 
Copyright 2006 John Wiley & Sons, Ltd. C) The structure of Poplar nigra plastocyanin (PDB 1PLC at 
1.33 Å resolution),14 where the metal center, hydrophobic patch (residues in gray) and acidic patch 
(residues in red) are highlighted. 
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Figure I-10. Varying β-barrel fold and size of CuT1 proteins, where the color of the copper ion signify 
their spectroscopic feature in the Cu(II) state. A) Poplar nigra plastocyanin (PDB 1PL at 1.33 Å 
resolution).14 B) Alcaligenes denitrificans azurin (PDB 2AZA at 1.80 Å resolution).128 C) Cucumber 
stellacyanin (PDB 1JER at 1.60 Å resolution).113 D) Cucumber basic protein (PDB 2CBP at 1.80 Å 
resolution). E) Nitrosocyanin (1 of 3) monomer from Nitrosomonas europea (PDB 1IBY at 1.65 Å 
resolution).119 

 

The copper metal ion centers in CuT1 proteins are coordinated to three equatorial 

ligands: to two imidazole nitrogens (N) of histidine (His) and one thiolate sulfur (S) of cysteine 

(Cys) to form a pseudo-trigonal plane with a CysHis2 geometry that is conserved across the 

CuT1 family.66, 83, 87, 129, 130 The positions of these ligands vary between proteins; for example, the 

copper metal binding site in poplar plastocyanin is composed of His 37, Cys 84 and His 87 

(Figure I-11A), whereas azurin contains a His 46, Cys 112 and His 117 in the metal center. From 

the crystal structure of the oxidized state (Cu2+), the copper center has average Cu-N bond 

lengths at ~2.0 Å, a typical distance observed for imidazole ligands. However, the Cu-S(Cys) 

bond is remarkably short with an average distance range at ~2.07 – ~2.26 Å, which is usually 

between 2.3 – 2.9  Å. In addition to the core CysHis2 ligands, one or two longer axial ligands can 

be bound to generate a four or five coordinate geometry. With the exception of some 

plantacyanins (which only has CysHis2 ligands), the most common axial ligand is a thioether 

sulfur from a Met residue to yield an N2SS* ligand set that forms a distorted tetrahedral 

geometry. The N2SS* ligand set is found in plastocyanin, cucumber basic protein, amicyanin, 

auracyanin, as well as rusticyanin. This Cu-S (thioether) bond has a length at ~2.8 Å and 

displaces the copper atom from the trigonal plane by about 0.2 – 0.4 Å. Azurins also contain the 

same N2SS* ligands but the backbone carbonyl oxygen of Gly 45 provides a second axial ligand, 

forming a five-coordinate, distorted trigonal bipyramidal copper center. An equivalent Gly 
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residue is also present but it is not considered to be a ligand because it is ~3.8 Å from the copper 

complex. The Cu-S (Met) and Cu-O (Gly) have bond lengths at ~3.3 and ~2.6 Å, respectively. 

Unlike its counterparts, the stellacyanin family (Figure I-11B) and nitrosocyanin (Figure I-11C) 

do not posses an S(Met) axial ligand and are examples of “perturbed” blue copper centers.131, 132 

Stellacyanin has an O(Gln 99) axial ligand with an ~ 2.4 Å bond length, which is much shorter 

(~0.5 Å) than the Cu-S(Met) bond length of plastocyanin and azurin and is ~0.2 Å shorter than  

the Cu-O (Gly) reported above. Nitrosocyanin is the most perturbed blue copper site, possessing 

an even stronger axial bond at ~2.1 Å for coordination to O(Glu 60).119 As a result of a shorter 

axial bond, the Cu-S(Cys) bond experiences a modest increase to ~2.3 Å from 2.1 – 2.2 Å. 

 

The metal binding site of CuT1 proteins are provided by two loops that connect β-strands 

3 & 4 and 7 & 8. The first His ligand (and the carbonyl oxygen of a Gly) is the terminal residue 

of the loop that joins β-strands 3 & 4. Further, the 3 & 4 loop is longer in azurin and rusticyanin 

than in plastocyanin and pseudoazurin and even shorter in plantacyanin and stellacyanin. As a 

result, azurin and rusticyanin have the most buried copper center; whereas, the proteins with 

shorter loops are the most exposed. The final three ligands are found on the loop between β-

strands 7 & 8. The Cys residue is the final residue of strand 7; the second His is at the center of 

the loop; and the Met (or Gln) is the leading residue in strand 8. In addition to containing 3 of the 

4 ligands, the loop between β-strands 7 & 8 includes apolar residues that make up the 

hydrophobic patch around the second His ligand. Moreover, the number of residues between 

these last three residues, Cys and His and His and Met, differs from two to four. In 

nitrosocyanin, the copper ligands are located in the loops that connect β-strands 4 & 5 and 8 & 9, 

which contains a Glu (60) residue and ligands Cys (95), His (98) and His (103), respectively. 

Further, nitrosocyanin show a characteristic cupredoxin, but it has an unusual β-hairpin structure 

that is prolonged, but does not take part in the β-barrel fold (Figure I-10E).  
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Figure I-11. Metal binding site of plastocyanin14 (A), stellacyanin109 (B) and nitrosocyanin119 (C). 
Plastocyanin and CuT1 centers with a similar coordination environment have a trigonal pyramidal 
geometry where the copper ion and the core 2HisCys residues make the base of the pyramid and the Met is 
the apex. Stellacyanin and its phytocyanins family with a Gln at the axial position display a distorted 
tetrahedral geometry, where the bond between the Cu and the axial O(Gln) ligand shortens while the Cu-
S(Cys) bond elongates. A more recent addition to the CuT1 family is nitrosocyanin, which was determined 
to complex a copper center in a square pyramidal geometry. The metal binding site of nitrosocyanin lacks 
S(Met) ligand but instead is comprised of a O(Glu) ligand in the axial position and a 2HisCys ligand and a 
H2O molecule that make up the base of the square.  

 

The copper coordination environment in CuT1 proteins is extremely rigid, and this is 

attributed to the restraint that the protein fold applies to the metal bind site. In azurin, cucumber 

stellacyanin and rusticyanin, the Cys residue is (N-H-S) hydrogen bonded to the backbone NH 

group of a residue neighboring the first His in loop 3 & 4 and to a NH group of a residue in loop 

7 & 8 two residues removed towards the C-terminal end (Figure I-9B). The latter interaction is 

absent in plastocyanin, pseudoazurin and amicyanin because a Pro residue resides at the 

appropriate position and only has one N-H-S interaction. Further, the Cu-S(Cys) bond is highly 

covalent, which produces a short bond. This feature is highly conserved among CuT1 proteins. 

Similarly, the His and Met residues, as well as the second coordination sphere are also finely 

controlled by the protein fold. The Nδ1 of the first His ligand is directly bound to the copper ion, 

while the Nε2 in the imidazole ring forms a hydrogen bond to a backbone carbonyl oxygen or to 

the oxygen sidechain group of a Glu (amicyanin) or Asn (rusticyanin) residue. In phytocyanins, 

the Nε2 commonly forms a hydrogen bond with an exogenous water molecule. The second His 

ligand does not have hydrogen bond interactions with other residues, instead it is packed in place 

by the hydrophobic patch and establishes a hydrogen bond with a water molecule that is, in turn, 

hydrogen bonded to surrounding protein atoms. Likewise, the Met (or Gln) ligand, as well as the 

Gly carbonyl oxygen in azurins is packed in place by aromatic residues (Phe, Tyr or Trp). 
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Finally, conserved residues outside the metal binding site have been shown to play a crucial role 

in the stability of the copper complex. A conserved Asn residue (Asn 38 in plastocyanin and Asn 

47 in azurin but Ser in rusticyanin) that follows the first His ligand forms multiple hydrogen 

bonds to the residue, typically a conserved Ser or Thr, after the Cys ligand. These hydrogen 

bonds create a bridge between the copper-binding loops.  

 

 
Figure I-12. Overlay of the oxidized (light gray) and reduced (dark gray) CuT1 centers, which illustrates 
minimal change in the bond lengths and geometry. The bond lengths are adjacent to their corresponding 
residue and values inside parentheses belong to the reduced state.  A) Plastocyanin from Poplar nigra 
[PDB 1PLC (oxidized) at pH 6.0 & 5PCY (reduced) at pH 7.0 and 1.80 Å resolution].14, 133 B) Horse 
radish umecyanin, which is part of the stellacyanin family [PDB 1X9U (oxidized) at pH 7.5 and 1.90 Å 
resolution & 1X9R (reduced) at pH 7.5 and 1.90 Å resolution].112 C) Nitrosocyanin from Nitrosomonas 
europea [PDB 1IBY (oxidized) at pH 7.5 and 1.65 Å resolution & 1IBZ (reduced) at pH 7.5 and 2.3 Å 
resolution].119 

 

The structural features of CuT1 proteins provide them with unusual spectroscopic and 

redox properties. This structural property is often described using the rack-induced bonding 

model,103, 131, 134, 135 which suggests that the ligand environment in a β-barrel fold forces the copper 

ion, regardless of the oxidation state, into a strict geometry. The constraint applied on the copper 

complex is evident in the overlay of metal binding site of the oxidized and reduced states of 

plastocyanin,14, 133 umecyanin112 and nitrosocyanin119 in Figure I-12. Upon reduction of the copper 

ion, a minor increase in ligand-metal bond lengths are observed, causing minimal change in the 

copper coordination environment during electron transfer that minimizes inner sphere 

reorganization energy. The latter example, which is a more recent addition to the CuT1 family, 

was observed to lack a water molecule during reduction. It was argued that this loss of a water 
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molecule implicates its role as a catalytic and not an ET center.119, 120 Nevertheless, the copper ion 

in nitrosocyanin is also strongly constrained by the protein fold as shown in Figure I-12C. 

 

3.2. Spectroscopic properties of cupredoxin centers 

The oxidized state of the first purified CuT1 proteins displayed an extraordinarily intense 

blue color, a trait that intrigued and inspired inorganic chemists and biochemists to elucidate the 

mechanism behind this physical feature. The work on CuT1 proteins, as well as iron proteins 

(iron-sulfur and cytochromes) have helped develop and shape the field of bioinorganic 

chemistry. The CuT1 family now contains a spectrum of color from the classic blue copper 

proteins (plastocyanin and azurin) to green (stellacyanin), red copper (nitrosocyanin) and yellow 

(model compounds and designed proteins). The work of various groups, especially Solomon and 

coworkers, using various biophysical methods (UV-VIS, EPR, MCD, RR and XAS), as well as 

computational studies have provided great insight into the spectroscopic properties and structure-

function relationship of the copper complex in CuT1 proteins.87, 88, 107, 129, 131, 132, 136-157 Solomon and 

coworkers have led the characterization of the physical features as it relate to function of classic 

blue copper proteins87, 140, 147, 148, 150, 153, 156-161 with respect to a copper chloride salt, CuCl4,87, 161, 162 

that represents the features of CuT2 or “normal” copper complexes with a square planar or 

tetragonal geometry in solution. CuT1 sites with a coordination environment that deviates from 

the classic CuT1 geometry of a distorted trigonal planar with a weak axial ligand are termed 

perturbed blue copper sites.120, 131, 132, 163, 164 These sites can be subdivided into proteins with a 

CysHis2Met ligand set but with a more tetragonal or square planar geometry (e.g., cucumber 

basic proteins, nitrite reductase, nitrosocyanin); a Gln ligand in the axial position instead of a 

Met (e.g., stellacyanin) and has been given a CuT1.5 term by Lu and coworkers66; and an apolar 

residue (Leu, Phe, Ile or Val) in place of a fourth axial ligand (e.g., plant and fungal laccases). 

These studies have been previously reviewed in detail.87, 146, 157, 161, 165 
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Figure I-13. UV-VIS (A) and EPR (B) spectra of blue copper centers compared to normal copper sites.87 
Blue copper proteins display a strong absorption band in the visible range, while normal copper centers 
show a strong feature in the UV range. Further, EPR spectra of blue copper sites have an AII value <100 x 
10−4 cm−1, whereas normal copper complexes often have values >100 x 10−4 cm−1. Reprinted with 
permission from Ref 87. Copyright 2004 American Chemical Society. 

 

The classic CuT1 proteins plastocyanin and azurin exhibit a deep blue color as a result of 

a strong electronic absorption band at ~600 nm (~3000 - 6000 M−1 cm−1) in a UV-VIS spectra 

(Figure I-13A). Blue copper proteins also contain a less intense band at ~450 nm (~300 M−1 

cm−1) and yield an Rε value (the absorption ratio around ~400 and ~600 nm) < 0.1, a designation 

used by Lu and coworkers to demonstrate the perturbation from the CysHis2 trigonal plane.66 

This strong absorption band was assigned to a ligand-to-metal charge transfer (LMCT) from the 

S(Cys)π ! Cu 3!!!!!! charge transfer transition, which is made possible by a 45° rotation of 

the dx2-y2
 that increases the overlap with the py orbital of S(Cys).140, 158, 161 A weak band at ~530 nm 

was assigned to the S(Cys)σ ! Cu 3!!!!!!transition.87 “Normal” or CuT2 centers have an 

inverted assignment, exhibiting weak π charge transfer (CT) but intense σ CT transitions.  Low-

temperature magnetic circular dichroism (LT-MCD) studies were used to confirm these 

assignments as the absorption features in a LT-MCD spectrum have the opposite intensities in a 

UV-VIS spectrum. Further, bands at ~430 and 450 correspond to S(Met) ! Cu and S(His) ! Cu 

bands, respectively, and bands between 650 – 1050 nm are either ligand field (LF) or d ! d 
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transitions. CuT1 centers tomato plantacyanin and laccases lack an axial ligand and display a 

similar electronic absorption as blue copper proteins.  

 

 
Figure I-14. A) Illustration of the relationship between the perturbation of the copper center and 
spectroscopic properties.66 As the interaction between the copper ion and the axial ligand(s) increases, the 
coordination environment shifts towards a tetragonal (red/yellow) or tetrahedral geometry (green). B) 
Exhibits the rotation and interaction of the !"#!!!!!orbital with the !!!,!!orbitals. Blue copper centers 
have a strong π and weak σ overlap, while in green copper centers have slightly stronger σ and weaker π. 
Red or “normal” copper centers posses strong σ bond. Reprinted with permission from Ref 66. Copyright 
2003 Elsevier B.V. 

 

Conversely, in the perturbed CuT1 sites87, 131, 132, 163, an increase in the intensity of near UV 

bands is observed, which is due to a rotation of the Cu 3dx2-y2
 orbital that leads to a stronger σ 

bond overlap as a consequence of a greater interaction with an axial ligand (Figure I-15). 

