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ABSTRACT

Prediction and Design of Colloidal Matter Using Directional Entropic Forces

by

Nayaz Khalid Ahmed
Chair: Sharon C. Glotzer

We study the effect of entropic forces in the preferential binding of col-

loidal building blocks towards the assembly of target structures. By using

methods developed to calculate the potential of mean force and torque, we

quantify the interactions between convex facetted particles with increasing de-

pletant concentration and find that pair-wise entropic interactions are up to a

few kBT . We use these interactions to determine the required depletant os-

motic pressure to promote specific binding in different systems. We extend the

notion of entropic binding from convex facetted particles to concave dimpled

particles - geometrically achieved by reducing the radius of curvature of the

entropic feature in a particle’s shape. By understanding the transition between

head-to-head and head-to-tail binding in systems with and without depletants,

we evaluate that the robustness required of experimental techniques aimed at

synthesizing facetted particles can be reduced in the presence of depletants

larger that 0.4 diameters of the colloidal particles. We study the assembly of

recently developed experimental building blocks that promise reconfigurable

structures through their own shape reconfigurability. This study has necessi-

tated the implementation of new overlap algorithms for Monte Carlo simula-

tions of the equilibrium structures of convex and concave spheroidal particles,
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particles that can be built as a combination of positive and negative spheres.

Through the analysis of densest packing and assembly structures of concave

spheroidal particles, i.e. multi-dimpled spheres, we generate geometric con-

siderations that help a priori determine these emergent behaviors of entropic

colloidal systems. Finally, through the study of packing and assembly of spher-

ical union particles, i.e. positive unions of spheres, we develop a paradigm of

entropic repulsive patches, necessary for the design of open crystal structures

using entropy. We find open rotator face-centered cubic lattices at small protu-

berance amounts for all families of particles. At higher packing fractions, we

find special crystal structures such as a rotator A15 phase with planar tetrava-

lent particles and a hexagonal close packed phase with hexavalent particles.

We believe that these assembly studies of spheroidal particles may provide

insight into the assembly of protein building blocks, as proteins are complex

systems that assemble under various depleting conditions into different open

crystal structures.
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CHAPTER 1

Introduction

When nature finishes to produce its

own species, man begins using natural

things in harmony with this very nature

to create an infinity of species.

Leonardo da Vinci

1.1 Motivation

Most of the advances in human history have been achieved through the development of
new materials that serve a novel function. During the Iron Age, the processing of iron
was discovered and society advanced tremendously. New tools were built enabling rapid
transportation that resulted in the exploration of many new lands and seas. More recently,
the plastic age in the last half of the 20th century provided us with flexible packaging
materials, and the silicon age in the last quarter of the 20th century opened the door to the
world of electronics. Every advance in materials has been accompanied with a fundamental
transformation in human life style forever.

The next generation of materials will be “designed” through building from the bottom-
up. Bringing together various nano scale building blocks in a predetermined manner to
achieve a target property will be the key ingredient in future materials. This can be achieved
both through discovering nature’s intelligent designs, and through experimental probing of
various designs. These materials will again undoubtedly transform our civilization as we
know it today.

Furthermore, these next generation materials will be also distinguished by their ability
to adapt both on demand and to environmental cues in order to carry out targeted functions.
The ability of materials to change structural, optical, electronic or other properties when
needed, all require that the intrinsic building blocks that comprise the material be able
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Figure 1.1: Two different assembled structures from similar model building blocks can be
obtained through programmable shape and interactions. Based on work in Jankowski and
Glotzer [1].

to switch from one structure to another. In biological systems, for which adaptability is
ubiquitous and allows for critical function, the basic building blocks of biology – DNA
and proteins – create structures that exhibit dynamic reconfigurability we require for the
adaptive, functional materials applications described above.

If material building blocks could be imbued with programmable shape and interactions
(see Fig. 1.1) so as to allow for their assemblies to actively and dynamically reconfigure in
biomimetic fashion between distinct structures, then fundamentally novel capabilities (such
as switching, programmability and autonomy) could be applied to the design of our next
generation smart, adaptive materials. Recently, promising experimental techniques have
been developed for the synthesis and fabrication of switchable building blocks capable of
assembling into structures that can dynamically switch between two or more states.

It is our contention that the fundamental ability of a material’s structure to dynami-
cally reconfigure among two or more target structures is predicated on the ability of the
structure to self-assemble from precursor building blocks whose shapes and interactions
conspire to yield the right structure under the right circumstances. Self-assembly refers
to this process, whereby a collection of objects (atoms, molecules, particles, etc.) spon-
taneously organize into a well-defined structure [10–12]. Surfactants self-assemble into
micelles [13]; block copolymers self-assemble into lamellae [14, 15]; lipids self-assemble
into cell membranes [16, 17], proteins self-assemble into viruses [18], birds self-assemble
into flocks [19] – these are just a few of the many examples of larger structures formed
from the spontaneous organization of smaller subunits or “building blocks”.

Once assembled into a given structure, reconfigurability can be introduced by dynam-
ically changing the shape of the building blocks, changing their interactions or changing
their environment. The overall shape of building blocks can be easily tuned by swelling
and shrinking them through the absorption or evaporation of a solvent from them. Interac-
tions between building blocks can be changed by the introduction of salt in systems. Also,
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the environment can be changed by introducing smaller “depletant” molecules in the sys-
tem. These are viable techniques to increase the number of tunable structures that can be
obtained from the same building block. These techniques form the primary basis of this
work. We answer questions regarding the ability to self-assemble different structures from
the same building block as a first step towards designing reconfigurable materials.

1.2 Self-Assembly for Materials Design

Self-assembly refers to the spontaneous formation of organized structures through a stochas-
tic process that involves pre-existing building blocks, is reversible, and can be controlled
by proper design of the components, the environment and the driving force [11, 12]. It is
a governing principle by which materials form [10]. For customized materials on macro-
scopic length scales to be made, self-assembly is essential because the number of building
blocks that would have to be precisely placed in the absence of a self-directed method are
too large and the process is prohibitively time consuming. A Fermi approximation of the
time required for building a 1 cm cube using 10 nm building blocks with the help of optical
tweezers would be in the order of a billion days.

The basic idea promoting self-assembly is to develop building blocks that have suffi-
cient information content inherent in them, allowing a desired structure to form sponta-
neously by moving to a minimum free-energy state after sampling an ensemble of possible
configurations [2, 20]. Examples of self-assembled structures include lipid bilayers [16],
peptide bundles [17], patchy nanoparticles [21–23] etc. amongst others.

Polystyrene colloidal crystals, consisting of charged monodisperse polystyrene micro-
spheres suspended in water, self-assemble into a face-centered-cubic (fcc) lattice with lat-
tice spacing comparable to the wavelength of light [24]. Such colloidal structures may
also find applications in nanoscale electronics, miniature diagnostic systems and hierarchi-
cally structured catalysts amongst others [25]. However, for the assembly of more com-
plex structures, it has been recognized that anisotropic shape and specific interactions (or
“patchiness”) are useful [2].

By offering strategies for generating nanostructures, self-assembly is important in a
range of fields: chemistry, physics, biology, materials science, nanoscience, and manufac-
turing. Technologies involving nanometer-scale objects continue to improve the quality of
our daily lives because the down-sizing of functional units can result in a significant de-
crease in device energy consumption and more efficient production processes. In addition,
novel phenomena have been revealed at the nanometer-scale. Shrinking component size
advances nanotechnology, while the related phenomena represent nanoscience. Therefore,
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a b

Figure 1.2: Many anisotropy dimensions for enthalpically patchy particles [2] have entrop-
ically patchy counterparts. Example traditional sticky patchy particles left (a) and (b) with
entropically patchy counterparts right (a) and (b). Figure reproduced from [3].

the regimented fabrication of nanometer-scale objects is undoubtedly one of the central is-
sues in current science and technology. Towards this end, world leading chipmaker Intel
is now using self-assembly techniques for the development of chips with feature sizes less
than 14 nanometers.

1.3 Enthalpy and Entropy

When the concept of self-assembly for materials design was proposed by Whitesides in
2002 [10], one of the motivating reasons was the ability to choose from a wide range of
interactions (van der Waals, ionic, steric, magnetic, gravitational, electrostatic, and others)
and the ability to adjust these interactions over wide ranges of strength, range, and selectiv-
ity. This has resulted in great flexibility in the design of building blocks for self-assembly.

The design principle of choosing from a wide range of interactions is equivalent to
setting up an enthalpic potential for the interaction of particles. In such “traditional”
patchy particles [2, 21], anisotropic interactions arising from patterned coatings, function-
alized molecules, DNA, and other enthalpic means create the possibility for directional
binding of particles into higher-ordered structures such as nanoparticle superlattices and
colloidal crystals. Examples of patchy particles include Janus colloids [26–32], striped
nanospheres [33] and nanorods [34], and DNA-coated patchy particles [35], among many
others [2, 36].

With patchy particles, anisotropically placed patches promoting either specific or non-
specific interactions with patches on other particles induce directional “bonding” between
particles of the sort typically attributed to molecular substances. To date, patchy particles
have been assembled into numerous structures [37–47], many of them isostructural to their
atomic and molecular counterparts.

Another design principle involves the manipulation of building block shape for tar-
geted self-assembly which takes advantage of the contribution of entropic forces. Since the
work of Onsager [48], there has been considerable interest in the effects of shape on the
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Figure 1.3: Effect of depletion. The free volume available to the depletants in this sys-
tem, denoted by polymers, increases when spherical colloidal particles come closer to each
other. Reproduced from Lekkerkerker [4].

form of assembled and ordered phases, beginning with spherocylinders [49, 50]. Early ad-
vances in nanoparticle synthesis led to the availability of various building blocks including
spheres [51], cubes [52], rods [53], and tetrapods [54] at both the nano and micro scales.
These entropic forces have been shown to assemble anisotropically shaped particles into
complex structures [49,50,55–72]. A general observation from many of these studies is that
dense suspensions of hard, facetted particles align their facets so as to maximize the system
entropy, giving rise to ordered structures as complex as colloidal quasicrystals [57,64] and
crystals with unit cells containing as many as 52 particles [63]. Damasceno, et al. [63, 64]
rationalized this tendency toward facet alignment as the emergence of “directional entropic
forces” between hard particles. Directional entropic forces (DEFs) are not intrinsic to the
particles, but instead are statistical and emerge from the collective behavior of the entire
system upon crowding.

1.4 Depletion Interactions

Depletion interactions between colloidal particles are a unique way of controlling the self-
assembly information inherent in the system [4]. Here the environment as well as the
building block attributes together affect the binding force generated between the colloidal
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particles. Depletion interactions are caused by the presence of smaller depletant particles,
which promote the building blocks to bind in a fashion that would maximize the entropy
of the system [73, 74]. The interaction between two colloidal spheres in a solution of
depletants was first understood and explained as depletion interactions by Asakura & Oo-
sawa [73].

Such effects of depletion have already been noted to occur in nature. In the 18th century,
it was known that red blood cells (RBCs) tend to cluster, preferably with their flat sides
facing each other, giving structures commonly known as “rouleaux” [75], as shown in Fig.
1.4. This aggregation of RBCs into “rouleaux” had been related to the increased serum
protein concentrations of fibrinogen, globulin and albumin, and thus could be explained by
depletion forces between RBCs, induced by the serum proteins [76].

Other similar examples include the formation of emulsion droplets when mixing biopoly-
mers [77] (depletion-induced demixing), precipitation and isolation of viruses [78,79], and
aggregation and creaming of emulsion droplets [80, 81] (micelles as depletants).

Depletion interactions can be understood as a form of attraction through repulsion [4].
They are a beautiful example of entropically driven self-assembly. The key feature of
depletion interactions is the hierarchy of length scales, introduced by two different sized
particles. The minimum free-energy state of the system is found by maximizing the entropy
of a system of colloidal particles and smaller depletant particles. In 1954, Asakura and
Oosawa [73] provided the first theoretical explanation for depletion interactions when they
derived the specific depletion force between two spherical colloidal particles using a force
balance approach. This result was independently recovered and further elaborated by Vrij
in 1976 [74]. In these models, the colloids are represented by hard spheres of radius Rc,
while the polymers are assumed to be spheres of radius Rp that are mutually interpenetrable,
yet cannot penetrate the colloidal particles. As a consequence, every colloidal particle
excludes a sphere of volume 4

3π(Rc + Rp)3 to the polymers. When two colloidal spheres
are brought together, these spherical volumes will overlap and the volume accessible to the
polymer will increase. It is this increase in free volume that causes an effective attraction
and the eventual phase separation of the colloids.

The depletion force between two colloidal particles can also be calculated by writing
out the partition function of the system in two different configurations – with and without
the effect of depletants [8]. For a system of colloids and depletant particles, the partition
function is given by

Z =

∫
[dp]exp(

−βp2

2m
)
∫

V′
[dq]

∫
dpcm exp(

−βp2
cm

2M
)
∫

dqcm

∫
dqcm (1.1)
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Figure 1.4: Depletion effect in nature. Red blood cells (left – top view) tend to cluster
with their flat sides facing each other, giving a structure known as “rouleaux” (right – cross
section). This aggregation is related to increased serum concentrations, and thus has been
explained to be caused by depletion forces. Reproduced from [5].

where V
′

is the volume of the system available to the depletant particles, p and q denote
the positions and quaternions of the colloidal particles and pcm and qcm denote the same for
the center of mass of the depletant particles.

The free energy difference in the presence of depletants can then be shown to be

∆F =
N
β

log(1−
∆V
V

) ≈
−NkBT

V
∆V (1.2)

where ∆V is the volume between the colloidal particles that is gained by the depletants
when the colloidal particles bind together.

The depletion force calculated from the free energy difference is proportional to the
temperature of the system, which is a hallmark of entropic forces:

F =
∂F
∂x
≈ −(

NkBT
V

)A (1.3)

Also, assuming that the depletant particles behave like an ideal gas, with PV = NkBT ,
we get F ≈ −PA, where A is the cross-sectional area that the depletant pressure acts upon.
This implies that the depletion effect is osmotic in nature, and thus the depletant particles
want to fill the excluded volume.

It has been shown using theory as well as experiments that the strength of depletion
interactions is dependent on the concentration of the depletant particles and the range of
the interacting potential is dependent on the size of the depletant particles [4, 73]. Most
experiments on depletion interactions are conducted using colloidal particles and polymers
in a solution. The colloidal particles are typically much larger than the gyration radius of
the polymer.

In the past decade, these interactions were initially used for shape-dependent colloidal
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separations [82]. The motivation of such work has been the fact that depletion interactions
between colloidal particles depend on their shape. Thus, in systems of similarly sized
particles with different shapes, particles of the same shape aggregate and precipitate out,
one after the other, as depletants are added. The order of the shapes that precipitate depends
on the free volume gained by the binding of the colloidal particles – particles that lead to
the maximum free volume gain precipitate out first. This principle has also been applied
for the separation of gold nanoparticles of different shape [83].

More recently, colloidal self-assembly has been directed using roughness controlled
depletion attractions [84]. The aim of this work was to understand the effect of roughness
on the depletion strength, when the order of roughness is about the depletant diameter. It
was shown that when the height of roughness is greater than the depletant diameter, there
is no depletion-induced aggregation. This work shows that in experiments performed to
study depletion interactions, surface roughness is to be controlled to be within the order of
the depletant diameter.

In recent studies by Barry and Dogic, smectic structures have been formed from ho-
mogenous monodisperse rods, as a function of the strength of the depletion attraction [85].
Two-dimensional discs were initially assembled by depletion effects of filamentous virus
on a solution of dextran rods, and then upon further increasing to a much higher con-
centration of depletants, these two-dimensional discs assembled up to form larger three-
dimensional cylindrical structures. These structures are found to be smectic from the point
of view of the rod. This work [85] also reports that at intermediate concentration of the
depletants, the discs prefer an edge-to-edge bonding to form a colloidal membrane.

Depletion interactions have also been shown to promote angularly specific binding in
lock-and-key colloids [86–90]. The volume gained by the depletants is large when the key
fits into the right sized dimple in the colloidal particle, thus resulting in a large gain in their
entropy. This system is particularly interesting because the assemblies are not fixed and the
ball and socket joint is free to move.

A large number of similar experimental studies have been conducted on depletion ef-
fects in various colloidal systems. There are also interesting theoretical studies about de-
pletion forces and various attempts have been made at understanding the phase behavior
of colloid and polymer mixtures. Lekkerkerker et al proposed a free-volume approach to
calculate the phase behavior of colloid-polymer mixtures [91]. The key quantity in this
approach is the statistically averaged volume that is available for the polymers at a given
polymer activity set by a hypothetical reservoir. Using this approach, the partitioning of
the polymer between colloid-rich and colloid-poor phases was taken into account, and this
resulted in the emergence of three-phase coexistence regions between a colloidal gas, liq-
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uid and a crystal in the phase diagram. This model can be used to study depletion effects,
as the depletants can be modeled as non-adsorbing polymers. In order to compare be-
tween this “free-volume” approximation model and exact analytical results, solvable one-
dimensional models of a binary mixture of hard rods of different lengths have been stud-
ied [92]. This work helps understand the range of compositions and densities over which
the “free-volume” approximation may be used to understand the properties of hard-sphere
mixtures.

Depletants are often simulated as penetrable hard spheres, an idea first proposed by
Asakura and Oosawa [73] in their understanding of depletion interactions. More recently,
numerical studies of the effective depletion potential between a pair of hard-spherical col-
loids in the presence of interacting depletant particles have been conducted [93]. Results
show that depletant-depletant attractions favor colloidal aggregation. Interestingly, the ef-
fective pair-potential also becomes increasing long-ranged, and its radial dependence is
represented by an exponential decay. Such sensitivity of the depletant critical fluctuations,
where strength and range of interaction can be significantly changed by a small change in
temperature, is a promising method for manipulating colloidal aggregates.

1.5 Thesis Overview

The main goal of this thesis is to propose shape modifications to spherical particles in order
to use directional entropic forces for their self-assembly. Prior work has focused on lock
and key particles and Pacman shaped particles in the presence of depletants. We extend
this to more complex systems in order to achieve a holistic understanding of the factors
at play during self-assembly. We consider both continuous and discrete shape modifica-
tions including stretching of spheres into capsules and modifying their radius into cylinders
(chapter 3), bisecting spheres into hemispheres (chapter 4), introducing multiple concave
dimples on spheres (chapter 5) and adsorbing protuberant spheres on the surface of spheres
(chapter 6).

