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resulted in a substantial increase in the FF of the device. 90	
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ABSTRACT 

Within the last decade, organic photovoltaics (OPVs) have emerged as a potentially viable part 

of the solution for carbon-neutral energy production due to their low cost, flexibility, and 

compatibility with large-scale, roll-to-roll processing. However, while the maximum theoretical 

efficiency of OPVs is only slightly below that of their inorganic counterparts, demonstrated OPV 

efficiencies have still only reached ~11%. While the cost and energy required to fabricate OPVs 

is lower than inorganic PVs, practical efficiency is a primary driver of adoption in the 

marketplace and OPV efficiencies must approach 15-20% before having a chance to become 

commercially competitive.  In this thesis, we present our work on the relatively new class of 

cascade organic photovoltaics and through that work we discover some critical factors that must 

be resolved to enable significant further gains in OPV efficiencies.  

In the first part of this thesis, we focus on the tradeoff between photo-absorption and 

exciton diffusion efficiencies in organic heterojunction solar cells. Working with planar (as 

opposed to bulk) heterojunction device architectures, we employ rigorous modeling and 

experiments to demonstrate the physical mechanisms by which energy can be lost in OPVs 

(namely non-radiative recombination of excitons, either via bulk recombination or parasitic 

quenching at traps or conductive interfaces) and detail the ways in which this tradeoff has been 

previously addressed. We show that MoO3, a material frequently used in OPV cells as an anode 

buffer layer and work function modifier, quenches excitons. We propose a new type of anode 



 xv 

buffer layer to prevent quenching at the anode, which we term an exciton dissociation layer 

(EDL). By inserting an EDL into a single heterojunction (SHJ) device, an additional 

heterojunction is created, converting the device into a multiple (cascade) heterojunction (CHJ) 

structure. We establish that the multiple heterojunctions (termed “subjunctions”) in CHJs are 

operating electrically in parallel and develop an optical and diffusion based model that can 

predict their external quantum efficiency. In the second part of the thesis, through a systematic 

combinatorial study, we develop practical design rules for CHJ devices, requiring that charge 

injection barriers be minimized and the maximum power point voltage of each subjunction be 

closely matched. Applying these design rules, we demonstrate a 40% improvement in PCE by 

introducing a thin transparent EDL into a SHJ device. In the third and final part of the thesis, we 

develop a new model for interlayer Förster resonant energy transfer (FRET) in OPVs and show 

that the FRET process (present in most devices) can actually significantly hinder device 

efficiencies. With this new model, we propose specific material and device design rules that if 

employed, can prevent any efficiency losses due to FRET and instead achieve major efficiency 

enhancements. While the specific materials following those design rules do not yet exist, we are 

still able to optimize devices using the new model and pre-existing materials, demonstrating a 

93% improvement in power conversion efficiency for a CHJ with 4 absorbers (up to 7.3% 

demonstrated here) compared to an optimized SHJ device (3.7%). 
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Chapter 1  

Introduction to Organic Photovoltaics 

1.1 Introduction 
Organic photovoltaics (OPVs) have recently emerged as a potentially inexpensive source of 

energy due to their low-cost of fabrication, short energy payback time, compatibility with 

flexible substrates,1-5 and reported power conversion efficiencies greater than 11%.6 However, 

when compared with their inorganic counterparts, OPVs still exhibit substantially lower short-

circuit current densities (Jsc), owing largely to their limited coverage of the solar spectrum and 

non-radiative losses involving the diffusion and dissociation of strongly bound excitons during 

the photoconversion process. In this chapter, we will discuss the fundamental factors that 

determine the absorption and exciton diffusion efficiencies in OPVs. Then, once that 

groundwork has been laid, we will spend the ensuing chapters attempting to stretch the tradeoff 

that occurs between those efficiencies. 

1.2 OPV Fundamentals 
In their simplest configuration, modern OPV devices consist of four materials (though additional 

materials can be added to improve efficiency or increase functionality). Two of those materials, 

the electron donor (ED) and electron acceptor (EA) absorb photons and transport holes and 

electrons, respectively. The other two materials are electrodes (anode and cathode) used to apply 

an electric field for collecting those free charges as current (holes and electrons, respectively). 
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Generally, at least one electrode is semitransparent such that light can enter the device and be 

absorbed by the ED and EA layers.  If the other electrode is completely reflective, then light 

makes two passes through the device, effectively increasing the path length and number of 

absorbed photons in the active layers. This type of cell with separate ED and EA layers was first 

introduced by C.W. Tang in 1986, and is by far the most ubiquitous and successful OPV 

architecture used today.7 In the following sections, we will discuss the electrical, optical, and 

excitonic processes in these devices as well as the ways those processes can be characterized via 

experiment and modeling.  

1.3 Current-Voltage Characteristics 
For all photovoltaic devices (organic or inorganic), the current-voltage (J-V) behavior can be 

characterized by four major parameters, as shown in Figure 1.1. 

 

Figure 1.1 A characteristic plot (and important parameters) of current density (J) versus voltage for a solar cell. The 
dark current is the curve generated when the device is biased under dark conditions. The light current is the curve 
produced from the same device under illumination.  
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The power conversion efficiency (PCE) of the solar cell, defined as the electrical power out 

divided by optical power in, is determined by Equation (1.1): 

 PCE =  Jsc ⋅Voc ⋅FF
Pinc

 (1.1) 

where the short-circuit current density (Jsc) is the current density at zero bias, the open-circuit 

voltage (Voc) is the bias at which the current density is zero, and Pinc is the power density of the 

incident light. The fill factor (FF) is a useful metric for describing the “squareness” of the light 

curve and compares the operating maximum power point (MPP) of the device to the “ideal” 

maximum power point that would come from operating at both Jsc and Voc simultaneously. 

 FF  =  JMPP ⋅VMPP
Jsc ⋅Voc

 (1.2) 

Throughout this thesis, we will primarily focus on improving the short-circuit current density of 

these devices in an effort to improve power conversion efficiency. Jsc is determined by: 

 Jsc = S(λ) ⋅EQE(λ)d∫ λ + Jd V=0  (1.3) 

Where S(λ) is the wavelength-dependent spectrum of incident light from the sun, EQE is the 

wavelength-dependent external quantum efficiency of the solar cell, and Jd is the amount of 

current produced by the diode under dark conditions (no illumination). In Figure 1.2, we show 

the international standard AM1.5G solar spectrum and an example EQE spectrum containing one 

ED and one EA layer. Separate contributions to the EQE from the ED and EA layers are also 

plotted.  The Jsc, as calculated from Equation (1.3), is plotted as the shaded gray region 

underneath the product of EQE and S(λ). 
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Figure 1.2 A plot of the solar spectrum S(λ) (solid black); the external quantum efficiency spectrum of an example 
OPV device (solid red); EQE contributions from the ED (dotted blue) and EA (dotted green) layers; and the product of 
the EQE and solar spectrum (dashed black). The Jsc of the device is determined by the integral of EQE · S(λ), 
denoted by the filled gray area on the plot. 

Because the solar spectrum is fixed (and Jd is negligible at short-circuit conditions), any 

improvements to the Jsc of OPVs must come from improving the EQE. To improve the EQE, we 

must first understand the specific physical properties in organic materials that determine the 

EQE, which we will now discuss. 

1.4 Optically Generated Excitons 
Upon absorption of a photon within a material, an electron gains energy and is promoted from 

the highest occupied molecular orbital (HOMO) level (valence band in inorganics) to the lowest 

unoccupied molecular orbital (LUMO) level (conduction band), leaving behind a hole. The 

electron and hole are attracted by an electrostatic Coulomb force, resulting in a exciton binding 

energy of EB,exciton, determined by: 
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 EB,exciton =
q2

4πε0εrr
 (1.4) 

Where q is the electron charge, ε0 is the permittivity of free space, εr is the relative permittivity 

(or dielectric constant) of the material, and r is the radius of the exciton. There are three types of 

excitons that can exist: Wannier-Mott, charge-transfer (CT), and Frenkel. Of the three, Wannier-

Mott excitons have the lowest binding energy (on the order of 0.01 eV) and occur in materials 

where the dielectric constant is large (such as silicon, where εr = 11.7). These excitons have a 

radius larger than the lattice spacing and can be dissociated merely from thermal energy at room 

temperature. Thus Wannier-Mott excitons generated at room temperature are quickly dissociated 

into free charges. CT excitons exhibit an intermediate binding energy and radius compared to 

Frenkel and Wannier-Mott states, existing across adjacent molecules. Frenkel excitons have the 

highest binding energy of the three (on the order of 0.1 to 1 eV) and are generally localized to a 

single molecule. In organic films, the lower dielectric constant (~3) results in less charge 

screening and tightly bound Frenkel excitons residing in the HOMO and LUMO levels of one 

molecule.  

1.5 Heterojunction at ED/EA Interface 
Since Frenkel excitons in organic semiconductors are stable at room temperature and electrically 

neutral, externally applied electric fields cannot be used to separate them into free charges for 

collection as current. This requires additional device design considerations for OPVs compared 

to inorganic devices (where free charges are generated upon photon absorption). As previously 

noted, in 1986 C.W. Tang introduced the heterojunction OPV in which one electron-donating 

material and one electron-accepting material are used to separate charges. If the energy levels are 

aligned such that both the HOMO and LUMO of the ED are closer to the vacuum level than the 



 6 

EA, then at the ED/EA interface the energy offset between the LUMO levels (or the HOMO 

levels) of the ED and EA cause the electron (hole) of an exciton to transfer to the adjacent EA 

(ED) molecule at the heterojunction. While excitons that charge transfer are still Coulombically 

bound between the ED and EA molecules across the heterojunction, the increased separation 

distance allows for an externally applied electric field to pull the charges apart for collection at 

their respective electrodes. 

1.6 Exciton Diffusion and Loss Mechanisms 
For the charge transfer process to occur, excitons must diffuse to the heterojunction. However, 

we note again that excitons are neutral quasi-particles so electric fields cannot be used to drive 

excitons in a preferred direction (i.e. toward the heterojunction). Instead, excitons diffuse 

isotropically within the ED and EA layers until they either recombine or reach the heterojunction 

to charge transfer. 

1.6.1 Diffusion Mechanisms 
Excitons diffuse in organic films via three main types of energy transfer: Dexter transfer, cascade 

energy transfer, and Förster resonant energy transfer (FRET).8 In the case of Dexter transfer, 

excitons will diffuse through the film via a thermally activated “hopping” mechanism, with 

transfer occurring between neighboring molecules. In the cases of both cascade and Förster 

energy transfer, diffusion occurs over longer length scales and depends upon the emission 

spectrum of one molecule and the absorption spectrum of another. In the case of cascade energy 

transfer, excitons are transferred via radiative emission of a photon from one molecule and the 

subsequent absorption of that photon on another molecule. This energy transfer process occurs 

over large length scales, on the order of the absorption path length. FRET, on the other hand, is a 

non-radiative process in which dipoles between two molecules are Coulombically coupled. 
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While it can be helpful to consider FRET as the emission and absorption of a “virtual photon”, 

no light is emitted during the Förster energy transfer process. FRET generally occurs over length 

scales of 1-100 nm. Until Chapter 4, we will only consider intralayer exciton diffusion, which 

primarily occurs via Dexter transfer and self-Förster transfer (i.e. non-radiative coupling between 

molecules of the same type). In Chapter 4, we will account for interlayer exciton diffusion, 

which can occur via Förster transfer of excitons between films of different materials. At that 

point, we will consider in detail the governing equations that determine the rate of Förster 

transfer between molecules. 

1.6.2 Diffusion Loss Mechanisms 
There are two major loss mechanisms that can prevent excitons from diffusing to the 

heterojunction (thus lowering ηDiff). The first mechanism is non-radiative recombination of 

excitons within the bulk, as shown in Figure 1.4a. Excitons have a characteristic lifetime (τ) and 

diffusion length (LD) after which only 1/e of initially generated excitons will remain. If excitons 

recombine in the bulk of the material before reaching a heterojunction to undergo charge 

transfer, they will not contribute to photocurrent. The other major diffusion loss mechanism in 

OPVs is quenching of excitons at a trap or conductive interface. As we will discuss at length in 

Chapter 2, most electrodes act as efficient quenching interfaces where excitons can recombine. 

Again, if excitons recombine at a quenching interface before reaching a heterojunction they 

cannot contribute to photocurrent. 
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1.7 External Quantum Efficiency 

 

Figure 1.3 Energy level diagram of a planar bilayer organic photovoltaic device depicting the four major energy 
transfer steps during the photoconversion process. 

As we have discussed thus far, the photoconversion process in OPVs consists of four major 

energy transfer steps, each of which is depicted in Figure 1.3, with a corresponding efficiency 

associated with each step. 

 
EQE(λ) =ηAbs (λ) ⋅ηDiff (λ) ⋅ηCT (Va ) ⋅ηCC (Va )  (1.5) 

where ηAbs, ηDiff, ηCT, and ηCC correspond to the active layer photon absorption, exciton diffusion, 

exciton dissociation, and charge collection efficiencies, respectively.9 As denoted in Equation 

(1.5), the absorption and exciton diffusion efficiencies are only wavelength dependent, while the 

charge transfer and charge collection efficiencies are only dependent on the applied voltage (Va). 

For devices that do not have any abnormal energy barriers or other impediments at the 

heterojunction, we generally assume that any exciton that diffuses to a heterojunction will 

undergo charge transfer (i.e. ηCT = 100%) In the case of planar OPVs where the ED and EA 

layers are neat (i.e. not mixed), we can also assume ηCC = 100% at short-circuit conditions (for 

optimized devices, ηCC will remain close to unity until Va > Voc). Therefore, at least for planar 
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OPVs, we can calculate EQE at each wavelength by modeling ηAbs and ηDiff. We now consider in 

detail ways to model both. The code for the model (including additional modifications that we 

present in later chapters) can be found in the Appendix. 

 

Figure 1.4 Possible exciton diffusion loss mechanisms in organic photovoltaics. a) non-radiative recombination in the 
bulk of the material. b) quenching at a conductive interface such as a trap or electrode. 

1.7.1 Modeling Optical Fields  
To calculate ηAbs for a device, we must carefully account for all optical properties of a thin film 

stack. Because the total thickness of organic and metal layers in OPVs are much thinner than the 

wavelengths of visible light (300 nm-1000 nm), our model must also account for any near-field 

constructive or destructive interference effects as well as phase changes due to propagation in 

each layer. Furthermore, we must account for where photons are being absorbed in the device – 

specifically in which layers they are being absorbed (i.e. photons that are parasitically absorbed 

in the electrodes will not have a chance to contribute to photocurrent), as well as the spatial 

position at which they are absorbed within each layer. To account for reflections at each interface 

as was as propagation through each layer, we use a transfer matrix formalism to model all of the 

optics in our devices. For the model to produce accurate predictions, we must know the 

refractive index and thickness of each layer to a high level of accuracy. We follow the general 

framework established by Pettersson et al (and further elaborated upon by Peumans et al.) which 

we will now detail below.10,11   
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Figure 1.5 Geometry an example device stack used in the transfer matrix optical field simulations. Reflection and 
transmission are accounted for at each interface as well as any phase changes due to propagation through each 
layer. From Ref. 11 

Figure 1.5 provides a schematic for a generalized OPV device consisting of a thick (optically 

incoherent) substrate and m thin (optically coherent) layers. First, we can consider a plane wave 

(such as light from the sun) incident on the stack from a semi-infinite medium. At each interface, 

some fraction of the light will reflect and the rest will transmit (at an infinitesimally thin 

interface, there will be no absorption of the light). We can describe the reflection and 

transmission at each interface with an interface matrix: 

I jk =
1
t jk

1 rjk
rjk 1

!

"

#
#

$

%

&
&

 (1.6) 

where rjk and tjk are the Fresnel complex reflection and transmission coefficients at the interface 

between layers j and k.  
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For light propagating normal to the device (as is the case for all simulations presented in this 

thesis), the Fresnel coefficients are defined as: 

 
rjk =

nj − nk
nj + nk

  (1.7) 

 
t jk =

2nj
nj + nk

  (1.8) 

where nj is the complex refractive index of layer j.  The layer matrix, which accounts for phase 

change due to propagation through each layer is described by 

 
Lj =

e−iξ jd j 0
0 e−iξ jd j

"

#
$
$

%

&
'
'

 (1.9) 

where, at normal incidence 

 
ξ j =

2π
λ
nj  

(1.10) 

 

and λ is the wavelength of the incident light. We can then construct a total system matrix S 

 
S =

S11 S12
S21 S22

!

"
#
#

$

%
&
&
= I(i−1)iLi

i=1

m

∏
)

*
+

,

-
.⋅ Im(m+1)  (1.11) 

and relate the electric field in the outermost layers (j = 0 and j = m +1) by 

 

E0
+

E0
−

"

#

$
$

%

&

'
'
= S

Em+1
+

Em+1
−

"

#

$
$

%

&

'
'

 (1.12) 

where E0
+ and E0

−  are the right and left propagating waves on the incident (leftmost) side, 

respectively, and Em+1
+  and Em+1

−  are the right and left propagating waves on the rightmost side. 