Stellacyanin (a CuT1.5 center or green copper center) contains a stronger axial ligand (Gln) than 

plastocyanin and has a distorted tetrahedral geometry. This slight perturbation from a trigonal 

planar geometry causes a rotation of the Cu 3dx2-y2
 orbital that increases its interaction with the 

S(Cys) pseudo-σ orbital and decreases its interaction with the S(Cys)-π orbital. Consequently, 

stellacyanins show an additional intense absorption band at ~450 nm (~1100 M−1 cm−1) to 
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produce a green color in solution and a Rε value 0.3 – 0.5. The copper complex in nitrosocyanin, 

and to a lesser effect in nitrite reductase and cucumber basic protein, has the most perturbed site, 

signifying a rotation of the Cu 3dx2-y2
 orbital away from a π to a more σ bonding interaction with 

the highest-occupied molecular orbital (HOMO).164 Nitrosocyanin, a red copper protein, was 

previously included in the CuT1 family because it contains the conserved core residues. Its 

absorption spectrum mirrors CuT2 centers in a tetragonal geometry (“normal” copper) with a 

strong absorption band at 390 nm (~7000 M−1 cm−1) and a Rε value ~3.0. Furthermore, Resonance 

Raman spectroscopy studies on CuT1 centers corroborate well with the perturbation trend. 

Plastocyanin has an effective Cu-S stretching frequency of 403 cm–1, while stellacyanin, 

cucumber basic protein and nitrite reductase have values of ~386, ~394 and 383 cm–1, 

respectively. A decrease in the value demonstrates a weakening in the Cu-S bond (Figure I-15C).  

 

The EPR spectra of CuT1 proteins also significantly deviate from “normal” or CuT2 

centers (Figure I-13B & I-15D). Both copper centers show gII > g� > 2.0023, which is indicative 

of a 3dx2-y2
 ground state. The EPR spectra of CuT1 proteins, however, display extremely small AII 

values < 100 x 10−4 cm−1, with respect to CuT2 centers. Plastocyanin and azurin have nearly 

identical EPR spectra with axial EPR signals, and this demonstrates that O carbonyl Gly ligand 

has a very small influence on the electronic structure of azurin. The EPR spectra of the perturbed 

CuT1 centers can vary from rhombic (Δg� = gx – gy > 0.01) (stellacyanin and basic cucumber 

protein) to axial (fungal laccase). Nitrosocyanin has an axial EPR signal, but again exhibits a 

CuT2 EPR characteristic with an AII value of ~144 x 10−4 cm−1. The narrow AII was proposed to 

stem from a highly covalent Cu-SCys bond, which delocalizes the unpaired copper electron spin 

towards the sulfur and reduces the interaction of the unpaired electron with the nuclear spin of 

Cu2+.87 87, 140, 147, 148, 158, 161, 162 This highly covalent hypothesis was confirmed by polarized Cu K-

edge X-ray absorption (XAS) studies that revealed 4px,y mixing into the 3dx2-y2 orbital.147, 162 In 

addition, combined XAS studies at the Cu L-edge148 and S K-edge supported a highly covalent 

Cu-S bond and further defined the electronic structure of the blue copper centers. From the Cu L-

edge work, plastocyanin was determined to have ~41% Cu 3d character in the HOMO, while the 
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“normal” copper CuCl4 reference has 61% Cu 3d character. Moreover, these experimental values 

agree well with computational studies on the electronic structure of plastocyanin.87  

 

 

Figure I-15. Spectroscopic and structural comparison of between blue and perturbed CuT1 centers.87 A) 
Low-temperature absorption spectra of plastocyanin, cucumber basic protein (CBP) and Achromobacter 
cycloclastes nitrite reductase, which highlights Cys π and σ bands.  B) The π bonding interaction in 
plastocyanin and the rotation that occurs in nitrite reductase to generate σ and π mixture of redox active 
orbitals calculated with Xα-scattered waves. C) Resonance Raman spectra comparison showing 
weakening of the Cu-S(Cys) bond by the shift towards lower energy. D). EPR spectra of each center, 
where nitrite reductase has a modestly higher AII value. E) Top figure demonstrates a decrease of the Cu-
axial ligand bond in CBP and nitrite reductase and an increase in the Cu-S(Cys) bond as indicated in the 
bottom figure. Reprinted with permission from Ref 87. Copyright 2004 American Chemical Society. 

 

4. Protein redesign of cupredoxin centers 

CuT1 centers have a unique coordination environment with characteristic spectroscopic 

and structural properties. Elucidating how the primary and the secondary coordination 

environments relate to the function of CuT1 as an electron transfer center is a major goal in 

protein design. The following section covers the transformation of a CuT2 into a CuT1 site in 
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copper-zinc superoxide dismutase and the incorporation of a CuT1 site into an unrelated native 

scaffold, thioredoxin.  

 

4.1. Redesign of a cupredoxin center within a related fold 

Copper−zinc superoxide dismutases (CuZnSOD) perform an essential role in alleviating 

the levels of reactive oxygen species in the cell by catalyzing the conversion of a superoxide 

radical into oxygen and hydrogen peroxide (Figure I-16A).166-168 The zinc and copper ions are 

confined within a Greek β-barrel fold, similar to overall fold of CuT1 proteins, where the Zn(II) 

ion plays a structural role and the copper ion performs the dismutase reaction. Although there is 

no sequence or active site homology between the two proteins, researchers aimed to introduce a 

CuT1 site in CuZnSOD to determine if incorporating a Cys in the metal sites is sufficient in 

recapitulating the physical properties of CuT1 proteins.145, 169-171 The crystal structure of 

CuZnSOD revealed that there are three types of His residues coordinating to the metal ions: His 

residues coordinated to copper (His46, 48, and 120); His that are coordinated to Zn(II) (His71 

and His80); and a bridging His residue that binds to both copper and zinc ions (His63). To obtain 

a CuT1 center, Lu et al. mutated the copper-His in Saccharomyces cerevisiae CuZnSOD and 

produced mutants SOD-H46C and SOD-H120C.169, 171 Upon copper binding, both mutants 

displayed spectroscopic characteristics of a CuT2 center instead of a CuT1 center, even though 

sulfur to copper LMCT was observed. The EPR hyperfine coupling constants of the mutants 

His46Cys and His120Cys were significantly larger by ~ 70 x 10−4 cm−1 than that of a typical 

CuT1 center. A second mutation, substituting a Zn(II)−His with Cys at the structural site, was 

also reported by Lu et al by substituting His80 with Cys at the Zn2+ site.170 Upon the addition of 

Cu2+ (before Zn2+) or only Cu2+, the copper complex formed in SOD-H80C generated a site that 

exhibits intense absorption bands at 459 and 595 nm analogous to green or CuT1.5 centers 

(stellacyanin), with an Rε of 1.03. These transitions were assigned to the sulfur-to-copper LMCT 

excitations. Further, the AII constant from the newly formed CuT1 site was estimated to ~15 x 

10−4 cm−1, which is comparable to stellacyanin. These studies indicate that the simple 

incorporation of a Cys ligand at the copper center in CuZnSOD is not sufficient to construct a 

CuT1 site; however, when Cys was placed in the more rigid structural site, a CuT1.5 site was 

achieved, which demonstrates the strict geometric constraints that are required for a CuT1 center.  
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Figure I-16. A) X-ray crystal structure of yeast copper-zinc superoxide dismutase (PDB 1YAZ at 1.70 Å 
resolution).166 B) X-ray crystal structure of thioredoxin expressed in Escheriachia coli (PDB 2TRX at 
1.68 Å resolution).172 

 

4.2. Redesign of a cupredoxin center within an unrelated fold. 

Using thioredoxin (Trx)172 (Figure I-16B), a small protein with a β/α fold that is devoid 

of a metal center as a scaffold, Hellinga constructed a CysHis2Met center within Trx to explore if 

an unrelated fold is able to adopt a CuT1 center. Hellinga’s design approach utilized an 

automated rational protein design program, Dezymer.173 Trx consists of five β-strands 

surrounded by four α-helices,172 providing multiple possible sites for the construction of a CuT1 

center. At the same time, the β/α fold is distinctly different from the native cupredoxin scaffold, 

which provides an excellent opportunity to examine the impact of the secondary coordination 

sphere on the properties of the T1Cu center. After several rounds of design cycles to examine the 

location of the site, possible competing coordinating ligands, the coordination geometry, solvent 

access, and equatorial versus axial ligands, a few mutants were prepared that exhibited strong 

sulfur-to-copper LMCT excitations upon binding to Cu(II). Nevertheless, these sites displayed a 

strong absorption band at ~400 nm and more closely resemble CuT2 centers than CuT1, which 

was attributed to the strong equatorial ligand and a weak axial ligand. Although these efforts 
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failed to introduce a classic CuT1 center with a tetrahedral coordination, this work still provided 

very important and interesting insights in the design of a CuT1 center. That is, the authors 

emphasized the importance of the negative design approach, which involves the incorporation of 

design elements that destabilizes any competing structures and deters access by exogenous 

molecules, such as H2O.  

 

5. De Novo designed cupredoxin centers 

CuT1 centers are undeniably one of the most difficult metal centers to model.  The 

oxidized copper form has been observed to form three different four-coordinate geometries:  (1) 

tetragonal/square planar, (2) trigonal planar or (3) a distorted tetrahedral, in native proteins with 

a Cu(II)-S(Cys) binding site.169, 174, 175 Further, a highly favored redox reaction between the Cu(II) 

ion and thiolate ligand (Equation I-2) has been observed in previous small molecule and protein 

models.176-178 This redox reaction involves a reduction of the Cu(II) ion by the thiolate ligand to 

produce a Cu(I) ion and a disulfide bond, which is an indication of an unstable Cu(II)-S(Cys) 

bond. CuT1 proteins have evolved to contain a copper complex with a unique geometry that is 

finely controlled by secondary elements including hydrogen bonds and sterics provided by apolar 

residues, as well as the β-barrel overall fold that limits the access of exogenous molecules. The 

highly covalent Cu(II)-S(Cys) bond avoids unwanted redox reaction mentioned above. 

Therefore, the biological role of CuT1 proteins and their extraordinary copper complex makes 

them a desirable target to model via the de novo design approach. To date, the most successful 

CuT1 models (by Schnepf et al. and Tanaka and coworkers) utilize an α-helical fold.179-182 De 

novo design offers further validation and critical understanding of how the geometric constraints 

affect the spectroscopic features of CuT1 centers. Ultimately, using an unrelated fold allows one 

to examine whether β-sheets are obligatory in an electron transfer reaction. 

2!!! + 2!" !! ⇌ !""! + 2!" !               Equation I-2         

Schnepf et al. reported the first de novo designed CuT1 center in an antiparallel four-

helix bundle using a template-assembled synthetic (TASP) approach (Figure I-17A).179, 180 This 

technique uses topological templates to covalently attach peptide strands to a predetermined 
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packing arrangement on a surface. The helices were derived from the backbone structure of the 

natural supercoiled four-helix bundle Repressor of Primer (Rop) protein.183
 
Several modular 

protein (Mop) variants were synthesized to determine if a CuT1 center would be achieved. One 

of the first variants, which buries the copper binding site in the hydrophobic core, underwent the 

unwanted redox reaction between the Cu(II) ion and the Cys ligand. The UV-VIS absorption 

spectra of Cu(II) bound Mop5, Mop6, and Mop7 displayed strong absorption bands in the range 

at 410, 401, and 379 nm, respectively, which is an indication of a tetragonal coordination 

geometry. The authors assigned the absorption bands to a S(Cys) to Cu(II) LMCT and was 

further confirmed by Resonance Raman spectroscopy.  

 

Based on these initial results that only focused on the primary His2Cys ligands, Schnepf 

et al. modified the secondary coordination sphere to examine its influence on the overall stability 

of the center, the copper coordination geometry and consequent spectroscopic properties.180
 
They 

synthesized a library of proteins mutated from Mop5, the most stable copper-binding protein in 

the first design cycle,179 and examined the copper-binding properties. The design of the second 

generation proteins180 focused on modifying the secondary coordination sphere by introducing 

residues of differing polarity, bulkiness and flexibility to achieve two goals: to stabilize the 

copper center and to enforce the variation of copper coordination by changing the sterics around 

the copper binding site. Three types of copper centers were found in the initial screening step. 

Specifically, nonpolar residues such as Leu or a combination of Leu/Ala were placed above the 

His2Cys site to yield Mop23 and Mop21, respectively. In Mop22, a Met residue was introduced 

above both of the His ligands, providing a putative weak axial ligand as found in CuT1 centers. 

The Cu(II) absorption, EPR, Resonance Raman and Magnetic Circular Dichroism spectra were 

collected for these Mop variants. The Cu(II)-Mop21 species was determined to contain a 

tetragonal Cu(II) center; while the Cu(II)-Mop23 exhibited a CuT1 center with a distorted 

tetrahedral geometry, which was attributed to the difference in the steric hindrance above the 

copper site. Intriguingly, the spectroscopic features of Mop22, which contains an additional Met 

substitution, resulted in a binuclear copper, a purple CuA, center. In particular, the complex 

displayed an absorption band at 774 nm, indicative of a Cu−Cu bond. The Resonance Raman 

marker band at 345.5 cm−1 matches well with the native CuA center184 and a relatively small AII 
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supported a delocalized unpaired electron at a binuclear site. The MCD spectrum of Cu(II)-

Mop22 was also remarkably similar to that of the native CuA site.185 

 

Taking a de novo design approach, Tanaka and coworkers built a His2Cys core in a four-

stranded α-helical coiled coil scaffold to produce AM2C (Figure I-17B).181, 182 Like many of the 

α-helical de novo design scaffolds, the amino acid sequence of AM2C was based on a heptad 

approach, containing Lys and Glu residues to form electrostatic interactions and nonpolar 

residues such as Ala and Leu to establish a hydrophobic interior. The His2Cys residues replaced 

Leu residues in three of the four helices, forming a pre-organized trigonal planar binding site.181  

The AM2C-copper complex exhibited a strong absorption feature at 616 nm, which was assigned 

to a S(Cys)-to-copper LMCT, and a weak LMTC band at 474 nm.
 
The AII constant of AM2C-

copper complex was unusually small and was not resolved in the X-band EPR. Using cyclic 

voltammetry, the reduction potential was determined to be +328 mV (vs NHE), a value that falls 

in the 180−800 mV range of CuT1 proteins.
 