We begin this thesis with gaining a better understanding of the role played by deple-
tants in systems of a pair of particles, for various changes in particle shape. In Chapter 2
we review Monte Carlo methods that are used to perform self-assembly simulations in sub-
sequent chapters and present new work detailing the overlap algorithm for dimpled spheres
and the method used to model depletants as implicit penetrable hard spheres. In Chapter
3, we quantify the interactions between a pair of particles in the presence of depletants.
In Chapter 4, we extend this understanding to a priori predict the bulk self-assembly of a
pair of particles in the presence of depletants by performing free volume calculations in
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different configurations of colloidal particles. In Chapter 5, we model multiple symmetric
concave features on spherical particles in order to understand the underlying controlling
mechanism in their assembly. We use densest packings and self-assembly phase diagrams
to determine the role of dimple volume in the emergent behavior of these systems. In
Chapter 6, we also consider complementary protuberant spheres on the surface of a surface
and understand their densest packing and self-assembly. These systems may be a starting
model for the representation of proteins and hence these studies are found to be insightful.
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CHAPTER 2

Methods

A research problem is not solved by

apparatus; it is solved in a man’s head.

Charles F. Kettering

In this chapter, we discuss the details of the computational tools used throughout this
work. This chapter is organized as follows. In Section 2.1, we detail the Metropolis Monte
Carlo simulation scheme. In Section 2.2, we briefly discuss the Hard Particle Monte Carlo
(HPMC) plugin that has been implemented in HOOMD-Blue [6]. We also explain a new
overlap algorithm, developed by Chen [7] and implemented here, for particles that are
composed of positive and negative intersections of spherical volumes. In Section 2.3, we
explain the implementation of penetrable hard sphere depletants as implicit depletants in
HPMC.

2.1 Monte Carlo Simulations

Drawing motivation from morphological subunits of virus capsids called capsomeres, Monte
Carlo studies of the self-assembly of anisotropic cone-shaped particles with directional at-
tractions have demonstrated that structures with predesigned geometric accuracy could be
obtained from such building blocks [23]. We consider similar and more advanced compu-
tational methods to understand the self-assembly of a new range of building blocks, as we
finely tune both their shape and environment.

Metropolis Monte Carlo (MC) simulation [94–97] is a common technique that has been
used to study the self-assembly of anisotropic building blocks. The Metropolis sampling
scheme [94] avoids unnecessarily checking thermodynamically irrelevant configurations
by generating a sequence of configurations that asymptotically approaches the underlying
equilibrium distribution to be sampled.
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Figure 2.1: Example trial moves in a typical Monte Carlo simulation. Translational moves
(a) and rotational moves (b) are performed on randomly selected particles in the system.

In this work, we develop and employ Monte Carlo simulations for studying the self as-
sembly of anisotropic particles in the NVT and NPT ensembles, where number of particles,
volume and temperature, and number of particles, pressure and temperature, respectively
are held constant. Monte Carlo simulations are a straightforward and efficient way to sam-
ple a thermodynamic ensemble, so long as the system being modeled is ergodic [95–97].
Ergodic systems are those where the time average is the same for all initial points: statis-
tically speaking, the system that evolves for a long time “forgets” its initial state. Hence
any state can be accessed from any other state in a finite number of moves. A condition
called detailed balance is sufficient to ensure the chain of states sampled in a Monte Carlo
simulation is ergodic. This condition can be stated by equating the probabilities of being in
states i and j, and the probabilities of transitioning from one to the other π(i→ j), i.e.,

Pi π(i→ j) = P j π( j→ i) (2.1)

where π is the Markov transition matrix, and Pi and P j are the probabilities of being in
states i and j respectively.

The implementation of moves that obey detailed balance can vary from simulation to
simulation. In general, at the beginning of a move, a particle is picked at random and given
a uniform random displacement along each of the coordinate directions (both translational
and orientational displacements), as shown in Fig. 2.1. This transforms the system from an
initial state m to a final state n. The next step of a MC move is to determine the change in
the internal energy of the system, ∆U. The determination of ∆U does not require a com-
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plete recalculation of the configurational energy of the mth state, rather only the changes
associated with the particle undergoing displacement:

∆U =

N∑
j=1

u(rn
i j)−

N∑
j=1

u(rm
i j), (2.2)

where the sum over particles excludes interactions j = i.
If the move is downhill in energy (∆U ≤ 0), then the probability of state n is greater

than that of state m and the new configuration is accepted. If the move is uphill is energy
(∆U > 0), then the move is accepted with a probability equal to the Boltzmann factor of
the energy difference, i.e., exp(−β∆U). If the uphill move is rejected, the system remains
in state m and an alternate move is attempted. This form of the probability ensures that
the Markov chain converges to the Boltzmann distribution. Once equilibrium is achieved,
every set of positions of the particles in the phase space of the ensemble corresponds to a
minimum free energy. Thus, each time step represents a possible microstate that the real
system might be in, amongst the large number of microstates in the ensemble. Thus this
method allows us to take an ensemble average of the various properties of the system, and
by ergodicity, this is equal to the time average of those properties of the system.

In all the systems considered in this work, we assume that the particles are, thermody-
namically speaking, “hard”. In hard particle Monte Carlo simulations, interactions between
the particles are determined by means of their overlap. This implies that there are no en-
ergetic interactions between the particles, rather they are purely steric. As a result, the
interactions between the particles are determined by geometric overlaps between neigh-
boring particles when a trial move is attempted. If no overlap occurs, the trial move is
accepted. If an overlap occurs, the interaction energy goes to infinity and thus the trial
move is always rejected.

In our simulations, a full Monte Carlo cycle consists of N + 1 trial moves including
arbitrary translation, rotation, and box shearing moves. Maximum step sizes are updated
occasionally to keep the acceptance probabilities at 30%. Simulations are initialized at
low packing fraction in a random configuration and subsequently compressed to higher
densities. Crystallization (assembly into crystals) proceeds in three steps: (1) equilibration
of the dense, metastable fluid (for example, N = 512: < 0.1×106 Monte Carlo cycles); (2)
nucleation and growth (∼ 1×106 Monte Carlo cycles); and (3) healing of defects (> 1×106

Monte Carlo cycles). Longer simulations facilitate equilibration in the transition region.
The number of Monte Carlo cycles performed for healing is at least an order of mag-

nitude larger than the cycles for nucleation and growth. Thus we report structures that are
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stable for long periods on our simulation time scales, longer than the auto-correlation time
of crystal growth in these systems. All findings are verified by running independent simu-
lations with different initializations and in different box sizes. The assemblies reported are
those that form at the minimum density.

2.2 Hard Particle Monte Carlo Plugin for HOOMD-Blue

Hard particle Monte Carlo (HPMC) is a plugin developed for HOOMD-blue [6] that im-
plements hard particle Monte Carlo (MC), with highly efficient parallel implementations
both on the GPU and modern multi-core CPUs. HPMC represents each particle as an
anisotropic particle with orientation and shape. The potential energy is zero when particles
do not overlap and infinity when they do. The serial algorithm selects a single particle at
random, proposes a random trial move, and then accepts or rejects that trial move. A new
algorithm was recently designed for proposing many trial moves in parallel. The method
works by splitting the simulation domain into cells and coloring them (four colors in 2D,
eight in 3D) so that parallel moves are possible in the same color cells. Trial moves that
cross cell boundaries are rejected to maintain detailed balance. We apply a random shift of
the cells to restore ergodicity. Initial work on parallel MC focused on hard disk simulations
accelerated on GPUs [98]. Since then, support has been included for 3D simulations, tri-
clinic boxes, anisotropic particles, and an adaptation of the parallel algorithm to enable MPI
domain decomposition across many CPU cores or many GPUs. Today, HPMC supports 2D
and 3D simulations, a variety of shapes (polygons, convex polyhedra, general polyhedra,
spheres, ellipsoids, rounded convex polygons, rounded convex polyhedra, faceted spheres),
NVT and NPT ensembles, and pressure sampling in NVT ensembles.

2.2.1 Overlap Algorithm for Dimpled Spheres

For the work included in this thesis, a new overlap algorithm was developed by Chen [7]
and implemented in HPMC. This overlap algorithm works with particles that can be defined
as positive or negative intersections of the volume inside or outside of, up to, eight spheres.
This algorithm has been implemented such that it takes full advantage of all features in
HPMC - including running on multi-core CPUs as well as single and multiple GPUs.

The overlap check for convex particles cannot be directly extended to concave particles.
Previous theoretical work on concave particles in 3D [99–102] used modifications of an
overlap algorithm introduced by He and Siders [103] that required the radius of the valence
sphere to be smaller or equal to the parent sphere and the particles were restricted to one
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Figure 2.2: Monte Carlo simulation of 4096 bivalent dimpled spheres performed using
Hard Particle Monte Carlo (HPMC) plugin for HOOMD-Blue [6]. The particles form a
parquet crystal structure, and the system is undergoing nucleation and growth from a fluid
to crystal. Below, we show the centers of the particles, where the green particles are in a
fluid phase surrounded by black particles that arrange in a crystal lattice.
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Figure 2.3: Overlap algorithm for particles made of spheres. For particles made of two
spheres (Pacman particles), we show simplex overlap (left) within a single particle and
binary overlap (right) between two particles s1 and s2 and the volume inside and outside
of them. The diagonal [k = l] is impossible (gray), row k has infinite region with color k,
column l has no region with color l. Mutual intersection is shown in blue and the mutual
union is shown in all colors except white. Figure reproduced from [7].

valence sphere, (nD = 1). We instead use an overlap check algorithm that was designed
for the “SPHINX (SPHere INterseXions)” family of shapes studied here, where previous
constraints have been lifted (nD ≥ 1). The algorithm [7] implements a recursive algorithm
based on the Cayley-Menger volume determinant and similar dihedral angle determinants.
This overlap algorithm considers all topological types of overlap among the spheres and
calculates the mutual union and the mutual intersection among them.

For the dimpled spheres studied in this work, we calculate the mutual intersection of
the positive central sphere with one negative valence sphere from each surrounding particle
by means of a recursive algorithm, as shown in Fig. 2.3. This requires the evaluation of
overlaps between intersections of spheres. This is calculated by means of an initial trivial
algorithm to calculate the separation of the union of the spheres, and then a recursive algo-
rithm is applied to evaluate the separation of the intersection of the spheres. The overlap
between the intersections is then evaluated as the opposite of the existence or non-existence
of the separation between the intersections.
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2.3 Modeling Depletants as Penetrable Hard Spheres

Some of the work included in this thesis models systems with depletant particles. We
developed a code to treat implicit depletants as an alternate integrator for HPMC.

The implicit depletant code has been written as an integrator option for HPMC. As is
standard when studying depletion, the code models the depletant particles as penetrable
hard spheres. The penetrable hard sphere model allows particles of the same type (deple-
tants) to overlap but particles of different types (colloids and depletants) are not allowed to
overlap. The code follows the thermodynamics of a semi-grand canonical system wherein
the simulation box is connected to a depletant reservoir of some user-specified concentra-
tion and the chemical potential of the depletants between the simulation box and reservoir
is kept at a constant.

The code works as follows: first a colloidal particle is randomly selected in the simu-
lation. A trial move is performed on the colloidal particle in typical Monte Carlo fashion.
If the colloidal particle overlaps with another colloidal particle, this trial move is rejected
as colloidal particles are modeled as hard particles. Depletant particles are next randomly
thrown in a spherical volume encompassing the colloidal particle. The number of depletant
particles thrown corresponds to a binomial distribution about the user-provided value of the
depletant number concentration in the reservoir. We use a binomial distribution to model
the number of successful depletant throws required, equivalent to a sample of n depletants
drawn from the reservoir depletant population. This is important to ensure that detailed
balance is maintained. The number of overlaps in the old configuration and the new con-
figuration are recorded. Next, the move is accepted or rejected based upon a random value
weighted according to the probability of successfully throwing a depletant with no overlaps
in the initial configuration as compared to the probability of doing that in the trial configu-
ration. These moves can be conducted in parallel across the system in the same manner as
is done for HPMC.

As a result of explicitly throwing the depletants for each trial move, the depletants have
uncorrelated positions at every trial move. This helps increase the dynamics of depletant
particle movement within the system and does not affect the dynamics of the colloidal
particles because the two species have different time scales.

2.4 Summary and Conclusion

In this chapter, we described the Monte Carlo simulation technique that we used to de-
termine the phase diagram of crystal structures formed by different particles, by means
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of sampling through important configurations to understand their self-assembly. We also
described the implementation of the Monte Carlo simulation technique for hard particles,
and briefly explained the working of the hard particle Monte Carlo integrator that has been
added as a plugin to HOOMD-Blue [6]. We discuss a new overlap algorithm [7] that has
been developed to perform simulations of dimpled spheres. This algorithm was success-
fully implemented within the HOOMD-Blue and HPMC frameworks taking full advantage
of the scalability to multi-core CPU and GPU simulations of large system sizes, neces-
sary for the work carried out in this thesis. Finally, we discuss the implementation of an
implicit depletant integrator in HPMC that has been used to understand systems with de-
pletant molecules that are modeled as penetrable hard spheres. This scheme was used for
self-assembly simulations of systems with depletants throughout this work, and is being
continuously improved and further extended at the time of publication of this thesis.
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CHAPTER 3

Understanding Depletion Through PMFT
Calculations of Facetted Particles

3.1 Introduction

Asakura and Oosawa’s treatment of depletion interactions [73] has resulted in a large body
of experimental work using depletants. They considered the effective interactions between
a pair of colloidal spheres in a sea of soft polymeric depletants, as shown in Fig. 3.1. Con-
sider a shell around each colloid, the thickness of which is of the order of the radius of
the depletant. The region of this shell is inaccessible to depletants due to steric hindrance.
When two colloidal particles are sufficiently close together, the intersection of their shells
creates an overlapping region that is not available to the depletants because of steric hin-
drance. At this distance between the colloids, where the shells overlap, the volume of the
intersecting region will be made available to the depletant particles in the rest of the system.
This gives the depletant particles more translational freedom resulting in a greater entropy
for the system, while inducing an effective attraction between the two colloidal particles1.

Though the concept holds at varying size ratios, in colloquial usage the term “depletion”
is often used to refer to systems in which the depletant particles are small compared to the
colloidal particles and penetrable or semi-penetrable with respect to each other.

In many ways, the depletion effect for small depletants shown by Asakura and Oosawa
is similar to the nematic ordering of hard rods shown by Onsager: the restriction of some
specific degrees of freedom in the system (i.e. ordering) through the creation of a hierarchy
of length scales. Onsager’s rods have two length scales (the length and diameter of the
rod) and Asakura-Oosawa’s binary system consists of two species of spheres with differ-
ent diameters. The techniques used to demonstrate the ordering in the two systems were
different. Onsager used integral equations to examine coarse-grained densities of the rod

1This chapter is adapted from Reference [8]: G. v. Anders, D. Klotsa, N. Khalid Ahmed, M. Engel, S. C.
Glotzer, Understanding Shape Entropy through Local Dense Packing, PNAS 111 (45) E4812-E4821, 2014
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a b
Figure 3.1: Effect of depletion in a monodisperse suspensions of hard disks. Adding in
conventional small depletants induces a short-ranged attraction (a), however low concen-
trations do not induce aggregation. High depletant concentration can cause aggregation (b).
Figure reproduced from reference [8].

distribution (as did Kirkwood with spheres), whereas Asakura and Oosawa considered ef-
fective pair interactions between two colloidal particles in a sea of depletants. However,
de Boer [104] (and later also Vrij [74]) also considered similar systems to Kirkwood’s
hard spheres, but from an effective pair interaction approach, similar to that used in the
later work of Asakura and Oosawa for colloid-polymer mixtures, and thereby providing a
microscopic description of the mechanism underlying the ordering of hard spheres.

In the original treatment of Asakura and Oosawa [73] the depletants are soft penetrable
spheres but can vary in size. There are various theoretical and experimental works for
small depletants and large colloids where the depletant softness is varied (see [105] and
references in [4]). It is widely known from the work on depletion systems that interactions
among depletants often affect the effective interactions between colloids [4].

There has been experimental and theoretical work on systems of particles with moderate
shape in the presence of small hard depletants, starting with [82], and followed by work on
rough colloids in [84,106–111], as well as more anisotropic shapes [62,112,113]. However,
strictly speaking, these systems do not have single shapes, but rather are mixtures due to
the presence of anisotropic colloids and hard sphere depletants. Note that the lock-and-key
system studied in [114–117] is technically a ternary mixture of particles. Work exists on
particles with extreme shape, where properties of self-assembled membranes have been
investigated at both continuum and molecular length scales. [85]. For a review of shape
and depletion, see [118]. For a more general review of shape and assembly see [72].

In particular, both experiments and computer simulations suggest that the shape of col-
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loidal particles plays a role in determining the form of their assembly. Yet, hitherto, it has
not been possible to state this with any precision because a means of quantifying the ef-
fect of shape has been lacking. Indeed, it is known that in experimental systems there are
many forces (e.g. van der Waals, electrostatic, etc.) that influence the self-assembly of the
system. And, there are various techniques for measuring these forces, see e.g. [119, 120].
In contrast, no such techniques exist in the literature for quantifying the DEFs that arise
from particle shape, though one may envision extending the use of optical tweezers [121]
and confocal microscopy [122] in the case of colloids. Precisely defining these forces, and
introducing a means of quantifying them would provide a way to determine whether and
how much particle shape plays a role in self-assembly, especially compared to other forces
that we know exist at nanometer scales.

3.2 Directional Entropic Forces for Colloids with Penetra-
ble Hard Sphere Depletants

Directional entropic forces, as discussed below, are effective forces that exist between clas-
sical particles in thermal systems (e.g. nano- or colloidal particles) solely due to their
anisotropic shape. The first suggestion of the existence of these forces came from the
consideration of monodisperse hard particle systems [63].