For all simulations in this thesis, there is only incident light from one side, so Em+1
+  is always 

zero.  To determine the complex reflection and transmission coefficients for the entire stack, we 

can use elements from the entire system matrix, S: 
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t = Em+1

+

E0
+
=
1
S11

 (1.13) 

 
r = E0

−

E0
+
=
S21
S11

 (1.14) 

However, for simulating the EQE, what we care about the most are photons being absorbed 

within the active layers. In order to calculate the electric field profile within any layer j in the 

stack, we can separate the system into two subsets surrounding layer j. We can then write the 

total layer matrix as  

 
S = Sj

−LjSj
+  (1.15) 

where 

 
Sj
− = I(n−1)nLn

n=1

j−1

∏
#

$
%

&

'
(I( j−1) j  (1.16) 

and 

 
Sj
+ = I(n−1)nLn

n= j+1

m

∏
#

$
%%

&

'
((Im(m+1)  (1.17) 

Finally, we can relate the electric fields propagating in the positive and negative directions at the 

left interface to the incident plane wave by 

 

Ej
+

E0
+
= t j

+ =

1
Sj11
−

1+
Sj12
− Sj21

+

Sj11
− Sj11

+
ei2ξ jd j

 (1.18) 

 

Ej
−

E0
+
= t j

− = t j
+ Sj21

+

Sj11
+
ei2ξ jd j  (1.19) 
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To calculate the total electric field within layer j, we add the positive and negative propagating 

electric fields together and account for phase change due to propagation through the layer 

 
Ej (x) = Ej

+(x)+Ej
−(x) = (t j

+eiξ j x + t j
−e−iξ j x )E0

+  (1.20) 

1.7.2 Modeling Exciton Generation 
Upon solving the transfer matrix, we can determine the optical electric field at each wavelength 

for any point within any material in the device. Accounting for the electric field intensity within 

each layer and the attenuation of the electric field due to the imaginary part of each layer’s 

refractive index (k), we can calculate the amount of absorbed power, Q(x) at any point in the 

device: 

 
Qj (x) =

cε0
2
⋅
4πkjnj

λn0 cos(θ0 )
Ej (z)

2
 (1.21) 

where c is the speed of light, ε0 is the permittivity of free space, kj and nj are the imaginary and 

real components of the refractive index, respectively, n0 is the refractive index of the surrounding 

medium, and θ0 is the incidence angle of the incoming light in the surrounding medium.10 From 

there, we can calculate the optical exciton generation rate (GA) at any point in any layer j using 

Equation (1.22). 

 
GA =

Q(x)
hυ

 (1.22) 

where h is Planck’s constant and ν is the frequency of the incoming light. 
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1.7.3 Modeling Exciton Diffusion and Solving for the Steady State 

Exciton Population Density in OPV Active Layers 

 

Figure 1.6 A control volume to be considered within an active layer. 

To simulate exciton diffusion within the active layers, we use the standard Feng-Ghosh model,12 

which we will now present. If we consider a control volume of width dx within the active layer 

and perform a mass balance on the exciton density between x and x+dx, we can determine the 

overall change in exciton density as a function of time, which gives 

 
∂ρ
∂t

= J
x
− J

x+dx
−
ρ
τ
+GA  (1.23) 

where ρ is the spatially varying exciton population density within the layer, t  is time, J is the 

exciton flux, τ is the characteristic exciton lifetime, hν is the energy of the incident photon, and 

GA is the time-averaged absorbed power as determined in Section 1.7.2. In Equation (1.23) the 

first two terms on the right represent exciton diffusion into and out of the control volume, the 

second term represents exciton recombination in the bulk, and the third term corresponds to the 

exciton photogeneration rate. For very small dx, we can approximate: 

 
∂J
∂x

= J
x
− J

x+dx
 (1.24) 

Using Fick’s first law to describe exciton diffusion 
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 J = −D ∂ρ
∂x

 (1.25) 

taking its derivative 

 −
∂J
∂x

=
∂D
∂x

#

$
%

&

'
(
∂ρ
∂x
#

$
%

&

'
(+D

∂2ρ
∂x2

 (1.26) 

and substituting into Equation (1.23), we get 

 
∂ρ
∂t

=
∂D
∂x

"

#
$

%

&
'
∂ρ
∂x
"

#
$

%

&
'+D

∂2ρ
∂x2

−
ρ
τ
+GA  (1.27) 

If we assume steady state conditions (no changes in ρ versus time) and a constant diffusivity (no 

spatial changes in D within the layer), then the term on the left and the first term on the right go 

to zero and we arrive at the standard drift-diffusion model. 

 0 = D d 2ρ
dx2

−
ρ
τ
+GA  (1.28) 

We note here that we can also define the diffusivity in terms of measureable quantities, the 

exciton diffusion length and lifetime: 

 D =
LD
2

τ
 (1.29) 

Now we can determine a numerical solution for the exciton population profile by imposing 

boundary conditions at the active layer interfaces. As seen in Figure 1.7, there are three 

boundary conditions that we can apply at active layer interfaces. For the cases of a heterojunction 

(where charge transfer occurs) or a quenching interface such as a conductive electrode (where 

non-radiative recombination occurs), the exciton population is constrained to be zero. In the case 

of a perfectly reflecting interface, the slope of the exciton population density is set to zero. 
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Figure 1.7 Possible steady state exciton boundary conditions that can be applied at active layer interfaces. At a) 
heterojunctions and b) quenching interfaces, the exciton population density is set to zero. At reflecting interfaces such 
as an exciton blocking layer, the slope of the exciton population density is set to zero (i.e. the flux of excitons at that 
interface is zero). 

To solve Equation (1.28) at each mesh point, we use finite difference approximations for the first 

and second spatial derivatives of the exciton population density: 

 
dρ
dx

=
ρi+1 − ρi−1
2dx

 (1.30) 

 
d 2ρ
dx2

=
ρi+1 + ρi−1 − 2ρi

dx2
 (1.31) 

Substituting those approximations into Equation (1.28) and multiplying both sides by D, we get 

 
ρi+1 + ρi−1 − 2ρi

dx2
−
ρ
Dτ

+
GA

D
= 0  (1.32) 

Finally, we move the generation rate term to the right side and multiply both sides by dx2: 

 ρi−1 − 2+ dx
2

Dτ
"

#
$

%

&
'ρi + ρi+1 = −

dx2

D
GA  (1.33) 
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Now we have a set of equations that govern the steady state exciton population density at each 

mesh point i. With the first and last rows of our matrix, we can set the necessary boundary 

conditions. Setting ρ = 0 for a quenching or dissociating interface is straightforward (we merely 

set ρ1 or ρn = 0). To set the slope of ρ to zero for a reflecting interface, we employ the finite 

different approximation for the first derivative as provided in Equation (1.30). Simply, ρi+1 must 

be set equal to ρi-1. Substituting this identity into Equation (1.28), we get 

 2ρi−1 − 2+ dx
2

Dτ
"

#
$

%

&
'ρi = −

dx2

D
GA  (1.34) 

To demonstrate how to set up the matrix for solving the steady state population density, we show 

an example in Equation (1.35) where the population density is set to zero at x = 0 (i = 1) and the 

slope of the population density is set to zero at the last point of the layer (i = n). 

 

1 0 0 0 ! 0 0 0

1 − 2+ dx
2

Dτ
"

#
$

%

&
' 1 0 ! 0 0 0

0 1 − 2+ dx
2

Dτ
"

#
$

%

&
' 1 ! 0 0 0

" " " " # " " "

0 0 0 0 ! 1 − 2+ dx
2

Dτ
"

#
$

%

&
' 1

0 0 0 0 ! 0 2 − 2+ dx
2

Dτ
"

#
$

%

&
'

(

)

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

+

,

-
-
-
-
-
-
-
-
-
-
-
-
-
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⋅

ρ1
ρ2
ρ3
!
ρn−1
ρn

(

)

*
*
*
*
*
*
*
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+

,

-
-
-
-
-
-
-
-

=

0
GA,2

GA,3

!
GA,n−1

GA,n

(

)

*
*
*
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*
*
*
*

+

,

-
-
-
-
-
-
-
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 (1.35) 

 

Finally, to determine the exciton population density at each mesh point i (ρi), we divide the 

matrix on the right side by the leftmost matrix to solve for a vector of values from ρ1 to ρn.  
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1.7.4 Internal Quantum Efficiency  
We also note that it can be helpful to separate changes in absorption from other processes 

comprising EQE by defining the IQE as (assuming no voltage dependence) 

 ηIQE (λ) =
ηEQE (λ)
ηAbs (λ)

 (1.36) 

which describes the efficiency of converting photogenerated excitons into electrical current. In 

planar devices where we assume ηCT and ηCC to be unity, then we can assume that IQE = ηDiff. At 

times in this thesis, we will consider both EQE and IQE as metrics for understanding device 

operation and performance. 

1.7.5 Potential Modifications to the EQE Model 
Throughout the rest of this thesis, we will propose additional modifications to the drift-diffusion 

part of the EQE model to more accurately account for exciton diffusion and energy transfer 

within OPVs. Specifically, we will account for the existence of multiple heterojunctions in 

Chapter 2 and interlayer Förster resonant energy transfer in Chapter 4. 

1.8 Absorption/Diffusion Bottleneck in OPVs 

1.8.1 Inherent Tradeoff Between Diffusion and Absorption Lengths 
While the optical absorption length (LA) of typical organic materials used for active layers is 

~30-100 nm, the characteristic diffusion length (LD) for photogenerated excitons is 

approximately an order of magnitude lower (~5-20 nm),11,13 leading to an efficiency trade-off 

with respect to layer thickness.7,9 As we’ve established, the photoconversion process in OPVs 

requires that optically generated, tightly bound excitons diffuse to the heterojunction interface 

between electron donating and electron accepting materials. Upon reaching the heterojunction, 
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excitons undergo charge-transfer and the resulting free charges can be collected at the 

electrodes.11  

 

Figure 1.8 Extinction coefficients versus wavelength for commonly used active materials in OPVs. Most organic 
materials have relatively sharp absorption peaks, resulting in poor coverage of the solar spectrum. 

In Table 1.1, we provide LD and LA values for common organic materials used as active layers in 

OPV devices. The extinction coefficients (the imaginary part of the refractive index) for each 

material are shown in Figure 1.8. Since the absorption length is a wavelength-dependent 

property, we calculate it at the peak absorption wavelength (greater than 400 nm) for each 

material. The quantities are defined as such: LD is the distance from the point of exciton 

generation where 1/e excitons remain (have not recombined in the bulk) and LA is the distance of 

light propagation into a material where 1/e of the original photons remain (have not been 

absorbed by the material). LA for each material is calculated as the inverse of the absorption 

coefficient, or 
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 LA =
λ
4πk

 (1.37) 

Even at the absorption peak of each material (where LA is minimized), the ratio of LD/LA ranges 

from 0.13 – 0.3. Off of the peak absorption, that ratio will decrease further, which is a significant 

issue due to the narrow absorption peaks of most organic materials. 

Table 1.1 Absorption and exciton diffusion lengths for common active materials used in OPV devices. 

Material LD (nm) LA (nm) LD/LA  Abs. Peak (nm) 
Electron Donors    
DBP 8 42 0.19 610 
SubNc 6 26 0.17 690 
SubPc 8.5 29 0.30 585 
Electron Acceptors    
C60  17 109 0.16 450 
C70  17 70 0.24 520 
Cl6SubPc  4.5 34 0.13 585 

 

While many attempts have been made to bypass the absorption/diffusion bottleneck, either by 

improving absorption efficiency or diffusion efficiency, the tradeoff has yet to be fully mitigated. 

We present the two most ubiquitous and successful methods in the next section, and then will 

spend the ensuing chapters attempting to stretch the tradeoff even further. 
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1.8.2 Planar/Bulk Heterojunctions and Series Tandems 

 

Figure 1.9 Device schematics and energy band diagrams for a) planar single heterojunction, b) bulk heterojunction, 
and c) series tandem OPV devices. 

Thus far, we have discussed EQE modeling loosely in terms of planar device architectures 

(Figure 1.9a) in which there are discrete layers and a single interface for exciton dissociation. 

However, there have been two other major types of device architectures that have been used to 

partially circumvent the absorption/diffusion tradeoff: bulk heterojunctions (BHJs)14-17 and 

vertically stacked, series-connected tandem devices.18,19 In BHJs, the active layers are intermixed 

to create a spatially distributed heterojunction (Figure 1.9b). With careful morphological 

control, the size of any donor or acceptor domain within the bulk can be decreased to less than 

the active materials’ LD. Without the thickness limitation by LD, the active layer thickness can be 

increased to improve absorption efficiency, although this can lead to an increase in non-geminate 

recombination.20 Furthermore, control of the BHJ active layer morphology remains the primary 

challenge for both device optimization and materials design. In the case of series tandems, 

multiple subcells with complementary absorption peaks are used to achieve higher absorption 

efficiency across the visible spectrum (Figure 1.9c). The latter approach is generalizable, as the 
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subcells in principle can comprise either planar or bulk heterojunctions. However, because 

tandem devices are connected electrically in series, the resulting device performance is voltage-

additive and current-limited by the lowest current of either subcell.19  

1.9    Onsager-Braun Model for Simulating Photocurrent in OPVs 
While the focus of this thesis is exciton generation and diffusion within OPVs at zero applied 

bias, simulating J-V curves is a necessary tool for predicting the actual PCE of devices under 

forward bias. In this section, we detail how the voltage dependence of photocurrent in OPV 

devices can be simulated using the Onsager-Braun (OB) model,21 whereby bound polaron pairs 

(PPs) at the heterojunction are treated as Coulombically-bound charges with a fixed separation 

distance (a0). The temperature-dependent, field-assisted dissociation rate of PPs (kPPd) is 

described by: 

 kPPd =
3q

4πεrε0a0
3 exp

−EB,PP

kbT
"

#
$

%

&
'
J 2 2(−b)1/2(
)

*
+
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where q is the electron charge, εr is the relative permittivity to the vacuum permittivity (ε0), a0  is 

the separation distance between the electron and hole, kBT is the thermal energy, and J is the 

first-order Bessel function. The PP binding energy (EB,PP) is again the Coulombic binding energy 

between the electron and hole across the interface: 

 EB,PP =
q2

4πεrε0a0
 (1.39) 

and the term b is defined as: 

 b = q3(Va −Vbi )
8πdεrε0kb

2T 2  (1.40) 

 where Vbi is the built-in voltage defined by the difference in Fermi levels in the organic layers 

adjacent to the contacts at zero bias, Va is the applied bias voltage, and d is the thickness of the 
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active layers. In this thesis, we assume the net field in the active layers is constant as a function 

of position, which is a reasonable assumption as long as charge injection from the contacts is 

minimal below Vbi. Furthermore the study of photocurrent alone (and not total current) allows 

one to neglect the effects of charge injection and transport through the active layers and focus 

solely on the dynamics of the heterojunction. Along with a0 and Vbi, the recombination rate (kr) 

of the bound charges across the interface is then used as a fitting parameter, and the overall PP 

dissociation efficiency at the heterojunction can be defined as: 

 ηPPd =
kPPd

kPPd + kr
 (1.41)  

In the case where charge collection efficiency is 100% once the polaron pairs are dissociated (i.e. 

there are barrier free paths to each electrode), then ηCC = ηPPd. In Chapter 3 we will consider 

devices where ηPPd (and thus ηCC) drops precipitously at Va < Voc. 
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Chapter 2  

Exciton Dissociation Layers and Cascade 

Heterojunction OPVs 
Photocurrent generation in OPVs relies on exciton diffusion to the donor/acceptor 

heterojunction. Excitons that fail to reach the heterojunction are lost to recombination via 

quenching at the electrodes or relaxation in the bulk. Bulk recombination has been mitigated 

largely through the use of bulk heterojunctions, while quenching at the metal cathode has been 

previously circumvented through the introduction of exciton blocking layers that "reflect" 

excitons. Here, we introduce an alternative concept of a transparent exciton dissociation layer 

(EDL), a single layer that prevents exciton quenching at the electrode while also providing an 

additional interface for exciton dissociation. The additional heterojunction reduces the distance 

excitons must travel to dissociate, recovering the electricity-generating potential of excitons 

otherwise lost to heat. We model and experimentally demonstrate this concept in an archetypal 

subpthalocyanine/fullerene planar heterojunction OPV, generating an extra 66% of photocurrent 

in the donor layer (resulting in a 27% increase in short-circuit current density from 3.94 to 4.90 

mA/cm2). Because the EDL relaxes the trade-off between exciton diffusion and optical 

absorption efficiencies in the active layers, it has broad implications for the design of OPV 

architectures and offers additional benefits over the previously demonstrated exciton blocking 

layer for photocurrent generation. 
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2.1 Introduction 
As was discussed in Chapter 1, significant problems with exciton management must be resolved 

before OPVs can compete with their inorganic counterparts for broad-based application. One 

such problem is non-radiative recombination of excitons at the organic/electrode interface, which 

lowers the internal quantum efficiency of the organic layer. Recombination at the electron 

acceptor/cathode interface has received the most attention to date, due to exciton quenching by 

metal clusters formed in the top-most regions of the organic layers during cathode deposition. 

This problem has been mitigated by inserting a buffer layer between the organic absorbing film 

and the cathode. Additionally, using a large bandgap material for the buffer layer results in an 

exciton blocking layer (EBL)22,23  that reflects excitons before they reach the cathode. The EBL 

can also be tuned to improve electron injection and act as a spacer to increase the optical field 

intensity inside the absorbing layers. Several recent improvements have been made to cathode 

EBLs, including doping of the EBL to increase conductivity24,25 and ensuring alignment of the 

LUMO level to facilitate low-resistance electron extraction.26 

It is indeed possible that exciton quenching can occur at the anode. Molybdenum trioxide 

(MoO3) is often used to increase the anode work function,27 improving solar cell performance 

overall, yet our results indicate that MoO3 actually quenches excitons in boron 

subphthalocyanine chloride (SubPc), contrary to previous reports.28,29 Another widely used 

anodic buffer layer, poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate) (PEDOT:PSS), 

has also been shown to quench excitons.30 In these cases, and others where quenching may occur 

(eg. metallic anodes), it would be advantageous to introduce an additional buffer layer between 

the anode and donor layer. Anode EBLs have recently been shown to increase the short-circuit 

current density (Jsc) of OPVs by preventing quenching at the anode/donor interface.31 However, 
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by introducing an entirely "passive" EBL that only reflects excitons, the net flux of excitons at 

the single heterojunction is increased only slightly, while a large portion of excitons generated 

nearest the EBL will still recombine parasitically in the bulk. Bulk heterojunctions (BHJs) have 

been used previously to mitigate bulk recombination,14,16 but they can be limited by poor charge 

collection efficiency, especially under forward bias.20 

In this work, we investigate the use of an exciton dissociation layer (EDL), an optically 

transparent layer that is placed between the anode and donor layer to prevent quenching. The 

principal difference between this EDL and a conventional EBL is that the EDL material is 

chosen such that its HOMO and LUMO levels are closer to the vaccum level than the donor 

layer, 32-35 facilitating exciton dissociation at the EDL/donor interface (Figure 2.1b). With the 

incorporation of such an EDL, the exciton concentration profile within the active layer is 

identical to the profile in the case of quenching at the electrode, but instead of being lost to 

parasitic recombination, the excitons at the EDL/active layer heterojunction also contribute to 

photocurrent (Figure 2.2c). By effectively decreasing the distance required for excitons to 

diffuse before dissociation, the EDL/donor heterojunction relaxes the requirement for long 

exciton diffusion lengths and improves the IQE of any given donor material. To be precise in our 

terminology, we define these types of OPVs as cascade heterojunction (CHJ) devices throughout 

the rest of this thesis. While CHJs are similar to other types of energy cascade OPVs that have 

been presented previously in the literature,36,37, the main distinction between energy cascade and 

CHJ devices is that CHJs contain multiple spatially separated heterojunctions. 