Moreover, XAS techniques were employed to gain 

further information on the copper coordination. The edge structures of Cu(II)-AM2C were 

similar to those of the CuT1 center in Az, and the EXAFS fittings resulted in a 2.3 Å copper 

sulfur bond, which is 0.1-0.2 Å longer than in native CuT1 centers, and 2.66 Å copper chloride 

bond when chloride was added as an exogenous ligand. This coordination environment mimics 

the unusually short Cu−S(Cys) and long axial Cu−S(Met) bond observed in native CuT1 centers. 
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Figure I-17. A) Left figure is a helical net representation of the helices Ah, Bi and Ck. Filled circles 
designated U, Z and X residues that were varied according to the tables shown below, while the filled-
gray circles and open circles correlate to hydrophobic and polar residues, respectively.179, 180 Middle 
figure represents the helical content of Mop21 (A2(B5)2C11), Mop22 (A2(B7)2)C4) and Mop23 (A1(B5)2C8). 
Right figure displays the preformed fold of a Mop scaffold, where the helices are attached to a cyclic 
decapeptide that is in turn tethered to a cellulose membrane. Reprinted with permission from Ref 179. 
Copyright 2004 American Chemical Society. B) Model of minimized (red) and initial (yellow) structure 
of AM2C-Cu2+.181  Middle figure is a view of the metal binding site of the minimized model and left 
figure represents the copper center. Reprinted with permission from Ref 181. Copyright 2010 American 
Chemical Society. 

 

6. Thesis outline 

 From design to function, the central focus of this thesis entails the incorporation of a 

cupredoxin-inspired electron transfer center within a de novo designed antiparallel three-helix 

bundle of α3D (Figure I-18). Even though the physical properties of native CuT1 proteins have 

been established, as highlighted in this Introduction, de novo protein design nevertheless offers 

novel avenues for examining the structure-function relationship of ET centers, as well as other 

functional metal sites as follows:  (1) It provides a framework for studying native functions in a 

completely unrelated protein fold. (2) De novo design allows for the examination of the primary 

coordination sphere (which includes only the ligands and the metal ion) to test whether that is 
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sufficient in recapitulating the desired function. (3) Subsequently, this approach affords a step-

wise strategy in incorporating important secondary elements, such as steric-clash or H-bonding 

interactions. (4) Ultimately, the knowledge gained from these processes will inspire the design of 

multi-metal and functional designs that aim to study multi-faceted reactions in nature.   

 
Figure I-18. The NMR solution structure of α3D (PDB 2A3D), an antiparallel three-helix bundle peptide 
(core residues designated in green).10  

 

This thesis contains five chapters: an introduction and conclusion chapter and three 

research chapters. Chapter II will describe the apo structure of α3DIV. This iteration α3D 

possesses a thiol-rich metal binding site and has provided further insight into the 

metallobiochemistry of toxic heavy metals Cd, Hg and Pb. The determination of the apo 

structure demonstrated a well-defined and stable scaffold that can be utilized in achieving next 

generation metallopeptides Subsequently, using the structure of α3DIV in the design process, 

Chapter III will discuss the characterization of CuT1 constructs with several biophysical 

techniques, including CD, UV-vis, EPR, XAS and metal-NMR. Chapter IV will reveal the redox 

properties and ET reactivity of the designed constructs using electrochemical and photophysical 

techniques. The last chapter will summarize the major achievements of this work and future 

directions.  
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Chapter II. Apoprotein Structure and Metal Binding Characterization of a De 
Novo Designed Peptide, α3DIV, that Sequesters Toxic Heavy Metals 

Introduction 

Chakraborty and co-workers redesigned the sequence of α3D1 by introducing a triscysteine motif 

that is found in the metal binding site of metalloregulatory proteins MerR,2-4  ArsR/SmtB5  and 

CadC/CmtR.5-7 Three Leu to Cys mutations (Leu18Cys, Leu28Cys and Leu67Cys) at the C-

terminal end of α3D were performed to produce α3DIV.8 Utilizing several spectroscopic 

methods, we demonstrated that apo α3DIV is stable and well folded in solution at a pH range 

between 5-9. The coordination mode of Hg(II), Pb(II) and Cd(II) bound α3DIV is pH dependent 

(Figure I-1). From a linear mercury complex, [Hg(II)S2(SH)], a thiol group is deprotonated to 

form a trigonal [Hg(II)S3]− and thiol group has a pKa of 7.1 (0.1). Therefore, a pH condition 

below and above this pKa value leads to the linear or a trigonal complex, respectively.  The 

formation of a trigonal pyramidal [Pb(II)S3]− and pseudotetrahedral [Cd(II)S3(N/O)]− complex 

was determined to require a simultaneous deprotonation of two Cys thiol groups, yielding pKa2 

values of 10.6 (0.1) and 10.2 (0.1), respectively. A pH condition greater than 6 results in the 

formation of a [Pb(II)S3]− and [Cd(II)S3(N/O)]− complex. The [Pb(II)S3]− complex was 

determined to have a lower limit binding constant of 2.0 x 107 M−1 and the [Cd(II)S3(N/O)]– 

complex has the corresponding value of  3.1 x 107 M−1. Subsequently, Cangelosi and co-workers 

introduced a tris(histidine) zinc site within the α3D framework (α3DH3) that is able to 

recapitulate the function of native carbonic anhydrase.9 α3DIV and α3DH3 serve as excellent 

functional models of native metalloregulatory proteins and a metalloenzyme. However, 

fundamental understanding of α3DIV and metal site structures was lacking. To resolve this issue, 

I solved the structure of apo α3DIV to understand how the original α3D framework can tolerate 

modification in order to serve as a structural/functional scaffold for future designed !
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metalloproteins and metalloenzymes.10 In this chapter, I present the solution structure of apo 

α3DIV, solved at pH 7.0. This is the first reported structure that incorporates a triscysteine metal 

binding site in an antiparallel three-helix bundle fold of α3D through the modifications of 

stabilizing core hydrophobic residues to introduce a new function. The solution structure of 

α3DIV possesses the same overall topology and counterclockwise bundle as α3D, and the 

incorporation of Cys residues increased the helical content of the scaffold. Overall, the α3DIV 

structure provides evidence that the framework of α3D is amenable to mutations that involve 

removing Leu residues that were thought to be essential in inducing hydrophobic interactions. 

This structure offers insight into how the protein is preorganized before metal binding, which is 

essential for utilizing this framework in designing future functional metallopeptides. 

 
Table II-1: Amino acid sequence of de novo designed peptides 
Peptide       Sequence 
      abcdefg abcdefg abcdef loop 

α3D 
  MGSWAEFKQR LAAIKTR LQAL   GGS                                                               
  EAELAAFEKE IAAFESE LQAY   KGKG   
  NPEVEALRKE AAAIRDE LQAYRHN 

α3DIV 
  MGSWAEFKQR LAAIKTR CQAL   GGS                                                               
  EAECAAFEKE IAAFESE LQAY   KGKG   
  NPEVEALRKE AAAIRDE CQAYRHN 

α3DH3 
  MGSWAEFKQR LAAIKTR HQAL   GGS                                                               
  EAEHAAFEKE IAAFESE LQAY   KGKG   
  NPEVEALRKE AAAIRDE HQAYRVNGSGA 

The sequences are prepared in heptads. Residues that are underlined and bolded were changed from the 
previous design.   
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Figure II-1 A) Uv-vis absorption spectra of metallated α3DIV species: Hg(II)- (solid line), Pb(II)- (dotted 
line) and Cd(II)-α3DIV (dashed line). B) Solution speciation behavior of Hg(II)-α3DIV as function of pH 
conditions and Cd-α3DIV observed by 199Hg-NMR and 113Cd-NMR, respectively.8  
 
 
 
Materials and Methods 
 
Protein Expression and Purification. Protein Expression and Purification. A pET15b 

recombinant DNA plasmid (Celtek Genes) that contains the gene for α3DIV was transformed 

and expressed in E. coli BL21(DE3) (Life Technologies). To overexpress 15N-labeled and 
15N,13C- labeled α3DIV, E. coli cells were grown in M9 minimum media that contained 1 g/L 
15NHCl4 (Cambridge Isotope Laboratories) or 1 g/L 15NHCl4 and 2 g/L [U-13C]glucose 

(Cambridge Isotope Laboratories), respectively. The cells were grown at 37 °C to an OD600 of 

0.6, induced with 1 mM Isopropyl β-D-1-thiogalactopyranoside (Life Technologies) and 

incubated at 18 °C overnight. The cells were lysed by sonication, and the soluble protein was 

obtained after heat denaturation (50 °C) and lyophilization. The protein powder was redissolved 

in 10% acetic acid and purified on a reversed-phase C18 HPLC, using a flow rate of 20 mL/min 

and a linear gradient of 0.1% TFA in water to 0.1% TFA in 9:1 CH3CN:H2O over 45 min. Using 

an electronspray mode on a Micromass LCT Time-of-Flight mass ionization spectrometer, the 

peptide mass was determined to be 7946.9 Da, which accounts for 72 of the 73 amino acids as 

Met1 is cleaved post-translation.  
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NMR Sample Preparation Stock peptide concentrations were determined from the absorption 

band of the aromatic residues (Trp4, Tyr45, and Ty70) at 280 nm.  Experiments that involved 

coherence transfer from the backbone amide protons required a 9:1 H2O-to-2H2O solution, which 

contained 1.0 mM 15N, 13C labeled peptide, 100 mM sodium chloride, 0.8 mM tris(2-

carboxyethyl) phosphine (Fisher), 0.05 mM phenylmethylsulfonyl fluoride (Fisher) and 0.5% 

sodium azide (Sigma-Aldrich). Samples for carbon-filtered aromatic to aliphatic NMR 

experiments were prepared in a 100% 2H2O solution and incubated overnight, containing the 

reagents listed above. The pH of apoprotein samples used in the structure was adjusted  at 7. The 

Pb(II)-15N-α3DIV sample was prepared by adding 1.0 equivalent of PbCl2 to a 1 mM apo 15N-

α3DIV solution, containing 20 mM BIS-TRIS buffer set at pH 7.0  in a 9:1 H2O-to-2H2O 

solution. The Hg(II)-15N-α3DIV sample was prepared under similar conditions but contained no 

buffer and the pH was adjusted to 8.6 after the addition of 1.0 equivalent of HgCl2. Control apo 

samples were also prepared to match the sample conditions of their metallated counterparts.   

 

NMR Data Collection and Processing. NMR experiments for the structure determination were 

performed at 25 °C on a Varian (Agilent) INOVA 800 MHz NMR spectrometer, equipped with a 

triple resonance cold probe. The NMR acquisition parameters for the 800 MHz spectrometer are 

reported in Table II-2. 15N-HSQC spectra were collected for the metallated α3DIV species and 

their corresponding apo controls. These experiments were performed on a Bruker Avance 500 

MHz with room temperature triple resonance probes and a Varian VNMRS 500 MHz equipped 

with a switchable probe.  The 15N-HSQC experiments for the Pb(II)-15N-α3DIV and its apo 

control were collected at 25 °C, while the Hg(II)-15N-α3DIV and its apo control were obtained at 

9 °C.  The 15N-HSQC experiments were also performed at 25 °C for apo 15N-α3DIV with pH 

conditions of 5.8 and 8.6. The spectra were processed using NMRPIPE11 and then visualized and 

analyzed with SPARKY.12  
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Table II-2: Acquisition Parameters for NMR Experiments Performed on α3DIV. 
 no. of acquired 

data points (nucleus) spectral width (Hz)  

experiment 
 

t1 t2 t3 F1 F2 F3 nt 

2D 1H–15N TROSY 400 (15N) 

 

4102 (1H) 

 

 3000 12019  2 
3D HNCO TROSY 150 (13C) 

 

40 (15N) 

 

2396 (1H) 

 

2750 2500 12019 2 
3D HN(CA)CO 150 (13C) 

 

80 (15N) 

 

2368 (1H) 

 

2750 2500 12019 4 
3D HNCA 150 (13C) 

 

80 (15N) 

 

2396 (1H) 

 

5500 2500 12019 4 
3D HN(CO)CA 150 (13C) 

 

80 (15N) 

 

2396 (1H) 

 

5500 
 

2500 12019 2 
3D HNCACB 300 (13C) 

 

80 (15N) 

 

2396 (1H) 

 

15001 2500 12019 8 
3D HN(CO)CACB 300 (13C) 

 

80 (15N) 

 

2396 (1H) 

 

15001 2500 12019 8 
3D HN(CA)HAa 

 
200 (1H) 

 

60 (15N) 

 

4102 (1H) 2500 2500 12019 4 
3D HC(C)H–COSYa 128 (1H) 

 

200 (13C) 

 

2048 (1H) 5500 
 

16000 15060 4 
3D HC(C)H–TOCSY 200 (13C) 

 

100 (13C) 

 

2048 (1H) 16000 16000 15060 4 
3D 15N NOESY TROSY 200 (1H) 

 

80 (15N) 

 

4102 (1H) 8000 2500 12019 8 
3D HMQC NOESY TROSY 200 (13C) 

 

80 (15N) 

 

4102 (1H) 14000 2500 12019 12 
3D 15N NOESY TROSYa 200 (1H) 

 

100 (13C) 

 

2048 (1H) 9000 16000 15060 4 
3D NOESY 13CHSQCa 150 (1H) 

 

200 (13C) 

 

2048 (1H) 7500 16000 15060 4 
3D NOESY 13C TROSY 72 (13C) 

 

80 (15N) 

 

4102 (1H) 7000 2500 12019 4 
3D NOESY (13C) TROSY 72 (1H) 

 

80 (15N) 

 

4102 (1H) 2000 2500 12019 4 
aIn-phase and anti-phase experiment 

!
Assignments. Backbone assignments were determined from a series of complimentary three-

dimensional (3D) triple resonance13 Transverse Relaxation Optimized Spectroscopy (TROSY)14-

16 experiments: HNCO/HN(CA)CO,17 HN(CO)CA/HNCA,18 HN(CO)CACB/HNCACB19, 20 and 

HN(CA)HA.21 Since the sequence of α3DIV is known, the backbone assignments were manually 

completed and then successively confirmed with an auto-assignment program SAGA.22 Ser24, 

Thr16 and Ser40 were used as landmarks in the manual assignment because the β-carbons of Ser 

and Thr residues are downfield of their α-carbons. Next, aliphatic assignments were obtained 

from the combined inphase/antiphase spectra of 3D HC(C)H-Correlation Spectroscopy (COSY)23 

and (H)CCH-Total Correlation Spectroscopy (TOCSY)24, 25 experiments. These assignments 

were further confirmed with 3D (1H, 15N, 1H) Nuclear Overhauser Effect Spectroscopy 

(NOESY)-TROSY26 and (13C, 15N, 1H) Heteronuclear Multiple-Quantum Coherence (HMQC)-

TROSY27 experiments, providing a through-space validation of the COSY and TOCSY 

assignments. Chemical shift assignments for residues 3-73 were then compiled and used to 

assign sequential-intra and inter-residue NOE upper distance limits (upl).   
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NOESY Experiments. In order to attain structural distance restraints, several 3D-13C-edited and -

resolved NOESY experiments were completed. Aliphatic-aliphatic NOEs were acquired from 

(13C-edited) HC(C)H-NOESY (inphase/antiphase), which were collected at 60 and 200 ms 

mixing times. Aromatic to aliphatic NOEs were obtained from a 3D NOESY 13CHSQC 

experiment, while aromatic to amide NOEs were collected from 3D NOESY-13C(resolved)-

TROSY and the 3D NOESY (13C resolved)-TROSY. Further, non-intraresidue amide proton 

NOEs were acquired from 3D (1H, 15N, 1H) NOESY-TROSY and (13C, 15N, 1H) HMQC-NOESY-

TROSY experiments. The upper-limit NOE restraints, which contain intraresidue, intrahelical 

and interhelical NOEs, were then determined from the manual chemical shift assignments made 

on the COSY and TOCSY spectra.  