We note that in experimental systems with sufficiently large depletants, e.g. [62], once
the depletants have caused the aggregation of the colloidal particles, the ordering of the
colloidal particles within the aggregate is determined by colloidal shape. In particular, if the
size of the depletant is larger than the gaps between the colloidal particles, the depletants
are, in effect, only serving as soft walls for the colloidal particles (see Fig. 3.1). In this
sense, an entire mixed colloid-depletant system being studied in a beaker is at fixed volume,
whereas if one considers the colloidal aggregate in isolation, it behaves as if it is being held
at fixed pressure (the depletant osmotic pressure). One might expect a high degree of
similarity between the self-assembled structures of colloids in the presence of depletants
at constant volume and monodisperse colloids at constant pressure. Indeed, given this
equivalence, it makes it more reasonable to expect that our methods below would apply
in both cases [8]. Our approach below is an instance of the two-particle version of this
argument.

There has been considerable focus on the contribution of entropic forces to the assem-
bly of anisotropically shaped particles into complex structures [49, 50, 55–72]. A general
observation from many of these studies is that dense suspensions of hard, faceted particles
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align their facets so as to maximize the system entropy, giving rise to ordered structures
as complex as colloidal quasicrystals [57, 63] and crystals with unit cells containing as
many as 52 particles [64]. Damasceno, et al. [63, 64] rationalized this tendency toward
facet alignment as the emergence of “directional entropic forces” between hard particles.
Directional entropic forces (DEFs) are not intrinsic to the particles, but instead are statis-
tical and emerge from the collective behavior of the entire system upon crowding. The
DEF approach to the self-assembly of colloidal cubes, octahedra, rhombic dodecahedra,
and tetrahedra was recently demonstrated by Young et al. [123].

In summary, the osmotic pressure arising from entropy is the principle behind the or-
dering of hard particles regardless of their shape, relative size, or the relative repulsion of
the depletants.

3.3 Potential of Mean Force and Torque

We use the concept of the potential of mean force and torque in order to establish the
interaction between neighboring particles. Though this has been developed before in [112,
124, 125], we would like to present these ideas in such a way as to clarify the role of the
entropic patches.

To begin, consider the case of a pair of colloidal particles interacting via depletion. For
the sake of simplicity we work in the hard particle limit for the colloidal particles and the
penetrable hard sphere limit for the depletants, i.e. the depletants are hard with respect to
the colloidal particles, but an ideal gas with respect to each other. The microcanonical
partition function for our system is

Z ∝
∫

[dq][dQ][dr] 1 , (3.1)

where q are the colloid center of mass coordinates, Q are the colloidal orientational degrees
of freedom, and r are the depletant centers of mass. The integral is over all configurations
that do not lead to colloid-colloid or colloid-depletant overlaps. We will focus on a single
pair of axisymmetric colloidal particles in a bath of depletants. To find the potential of
mean force and torque between the colloidal particles we will find a set of invariant quanti-
ties that describe unique configurations of the colloidal particles and compute the partition
function in restricted ensembles in which those quantities are fixed. There are ostensibly
twelve colloidal degrees of freedom, however six may be fixed by fixing the position and
orientation of one of the particles, and two more are fixed by the axial symmetries. Only
four degrees of freedom are required to uniquely specify a configuration of the two colloids
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and they can be taken as

{|~q12|, q̂12 · n̂1,−q̂12 · n̂2,−n̂1 · n̂2} , (3.2)

where ~q12 = ~q2 −~q1 is the vector between the colloidal centers of mass, and n̂1,2 are their
symmetry axes. We define the restricted partition function

Z(R,φ1,φ2,χ) ≡
∫

[dq][dQ][dr] δ(R− |~q12|)δ(φ1− q̂12 · n̂1)

δ(φ2 + q̂12 · n̂2)δ(χ+ n̂1 · n̂2) ,
(3.3)

from which we derive an effective potential

βU(R,φ1,φ2,χ) ≡ − log
∫

[dq][dQ][dr] δ(R− |~q12|)δ(φ1− q̂12 · n̂1)

δ(φ2 + q̂12 · n̂2)δ(χ+ n̂1 · n̂2) .
(3.4)

This effective potential can be evaluated in a number of ways. In this work, we will
perform the integral by doing a change of variables to R, φ1,2, and χ, and then doing a
Monte Carlo integration over the depletant coordinates. We find that the restricted partition
function (3.3) can be written as

Z(R,φ1,φ2,χ) =
R2VN

F√
1−χ2−φ2

1−φ
2
2−2φ1φ2χ

, (3.5)

where VF is the free volume available to the depletants, which is given by

VF = V −ηVcolloid + Voverlap , (3.6)

where η is the colloidal packing fraction and Voverlap is the depletant overlap volume. For a
large system

Voverlap� V −ηVcolloid , (3.7)

which means we can expand the expression for the potential of mean force to find that, up
to an irrelevant overall additive constant,

U(R,φ1,φ2,χ) = −PVoverlap− kT log

 R2√
1−χ2−φ2

1−φ
2
2−2φ1φ2χ

 , (3.8)
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where we have used the ideal gas equation of state.
The expression (3.8) for the potential of mean force, for this case, is instructive for a

few reasons. In particular, we can see that it is the sum of two terms that are both purely
entropic and geometric in origin. The first term comes from the geometry of the colloidal
particles, and therefore determines their effective “patchiness” [8]. The second term comes
from the entropy of available to other free particles in the system. The “binding” of col-
loidal particles along different distances and orientations is determined, therefore, by a
competition between these two terms.

The expression (3.8) was arrived at by integrating out the depletant positions exactly.
In more general systems such an exact integration cannot be performed. Yet even in those
cases, formally, the potential of mean force and torque factorizes into two terms carrying
the same geometric information as in the depletant case.

To compute this potential for our systems with depletants we enumerate allowed config-
urations of the coordinates R, φ1,2, and χ, and compute Voverlap by Monte Carlo integration
at each set of values. We could also have done this using Markov chain Monte Carlo,
however there are a couple of calculational advantages to this approach. One is that we can
compute the effective potential at all depletant pressures and temperatures at once. Another
is that it can be shown that the depletant volume lies entirely within a lens formed by the
intersection of spheres that are centred about the colloid centers of mass and that have radii
equal to the sum of the radii of the respective circumscribing sphere of the particle and that
of the depletant. This leads to a substantial reduction in required computational effort.

3.4 Coordinate Systems for PMFT: Axisymmetric case

We present an explicit computation of the Jacobian of the change of variables between the
natural coordinates of a pair of particles, and the scalar invariant quantities that describe
any such pair. We do so in the simpler case of axisymmetric particles. The general case can
be computed straightforwardly in the same manner, but the expressions are cumbersome.

We take the first particle to be at the origin, with its symmetry axis oriented in the
positive z direction. Using the azimuthal symmetry with this placement, we fix the second
particle’s position in the xy-plane, without loss of generality to be along the x axis. This
gives the orientation of the second particle as

n̂2 = sinθcosϕx̂ + sinθ sinϕŷ + cosθẑ (3.9)

where θ and ϕ are spherical coordinates in the coordinate system of the second particle, and
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Figure 3.2: Geometric representation of the coordinate transformation for axi-symmetric
particles in the case of true cylinders.

its position as
r2− r1 = ρx̂ + zẑ (3.10)

where ρ and z are cylindrical coordinates in the first particle’s coordinate system. The
volume form that appears in the integral that computes the partition function is

dV = ρsinθdρdzdθdϕ (3.11)

Now we make the change of variables to the scalar invariant quantities by taking

R =

√
z2 +ρ2

φ1 =
z√

z2 +ρ2

φ2 = −
ρsinθcosϕ+ zcosθ√

z2 +ρ2

χ = −cosθ

(3.12)
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Inverting the relationship between the two coordinate systems gives

ρ = R
√

1−φ2
1

z = Rφ1

θ = −cos−1χ

ϕ = cos−1

 −φ1χ−φ2√
(1−χ2)(1−φ2

1)


(3.13)

The computation of the Jacobian is simplified by noting the dependence of ρ and z on only
R and φ1, and θ on only χ. This means that we only need to consider the dependence of ϕ
on φ2. Taking the Jacobian of this leads to the new volume form

dV =
R2dRdφ1dφ2dχ√

1−χ2−φ2
1−φ

2
2−2φ1φ2χ

(3.14)

In the absence of the excluded volume (or other) interaction between the particles, this
expression measures the volume of configuration space available to a pair of free particles
in a particular translationally and rotationally invariant configuration.

To verify that our expression correctly encodes the density of states for two free axisym-
metric particles, we consider the following scenario. Suppose we had a pair of axisymmet-
ric particles each undergoing Brownian motion with the constraint that their centers of mass
could never be separated by a distance greater than Rmax, but that they were otherwise free
to move, including to interpenetrate. If we were to make some Nobs uncorrelated observa-
tions of the particles for each of which we determine the values of R, φ1, φ2, and χ, we
would find that their frequency distribution would converge to something proportional to
the Jacobian of our coordinate transformation in the limit that Nobs → ∞. We therefore
verified our expression by performing precisely this calculation.

3.5 PMFT Calculations with Depletant Particles

In Fig. 3.3, we show these calculations for a Pacman model system. We observe that in the
case of lock-key binding, the effective interaction potential between two Pacman particles
is very strong and directional. In comparison, non-specific interactions are ≈ 10kBT weaker
and can occur over a large range of orientations between the particles. From this observa-
tion, we understand that non-specific interactions form and break easily in comparison to
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Figure 3.3: Potential of mean force and torque calculations in a Pacman model system. We
see that the interactions between two Pacman particles are very strong and directional in
the case of lock-key binding (left), while non-specific interactions can occur over a large
number of orientations between the particles.
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specific interactions. This suggests that non-specific interactions can function as a route to
specific binding in these systems.

In Fig. 3.4, we plot this potential to compare the effect of different particle shape fea-
tures. This figure compares the potential of mean force and torque at a fixed value of the
temperature and pressure for a rounded cylinder and a true cylinder (see Fig. 3.2 for a de-
piction of the geometric understanding of the coordinates and top panel of Fig. 3.4 for a
depiction of the rounded cylinders themselves). We define a rounded cylinder of diameter
dc with rounding of diameter dr as the Minkowski sum of a cylinder of diameter dc−dr and
a sphere of diameter dr. The plots show that there is a deeper potential well in the case of
the true cylinder dr = 0 that comes from the larger entropic patch at its end compared to the
case of the rounded cylinder, in which dr/dc = 4/5.

From our expression for the potential of mean force and torque we can derive the forces
and torques acting on the particles. Between two particles one and two, we find that for
particle one they have the following form, without loss of generality:

F1 = −r̂12
∂U
∂R
− (n̂1− r̂12φ1)

∂U
∂φ1
− (n̂2 + r̂12φ2)

∂U
∂φ2

,

T1 = −r̂12× n̂1
∂U
∂φ1

+ n̂2× n̂1
∂U
∂χ

.

(3.15)

A further remark is in order. As can be seen in equation (3.8) the potential of mean
force and torque is comprised of two terms both entirely geometric and entropic in origin:
one comes from the entropy of the depletants, the other from the Jacobian of the transfor-
mation to invariant coordinates. At different thermodynamic state points these terms will
have different relative contributions. This leads to a competition between the free particle
entropy of the pair (the jacobian) and the entropy coming from the effective interaction of
the patches. (see appendix A for details.

3.6 Binding Specificity of True Cylinders

We computed the potential of mean force and torque for a model system above and showed
that it produced potential depths of several kBT at specific patch sites. In this section we
show that even in the case of small effective entropic patches, we can cause preferential
binding at patch sites through adjusting their strength by tuning the osmotic pressure of
depletants..

To show this explicitly, we integrate the potential of mean force and torque over a set
of coordinates for the pair of particles that correspond to the same qualitative binding con-
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(d) (e)

Figure 3.4: (Top) Cylinders with various degrees of rounding. Panel (a) shows a true
cylinder. Panel (b) shows a rounded cylinder in which the ratio of the radius of the rounding
to the radius of the cylinder is rounding dr/dc = 2/5. Panel (c) shows a rounded cylinder
with dr/dc = 4/5. (Bottom) Potential of mean force and torque calculations for true cylinder
(e) and cylinder with rounding dr/dc = 4/5. The true cylinder leads to a more highly
anisotropic interaction potential with a deeper minimum near facial alignment than the
rounded cylinder.
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(a)

(b)

(c)

Figure 3.5: Examples of specific (a), semi-specific (b), and non-specific (c) binding con-
figurations for a pair of colloidal cylinders.

figuration. For concreteness, let us consider the case of cylinders with equal diameter and
height. We will define specific binding configurations that have non-zero depletant overlap
volume in which the cylinders are end-to-end, non-specific binding as cases in which the
cylinders are side-by-side, and semi-specific binding as cases in which the cylinders are
end-to-side. See figure 3.5 for an illustration.

Formally, we find the probability of specific binding is proportional to

Zs ∝

∫ 1

1√
2

dφ1

∫ 1

1√
2

dφ2

∫
dR

∫
dχe−βU(R,φ1,φ2,χ)θ(−βPVF)+

∫ − 1√
2

−1
dφ1

∫ − 1√
2

−1
dφ2

∫
dR

∫
dχe−βU(R,φ1,φ2,χ)θ(−βPVF) .

(3.16)

We can evaluate this integral using our computation of the potential of mean force and
torque above.

In figure 3.6 we plot the probability of specific binding for a family of rounded cylinders
as a function of pressure. We see that as the amount of cylinder rounding decreases, the
pressure required to induce specific bonding also decreases. This means that the entropic
patch becomes stronger as its size increases, meaning that we can tune the interaction
strength between our entropic patches by simply adjusting their size. Note that even at very
small patch size, at sufficiently high depletant pressure, specific binding still occurs with
unit probability.
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Figure 3.6: The probability of specific, i.e. end-to-end, binding between rounded cylinders
as a function of depletant osmotic pressure for different amounts of rounding. We inter-
polate between a sphere (rounding of 1, blue curve) and a true cylinder (rounding of 0,
red curve); in the latter case the diameter of the cylinder is the same as its height. In all
cases the maximum radius of a sphere that can be inscribed within the shape is fixed to ten
times the radius of the depletant. See figure A.1 for a depiction of the rounded cylinders
themselves. Figure reproduced from [8].
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Figure 3.7: The probability of specific binding for (a) particles with a single facet, and
(b) capsules, in a bath of depletants at various pressures. Panels (c) and (d) depict config-
urations that correspond to specific, semi-specific, and non-specific binding according to
whether the binding occurs at sites of low curvature. Panels (e) and (f) show singly facetted
spheres and spherocylinders with various facet and cylinder sizes, respectively. Curves in
(a) and (b) show the probability of specific binding at various facetting amounts. Figure
reproduced from [8].

3.7 Facetted Spheres and Facetted Capsules

We study DEFs as a function of the colloid shape in two systems with conventional weakly
interacting, small depletants. One system consists of a pair of spherical particles that are
continuously facetted with a single facet, in order to promote locally dense packing. The
other is a system of spherocylinders of constant radius that are continuously elongated. In
each case the alteration creates a region on the surface of the particle with reduced spatial
curvature. As the amount of alteration to particle shape increases, it leads to stronger
attraction between the sites of the reduced curvature, sites with smaller deviation from
being flat, as encoded in the probability of observing particles with these sites adjacent.
Following [3] we identify such sites as entropic patches.

In the case of the facetted particle, we varied the depth of the facet linearly between
zero (a sphere) and unity (a hemisphere), with the radius of the sphere fixed to 10 (see
Fig. 3.7e). In the case of the particles with a band, we studied spherocylinders with cap
radii fixed to 5 and cap centers interpolating linearly between 1 (nearly spherical) and 4
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Figure 3.8: The effective entropic interaction between particles generates both forces and
torques, because the volume excluded to the rest of the system when the particles are fixed
at separation distance depends on their relative orientation.

(an elongated spherocylinder), where all lengths are in units of the depletant radius (see
Fig. 3.7f). In Fig. 3.7 a and b we show the probability that if a pair of particles is bound,
then they are bound patch-to-patch (specific binding). Specific binding is depicted in the
inset images and the left hand particle pairs in panels c and d, and is contrasted with patch-
to-non-patch (semi-specific binding), and non-patch-to-non-patch (non-specific binding) in
the center and right hand particle images in panels c and d. Panels a and b show that we can
tune binding specificity by adjusting the patch size and the depletant pressure. Different
curves correspond to increasing patch size (more facetting) as the color goes from blue to
red.

3.8 Forces and Torques

For concreteness, we give an example for how to compute the forces and torques from the
PMFT for axisymmetric particles.

The isotropy of the stress tensor does hold in the case of idealized depletant systems.
Suppose we have N depletant particles. In this case, we can explicitly evaluate the free
energy available to the rest of the system, F̃12(∆ξ12), in Eq. (3.8).

e−βF̃12(∆ξ12) ∝ VF(∆ξ12)N , (3.17)

where VF is the volume available to the depletants. If we consider two nearby configura-
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Figure 3.9: The χ dependence of the PMFT for facetted spheres in the presence of pene-
trable hard sphere depletants at different distances between their centers, for a slice of the
potential with Ψ ≡ φ1 = φ2 = χ fixed. Although the angular differences are small (perfect
alignment is Ψ = 1), the effective interaction varies by more than 2 kBT over this angular
range at small separations, indicating that the penalty for small misalignment is significant.
Inset particle images illustrate the relative orientations shown.

tions, we have that

β(F′12−F12) =V′−V −N log
(V′F
VF

)
− log J′+ log J

≈V′−V −βP(V′F−VF) + log J′− log J ,
(3.18)

where we have used the ideal gas equation of state for the depletant particles. Thus, up to
an irrelevant additive constant

βF12(∆ξ12) =βV(∆ξ12)−βPVF(∆ξ12)

− log J(∆ξ12) .
(3.19)

This is the generalization of the Asakura-Oosawa [73] result for depletion interactions be-
tween spherical particles to particles of arbitrary shape. Depending on the relative position
and orientation of the particles, the effective force between them will be different.

In Fig. 3.9, we show the χ dependence of the PMFT for facetted spheres in the presence
of penetrable hard sphere depletants at different distances between their centers. This angu-
lar specificity achieved by facet alignment via DEFs is reminiscent of the angular specificity
of enthalpic interactions conceptualized within the patchy particle paradigm [2, 21].
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Figure 3.10: The χ dependence of the PMFT for spherocylinders in the presence of pen-
etrable hard sphere depletants for different cylinder side lengths. As the side length, `,
increases from 1 to 5 (in units of the depletant radius), the amount of dependence on χ
increases, indicating greater torques, as expected.