Below we validate the EDL/CHJ concept by fabricating devices with N,N'-bis(naphthalen-1-

yl)-N,N'-bis(phenyl)-2,2'-dimethylbenzidine (α-NPD) inserted between SubPc and MoO3 in an 

archetypal SubPc/C60 heterojunction OPV cell. This approach increases the photocurrent 
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contribution of SubPc by 66% (leading to a 27% enhancement in device Jsc), without changing 

the number of photons absorbed by SubPc. In other words, inserting the EDL substantially 

boosts the IQE of the SubPc layer. The EDL functionality is further confirmed with a rigorous 

physical model of EQE and IQE in CHJ structures.  

2.2 Theory 

 

Figure 2.1 a) Active molecules used within this study and their absorption spectra calculated from refractive index 
values measured by spectroscopic ellipsometry. b) An energy level diagram for a SubPc/C60 device with an α-NPD 
exciton dissociation layer inserted between the SubPc and MoO3 layers. 

The molecules used in this study and their respective absorption coefficients are shown in 

Figure 2.1a. The base device structure employed is an archetypal planar SubPc/C60 

heterojunction, which has been well studied.38-42 In Figure 2.1b, an energy level diagram is 

shown for the devices under investigation.43-46 Optical analysis shows negligible light absorption 

in the EDL, allowing us to isolate its ability to increase the IQE of SubPc. 
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Figure 2.2 Modeled a) electric field, b) exciton generation, and c) exciton population density profiles within the OPV 
device used in this study. Boundary conditions (which only affect the exciton population density) at the SubPc/MoO3 
or SubPc/α-NPD interface are shown for both perfect exciton reflection (dρ/dx = 0) and 100% exciton quenching or 
dissociation (ρ = 0). 

We first consider a physical model of an archetypal single heterojunction (SHJ) photovoltaic 

cell. Light is absorbed within the active donor and acceptor layers, generating excitons that can 

then diffuse isotropically. For the excitons to be converted into free charges and subsequently 

collected as current, they must diffuse to the heterojunction where they can undergo charge 

transfer. Exciton lifetime (τ) and diffusivity in the organic layers determine the average exciton 

diffusion length (LD), which is typically on the order of 10 nm2,47 – excitons generated further 

than LD  from a heterojunction are less likely to contribute to photocurrent. To model the internal 

exciton transport and EQE of our devices, we utilized the framework established by Pettersson et 
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al.,10 calculating the electric field profiles and exciton generation profiles within the device as 

detailed in Section 1.7 (Figure 2.2a,b). The thick glass substrate was treated as optically 

incoherent.48  

The Feng-Ghosh model is used to model the diffusion in the device, as discussed in 1.7.3. 

For each case, we assume 100% dissociation at the SubPc/C60 heterojunction, consistent with 

standard practice.11 Because bathocuproine (BCP) is a large bandgap EBL, the C60/BCP interface 

is treated as an exciton reflector (dρ/dx = 0 at the interface). The MoO3/SubPc interface has 

previously been assumed to behave identically, under the assumption that MoO3 also functions as 

an EBL.28 Alternatively, we can consider either 100% quenching at the interface or 100% 

dissociation if an EDL is present, both of which impose a zero value for the population density.11 

In the presence of an EDL, exciton flux at the interface contributes to the total photocurrent of 

the device; in the absence of an EDL, and assuming quenching by the MoO3, exciton flux at the 

interface is lost to recombination and does not contribute to photocurrent generation. 

 In the device containing an EDL, we assume that a second exciton dissociating junction is 

operating alongside the conventional donor/acceptor junction. To predict its EQE spectrum, we 

must make an assumption as to whether the two heterojunctions are operating as diodes 

connected in series or parallel. To date, heterojunctions in CHJs have been described in literature 

as individual diodes connected in series.32,33 However, our results indicate that while the layers 

themselves are spatially positioned in series, they behave electrically as parallel photodiodes. 

Due to the cascading nature of the HOMO and LUMO levels, charges dissociated from either 

interface experience a barrier-free transit to the electrodes, regardless of their position within the 

structure (Figure 2.1b). Thus our modeling treats the photocurrents from each junction as 

additive (electrically in parallel), with the caveat that there is negligible recombination of non-
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geminate carriers within the bulk of the central device layers (consistent with previous findings 

for cascade devices with SubPc used as an ambipolar interlayer).33 

While our model focuses primarily on exciton and charge transport at short-circuit 

conditions (Va = 0), it is important to note that current injection under bias in a CHJ device will 

not be identical to current injection in a SHJ device. Although photocurrent extraction remains 

unimpeded, the extra heterojunction contributes an additional barrier to current injection that 

increases the total series resistance of each HJ in the cascade device over that in its SHJ 

counterpart. Additionally, in the case of strongly unipolar materials, internal layers can also 

become transport limiting and exhibit space-charge limited (SCL) current behavior. This non-

ideal case could result in a lower fill factor relative to the case of two trap-charge limited (TCL) 

heterojunctions in parallel, due to a large difference in the internal electric field at each 

heterojunction. 

2.3 Experimental 

2.3.1 Device Fabrication 
Devices and samples were fabricated on commercially available ITO (Delta Technologies, 150 

nm thick, Rs<15 Ω/□). Substrates were cleaned via heated (40⁰C) sonication in detergent, water, 

acetone, trichloroethylene, and isopropanol, followed by boiling in isopropanol and 10 minutes 

of ultraviolet/ozone treatment to remove carbon residues and increase the anode work function. 

Device layers were deposited via vacuum thermal evaporation (VTE) using an Ångstrom AMOD 

deposition system. Fabrication was performed in a glovebox filled by an inert nitrogen 

environment (<1 ppm O2 and H2O), and samples were only exposed to atmosphere during 

testing. To minimize degradation in atmosphere during testing, devices were deposited on three 
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substrates simultaneously, so that one of each could be used for testing J-V, EQE, and 

absorption, respectively. Devices were kept in the glovebox until immediately before testing. 

All organic materials were purchased from Luminescence Technology Corp. and deposited 

with no further purification. SubPc, BCP, and α-NPD (all >99%) and C60 (>99.5%) were all 

sublimed grade. MoO3 (>99.99%) was purchased from Sigma Aldrich. Aluminum island 

electrodes were deposited through a shadow mask with a diameter of 1 mm, defining a nominal 

device area of 0.7865 mm2, and contacted by a thin gold wire for testing.  

2.3.2 Device Characterization 
J-V data for all devices were recorded using an HP 4156B precision semiconductor parameter 

analyzer. The cells were illuminated with a Newport solar simulator (model# 91191-1000) 

calibrated to AM1.5 (100 mW/cm2) using an NREL Si reference cell (Model PVM233 KG5). 

EQE was measured by directing a collimated beam of optically chopped light (185 Hz) from a 

halogen lamp coupled to a Newport 1/8m monochromator (5 nm FWHM) incident on the 

sample. The photocurrent was measured using a Stanford Research Systems SR530 Lock-in 

Amplifier and compared to the output from a calibrated Si photodiode. Total absorption of 

devices was measured using a Perkin Elmer Lambda 750 UV/Vis/NIR spectrometer. IQE was 

calculated by dividing EQE by experimental absorption at each wavelength. All device areas 

were measured using a Carl Zeiss Scope A.1 optical microscope and included explicitly in 

calculating Jsc and PCE. 

2.3.3 Photoluminescence Measurements 
Photoluminescent quantum yield measurements were taken with a Photon Technology 

International QuantaMaster spectrofluorometer. Luminescence between 550-800 nm was 
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measured in an integrating sphere under 530 nm (<10 nm FWHM) illumination from a Xenon 

lamp.  

2.3.4 Morphology Measurements 
All AFM measurements were performed on ITO-coated glass substrates using an Asylum 

Research Labs MFP-3D standalone system in tapping mode. XRD measurements were 

performed using a Rigaku Rotating Anode X-Ray Diffractometer in θ-2θ geometry with Cu-Kα 

radiation (wavelength of 1.5418 Å). Sample materials were deposited onto <100> Si. The SubPc 

control sample for XRD was annealed post-deposition for 15 minutes at 95°C to induce 

crystallization.  

2.4 Results and Discussion 

2.4.1 Archetypal SubPc/C60 Device 
We first examine an archetypal SHJ SubPc/C60 device deposited on indium tin oxide (ITO), with 

MoO3 implemented as a work function modifier (Figure 2.3a). The Jsc is slightly lower than the 

highest reported values for the same material system, likely due to variances among labs in 

material purity and instrument calibration.39 Because of these variations, a common practice is to 

fit LD  of each active material to experimental EQE curves. Alternatively, LD  can be treated as a 

constant material property (when morphology is consistent), allowing EQE fitting to be 

accomplished by only modifying boundary conditions within the device. Using LD values from 

literature47,49-52 (Table 2.1), we note that EQE curves with the best fit to experiment suggest 

substantial exciton quenching at the MoO3/SubPc interface.  The value of LD  = 8.5 nm for SubPc 

deduced from our fits is consistent across all devices in this study and closely approximates 

SubPc diffusion lengths measured independently by Luhman et al. 47 and Lunt et al.50 While 
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MoO3 is typically used for its high work function and purported ability to block excitons, these 

results suggest that a more physically sound and consistent interpretation is that MoO3 quenches 

excitons. Work by Xiao et al. also showed that MoO3 quenches excitons in both 

tetraphenyldibenzoperiflanthene (DBP) and C70, further corroborating this conclusion. 53 

 

Figure 2.3 a) Device structures for α-NPD/SubPc/C60, SubPc/C60, and α-NPD/SubPc OPV cells. b) J-V data under 1-
sun illumination for α-NPD/SubPc (squares), SubPc/C60 (triangles), and α-NPD/SubPc/C60 (circles) devices. c) For 
each device, experimental EQE data (solid lines) is compared to model (dashed lines). 

 

Table 2.1 Literature and fitted values of exciton lifetimes and diffusion lengths for active materials used in this study. 

Material LD,Ref. (nm) LD,Fit (nm) τ,Ref. (ns) τ,Fit (ns) 

SubPc 7.727, 8.032 8.5 <132 0.3 

C60 116 16 1.234 1 

α-NPD 5.132 5 3.533 5 
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2.4.2 α-NPD/SubPc as a Functional Heterojunction 
To validate our hypothesis that α-NPD would enable exciton dissociation, we created a SHJ 

device with α-NPD acting as the ED and SubPc as the EA. SubPc has been previously shown to 

exhibit ambipolar behavior in devices54 and has been successfully used as both a donor and 

acceptor layer within cascade geometries.33 The α-NPD/SubPc SHJ device (Figure 2.3a) 

exhibits a Jsc of 1.72 mA/cm2, indicating that it indeed enables exciton dissociation and 

photocurrent generation. The majority of the photocurrent in the device is due to contributions 

from the SubPc layer, as indicated by the modeled and experimental EQE curves in Figure 2.3c. 

Although the HOMO-LUMO gap of the heterojunction is nearly equivalent to that of SubPc/C60 

(1.8 eV vs. 1.9 eV respectively), the device exhibits an unusually high open-circuit voltage (Voc) 

of 1.34 V. This Voc seems to indicate a lower binding energy of the polaron pair state, likely due 

to a different molecular separation distance between SubPc and α-NPD as compared to SubPc 

and C60.55  

While SubPc is capable of transporting electrons, devices tested in this study appear to be 

electron transport-limited. Due to a low electron mobility (compared to hole mobility) in 

SubPc,56 the device exhibits SCL current behavior under forward bias, described by the Mott-

Gurney Law.57 Because both α-NPD and SubPc exhibit high hole mobilities,58 the device 

experiences a large drop in shunt resistance (Rp) due to photoconductivity,59 resulting in a FF of 

23.5%. Minority carrier mobility can be especially sensitive to material impurities, and the low 

electron mobility in our SubPc may be due to differences in impurity concentration from that 

used by Beaumont et al. 54 (Impurities affecting electron conductivity do not necessarily 

influence exciton diffusion.) Improvements in the FF of this device may be accomplished either 

by choosing another donor material with higher electron mobility or by improving the electron 
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mobility of SubPc via purification, doping, or molecular ordering. (We note that when this 

junction is examined in the MoO3/α-NPD/SubPc/C60 device, the transport limitation is partially 

mitigated by a more favorable electric field profile.) 

2.4.3 Quantum Yield Measurements  

 

Figure 2.4 Experimentally determined absorption and emission spectra for SubPc/Spacer/MoO3 stacks deposited on 
glass. Inset: normalized quantum yield measurements for each stack. Quantum yield was determined using no 
spacer as well as spacers of BCP and α-NPD. 

The parasitic quenching behavior of the MoO3/SubPc interface and the exciton dissociating 

ability of the α-NPD/SubPc interfaces were verified by performing photoluminescent quantum 

yield (ηPL) measurements on a multilayer stack composed of Glass/SubPc (30 nm)/Spacer (5 

nm)/MoO3 (30 nm). For spacers, we used α-NPD, BCP, and no spacer. As seen in Figure 2.4, 

light absorption was approximately equivalent for each multilayer stack. The position of the 

HOMO and LUMO energy levels in BCP relative to SubPc prevent charge transfer from SubPc 

into MoO3, which is indicated by the highest PL signal from the stack with a BCP spacer. In 

contrast, the signal for the stack with an α-NPD spacer was nearly identical to that with no 

spacer. Since the LUMO level of the α-NPD prevents exciton transfer from the the SubPc layer 
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into the α-NPD layer, it is highly unlikely that excitons generated in the SubPc are making it to 

the MoO3 interface to be quenched. Thus we conclude that charge transfer of SubPc excitons 

must be occuring at the α-NPD/SubPc interface, reducing the ηPL of the stack. From the α-

NPD/SubPc device in Figure 2.2, it is apparent that charges transferred from SubPc to α-NPD 

can be collected as photocurrent. However, the stack with no spacer exhibited a similar ηPL to 

that of the stack containing the α-NPD spacer, indicating significant quenching of excitons at the 

SubPc/MoO3 interface. This result further confirms the fit of modeled EQE to experiment, where 

100% quenching is predicted at the SubPc/MoO3 interface.   

2.4.4 Thickness Dependence of the EDL Functionality 

 

Figure 2.5 Experimentally determined a) J-V, b) EQE, and c) IQE data for Glass/ITO/MoO3 (5 nm)/α-NPD (x 
nm)/SubPc (13 nm)/C60 (36 nm)/BCP (10 nm)/Al (100 nm). Three α-NPD thicknesses are shown: 0 nm (triangles), 2 
nm (squares), and 5 nm (circles). Modeled EQE and IQE (dotted lines) are shown with three possible boundary 
conditions at the SubPc/MoO3 or SubPc/α-NPD interface: 100% quenching, exciton reflection (SHJ), and 100% 
dissociation (CHJ). 
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Figure 2.6 Dependence of a) Jsc, EQE at λ = 585nm, b) Voc, FF, and c) PCE on α-NPD layer thickness for a device 
comprising Glass/ITO/MoO3 (5 nm)/α-NPD (x nm)/SubPc (13 nm)/C60 (36 nm)/BCP (10 nm)/Al (100 nm). Error bars 
represent standard deviations calculated from a sample size of >8 devices. 

From Figure 2.3, it is clear that the addition of the 5 nm α-NPD layer to the SubPc/C60 device 

substantially increases both EQE and Jsc. To further probe the transition from quenching to 

exciton dissociation in these structures, we studied CHJ devices while varying the α-NPD EDL 

thickness from 0-5 nm (thicknesses up to 10 nm are considered in Chapter 3, with no discernable 

differences in Jsc between 5 nm and 10 nm). Because there is minimal optical cavity confinement 

within the device and the α-NPD layer is located furthest from the reflective cathode, increasing 

the α-NPD thicknesses from 0-5 nm has a negligible effect on the optical field profile within the 

active layers. Therefore, all noticeable effects on device performance can be attributed to 
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interfacial properties at the SubPc/α-NPD junction. Figure 2.5a-c shows select J-V and 

spectroscopic characteristics of devices as the α-NPD thickness is increased, with each device 

demonstrating an EQE spectrum corresponding to modeled EQE for one of three boundary 

conditions at the SubPc/α-NPD or SubPc/MoO3 interface (quenching, exciton reflection, and 

exciton dissociation). With increasing α-NPD thickness, there is a notable increase in 

photocurrent as well as a concomitant decrease in the FF (Figure 2.6a-b). Cnops et al. see a 

similar decrease in FF for thick SubPc layers used in cascade devices, also attributing the drop to 

low charge carrier mobilities in SubPc.33 The EQE contribution from the SubPc layer (peak at λ 

= 585 nm) increases with α-NPD thickness, as seen in Figure 2.6a. We observe a reasonable fit 

for the quenching boundary condition at the SubPc/MoO3 interface (Figure 2.5b). We note that 

while devices with 2 nm of α-NPD do approximate the modeled EQE with exciton reflection as 

the boundary condition at the SubPc/α-NPD interface, this would require a sudden and 

temporary change in the fundamental properties of the materials involved. Instead, it is more 

likely that at 2 nm, coverage of the electrode by the EDL is incomplete, resulting in only partial 

exciton dissociation at the α-NPD, offset by parasitic quenching at the MoO3. The experimental 

EQE for the 5 nm α-NPD device is much higher than the predicted EQE for a SHJ device, 

corroborating the functionality of α-NPD as an EDL. If the CHJ boundary conditions are  

included in the model, the fit is nearly perfect for the device with 5 nm α-NPD. Experimental and 

modeled IQE plots (Figure 2.5c) are well matched, further confirming that the observed increase 

in Jsc is not due to changes in the optical field profiles or additional absorption from α-NPD, but 

rather from changes in boundary conditions at the SubPc/MoO3 or SubPc/α-NPD interfaces. 