 

Dihedral Angles and Hydrogen Bonds Restraints. TALOS-N28 was used to generate φ, ψ and χ1 

dihedral angle restraints from 1H, 1Hα, 14N, 13C, 13Cα and 13Cβ chemical shift assignments. 

Dihedral φ and ψ angles that were classified as “strong” (residues 2-20, 25-45 and 45, 48, 51-70) 

were included in all the structure calculations and χ1 angles for selected aliphatic residues were 

then included in the final rounds of calculations. TALOS-N also predicted the secondary 

structure and order parameters for each amino acid residue, which provided the structured 

regions: residues 5-20, 25-44 and 51-70. Furthermore, backbone hydrogen bonds in most of the 

structured regions were later incorporated in the upl restraints, excluding residues in the loop-

turn regions. Upper limit distance restraints of 2.0 and 3.0 Å were given to Oi to Hi+4 and Oi to 

Ni+4, respectively.   

 

Structure Calculation. CYANA 2.129 was used in the structure calculations and the input files 

comprised of the upper limit restraints obtained from 3D 15N- and 13C-edited/resolved-NOESY 

spectra, dihedral angle restraints (φ, ψ and χ1) and backbone hydrogen bond restraints in the 

structured regions of the sequence. In the initial rounds of structure calculations, φ and ψ 

dihedral angle restraints were used along with the NOE upper limit distances, which were set at 3 

or 5 Å. These values were then adjusted in the later rounds of calculations. That is, intraresidue 

upper limit distances were modified to have a 3-7 Å range, increasing the restraints between 

pseudoatom-pseudoatom contacts. For sequential-intrahelical distances, a 3-4.5 Å range was 
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applied following Wuethrich’s 1H-1H short-to-medium-range distances for an α-helical 

secondary structure.30 Long sequential-intrahelical distances, 1Hi to 1Hi+4, were given a 5-7 Å 

range. After, interhelical upl distances were adjusted to a 4-7 Å range, where the lower ends 

distances were based off of the intensity in the NOESY spectra and higher ends were set to again 

compensate for pseudoatom-pseudoatom correlations. In the final rounds of calculations, χ1 

dihedral angle restraints were added and were followed by the incorporation of backbone 

hydrogen bonds. No lower limit distances were used. Of the 100 calculated structures, only the 

20 lowest structures are reported here. 

 

Circular dichroism experiments. Circular dichorism (CD) spectra were collected on an AVIV 

CD spectrometer at 25 °C and each sample were scanned between 260-195 nm. CD samples 

contained 10 μM peptide and 10 mM potassium phosphate buffer. The metallated samples were 

prepared by adding 1.0 equivalent of HgCl2, CdCl2 or PbCl2 to an apo solution. The pH was 

adjusted at 8.2 for the apo, Cd(II)-, Pb(II)- and Hg(II)-α3DIV. The pH conditions were chosen so 

that the metallated samples formed the appropriate complex: [Hg(II)S3]−, [Pb(II)S3]− and 

[Cd(II)S3(N/O)]−.  All the samples were purged with Ar(g) and prepared in triplicates. The mean 

residue ellipticities (MRE) were determined using equation: 

! = !!!"#/10!"# 

where θobs is the measured ellipticity in millidegrees, l is the cell pathlength in centimeters, c is 

the concentration in M, and n is the number of residues in the structured regions. Fifty-five and 

59 residues were used in the MRE calculation for α3DIV (apo and metallated species) and α3D, 

respectively.  

 

Thermal denaturation experiments. Thermal denaturation studies were performed on a Nano 

Differential Scanning Calorimetry (N-DSC TA Instruments model 602001). The samples 

contained 0.13 mM peptide (1.0 mg/mL) and 30 mM MOPS or HEPES buffer solution that 

contained NaCl setting the ionic strength at 100 mM. The pH for the samples containing MOPS 

was adjusted at 7.0, while the HEPES solution had a pH of 8.2. The metallated samples were 

prepared by adding 1.0 equivalent of HgCl2, CdCl2 or PbCl2 to an apo solution. All the samples 

were prepared in an anaerobic environment and were degassed prior to injection. In each 
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experiment, 300 μL of a peptide-buffer solution and its corresponding buffer solution were 

injected in the sample cell and reference cell, accordingly. Experiments were performed in 

duplicates or triplicates. The experimental methods involved a heating cycle that originated at 25 

°C and ended at 110 °C, using a 1 or 2 °C/min scan rate, and spectra were collected in an 

anaerobic Coy Box environment. Thermograms were blanked with the appropriate control 

(buffer or metal buffer) scans, baseline corrected and normalized with protein concentration. 

NanoAnalyze Data Analysis (version 2.4.1 by TA Instruments) was used to fit the thermograms 

to determine the melting temperatures and thermodynamic parameters (Figure II-2).  

 

 
Figure II-2: A) Thermal denaturation curve of apo α3DIV at pH 7.0 fitted to a two-peak model. B) 
Thermal denaturation curve of apo α3DIV at pH 8.2 fitted to a three-peak model. C) Thermal denaturation 
curve of α3D at pH 8.2 fitted to a one-peak model. D) Thermal denaturation curve of Hg-α3DIV at pH 8.2 
fitted to a one-peak model. E) Thermal denaturation curve of Cd-α3DIV at pH 8.2 fitted to a one-peak 
model. F) Thermal denaturation curve of Pb-α3DIV at pH 8.2 fitted to a two-peak model. 
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X-Ray Absorption Spectroscopy (XAS). Samples for XAS were prepared with final 

concentrations of 2.5 mM HgCl2, 2.7 mM α3DIV, 30 mM TRIS buffer and 40% glycerol at pH 

8.7. Samples were then loaded into lucite XAS sample cells wrapped in Kapton tape, flash frozen 

in liquid N2 and stored at 77 K until data collection.  XAS data were collected at the National 

Synchrotron Light Source (NSLS) on beamline X3-A.  This beamline utilized a Si[220] single 

crystal monochromator equipped with a harmonic rejection mirror.  During data collection, 

samples were maintained at 24° K using a He Displex Cryostat.  Protein fluorescence excitation 

spectra were collected using a 13-element solid-state Ge detector with a Ga fluorescence filter 

(0.3 μM in width) placed between the cryostat and detector to remove lower energy photons.  

XAS spectra were measured in 5 eV increments in the pre-edge regions (12,200-12270 eV), 0.25 

eV increments in the edge regions (12,270-12350 eV) and 0.05 Å-1 increments in the extended 

X-ray absorption fine structure (EXAFS) region (to k = 14 Å-1), integrating from 1s to 25 s in a 

k3 weighted manner for a total scan length of approximately 50 minutes.  X-ray energies were 

individually calibrated by collecting Au foil absorption spectra simultaneously with protein data.  

The first inflection point of the Au foil spectrum was assigned to 11,919 eV.  Each fluorescence 

channel of each scan was examined for spectral anomalies and data represent the average of 20 

scans.   

 

XAS data were processed using the Macintosh OS X version of the EXAFSPAK program 

suite31 integrated with the Feff v8 software32 for theoretical model generation. Data reduction 

utilized a Gaussian function in the pre-edge region and a three-region cubic spline throughout the 

EXAFS region.  Data were converted to k-space using a mercury E0 value of 12,284 eV.  The k 

cubed weighted EXAFS was truncated at 1.0 and 12 Å-1 for filtering purposes.  This k range 

corresponds to a spectral resolution of ca. 0.14 Å for all mercury-ligand interactions; therefore 

only independent scattering environments > 0.14 Å were considered resolvable in the EXAFS 

fitting analysis.33 EXAFS simulation analysis was performed on filtered and then on 

raw/unfiltered data; results listed in Table II-3 were from simulating unfiltered data EXAFS data 

were fit using single scattering amplitude and phase functions calculated with the program Feff 

v8. Single scattering theoretical models were calculated for Hg-oxygen and Hg-sulfur 

coordination to simulate mercury nearest-neighbor ligand environments.  Scale factors (Sc) and 
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E0 values used during the simulations were calibrated by fitting crystallographically 

characterized Hg models; specific values include a Scale Factor of 0.95, and E0 values for O and 

S of 0 and 1.5 eV, respectively.  During the simulation, only the bond lengths and Debye-Waller 

factors were allowed to freely vary, adjusting coordination number values during the simulations 

in a non-varied incremental fashion.  Criteria for judging the best-fit simulation utilized both the 

lowest mean square deviation between data and fit (F’), corrected for the number of degrees of 

freedom and a reasonable Debye-Waller factor.33, 34  

 
Table II-3: Summary of Hg EXAFS fitting analysis for Hg-α3DIV.   

 Nearest Neighbor Ligand Environmenta   

Complex Atomb R (Å)b C. N. d σ2 e Ff 

Hg-α3DIV 
S 2.36 2.0 3.54 2.24 
S 2.36 2.5 4.97 2.21 
S 2.36 3.0 6.20 2.21 

Data fit over a k range of 1 to 12 Å-1. Best fit simulation parameters are in bold.  aIndependent metal-
ligand scattering environment at R < 3.0 Å. bScattering atoms: S (Sulfur). cAverage metal-ligand bond 
length for 2 independent samples. dAverage metal-ligand coordination number for 2 independent samples. 
eAverage Debye-Waller factor in Å2 x 103 for 2 independent samples. fNumber of degrees of freedom 
weighted mean square deviation between data and fit. 

 
 
Results 

Structure of Apo α3DIV 

Overall structure. Apo α3DIV has an α-helical fold as indicated by the pattern in the chemical 

shift dispersion in the 15N-TROSY spectrum (Figure II-3A) and sequential NOE correlations 

(Figure II-3B). The 15N-TROSY spectrum of apo α3DIV at pH 7.0 exhibits core residues with 

well-dispersed chemical shifts and a pattern that is typical for a well-folded α-helical protein.35, 36 

Chemicals shift assignments for 69 of the 72 residues, determined from triple resonance NMR 

experiments, are indicated in Figure II-3A and the total number of peaks validates the amino acid 

sequence of α3DIV.  Resonances for residues Met1, Gly2 and Ser3 are not observed in the 

spectrum. Met1 is cleaved post-translation, Gly2 and Ser3 are in the dynamic region of the 

structure. Even after three Leu residues in α3D were substituted for Cys, the 15N-TROSY 

spectrum contains single peaks for every residue, indicating that α3DIV exhibits a single 
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conformation in solution or an ensemble of conformations interconverting at a sub-microsecond 

timescale. 

!
!
Figure II-3: A) 15N-TROSY spectrum of 15N-labeled α3DIV. The assignments are adjacent to their 
corresponding peaks.  Of the 73 residues, 69 were assigned, with residues 1-3 and Pro51 not observed in 
the spectrum. The residual Gln and Asn side-chain peaks were not assigned and are marked with an 
asterisk. Further, aliased and noise peaks are respectively given a pound and circumflex symbol. B) 
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Summary of sequential NOEs for apo α3DIV, which were determined from 3D 15N- and 13C-NOESY-
TROSY spectra. 

!
An ensemble of the 20 lowest energy structures is visualized in Figure II-4A using PYMOL.37 

The structure of α3DIV encompasses 1067 NOE restraints, which include 395 intraresidue, 367 

short-to-medium and 305 long range NOEs (Table II-4). There are ~15 NOE restraints per 

residue for 70 residues. In addition, 138 dihedral angle restraints were utilized in the structure, 

which were derived from the chemical shifts of 1H, 1Hα, 14N, 13Cα and 13Cβ atoms for residues 4-

73 using TALOS-N. These restraints included 60 φ and 61 ψ angle restraints, as well as 17 χ1 

angles. The majority of the χ1 restraints (10 restraints) were designated to core aliphatic and 

aromatic residues. The rotamers largely had a trans or gauche(-) conformation, characteristic 

rotamers of nonpolar-aliphatic residues.  Finally, 39 hydrogen bond restraints (total of 78) were 

added in the structured regions. The ensemble has an averaged CYANA energy function of 1.9 

(0.4) kcal mol−1. Two distance restraints were greater than the 0.35 Å cut off, however no 

dihedral angles >5° or van der Waals contacts >0.35 Å were violated. The Ramachandran 

statistics for the 20 structures show that 90.1% of the backbone stereochemistry is in the favored 

regions (Figure II-5) and agrees well with the Ramachandran analysis by Protein Structure 

Validation Suite38 (PSVS) (Table II-5). There are 55 residues in the structured regions (residues 

5-20, 25-44, and 51-70) of α3DIV. The backbone (N, Cα, C) RMSD of the 20 structures for 

residues 3-73 and the structured regions is 0.79 (0.16) and 0.49 (0.12) Å, respectively. Likewise, 

these RMSD values corroborate with the structure quality analysis by PSVS (see Table II-6 for 

the global quality scores).   
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!
Figure II-4: A) An overlay of the 20 lowest-energy structures of apo α3DIV, calculated with CYANA29 
2.1 and visualized with PYMOL.37 Showing residues 1-73 (red: helix1, green: helix 2, blue: helix 3 and 
gray: loops 1 & 2). The structures were calculated from 1067 experimental NOE experimental restraints, 
138 dihedral angles generated from the chemical shift index, and 78 backbone hydrogen bonds, added 
after the initial structure was obtained. The backbone and heavy atom RMSD values for residues 3-73 are 
0.79 (0.16) Å and 1.31 (0.15) Å, respectively. For the structured regions residues 5-20, 25-44, and 51-70, 
the backbone and heavy atom RMSD values are 0.49 (0.12) Å and 0.97 (0.11) Å, respectively. B) Lowest 
energy structure, where the side chains of core residues are visualized. C) Top down view of the metal 
binding site: Cys18, Cys28 and Cys67. 