For spherocylinders, it is straightforward to show the effect of the entropic patches in
generating torques that cause the particles to align. To isolate the part of the torque that
comes from the patch itself, we rearrange Eq. (3.19) for non-overlapping spherocylinders
to get

F12 + kBT log J
Pσ3 = −

VF

σ3 (3.20)

For clarity, we fix the separation distance R between the spherocylinders to be 1% larger
than the spherocylinder diameter (which is the minimum separation distance), and fix the
orientation of each spherocylinder to be normal to the separation vector between them
(φ1 = φ2 = 0). In Fig. 3.10 we plot the χ dependence of the PMFT. For small side lengths of
the spherocylinder, there is very weak dependence of the PMFT on χ. As the length of the
cylinder increases (and therefore as the entropic patch gets larger) the χ dependence of the
PMFT becomes more pronounced. This means that not only do the particles coordinate at
their entropic patch sites, but there exists a torque that causes the alignment of the patches.

To compute the torques, we find it convenient to work in terms of rotation matrices in
the spin 1

2 representation of S U(2). If q is the rotation, then to determine the torque, we
must differentiate the PMFT with respect to it. If we represent the rotations in the canonical
fashion, and use Pauli matrices as the basis vectors of the Cartesian space coordinates, then
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we have scalar products of the form

~a ·~b =
1
2

Tr(a†b) (3.21)

and cross products of the form

~a×~b =
1
2i

[a,b] (3.22)

Our potential depends on scalar products alone. That means to determine the torque we are
required to know, e.g. that if

φ1 =
1
2

Tr(q†ẑqr̂12) (3.23)

then
∂φ1

∂q
=

1
2

q†
[
qr̂12q†, ẑ

]
(3.24)

which we recognize as a cross product. We have taken, without loss of generality, the
reference vector to be ẑ in the coordinate frame of the particle. We then use the chain rule
to differentiate F12 with respect to q, and convert back to Cartesian coordinates to find a
contribution to the torque of the form

~Tφ1 = −r̂12× n̂1
∂F12

∂φ1
(3.25)

Similar manipulations yield the other contributions.

3.9 Extension of PMFT Methods for Penetrable Hard Sphere
Depletants

The results we obtained via free volume calculations with ideal depletants can also be
obtained via simulations with explicit depletants. To see why the two forms of computation
are equivalent, we consider the following situation. Again, for the sake of simplicity, we
will work in the penetrable hard sphere limit. The probability of accepting a trial Monte
Carlo move of our colloidal particle is given by

pa = (1− p)N (3.26)

where N is the number of depletants, and p is the probability that a depletant will be in the
region swept out by the particle during its move. In the limit in which we are working, this
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is given by

p =
∆Vsweep−∆Voverlap

VF
(3.27)

where VF is the free volume available to the depletants, ∆Vsweep is the volume swept out by
the colloid during move, and ∆Voverlap accounts for any increase in the depletant overlap
volume.

In the limit that the move is small, i.e. N p� 1, the probability of accepting the move is

pa ≈ 1−
N(∆Vsweep−∆Voverlap)

VF
(3.28)

which gives the probability of rejecting such a move as

pr ≈
N(∆Vsweep−∆Voverlap)

VF
(3.29)

We can, similarly, find the probability of rejecting a reverse move. That is given by

p′r ≈
N(∆Vsweep)

VF +∆Voverlap
≈

N∆Vsweep

VF

(
1−

∆Voverlap

VF

)
(3.30)

where we have assumed that, without loss of generality, the “forward” move causes an
increase in the depletant overlap volume, and the reverse move causes it to decrease. We
have again also used the fact that the size of the move is small.

We compute the difference in probability for the two moves

∆p ≡ p′r − pr ≈
N∆Voverlap

VF

(
1−

∆Vsweep

VF

)
≈

N∆Voverlap

VF
. (3.31)

We can now consider another pair of moves in which the initial configuration of the for-
ward move is identical to the situation just described, but the final configuration is different.
If in that case the change in overlap volume is ∆V′overlap, then the probability difference is

∆p′ ≈
N∆V′overlap

VF
(3.32)

From these quantities we can compute the ratio ∆p/∆p′, which is dependent only on
the free volume, which, in turn, is encoded in our potential of mean force and torque. We
get that

∆p
∆p′

=
∆Voverlap

∆V′overlap
(3.33)
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which means we can write
∆p
∆p′

=
Fpost

12 −Fpre
12

Fpost
12
′
−Fpre

12

(3.34)

in the limit that T → 0. From this expression we see that the PMFT we deduced from the
free volume calculation is precisely quantity that controls the average acceptance rate of
MC moves of the colloids in a simulation with explicit depletants. Hence results obtained
from the free volume methods used above will precisely match those obtained using much
more expensive MC simulations with explicit ideal depletants.

3.10 Extension of PMFT Methods to Hard Particle Sys-
tems

In many ways, the depletion effect for small depletants shown by Asakura and Oosawa is
similar to the nematic ordering of hard rods shown by Onsager: the restriction of some
specific degrees of freedom in the system (i.e. ordering) through the creation of a hierarchy
of length scales. Onsager’s rods have two length scales (the length and diameter of the
rod) and Asakura-Oosawa’s binary system consists of two species of spheres with differ-
ent diameters. The techniques used to demonstrate the ordering in the two systems were
different. Onsager used integral equations to examine coarse-grained densities of the rod
distribution (as did Kirkwood with spheres), whereas Asakura and Oosawa considered ef-
fective pair interactions between two colloidal particles in a sea of depletants. However,
de Boer [104] (and later also Vrij [74]) also considered similar systems to Kirkwood’s
hard spheres, but from an effective pair interaction approach, similar to that used in the
later work of Asakura and Oosawa for colloid-polymer mixtures, and thereby providing a
microscopic description of the mechanism underlying the ordering of hard spheres.

In summary, the osmotic pressure arising from entropy is the principle behind the or-
dering of hard particles regardless of their shape, relative size, or the relative repulsion of
the depletants. Of course, details differ from system to system. However, the notion of
DEFs suggested for monodisperse hard particle systems in [63] applies to a broad class of
colloidal systems that includes polydisperse systems that would be classified as traditional
depletion, because, as shown in [8], the mechanism is insensitive to those details.
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a b c

Figure 3.11: As the size ratio of the particle pair of interest (pink) to the surrounding
particles (grey) in a hard particle system is varied between unity in a monodisperse hard
particle system (a) much greater than unity in a binary hard system (c) through intermediate
sizes (b), the system goes from a monodisperse system, to one that begins to resemble a
conventional “depletion” system.

3.11 Discussion

We have shown that by changing the shape of colloidal particles we can create effective
entropic patches that lead to binding in specific configurations. We verified this effect in
a number of simple situations using a variety of axisymmetric shapes. We quantified the
effect of the entropic patches through the potential of mean force and torque, which pro-
vides a detailed quantitative measure of the directional entropic force that leads to particle
binding. By focusing on a pair of particles and formally integrating out the other degrees
of freedom we explicitly cast this in terms of a competition between the osmotic effect of
the particles that were integrated out and the entropy of the pair of free particles, clarifying
the role of the entropic patch. By tuning the patch size and the osmotic pressure we showed
that we were able to control the specificity of the binding.

We first considered a pair of colloidal particles in a bath of depletants. This provided
us with a simple system in which to verify the effect of the entropic patches in detail.
In [8], we also consider model hard particle systems and demonstrate quantitatively similar
results, confirming that entropic patches play a role in that system as well.

We computed the strength of the effective entropic interaction between colloidal parti-
cles in the presence of depletants in our example systems, and found it to be on the order of
several kBT . This establishes that depletants can be used to promote entropic patchiness for
assembling materials. Moreover, the methods we have described here also provide a means
of quantifying the relative effect of shape on assembly in systems where other forces are
also at play. One could imagine developing reconfigurable materials in which particles are
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patterned both with shape, and some sort of hydrophobic coating in different symmetric
patterns, and this could lead to materials that microscopically reconfigure as the depletant
concentration in the system is varied.

One of the key conceptual features of the entropic effect that distinguishes it from par-
ticles that have conventional energetic patches is that the forces between colloidal particles
are emergent, i.e. they arise only when the system has a finite number of depletants, equiv-
alent to an osmotic pressure. As we’ve been taught, more is different [126], and we believe
entropic patches are an interesting example of this for a number of reasons. From a funda-
mental point of view, it is interesting to design materials from particles that only experience
a force when they are among particles of the right sort, and under sufficient pressure. Yet
if more is different, then less is also different: our colloidal particles only experience emer-
gent forces. This could be of use from a practical point of view as particles with entropic
patches could be used to make materials of novel complexity without requiring the intro-
duction of heavy metals or organic moieties that would lead to environmental damage if
the products they are in become damaged or are improperly disposed of. Indeed, Ref. [62]
created particles with interesting shape that were plain old silica.
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CHAPTER 4

Depletion Driven Self-Assembly of Facetted and
Dimpled Particles

4.1 Introduction

In this chapter, we consider concave shape transformations to model particles starting from
spheres. Such single dimple particles have been studied in various contexts, including
the assembly of spherical caps [102, 127], bowls [99, 100], lenses [101], lock-and-key dy-
namics [86], and ferroelectric liquid crystals [128]. These particles also hold the promise of
being good candidates for the entropic assembly of complex structures using shape comple-
mentarity, an idea that has been both theoretically studied [87, 88, 129] and experimentally
demonstrated [86,130] as an alternative to enthalpy-driven assembly achieved through, for
e.g., complementary DNA binding1.

Here, we introduce control on specific binding through shape transformations on con-
cave features of colloidal particles [8]. Functional materials in nature self-assemble into
complex structures through highly specific and selective binding among molecular building
blocks. To harness similar functionality from colloidal materials, patchy particles [2, 21]
use, for e.g., selectively modified surface chemistry [21, 131], including hydrophobic-
hydrophilic interactions [132, 133] or DNA functionalization of the surface [134, 135].
Simulation has already shown [63, 64] that various complex structures can be obtained
from convex entropically patchy particles of different shapes [3]. Entropy drives the order-
ing of these systems through emergent directional entropic forces, causing the particles to
assume local dense packing motifs that repeat throughout the system [8].

Investigations of colloid shape have primarily focused on convex polyhedra due to their
geometric simplicity and the availability of synthesis techniques [46, 86]. A general obser-
vation from many of these studies is that dense suspensions of hard, facetted particles align

1This chapter contains work that comprises a manuscript in preparation by N. K. Ahmed, J. Glaser, G.
van Anders and S. C. Glotzer.
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Figure 4.1: Self-assembled structures of facetted spheres obtained in MC simulation by
designing particle shape. Panel (a) shows a diamond lattice obtained by giving a particle
tetrahedrally coordinated facets as in (c). Panel (b) shows a simple cubic lattice, obtained
by giving particles cubically coordinated facets as in (d).

their facets so as to maximize the system entropy, giving rise to ordered structures as com-
plex as colloidal quasicrystals [57,63] and crystals with unit cells containing as many as 52
particles [64]. Damasceno, et al. [63,64] rationalized this tendency toward facet alignment
as the emergence of “directional entropic forces” between hard particles, as shown in Fig
4.1. Directional entropic forces (DEFs) are not intrinsic to the particles, but instead are sta-
tistical and emerge from the collective behavior of the entire system upon crowding. The
DEF approach to the self-assembly of colloidal cubes, octahedra, rhombic dodecahedra,
and tetrahedra was also demonstrated by Young et al. [123].

Motivated by the ability to promote specific binding using concave shape transforma-
tions, we study a family of single feature particles where the valence sphere radius is con-
tinuously varied from a flat facet (radius = infinity) to a perfect dimple (radius = one), as
shown in Fig. 4.2 (a). Specifically, we probe the binding configuration of a pair of particles
in the presence of penetrable hard sphere depletants of different sizes by calculating the
available free volume. We limit the particles to the configuration where the feature, i.e. va-
lence sphere, always intersects with the parent sphere along its diameter, as shown in Fig.
4.2 (b). Intuitively, we understand that directional entropic forces will vary from “head-
to-head” binding, where facets or dimples align, to “head-to-tail” binding, where facets
or dimples “align” with the convex feature of the neighboring particle, as we increase the
concavity of the particles, as shown in Fig. 4.2 (a). This effect can be calculated geomet-
rically by understanding the excluded volume available to depletants. Here, we study the
effect of depletant size on binding for a pair of these particles. By measuring the available
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Figure 4.2: (a) Change in shape of a single feature particle from flat facet to concave dimple
as concavity amount is increased from 0 to 1. (b) Particles are built as an intersection of
the volume of one parent sphere with the volume outside of a second valence sphere.

free volume for depletants analytically and using a Monte Carlo volume integration, we
predict the preferred binding for a given concavity amount and depletant radius. We verify
these predictions by performing Monte Carlo simulations of the self-assembly of these col-
loidal particles in the presence of a sea of penetrable hard sphere depletants using methods
described in Chapter 2.

4.2 Model and Methods

The particles studied in this chapter, shown schematically in Fig. 4.2 (a), comprise a parent
sphere (radius R+ = 1) that is modified by subtracting a single valence sphere of varying
radius (radius R−). The parent sphere radius is fixed to be one, and the valence sphere
radius is varied from 20 to 1. We fix the location of the valence sphere such that it is always
tangential to the parent sphere diameter, i.e., distance between the centers of parent and
valence sphere is equal to the radius of the valence sphere, d = R−, as shown if Fig. 4.2 (b).
We use this condition as a first step in understanding the effect of introducing concavity in
a particle’s shape. We thus define the “concavity amount”,

α =
R+

R−

as a parameter varying from 0 to 1 as the valence sphere radius, R− varies from ∞ to R+.
Previous studies of concave bowls and lenses [99–102,127] were restricted to the condition
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(a) Head to tail binding: chains (b) Head to head binding: dimers

Figure 4.3: Possible binding configurations of particles forming chains (left) and dimers
(right). In (a), the particles arrange head to tail forming chains while in (b), the particles
arrange head to head forming dimers.

that R+ ≥ R−, due to a limitation in the algorithm used to calculate the overlap of particles.
In this work, we determine particle overlaps by implementing a geometric algorithm devel-
oped for dimpled particles [7] without this limitation, allowing us to continuously vary the
valence sphere radius up to infinity.

We perform standard Monte Carlo volume calculations using penetrable hard sphere
depletants of different sizes to calculate the available free volume for depletants in different
configurations for a pair of particles. 1000 depletants are thrown into a system of a pair of
particles that are fixed in their position and orientation for over five million attempts.

We also use standard Monte Carlo simulation techniques (see, chapter 2 and [57] for
details) to obtain assemblies of these particles. We identify crystal structures by replacing
each particle by a point at its centroid as in several previous works [8, 22, 63, 64, 136].

4.3 Results

4.3.1 Free Volume

We consider a pair of particles in two possible binding configurations – “head-to-tail” bind-
ing and “head-to-head” binding, as shown in Fig. 4.3. In head-to-tail binding, the particles
form chains with each other while in head-to-head binding, the particles form dimers. As
shown in chapter 3, we understand from equation (3.8) that the potential of mean force and
torque between a given pair of particles at fixed configuration in the presence of depletants
is dominated by the free volume available to depletants. Hence in order to determine the
preferred configuration at different depletant sizes, we consider the free volume available
in head-to-tail and head-to-head binding configurations.
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Analytical calculations

First we perform analytical calculations of the free volume available to depletants, VF in
each of the configurations. We can write

VF = V − (2×Vexcl−Voverlap) (4.1)

where V is the total volume, Vexcl is the excluded volume around a single free colloidal
particle that depletants cannot access and Voverlap is the overlap in the excluded volume
that is gained upon binding of the colloidal particles.

The excluded volume around a single concave colloidal particle is given by the sum of
the outer and inner surface area, S A, multiplied with depletant radius thickness rdepl.

Vexcl = SA× rdepl (4.2)

The overlap in the excluded volume is dependent on both the size of the depletant as
well as the binding configuration of the pair of colloidal particles.

In the case of head-to-tail binding, we analytically calculate the point on the valence
sphere of the first particle where the radial distance between the valence sphere of the first
particle and the central sphere of the second particle (head and tail spheres) equals the
depletant diameter. The equations for the valence sphere of the first particle and the central
sphere of the second particle are

(x−R−)2 + y2 + z2 = (R−)2, (4.3)

and
(x−R+)2 + y2 + z2 = (R+)2, (4.4)

where the spheres are moved by their radius to obtain the head-to-tail configuration for the
particles.

We find a point H on the valence sphere such that it is R+ + ddepl away from the central
sphere of the second particle, where R+ is the radius of the central sphere and ddepl is
the depletant diameter. This point H gives the height of the cap that is inaccessible to
depletants. Solving (4.3) and (4.4), we find that H corresponds to a circle with radius rH ,
given by the solution to:

R+ddepl =

√
(rH −R+)2 + (R−)2− (rH −R−)2. (4.5)
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(a) (b)

(c)

Figure 4.4: Analytic free volume calculations (lines) and Monte Carlo free volume inte-
gration (points) in a system of a pair of single dimple colloidal particles and depletants of
varying diameters. The free volume available to depletants as a function of their diameter is
shown at concavity amount α = 0.25 (a), α = 0.85 (b), and α = 0.6 (c). We find that the two
methods to calculate free volume available to depletants perfectly match. We also observe
that at low concavity amounts the free volume is always maximum for head-to-head binding
(forming dimers) (a) and at high concavity amounts the free volume is always maximum
for head-to-tail binding (forming chains) (b). At intermediate concavity amounts, we see
a competition between head-to-head and head-to-tail binding on the order of the depletant
volume.
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Figure 4.5: Free volume available to depletant particles in the head-to-tail configuration of
colloidal particles, at different concavity amount and increasing depletant sizes from red to
blue.

Thus we calculate the overlap volume as the sum of the corresponding inner surface area
of the valence sphere and the outer surface area of the central sphere of the first and second
particles respectively, multiplied by the depletant radius rdepl.

Similarly, for the case of head-to-head binding, we analytically calculate the point on
the valence sphere of the first particle where the radial distance between the valence sphere
of the first particle and the valence sphere of the second particle (face to face spheres) equals
the depletant diameter. We perform similar algebra as for the head-to-tail configuration.