We see a stable Voc in all devices versus α-NPD thickness (Figure 2.6b), in agreement 

with the assumption that both heterojunctions are operating in parallel, limiting the Voc to that of 
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the lowest-voltage (SubPc/C60) heterojunction. There is a steady increase in both the Jsc and EQE 

at λ = 585 nm versus α-NPD thickness, consistent with the creation of a conformal layer for 

exciton dissociation. Atomic force microscopy (AFM) images of 5 nm MoO3 on ITO show a root 

mean squared roughness (Rrms) of 3.52 nm (Figure 2.7). Therefore, we expect that as the α-NPD 

layer thickness is increased from 0-5 nm, the substrate coverage becomes more complete, 

resulting in a monotonic increase in photocurrent.  

As the thickness of the α-NPD layer is increased, we note that while the average Jsc 

increases at a similar rate to that of the EQE at 585 nm, there is a small “jump” in the Jsc that 

occurs at 2 nm α-NPD. For the device with 2 nm α-NPD, the Voc also decreases. Because there is 

no visible trend in the Voc of each device from 0-5 nm α-NPD, and because J-V and EQE tests 

are performed on different devices and substrates, we assume these variations to be due to small 

variations in material purity or work function of the ITO substrate, both of which could influence 

Voc and Jsc.  
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Table 2.2 Champion solar cell performance data for the structure: Glass/ITO/MoO3 (5nm)/α-NPD (x nm)/SubPc 
(13nm)/C60 (36nm)/BCP (10nm)/Al (100nm) under simulated 1-sun, AM1.5G illumination. 

α-NPD Thickness (nm) Jsc (mA/cm2) Voc (V) FF (%) PCE (%) 

0 3.94 1.08 61.5 2.61 

1 4.20 1.10 55.9 2.75 

2 4.67 1.08 54.4 2.74 

3 4.77 1.08 49.0 2.53 

4 4.74 1.08 52.3 2.67 

5 4.90 1.09 49.2 2.61 

ITO/MoO3 (5)/α-NPD (7)/ SubPc 

(27)/BCP (10)/Al (100) 
1.72 1.34 23.5 0.54 

 

2.5 Morphology 
Atomic force micrographs show no discernible change in roughness of the SubPc layer with 

(Figure 2.7c) and without (Figure 2.7d) a 5 nm α-NPD spacer layer added. We see little change 

in the grain size or roughness of the SubPc layer (Figure 2.7e) deposited on different surfaces 

under our experimental conditions. Additionally, XRD shows no sign of induced crystallinity in 

SubPc, so the increase in EQE cannot be explained by an increase in LD  due to templating in the 

SubPc layer. 
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Figure 2.7 AFM images of a) ITO/MoO3 (5 nm), b) ITO/MoO3 (5 nm)/α-NPD (5 nm), c) ITO/MoO3 (5 nm)/SubPc (13 
nm), and d) ITO/MoO3 (5 nm)/α-NPD (5 nm)/SubPc (13 nm). e) Grain size and Rrms values for each sample, and (f) 
XRD scans of MoO3 (5nm)/SubPc (13nm) and MoO3 (5 nm)/α-NPD (5 nm)/SubPc (13 nm), as well as a crystalline 
control sample of 13 nm SubPc annealed for 15 min at 95 ⁰C. 

 

2.6 Conclusions 
In summary, we have investigated the concept of an optically transparent exciton dissociation 

layer that boosts the internal quantum efficiency of an electron donor material in an organic 

heterojunction solar cell by simultaneously mitigating quenching and bulk recombination. We 

utilized α-NPD as the anode EDL in an archetypal SubPc/C60 device and presented a rigorous 

model for describing exciton transport within cascade heterojunction OPV architectures. By 

introducing the EDL, an additional interface for exciton dissociation was created, resulting in a 

66% increase in IQE and EQE of the SubPc layer and a 27% increase in photocurrent of the 

device. Because the SHJ α-NPD/SubPc device exhibits a high Voc (1.34 V), the α-

NPD/SubPc/C60 device is able to maintain the 1.1 V open-circuit voltage of the SubPc/C60 

system. The observed decrease in FF (an inherent problem for CHJ devices with a thick SubPc 
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interlayer) will need to be addressed in future work, likely by choosing a more ambipolar donor 

material or by improving the electron mobility of SubPc via doping and/or molecular ordering.   

The EDL in this study is defined such that it improves the overall EQE of the OPV device, 

but it does so specifically by reducing diffusion losses in the adjacent active layer (i.e. absorption 

changes in the device are negligible). This makes the EDL-containing device different from other 

cascade geometry devices where multiple photon-harvesting layers are used – the EQE of a 

given device might be improved by adding a third absorbing layer in a cascade geometry, but the 

IQE of the outermost absorbing layers will still be lower than if a transparent EDL were inserted 

between the electrode and outermost active layer. Furthermore, the EDL concept is not limited to 

the α-NPD/SubPc/C60 system, nor is it limited to the anode side of the device – adding an EDL to 

any planar OPV cell should substantially increase its IQE by preventing quenching at the 

electrode and reducing bulk recombination. Because exciton transport is a fundamental 

bottleneck in all excitonic PV devices, the incorporation of EDLs promises to be an alternative 

approach to bulk heterojunctions and EBLs by circumventing the trade-off between exciton 

diffusion and optical absorption efficiencies in OPV active layers. 
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Chapter 3  

Design Rules for High Fill Factor in Cascade 

Heterojunction OPVs 
In Chapter 2, we discussed the promise for cascade heterojunction organic solar cells as an 

emerging alternative to conventional bulk heterojunctions and series-connected tandems due to 

their significant promise for high internal quantum efficiency and broad spectral coverage. 

However, CHJ devices demonstrated in that chapter and elsewhere in literature had also 

generally exhibited poor fill factor, resulting in minimal enhancements (or even decreases) in 

power conversion efficiency when compared with single heterojunction cells. In this chapter, the 

major variables controlling the CHJ maximum power point and FF are determined. By matching 

the maximum power point voltage (VMPP) of the constituent parallel-connected heterojunctions 

(subjunctions) and minimizing the injection barriers intrinsic to CHJs, a high FF is maintained 

and the PCE is improved by 46%. Devices with a transparent exciton dissociation layer 

(EDL)/interlayer/acceptor structure are used, such that each CHJ has an absorption efficiency 

identical to its interlayer/acceptor SHJ counterpart. Using these results, a clear map of 

performance as a function of material parameters is developed, providing straightforward design 

rules to guide future molecular engineering and layer architectures for cascade heterojunction 

organic photovoltaic devices. 
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3.1 Introduction 
As introduced in Chapter 2, a new approach to circumventing the absorption/diffusion tradeoff in 

OPVs involves cascade heterojunction devices.32-35,60,61 In CHJs, the HOMO and LUMO levels 

of three or more active layers are progressively offset to create multiple energetically cascading 

heterojunctions within the device. In the simplest case, a planar CHJ employs a three-layer 

architecture consisting of a donor/interlayer/acceptor stack: the interlayer is sandwiched between 

two heterojunctions, enabling exciton dissociation on both the donor and acceptor sides, thereby 

reducing the distance excitons must travel before dissociating. This reduced diffusion distance 

can substantially increase the IQE of the interlayer, resulting in a higher EQE and overall device 

Jsc. Compared to BHJs, planar devices can offer nearly 100% charge collection efficiency, more 

straightforward optimization of optical absorption, and more refined control over individual layer 

morphologies.62 Due to the nature of CHJ device design, it is also possible to broaden spectral 

coverage by using three (or more) active layers with absorption peaks in non-overlapping regions 

of the spectrum, providing an alternative or complementary approach to series tandem 

configurations. However, efficient charge collection in CHJs does not automatically translate to a 

good fill factor.33,61 Indeed, in Chapter 2 we demonstrated a 66% increase in the IQE and EQE of 

boron subphthalocyanine chloride (SubPc) by introducing a large bandgap, transparent exciton 

dissociation layer between SubPc and the anode in a planar SHJ SubPc/C60 device.61 Although 

the Jsc improved significantly, the overall PCE exhibited only a minimal increase due to a 

concomitant decrease in FF, leaving open questions as to the fundamental limitations of the CHJ 

solar cell architecture.  
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Figure 3.1 Schematic of energy levels and molecular structures for all materials used in this study. HOMO levels of 
all EDL and interlayer materials were measured using cylic voltammetry and bandgap energies were estimated from 
the absorption onset. The HOMO level of C60 was taken from literature and it’s bandgap energy was estimated from 
the absorption onset.46 Energy levels for BCP and the electrodes were taken from literature.43,44 The prospective EDL 
materials were chosen such that their HOMO levels ranged semi-continously from ~4.9 eV to ~5.5 eV. The two 
interlayers were chosen based on their differences in VMPP when in SHJ configurations with C60. 

In this chapter, we perform a systematic study of the EDL/interlayer/acceptor system to probe 

the underlying mechanisms that cause low FFs in CHJ devices. We employ 12 exciton 

dissociation layers, coupled with SubPc or boron subnaphthalocyanine chloride (SubNc) as 

interlayers and C60 as the acceptor. As a reminder, the FF is a simple way of relating Jsc and Voc 

to the maximum power point (MPP):  

FF = VMPP ⋅ JMPP

Voc ⋅ Jsc  
(3.1) 

where VMPP and JMPP are the voltage and current at the MPP, respectively. However, while FF 

can be a useful metric for describing device performance, it can be imprecise or misleading if 

both Jsc and Voc vary between the devices under consideration. We instead focus on the MPP for 

comparisons between devices with the understanding that if VMPP and JMPP are maximized, then 

FF will also be maximized. For CHJs, we show that the VMPP is limited by two major factors, 

both of which can lead to the onset of s-kink behavior in the current-voltage (J-V) characteristics 
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of the devices. First, we demonstrate that the two active heterojunctions (which we term 

“subjunctions”) in the cascade operate electrically in parallel,61 with the maximum VMPP of the 

CHJ limited by the lowest VMPP of the two subjunctions. Second, we show that the VMPP of a CHJ 

is further limited by the energy offset between the HOMO levels (ΔEHOMO) of the hole 

transporting donor layer and interlayer. As ΔEHOMO increases, the voltage at the maximum power 

point (VMPP) decreases, leading to a lower FF and PCE. We attribute this parasitic effect to the 

introduction of an energetic charge injection barrier, which results in a space charge build up 

within the device and a corresponding decrease in the built-in field.63,64 Impressively, for 

optimized devices we observe an increase in the peak IQE of the SubPc and SubNc layers from 

38% and 66% to 84% and 99%, respectively, over reference SHJ devices with no EDL. 

Furthermore, by matching the VMPP of each subjunction and choosing an EDL with ΔEHOMO ≤ 0.2 

eV, we minimize any losses in VMPP (and FF) and demonstrate a 46% enhancement in PCE for a 

SubNc CHJ over its SHJ reference device.  

3.2 Experiment 

3.2.1 Energy Levels 
HOMO levels for all interlayer and EDL materials were measured via cyclic voltammetry. Each 

material was dropcast from chloroform onto a 3 mm diameter glassy carbon working electrode. 

Using 0.1 M tetrabutylammonium hexafluorophosphate in acetonitrile as an electrolyte, samples 

were scanned at a rate of 0.1 V s-1 relative to an Ag/AgNO3 reference electrode with a Pt wire 

counter electrode. Scans were normalized to the onset of oxidation of ferrocene, taken as -4.8 

eV. The bandgap was estimated from the onset of absorption, and the LUMO level was 

calculated by adding the bandgap to the HOMO level.  
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3.2.2 Device Fabrication 
Devices were deposited on commercially available ITO (Delta Technologies, 150 nm thick, 

Rs<15 Ω/□). Substrates were cleaned via heated (40°C) sonication in detergent, water, acetone, 

trichloroethylene, and isopropanol, followed by boiling in isopropanol and 10 minutes of 

ultraviolet/ozone treatment to remove carbon residues and increase the anode work function. 

Device layers were deposited via vacuum thermal evaporation (VTE) using an Ångstrom AMOD 

deposition chamber. Fabrication and J-V testing was performed in a glovebox filled with an inert 

nitrogen environment (<1 ppm O2 and H2O). To minimize degradation in atmosphere during 

testing, devices were simultaneously deposited on three substrates, so that one of each could be 

used for testing J-V, EQE, and absorption. Only samples for EQE and absorption measurements 

were exposed to atmosphere. For EQE and J-V testing, aluminum island electrodes were 

deposited through a shadow mask with a diameter of 1 mm.  All device areas were measured 

using a Carl Zeiss Scope A.1 optical microscope and included explicitly in calculating Jsc, EQE, 

IQE, and PCE. All organic materials were purchased from Luminescence Technology Corp. and 

deposited with no further purification. SubPc, SubNc, BCP, and all EDL materials (>99%) and 

C60 (>99.5%) were sublimed grade. MoO3 (>99.99%) was purchased from Sigma Aldrich and Al 

(99.9%) was purchased from Alfa Aesar.  

3.2.3 Device Characterization 
Device J-V data were recorded using an HP 4156B precision semiconductor parameter analyzer. 

The cells were illuminated with a Newport solar simulator (model# 91191-1000) calibrated to 

AM1.5 (100 mW/cm2) using an NREL Si reference cell (Model PVM233 KG5). EQE was 

measured by directing a collimated beam of optically chopped light (185 Hz) from a halogen 

lamp coupled to a Newport 1/8m monochromator (5 nm FWHM) incident on the sample. The 
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photocurrent was measured using a Stanford Research Systems SR530 Lock-in Amplifier and 

compared to the output from a calibrated Si photodiode. The spectrum of the solar simulator was 

measured with an Ocean Optics USB2000 spectrometer and convoluted with the experimental 

EQE to determine the spectral mismatch factor for each device with respect to the AM1.5G 

spectrum (All mismatch factors were determined to be 1 ± 0.05).65 Absorption in the completed 

devices was measured in reflection mode using a Perkin Elmer Lambda 750 UV/Vis/NIR 

spectrometer at an incidence angle of 7.5°. The absorption spectrum for each device was then 

compared to a transfer matrix optical model to confirm device layer thicknesses. IQE was 

calculated by dividing experimental EQE by modeled active layer absorption at each wavelength 

at normal incidence.  

3.2.4 Optical Properties of Materials 
The thicknesses and optical properties of all materials were measured using a variable angle 

spectroscopic ellipsometer (M-2000, J.A. Woollam Co.).  Measurements were performed in both 

transmission mode and reflection mode at angles of 55°, 65°, and 75° for each of the materials on 

a glass substrate. The film thickness and surface roughness were first determined by fitting the 

acquired ellipsometric angles Δ and Ψ to a Cauchy model over the wavelength range in which 

the material is transparent. The refractive index values were then determined by fixing the film 

thickness as well as surface roughness and parameterizing the material as a B-Spline layer. The 

wavelength range was gradually increased, in increments of 0.1 eV, until it included the entire 

measured spectral range. The resultant values were then verified to be Kramers-Kronig (KK) 

consistent.   
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3.2.5 Mobility Measurements 
For hole mobility measurements, samples were fabricated with the structure ITO/PEIE(10 

nm)/EDL(800 nm)/Au(80 nm). PEIE (0.4 wt% in methoxyethanol) was spin-coated at 5000 rpm 

for 60 s and subsequently baked at 100°C for 10 minutes prior to VTE deposition of the EDL at 

1 Å/s. Circular gold contacts were deposited at 1 Å/s and defined by a shadow mask. Time-of-

flight measurements were performed using a nitrogen laser (VSL337 from Newport) with a 

wavelength of λ = 337.1 nm, an intensity per pulse of ~120 µJ, and a pulse duration less than 4 

ns, for photo-generation of charge carriers in the films (illuminated through the ITO substrate). A 

Keithley 2400 SourceMeter was used to apply constant voltage over devices, with the ITO 

cathode under positive bias to prevent charge injection. The current transients were then 

amplified using a FEMTO DLPCA-200 low noise current amplifier and recorded with a 

Tektronix TDS3052C digital oscilloscope. 
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3.3 Results and Discussion 

3.3.1 Active Layer Energy Levels and Device Architectures  
Twelve different triphenylamine derivatives were used in this study as EDLs, selected based on 

their high hole mobilities, transparency in the visible spectrum, and HOMO levels varying from 

~4.9 eV to ~5.5 eV. Figure 3.1 depicts a schematic energy level diagram and the molecular 

structure for all materials used.43,44,46,66 In Figure 3.2, we show the absorption coefficients for 

each material, with only the interlayers and C60 acceptor having absorption peaks in the visible 

spectrum. The two interlayer materials were chosen primarily due to their different characteristic 

VMPP when paired with C60 in a SHJ configuration. As demonstrated below, the EDL/interlayer 

VMPP often limits the CHJ VMPP, so choosing a reference SHJ with a lower VMPP can help match 

VMPP between the EDL/interlayer and interlayer/C60 subjunctions.  

 

Figure 3.2 Absorption coefficients of active materials used in this study, as determined by variable angle 
spectroscopic ellipsometry. Spectra are shown for a) absorbing energy harvesting layers SubPc, SubNc (at normal 
incidence), C60, and TPTPA EDL; b) EDLs BPAPF, TcTa, α-NPD, TAPC, and HMTPD; and c) EDLs NPB, TPD, 
DMFL-NPB, MeO-TPD, m-MTDATA, and 2T-NATA. 
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MoO3 was used as an anode buffer layer in all SHJ and CHJ devices employing SubPc as an 

active layer. While we demonstrated in Chapter 2 that MoO3 quenches excitons in SubPc and 

other common OPV materials,53,61 its high work function is helpful for sustaining the ~1.1 V 

open-circuit voltage of SubPc/C60 devices.67 Moreover, because it is transparent, MoO3 causes 

virtually no changes to the optical field profiles within the device, unlike other commonly used 

buffer layers such as poly(ethylenedioxythiophene):poly(styrenesulfonate) which absorb in the 

visible portion of the spectrum.68 Because MoO3 is not required for the lower Voc (~0.8 V) of 

SubNc/C60 devices, it was not used in SubNc/C60 SHJ or EDL/SubNc/C60 CHJ devices. MoO3 

was used for all EDL/SubNc SHJ devices to ensure the built-in field did not limit Voc. As will be 

seen below, all trends in device performance were independent of the anode. 