!
!
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Table II-4: Structural statistics for apo α3DIV. 
Restraints   
     Total NOE 1067  
           Intraresidue 395  
           Short-to-medium range (1 < |i – j| < 5) 367  
           Long range (|i – j|  ≥ 5) 305  
     Total dihedral anglesa 138  
          Φ 60  
          Ψ 61  
          χ1 17  
          Hydrogen bondsb 39 x 2  
     Average CYANA target function (kcal mol−1) 1.9 (0.4)  
Residual distance restraint violationsc 
 

  
     average no. of violations >0.35 Å 
 

0.00 (0.00) 
 

 
     average of maximal violations (Å) 
 

0.24 (0.12) 
 

 
Residual dihedral angle restraint violationsc 
 

  
     average no. of violations >5.0° 
 

0.00 (0.00) 
 

 
     average of maximal violations (°) 
 

1.94 (0.67) 
 

 
Van der Waals violationsc  
 

  
     average no. of violations >0.35 Å 
 

0.00 (0.00) 
 

 
     average of sum violations (Å) 
 

0.28 (0.07) 
 

 
Ramachandran statistics 
 

CYANAd PSVSe 
     favored 90.1% 90.1% 
     allowed 7.8% 7.8% 
     generously allowed 
 

2.0% 2.0% 
     disallowed 0.1% 0.1% 
RMSD from the mean structure (Å) CYANA PSVS 
Backbone (N, Cα, C) 
 

0.79 (0.16)f 
 

0.8g 
Heavy atoms (all non-H atoms) 
 

1.31 (0.15)f 
 

1.3 g 
Ordered backbone 
 

0.49 (0.12)h 
 

0.6i 
Ordered heavy atoms 
 

0.97 (0.11)h 
 

1.0i 
Close Contacts and Deviations from Ideal Geometry (PDB 
validation software)  PSVS 

Number of close contacts within 1.6 Å for H atoms & 2.2 Å  
for heavy atoms 

0 

RMS deviation for bond angles (°)  0.2 
RMS deviation for bond lengths (Å)  0.001 

Summary from CYANA29 structure calculation. The ensemble of structures did not exhibit distance 
violations of >0.60 Å or dihedral angle violations >5°. aDihedral angle restraints were obtained from a 
TALOS-N28 analysis. bUpper-limit hydrogen bond distance restraints were used in the ordered regions of 
the sequence. cViolations were obtained from CYANA. dRamachandran plot summary of Procheck-style 
analysis on CYANA, 1-73 residues. eRamachandran plot summary for residues 1-73 from PSVS38 
analysis. fResidues 3-73. gResidues 1-73. hStructured regions: residues 5-20, 25-44, and 51-70. iStructured 
regions from PSVS analysis: residues 4-20, 25-42, and 51-70. 
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Figure II-5: Procheck-NMR Ramachandran plot of the 20 lowest structures exhibits that 90.1% of the 
backbone stereochemistry is located in the most favored, 7.8% in additionally allowed, 2.0% in 
generously allowed and 0.1% in disallowed regions. 

!
Table II-5. Ramachandran plot summary for residues 1-73 from PSVS analysis.   

 Procheck Richardson Lab’s Molprobity 

 α3DIV α3D α3DIV α3D 
Most favored regions 89.2% 86.2% 93% 81.7% 

Allowed regions 9.2% 10.8% 4.2% 15.5% 

Generously allowed 
regions 1.5% 1.5%   

Disallowed regions 0.0% 1.5% 2.8% 2.8% 
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Table II-6. PSVS global quality scores for 20 structures of α3DIV, structure 1 of α3DIV and structure 1 
of α3D.   

Program Verify3D ProsaII 
(-ve) 

Procheck 
(phi-psi)a 

Procheck 
(all)a 

Molprobity 
Clashscore  

20 structures: α3DIV  
Raw Score 0.47 1.35 0.09 -0.40 15.39  

Z-Scoreb 0.16 2.89 0.67 -2.37 -1.12  

Structure 1: α3DIV  

Raw Score 0.47 1.45 0.02 -0.37 17.95  

Z-Scoreb 0.16 3.31 0.39 -2.19 -1.55  

Close Contacts and Deviations from Ideal Geometry (PDB validation software) 

Number of close contacts (within 1.6 Å for H atoms & 2.2 Å for heavy atoms) 0 

RMS deviation for bond angles 0.2° 
RMS deviation for bond lengths 0.001 Å 

Structure 1: α3D  

Raw Score 0.55 1.29 -0.64 -0.98 68.48  

Z-Scoreb 1.44 2.65 -2.20 -5.80 -10.23  
Close Contacts and Deviations from Ideal Geometry (PDB validation software)  
Number of close contacts (within 1.6 Å for H atoms & 2.2 Å for heavy atoms 0 
RMS deviation for bond angles 2.6° 
RMS deviation for bond lengths 0.020 Å 

aFor all residues. bWith respect to mean and standard deviation for a set of 252 X-ray structures <500 
residues of resolution of 1.80 Å, R-factor of 0.25 and R-free of 0.28; a positive value indicates a “better” 
score. 

!
The lowest energy structure of α3DIV is illustrated in Figure 2B and has a CYANA energy 

function of 1.2 kcal mol−1. The three-helix bundle adopts a counterclockwise orientation, which 

is in complete agreement with α3D. The interhelical-tilt angles, which were calculated using 

QHELIX,39 further confirmed this counterclockwise topology: Ω1,2 = -149°, Ω1,3 = 21°, and Ω2,3 = 

-156. These angles decreased by 16°, 7° and 15° from the Ω1,2, Ω1,3 and Ω2,3  values reported for 

α3D, respectively. However, when the same QHELIX analysis was performed on α3D and 

compared again to α3DIV, a much more modest change was observed. The tilt angles of α3D 

reduced by 11° (Ω1,2), 8° (Ω1,3) and 8° (Ω2,3). 
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The triscysteine metal binding site has Sγ – Sγ distances of 6.7 Å, 5.5 Å and 3.6 Å between 

Cys18 – Cys28, Cys28 – Cys68 and Cys18 – Cys67, respectively (Figure II-4C). ). It should be 

noted that these distances were not restrained in the calculations. This hydrophobic plane has an 

area of 9.82 Å2 and can accommodate large heavy metals like Cd(II), Hg(II) and Pb(II). In 

addition, the χ1 dihedral angles (N-Cα-Cβ-Sϒ) for the Cys residues are 168°, -52.7° and -68.1° for 

Cys18, Cys28 and Cys67, respectively. Both Cys28 and Cys67 have χ1 angles that are close to 

the most common rotamer for Cys (-65°).40   

  

Analysis of metallated α3DIV 
15N-HSQC spectra of metallated α3DIV. Our subsequent objective was to determine the chemical 

shift perturbation in the 15N-HSQC spectrum of α3DIV after the addition of Hg(II) and Pb(II).  

These results provide a qualitative assessment of the change in the peptide fold in the presence of 

a metal-ligand complex, as well as whether 3D NMR experiments can be collected in order to 

solve a metallated structure of α3DIV. However, the chemical shift peak dispersions in the 15N-

HSQC spectrum of Pb(II)- and Hg(II)-α3DIV were observed to be significantly perturbed.  

Therefore, 3D NMR experiments were not obtained for the metallated species.  

 

In Figure II-6, a superposition of the 15N-HSQC spectrum of an apo control and Pb(II)-α3DIV 

shows a significant decrease in the number of cross peaks  for the Pb(II) spectrum. The pH of the 

apo and metallated species was set at 7.0 in order to achieve a trigonal pyramidal lead complex.8  

The apo spectrum displays 68 of the 69 expected peaks (Trp4 not observed), again demonstrating 

a well-defined conformation of the apo-peptide. Upon the addition of 1.0 equivalent Pb(II), only 

about 57 peaks could be observed in the Pb(II)-α3DIV spectrum and they were compared to 

corresponding peaks in the assigned apo spectrum. Of these identified peaks, several core 

residues, including Cys18, Phe38, Val53 and Ile63 overlay well with or slightly deviate by about 

±0.2 ppm in 1H from their corresponding apo peaks. The peaks for other residues, such as Leu21, 

Phe31, Leu56 and Cys67, are either broadened beyond detection or have significantly shifted, 

resulting to an incomplete assignment of the chemical shifts for Pb(II)-α3DIV. Dramatic 

perturbation was also observed for the 15N-HSQC spectrum of Hg-α3DIV at pH 8.6 (Figure II-7), 

which forms a trigonal complex at this condition. The 15N-HSQC spectrum of Hg-α3DIV 
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contained only 47 observable peaks, while the spectrum of its apo counterpart only has 55 of the 

68 expected resonance peaks at the same pH. The resonances in the Hg-α3DIV spectrum were 

not assigned.  

 

!
Figure II-6: Enlargement of the 15N-HSQC spectra of apo α3DIV (blue) and Pb(II)-α3DIV (red), both at 
pH 7.0. Spectra were collected on a 500 MHz Bruker Avance NMR spectrometer at 25 °C. The 
assignments in the apo spectrum are adjacent to their corresponding peak. In this view, the apo spectrum 
displays 63 of 68 assigned peaks, while the Pb spectrum α3DIV shows 54 of its 68 expected peaks. 

!
Figure II-7: Enlargement of the 15N-HSQC spectra of apo α3DIV (blue) and Hg(II)-α3DIV (red), both at 
pH 8.6. Spectra were collected on a 500 MHz Varian VNMRS NMR system at 9 °C. The peaks that were 
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assigned in the apo spectrum are labeled. At this high pH condition, a reduction in the chemical shift 
peaks for both spectra were expected as the backbone proton kinetic exchange rate increases with pH. 
Thereby, these experiments were collected at 9 °C in order to decrease the exchange rate and regain 
missing resonance peaks. In this view, the apo spectrum displayed 54 peaks of 55 that were identified, 
whereas the Hg-α3DIV spectrum contained 47 peaks. 

!
CD analysis of metallated α3DIV. The CD spectra of Hg(II)-, Pb(II)- and Cd(II)-α3DIV at pH 

8.2 are compared to apo α3DIV, as well as to α3D in Figure II-8A. Like its apo counterpart and 

α3D (both at pH 8.2), the metallated spectra display double minima at 208 and 222 nm, 

displaying a CD profile of a well-folded α-helical system. This is further supported by the large 

negative molar ellipticity values (Table II-7). Apo α3DIV has the largest −[θ]222 nm value of 

29231 (672) deg cm2 dmol-1 res-1; while Hg(II)-α3DIV, Pb(II)-α3DIV and Cd(II)-α3DIV had 

values of 27589 (421), 26940 (2420) and 27600 (487) deg cm2 dmol-1 res-1, respectively. α3D had 

the lowest −[θ]222 nm value of 25213 (306) deg cm2 dmol-1 res-1, indicating that α3DIV has a higher 

helical content than its parent structure. Furthermore, the [θ222]/[θ208] ratio for all the samples 

were ~1.0, which is representative of a bundled or coiled-coil tertiary structure.41 These results 

show that binding heavy metal ions to α3DIV does not lead to the unfolding or destabilization of 

its overall structure; instead α3DIV still retains an α-helical fold.  

 

DSC studies of metallated α3DIV. The thermograms were collected on apo, Hg(II)-α3DIV, 

Pb(II)-α3DIV, Cd(II)-α3DIV and α3D with a Differential Scanning Calorimetry (DSC) apparatus. 

The thermal denaturation profile of α3D, apo samples (at pH 7.0 and 8.2) and metallated α3DIV 

are overlaid in Figure II-8B, while their respective thermodynamic parameters are listed in Table 

II-7. Apo α3DIV at pH 7.0 displays a broad melting curve, which is resolved in the thermogram 

of apo α3DIV at pH 8.2. The pH 7.0 thermograms fitted well to a two-peak model and the higher 

pH to a three-peak model. The first peak was identified to be the primary melting temperature of 

α3DIV. The primary peak at pH 7.0 has a melting temperature of 64.4 (0.6) °C, while the melting 

maxima at pH 8.2 decreased to 60.2 (0.1) °C, exhibiting a pH-dependence on the thermal-

induced denaturation.  Both species yielded similar ΔHcal (excess heat capacity) values of 50.0 

(0.2) and 49.9 (4.6) kcal mol-1 for pH 7.0 and 8.2, respectively. The ΔHvan’t Hoff was determined (SI 

Table II-8), and the ΔHcal/ΔHvan’t Hoff ratio is listed in Table II-7. A value of 1 is indicative of a 

two-state unfolding model, while a value above or below 1 signifies self-association (e.g., as 
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dimer, trimer etc.) or unfolding through one or more intermediate states, respectively. This ratio 

for the parent structure, α3D, is 1.2. Apo α3DIV has value of 2.4 and 1.9 at pH 7.0 and 8.2, 

respectively. The metallated structures have ΔHcal/ΔHvan’t Hoff  ratio  values > 2.0. 

 

!
Figure II-8: Circular dichroism spectra and thermograms of α3D, α3DIV and metallated α3DIV. A) CD 
spectrum of α3D (pink), α3DIV (orange), Hg(II)-α3DIV (green), Pb(II)-α3DIV (blue) and Cd(II)-α3DIV 
(purple). Each spectrum contains a double minima at 208 and 222 nm and [θ] molar ellipticity values 
typical for a well-folded α-helical structure. B) Thermograms of α3D (pink), α3DIV at pH 7.0 (orange), 
α3DIV at pH 8.2 (dashed orange), Hg(II)-α3DIV (green), Pb(II)-α3DIV (blue), and Cd(II)-α3DIV 
(purple). The metallated species had melting temperatures ~20 °C higher than the apo.  

!
Table II-7: Circular dichroism and thermal denaturation parameters.  

Sample −[θ]222 nm 
(deg cm2 dmol-1 res-1) 

[θ]222 nm 
/[θ]208 nm 

Tm 
(°C) 

ΔHcal
a 

(kcal mol-1) 
ΔHcal / 
ΔHvan’t Hoff 

α3Db 25213 (306) 
 

1.01 
 

89.6 (0.3) 
 

49.9 (4.6) 
 

1.2 (0.3) 

α3DIV  
29231 (672)b 

 
1.03 

64.4 (0.6)c 
60.2 (0.1)b 

50.0 (0.2) 
44.9 (1.2) 

2.4 (0.4) 
1.9 (0.2) 

Hg-α3DIVb 27589 (421) 
 

1.51 84.0 (1.7) 
 

65.1 (3.5) 
 

6.7 (2.4) 

Pb-α3DIVb 26940 (2420) 
 

1.01 83.4 (3.3) 
 

59.2 (6.9) 
 

4.5 (2.3) 

Cd-α3DIVb 27600 (487) 
 

1.07 78.1 (0.7) 
 

52.7 (4.3) 
 

4.2 (0.5) 
All the averaged values were determined from triplicate or duplicate experiments. aCalculated excess 

heat capacity. bpH 8.2. cpH 7.0.   

!
!
!
!
!
!
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Table II-8: Thermal denaturation parameters. 
Protein α3Da α3DIVb α3DIVa Hg-α3DIVa Pb-α3DIVa Cd-α3DIVa 

Tm  (°C) 89.6 (0.3) 64.4 (0.6) 
76.1 (1.9) 

60.2 (0.1) 
82.2 (0.8) 
89.9 (2.1) 

84.0 (1.7) 83.4 (3.3) 
92.0 (7.7) 

78.1 (0.7) 

ΔHcalc 
(kcal mol-1) 

49.9 (4.6) 50.0 (0.2) 
46.1 (1.4) 

44.9 (1.2) 
60.0 (0.5) 65.1 (3.5) 59.2 (6.9) 

104.2 (35.1) 
52.7 (4.3) 

ΔHvan’t Hoff 
(kcal mol-1) 41.2 (4.8) 20.8 (3.1) 

15.8 (2.7) 

23.5 (2.1) 
8.5 (2.1) 

- 
10.3 (3.1) 14.6 (6.0) 

5.9 (1.5) 
12.6 (0.6) 

All the averaged values were determined from triplicate or duplicate experiments. Bolded values 
indicate primary denaturation species. apH 8.2. bpH 7.0.  