We plot the analytical free volume calculations in Fig. 4.4 for different depletant diam-
eters. We see that at small (large) concavity amounts the available free volume is always
maximum for head-to-head (head-to-tail) binding. At intermediate concavity amounts,
α ' 0.6, we observe a competition between the head-to-head and head-to-tail binding
free volume according to the depletant size. This occurs at these intermediate concav-
ity amounts because the difference in excluded volume for head-to-head and head-to-tail
binding is on the order of depletant volume, approximately 0.001. At higher and lower
concavity amounts, the difference in excluded volume is roughly ten times larger.
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Figure 4.6: Free volume available to depletant particles in the head-to-head configuration
of colloidal particles, at different concavity amount and increasing depletant sizes from red
to blue.

Monte Carlo integration

Next, we compute by a Monte Carlo volume integration the free volume available to deple-
tants of 20 different radii in [0.05,1.00] for each configuration at 100 different concavity
amounts α ∈ [0,1]. We present the free volume available to depletants as a fraction of the
total volume of the system for head-to-tail and head-to-head binding configurations in Fig.
4.5 and Fig. 4.6.

As shown in Fig. 4.5, in the head-to-tail binding configuration, the fraction of free vol-
ume available to depletants increases with increasing concavity for large depletant sizes.
This is because at large concavity amounts, the particles align to form a perfect chain, re-
sulting in the smallest excluded volume region for the depletants. As the concavity amount
decreases, there is an increasing misfit between neighboring particles, resulting in a smaller
excluded volume region for the depletants. This misfit reduces the free volume available
to the depletants. At smaller depletant sizes, there is a less significant reduction in the
available free volume as the concavity amount decreases between [1,0].

As shown in Fig. 4.6, in the head-to-head binding configuration, the fraction of free vol-
ume available to depletants decreases with increasing concavity for large depletant sizes.
This is because at small concavity amounts, the particles align with each other to form a
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perfect sphere. As the concavity amount increases, an empty volume is formed between the
particles that is inaccessible to large depletant sizes. However, smaller depletants are capa-
ble of accessing the volume between the particles, resulting in a less significant reduction
in the available free volume as the concavity amount increases between [0,1].

We also compare our analytic free volume calculations with results from Monte Carlo
volume integration, as shown in Fig. 4.4. The difference between these results is on the
order of 1E−7, around three orders of magnitude smaller than the difference between head-
to-tail and head-to-head binding free volume calculations.

4.3.2 Binding Configurations

From Fig. 4.5 and Fig. 4.6, we understand that the ideal binding configurations of a pair of
particles can switch between head-to-tail and head-to-head binding. In order to understand
where these transitions could occur, we show in Fig. 4.7 the difference between the free
volume for head-to-tail and head-to-head configurations (red curve). In the head-to-tail
(head-to-head) binding region shown, the free volume for depletants in head-to-tail (head-
to-head) binding configuration is larger than that obtained for head-to-head (head-to-tail)
binding.

At small concavity amounts, less than 0.45, head-to-head binding is the preferred align-
ment for all depletant sizes, (red curve of Fig. 4.7). For larger concavity amounts, we
observe head-to-head binding at infinitesimally small depletant sizes that are insensitive
to the volume changes between head-to-head and head-to-tail binding configurations. At
intermediate depletant sizes, head-to-tail binding configuration is dominant due to the con-
cavity of the shape of the particles. We also observe a reentrant head-to-head binding for
large depletant sizes (red curve of Fig. 4.7). This is because at large depletant sizes, the
free volume gained by the depletants is insensitive to the smaller volume gain obtained
from head-to-tail binding of concave shapes.

Effect of Depletant Concentration

A further note is in order regarding the effect of depletant concentation in the plots shown
in Fig. 4.5 – Fig. 4.6. In this work, we calculate the total free volume available to the
depletants at a fixed configuration of a pair of particles. This is equivalent to assuming that
an infinite pressure of depletants would preserve the configuration being considered. In this
sense, the preferred binding configuration for a given concavity amount and depletant size
shown in the red curve of Fig. 4.7 is the preferred binding configuration at infinite pressure.
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4.4 Self-Assembly of Particles: Engineering Binding Us-
ing Depletion Forces

After considering the ideal pairwise configuration of particles in the presence of depletants,
we perform bulk self-assembly computational experiments of systems with 100 to 1000
particles at different concavity amounts. Specifically, we target the binding found in Fig.
4.6 – Fig. 4.5 at varying depletant sizes.

In Fig. 4.7, we present the results found. In these simulations, the colloid packing was
maintained constant at 0.25. At these low colloid packing fractions, the free energy of
the system is dominated by the entropy of the depletant particles and not by the entropy
of the colloidal particles. As a result, the free volume available to the depletants plays a
significant role in driving the colloid self-assembly at these parameters.

The structure found is determined by the ratio of the peaks in the radial distribution
function for the self-assembly of the particles, which is shown in Fig. 4.8 and Fig. 4.9. The
depletant packing fraction is varied between 0.20 and 0.50. At higher depletant packing
fractions, the dynamics of the system is much slower and thus we do not always achieve
equilibrium. At lower depletant packing fractions, we confirm the systems have reached
equilibrium by measuring the distribution of cluster sizes and radial distribution function
and ascertaining they are constant.

Facetted Sphere Assemblies

For small concavity amounts, we observe facetted binding in the assembly of the particles.
This is calculated from the radial distribution function of the bulk self-assembled struc-
tures of these particles, as shown in Fig. 4.8 (a). We find that most centers of neighboring
particles are less than 1 distance unit apart, which is equal to the radius of the spheres. Ad-
ditionally, we also observe in Fig. 4.8 (b) that the size of the cluster formed is two particles,
as two particles align in a head-to-head binding to form spheres.

From the phase diagram presented in Fig. 4.7, we find that head-to-head binding is
reentrant at larger depletant diameters for intermediate concavity amounts, in agreement
with our analytic and Monte Carlo volume calculations in the previous section where we
showed that the order of the free volume difference between head-to-head and head-to-tail
binding is on the order of the depletant volume.

On the timescale of our simulations, the facetted spheres do not hierarchically assemble
into an expected double face-centered cubic (fcc) lattice. We believe that this is a limitation
of our depletant scheme. With current depletant moves, pairs of spheres do not form a
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Figure 4.7: Bulk self-assembly phase diagram for particles with varying concavity amounts
and depletant sizes. The phase diagram is determined by the ratio of the peaks for head-to-
tail and head-to-head configurations from the radial distribution function of the particles.
The red curve is the estimated value of zero free volume difference between head-to-tail and
head-to-head binding from Fig. 4.5 and Fig. 4.6 by Monte Carlo volume integrations. The
red curve denotes the preferred binding configuration of particles according to dimpling
amount and depletant size, calculated from available free volume for depletants. In blue
dotted lines, we show the points along which analytic calculations were performed in Fig.
4.4 and find a perfect match between the predicted and bulk assembled structures.
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(a)

(b) (c)

Figure 4.8: Self-assembly of particles with concavity equal to 0.40, in three-dimensional
systems in the presence of depletants with radius equal to 0.8. (a) 3D self-assembly of
particles with low concavity into spherical clusters. (b) Cluster size formed is equal to two,
as the particles form a sphere. (c) Radial distribution function shows the particles are in
facet binding configuration.
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double fcc. At the time of publication of this thesis, further work is being carried out on
a configurational bias scheme that holds greater promise towards assembly of a double fcc
lattice in the presence of depletants.

Chain Assemblies

At higher concavity amounts, we observe the formation of chains as shown in Fig. 4.9.
Chains have also been reported in experiments on lock and key particles [99, 100], in the
absence of depletants at higher packing fractions. In Fig. 4.9, we show self-assembly of
particles with concavity equal to one, α = 1, into chains in the presence of depletants. Our
results reinforce the idea that depletants are an effective osmotic pressure that promote a
higher local density for colloidal particles.

Tetrahedral Particles

Recent studies show that hard truncated tetrahedra form a close-packed diamond struc-
ture [63] upon crowding, in the absence of depletants. In our recent work, we showed that
cutting a sphere along the planes of a tetrahedron would introduce entropic patches that
result in a close-packed diamond structure [8]. Let us consider the extension of these tetra-
hedrally facetted particles into tetrahedrally dimpled particles by increasing their concavity
amount. We perform these studies in the absence of depletants and propose that depletants
can be used to overcome the shortcomings in tetrahedrally dimpled particles.

In Fig. 4.10 (a), we observe that tetrahedrally facetted particles readily self-assemble
the diamond crystal at sufficiently high packings, while tetrahedrally dimpled concave
spheroidal particles do not. However, a templated assembly process where a diamond unit
cell of the particles is fixed at the origin does produce the diamond structure shown in Fig.
4.10 (b).

The reason for the difference in these building blocks lies in the symmetry of these par-
ticles. As shown in Fig. 4.10 (c), when two facetted particles come together, they align their
faces together (head-to-head binding) to maximize system free volume. In this configura-
tion, these particles have translational freedom to move with their faces aligned. However,
in the case of concave particles, the free volume is maximized when two neighboring par-
ticles align perfectly inside each other (head-to-tail binding). In this configuration, the
particles lose translational freedom to move perpendicular to the lock and key. This results
in reduced degrees of freedom for concave particles if they try to assemble into the diamond
structure, as shown in Fig. 4.10 (d). As a direct consequence of this, concave spheroidal
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2D Self-assembly of concave particles Centers of concave particles forming chains

3D Self-assembly of concave particles Centers of concave particles forming chains

Radial distribution function (RDF) of particles Size and frequency of chains

Figure 4.9: Self-assembly of particles with concavity equal to one, in two-dimensional and
three-dimensional systems.
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(a) (b)

(c) (d)

Figure 4.10: Self-assembly of the diamond crystal structure from (a) facetted particles and
templated self-assembly of (b) concave particles. There exist extra degrees of freedom
in facetted particles (c) in comparison to concave particles (d). The black arrows in (c)
and (d) indicate translational degrees of freedom when particles bind that are available to
tetrahedrally facetted particles but are unavailable to tetrahedrally dimpled particles.
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Figure 4.11: Experimentally synthesized tetrahedrally dimpled particles [9] could be-
have as tetrahedrally facetted particles in the presence of depletants (shown here as green
spheres), resulting in the self-assembly of diamond structures [8].

particles have a smaller propensity to form the diamond structure in comparison to their
facetted counterparts.

Our study in this chapter lays the foundation for using depletant particles of different
sizes to tune concave particles to form the diamond structure. This study is advantageous
to help build the diamond crystal using particle shape that can be synthesized in bulk.

4.5 Conclusions

We have considered a continuous change in particle shape from a flat facet to a perfect
dimple. This is performed by modeling our particles as a union of two spheres, and con-
tinuously varying the ratio of their radii. The preferred binding configuration of these
particles is calculated at different depletant sizes and concentrations, and we observe a
reentrant facet binding configuration at large depletant sizes. In this manner we evaluate
the binding configuration of a pair of particles and predict the bulk self-assembled struc-
ture for these particles. We find that particles with large concavity amount form chains as
predicted from their preferred binding configuration and particles with smaller concavity
have a greater propensity to form a double FCC structure as predicted from their preferred
binding configuration.

We have shown the ability of using depletants as a means of controlling the binding
between a pair of particles, and thus promote the local dense packing structure in the bulk
self-assembly of particles. Particularly, we have shown that by controlling the depletant
size, we can control the directionality of entropic forces between particles in their assem-
bly. This finding can help design optimized shapes from different particles that can be
synthesized experimentally. Experimentalists have successfully synthesized tetrahedrally
dimpled particles [9] that can now be controlled to behave effectively as facetted particles,
as shown in Fig. 4.11.
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Self-assembly of colloidal particles into such structures with diamond connectivity is
a promising avenue for the realisation of photonic crystals operating at infrared wave-
lengths [137, 138] and the visible spectrum [139]. Photonic crystals are a fascinating con-
cept as they are considered to be ”semiconductors for photons” [140]. With periodic struc-
tures that have strong optical interference effects, an important goal is to develop optical
devices that would serve as diodes, transistors and switches for photons. Such photonic
devices would work much faster than their electronic counterparts. Colloidal spheres dec-
orated in silico with attractive patches along the corners of a tetrahedron were the first to
point the way towards diamond connectivity through self-assembly [22]. Since then, these
tetrahedral patchy particles, their phase diagrams and their glass-crystal competition have
been studied in depth providing information for their spontaneous assembly into the dia-
mond structure [141–143]. However it is difficult to experimentally introduce such specific
enthalpic binding in a colloidal particle [144]. This is where depletants may be a valuable
tool.

With an increase in the shape of various building blocks that have been synthesized [145],
an interesting step forward is to look for other open crystal structures that can be directly
self-assembled by opening up the parameter space by the inclusion of depletant sizes and
concentrations [146].

Interplay of Anisotropy Dimensions

Beyond the simple faceting and dimpling of hard spheres, there are many ways of altering
particle shape to introduce patches that promote local dense packing. These features act as
“entropic patches” that cause preferential alignment.

The various shape operations that may be applied to generate attractive entropic patches
may be described in terms of anisotropy dimensions (Fig. 4.12), as was done for enthalpic
patches [2]. Eight examples of shape anisotropy dimensions are illustrated in Fig. 4.12,
reproduced from [8]. Many of these anisotropy dimensions have already been explored
in particles synthesized in the literature. For example, in lock-and-key colloids [21] the
anisotropy dimensions of patch size (a), curvature radius (b), and shape composition op-
eration (f) have been synthesized [147]. In roughened colloids the anisotropy dimensions
of patch size (a), aspect ratio (c), patch angle (d), number of patches (e) and roughness (h)
have been synthesized [84,106–111]. There are many other examples of work in the litera-
ture that can be considered explorations of these anisotropy dimensions [123,148–177], as
we discuss in [8].

From the results in this chapter, we propose that depletants can be used to promote
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(h) roughness

(g) shape gradient

(f) shape composition operation

(e) number of patches

(d) patch angle

(c) aspect ratio

(b) curvature radius

(a) patch size

Figure 4.12: Anisotropic dimensions that were proposed in [3] can be tuned and controlled
by the presence of depletants, resulting in reconfigurable structures that take advantage of
different dimensions at different depletant sizes and concentrations.
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reconfigurability between these different anisotropy dimensions. By controlling depletant
size and concentration, we can reduce and/or increase the effective entropic force along dif-
ferent dimensions and thus create a large phase space for targeted design of reconfigurable
materials.
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CHAPTER 5

Crossover Behavior in Hard Concave Spheroidal
Particles

5.1 Introduction

Physical systems from flocking animals [19] to heavy fermion materials [178] exhibit emer-
gent macroscopic behaviors that are intrinsically difficult to predict from their microscopic
properties [179]. Colloidal systems are fertile ground for investigating emergent behaviors
for three reasons: a wide range of colloidal systems manifest emergent behaviors because
they have entropy-driven phase behavior [180]; there is a broad range of techniques for ma-
nipulating colloids experimentally [36,145,181]; and colloidal systems can be investigated
with a variety of techniques including in situ confocal microscopy [122]. Here, we study
the microscopic properties that control the emergent macroscopic behavior of a family of
entropically patchy [8] colloidal particles1.

Entropically patchy particles are anisotropic colloidal particles that, when crowded in
a thermal system, exhibit emergent directional entropic forces (DEFs) [8]. DEFs emerge
when particles are driven into local dense packing arrangements as the entire system max-
imizes its shape entropy [8]. By simulating colloids with “entropic patches” – or shape
features that promote local packing in certain arrangements – we proposed heuristic rules
for controlling macroscopic behavior [3]. In a range of systems we found macroscopic
ordering was consistent with entropic patch strengths on the order of a few kBT [8]. Due
to the emergent nature of these forces, however, it is not clear, a priori, how directional
entropic forces between particles depend quantitatively on particle geometry.

Here we make this connection by studying families of anisotropic lock-and-key col-
loids [86] with complementary geometric features (see Fig. 5.1) that allow us to quantita-
tively determine the aspects of particle geometry that control macroscopic ordering. Lock-

1This chapter contains work that has been submitted to Physical Review E
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and-key colloids have been the subject of a number of recent theoretical [87,88,99,100,129]
and experimental investigations [9,86,130,147,177,182–185]. We study both packing (in-
finite pressure) and assembly (finite pressure) behaviors of families of particles that differ
by dimple number and symmetry as a function of dimple size. We find that in both cases
there are approximate universal parameters of the particle geometry that control macro-
scopic phase behavior. However, the control parameters are different in the dense packing
and assembly limits. In the dense packing limit, a combination of analytic and numerical
calculations show that (i) as dimple size increases, there is a crossover from body centered
cubic or tetragonal phases to phases that reflect the number of dimples and particle sym-
metry, and surprisingly (ii) this point of crossover occurs approximately independent of
particle symmetry and number of dimples. Similarly, in the assembly limit, we find that as
dimple size increases in each family there is (i) a crossover from the FCC structures that
are characteristic of hard sphere assembly [186] to BCC structures that are characteristic
of soft sphere assembly [187], followed by (ii) a second crossover from BCC to structures
that are determined by the particle symmetry and number of dimples. Surprisingly (iii)
this second point of crossover also depends on a quantity that is approximately indepen-
dent of particle symmetry, though it is different from the control parameter in the dense
packing limit. We find that in the dense packing limit, the crossover in packing behavior
is determined by a quantity that depends simultaneously on the geometry of all of the par-
ticle features, whereas in the assembly limit it is determined by the volume of individual
dimples. We interpret these results in light of previous work [8] arguing that shape entropy
maximization causes entropically driven colloidal systems to optimize local packing. Our
results provide detailed quantitative evidence on how shape features control the macro-
scopic phase behavior of colloidal systems, while providing a concrete example of a set of
systems experimentally realizable exhibiting an emergent macroscopic behavior that can
be traced to a single universal control parameter.