3.3.2 Electrical Operation of CHJ Devices 
To understand CHJ device operation, we must consider photocurrent generation under short-

circuit conditions (determined by EQE) as well as the VMPP and FF limitations of the device 

under forward bias. In Chapter 2, we showed that during operation at zero applied bias (Figure 

3.3c), both subjunctions in a CHJ device act as current sources operating electrically in parallel, 

with a barrier-free extraction of charge carriers upon exciton dissociation.61  
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Figure 3.3 a) Schematic energy level and circuit diagrams for CHJ devices. The characteristic performance of each 
subjunction can be estimated by considering the J-V curves of corresponding SHJ devices. b) Characteristic 
experimental J-V curves of an EDL/interlayer SHJ, an interlayer/C60 SHJ, and an EDL/interlayer/C60 CHJ. The 
maximum power point for each device is marked by a star. From the two SHJs, it is clear the VMPP of the 
EDL/interlayer will limit the maximum VMPP of the CHJ device. Schematic band diagrams of c) exciton dissociation in a 
CHJ at short-circuit conditions (Va = 0) d) exciton dissociation in a CHJ at VMPP, where flat-band conditions have not 
been met. e) field inversion at both subjunctions in a CHJ due to the introduced hole-injection barrier with energy 
ΔEHOMO. 

By treating the subjunctions as acting electrically in parallel,61 we can at the very least consider 

the qualitative J-V characteristics of CHJ devices under forward bias. In series-connected tandem 

structures, the JMPP of the complete device will be limited by the lowest JMPP of its two (or more) 

subcells.19 Analogously, we could make an assumption that the VMPP of a CHJ device will be 

limited by the lowest VMPP of its constituent subjunctions. Due to CHJ device geometry, it is 

difficult to measure the VMPP of each subjunction in situ. However, it is possible to estimate the 

VMPP of each subjunction by measuring the J-V characteristics of each subjunction in separate 
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SHJ configurations. These concepts are illustrated in Figure 3.3a, where equivalent circuit 

diagrams are provided for each SHJ device and the CHJ device comprised of the two 

corresponding subjunctions. Experimental J-V curves for an EDL/interlayer/acceptor 

(TAPC/SubPc/C60) system are shown in Figure 3.3b. A star shape marks the maximum power 

point for each device. From this plot, if our assumption holds that the CHJ VMPP is limited by the 

lowest of either subjunction, then we can see that the VMPP of the EDL/interlayer subjunction will 

limit the VMPP of the CHJ device. In all experimental results, as discussed further below, the VMPP 

of the CHJ is less than or equal to the lowest VMPP of the two operating subjunctions.  

To minimize losses in CHJ devices, the VMPP values of the subjunctions must be closely 

matched. Previous studies have shown that the most important factors in determining the Voc of 

SHJ devices are the energy of the HOMO-LUMO gap (ΔEHL) and the polaron pair binding 

energy (EB,PP) between the donor and acceptor layers. In the ideal case where FF = 100%, VMPP 

would be limited by the maximum Voc of the SHJ, as determined by:  

 Voc,max =
ΔEHL

q
−EB,PP  (3.2) 

where q is the electron charge.69 In Figure 3.4a, we plot Voc versus ΔEHL for all EDL/interlayer 

SHJ devices fabricated in this study. As expected, Voc does increase with larger ΔEHL, but EB,PP 

also appears to increase as ΔEHL approaches the interlayer bandgap energy (i.e. ΔEHOMO ≈ 0), 

especially in the case of the EDL/SubNc SHJ devices. This is consistent with experimental 

findings by Zhang et al.,70 attributable to a linear dependence of the polaron pair separation 

distance (a0) on ΔEHOMO.23 Figure 3.4b plots simulated VMPP values versus EB,PP for a standard 

SubPc/C60 SHJ, with VMPP values taken from photocurrent curves simulated using the Onsager-

Braun model, as detailed in Section 1.9 and with more detail in Section 3.3.8.21,71 Figure 3.4b 
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shows that modeled VMPP scales linearly with EB,PP, with a 0.1 eV change in EB,PP causing a 45% 

drop in VMPP. Thus we conclude that ΔEHL and EB,PP (or a0) are critical in matching the VMPP of 

each subjunction in the CHJ. 

3.3.3 Effect of ΔEHOMO on CHJ VMPP 
As demonstrated in Figure 3.3b, the VMPP of a CHJ can be lower than the VMPP of either 

subjunction. To elucidate any other possible loss mechanisms, we investigated the effects of 

energy level alignment on CHJ VMPP. It has been well established that injection barriers can lead 

to s-kink J-V behavior in OPVs, either due to non-ohmic contact at the electrode/donor 

interface72-74 or injection bottlenecks between the p and i layers in p-i-n type OPV cells.63,75 

Because cascading energy levels are required for creating multiple heterojunctions, CHJs 

inherently contain more injection barriers than SHJs. In CHJs, injected holes and electrons could 

in principle recombine at either the EDL/interlayer heterojunction or the interlayer/acceptor 

heterojunction. In practice, however, asymmetric injection barriers and carrier mobilities will 

force recombination to occur at one of the subjunctions, which will in turn dictate the overall 

diode behavior of the CHJ.40,55,69,76 For devices in this study, and the majority of CHJs shown 

previously in literature, phthalocyanines have been used as the interlayer, resulting in a large 

mismatch between interlayer hole (µh) and electron (µe) mobilities. Because µh > µe for most 

phthalocyanines, recombination of injected charges will preferentially occur at the 

interlayer/acceptor interface. Recombination at that interface is favored even more if the electron 

injection barrier from the acceptor into the interlayer (ΔELUMO) exceeds the hole injection barrier 

from the EDL into the interlayer (ΔEHOMO), as is the case for devices in this study with ΔEHOMO 

< ~0.2 eV (Figure 3.3e). 
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Figure 3.4 a) Voc of every SHJ device in this study versus ΔEHL. EDL/SubPc and EDL/SubNc SHJs are represented 
by open red dots and open blue triangles, respectively. b) Simulated VMPP for a SubPc/C60 SHJ as a function of 
polaron pair binding energy, EB,PP. Inset: Normalized photocurrent curves versus applied bias, for varying EB,PP. 
Simulated photocurrent and VMPP values were calculated using an Onsager-Braun model. 

If recombination occurs at the interlayer/acceptor interface, we must then consider the effect of 

the HOMO level offset, ΔEHOMO, introduced by inserting the EDL layer. While this offset is 

necessary for enabling dissociation at the EDL/interlayer interface and creating a second 

heterojunction, it also introduces an additional hole injection barrier that can lead to a buildup of 

charge in the device and a subsequent decrease in the built-in field.64 At zero bias (Figure 3.3c), 

Fermi level alignment in all layers provides band bending that is beneficial to dissociating 

excitons at each heterojunction; as such, the photocurrent contributions from each subjunction 

are perfectly additive. As Va increases (0 < Va < Voc), the polaron pair dissociation efficiency 

(ηPPd) decreases monotonically with the internal field until flat band conditions are reached. The 

maximum power point will occur at Va = VMPP, before flat band conditions (Figure 3.3d). 

Typically the field inside the active layers is assumed to be nearly constant below Voc, although 

this is not necessarily the case in CHJs. Tress et al. employed a system using multiple hole 

transport layers and a transparent interlayer (called a donor layer in the study, as the only 

photocurrent-producing heterojunction was located at the interlayer/acceptor interface). Using a 

recursive transport model, ΔEHOMO was shown to cause field inversion at the heterojunction 
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(band bending in opposition to exciton dissociation), causing a sharp drop in ηPPd, shutting off 

photocurrent production before Voc and causing s-kink behavior in the J-V curve (Figure 3.3e). 

However, in that study, both the HTL and “donor” layers were transparent, meaning that all 

photocurrent generation came from absorption in the acceptor (C60) layer. In this study, we 

employ CHJ devices with photocurrent generation occurring at both subjunctions, but expect a 

similar behavior to occur. To verify, we now experimentally determine the dependence of CHJ 

VMPP on ΔEHOMO. 

In Figure 3.5, we show how ΔEHOMO can affect J-V performance by varying the material 

used for the 5 nm transparent EDL. Figure 3.5a-d and Figure 3.5e-h show J-V curves for CHJ 

devices using SubPc and SubNc as the interlayer, respectively. The black dashed line in each 

plot represents the reference interlayer/C60 SHJ device without an EDL. The onset of s-kink 

behavior is most apparent in Figure 3.5c and Figure 3.5g, where we normalize the photocurrent 

for each device to its own Jsc. This provides a useful metric for the shape of the device curve 

regardless of the Jsc, and more clearly illustrates that the onset of s-kink behavior in the device is 

due to field inversion (and resultant shutting down of photocurrent production) at Va < Voc. 

Furthermore, in comparing the J-V curves of the devices under no illumination, we note that the 

dark current at Voc is 10-100x lower in the CHJs than in the SHJ reference device without an 

EDL. Lower dark currents at biases close to Voc indicate a decrease in recombination of injected 

charges at the dominant heterojunction, providing further evidence for a buildup of holes at the 

EDL/interlayer interface. If injected holes are unable to reach the interlayer/C60 interface, they 

cannot recombine with injected electrons and contribute to dark current.  
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Figure 3.5 The effect of ΔEHOMO on the J-V performance of CHJ devices. a)-d) shows the device structures, J-V, 
normalized photocurrent, and dark current for devices using SubPc as the interlayer. The device structure for SubPc 
devices was (all thicknesses in nm) ITO/5 MoO3/5 EDL/13 SubPc/36 C60/10 BCP/100 Al. e)-h) shows the same data 
for devices using SubNc as an interlayer. The SubNc device structure was ITO/5 EDL/8.5 SubNc/36 C60/10 BCP/100 
Al. Reference devices with no EDL are represented by dashed black lines. 

3.3.4 Dependence of CHJ VMPP on ΔEHOMO and VMPP of Subjunctions 
To summarize the combined contributions of field inversion and voltage-limited operation, we 

measured the J-V performance of all EDL/interlayer and interlayer/C60 SHJ devices, extracting 

the VMPP for each (performance parameters for all devices can be found in Table 3.1 and Table 

3.2). Figure 3.6a plots the normalized VMPP of each CHJ versus ΔEHOMO, with the normalization 

factor f defined as: 

f = 1
min VMPP

EDL/int,VMPP
int/C60( )

 (3.3) 

where f is the inverse of the minimum VMPP of either subjunction operating in the CHJ (this 

normalization factor is based on our assumption in Section 3.3.2 that the CHJ VMPP will be 
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limited by the lowest VMPP of either subjunction). Remarkably, the data collapse onto a single 

line, indicating that for ΔEHOMO < 0.2 eV, the CHJ is primarily limited by the lowest subjunction 

VMPP and operates purely as a set of parallel diodes. However, for ΔEHOMO > 0.2 eV, the hole 

injection barrier becomes significant enough to shut down photocurrent production before Voc, 

decreasing VMPP below that of either subjunction. This 0.2 eV threshold is consistent with what 

has been shown in bilayer organic light-emitting diodes, where efficient hole injection into the 

electron transport layer occurs only when ΔEHOMO is less than 0.1 - 0.3 eV.77-79 Thus, Figure 

3.6a encompasses the critical parameters that will determine the MPP of a CHJ device. From the 

plot, we conclude that for a high efficiency CHJ, the VMPP of each subjunction must be closely 

matched and ΔEHOMO between the EDL and interlayer should be kept below 0.2 eV.  

 

Figure 3.6 a) A plot of each CHJ VMPP normalized by the minimum VMPP of its constituent subjunctions versus 
ΔEHOMO, as defined in Equation (3.3). The dashed horizontal line = 1 represents the maximum possible VMPP of the 
CHJ based on each subcell. Beyond ΔEHOMO ≈ 0.2 eV, the CHJ VMPP is further lowered due to a decrease in Vbi (and 
therefore photocurrent) under forward bias. Error bars represent standard deviations calculated from six or more 
devices. b) and c) are contour plots of simulated VMPP for CHJ devices with SubPc and SubNc interlayers, 
respectively. CHJ VMPP is determined by the minimum VMPP of either subjunction and further decreased by ΔEHOMO, 
dictated by the linear fit in (a), as given in Equation (3.7).  Experimental data points (circles and triangles) for CHJ 
devices are plotted and colored corresponding to their experimentally determined VMPP. 
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3.3.5 J-V Curves of CHJ Devices 
In Figure 3.7a and Figure 3.7b we show the experimentally determined J-V curves (CHJ and 

SHJs corresponding to each subjunction) for the TcTa/SubPc/C60 and BPAPF/SubNc/C60 

systems, respectively. In Table 3.1 and  Table 3.2 we provide tabulated J-V performance 

parameters for all SHJs (EDL/interlayer and interlayer/C60) and all CHJs (5 nm 

EDL/interlayer/C60) used in this study. Even with a nominal ΔEHOMO = 0.02 eV, as is the case 

with the BPAPF/SubNc heterojunction, there can still be efficient dissociation of excitons (and 

photocurrent production) at short-circuit conditions. 

 

Figure 3.7 J-V curves for a) TcTa/SubPc SHJ, SubPc/C60 SHJ, and TcTa/SubPc/C60 CHJ devices; and b) 
BPAPF/SubNc SHJ, SubNc/C60 SHJ, and BPAPF/SubNc/C60 CHJ devices. 
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Table 3.1 Performance parameters for SHJ and CHJ devices utilizing SubPc in this study. Standard deviations, as 
calculated from at least six different devices, for Voc, Jsc, FF, PCE, and VMPP were all less than 3%, 11%, 6%, 12%, 
and 4%, respectively.  

Device 
ΔEHOMO  

(eV) 

Voc  

(V) 

Jsc  

(mA cm-2) 

FF  

(%) 

PCE  

(%) 

VMPP  

(V) 

SubPc/C60 SHJ - 1.04 3.9 67 2.74 0.89 

TcTa/SubPc SHJ 
0.05 

1.41 1.5 21 0.44 0.63 

TcTa/SubPc/C60 CHJ 1.11 5.8 44 2.81 0.63 

BPAPF/SubPc SHJ 
0.17 

1.42 1.3 20 0.38 0.63 

BPAPF/SubPc/C60 CHJ 1.15 5.7 41 2.70 0.61 

α-NPD/SubPc SHJ 
0.20 

1.35 1.9 23 0.60 0.65 

α-NPD/SubPc/C60 CHJ 1.13 5.7 43 2.76 0.63 

HMTPD/SubPc SHJ 
0.23 

1.38 1.4 21 0.40 0.62 

HMTPD/SubPc/C60 CHJ 1.11 5.7 42 2.69 0.62 

TPTPA/SubPc SHJ 
0.27 

1.33 3.1 38 1.58 0.82 

TPTPA/SubPc/C60 CHJ 1.03 5.3 51 2.79 0.68 

TAPC/SubPc SHJ 
0.34 

1.30 1.9 27 0.65 0.69 

TAPC/SubPc/C60 CHJ 1.10 5.8 38 2.42 0.55 

NPB/SubPc/SHJ 
0.35 

1.32 1.9 28 0.71 0.71 

NPB/SubPc/C60 CHJ 1.12 6.0 38 2.60 0.57 

TPD/SubPc SHJ 
0.38 

1.26 2.0 30 0.77 0.72 

TPD/SubPc/C60 CHJ 1.08 5.8 36 2.25 0.52 

DMFL-NPB/SubPc SHJ 
0.48 

1.17 1.9 31 0.65 0.64 

DMFL-NPB/SubPc/C60 CHJ 0.97 5.6 34 1.85 0.46 

MeO-TPD/SubPc SHJ 
0.55 

1.14 1.6 34 0.62 0.69 

MeO-TPD/SubPc/C60 CHJ 0.93 5.1 39 1.86 0.49 

m-MTDATA/SubPc SHJ 
0.62 

1.08 1.2 24 0.33 0.51 

m-MTDATA/SubPc/C60 CHJ 0.79 4.4 23 0.80 0.30 

2T-NATA/SubPc SHJ 
0.65 

1.07 2.0 33 0.70 0.62 

2T-NATA/SubPc/C60 CHJ 0.89 5.2 28 1.31 0.35 
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 Table 3.2 Performance parameters for SHJ and CHJ devices using SubNc in this study. Standard deviations, as 
calculated from at least six different devices, for Voc, Jsc, FF, PCE, and VMPP were all less than 2%, 9%, 7%, 10%, and 
3%, respectively. 

Device 
ΔEHOMO  

(eV) 

Voc  

(V) 

Jsc  

(mA cm-2) 

FF  

(%) 

PCE  

(%) 

VMPP  

(V) 

SubNc/C60 SHJ - 0.75 5.9 62 2.76 0.59 

BPAPF/SubNc SHJ 
0.02 

1.08 5.1 30 1.64 0.62 

BPAPF/SubNc/C60 CHJ 0.84 8.0 47 3.18 0.54 

α-NPD/SubNc SHJ 
0.05 

1.08 4.7 29 1.50 0.60 

α-NPD/SubNc/C60 CHJ 0.86 8.0 53 3.59 0.59 

TPTPA/SubNc SHJ 
0.12 

1.09 5.1 29 1.63 0.60 

TPTPA/SubNc/C60 CHJ 0.86 8.2 51 3.65 0.57 

TAPC/SubNc SHJ 
0.19 

1.11 5.2 30 1.73 0.63 

TAPC/SubNc/C60 CHJ 0.85 8.3 58 4.05 0.60 

NPB/SubNc/SHJ 
0.20 

1.11 5.6 34 2.10 0.67 

NPB/SubNc/C60 CHJ 0.84 8.2 50 3.46 0.54 

TPD/SubNc SHJ 
0.23 

1.00 1.9 25 0.48 0.51 

TPD/SubNc/C60 CHJ 0.86 7.2 44 2.70 0.52 

DMFL-NPB/SubNc SHJ 
0.33 

1.05 4.0 29 1.21 0.60 

DMFL-NPB/SubNc/C60 CHJ 0.87 7.9 41 2.79 0.49 

MeO-TPD/SubNc SHJ 
0.40 

1.04 3.1 28 0.93 0.57 

MeO-TPD/SubNc/C60 CHJ 0.91 7.4 33 2.21 0.45 

m-MTDATA/SubNc SHJ 
0.47 

1.06 4.9 32 1.63 0.63 

m-MTDATA/SubNc/C60 CHJ 0.91 8.2 23 1.74 0.38 

2T-NATA/SubNc SHJ 
0.50 

0.94 1.8 27 0.44 0.51 

2T-NATA/SubNc/C60 CHJ 0.77 5.2 28 1.12 0.38 

 

The HOMO levels of the EDL and interlayer materials were obtained via cyclic voltammetry on 

individual materials (detailed in Section 3.2.1). Within the devices, however, the HOMO levels 

and offset energies could conceivably vary due to band bending or intermixing at the active layer 

interfaces. Therefore, as with the estimation of each subjunction’s VMPP from the VMPP of its SHJ 
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counterpart, the measured energy levels provide an approximate value that can be used for 

predicting CHJ device performance. It is likely that the variations in energy levels and VMPP  of 

each subjunction within the CHJs account for some of the data spread seen in Figure 3.6a.  