 

Significant shifts in the melting temperatures were observed for the metallated species of 

α3DIV, demonstrating that the metal-ligand complex provides extra stability against thermal 

denaturation. The melting curve of Hg(II)-α3DIV and Cd(II)-α3DIV fitted well to a one-peak 

model, whereas Pb(II)-α3DIV was fitted with two peaks.  The Tm values for the metallated 

species increased by a range of 18 – 24 °C, with Hg(II)-α3DIV exhibiting the largest Tm. This 

trend was also present in the enthalpy values, where an 8 – 20 kcal mol-1 growth was observed. In 

addition, the thermogram of α3D at pH 8.2 was collected and compared with α3DIV. The Tm 

value for α3D was determined to be 89.6 (0.3), which is consistent with previously reported 

values. This Tm is ~30 °C higher than apo α3DIV but only about 6 – 12 °C greater than the 

metallated species.  Nevertheless, the ΔHcal values for apo α3DIV and α3D are within a similar 

range and, most importantly, the metallated α3DIV generated values that were 3 – 15 kcal mol-1 

greater than α3D. Overall, these stability studies using CD and DSC signify that binding a metal 

ion in the triscysteine binding site of α3DIV does not destabilize or unfold its structure. In fact, 

from the DSC analysis, we illustrate that metal binding further stabilizes the structure of α3DIV. 

 

XAS analysis of Hg-α3DIV. XAS was utilized to determine the metrical parameters for mercury 

bound to α3DIV. Several spectra were collected on independent reproducible samples and 

spectra were averaged independently to verify reproducibility. The spectrum presented in Figure 

II-9 represents an average of the data for optimal signal/noise ratio.  The X-ray absorption near 

edge structure (XANES) spectrum in Figure II-9 is consistent with those typically observed for 

Hg(II)-S complexes.42 The Hg EXAFS could only be fit with a single Hg-S scattering 

environment constructed by a coordination number between 2.0 and 3.0 (±0.5) and centered at a 
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bond length of 2.36 Å (Figure II-10).  There is no evidence for Hg-O/N scattering in this area.  

Long-range scattering could not be deconvoluted from noise signals in that region of the data. 

The averaged mercury-sulfur bond length in Hg-α3DIV is compared to relevant Hg(II)-S 

complexes, including protein systems and model compounds43-58 in (Table II-9, Table II-10 and 

Figure II-11). 

 

 
Figure II-9: Normalized XANES spectrum for average of all Hg-α3DIV spectra. 

!
 

 

Figure II-10: EXAFS and Fourier Transform for Hg-α3DIV.  (Left) Raw unfiltered EXAFS data (black) 
and simulations (green) for Hg-α3DIV.  (Right) Fourier transforms of the raw EXAFS (black) and best fit 
simulation (green) for Hg-α3DIV. A noise peak at 1 Å from the Ge detector was not fitted in simulation. 
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Table II-9: Hg EXAFS fitting analysis of α3DIV compared to Hg-S bonds of relevant model compounds 
and proteins. 

Complex CN Geometry Hg-S R  
(Å) 

σ x 103 

 (Å2) F pH 

Hg-α3DIVa 

 

2  2.36 3.54 2.24 8.7 
2.5  2.36 4.97 2.21  
3  2.36 6.20 2.21  

Hg-TRIL16Cb 
2  2.324   5.5 
3  2.443   9.5 

Hg-MerRb 3 
 

2.43   7.5 

Average of  
5 modelsc 2 Linear 2.348    

Average of  
11 modelsc  3 Trigonal 2.462    

Average of  
3 modelsc 3 Trigonal T-

shaped 

2.497 
Avg. 2 shortest 
bonds: 2.372 

   

aData fit over a k range of 1 to 12 Å-1. Independent metal-ligand scattering environment at R < 3.0 Å. 
Scattering atoms: S (Sulfur). F = Number of degrees of freedom weighted mean square deviation between 
data and fit. bHg(II)-S bond lengths determined from EXAFS. cHg(II)-S bond lengths determined from an 
X-ray crystal structure. 

!
 Table II-10: Metrical parameters mercury-sulfur model compounds.  
Compound Hg-S R (Å) Hg-S R (Å) Hg-S R (Å) 
HgS3 Trigonal T-shaped 
coordination     

1. catena-(bis(O-
methyldithiocarbonato-S)-
mercury(ii)) 

2.365 2.383 2.924 

2. tetra-n-butylammonium (3-
ethoxycarbonylthiolato-4,5-
diphenylthiophene-2-thiolato)-(4,5-
diphenylthiophene-2,3-dithiolato)-
mercury(ii) 
 

2.373 2.388 2.495 

3. (thiocyanato)-bis(4-
trimethylammoniobenzenethiolato)-
mercury(ii) hexafluorophosphate 
 

2.353 2.369 2.823 

Average 3 M-L   2.497 (0.071)  
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HgS3 trigonal coordination    

4. tetra-n-butylammonium 
tris(phenylthiolato-S)-mercury(ii) 2.407 2.432 2.507 

5. catena-(ethylenediammonium 
tris(m2-sulfido)-sulfido-mercury-tin) 2.396 2.435 2.653 

6. tetraethylammonium tris(t-
butylthiolato-S)-mercury(ii) 2.436 2.438 2.451 

7. tetrakis(n-propylammonium) 
tris((2,4,6-tri-
isopropyl)benzenethiolato)-mercury 
methanol solvate 

2.398 2.46 2.47 

8. tetraphenylphosphonium 
tris(2,3,5,6-
tetramethylbenzenethiolato-S)-
mercury acetonitrile solvate 

2.397 2.404 2.493 

9. tetramethylammonium 
bis(tris(m2-thiobenzoato-O,S)-
mercury(ii))-sodium 

2.443 2.468 2.485 

10. bis(tetraethylammonium) (m2-
benzene-1,2-dithiolato-S,S')-
bis(benzene-1,2-dithiolato)-di-
mercury(ii) 
 

2.382 2.429 2.437 

11. tetraethylammonium 
tris(cyclohexylthiolato-S)-mercury 
 

2.403 2.455 2.487 

Average 3 M-L  2.449 (0.023)  

HgS2 linear coordination    

12. bis(carboxymethylthiolato)-
mercury(ii) 2.339 2.339  
13. bis(n-pentanethiolato)-
mercury(ii) 2.304 2.304  

14. catena-(bis(m2-bromo)-bis(m2-
N,N-diethyldithiocarbamato-S,S')-
di-mercury) 

2.364 2.385  

15. bis(2-mercaptobenzoato-S)-
mercury(ii) dioxane solvate 2.363 2.363  

16. bis(4-t-butylbenzenethiolato-S)-
mercury(ii) 2.358 2.363  

Average 2 M-L  2.348 (0.028)  
The Hg(II)-S bond lengths represent one complex within a network.  
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Figure II-11: ChemDraw representation of model compounds, which are labeled according to Table II-
10. 
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Discussion 

Peptide α3DIV was prepared to functionalize the framework of α3D by incorporating a metal 

binding site.8 NMR and stability studies that examined the dynamic behavior and malleability of 

α3D revealed that the C-terminal end was the most amenable to mutations. In addition, this 

region of the bundle contained apolar residues that formed a hydrophobic “box” region, which 

offered a suitable location for a metal binding site. For these reasons, Leu residues were 

converted to Cys to produce a triscysteine motif and demonstrated its binding properties to the 

heavy metal ions Hg(II), Pb(II), and Cd(II). Subsequently, an α3DIV related construct that 

substituted the same leucine residues with histidine was prepared in order to form a ZnN3(H2O) 

that served as an excellent analogue of carbonic anhydrase (Table II-1).9   Despite these 

successes, it is critical to assess how amino acid substitution at this important position impacted 

the structure of the apo protein (e.g., was a stable, preformed metal binding site realized by these 

changes). 

 

Comparison to the structural statistics of α3D. The structural statistics comparison of α3DIV 

and its parent structure, α3D, are found in Table II-11. There are notable differences in the NOE 

and dihedral angle restraints used in the structure calculation of both structures and the empirical 

origins of these restraints. The solution structure of α3D was based on 1143 NOE restraints,8  

incorporating 70 more NOE restraints than the structure of α3DIV. The majority of its NOEs for 

α3D were classified in the short-to-medium range (45%), whereas both structures have roughly 

the same percentage (~30%) of short-to-medium and long-range restraints. Unlike the structure 

of α3D, α3DIV included φ, ψ and χ1 dihedral angle restraints that were generated from a 

TALOS-N analysis, which employed the chemical shift assignments of 1H, 1Hα, 14N, 13C, 13Cα and 
13Cβ  atoms to predict dihedral angle restraints. α3D only contained φ angle restraints that were 

derived from a triple resonance HNHA experiment, as well as χ1 angles, which were determined 

from NOE patterns. Moreover, the comparison of the backbone and heavy atoms root mean 

square deviation (RMSD) from the mean structure, for the same residue range and number of 

calculated structures, illustrated that the ensemble of the 13 lowest energy structures for α3DIV 

is lower than α3D. The RMSD for α3DIV is ~0.3 Å lower than the 13 structures reported for α3D, 



 74 

for both the backbone and heavy atoms in the structured regions and the backbone atoms for 

residues 1-73.   

   

The α-helical regions for the two structures slightly differ, with α3D (residues 4-21, 24-45 and 

51-70) covering 2 more residues than α3DIV (5-20, 25-44 and 51-70) in helix 1 and 2. The 

structure of α3D incorporated Trp4, Leu21, Ser24 and Tyr45 in its structured regions, but these 

residues, from a TALOS-N analysis, were designated to have a coiled (Trp4) or loop (Leu21, 

Ser24 and Tyr45) secondary structure. 

 
Table II-11: Structural statistics of α3DIV compared to α3D.  
RMSD from the mean structure (Å) α3D α3DIV 
Backbone (residues 1-73, N, Cα, C) 1.06a 0.78 (0.15)a 1.08 (0.31)b  

Backbone (residues 4-21, 24-45, and 51-70, N, Cα,C) 0.75a 0.48 (0.11)a 0.53 (0.15)b 
Heavy atoms (residues 1-73)  1.61a 1.25 (0.13)a 1.58 (0.32)b 
Heavy atoms (residues 4-21, 24-45, and 51-70)  0.92 (0.10)a 0.99 (0.10)b 

a13 structures. bψ angles excluded from the structure calculation. 

 

Comparison of the 13 lowest energy structures. The 13 lowest energy structures of α3DIV were 

calculated in order to properly compare the minimized model to the reported structural statistics 

of α3D, and it was observed that the overall ensemble is better ordered. The backbone (N, Cα, 

CO) and heavy atom RMSD values for the 13 structures of α3DIV were observed to be lower by 

~0.3 Å, even though the α3D contained more intraresidue and short-to-medium range NOE 

restraints (Table II-11). This difference was attributed to the dihedral angle and NOE sequential 

restraints used in the structure calculations. Specifically, the α3DIV structure contains φ and ψ 

backbone dihedral angles, while α3D only incorporated φ angle restraints. The presence of both 

dihedral angles limit the range of interaction between Ni-Ni+1 and Ci-Ci+1 atoms in the structured 

regions, thereby eliminating unfavorable sterics and could result to better ordered α-helical 

chains. This was tested in an analysis that involved removing ψ angle restraints in the structure 

calculation of α3DIV. It was determined that the RMSD from the mean structure values of the 

backbone and heavy atoms for residues 1-73 in α3DIV increased to 1.08 (0.31) from 0.78 (0.15) 

Å and to 1.58 (0.32) from 1.25 (0.13), respectively, which are almost equal to the same 
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parameters determined for α3D.  However, for the structured regions, a very modest increase of 

0.02 Å was observed, which is well within the statistical error (~± 0.10 Å).  

 

In addition, the increased unity in the 13 structures of α3DIV can be further justified by the 

amount of sequential NOE restraints between 1H backbone atoms used in the calculations. The 

α3D structure has a proper extent of HN
i-HN

i+1 and Hα
i-Hβ

i+3
 sequential NOE correlations in all 

three helices and strong Hβ
i-HN

i+1 NOE correlations in helix 3 for residues 50-70. Nevertheless, it 

significantly lacked Hα-HN
i+1, Hα-HN

i+3 and Hβ
i-HN

i+1 in helix 1 and 2 correlations, NOEs that are 

typically observed in α-helical structures since the distances between these 1H atoms are within 

the experimental limit of 5 Å. On the other hand, in the structured regions, α3DIV contained 

most of the NOE correlations mentioned above in a sequential manner. Additionally, the 

sequential NOE pattern in the structure of α3DIV can be viewed as compensating restraints since 

only a modest increase in the RMSD values were observed in the structured regions after ψ 

dihedral angle restraints were removed. 

 

Comparison to the lowest energy structure of α3D. The lowest energy structure of α3DIV and 

α3D are superimposed in Figure II-12A. The two structures were aligned via backbone (N, Cα, C, 

O) atoms of residues 1-73, and this alignment yielded an overall heavy atom RMS value of 1.75 

Å. From the overlay, α3DIV possesses the same overall topology as α3D, with a 

counterclockwise bundle that was expected in the design process of α3D. Figure II-12B is an 

overlay of the Leu-to-Cys mutation site, positions 18, 28 and 67, of both structures. The Cβ 

distances between the Leu-Leu and Cys-Cys were measured and the triangular plane that forms 

between these residues has an area of 15.5 Å2 in α3D and 14.1 Å2 in α3DIV. This slight deviation 

demonstrates that the fold at the C-terminal end was not significantly affected even after 

removing Leu residues that provide stabilizing and packing interactions in α3D. Regardless, 

incorporating Cys residues with polar, uncharged thiol groups to form a metal-binding site in 

α3DIV led to two significant structural differences as a result of a more packed core.  
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First, the α3DIV structure has lower Ω1,2, Ω2,3 and Ω1,3 angles by 16°, 15° and 7°, respectively. 

This deviation from α3D could stem from better packing of the apolar layers above the 

triscysteine site (Figure II-13). The first layer, which is composed of a plane between the Cβ 

atoms of Ile14, Phe31 and Ile63, has an area of 12.9 Å2 in α3DIV, whereas in α3D this plane is 

9.0 Å2 greater. This trend is also observed in the two subsequent layers 2 (Leu11, Ile35 and 

Ala60) and 3 (Phe7, Phe38 and Leu56), which has an area of 7.8 Å2 (16.1 Å2) and 7.3 Å2 (17.7 

Å2) lower than α3D.  