5.2 Methods

The particles, shown schematically in Fig. 5.1(c) and denoted by PnD, comprise a central
sphere P that is symmetrically dimpled by subtracting nD valence spheres, all of the same
radius as the central sphere hereafter taken to be one. The valence sphere positions are
chosen to be related by discrete symmetries, and are equidistant from the central sphere
as shown in Fig. 5.1(b). By using equal radii, there is a clear connection between the
dimple volume and free volume gained by the rest of the system when particles bind en-
tropically [3,8] due to shape complementarity. We study bivalent (P2), trivalent (P3), tetra-
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(a)

0.00 0.25 0.50 0.75 1.00
Dimpling Amount

(b)

(c)

P2 P3 P4t P4s P6

Figure 5.1: (a) Change in shape of a tetrahedral tetravalent particle from convex to concave
as dimpling amount is increased from 0 to 1. (b) Parameterization of dimpled concave
spheroidal particles. (c) Bivalent, trivalent, tetrahedral tetravalent, square tetravalent and
hexavalent model spheroidal particles.

hedrally tetravalent (P4t), square tetravalent (P4s), and hexavalent (P6) dimpled particles.
For each of these concave particles, there is a one-parameter family of shapes determined
by the distance d between the central and valence spheres which is maximum when the
valence spheres are tangent to the central sphere and minimum when the valence spheres
are tangent to each other.

Dimples are pairs of spherical caps bounded by the intersection of the central and va-
lence spheres, and have the following volume, surface area, and circumference:

vd = π
12 (d + 4)(2−d)2 ,

sd = π(2−d) ,

cd = π
√

4−d2 .

We parametrize the dimple geometry by linearly mapping d2 to the “dimpling amount” f ,
where f = 0 ( f = 1) when d2 is maximum (minimum).

We use standard Monte Carlo simulation (see, e.g., [57] and Supplemental Materials
(SM) for details) to obtain both assemblies and putative densest packings. In both cases, we
determine particle overlaps by implementing a geometric algorithm developed for dimpled
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particles [7] (see SM for details). To verify the putative densest packings, where practical,
we perform analytic calculations to determine the unit cell of the densest packing structure
(see SM for details). We identify crystal structures by replacing each particle by a point at
its centroid as in several previous works [8, 22, 63, 64, 136].

5.3 Crossover in Densest Packings Structures

Following [188], we study continuous shape deformations. We compute putative dens-
est packings for each family of particles at 100 different dimpling amounts f ∈ [0,1]; see
Fig. 5.2. In all cases, for small f ≈ 0, particles pack most densely into FCC lattices, like
hard spheres [186]. For slightly larger values f ≤ f ∗DP, all particle types pack like soft
spheres [64] into a BCT structure. This transition from FCC to BCT packing structures
stems from a new contact between particles upon dimpling, sphere-dimple contact, in ad-
dition to sphere-sphere contact. The dimple-sphere contact results in a shorter contact
distance between neighboring particles. This results in a body-centered tetragonal struc-
ture with α = β 6= γ, where α, β, and γ are lattice vectors. The transition from FCC to
BCT structures occurs almost instantaneously with dimpling, and is captured in our ana-
lytic densest packing calculations. We represent this by means of a single continuous curve
in our analytic calculations in Figures B.1 - B.5. However, in numerical putative densest
packing calculations, the particles pack in the FCC structure until a large enough dimpling
amount due to local frustrations.

Around these values of f , the dimples become increasingly filled by adjacent parti-
cles with decreasing system volume, allowing denser packings without the need for global
structural rearrangement. In each family, below a critical dimpling amount f ∗DP particle
dimples make contact with the convex part of adjacent particles, while at f ∗DP the concave
dimples of one particle completely encompass the convex region of a neighboring particle
in its tangential direction, meeting the surface of the neighboring concave dimples. In order
to help elucidate this observation, we show the configuration of a pair of binary dimpled
particles in Fig. 5.3.

At f ≥ f ∗DP, neighboring particles interlock within each other resulting in a crossover to
a structure determined by the number and arrangement of dimples on individual particles.
We find that just above f ∗DP, P2 particles pack into a parquet structure; P3 particles pack
into an AB-stacked hexagonal packing (hexagonal close packing–HCP); P4t particles pack
into a diamond lattice; P4s particles pack into a tetragonal lattice with rotational parquet
symmetry; and P6 particles pack into a simple cubic lattice. A further increase in f beyond
f ∗DP introduces larger voids between particles and a reduction in packing fraction. As f
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Figure 5.2: Numerical calculations of the density φ of the densest obtained packing for
dimpled particles as a function of dimpling amount f . The curves for different particles
are shifted along the y-axis for clarity. Packing fraction is maximum at a critical dimpling
amount f = f ∗DP when the dominating features switch from convex to concave regions of the
particles. For small f , particles shear from a thermodynamic preference for FCC packing
in the hard sphere limit to a BCT packing with the introduction of dimpling. This is not
smoothly captured in numerical calculations, but we show that the transition is smooth
through analytic packing calculations in the SM. (Right Insets) For P4t and P6 particles,
a second transition at larger f is seen from diamond to FCC and sheared cubic to simple
cubic respectively.
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(a) f ≤ f ∗DP (b) f = f ∗DP (c) f ≥ f ∗DP

Figure 5.3: Configuration of neighboring particles around the critical dimpling amount for
densest packing. In the second row, we show zoomed in images of the particles almost
perfectly encompassed in the neighboring dimple at the critical dimpling amount.

increases beyond f ∗DP, dimple volume continues to increase, resulting in a smaller volume
of the particle in the unit cell structure. This change results in a reduction in the packing
density of these structures. At sufficiently large values of f , P3, P4t, and P6 particles pack
less densely than spheres.

For P2, P3, and P6 particles the packing fraction changes smoothly as a function of
f about its maximum at f ∗DP; whereas for P4t and P4s particles there is a cusp. Both
types of behavior have been observed previously in dense packings of continuously varying
shapes [63, 188, 189]. For P2, P3, and P6 particles, the smooth behavior occurs because
structures on either side of f ∗DP are related by a continuous shear. For P4t particles the cusp
is the result of a crossover from BCC to diamond, and for P4s it is the result of a change
from BCC to simple cubic with a rotational parquet symmetry in the simple cubic lattice,
which cannot be obtained by a simple shear from the BCC structure.

For P4t particles at high dimpling amounts, f =0.7374, we find another transition from
diamond to FCC, shown in the first right inset of Fig. 5.2. At these large dimpling amounts,
the densest packing structure arises from a competition between the parallel and anti-
parallel alignment of the dimples. With increase in the size of the dimples, neighboring
particles find more room to rotate while they are interlocked. This results in a denser pack-
ing when the dimples align parallel to each other instead, resulting in a transition from
diamond, where dimples exhibit anti-parallel alignment, to the FCC structure.

Similar to P4t particles, we find another transition for P6 particles at f =0.6510, shown
in the second right inset of Fig. 5.2. The particles transition from a sheared cubic arrange-
ment to a simple cubic arrangement. This transition is observed in hexavalent particles
because of their ability to shear along the 110 lattice vector direction, while neighboring
particles remain interlocked in the same configuration.

We seek to quantify our observation that each family exhibits a maximum in packing
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Figure 5.4: Packing fraction φ vs the total dimple circumference-depth ratio Cd. The pack-
ing fraction reaches a critical maximum at a universal constant C∗d =1.234±0.060.
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when systems pack into structures in which dimples span convex regions on adjacent par-
ticles, through a simple geometric criterion that depends on the number and size of particle
dimples. We find that the quantity Cd ≡

(nDcd)
(2πd) , which is the ratio of the total dimple cir-

cumference to the dimple depth, evaluated at the value of d corresponding to f ∗DP falls in
the range 1.23±0.06 across all five particle families; see Fig. 5.4. Further details of these
calculations are shown in the following section.

5.4 Geometric Characteristics of Concave Spheres

We calculate geometric characteristics of the particles at various dimpling amounts, as
shown in Figure 5.5.

Dimple Volume

The volume of a single dimple, vd, is calculated as the union of the volume of the two
intersecting spherical caps that form the dimple. The volume of spherical cap of radius R

and height h is given by
V(R,h) = 1

3πh2(3R−h) .

For a single dimple formed at the intersection of central and valence spheres of radii R+,R−,
its volume is given by

vd = π
12d (R+ + R−−d)2× (d2 + 2dR+ + 2dR−+ 6R+R−−3R2

+−3R2
−) (5.1)

. For R+ = R− = 1,
vd = π

12 (d + 4)(2−d)2 . (5.2)

where d is the distance between the centers of the central sphere and the valence sphere.
The volume of the remaining particle vsp is given by

vsp = vPS − (nD× vd) . (5.3)

where vPS is the volume of the original central sphere, vd is the volume of a single dimple
and nD is the number of dimples in the particle. This gives

vsp = 4
3πR3

+−nD×
π
12 (d + 4)(2−d)2 . (5.4)
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(a) Circumference (b) Surface Area (c) Volume

Figure 5.5: The different shape features of multi-dimpled spheres considered in this study.

We normalize the total dimple volume for a particle by

Vd =
nD× vd

vsp
. (5.5)

Dimple Surface Area

Similar to the volume of the dimples, we calculate the surface area of a single dimple and
normalize the total surface area of the dimples by the surface area of the particle. The
surface area of a single dimple sd is calculated as the surface area of a spherical cap formed
between the central and valence spheres. For spheres of radii R+,R−, the surface area is
given by

sd =
πR−

d (R+−R−+ d)(R+ + R−−d) . (5.6)

For R+ = R− = 1,
sd = π(2−d) . (5.7)

The surface area of the particle, ssp, is given by

ssp = sPS − (nD× sd) . (5.8)

where sPS is the surface area of the original central sphere. This gives

ssp = 4πR2
+−nD×π(2−d) . (5.9)

The self-assembled non-spherical crystal structure is rather dependent on the number
and arrangement of dimples in the particle. We normalize the total dimple surface area S d

for a particle as
S d =

nD× sd

ssp
. (5.10)
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Dimple Circumference

Similarly, the circumference of the dimples cd is calculated from the radius of the circle
of intersection between the central and valence spheres. For spheres of radii R+,R−, the
circumference is given by

cd = π
d

√
(−R+ + R−+ d)(R+−R−+ d)×

√
(R+ + R+−d)(R+ + R−+ d) (5.11)

. For R+ = R− = 1,
cd = π

√
4−d2 . (5.12)

This circumference is normalized by the distance between the central and valence spheres.
To reduce the numerical ratio, we use a weight 2π and call this normalization factor csp.
This factor is given by

csp = 2πd . (5.13)

The total circumference of the dimples Cd is thus normalized by the circumference of
a circle describing the distance between the parent and valence sphere in the particle.

Cd =
nD× cd

csp
. (5.14)

5.5 Crossover in Self-Assembled Structures

We also performed MC simulations at finite pressures to study assembly behavior away
from the dense packing limit.

Near f = 0 we observe the assembly of FCC lattices as we would expect for hard
spheres, while at small dimpling amounts, in all cases we observe a crossover from FCC to
BCC. This transition suggests that particles with small dimples ( f ≤ f ∗S A), irrespective of
their symmetry, behave effectively as soft spheres (see SM for further discussion) which are
known to assemble BCC and other non-close packed lattices [187, 190]; this crossover has
also been observed in DNA-mediated assembly [191,192]. This effective softness may also
underlie the existence of BCC rotator phases for several symmetric convex polyhedra [64].

Above a critical value f ≥ f ∗SA for each family, the phase behavior is dependent on
the arrangement of dimples, as shown in Fig. 5.6. P2 particles self-assemble a parquet
lattice. For P3 and P4t we do not observe assembly of an ordered structure from a ho-
mogeneous fluid at any density on the time scale of our simulations. For P3, we find
the expected triangular lattice is stable against melting to a packing fraction of 0.35. For
P4t, if seeded, particles assemble a diamond lattice as found previously for tetrahedrally
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Figure 5.6: Self-assembled crystals for different multi-dimpled spheroidal particles vs vol-
ume of individual dimples in particles. We find that critical volume of an individual dimple
determines the spherical or non-spherical self-assembly of these particles.

patterned enthalpically patchy particles [22], but unlike truncated tetrahedra [63] or tetra-
hedrally facetted spheres [8]. P4s particles self-assemble a cubic lattice with rotational
parquet symmetry. P6 particles self-assemble a simple cubic lattice. In all cases we ob-
serve that the ordered phase coincides with an emergent valence, or angular specificity in
the effective interactions between neighboring particles, on the order of a few kBT (see
SM), as has been observed for convex particles [8].

As in their packings, in each family we observe a crossover from a BCC phase to a
phase dependent on particle symmetry at f ∗SA, and we seek to determine if this crossover
can be characterized by a quantity that is independent of particle symmetry. We find that
the volume of individual dimples on a particle shows little variation at f ∗S A suggesting
that individual dimple volume is the key microscopic parameter that controls the emergent
phase behavior in these systems, irrespective of particle symmetry.

5.5.1 Potential of Mean Force and Torque

The potential of mean force and torque (PMFT) is a measure of the effective entropic
attraction between a pair of particles due to the surrounding particles [8]. We calculate
PMFT to show the difference between self-assembled structures by multi-dimpled concave
spheroidal particles at different dimpling amounts. These calculations are evaluated at the
lowest density where the crystal structure is formed, around a constant volume with a single
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Figure 5.7: Potential of mean force and torque (PMFT) calculations [8] show that below the
critical dimpling amount f ∗SA (left) an isotropic potential exists. At higher dimpling amount
(right), an attractive free energy well is presented in the volume of the dimple, giving rise
to different crystal structures. (a, b) Bivalent particle showing (a) BCC and (b) parquet
potentials. (c, d) Trivalent particle showing (c) BCC and (d) triangular sheet potentials. (e,
f) Tetrahedrally tetravalent particle showing (e) BCC and (f) tetragonal diamond potentials.
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Figure 5.8: Potential of mean force and torque (PMFT) calculations [8] show that below
the critical dimpling amount f ∗SA (left) an isotropic potential exists. (a, b) Square tetravalent
particle showing (a) BCC and (b) simple cubic potentials. (c, d) Hexavalent particle show-
ing (c) BCC and (d) simple cubic potentials. Because the lattice vector of the cubic lattice
formed is small in this case, we see second and third neighbor peaks in the cubic potential.
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particle placed at the center using methods introduced in our previous works. In Figures 5.7
- 5.8, we visualize this PMFT as a heat map in three dimensions using VisIT [193]. Below
the critical dimpling amount f ∗SA, we see an isotropic potential around the particle. At
higher dimpling amounts, the dimples behave as an entropic patch resulting in an attraction
between patches.

5.6 Discussion

We found a universal structural crossover in packing that corresponds to a quantity that
depends on all features of a particle shape, and one for assembly that depends on individual
particle features. These findings accord well with recent work [8] arguing that assembly is
driven by local packing whereas packing is a global phenomenon.

5.6.1 Emergent Behavior

Ref. [8] argued that the phase behavior of several systems of convex particles was driven
by pairwise packing considerations – our finding that individual dimple geometry controls
assembly extends this hypothesis to concave spheres. Additionally, in this system, when a
particle binds entropically at a dimple, it loses rotational entropy given by kB lnΩ (where Ω

is the number of distinct particle orientations2). This entropy loss is compensated by a gain
in entropy for the rest of the system. It was argued in [8] that this should be determined
by the stress tensor, which for assembly is typically on the order of kBT/vp where vp

is the particle volume. This suggests that the additional entropy gained by the system
is on the order of kBvd/vp, where as particle pairs bind, the rest of the system gains vd

extra free volume. Thus our finding that individual dimple volume is the parameter that
controls assembly is reasonable and well grounded. The systems we studied are ideal
for identifying this relationship because the free volume gained when particle pairs bind
entropically is well-defined due to shape complementarity. However, we propose that the
intuition we develop here might be useful for other systems of entropically patchy particles
in which the additional volume gained by the system upon binding is less well-defined.
Similarly, we found a specific geometric criterion that corresponds to the crossover in dense
packing behavior; though we do not expect this specific criterion to persist in other systems,
we expect the contrast that packing behavior is controlled by quantities that depend on
the totality of particle shape, whereas assembly can be ascribed to individual features of
particle shape, to persist in other systems.

2In technical terms, Ω is given by the volume of the relevant rotation group.
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5.6.2 Reconfigurable Crystal Structures

To develop reconfigurable materials by changing colloid shape, we need a better under-
standing of how changing colloid shape features affects bulk packing at infinite pressure
and thermodynamic self-assembly behavior away from infinite pressure. A number of stud-
ies involving shape transformation of convex building blocks have studied reconfigurable
self-assembly [188, 194–197].

The existence of an universal criticality in packing and assembly behavior of dimpled
particles indicates that these families can be categorized into “effectively” spherical or as-
pherical building blocks. Dimpled spheroidal particles of any valence can be developed
as functional analogs to chemical molecules that exhibit lock-and-key binding [9]. This
functionality conceivably can then be toggled on and off by swelling and shrinking them,
resulting in interesting “dual” behavior of these building blocks. Fine control of the shape
of such convex-concave building blocks can be experimentally realized by the absorption
and desorption of solvent molecules by the building blocks. This mechanism has been re-
cently used to tune convex building blocks between spheres and convex lenses [198, 199].
This reconfigurability inherent in building block shape can potentially deliver reconfigura-
bility in the bulk crystal structure, resulting in switchable material properties.

5.6.3 Open Crystal Structures

We also note that crystal structures formed by multi-dimpled particles self-assemble at
packing fractions of 40− 50%, much lower than that observed in convex systems, which
are typically ≥ 50% (e.g. [8, 59, 63, 64, 200]). It has been proposed recently that entropy
can stabilize open lattices in systems with both enthalpic and entropic contributions to the
free energy [201]. Here, we found that entropy alone can stabilize open structures. The
absence of strong enthalpic interactions in the present system may also result in fewer
kinetic traps. Open structures are important not only for photonics, but also in applications
such as advanced catalysis and medical diagnosis [202].