3.3.6 Champion Device Performance 
In Figure 3.8, we show the device results for the best CHJs (highest PCE) created from the 

combinatorial study using either a SubPc (solid red lines) or SubNc (solid blue lines) interlayer. 

Both data sets are compared to the reference interlayer/C60 SHJ devices, which are plotted with 

dashed lines. We note that these results are consistent with those reported for SubPc/C60 and 

SubNc/C60 devices using other HTL materials.42,80 Figure 3.8a shows that the Jsc for both CHJs 

is significantly higher than the Jsc of the respective reference devices due to the large increase in 

EQE (Figure 3.8b) and IQE (Figure 3.8c) of the interlayers. Here, as discussed in Section 1.7.4, 

we have defined the IQE as: 

IQE(λ) = EQE(λ)
ηAbs (λ)

 (3.4) 

where EQE(λ) is the experimentally determined external quantum efficiency of the device and 

ηAbs(λ) is the absorption of only the active layers at wavelength λ, as determined by optical 

modeling (fittings by the optical model are shown in Figure 3.9). Impressively, the IQE of the 

SubNc interlayer within the cascade approaches 100% (>90% from 650 nm – 700 nm, with a 

peak value of 99%), meaning that nearly all photogenerated excitons in the SubNc are converted 

to electrical current. Furthermore, the VMPP of the SubNc CHJ is insensitive to the insertion of a 5 

nm TAPC EDL between the ITO anode and the SubNc layer, while the SubPc CHJ sees a large 

drop in VMPP, consistent results in Chapter 2.33 Consequently, the FF of the SubNc/C60 SHJ 

(62%) is largely maintained in the TAPC/SubNc/C60 CHJ (58%), whereas the FF of the 

TcTa/SubPc/C60 CHJ (44%) decreases significantly compared to the SubPc/C60 SHJ (67%). This 
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makes empirical sense, considering the VMPP of each SubPc subjunction (0.63 ± 0.01 V for the 

TcTa/SubPc SHJ and 0.89 ± 0.01 V for the SubPc/C60 SHJ), with the TcTa/SubPc subjuncton 

limiting the overall VMPP of the CHJ to 0.63 ± 0.01 V. On the other hand, the VMPP of each SubNc 

subjunction is closely matched (0.63 ± 0.01 V for the TAPC/SubNc SHJ and 0.59 ± 0.01 V for 

the SubNc/C60 SHJ), leading to a CHJ VMPP  = 0.60 ± 0.01 V.  

 

Figure 3.8 a) J-V curves, b) EQE, and c) IQE of optimized CHJ devices and the corresponding reference SHJ 
devices with no EDL. Results are shown for cascades with both SubPc and SubNc interlayers. IQE is defined as the 
experimental EQE divided by the modeled active layer absorption. The increase in Jsc in both CHJs can be explained 
by a substantial increase in the IQE and EQE of the interlayers. In the SubNc interlayer, the peak IQE is >99%. The 
more pronounced s-kink behavior in the SubPc CHJ is due to the limiting VMPP of the TcTa/SubPc subjunctions. 

 

Figure 3.9 Experimental and modeled absorption spectra of a) SubPc/C60 and b) SubNc/C60 CHJ devices. Total 
absorption of the device stack was measured and modeled at an incidence angle of 7.5°. Active layer absorption 
(absorption in only the interlayer and C60 layers) was modeled at normal incidence and used in calculating the IQE of 
device stacks. 
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3.3.7 Voc Limitations in CHJ Devices 
Recently, Cnops et al. suggested that the Voc of CHJs should be limited by the energy levels of 

the outermost active layers.81 This limitation on the Voc would occur due to the additional losses 

in energy as the free charges are extracted from the device. In Figure 3.10, we plot the Voc of 

each CHJ versus ΔEHL
EDL/C60  (the difference in energy between the HOMO level of the EDL and 

the LUMO level of the C60 layer), and indeed we see that the Voc can be limited for a small 

enough ΔEHL
EDL/C60 . In the CHJ devices with a SubPc interlayer, we observe a crossover point at 

ΔEHL
EDL/C60  ≈ 1.45 eV (ΔEHOMO ≈ 0.35 eV), above which the Voc remains relatively constant, and 

below which the Voc decreases monotonically with decreasingΔEHL
EDL/C60 . A similar transition is 

inferred at ≈ 1.18 eV (ΔEHOMO ≈ 0.48 eV) for devices with a SubNc interlayer, however the 

limited data below this value makes it more approximate. Critically, any limitations in Voc only 

occur for very small ΔEHL
EDL/C60  values. Conversely, for larger ΔEHL

EDL/C60  (smaller ΔEHOMO) values, 

the CHJ devices actually exhibit an increase in Voc compared to the reference interlayer/C60 SHJ, 

which we attribute to a decrease in dark current (Figure 3.5d,h). The black dotted line in Figure 

3.10 represents:  

q ⋅Voc = ΔEHL
EDL/C60 − 0.3 eV  (3.5) 

indicating that the maximum possible Voc of the CHJs is limited by ΔEHL
EDL/C60 and an effective 

binding energy of ~0.3 eV, consistent with our calculated EB,PP of the SubPc/C60 and SubNc/C60 

heterojunctions. Since a majority of photocurrent in the CHJ is generated at the interlayer/C60 

interface,61 it is not surprising that the effective EB,PP of the CHJ is close to that of the 

interlayer/C60 subjunction. 
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Figure 3.10 A plot of qVoc for each CHJ device versus ΔEHL
EDL/C60  (the difference in HOMO and LUMO levels of the 

EDL and C60 layers). The Voc of the CHJ devices increases initially upon insertion of an EDL due to a decrease in the 

dark current. As ΔEHL
EDL/C60 decreases, the Voc of the CHJs remains relatively constant until it becomes limited by 

ΔEHL
EDL/C60  - EB,PP. The diagonal black dotted line represents ΔEHL

EDL/C60
 - 0.3 eV, indicating a binding energy of 0.3 

eV (consistent with the fitted EB,PP in Section 3.3.8). 

As demonstrated by the EDL/SubNc/C60 devices, CHJs with interlayer/acceptor subjunctions 

exhibiting high recombination losses can employ donor layers with a larger ΔEHOMO before Voc 

begins to drop. However, as we have already established that ΔEHOMO should be kept to less than 

0.2 eV to minimize charge injection barriers in the devices, properly designed CHJs will not be 

voltage-limited. Instead, CHJ operation can substantially reduce recombination losses and bring 

the Voc closer to the theoretical maximum. 

3.3.8 Onsager Braun Modeling for SHJ Devices 
Here, we use the Onsager Braun modeling detailed in Section 1.8 to fit the normalized 

photocurrent for a SubPc/C60 junction measured under simulated AM1.5G illumination (100 
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mW/cm2). As can be seen in Figure 3.11, the OB model produces a much higher FF than what is 

measured experimentally in such devices. Renshaw et al. have shown previously that 

photoconductivity (Spc) must be accounted for to properly describe the photocurrent in OPVs (in 

particular SubPc/C60) and resolve this discrepancy.59 The total normalized photocurrent can be 

described by: 

Jph (Va )
Jsc

=
Spc
Jsc

⋅ Va −Vbi( )− f jxn ⋅ηPPd  (3.6) 

where f jxn =1−
Spc ⋅Vbi
Jsc

is the fraction of photocurrent produced at short-circuit conditions from 

the heterojunction and not from bulk dissociation. From the slope of the photocurrent curve in 

reverse bias we obtained Spc = 0.55 mA/cm2-V; when Spc was included in Equation (3.6), the 

experimental and modeled photocurrent were closely matched. Values of 0.95 V, 1.22 nm, and 

108 Hz were used for Vbi, a0, and kr, respectively. Having determined the parameters for the 

SubPc/C60 SHJ device, it was then possible to solely vary the PP separation distance (and thus 

binding energy, EB,PP) to observe its effect on the maximum power point voltage under realistic 

conditions. We note that the fitted values determined here are in close agreement with the 

reported literature values for these devices.55 

 



 67 

 

Figure 3.11 Normalized photocurrent versus applied bias for a SubPc/C60 SHJ device fitted to the OB model. 
Experimental data is shown (blue circles) to be in good agreement with the overall device fitting (solid red line) 
comprising contributions from dissociation at the heterojunction (dashed black line) and photoconductivity (solid black 
line). 

3.3.9 Design Rules for CHJ Devices 
These results can guide future CHJ device design, principally dictating that ΔEHOMO be less than 

0.2 eV and the polaron pair binding energy be minimized for the EDL/interlayer interface. It is 

also possible now to screen materials systems for their utility in CHJ configurations. In Figure 

3.6b and Figure 3.6c, we extrapolate the relationship shown in Figure 3.6a to provide contour 

plots for predicting the VMPP of an EDL/SubPc/C60 CHJ (Figure 3.6b) and an EDL/SubNc/C60 

CHJ (Figure 3.6c) as a function of EDL/interlayer VMPP and ΔEHOMO. A linear fit of the 

universal trend in Figure 3.6a produces a general equation: 

f ⋅VMPP,CHJ = − (0.78 ⋅eV −1) ⋅ (ΔEHOMO )+1.08    (3.7) 

with the caveat that the cascade VMPP will not exceed the VMPP of either subjunction. We note that 

Equation (3.7) implies no dependence of VMPP on other material properties such as charge 

mobility. In Section 3.3.10, we consider such charge mobility effects and in fact show a strong 

correlation between HOMO level and hole mobility. However, we see no apparent dependence 
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of CHJ VMPP on EDL layer thicknesses, and thus conclude that any effects due to mobility are 

negligible or secondary to the injection barrier introduced by ΔEHOMO. As an aside, the apparent 

relationship between HOMO level and hole mobility for these materials warrants further 

investigation, as it could provide further insight into previous studies with similar systems where 

changes in device performance were attributed primarily to variations in the hole mobility of the 

HTL.42,82 

Finally, from comparing the two contour plots (Figure 3.6b and c), we can see that a 

much lower EDL/interlayer VMPP is required to achieve maximum VMPP in the SubNc CHJ as 

compared to the SubPc CHJ. In many cases, the simplest route to a high-performance CHJ 

device may be choosing a base device system with higher Jsc and lower Voc or VMPP. By “trading” 

Jsc for VMPP, the PCE of the reference SHJ device can remain high, while lowering the required 

VMPP of the introduced subjunction in the CHJ.  

3.3.10 Effect of EDL Mobility on CHJ Performance 
To determine any effects of EDL mobility on the VMPP of CHJ devices, we used time-of-flight 

methods to measure the hole mobility of select EDL materials (Figure 3.12a). The remaining 

mobilities were taken from time-of-flight measurements reported in literature.83-86 In Figure 

3.12b, we plot the zero-field hole mobilities (µh,0) of each EDL material versus its HOMO level 

energy; from this plot, there is a noticeable trend between µh,0 and the HOMO level.  HOMO 

levels and mobility parameters are provided in Table 3.3. Assuming a Poole-Frenkel dependence 

of the carrier mobility on electric field,87 the mobility can be expressed as: 

µh (E) = µh,0 exp(γE
1/2 )  (3.8) 

where µh,0 is the zero-field hole mobility, γ is the field activation parameter, and E is the applied 

electric field. 
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Figure 3.12 a) Field-dependent hole mobilities of EDL materials measured via time-of-flight methods. b) Zero-field 
hole mobilities of EDL materials versus HOMO energy level. Colored squares were measured in this study and white 
squares are (time-of-flight) values taken from literature.  

Since both µh and the introduced hole injection barrier correlate with ΔEHOMO, we varied 

EDL thickness for each device set from 5 nm to 10 nm to deconvolve any effects the two 

properties may have on device performance. Because the injection barrier remains constant 

regardless of EDL thickness, any changes in performance versus thickness could be attributed to 

mobility differences in the EDL layer. The normalized VMPP for all CHJ devices can be seen in 

Figure 3.13a. While the EDL thickness variation introduces an additional spread to the data set, 

Equation (3.7) still provides a good overall fit. Furthermore, as can be seen from Figure 3.13b, 

there is no clear trend in VMPP as a function of EDL thickness. In fact, some CHJ devices 

experience an increase in VMPP with a thicker EDL layer. While the physical reasons for 

variations in CHJ performance versus EDL thickness warrant further investigation, they are 

outside the scope of this study. By varying EDL thickness with no clear trend for changes in 

VMPP, we conclude that any effects due to changes in mobility are secondary and much smaller 

than those due to the introduced injection barrier with energy of ΔEHOMO. 
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Figure 3.13 a) A plot of each CHJ VMPP normalized by the minimum VMPP of its constituent subjunctions versus 
ΔEHOMO (the energy offset between the HOMO levels of the EDL and the interlayer). Whereas Figure 3.6a only 
shows EDL thicknesses of 5 nm, here we also show EDL thicknesses of 10 nm for both interlayers. b) The difference 
in normalized VMPP for CHJs with 5 nm and 10 nm EDL thicknesses vs. the zero-field hole mobility of each EDL 
material. Because there is no clear dependence of VMPP on EDL thickness, we conclude that any changes in CHJ 
VMPP due to EDL material variation are due primarily to the introduced injection barrier with energy of ΔEHOMO, with 
effects of mobility variation either negligible or secondary. 
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Table 3.3 Mobility parameters for all EDL materials, as determined by time-of-flight measurements. Mobility values 
taken from literature are noted. All other mobility values and HOMO levels were measured in this study. 

Material HOMO Level (eV) µh,0 (cm2 V-1 s-1) γ (cm V-1)1/2 Source 

TcTa 5.46 7.56E-02 5.62E-04 83 

BPAPF 5.35 - - - 

α-NPD 5.32 4.80E-04 5.30E-04 84 

HMTPD 5.29 2.50E-03 -4.30E-03 This study 

TPTPA 5.25 3.60E-03 2.90E-03 85 

TAPC 5.17 7.90E-03 8.81E-04 86 

NPB 5.17 2.39E-04 8.30E-04 This study 

TPD 5.14 8.622E-04 -6.632E-04 This study 

DMFL-NPB 5.04 - - - 

MeO-TPD 4.97 - - - 

m-MTDATA 4.90 3.478E-05 1.700E-03 This study 

2T-NATA 4.87 2.100E-05 8.028E-04 This study 

 

3.4 Conclusions 
We have shown that CHJ architectures are viable options for high-efficiency planar OPVs, 

primarily due to their ~100% IQE within the interlayer. To ensure high fill factor, the VMPP of 

each subjunction must be matched and the HOMO level offset between the EDL and interlayer 

should be < 0.2 eV. Using these proposed design rules, we demonstrated a 46% increase in the 

power conversion efficiency of a SubNc/C60 planar device by introducing a transparent EDL 

between SubNc and the ITO anode (from 2.8 ± 0.2% to 4.1 ± 0.2%). By introducing the 5 nm 

layer of TAPC, the IQE of the SubNc layer increased from 66% to 99% at its peak, while the 

high fill factor of the subjunctions was largely maintained.  
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While the PCE was significantly enhanced in properly designed CHJs, Jsc could be 

improved further through active layer absorption. Because the presence of two heterojunctions 

relaxes the tradeoff between absorption and exciton diffusion, the interlayer thickness can be 

increased to maximize absorption. Some materials are more suitable for this than others; Verreet 

et al. recently showed that replacing C60 with hexachlorinated boron subphthalocyanine chloride 

allowed the SubNc layer thickness to increase upwards of 20 nm.80 Furthermore, by using a 

smaller bandgap material in place of the transparent EDL to increase spectral coverage, device 

Jsc should increase without any additional drop in Voc, VMPP, or FF. Because the CHJ devices 

have such high IQE, they are also ideal candidates for use as sub-cells in series-connected 

tandems, potentially allowing for high efficiency OPVs comprising six or more active layers 

with complementary absorption peaks.  
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Chapter 4  

The Role of Interlayer Förster Resonant Energy 

Transfer in Single- and Multi-Junction OPVs 

4.1 Introduction 
Because interlayer Förster resonant energy transfer (FRET), the non-radiative dipole-dipole 

coupling of excitons from one layer to another, can occur over larger distances than the typical 

LD, it has been suggested as a possible mechanism for improving diffusion efficiency (ηDiff) in 

OPVs. However, while previous studies considering Förster transfer have provided an important 

groundwork for what we present in this chapter, they have all assumed 100% harvesting of 

excitons once they have undergone energy transfer,37,81,88 Here we develop new methods for 

tracking the excitons throughout the FRET-mediated diffusion process and determine those 

assumptions to be inaccurate. Specifically, we show that the diffusion efficiency of the Förster 

acceptor (FA) layer plays a crucial role in determining the overall diffusion efficiency of the 

device. In fact, for FA layers with low LD, we show that the FRET process can actually decrease 

ηDiff. This result contrasts with conclusions that have been previously drawn from simple 

photoluminescence quenching experiments where interlayer FRET universally appears to 

improve ηDiff. Using both modeling and experiments, we consider the FRET process in both SHJ 

and CHJ devices, and show how device configurations can be properly optimized based on 
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known material properties. Furthermore, we use the results from this study to provide design 

rules for future OPV active layer materials in high efficiency devices.  