 

Next, it was observed that the incorporation of Cys residues did not disrupt the overall α-

helical framework of α3D, as demonstrated in the 15N-TROSY and CD studies. Unexpectedly, 

the alignment of α3D and α3DIV revealed that the addition of a Cys residue in the 28th position in 

helix 2 improved its helical content (Figure II-12C). In α3D, the helicity in the second strand 

breaks after Ala26 and becomes continuous again at Ala29. Residues Glu27 and Leu28 appear to 

have a more coil-like secondary structure. In contrast, this disruption in the helicity between 

residues 26-28 is not observed in the structure of α3DIV, which demonstrates an increase in the 

α-helical content. Additionally, the analysis from two web-based structural determination 

programs, TALOS-N and VADAR (Volume Area Dihedral Angle Reporter),59 as well as the CD 

comparison of apo α3DIV with α3D supports this observation. TALOS-N uses a database of 580 

proteins with almost complete backbone NMR chemical shifts (1H, 1Hα, 14N, 13C, 13Cα and 13Cβ) 

and an additional database of 9,523 high-resolution X-ray crystal structures (without 

experimental chemical shifts) to predict dihedral angles φ, ψ, and χ1, as well as the secondary 

structures from experimental NMR chemical shifts. Similar to the dihedral angle prediction, the 

TALOS-N secondary structure classification system involves a two-system artificial neural 

network (ANN) and categorized residues 26-28 into an α-helical secondary structure, with a 

probability score of ~0.96. VADAR analysis on the PDB coordinates of the lowest energy 

structure of α3DIV structure also characterized residues 26-28 to be in an α-helical structure, 

while the same analysis for α3D resulted in a coiled secondary structure.  Furthermore, the molar 

ellipticity value for apo α3DIV is about -4200 deg cm2 dmol-1 res-1 greater than α3D. This again 

indicates that the replacement of Leu residues with a Cys at the 28th position may have increased 

the overall helical content of the α3D framework.  
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Figure II-12: A) An overlay of α3DIV (helix 1: red, helix 2: green & helix 3: blue) and α3D (cyan). The 
backbone (N, Cα, C,O) rms was determined from PYMOL to be 1.75 Å.  B). Top-down view of the 
mutation site (18, 28, and 67), displaying superimposed Cys/Leu residues. C) Gain of helical content in 
helix 2 for residues 26-28.   
 

 
Figure II-13: A) First layer of apolar groups (α3DIV red: helix1, green: helix2, and blue: helix3; α3D: 
cyan) above positions 18, 28, and 67, which involves Ile14, Phe31, and Ile63. B) Second layer of apolar 
groups, Leu11, Ile35, and Ala60. C) Third layer of apolar groups, Phe7, Phe38, and Leu56.  

!
Preorganization of the triscysteine site. Native metalloproteins have evolved to possess metal 

coordination environments that are unique to their function, and two limiting extremes of metal 

binding sites have been described. The first group is typified by zinc finger proteins, which adopt 

a stable fold only after a metal has bound to the endogenous ligands of the sequence.60 In this 

case, metal binding defines protein structure. Less extreme, but still within this category, are 

cases where metal binding leads to important protein conformational changes that define 

function. Examples of such behavior can be seen with metalloregulatory proteins such as MerR 
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or ArsR.1,2  The second group is illustrated by the cupredoxins that have a well-defined, pre-

organized binding site. The concept of a racked-induced bonding or entatic state model has been 

proposed for such systems to elucidate the unique properties of these electron transfer (ET) 

proteins.61 The rack-induced bonding model explicates that the ligand environment (CysHis2 site 

and one or two axial weakly bound axial ligands) in a cupredoxin fold forces the copper ion, 

regardless of the oxidation state, into a strict distorted-tetrahedral geometry. This feature in 

cupredoxins and redox-active metalloproteins was discovered to be one of the fundamental 

driving forces in attaining efficient electron transfer activity. Ultimately, it is of great importance 

in the de novo design of metallopeptides to be able to predict accurately the extent of metal 

binding site preorganization prior to the introduction of a metal ion in order to achieve the 

desired affinity, selectivity and function. 

 

The sequence of α3D was designed to contain diverse sets of heptad repeats (defined as 

“abcdefg”), where nonpolar residues are incorporated at the “a” and “d” positions to provide core 

stabilizing interactions and charged residues at the “e” and “g” to form salt-bridges between 

helices.9  Previous work on parallel three-stranded coiled-coil (TRI and Coil-Ser) systems 

showed that the subtle difference between the “a” and “d” positions can produce distinctive 

outcomes in heavy metal binding affinity and geometry, which can be attributed to the 

preorganization of the sulfur ligands prior to metal binding.62, 63 It was determined that the 

substitution of Leu to Cys residues in “a” sites tend to favor the formation of a trigonal metal 

binding site, where three Sγ atoms point into the core (Figure II-14A). For instance, apo CSL9C 

(PDB 3LJM)64 comprise of “a” site Sγ atoms with distances of 3.3 and 3.4 Å. Conversely, “d” site 

substitutions orient Sγ atoms away from the core and towards the helical interface forming a 

much larger cavity (Figure II-14B). Apo CSL19C (PDB 2X6P)64  contains “d” site Cys residues 

with Sγ - Sγ distances of 3.4 and 4.6 Å. Initial examination of the α3D NMR structure indicated 

that a preorganized metal binding site could be carved into a hydrophobic box region of the 

protein. Therefore, it was for these structural reasons that leucines in the “a” positions of α3D 

were targeted for modification; however, one should recognize that the side chain orientations 

are expected to differ in this antiparallel α3DIV framework.  
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Figure II-14: A) “a” site Cys in apo CSL9C (PDB 3LJM),64 in which the Sγ atoms position inside the 
core. The alternate conformation of the Sγ atoms was removed in order to illustrate the orientation of “a” 
site Cys residues. B) “d” site Cys in apo CSL19C (PDB 2X6P),64 which contain Sγ atoms that point at the 
interhelical interface. 

 

In α3DIV, “a” site Cys residues were incorporated and predicted that the Sγ atom of Cys18 and 

Cys67 could orient into the core to initiate the generation of a preformed trigonal plane of sulfurs 

starting with these two ligands. Cys28 was intended to provide a more adaptable ligand, which 

was predicted to orient towards the C-terminal end since this residue is on the antiparallel strand. 

The main objective with the design of α3DIV was to create a single-polypeptide scaffold that 

produces a more asymmetric or a distorted triscysteine metal binding site than the symmetric Cys 

sites found in TRI or Coil-ser analogues. As a result, the more native-like properties of α3DIV 

could provide a better model for native metalloregulatory proteins or metallochaperones that 

sequester toxic heavy metals in nature. 

 

The triscysteine metal binding site of the 20 lowest energy structures of apo α3DIV is 

superimposed in Figure II-15A. Overall, the 20 conformations of the three Cys residues illustrate 

a well-defined metal binding site. For instance, the Cβ and Sγ atoms of Cys28 are uniformly 

oriented towards the C-terminal end of the bundle (Figure II-15A, side-on view), while the Sγ 

atoms of Cys18 are pointing to the interhelical interface between helix 1 and 3 in 18 of the 20 

structures.  It should be pointed out that the Cys18 χ1 dihedral angle restraint was not 

constrained but this corresponding angle were restrained in Cys28 and Cys67. Additionally, the 

Hβ atoms of Cys18 have five NOE interactions, four and one intra- and inter-helical (Phe31) 
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NOEs, respectively. The corresponding atoms of Cys28 contain a single intra-helical NOE and 

three inter-helical (Cys18, Phe31, and Arg71) NOEs; whiles, the Hβ atoms of Cys67 only possess 

two intra-helical NOEs. Despite this description of the averaged structure of the Cys residues, it 

is proposed that the site is not rigid, because the amide proton 15N-TROSY signals for such 

residues and their sequential neighbors are ~ 30% more intense than the average, indicating 

motion on the nano-second timescale for these residues. With this caveat, the (time) averaged 

structure of the metal binding site is described below. 

 

The sulfur atoms of Cys28 and Cys67 are observed to have set orientations, while Cys18 

contains two conformations that diverge from its ensemble.  The Cβ and Sγ atoms of Cys28 on 

the antiparallel strand are directed towards the C-terminal end of the bundle (Figure II-15A, side-

on view). This orientation was also predicted to occur for the Cβ atoms of non-coded D-amino 

acids, such as D-Pen or D-Leu, in 3SCC analogues.65, 66 The change in chirality in these two D 

derivatives were expected to direct their respective thiol and isopropyl moeity towards the C-

terminal end. Consequently, it is shown here in the α3DIV structure that an L-Cys in an 

antiparrallel strand provides the same effect as a D-amino acid. For Cys67, its Sγ atoms are 

oriented inside the core of the bundle, which was predicted for this “a” site substitution. Lastly, 

the collective Sγ atoms of Cys18 result in a more “d” site-like orientation, where the Sγ atoms are 

directed at the interhelical interface between helix 1 and 3. Cys18 possesses two structures (16 

and 18) that deviate from the ensemble. In structure 14, the “d” site conformation of the Sγ atom 

of Cys18 is oriented towards the opposite direction, at helix 1 and 2. Structure 16 contains a 

Cys18 Sγ atom that points inside the core, providing a structure that presents a metal binding site 

with two “a” site ligands at Cys18 and Cys67 (Figure II-15B). When compared to apo CSL9C 

(Figure II-15C), which contain “a” site residues (with two conformations), the Cβ and Sγ atoms 

of Cys18 and Cys67 in structure 16 overlay well with two Cys9 residues. As a result, structure 

16 demonstrates a partially preformed trigonal cavity for metal ions that coordinate in a 3 or 4 

coordination environment, such as Hg(II), Pb(II) and Cd(II). 

 

!
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Figure II-15: A) Preorganization of the triscysteine metal binding site of the 20 lowest energy structures 
(Cys18: red, Cys28: green and Cys67: blue). B) A partially preformed trigonal site for metal binding in 
structure 16 (cyan) of 20 aligned with the lowest energy structure, structure 1. The Sγ – Sγ distances are 
measured for structure 16 of α3DIV. C) Structure 16 (cyan) aligned with the Cys “a” sites of CSL9C 
(PDB: 3LJM) (blue).61 The Sγ – Sγ distances are measured for CSL9C. 

 
 
Implications on metal binding. With a solution structure in hand of apo α3DIV, one may next 

consider the consequence of metal binding to the system. The apo structure allowed us to 

investigate the global, as well as, local structural changes that occur when a protein scaffold is 

functionalized with Cys residues to form a metal binding site. A metallated structure would 

afford a concise comparison with the apo structure to assess the extent of preorganization of the 

site, which could provide a mechanistic model for metal ion acquisition in native systems. In 

terms of de novo protein design, both structures offer a base for future design of a metal binding 

site with mixed residues/ligands or with identical residues that require secondary interactions 

(such as hydrogen bonding) in able to achieve redox or catalytic activity with transition metals 

Fe(II/III), Cu(I/II) or Zn(II).  

 

The spectroscopic properties of Hg(II), Pb(II) and Cd(II) bound α3DIV were previously 

reported8 to form the predicted complexes but a much closer inspection of the solution stability 

of metallated α3DIV was necessary to illustrate that the addition of a metal ion does not have a 

unfavorable effect on its fold.  The 15N-HSQC spectra of metallated α3DIV were collected and 
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performed circular dichroism and thermal denaturation studies to illustrate that heavy metal 

binding reinforces and improves the solution stability of α3DIV. In addition, the Hg-α3DIV 

species was analyzed by XAS to obtain structural metrics on a metallated species.   

 

Circular dichroism studies have been a central tool in investigating and confirming metal-

induced (transition and/or heavy metal ions) folding in native proteins, such as zinc finger 

proteins67 and calmodulin,68 as well as in de novo designed peptides including isoleucine zipper69  

and BABY70 3SCC peptides. The CD fingerprint of α-helical proteins and peptides exhibit two 

minima at 208 and 222 nm, which arise from π-π* and n-π* transitions in the amide atoms.71 

When compared to apo α3DIV, the CD spectra of the metallated species also contain a double 

band profile at 208 and 222 nm (Figure II-8A). These two absorption bands are a characteristic 

feature in α-helical folds. The calculated molar ellipticity values ([θ222]) for the metallated 

species fall within the range of the apo and these large negative [θ] values are typical for a well-

folded α-helical fold. Furthermore, the CD results show that the apo form has a high α-helical 

content, which was the intended target in the original design of α3D. In this peptide system, 

metal binding to the C-terminal end of the bundle was not necessarily predicted to increase the 

helicity of the peptide because the overall fold is highly α-helical. Metal binding was expected to 

perturb that region of the peptide (positions 18, 28 and 67 at the C-terminal end), resulting in a 

slight decrease in the helicity of the metallated species. This corroborates well with DSC results 

(which is discussed subsequently) because, although a lost in helicity was observed, metal 

binding provides M-thiolate bonds that enhance the tertiary stability of the structure, thus much 

higher melting temperatures when compared to the apo.  In addition, the replacement of Leu to 

Cys residues, to build a metal binding site, removes stabilizing hydrophobic interaction within 

the α3D fold and binding a metal ion into this site counters this loss of stability. 

 

A thermal denaturation analysis was performed to further assess the stability of metallated 

α3DIV and to explore the concept that metal binding to proteins could lead to greater stability. 

This rise in thermal stability has been previously observed in ligand-binding studies on native 

proteins. For example, the melting temperature (Tm) of a copper metallochaperone BsSco was 

determined to increase by 23 °C when bound to Cu(II).72 Ca(II) and Zn(II) ion binding to 
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coagulation factors IX binding protein increased its melting temperature by 4 – 5 °C and 

calculated enthalpic parameter (ΔHcal) by more than 100 kcal mol-1.73 The DSC results illustrate 

that metal bound α3DIV is more stable than its apo counterpart in thermally induced 

denaturations. The metallated species have much higher melting temperatures, by a range of 18 – 

24 °C, and the calculated enthalpic parameters (ΔHcal) are greater by 8 – 20 kcal mol-1   (Table II-

7). The enhancement of both thermodynamic values shows that the metal-thiolate bonds (Cd-S, 

Hg-S or Pb-S) supplements the weak-nonbonding forces (hydrophobic interactions, hydrogen 

bonds, and salt-bridges) that are essential in protein folding and disruptive during the 

denaturation process. In addition, the Tm value of parent structure α3D is still greater than apo but 

slightly higher than the metallated α3DIV species, which indicates that the incorporation of a 

triscysteine site in its apo or metal-bound form cannot entirely reproduce the hydrophobic 

interactions that are provided by Leu residues in a protein fold. This finding is further supported 

by a chemical denaturation performed on apo α3DIV, where a 2.5 kcal mol-1 decrease was 

observed in the ΔGUF from the reported value of α3D (5.0 kcal mol-1).8 Moreover, the 

ΔHcal/ΔHvan’t Hoff ratios reveal the thermal-induced denaturation process and a value of 1 indicates 

a two-state model. α3D has a ratio closest to this model of 1.2, which matches well with the 

reported value. Apo and metallated α3DIV have values > 2.0 and the denaturation curve of these 

species are much broader than the corresponding curve of α3D, demonstrating a self-associating 

unfolding process. This result was not unexpected as the metal binding site contains three 

thiolate ligands that could induce the formation of external disulfide bonds at higher 

temperatures.  