Finally, we have described a system that exhibits complex emergent entropy-driven
phase behavior that can be ascribed to a universal underlying microscopic control param-
eter. Because emergent behaviors are inherently difficult to ascribe to microscopic system
details, we believe this example in systems of colloids that can be conveniently synthe-
sized [9,177] is particularly useful because of possible experimental manipulation of emer-
gent behavior.
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CHAPTER 6

Packing and Assembly of Symmetric Sphere
Union Particles

6.1 Introduction

Entropy has been used to design close packed structures [63,64] through local dense pack-
ing motifs that repeat throughout the system [8]. In previous chapters, we designed direc-
tional entropic forces through different shape modifications [3]. The various shape modi-
fications that have been proposed in [3] are primarily used to build entropically attractive
patches on building blocks. Here, we consider the possibility of building entropically re-

pulsive patches on building blocks in order to build open crystal structures. Open crystals
have a large number of applications including heterogeneous catalysis where they could
be used as zeolites. Building such open crystals purely out of entropy is interesting as
entropic particles are less prone to kinetic arrest during assembly. Additionally, with the
introduction of entropically repulsive patches in particles, we observe a competition be-
tween attractive and repulsive emergent forces upon crowding of the particles. This results
in a larger number of densest packing structures obtained through finely tuning the various
geometric aspects of entropic particles.

In this work, we consider sphere union particles with two, three, four (tetrahedral and
square planar arrangement) and six symmetric spheres fused with one central sphere, as
shown in Fig. 6.1. These building blocks are a natural extension of hard snowman [203]
and dumbbell [204] shaped particles that have been extensively studied in the literature.
The sphere union particles studied in this chapter have been readily synthesized using
polymerization techniques [205, 206] and ultrasonic-induced emulsification [207] among
other methods [208]. These particles hold the promise of a number of applications, sim-
ilar to colloidal dimers that have been used to create patterns resulting in antireflecting
surfaces [209].

75



Figure 6.1: Sphere union particles with two, three, four (tetrahedral and square planar
arrangement) and six symmetric spheres fused with one central sphere.

Sphere union particles are also a direct structural analogue to common chemical molecules
and have thus been called colloidal molecules [210]. A range of the molecular analogues
were first synthesized by Manoharan et al. [211]. Since then, fine control of bond-angle in
these molecules has been achieved in a reproducible and controllable fashion [212] using
self-assembly techniques [213] as well as in large quantities [214]. More recently, sphere
union particles with chemically distinct surface patches that are functionalized using sin-
gle stranded DNA’s sticky ends have been synthesized [35]. These hold a greater promise
in both enthalpic and entropic mimicry of atomic molecules, developing colloids with va-
lence, which possess reversible, specific, and directional interactions with well-defined
symmetries.

Understanding the densest packing and self-assembly of particles are key to understand-
ing how they organize into ordered structures. These structures are governed by various
shape characteristics of the particles. The densest packing is the structure formed by parti-
cles at infinite pressure. The self-assembled structure is the lowest free-energy arrangement
of particles that can be kinetically achieved, in a given thermodynamic ensemble.

Here, we demonstrate the packing and assembly behaviors of sphere union particles
shown in Fig. 6.1. We determine that there exist a number of densest packing structures
for a small range of particle shape parameters. We find that when the particle shape is pri-
marily spherical, the particles assemble into a rotator face-centered-cubic crystal structure.
However, when the particle shape is dominated by their spherical protuberances, the large
number of competing densest packing structures result in no long range crystal order at
intermediate packing fractions. Particles that have a few competing densest packing struc-
tures easily self-assemble into crystal structures while others are unable to assemble due to
kinetic arrests on the time scale of our simulations. We propose that this is an important
criterion to determine if a structure can be assembled by purely entropic means. In the
case of kinetically arrested pathways, we propose that the addition of enthalpic interactions
to stabilize densest packing structures can be used for their successful assembly. We dis-
cuss this understanding in the context of modeling proteins using soft-matter techniques to
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(a)

0.00 0.25 0.50 0.75 1.00
Protuberance Amount

(b)

0.55 0.65 0.75 0.85 0.95
Valence Sphere Radius

Figure 6.2: (a) Change in protuberance amount, i.e. distance between parent and valence
spheres, of a tetrahedral tetravalent particle from 0 to 1. (b) Change in valence sphere radius
to parent sphere radius from 0.55 to 0.95, where parent sphere radius is kept constant at 1.

determine the driving factors in protein crystallization.

6.2 Model and Methods

We study families of hard sphere union particles, as shown in Fig. 6.1, which belong to
a family of colloidal molecules. The particles, denoted by PxP, are composed of a parent
sphere P that is symmetrically adsorbed with x valence spheres P. We study bivalent (P2P),
trivalent (P3P), tetrahedrally tetravalent (P4Pt), square tetravalent (P4Ps), and hexavalent
(P6P) particles. We fix the radius of the parent sphere to 1 length unit and study varying
radii of the valence sphere, r ∈ [0.5,1.0] at different protuberance amounts, as shown in Fig.
6.2. We define protuberance amount, α, as the distance between the centers of the parent
and valence spheres. Protuberance amount α is varied between [0,1] such that the particle
is made of a sphere at α = 0 (distance between central and valence sphere is minimum) and
the parent and valence spheres are tangent at α = 1 (distance between central and valence
sphere is maximum). The valence sphere positions are chosen so that their positions are
related by discrete symmetries, and are equidistant from the central sphere as shown in Fig.
6.1. We determine common features between these particles that control the various crystal
structures that can be formed.

Monte Carlo simulations are performed using a Hard Particle Monte Carlo plugin devel-
oped for HOOMD-Blue 1 [6]. We determine particle overlaps by implementing a recursive
algorithm developed for particles that can be defined as unions of different shapes – in this

1http://codeblue.umich.edu/hoomd-blue/
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case, a union of spheres. The densest packing structure is found by compressing systems
with 1, 2, 3, 4 and 8 particles placed in a box with periodic boundary conditions [188].
Isobaric (NPT ) simulations are then run with a slowly increasing pressure. The box is
allowed to shear and change shape until the smallest box is found. We find this typically
takes the order of 10E5 iterations. To identify the crystal structure formed by these par-
ticles, each particle is replaced by a spherical “atom” positioned at its centroid resulting
in an isostructural arrangement to an atomic crystal, an approach used in several previous
works [8, 21, 63, 64, 136].

In order to determine the self-assembled structure of these particles, we begin with
a random configuration of 512 particles. This system is initially equilibrated at a small
packing fraction (∼ 0.1) for 105 MC steps. Isochoric (NVT) simulations are then performed
where the packing fraction is slowly increased until it reaches a target value. The system is
then allowed to equilibrate at this state point for ∼ 5×108 MC steps . Packing densities are
varied between 0.35 ≤ φ ≤ φ∗, where φ∗ is the densest packing for that particle.

6.3 Results

6.3.1 Densest Packings of Sphere Unions

We compute densest packings for each family of particles – P2P, P3P, P4Pt, P4Ps and
P6P – at 100 different protuberance amounts α ∈ [0,1] and 11 different valence radii r ∈

[0.5,1.0]; see Fig. 6.3 - Fig. 6.7.
At α = 0, all particles are spheres that pack into the FCC lattice. At α = 1, the particles

consists of spheres that are glued together along a specific symmetry. Here the particles
pack the poorest if the spheres are of mismatching radii with φmax ∈ (0.4,0.5).

For values of α between 0 and 1, the same set of packing structures are found for a single
particle shape at all values of r. However, the packing curves change from one structure to
another within this same set according to the amount of empty volume available in the box.
Thus this occurs at different values of α for different values of r.

Consider the case of P2P particles. For a given radius r, the particles switch from
face-centered cubic (FCC) to body-centered tetragonal (BCT) initially through a smooth
transition, typically at lower values of α. As α increases, there is a sharp continuous tran-
sition from BCT to two-dimensional tetragonal sheets with AB stacking. At greater values
of α, there is another sharp transition into the BCT structure. As radius r varies from 0.5
to 1.0, initially there is a decrease in α required for transition. At higher r, the trend is
reversed with an increase in α required for transition.
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Figure 6.3: Densest packing surface of bivalent (P2P) particles, at different radii of va-
lence sphere, with increasing protuberance amount. The rich variety of structures holds the
promise of using the same building blocks to stabilize different structures.

Figure 6.4: Densest packing surface of trivalent (P3P) particles, at different radii of valence
sphere, with increasing protuberance amount. Different structures are found at different
radius values.
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Figure 6.5: Densest packing surface of tetrahedral tetravalent (P4Pth) particles, at differ-
ent radii of valence sphere, with increasing protuberance amount. Different structures are
found at different radius values.

Figure 6.6: Densest packing surface of square tetravalent (P4Ps) particles, at different radii
of valence sphere, with increasing protuberance amount. Different structures are found at
different radius values.
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Figure 6.7: Densest packing surface of hexavalent (P6P) particles, at different radii of va-
lence sphere, with increasing protuberance amount. The relatively lesser number of struc-
tures holds the promise of entropic self-assembly of these structures.

Across the various densest packing curves for all particle types, we observe these gen-
eral trends. The extent of different packing structures varies with increasing amount of α.
We observe that the structures formed are primarily spherical, due to the spherical compo-
sition of the building blocks. In the case of P2P, there are three different densest packing
structures: FCC, BCT and two-dimensional tetragonal sheets with AB stacking. For P3P
particles, we observe FCC, BCT and two-dimensional triangular sheets with AB stacking.
For P4Pt particles, we observe FCC, BCT, and BCC structures. For P4Ps and P6P par-
ticles, we find FCC, BCT and two-dimensional square sheets. Also, we observe that in
the cases of P4Ps and P6P, the densest packing curves are smooth at all values of r and α.
This implies that the densest packing structures can be easily sheared into each other, thus
increasing the propensity for their self-assembly by avoiding kinetic traps.

In the densest packing structures observed in Fig. 6.3 - Fig. 6.7, we note that the lat-
tice distance in the unit cell varies as a linear function of the protuberance amount α. A
hand waving argument regarding the observation of different structures can thus be made
in the following manner: as the protuberance amount increases, the unit cell of the densest
packing gradually shifts from a cubic to a tetragonal structure. With further increase in the
protuberance amount, the tetragonal symmetry in the third dimension is also lost, resulting
in the formation of two dimensional sheets that are stacked together in these structures.
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Interestingly, as the radius r is increased, the inverse effect takes place. Thus the parti-
cles gain symmetry in their densest packing structures, improving from two dimensional
sheets into tetragonal and cubic symmetries. Thus there is a maximum probability for the
occurrence of a given structure between the limits of radius and protuberance amounts.

6.3.2 Self-Assembled Structures

In order to understand the relationship between the densest packing and self-assembly for
sphere union particles, we perform Monte Carlo simulations of their assembly. The self-
assembly of hard particles is driven by the maximization of shape entropy, which causes
particles to arrange into locally dense packings [8].

Similar to the results we obtained for multi-dimpled spherical particles, we observe that
at low protuberance amounts α, for all radius values, all particles behave like spheres. Here,
the particles assemble into a rotator face-centered cubic crystal where there is no correlation
between the orientations of neighboring particles, as shown in Fig. 6.8. The lattice unit
vector of these crystals increases with increasing protuberance amount. As shown in Fig.
6.8 (b), these structures can be understood as open FCC lattices with entropic repulsive
patches that stabilize the FCC structure.

Larger protuberances play a greater role in self-assembly. However, due to the large
number of competing dense packing structures that neighboring particles locally assemble
into, we do not assemble a crystal for P3P, P4Pt or P4Ps particles within the time scales
of our simulation. P2P particles assemble into two-dimensional tetragonal sheets with AB
stacking when the radius of the valence spheres is equal to the parent sphere. P6P particles
readily assemble into the face-centered cubic lattice. This can be understood to originate
in the spherical shape of the particle, as these particles are more spherical than others.

The rich variety of structures found in our densest packing results do not equate to
an equally rich variety of crystal structures in assembly. On the contrary, the presence of
competing locally dense packing structures seen in densest packing curves that cannot be
sheared into one another results in kinetic arrests which hinder the assembly process.

For the case of P4Psq and P6P particles, we find interesting crystal structures at higher
densities. The P4Psq particles form the A15 crystal structure at a packing fraction of 0.70
for small protuberance amount of 0.20, when the valence sphere radius is 1.0. At these
parameters, the particle is disc like and has bumpy surfaces that result in a rotator crystal,
as shown in Fig. 6.12.

The P6P particles are cubic by design. At relatively high packing fractions of 0.46,
for particles with large protuberances at different valence sphere radius sizes, the particles
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Figure 6.8: Self-assembly of an open, rotator, face centered cubic crystal by a tetrahedral
sphere union particle at a packing fraction of 0.58. We show the bulk assembled structure
in (a), and its open crystal structure (b). A single particle is shown in (c) for clarity, along
with bond order diagram (d), and radial distribution function (e). In (f), (g), (h) and (i),
we show independent simulation snapshots along z-axis of the crystal center that indicate
a lack of correlation in particle orientation, thus indicating the presence of a rotator phase.
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Figure 6.9: Self-assembly phase diagram of sphere union particles - P2P and P3P. We
observe a rotator FCC lattice at small protuberance amounts for all families of particles. At
higher protuberance amounts, we do not observe any crystal structures on the time scale of
our simulations for P3P particles. For P2P particles, we observe two dimensional sheets of
particles when r = 1.
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Figure 6.10: Self-assembly phase diagram of sphere union particles - P4Pt and P4Ps. We
observe a rotator FCC lattice at small protuberance amounts for all families of particles. At
higher protuberance amounts, we do not observe any crystal structures on the time scale of
our simulations for P4Pt and P4Ps particles.
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Figure 6.11: Self-assembly phase diagram of sphere union particles - P6P. We observe a
rotator FCC lattice at small protuberance amounts for all families of particles. For P6P
particles, we observe FCC structure even at high protuberance amounts due to the high
spherical nature of these particles.
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Figure 6.12: Self assembled A15 rotator crystal phase at dense packing fraction of P4Psq -
square tetravalent sphere union particles. This structured was obtained at packing fraction
of 0.70, for small protuberance amount of 0.20, and valence sphere radius equal to parent
sphere.

readily assemble into a crystal with a hexagonal close packed lattice. This structure is
unique as it does not exhibit a plastic crystal state - instead the particles align themselves
both translationally and rotationally into the HCP lattice, as shown in Fig. 6.13. For both
P4Psq and P6P particles, future work will be needed to flush out the entire phase diagram
at higher packing fractions. We also expect to observe a rich variety of crystal structures
from other particles at higher packing fractions.

6.4 Discussion

In this chapter, we discussed the densest packing and self-assembly of symmetric sphere
union particles for varying sphere radii and protuberance amounts. We found that the dens-
est packings of the particles change from FCC to structures dominated by the symmetry of
the particles. The relative positions of these changes are determined by an interplay of both
the radius and the protuberance amount. In general, the densest packing structures shift at
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Figure 6.13: Self assembed hexagonal close packed (HCP) structure at relatively dense
packing fraction of P6P - hexavalent sphere union particles. This structure was obtained
at packing fraction of 0.46, for large protuberance amounts of 0.60 and 0.80 at different
valence sphere radii.

different points for different values of radius and protuberance amounts.
Sphere union particles with small protuberance amounts equal to 0.20 always self-

assemble into a rotator face-centered cubic lattice. This can be understood from the work
in Chapter 5. At these small protuberance amounts, the isotropic nature of the spherical
particle is not disturbed. This results in a mostly isotropic potential of mean force and
torque in the neighborhood of these particles. These structures hold the promise of applica-
tions involving open crystal structures. For example, consider a particle that is made of an
optically opaque parent sphere with optically transparent valence spheres. These particles,
as shown in Fig. 6.8 (b), would serve as an open crystal to the wavelength of light. Fur-
ther extensions of such work can be aimed at building open diamond crystals from similar
building blocks.

At higher protuberance amounts, the potential of mean force and torque is dominated
by geometric features that determine the neighborhood of a particle. We observe that in
the case of sphere unions of six valence spheres (P6P), the particles readily assemble into a
face-centered cubic structure. In the case of sphere unions of two valence spheres (P2P), the
particles form two dimensional tetragonal sheets in an AB stacking. For all other particle
types in this study, the assemblies are found to be kinetically arrested on the time scale of
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our simulations. We attribute this observation to our finding of a large number of competing
local dense packing structures in the densest packing calculations for these particles.

The observation of a rich variety of densest packing structures implies that these parti-
cles can be stabilized into a number of structures, at least in the limit of infinite pressure.
While entropic means might not suffice to achieve these structures, the introduction of en-
thalpic patchy sites on these particles can be used to promote their assembly into different
crystal structures. In the context of protein crystal self-assembly, most progress has relied
on the “patchy sphere” model, for which the patch locations can be chosen to match ex-
perimentally determined, e.g. orthorhombic, unit cell assembles with defined molecular
orientations. Many of the crystal structures formed by proteins are open crystal structures.
By using patchy sphere models with two different types of spheres, one to model the pro-
tein molecules and another to model the void space in open crystals, these models can be
used to stabilize protein structures. Some of these spheres can also be modeled as soft
spheres to successfully model the behavior of proteins without the explicit inclusion of en-
thalpic interactions that make the system computationally expensive. These soft spheres
would have a tolerance in their overlap allowing for an accurate representation of proteins,
possibly resulting in a better understanding of the folding of protein molecules.

We proposed these particles as colloidal molecules. In this sense, we have only ex-
ploited their shape. By adding surface charge, we could introduce interactions between
these building blocks. Further work on controlling the interactions along the various ge-
ometric aspects of these particles can be performed by tuning their sizes. This holds the
promise of reconfigurable structures that can be obtained due to small changes in the inter-
actions of their building blocks.
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CHAPTER 7

Summary

God used beautiful mathematics in

creating the world.

Paul M. Dirac

7.1 Conclusions

In this thesis, we considered shape modifications to spheres in order to introduce directional
entropic forces. All of these shape modifications have been experimentally realized, thanks
to experimental progress in the synthesis of spheroidal particles.

We considered the effect of a sea of depletants surrounding a pair of particles, which
results in an osmotic pressure around the particles. We quantified the effective potential of
mean force and torque (PMFT) around a colloidal particle in both its fluid and solid states.
By understanding the effect of depletion, we showed that emergent binding at low colloidal
concentrations can be activated through depletants. Specifically, the colloidal particles bind
in a manner that increases the free volume available to the depletants in the system.