4.2 Theory 

 

Figure 4.1 a) Possible outcomes for excitons generated in the Förster donor of an OPV device. ηDiff,FD: diffusion to 
the heterojunction without transfer into the Förster acceptor, ηBR,FD: recombination in the bulk of the FD before 
reaching the heterojunction, ηDiff,FA: transfer to the FA and diffusion in the FA to the heterojunction, and ηBR,FA: 
transfer to the FA and recombination in the bulk of the FA before reaching the heterojunction. b) Schematic 
representations of Förster transfer for point-to-point, point-to-plane, and point-to-layer configurations and the 
distance-dependent rates for each. c) The Förster transfer rate, kF, from the FD to the FA as a function of FA 
thickness (t). In the case where t >> d, the slab approximation in Eq. (4.5) can be used. Modeled d) electric field, e) 
optical exciton generation rate, f) Förster transfer rate (solid lines) and Förster generation rate (dotted lines), and g) 
exciton population density profiles in a SHJ bilayer device. 

As discussed in Section 1.6.1, exciton diffusion in OPVs can occur via thermally assisted 

hopping as well as self-Förster transfer. Recently, Menke et al.89 developed a rigorous model for 

determining the effect of intra-layer FRET (i.e. exciton transfer between molecules of the same 
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material) on LD of materials. In this chapter, we develop a model that accounts for inter-layer 

FRET (i.e. transfer between layers of differing materials). The rate of energy transfer (kF) 

between two weakly coupled dipoles (Figure 4.1b) can be expressed as: 

kF,Po int−to−Po int =
1
τ

RF
d

"

#
$

%

&
'
6

 (4.1) 

where τ is the dipole (exciton) lifetime and d is the separation distance between the two dipoles. 

The Förster radius for energy transfer (RF) represents the distance at which 50% of energy from 

the Förster donor (FD) is dissipated via FRET to the Förster acceptor (FA), and is expressed as:  

RF
6 =

9ηPLκ
2

128π 5n4
λ 4PLFD (λ)σ A (λ)d∫ λ  (4.2) 

where ηPL is the photoluminescent quantum yield of chromophores in the FD, κ is the dipole 

orientation factor, n is the index of refraction of the FD medium weighted by the overlap 

integral, λ is the wavelength, PLFD is the probability density of the FD emission spectrum, and σA 

is the absorption cross-section of the Förster acceptor.  

Compared to the point-to-point transfer rate for two dipoles, the transfer rate increases 

drastically for transfer from a point to a plane of FA chromophores: 

kF,Po int−to−Plane =
πCARF

6

2d 4τ
 (4.3) 

where CA is the chromophore (molecular) density of the FA and d is the shortest distance from 

the dipole in the FD to the FA plane. For transfer from a point to a FA layer with finite thickness, 

the point-to-plane transfer rates are integrated over the FA layer thickness, providing the 

equation:  

kF,Po int−to−Layer =
πCARF
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where d is the shortest distance from the dipole in the FD to the surface of the FA layer. For 

thick FA layers (tEA >> d), the energy transfer rate converges to the rate for an infinite slab: 

kF,Po int−to−Slab =
πCARF

6

6τd3
 (4.5) 

In Figure 4.1e, we illustrate the effectiveness of the slab approximation. As indicated by the 

shaded red regions, for large separation distances or small FA thicknesses, the slab 

approximation is not accurate. Thus we use the explicit form of kF,Point-to-Layer for all simulations 

in this study.  

To account for Förster transfer in any active layer, we propose a modified form of the 

drift diffusion model detailed in Chapter 1:12 

dρ
dt

= D d 2ρ
dx2

−
ρ
τ
+GA − kFρ +GF  (4.6) 

where ρ is the spatially varying exciton density and D is the exciton diffusivity. In Equation (4.6, 

the first term on the right corresponds to exciton diffusion, 1/τ is the rate of bulk recombination, 

kF is the rate of Förster transfer of excitons out of the layer, and GA and GF are the generation 

rates from optical absorption and Förster transfer into the layer, respectively. Once the steady 

state exciton population profile is determined within all ED layers, the exciton generation rate 

due to incoming Förster transfer in EA layers can be calculated by integrating over each FD 

layer: 

 

Figure 4.1e and Figure 4.1f show the modeled kF, GF, and ρ within a theoretical DBP/C60 

bilayer SHJ device. As RF increases, kF increases in the FD (DBP) layer, resulting in a 

concomitant increase in GF within the FA (C60) layer. Consequently, the steady state exciton 

GF = kF ,Po int−to−Plane (d ) ⋅ ρ (x ) dx

ED
∫

 
(4.7)
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population density is depleted from the FD and transferred into the FA.  As we will discuss in 

more detail later, transfer of excitons from the FD to the FA means that the diffusion efficiency 

of excitons originally generated in the FD will be affected by a number of factors such as the FA 

diffusion length. 

4.3 Experiment 

4.3.1 Thin Film and Device Preparation 
Glass and ITO substrates were cleaned via sonication in soapy water, deionized water, acetone, 

and isopropanol, followed by boiling in isopropanol and 10 minutes of UV-Ozone treatment. 

Organic and metal films were grown via vacuum thermal evaporation in an Angstrom 

Engineering system. TPTPA, DBP, and C60 were deposited at 1 Å/s; Cl6SubPc, Ag, and MoO3 at 

0.5 Å/s; BCP at 0.6 Å/s; and SubNc at 0.2 Å/s (to prevent crystallization and high roughness of 

the SubNc layer). PL samples were encapsulated within an inert nitrogen environment using a 

glass slide.  

4.3.2 Optoelectronic Characterization 
Characteristic current density-voltage curves of devices were measured using an HP 4156B 

precision semiconductor parameter analyzer under simulated solar illumination, using a Newport 

solar simulator (model# 91191-1000) calibrated by an NREL Si reference cell (Model PVM233 

KG5) to AM1.5G illumination conditions (100 mW/cm2). Reflection and transmission 

measurements were performed using a Perkin Elmer Lambda 750 UV/Vis/NIR spectrometer. 

4.3.3 PL Measurements 
Photoluminescent measurements were performed with a Photon Technology International 

QuantaMaster spectrofluorometer.  
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Results and Discussion 

4.3.4 Material Properties 

 

Figure 4.2 a) Absorption and b) emission spectra of all the active materials used in this study. c) Molecular structures 
of TPTPA, DBP, SubNc, Cl6SubPc, and C60.  

In this study, we consider single heterojunction and cascade heterojunction devices utilizing 

combinations of five different active materials. The pertinent absorption spectra, emission 

spectra, and molecular structures for those materials are shown in Figure 4.2. TPTPA, DBP, and 

Cl6SubPc were used as Förster donors, due to their relatively strong emission spectra and overlap 

with the absorption of DBP and Cl6SubPc (TPTPA) and SubNc (DBP and Cl6SubPc). While C60 

does emit in the visible region, its quantum yield is so low (indistinguishable from zero when 

measured with our equipment) that any Förster transfer is negligible. We consider four Förster 

acceptors in this study: C60, SubNc, Cl6SubPc, and DBP. For all devices in which it was used, 
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TPTPA functioned solely as a FD sensitizer in an energy cascade configuration (i.e. there were 

no functional heterojunctions on either side of the TPTPA layer, so excitons generated in TPTPA 

had to be transferred into a neighboring active layer FA before contributing to photocurrent).  

DBP, C60, Cl6SubPc, and SubNc all functioned as active layers with at least one functional 

heterojunction. We note here that by the time of this thesis submission, the equipment necessary 

for measuring diffusion lengths and Förster radii47 of the active materials in Figure 4.2 was not 

available. Therefore, all values presented in this chapter are from fits to experimentally 

determined EQE spectra. All fitted values are kept constant across all devices, so while we were 

unable to directly measure each value, we believe that the strong fits presented in the following 

sections validate the proposed model. We were able to measure exciton lifetimes of Cl6SubPc 

and DBP (Figure 4.3), and those values are also included in Table 4.1. 

 

Figure 4.3 a) A schematic for measurements of exciton lifetime and measured exciton lifetime values for b) Cl6SubPc 
and c) DBP. 

 

Table 4.1 Fitted properties for all materials used in this study. 

Material LD (nm) τ (ns) RF,C60 (nm) RF,SubNc (nm) 
DBP 8.0  0.52 ± 0.10 1.5 2.3 

SubNc 6.0 - - - 
Cl6SubPc 4.5 0.53 ± 0.03 - 4.0 

C60 17 - - - 



 80 

4.3.5 FRET in DBP/C60 SHJ 

 

Figure 4.4 a) Measured light and dark J-V curves for a single heterojunction DBP/C60 device employing a TPTPA 
anode exciton blocking layer. b) Measured EQE spectra of the same device. Solid line corresponds to modeled EQE 
assuming a LD,DBP = 8 nm, LD,C60 = 17 nm, and RF,DBP:C60 = 1.5 nm. The dotted red line shows the model prediction for 
the same LD values if FRET was not occurring (i.e. RF,DBP:C60  = 0). c) Modeled diffusion and recombination 
efficiencies versus RF,DBP:C60 corresponding to the processes illustrated in Figure 4.1a. (d) ηDiff versus RF plotted for 
LD,C60 ranging from 1Å to 100 nm.  

We first consider a prototypical DBP/C60 SHJ device utilizing 10 nm of TPTPA as an anode 

blocking layer31 to prevent quenching at the DBP/MoO3 interface.53,61 The entire structure for 

this device was (thicknesses in nm) Glass/150 ITO/5 MoO3/10 TPTPA/10 DBP/36 C60/10 

BCP/100 Ag. To confirm that the TPTPA/DBP interface did not form a functional 

heterojunction, we fabricated a device with TPTPA and DBP as the only active layers (Figure 

4.5). This device exhibited negligible photocurrent, corroborating our assumption that TPTPA is 

an effective blocking layer for DBP. The measured energy levels of DBP and TPTPA are also 

very similar.90 However, as seen by the overlap in emission between TPTPA and DBP (Figure 

4.2), TPTPA has a finite Förster radius into DBP, which means that TPTPA will transfer 

excitons into DBP. Since we were unable to measure either the LD or RF for TPTPA (and could 

not find consistent measured values for LD,TPTPA in literature) for all devices employing TPTPA, 

we accounted for this energy transfer in any modeling by varying the TPTPA IQE until the 

spectrum from 400 nm – 500 nm fit the measured EQE. 
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Figure 4.5 Negligible photocurrent from an ITO/MoO3/TPTPA/DBP/BCP/Ag device stack. Since the photocurrent is 
two orders of magnitude lower than expected, we can treat the TPTPA/DBP interface as perfectly exciton blocking for 
all devices in this study. 

The J-V performance of the device is similar to what has been shown in the literature (FF = 70% 

FF and Voc = 0.89 V).31 Using fitted LD values for DBP (8 nm) and C60 (17 nm) as well as 

RF,DBP:C60 (1.5 nm), we obtain a very close agreement between modeled and measured EQE 

spectra (Figure 4.4b). The external quantum efficiency of the device improves slightly due to 

transfer of excitons from the DBP layer (with an inherent ηDiff = 68%) into the C60 layer (which 

saturates at a higher ηDiff = 89%). The reason for the improvement in overall ηDiff of excitons 

generated in the DBP layer is clarified further in Figure 4.4c, where all of the major loss and 

collection mechanisms are plotted. Since changing RF has no effect on the optical fields (or 

absorbed power) in the device, we can attribute this improvement in EQE to an increase in ηDiff 

of excitons initially generated in the DBP (FD) layer. For RF,DBP:C60 = 0, 68% of excitons 

generated in the DBP reach the heterojunction from the DBP side (solid blue line) and 32% 

recombine in the bulk of the DBP layer (dotted blue line). As RF,DBP:C60 increases, excitons 

generated in the DBP (FD) begin to transfer into the C60 (FA) layer. Excitons transferred into the 

C60 layer will either reach the heterojunction from the C60 side (solid red line) or recombine in 

the bulk of the C60 (dotted red line).  
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In the case where RF,DBP:C60 is large (>~5nm), flux to the heterojunction and bulk 

recombination of excitons within the DBP layer go to zero, and flux to the heterojunction and 

bulk recombination of excitons occur solely in the FA layer. However, in the intermediate 

regime of RF values, the rate at which each mechanism increases or decreases determines the 

overall ηDiff. For example, as RF,DBP:C60 increases from 0 nm to 1 nm, the effective diffusivity of 

excitons in the DBP (FD) near the heterojunction drops precipitously, quickly reducing the flux 

of excitons reaching the heterojunction from the FD side. This effect is illustrated in Figure 4.1g, 

where we see the slope of the exciton population density become nearly zero (i.e. horizontal) at 

the heterojunction for RF ≥ 4 nm. However, while the flux of excitons at the HJ drops to zero, 

there is still a finite exciton population density within the layer furthest from the heterojunction. 

Due to the decreased diffusivity near the HJ, these excitons will recombine within the bulk of the 

FD before reaching the HJ or transferring into the FA.  

Figure 4.4d shows that the ηDiff at which the device saturates (for large RF) is highly 

dependent on the diffusion efficiency of the FA. We show this in Figure 4.4c by varying LD,C60 

from 1 Å to 100 nm. In the case of a FA with very low LD (e.g. LD,C60 = 0.1 Å), ηDiff in the 

compensation regime will never saturate higher than ηDiff,FD if FRET were not occurring (i.e. 

LD,DBP:C60 = 0). However, if ηDiff,FA is sufficiently high (e.g. LD,C60 = 100 nm), then ηDiff can 

saturate at 100% for large enough RF (in Figure 4.4d, this occurs for RF,DBP:C60 >~4 nm). This is 

because for large RF values, 100% of the excitons are transferred out of the FD layer, so there is 

no bulk recombination in the FD. Thus the LD of the FA is of crucial importance to maximizing 

ηDiff when FRET is occurring.  

From Figure 4.4c, we can conclude that ηDiff can be maximized in one of two ways. First, 

if LD of the FD is intrinsically high and the LD of the FA is intrinsically low, then the best course 
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of action may be to lower RF as much as possible to retain the FD’s inherently high ηDiff. For FD 

materials with intrinsically low LD, the best way to maximize efficiency would be by maximizing 

RF and ensuring that ηDiff of the FA is high.  

On a more practical note, fitting of exciton diffusion lengths with models that do not 

include the FRET process can lead to inaccurate values. In the case of the DBP/C60 SHJ, not 

considering FRET gives a fitted LD,DBP = 10.5 nm. However, if transfer of excitons into C60 is 

accounted for, the fitted LD,DBP = 8 nm. In this case, LD,DBP is overestimated, for similar reasons 

to those presented by Luhman et al when measuring LD via PL measurements. However, as noted 

previously, if the LD of the Förster acceptor is very low, a model not including FRET could also 

underestimate the diffusion length of the Förster donor. 

 

Figure 4.6 a) Energy band diagram of DBP/C60 SHJ device with TPTPA sensitizer and anode exciton blocking layer. 
Modeled EQE fits b) without considering FRET and c) considering FRET. If energy transfer from the DBP into the C60 
layer is not taken into account, the fitted diffusion length increases from 8 nm (in agreement with LD measured via PL) 
to 10.5 nm. 

4.3.6 FRET in Multi-junction CHJ Devices 
As determined in the previous section, if ηDiff,FA is sufficiently high, it can be beneficial to 

efficiently transfer excitons from the FD into the FA. Due to the absorption spectra of C60, 

however, RF will always be limited for active layers that absorb in the green and emit in the red. 

Indeed, other common exciton donor layers have been reported with similar Förster radii for 
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transfer into C60. 47,81 In an attempt to increase the amount of interlayer energy transfer within the 

devices, we replaced the C60 exciton acceptor with Cl6SubPc, an exciton acceptor that has 

previously exhibited low photoconductivity and higher Voc in combination with SubPc91 and 

SubNc80 exciton donors. Since SubNc absorbs strongly in the red (peak at 700 nm), it is also an 

ideal candidate to be a Förster acceptor for DBP and Cl6SubPc, as both materials emit in that 

region of the spectrum (Figure 4.2b).  Thus, our proposed devices in this study consisted of 

ITO/MoO3/TPTPA/DBP/SubNc/Cl6SubPc/ BCP/Ag. In that structure, TPTPA acts as an exciton 

blocking layer and FD to DBP; DBP acts as a FA to TPTPA, an electron donor to SubNc, and a 

FD to SubNc; SubNc acts as an ambipolar interlayer and FA to DBP and Cl6SubPc; and 

Cl6SubPc acts as an electron acceptor and FD to SubNc. 

 

Figure 4.7 a) Energy band diagram and b) measured and modeled absorption and EQE spectra for a 
TAPC/Cl6SubPc SHJ device. LD for Cl6SubPc was fit to be  4.5 nm and that value is used throughout this chapter. 

For clarity of modeling, we begin with the simpler device configuration of (thicknesses in 

nm) ITO/5 MoO3/5 TAPC/13 SubNc/x Cl6SubPc/10 BCP/100 Ag, fabricated devices with 

Cl6SubPc thicknesses of 10 nm, 20 nm, and 30 nm. In these devices, TAPC acts as a transparent 

exciton dissociation layer (EDL),61,90 such that while there are two active heterojunctions in the 

device, there are only 2 absorbing layers (SubNc and Cl6SubPc). The diffusion length of 
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Cl6SubPc fit to be 4.5 nm in a TAPC/Cl6SubPc SHJ device. Because the diffusion length of 

Cl6SubPc is relatively low, even for the device with the thinnest (10 nm) Cl6SubPc layer, its 

predicted ηDiff for RF = 0 is 46%. Because the RF is 4 nm, ηDiff is significantly improved for all 

layer thicknesses, with a demonstrated 300% improvement ηDiff for the 30 nm device. Because 

the LD of Cl6SubPc is low to begin with, and ηDiff of the SubNc layer is higher than that of the 

Cl6SubPc layer, we are able to effectively stretch the absorption/diffusion limit for the Cl6SubPc 

layers in these devices. In Figure 4.10, we show what happens if the TAPC/SubNc/Cl6SubPc 

CHJ is converted to a SubNc/Cl6SubPc SHJ. By removing the TAPC layer and changing the 

boundary condition at the anode from exciton dissociating to exciton quenching, ηDiff of the 

SubNc layer is reduced, resulting in a clearly reduced ηDiff of the Cl6SubPc layer as well. 