 

The transition from a two-coordinate (2 C. N.) [Hg(II)S2(SH)] to a three-coordinate (3 C. N.) 

[Hg(II)S3]− complex in α3DIV has an apparent pKa of 7.1,8 and this transition was examined by 
199Hg-NMR and UV-vis. It was determined that α3DIV forms a linear [Hg(II)S2(SH)] 2 C.N. 

below pH 6.0 and a 3-coordinate trigonal [Hg(II)S3]− complex above pH 8.5 with a single 

chemical shift at -938 and -244 ppm, respectively. Further, under intermediate pH conditions 

(~pH 7.5), two chemical shifts were observed at -240 and -926 ppm, which demonstrate a 

mixture of both species. The 3 coordinate Hg-α3DIV species (at pH 8.7) was further analyzed 

with XAS to obtain structural parameters on metallated α3DIV, as well as to confirm previous 
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findings. The EXAFS analysis on the Hg(II)-α3DIV is dominated by nearest-neighbor scattering 

typical of sulfur ligation (Figure II-10) and yielded an average Hg(II)-S bond length at 2.36 Å 

and a 2.5 C. N. This bond length falls in between reported values for 2 C. N. and 3 C. N. 

mercury-sulfur complexes. Therefore, in able to correlate this EXAFS analysis to the 

coordination environment of the [Hg(II)S3]− complex of α3DIV, these results were compared to 

the Hg(II)-S distances of protein and de novo designed peptide systems derived from EXAFS 

analysis and model compounds measured from X-ray crystal structures in Table II-9. The native 

protein, MerR, which was determined to form a trigonal mercury complex, has an EXAFS 

derived Hg(II)-S bond length at 2.43 Å.4 Similarly, the EXAFS analysis on Hg(II)-TRIL16C 

provides Hg(II)-S distances of 2.32 and 2.44 Å for the corresponding 2 and 3 coordinate species. 

Table II-9 also compares the EXAFS result to 2 C. N and 3 C. N. compounds from the 

Cambridge Structural Database (Table II-10).74 The five model compounds with a 2 C. N. have 

an average Hg(II)-S bond length of 2.348 (0.023) Å.54-58  The three-coordinate compounds (11 

total) produced an average Hg(II)-S distance of 2.462 (0.044) Å.43-53 Three of these compounds 

exhibit a T-shaped coordination environment, which consists of two short bonds with an average 

bond length of 2.372 (0.01) Å and a single longer bond at 2.497 (0.071) Å.43-45 These structure 

based Hg(II)-S bond lengths corroborate well with the EXAFS analysis of Hg(II)-TRIL16C and 

Hg(II)-MerR. 

 

The two most straightforward interpretations of the observed 2.36 Å value for Hg-α3DIV is 

either an approximately equimolar mixture of 2 and 3 coordinate mercury sites or a single, 

distorted T-shaped structure similar to those of small molecule models. The mixed speciation 

behavior was previously observed in an EXAFS analysis of Hg(II)-TRIL16C. A mixture of 2 and 

3 C. N. species has a 2.37 Å Hg(II)-S bond length. However, this mixture of 2 and 3-coordinate 

Hg(II)-TRIL16C75 simultaneously show 199Hg-NMR resonance peaks at  ~-180 ppm and ~-830 

indicative of both species, whereas Hg-α3DIV has a single resonance at -244 ppm. Furthermore, 

the apparent pKa for the formation of Hg(II)(TRIL16C)3 was calculated to be 7.8, and a 9.5 pH 

condition was used to obtain a pure 3 C. N species in the EXAFS analysis. This pKa value is 

nearly 1 log unit higher than what was determined for the [Hg(II)S3]− complex of Hg(II)-α3DIV. 

Thereby, the pH condition of 8.7, which is 1.6 log unit higher than its apparent pKa, favors a 3 C. 
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N. species instead of a mixture with a 2 C. N. complex as observed in Hg(II)-TRIL16C. Finally, 

the absorbance values in the ultraviolet between 2 – 4 coordinate mercury-sulfur chromophores 

are distinctive, where Hg(SR)2 complexes have a λmax band <220 nm and Hg(SR)3 and Hg(SR)4 

compounds exhibit absorption λmax bands between  230 – 340 nm.76 The absorption 

characteristics of Hg(II)-α3DIV at pH 8.6 is more consistent with a 3 C. N. complex. For these 

reasons, it is concluded that the best interpretation of the XAS data collectively with the 199Hg 

NMR and UV-vis is to assign a T-shaped geometry with two short Hg(II)-S bonds and one 

longer (~2.8 – 3.0 Å) bond. 

 

Together, the results from the CD and DSC studies demonstrate that metal binding did not 

disrupt the overall secondary structure of α3DIV; instead it provides further stability to the 

framework. In addition, the EXAFS analysis validates Hg(II) binding to the triscysteine site and 

provides structural metrics on the [HgS3]– complex. Therefore, the loss of cross peaks in the 15N-

HSQC spectrum of Pb(II)- and Hg(II)-α3DIV is not due to an unfolding of α3DIV. Instead, it 

indicates that metal binding quenches the more rapid dynamics of the metal-site (see above) and 

selects conformations that interconvert on a milli-microsecond time scale, leading to line-

broadening and loss of the corresponding 15N-HSQC NMR cross peaks. Nonetheless, in the case 

of Pb(II)-α3DIV, 57 of the 68 resonance peaks were still identified and the perturbation of many 

residues, such as K8, Cys18, Phe38, Ala44 and Val53, can be identified. The missing peaks are 

due to residues localized near the metal binding site or at the C-terminal end, which was already 

determined to be more dynamic than the rest of the fold in α3D. For example, the chemical shift 

change for residues that are located at this end of the bundle, involving Gln19, Ser24, Ala29, 

Gln68 and Tyr70, cannot be easily assigned suggesting severe line broadening or overlap with a 

neighboring signal. For Hg(II)-α3DIV, the 15N-HSQC spectrum has 7 less peaks than Pb(II)-

α3DIV and has 8 less than its apo counterpart. In contrast to the Pb spectrum, the loss in peaks 

seems to be global and cannot be assigned to any specific region of the sequence. Like the Pb 

spectrum, peak loss can be attributed to Hg(II) binding but the more dramatic effect could be 

largely associated with the pH environment. As pH increases from 6 to 9, the average lifetime of 

the exchangeable hydrogen groups, including backbone amide protons, increases from ms to μs 

range,77 thereby decreasing the observable resonance peaks in a 15N-HSQC spectrum. This pH 
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effect is exhibited in the comparison of the 15N-HSQC spectra of apo α3DIV at pH 5.8 and 8.6  

(Figure II-16). The higher pH spectrum contains 13 fewer peaks than the lower pH, 

demonstrating that the significant loss in cross peaks in the Hg(II)-α3DIV spectrum is mainly 

due to the pH condition.  

 

An alternative explanation for the significant change in 15N-HSQC results for the metallated 

species could stem from the asymmetric nature of the triscysteine site leading to structural 

dynamics on micro-milli second time scale resulting in line broadening and peak loss. The side-

on view of the triscysteine site of structure 1 in Figure II-15A shows that the Cβ and Sγ atoms of 

Cys28 points toward the C-terminal end of the bundle. Upon metal binding, Cys28 requires a 

rotation at the N-Cα-Cβ bonds of about 56° towards the N-terminal end in order to achieve the 

proper trigonal plane for Hg(II) or Pb(II).  In the same manner, the “d” site-like conformation of 

Cys18 will have to adopt an “a” site conformation as seen in structure 16 of α3DIV or translate 

towards the core (Figure 6B). To further illustrate this process, apo α3DIV was overlaid to the X-

ray crystal structures of metallated de novo designed peptides, As(III)(CSL9C)3 (at 1.81 Å 

resolution)78 and [Hg(II)]S[Zn(II)(H2O/OH-)]N(CSL9PenL23H)3
n+ (at 2.20 Å resolution)79 in 

Figure II-17.  

 

 
Figure II-16: Enlargements of 15N-HSQC spectra of apo α3DIV pH 5.8 (blue) and pH 8.6 (red). Spectra 
were collected on a 500 MHz Varian VNMRS NMR instrument at 25 °C. The pH 5.8 spectrum contains 
64 of the 68 total peaks and the assignments are adjacent to its peak, whereas the pH 8.6 spectrum has 54 
of the 55 identified peaks (not assigned). The peaks at pH 8.6 shift upfield of pH 5.8 and also contain 15 
less identifiable peaks, demonstrating a pH effect on the hydrogen exchange rates. 
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Similar to Pb(II), As(III) has a sterochemically active lone pair of electrons and binds to a 

triscysteine environment in a trigonal pyramidal geometry.  There are several possible 

orientations for the As(III) ion, with the most symmetric being endo and exo.80 In the 

energetically preferred endo conformation,  the As(III) ion and all three Cβ atoms are on the same 

side of the plane of S atoms. In the exo conformation, As(III) and the Cβ atoms are on opposite 

sides of this plane. It is also possible to have a mixed conformation, where one or two Cβ atoms 

are on the same side and one or two are on the opposite side.  The crystal structure of 

As(III)(CSL9C)3 reveals an endo conformation (Figure II-17A). For Pb(II)-α3DIV in solution, it 

is possible that the Pb atom forms a distorted, asymmetric triscysteine site that undergoes a 

exchange between these conformations; thereby, influencing the chemical shift dispersion in the 
15N-HSQC spectrum. In addition, the 207Pb-NMR spectrum of 207Pb(II)-α3DIV contained no 

resonances in the range observed for the more symmetric Pb(II)-S3 complexes in Coil-Ser, 

BABY and GRAND parallel three-stranded coiled coils.81 UV-vis studies confirm that Pb(II) 

does bind in a trigonal pyramidal geometry,8 so the absence of the 207Pb NMR signal supports the 

idea that Pb(II) is in a very dynamic environment.  207Pb-NMR is much more sensitive to the 

motion in the coordination environment than UV-vis spectroscopy and can provide insight into 

the dynamic behavior of a metal-ligand complex.  
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FIGURE II-17: A) Structure 1 of α3DIV superimposed over the As-Cys3 site of As(CSL9C)3 (PDB 2JGO 
at 1.81 Å resolution).78 The Cα and Cβ of Cys67 was visually aligned with a Cys residue. B) Structure 1 of 
α3DIV superimposed over the Hg-Penicillamine3 site of [Hg(II)]S[Zn(II)(H2O/OH-)]N(CSL9PenL23H)3

n+ 

(PDB 3PBJ at 2.20 Å resolution).79 The Cα and Cβ of Cys67 was also visually aligned with a 
penicillamine residue. C) Model of trigonal T-shaped complexed derived from the EXAFS 
analysis, where Cys18 and Cys67 form short Hg-S bonds and Cys28 provides a Hg-S long bond.   

 

Hg(II) can form two- and three-coordinate sulfur complexes depending on the pH.  In the 3 C. 

N. complex, two geometries are possible: a trigonal planar complex with equal Hg-Sγ bond 

lengths (~2 Å), and a T-shaped complex with two short Hg-Sγ bonds (2.1 – 2.3 Å) and one long 

(~3 Å) bond. The EXAFS analysis on the 3 C. N. complex of Hg(II)-α3DIV illustrates a T-

shaped coordination environment, therefore the triscysteine site of α3DIV was aligned with the 

X-ray crystal structure of the T-shaped Hg(II)-trispenicillamine of [Hg(II)]S[Zn(II)(H2O/OH-

)]N(CSL9PenL23H)3
n+  (Figure II-17B). This alignment shows that the Sγ atom of and Cys67 has 

the proper orientation to form a short Hg-Sγ bond, however Cys18 and Cys28 would require 

ample conformational changes to align with this T-shaped mercury-complex in 

[Hg(II)]S[Zn(II)(H2O/OH-)]N(CSL9PenL23H)3
n+. Thus, like the Pb(II) complex, the distorted T-

shaped geometry of Hg(II)-α3DIV could form different conformations, where the one long bond 

can alternate between Cys18 and Cys28 (Figure II-17C). The resonance peak in the 199Hg-NMR 

spectrum of 199Hg-α3DIV can elucidate this dynamic process. This nucleus is exceptionally 

sensitive to a slight perturbation in the Hg-ligand bond length and angle. A 0.01 Å deviation in a 

Hg-Cl bond length and 10° change in Cl-Hg-Cl bond angle was calculated to change their 

corresponding chemical shift values by ~50 ppm and 100 ppm.82 For Hg(II)-α3DIV in a 3 C. N. 

complex, its 199Hg-NMR chemical shift value was experimentally determined to be -240 ppm. 

This value falls in between the 199Hg-NMR signals reported for symmetric Cys “a” and “d” sites 

A B C 
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in 3SCC peptides with chemical shifts of ~-185 and ~-316 ppm respectively. This deviation by 

+55 ppm from an “a” and -76 ppm from a “d” site could be representative of a distorted trigonal 

thiolato [HgS3]– T-shaped complex of Hg(II)-α3DIV with metal-ligand bond lengths and angles 

that deviate from its 3SCC counterparts. 

!
Conclusions 

De novo protein design is an emerging and biologically relevant approach in studying the 

metal binding sites of metalloregulatory proteins, as well as, metalloproteins. Toxic heavy 

metals, such as Hg(II), Pb(II), As(III) and Cd(II), threaten all forms of life.  By understanding the 

mechanism by which bacteria control expression of genes to detoxify heavy metals through 

metalloregulatory proteins, one can develop strategies to combat this environmental issue. It 

offers a novel approach of modeling metal centers using simple peptide scaffolds. In this chapter, 

I described the solution structure of apo α3DIV, a de novo designed three-helix bundle peptide 

with a triscysteine metal binding that sequesters heavy metals Hg(II), Pb(II) and Cd(II). This 

thiol-rich environment is a ubiquitous motif in the metal binding site of metalloregulatory 

proteins, including ArsR, MerR and CadC. I showed that α3DIV has the same overall topology 

as, and aligns well with, its parent structure α3D. I found that incorporating Cys in place of Leu 

residues, which provide stabilizing packing interactions in the core, increased the helical content 

of the α3D framework and resulted in a more packed core. In addition, heavy metal binding to 

α3DIV induces further stability. Ultimately, this structure provides a stable framework for 

designing future metallopeptides that could perform specific catalytic or redox reactions.     
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