Next we considered the question of flat facetted spheres. While it is known that flat
facets promote binding and can assemble into a number of structures, particles with true
flat facets are difficult to experimentally synthesize. Thus we asked the question “How flat
is flat?”, understanding the effect of curvature on the assembly of particles. We answered
this question in the presence of depletants - by first numerically calculating the free vol-
ume available to the depletants in a given configuration of collodial particles. We expect
the structure with a larger free volume for the depletants to be more readily assembled in
bulk. We found this to be true in the case of low colloid concentrations, where the entropy
maximization of depletants plays a bigger role than the entropy maximization of colloidal
particles towards the total gain of entropy for the system. Thus we were able to deter-
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mine depletant sizes that can promote a targeted binding configuration between colloidal
particles.

Concave features on the surfaces of spheres are a prime example of directional entropic
patches. We thus extended our previous work to consider simulations of multi-dimpled
spherical particles. By evaluating the densest packing curves and self-assembly structures
of these particles, we found a crossover in their behavior that originates in the competition
between convex and concave regions of the particles. In particular, we found that the dens-
est packings cross over into structures dominated by their concave regions at a critical total
dimple circumference to depth ratio. This emphasizes the notion that densest packing is a
global effect of all features in particles. We found a similar crossover into concave feature
driven assembly from sphere like assembly at a critical individual volume of the dimple.
This emphasizes the notion that self-assembly is a locally driven effect, with neighboring
particles finding locally dense packings. These results have an important effect on under-
standing emergent phenomena, as entropic interactions are an emergent behavior that occur
due to the crowding of neighboring particles. The ability to a priori determine emergent
phenomena holds the promise of better control over the design of such phenomena.

Finally, we considered the inverse of multi-dimpled spherical particles, i.e., sphere
union particles. By replacing dimples with bumps, we proposed the notion of directional
entropic repulsive forces for creating open crystal structures. These particles are a direct ex-
tension of hard dumbbell and snowman shaped particles. We found densest packing curves
for these particles at different radii and protuberance amounts. Interesting trends were
found, with close packed structures like face centered cubic, body centered tetragonal and
body centered cubic forming at larger lattice spacings. In the self-assembly simulations, we
found that at low protuberance amounts, the lattice spacing of face-centered cubic crystals
can be finely controlled by these particles. At higher protuberance amounts, in general, the
particles were kinetically arrested in their assembly due to the large number of competing
densest packing structures. These particles hold the promise of a facile synthesis method
for the development of colloidal molecules, i.e., analogues to molecular atoms, that can be
designed to have surfaces with different interaction strengths.

By studying the different axes of shape modification, we have exploited the ability to
tune directional entropic forces in the design of colloidal particles for targeted development
of crystal structures.
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(a) (b)

Figure 7.1: Heterogeneous features (dimple - protuberance) on a single particle (a) or a
mixture of complementary particles (b) can provide interesting opportunities to understand
the interplay of directional entropic forces.

7.2 Future Work

7.2.1 Heterogeneous Features

An interesting avenue to consider for future work is the mixture of various shape features
in a spherical particle. These could be a mixture of convex and concave features in a single
particle, or mixtures of two particles with complementary features, as shown in Fig. 7.1.
The interplay of particle features here can result in interlocking of double lattices as well
as the formation of two independent crystal structures. This and other possibilities provide
a great motivation to study such systems.

7.2.2 Entropy + Enthalpy

Introducing interactions between particles by selectively decorating certain shape modifica-
tions is an interesting step forward, bringing together both enthalpic and entropic patches to
design new crystal structures. The ability to tune particle shape through means of swelling
and shrinking the particles can help in fine, in situ control of enthalpic interaction ener-
gies. We have proposed this concept for facetted particles in Fig. 7.2. This can be extended
in a straightforward manner to the various shape modifications of spheres that have been
performed in this work.

7.2.3 Modeling Proteins

Representing folded protein molecules as nanoparticle building blocks is a promising strat-
egy to explore the tremendous design space of functionalized biomaterials. Proteins are
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Figure 7.2: Enthalpic patches can be combined with entropic patches to enhance or inhibit
entropic patchiness as shown schematically here. This can be obtained by using the same
direction for both types of patches (top), or by using different directions for the entropic
patches and the enthalpic patches (bottom). Figure reproduced from [3].

well known to form crystalline materials, and the more than 80,000 structures of the Pro-
tein Data Bank (PDB) that have been found by x-ray crystallography are testimony to the
importance of protein crystallization for structural biology. Assigning a three-dimensional
shape to a protein, defined by the spatial extent of its constituent atoms, can help us take
advantage of the knowledge of various principle of patchy particles. By using a three-
dimensional ‘patchy shape’ model, where the patchy interactions of the model will be
calibrated through feedback with experiment, a better understanding of the fundamental
mechanisms in protein crystal formation can be achieved.

The questions that were opened during this work revolve around system complexity.
By introducing many more features in the shape of particles, we can expect the number
of possibilities to get further complicated. New approaches to the computational study of
these systems would be needed. Machine learning and other learning algorithms can be
designed to help narrow down the search space for a targeted structure. The future of com-
putational design for targeted self-assembly of materials is at the crossroads of improved
parameter space search techniques and new building blocks that can be readily synthesized
experimentally.
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APPENDIX A

PMFT for Rounded Cylinders

We understand that non-specific interactions form and break easily in comparison to spe-
cific interactions. This suggests that non-specific interactions can function as a route to
specific binding in these systems. In Fig. A.1 and Fig. A.2 we plot this potential to com-
pare the effect of different particle shape features. Figure A.1 compares the potential of
mean force and torque at a fixed value of the temperature and pressure for a rounded cylin-
der and a true cylinder (see Fig. 3.2 for a depiction of the geometric understanding of the
coordinates and Fig. 3.4 for a depiction of the rounded cylinders themselves).

We show this in figure A.2 in which we plot the potential of mean force at φ1,2 =

(−0.999,−0.999), (−0.578,−0.578), (−0.578,−0.999), (−0.999,−0.578) for cylinders at r3
dP/kBT =

0.015 and 0.04. We can clearly see that the potential becomes deeper near specific patch
sites at higher pressures.
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Figure A.1: Plot of the potential of mean force and torque for a true cylinder (a) and a
rounded cylinder (b) in units of kBT . In the former case the diameter of the cylinder is the
same as its height. In all cases the maximum radius of a sphere that can be inscribed within
the shape is fixed to ten times the radius of the depletant. The true cylinder leads to a more
highly anisotropic interaction potential with a deeper minimum near facial alignment than
the rounded cylinder.
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Figure A.2: Plot of the potential of mean force and torque for a true cylinder at r3
dP = 0.05

with kBT = 1.5(a),3.0(b), where the diameter of the top is ten times the depletant diameter.
Note that at higher depletant pressures the specific (i.e. end-to-end) binding becomes more
favourable.
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APPENDIX B

Densest Packing of Concave Spheres

B.1 Analytic Calculations of Densest Packings

To verify the putative densest packing predicted computationally via MC simulations for
the particles studied in Chapter 5, analytic calculations of the packings of these particles
were performed. In Figures B.1 - B.5, we plot analytic calculations of the packing curve
and numerically predicted packings for one and two particles of all particle types. We
show that our numerical calculations match very well with the analytic findings, with an
error less than 0.001% when f ≥ 0.10.

We further numerically calculate maximum packing densities of all particle types with
up to eight particles. However, due to the complexity of the analytic packing problem
for number of particles n ≥ 3, we do analytic calculations only for (some) one- and two-
particle packings (n = 1,2) for different particle types. If solvable, these analytic curves
and intersection equations are shown in Figures B.1 - B.5.
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Figure B.1: Analytic and numerical packing curves showing a perfect fit for bivalent par-
ticle (P2) for one and two particles in a box. Analytic packing curve for one particle is
shown in red, two particles in black. The dark markers denote numerical densest packing
calculations for two particles in a box, and light for one particle. Blue dashed lines show
the different packing regions found in numerical calculations.

Figure B.2: Analytic and numerical packing curves showing a perfect fit for trivalent par-
ticle (P3) for one and two particles in a box. The curves overlap as one and two particles
pack in the same manner. Green dashed lines show the different packing regions found in
numerical calculations.
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Figure B.3: Analytic and numerical packing curves showing a perfect fit in a single region
between black dashed lines for tetrahedral tetravalent particle (P4t) of one and two particles
in a box. Analytic packing equations could not be calculated at all dimpling amounts by
analytic means. Red dashed lines show the different packing regions found in numerical
calculations, in addition to those found in analytic calculations.

Figure B.4: Analytic and numerical packing curves of a square tetravalent particle (P4s)
showing a perfect fit in the entire domain for one particle in a box and between black
dashed lines in two regions for two particles in a box. Analytic packing curves could not
be calculated at all dimpling amounts for two particles by analytic means. Magenta dashed
lines show the different packing regions found in numerical calculations, in addition to
those found in analytic calculations.
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Figure B.5: Analytic and numerical packing curves of a hexavalent particle (P6) showing
a perfect fit between red dashed lines in two regions for one particle in a box and between
black dashed lines in one region for two particles in a box. Analytic packing curves could
not be calculated at all dimpling amounts for two particles by analytic means. Orange
dashed lines show the different packing regions found in numerical calculations, in addition
to those found in analytic calculations.
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APPENDIX C

Self-assembly of Concave Spheres

C.1 Hard to Soft Transition

In Chapter 5, we note that small concave variations to the shape of a hard sphere have a
similar effect to introducing soft interactions on spheroidal particles. Our results demon-
strate that in the family of particle shapes we consider, with increasing dimple size, we first
observe a structural change from FCC to BCT in packing and to BCC in assembly, at a
small dimpling amount, before undergoing a subsequent change to a structure dependent
on the anisotropic nature of the dimples.

In order to explicitly show the transition from FCC to BCC in assembly, we include
in Fig. C.1 the g(r) calculation near FCC to BCC transition for a tetrahedrally tetravalent
particle. At a constant packing fraction of 0.63, we report a change in the g(r) from FCC to
BCC structure for an infinitesimal dimple volume (hard sphere) to a finite dimple volume
respectively.

C.2 Valence of Multi-Dimpled Particles

By means of PMFT calculations [8], we report that neighboring particles bind along the
direction of dimples during self-assembly (Figs. 5.7 - 5.8). The self-assembled crystal
structures have an emergent valence dependent on the geometry of the dimples due to the
interlocking of convex and concave regions. However, in the diamond crystal structure
obtained from tetrahedrally tetravalent (P4t) particles, the dimples align facing each other.
This is primarily caused by self-depleting effects from neighboring particles when seeded,
that we report in our previous work [8]. Hence, there is considerable empty volume be-
tween the particles, resulting in a much lower packing fraction of φ = 0.32 than is evident
from the structure. Nevertheless, the emergent valence of these particles in their crystal
structure is governed by the dimple geometry as shown from PMFT calculations.
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Figure C.1: The radial distribution function of tetrahedrally tetravalent particles (P4t) at
negligible dimple volume (above) and small dimple volume (below). We report a transition
from a face-centered cubic to a body-centered cubic crystal structure as volume of the
dimple increases.

C.3 Critical Dimpling Amount

Table C.1: Crossover Values for Putative Densest Packings and Thermodynamic Assem-
blies

Particle f ∗DP Cd f ∗SA vd

P2 0.73 1.21 0.50 0.104
P3 0.53 1.22 0.48 0.070
P4t 0.37 1.20 0.60 0.107
P4s 0.56 1.32 0.82 0.105
P6 0.27 1.26 0.64 0.070

The critical dimpling amount for the putative densest packing f ∗DP and self-assembly
f ∗SA of each member of the sphinx family is calculated as the crossover point in the corre-
sponding particle behavior. At these crossover values, different geometric characteristics
of each member of the sphinx family have been calculated as shown in Table C.1.

To understand the packing of multi-dimpled spheroidal particles, we determine the pri-
mary feature in the shape of these particles that affects their behavior. We investigate the
value of f ∗DP compared to the total volume Vd, surface area S d and circumference Cd of all
dimples on a single particle as d is varied. We normalize each of these three parameters.
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The volume and surface area are normalized by the remaining respective quantity in a sin-
gle particle, while the circumference is normalized by the circumference of a circle with
radius equal to the distance between the central and valence spheres, a linear function of
the depth of the dimple. We compute the total normalized dimple volume, surface area and
circumference to depth ratio in each family of particle at f ∗DP. We find that the total cir-
cumference to depth ratio Cd of the dimples is 1.2341±0.060 at f ∗DP across all five particle
families; see figure in main text. In contrast, no universal behavior was found for dimple
volume or surface area. This scaling behavior is also understood from the geometry of the
putative densest packings. The observed critical crossover in the packing curves of these
particles is a result of the presence of convex and concave features in their shape. We report
that this criticality is a constant for particles of different dimple geometries, because pack-
ing is a global effect. However, calculating the geometry of this interlocking is a non-trivial
problem that cannot be easily generalized as it depends on the number of dimples and their
geometry.

We also observed that in their assembly, all particle types undergo a structural transition
from BCC into a thermodynamic phase dictated by their concave features. To quantify
when the concave features are sufficient to induce a change in the preferred structure, we
compare particle shape characteristics at the critical dimpling amount for self assembly
f ∗SA. We find that, across particle types, vd shows little variation at f ∗SA, which suggests that
the volume of individual dimples controls assembly behavior, independent of particle type.

C.4 Transition Density

The particles studied in this work assemble at approximately the same conditions. For the
sake of completeness, we show the transition density phase diagrams for thermodynamic
self-assembly of each particle in Figures C.2 – C.6. In these plots, we also observe the
reported behavior of a crossover in the assembly of particles beyond a constant critical
volume of a single dimple in the top axis.

These crystal structures are formed by entropic interactions between the convex and
concave regions of two adjacent particles. We find that the emergent valence is dependent
on the geometry of the dimples. The number of directions for the alignment of the particles
depends on the crystal lattice, for example, two in the parquet structure. It should also be
noted that the particles have rotational symmetries, which align with the symmetry of the
crystals and thus do not break the symmetry of the crystals. In the case of the tetrahedrally
tetravalent particle, particles have two orientations in the diamond crystal structure formed.
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Figure C.2: Numerical packing curves showing a transition from FCC to BCC structures.
This new transition, where new packing configurations (BCC) are accessible at higher dim-
pling amount f , occurs in concave particles where the change in particle shape is accom-
panied by a change in the void formed between particles in their densest packing. Blue
dashed lines show the different packing regions found in numerical calculations.

Figure C.3: Numerical packing curves showing a transition from FCC to BCC structures.
This new transition, where new packing configurations (BCC) are accessible at higher dim-
pling amount f , occurs in concave particles where the change in particle shape is accom-
panied by a change in the void formed between particles in their densest packing. Green
dashed lines show the different packing regions found in numerical calculations.

104



Figure C.4: Numerical packing curves showing a transition from FCC to BCC structures.
This new transition, where new packing configurations (BCC) are accessible at higher dim-
pling amount f , occurs in concave particles where the change in particle shape is accompa-
nied by a change in the void formed between particles in their densest packing. Red dashed
lines show the different packing regions found in numerical calculations.

Figure C.5: Numerical packing curves showing a transition from FCC to BCC structures.
This new transition, where new packing configurations (BCC) are accessible at higher dim-
pling amount f , occurs in concave particles where the change in particle shape is accom-
panied by a change in the void formed between particles in their densest packing. Magenta
dashed lines show the different packing regions found in numerical calculations.
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Figure C.6: Numerical packing curves showing a transition from FCC to BCC structures.
This new transition, where new packing configurations (BCC) are accessible at higher dim-
pling amount f , occurs in concave particles where the change in particle shape is accom-
panied by a change in the void formed between particles in their densest packing. Orange
dashed lines show the different packing regions found in numerical calculations.
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[87] Odriozola, G., Jiménez-Angeles, F., and Lozada-Cassou, M., “Entropy driven key-
lock assembly.” J. Chem. Phys., Vol. 129, No. 11, Sept. 2008, pp. 111101. 8, 41,
61

[88] Ashton, D. J., Jack, R. L., and Wilding, N. B., “Self-assembly of colloidal polymers
via depletion-mediated lock and key binding,” Soft Matter, Vol. 9, No. 40, Dec.
2013, pp. 9661. 8, 41, 61

[89] Ashton, D. J., Ivell, S. J., Dullens, R. P. a., Jack, R. L., Wilding, N. B., and Aarts,
D. G. a. L., “Self-assembly and crystallisation of indented colloids at a planar wall,”
arXiv Prepr. arXiv . . . , Dec. 2014, pp. 1–8. 8

[90] Colón-Meléndez, L., Beltran-Villegas, D. J., van Anders, G., Liu, J., Spellings,
M., Sacanna, S., Pine, D. J., Glotzer, S. C., Larson, R. G., and Solomon, M. J.,
“Binding kinetics of lock and key colloids,” J. Chem. Phys., Vol. 142, No. 17, 2015,
pp. 174909. 8

[91] Lekkerkerker, H., Poon, W., Pusey, P., Stroobants, A., and Warren, P., “Phase Be-
haviour of Colloid + Polymer Mixtures,” Europhys. Lett., Vol. 20, No. 6, 1992,
pp. 559–564. 8

113



[92] Lekkerkerker, H. and Widom, B., “An exactly solvable model for depletion phe-
nomena,” Phys. A Stat. Mech. its Appl., Vol. 285, No. 3-4, Oct. 2000, pp. 483–492.
9

[93] Gnan, N., Zaccarelli, E., Tartaglia, P., and Sciortino, F., “How properties of inter-
acting depletant particles control aggregation of hard-sphere colloids,” Soft Matter,
Vol. 8, No. 6, 2012, pp. 1991. 9

[94] Frenkel, D. and Smit, B., Understanding Molecular Simulations: From Algorithms
to Applications, Elsevier, 2002. 11

[95] Allen, M. P. and Tildesley, D. J., Computer simulation of liquids, Clarendon Press,
1987. 11, 12

[96] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller,
E., “Equation of state calculations by fast computing machines,” J. Chem. Phys.,
Vol. 21, 1953, pp. 1087–1092. 11, 12

[97] Lebowitz, J., Percus, J., and Verlet, L., “Ensemble Dependence of Fluctuations with
Application to Machine Computations,” Phys. Rev., Vol. 153, No. 1, 1967, pp. 250.
11, 12

[98] Anderson, J. a., Jankowski, E., Grubb, T. L., Engel, M., and Glotzer, S. C., “Mas-
sively parallel monte carlo for many-particle simulations on GPUs,” J. Comput.
Phys., Vol. 254, 2013, pp. 27–38. 14
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