For the next device set, we kept the Cl6SubPc layer thickness constant at 10 nm and 

introduced layers of 10 nm TPTPA and x nm DBP in place of the TAPC EDL layer. The DBP 

layer was then varied for 10 nm, 20 nm, and 30 nm. Here again, the TPTPA layer acted as an 

exciton blocking layer and FD to DBP. As with the Cl6SubPc CHJ devices, ηDiff,SubNc was greater 

than ηDiff,DBP, leading to a significant increase in the overall ηDiff. Energy level diagrams, fitted 

absorption curves, and J-V curves for all CHJ devices can be found in Figure 4.9 and device 

performance parameters for all devices are provided in Table 4.2. 
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Figure 4.8 The effect of Förster transfer in multi-junction CHJ OPVs. a) Schematic device structures for the two types 
of CHJs used in this study. Predicted ηDiff for excitons generated in the b) Cl6SubPc and c) DBP layers as a function 
of RF and layer thickness. d-f) Measured and modeled EQE spectra for TAPC/SubNc/Cl6SubPc CHJ devices with 10 
nm, 20 nm, and 30 nm thick Cl6SubPc layers, respectively. g-i) The same for TPTPA/DBP/SubNc/Cl6SubPc devices 
with 10 nm, 20 nm, and 30 nm thick DBP layers, respectively. In all EQE plots, experimental data is plotted with open 
circles, and modeled EQE curves are represented with solid lines (considering FRET) and dotted red lines (not 
accounting for FRET). 

We note that for all CHJ devices, the thicknesses of the Cl6SubPc and DBP layers (up to 30 nm) 

had a negligible effect on FF and Voc, as both were relatively constant at ~67% and ~0.98 V, 

respectively. We attribute the consistency of device performance to high mobility active layers. 

Since neither Voc or FF were a function of active layer thickness within the 10-30 nm range, we 

were able to optimize the PCE of the device further by only optimizing Jsc, as will be discussed 

in the next section. 
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Table 4.2 J-V Performance parameters for all devices fabricated in this study. All J-V parameters were averaged over 
at least six devices on the same substrate and a spectral mismatch factor was used explicitly in calculating Jsc and 
PCE. 

Device Voc 
(V) 

Jsc 
(mA cm-2) 

FF 
(%) 

PCE 
(%) 

TPTPA/DBP (No HJ) 0.58 0.04 23.0 0.00 
 
SHJs     
TPTPA/DBP/C60 0.89 6.01 70.0 3.74 
TAPC/Cl6SubPc 0.82 1.94 53.8 0.86 
SubNc/Cl6SubPc 0.89 4.07 68.1 2.47 
 
CHJs     
TAPC/SubNc/10 Cl6SubPc 0.97 6.24 67.7 4.10 
TAPC/SubNc/20 Cl6SubPc 0.97 7.76 66.3 4.92 
TAPC/SubNc/30 Cl6SubPc 0.98 9.06 65.6 5.84 

     
TPTPA/10 DBP/SubNc/Cl6SubPc 0.98 9.11 67.2 6.00 
TPTPA/20 DBP/SubNc/Cl6SubPc 0.97 9.21 66.8 6.00 
TPTPA/30 DBP/SubNc/Cl6SubPc  0.98 7.36 68.1 4.92 

     
TPTPA/14 DBP/11 SubNc/ 
28 Cl6SubPc/BCP 0.98 9.69 67.6 6.55 

 
TPTPA/14 DBP/11 SubNc/ 
28 Cl6SubPc/Bphen 

0.99 9.65 75.7 7.25 
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Figure 4.9 Energy level diagrams, model fits to absorption, and J-V curves for a-c) TAPC/SubNc/Cl6SubPc CHJs and 
d-f) TPTPA/DBP/SubNc/Cl6SubPc CHJs. 
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Figure 4.10 a) EQE and b) J-V curves for ITO/MoO3/TAPC (EDL)/SubNc/Cl6SubPc/BCP/Ag devices with (red) and 
without (black) the TAPC EDL at the anode. By removing the TAPC, the boundary condition of SubNc changes from 
exciton dissociating (at the TAPC) to exciton quenching (at the MoO3). This drop in EQE also results in a drop in the 
Cl6SubPc EQE due to transfer of excitons from the Cl6SubPc into the SubNc layer. 

4.3.7 Champion CHJ Devices 
Using the model established in previous sections, we predicted the EQE of 

TPTPA/DBP/SubNc/Cl6SubPc devices for every combination of reasonable active layer 

thicknesses (5 nm-30 nm for any individual layer). Since the FF and Voc were consistent within 

error across all CHJ devices, the assumption was that an optimized EQE would also produce a 

device with optimized power conversion efficiency. The model predicted best performance for 

ITO/5 MoO3/10 TPTPA/14 DBP/11 SubNc/28 Cl6SubPc/10 BCP/100 Ag. The SubNc thickness 

was decreased from 13 nm in the previous devices to 11 nm in the optimized to improve its ηDiff, 

which in turn improved the ηDiff of excitons transferring into the SubNc from both the DBP and 

Cl6SubPc layers. As seen from Figure 4.11a, the modeled and experimentally determined EQEs 

matched very closely, so we conclude that this is indeed the optimized EQE for a device 

structure containing these materials. To theoretically improve this device further, RF,DBP:SubNc and 

RF,Cl6SubPc:SubNc should be increased, and the LD of SubNc should be maximized. As BCP and 
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Bphen have nearly identical optical properties (refractive index values for each are provided in 

the Supplemental Information), and Verreet et al. previously showed that the cathode buffer 

layer has a significant impact on the FF of devices containing Cl6SubPc,80 we fabricated the 

optimized device structure with both 10 nm of BCP and Bphen. The devices with BCP exhibited 

FF and Voc similar to the previous CHJs, but the FF and Voc improved to 75.6% and 0.99 V, 

respectively. Since the Jsc and EQE were identical to within error for devices employing BCP 

and Bphen, the power conversion efficiency of the optimized Bphen device was 7.3%.   

 

Figure 4.11 a) Experimentally determined absorption and EQE spectra of optimized devices utilizing FRET. Symbols 
represent experimental data. The solid line denotes the model fit accounting for FRET and the red dashed line 
corresponds to model predictions not considering FRET in the device. b) J-V curve of optimized device with Bphen 
cathode EBL. While the EBL had no apparent effect on the EQE or Jsc, switching from BCP to Bphen resulted in a 
substantial increase in the FF of the device. 

4.4 Conclusions 
In conclusion, we have developed a rigorous model for predicting and optimizing the 

performance of OPVs where Förster resonant energy transfer is present. In devices that exhibit 

FRET, we have shown that excitons transferred out of a Förster donor do not automatically 

contribute to photocurrent. Instead, how efficiently they are converted to photocurrent depends 
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dramatically on the diffusion efficiency of the Förster acceptor (specifically the diffusion length 

of the FA). To optimize OPVs, a judicious pairing of active layer materials must be used to 

maximize RF for intrinsically low LD Förster donors and maximize LD of any Förster acceptor to 

achieve optimal ηDiff. Critically, intrinsic materials properties such as LD are shown here to be 

potentially poor predictors of device performance on their own, and the photoluminescence 

methods traditionally used to characterize materials can be misleading in regard to the impact of 

Förster transfer on devices. Our results should provide the groundwork for new materials and 

devices to drive OPVs to their fundamental efficiency limit and help circumvent the diffusion 

bottleneck in organic semiconductors. 
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Chapter 5  

Conclusions and Future Work 

5.1 Conclusions 
In this thesis, we have demonstrated progress in the field of organic photovoltaics by developing 

a better understanding of exciton diffusion and energy transfer within planar devices. In Chapter 

2, we demonstrated the exciton quenching properties of MoO3, a commonly used anode buffer 

layer, and proposed a new type of buffer layer termed an exciton dissociation layer. The EDL 

was thin (5 nm), transparent in the visible spectrum, and placed between the MoO3 anode and the 

donor so excitons generated in the donor could not reach the quenching interface. Furthermore, 

the HOMO level of the EDL was chosen such that it was offset from that of the donor layer, 

creating a second heterojunction at the EDL/donor interface and reducing bulk recombination of 

excitons generated within the donor. Based on EQE measurements and material properties 

established in the literature, we adapted the EQE model from Chapter 1 to account for 

photocurrent generation from multiple heterojunctions within the cascade heterojunction devices.  

Using this system, we demonstrated a 66% improvement in the external and internal quantum 

efficiencies of the SubPc layer (and a 27% improvement in overall Jsc). However, due to the 

onset of s-kink behavior in the devices (and concomitant drop in FF), the PCE remained 

constant. 
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 In Chapter 3 we performed a combinatorial study with twelve different EDL materials 

with HOMO levels ranging from ~4.9 eV-5.5 eV. In the case of all studied devices, the VMPP of 

the CHJ was never higher than the VMPP of the estimated VMPP of its constituent subjunctions 

(approximated by measuring SHJ devices corresponding to each). Furthermore, we demonstrated 

an apparent trend between the HOMO offset (ΔEHOMO) at the EDL/interlayer interface and the 

VMPP of the CHJ devices, consistent with previous findings by Tress et al.63 For ΔEHOMO > 

~0.2eV, the VMPP of the CHJ linearly decreased below the minimum VMPP of either subjunction. 

By matching the VMPP of both subjunctions and keeping ΔEHOMO < 0.2 eV, we were able to 

demonstrate a 46% improvement in PCE by converting a SubNc/C60 SHJ to a TAPC/SubNc/C60 

CHJ device. 

 In Chapter 4, we further modified our EQE model to fully account for interlayer Förster 

resonant energy transfer of excitons in OPVs. While other studies provided the necessary 

groundwork by accounting for the transfer of excitons out of FD layers in OPVs (especially the 

work by Luhman et al., and Griffith et al.),37,47 we believe this to be the first model to track 

exciton diffusion within the FA until the excitons either reach a heterojunction or recombine (in 

the bulk or at a quenching interface). With the model, we showed that the LD and ηDiff of the 

Förster acceptor is crucial in determining the overall diffusion efficiency of any OPV device. If 

the LD of the FA layer is low, then transfer of excitons into the FA can actually be a parasitic 

process. However, if the LD of the FA layer is high enough, then FRET can be used to stretch the 

absorption/diffusion tradeoff by funneling excitons from FD layers into the FA over distances 

much longer (demonstrated up to 30 nm) than their inherent diffusion lengths (<10 nm). By 

using a CHJ configuration and transferring generated excitons from DBP and Cl6SubPc into a 
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high IQE SubNc layer, we are able to demonstrate a 93% improvement in PCE over the highest 

performing SHJ device. 

5.2 Future Work 

5.2.1 Photoluminescence Measurements of LD and RF 
Due to unavailable equipment, we were unable to verify our diffusion length and Förster radii 

fits in Chapter 4. When that equipment becomes available, we suggest performing the necessary 

measurements (described well by Luhman et al.47) to check that all fitting parameters were 

correct. 

5.2.2 Series Tandem Configurations 
CHJ devices are promising candidates for use in series connected tandems, due to the flexibility 

in determining the spectral coverage for each subcell. The absorption/diffusion tradeoff can be 

stretched in each subcell without broadening spectral coverage, either by utilizing transparent 

EDLs (such as TAPC in Chapter 3) or by using multiple active layers with overlapping 

absorption peaks (such as DBP and Cl6SubPc in Chapter 4). Then, combining subcells with 

complementary absorption peaks could be used to broaden spectral coverage and further mitigate 

the absorption/diffusion bottleneck. For example, in the case of the optimized devices in Chapter 

4, there is no absorption within the blue part of the spectrum or the NIR (beyond ~750 nm). A 

potentially complementary subcell would be a lead phthalocyanine (PbPc)/C60 or PbPc/C70 

device, which absorbs strongly in both the blue and NIR.92 

5.2.3 Judicious Material Selection and Design for FRET in CHJ Devices 
While we were able to demonstrate a 93% improvement in PCE in Chapter 4 by utilizing FRET 

in ITO/TPTPA/DBP/SubNc/Cl6SubPc/Bphen/Ag CHJs, the materials employed were less than 
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ideal for constructing an optimized device. Using the FRET design rules coupled with those 

established in Chapter 3, we suggest material selection and design that minimizes charge 

injection barriers and maximizes the diffusion efficiency of the interlayer/Förster acceptor.  

A strong blue absorber could also be added to the device to broaden spectral coverage. 

For optimal absorption with the device, the blue absorber would be placed between the Cl6SubPc 

and Bphen blocking layer (i.e. closest to the back reflector for maximum absorption at the 

shorter wavelengths). To prevent any additional injection barriers in the device, the blue absorber 

could have a LUMO level aligned with that of Cl6SubPc and act only as a sensitizer, transferring 

excitons into the Cl6SubPc layer (which would then be funneled into the SubNc interlayer). 

Furthermore, as noted by Equation (4.2), the Förster radii of all active layers could be improved 

via increased ηPL, further increasing how far the absorption/diffusion bottleneck could be 

stretched. Lastly, since a large majority of excitons are transferred into the SubNc layer, it would 

be ideal to either improve the LD of SubNc or find a replacement FA with higher LD and similar 

absorption spectrum.  

5.2.4 J-V Model for CHJ Devices 
While we presented a circuit diagram in Figure 3.3a that was helpful in qualitatively discussing 

CHJ device operation, we note that it provided a more simplified description than what is 

actually occuring within CHJ devices (especially those that exhibit strong s-kink behavior). First, 

as discussed in Section 3.3.3, we expect that due to asymmetric injection barriers and charge 

mobilities within the layers, the diode (and dark current) properties of the device are determined 

by preferential recombination of injected charges at a single interface. Second, as shown in 

Figure 3.5c and Figure 3.5g, the photocurrent contributions from one or both subjunctions shut 

off at applied biases below Voc due to a sharp decrease in ηCC from a drop in the built-in field 
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within the device. We thus conclude that accounting for injected and photogenerated charges 

(and any buildup) within the device will be crucial in predicting dark current and the voltage 

dependence of the photocurrent production at each heterojunction. 

 Therefore, we propose an adapted version of the free charge drift-diffusion simulations 

detailed in the work by Tress et al.63 to include modifications for photocurrent generation at 

multiple interfaces and additional spatially-distributed free charge generation throughout the 

absorbing active layers due to autoionization of excitons in the bulk (i.e. contributions from 

photoconductivity). To account for photocurrent generation, the flux of excitons to each 

heterojunction would be calculated using the EQE model detailed in Section 1.7 and coupled to 

the OB model to determine ηCC.  
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Appendix A EQE Code 

function [output] = OPV_Back(stack, tvar, mvar, phi0, polarization,subcell_Jmpp_Jsc, 
LibSave); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  
% This method follows that developed in Pettersson JAP 1999, with  
% modifications to account for: 
% 
% Incoherent front (usually glass) substrate (Centurioni 2005) 
% Forster transfer out of ED to EA (Holmes 2011 DOI:10.1002/adfm.201001928) 
% Forster transfer from ED into EA (Barito) 
% 
% Two corrections needed in Petterson, reflectivity term and equation 4,  
% from Snell's law 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clc 
% stack='BITC_DBPSHJ.txt'; 
% phi0 = 0; %angle of incidence in degrees 
% polarization = 'TE'; %TM or TE 
% subcell_Jmpp_Jsc = 1;%[.82,.85]; %Jmpp/Jsc for subcell 1,2,etc. (for matching Jmpp 
in tandems) - separate by commas 
% tvar=[]; 
% mvar={; 
  
output = struct; 
%% Constants 
global c eta0 h qe dz 
c = 3*10^8;        % speed of light m/s 
h = 6.626E-34;     % plank constant joule-s 
qe = 1.602E-19;    % electron charge C/electron 
eta0 = 8.854E-12;  % free permativity (C^2)/(N m^2)= F/m = As/Vm 
dz = 0.005*1E-9;   % mesh size for field distribution and Finite Difference Method 
(meters) 
dz_F = dz - 0.00000000001*1e-9;%0.99999*dz; 
%% Compile stack properties from input%% 
% read stack file only once 
fid = fopen(char(stack),'r'); 
scan = textscan(fid, '%s %f %s'); 
fclose(fid); 
% build stack properties 
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[t, film, ref, D, tau, eta_cc, ED, EA, active_priority, rho, R_F, G_Abs_Off] = 
StackBuild(scan, tvar, mvar); 
t_top_substrate = t(2); %Used in TMM calculation for power transmitted through glass 
substrate 
t(2) = 0;   %Resets substrate thickness to zero to eliminate time needed to calculate 
E field in thick substrate 
%% Set wavelengths to loop through 
s = size(t, 1)-2;       % total number of films in the stack 
  
%spectrum data 
lambda0 = 400;          % initial wavelength (nm) 
dlambda = 5;            % wavelength stepping size (nm) 
lambdaf = 800;          % final wavelength 
lambda_s = lambda0:dlambda:lambdaf;  
M = size(lambda_s, 2);  % number of steps or data points of wavelength 
  
lambda_sm = (lambda_s)*10^-9;  % meters 
  
ref = ref(:,((lambda0-305)/dlambda+1):((lambdaf-305)/dlambda)+1); %put in GUI 
  
%% Pre-allocate variables 
T = zeros(1,M); 
R = zeros(1,M); 
IglassITOp = zeros(1,M); 
A_tot = zeros(1,M); 
  
zend = round(sum(t(1:end-1))/dz); 
EE = zeros(zend, M); 
G_Abs = zeros(zend, M); 
G_F   = zeros(zend,M); 
k_F   = zeros(zend,M); 
Q = zeros(zend,M); 
EQESp = zeros(s+1,M);  % EQE per layer per wavelength 
EQE_G_Sp = zeros(s+1,M); 
EQESp_pc = zeros(s+1,M); 
EQESp_hj = zeros(s+1,M); 
EQE = zeros(1,M); 
EQE_G = zeros(1,M); 
flux_hj = zeros(s+1, M); 
flux_pop = zeros(s+1,M); 
G_Abs_tot = zeros(s+1,M); 
G_F_tot = zeros(s+1,M); 
k_F_tot = zeros(s+1,M); 
recomb_tot = zeros(s+1,M); 
pp = zeros(zend,M); 
a = zeros(round(max(t(2:s+1))/dz),s+1); 
tauv = zeros(round(max(t(2:s+1))/dz),s+1); 
d = zeros(round(max(t(2:s+1))/dz),s+1); 
%% Wavelength Loop 
for bb = 1:M %bb is counter for wavelength until endpoint M 
    tt = zeros(1,zend); 
     
    % lambda is wavelength over which you are currently calculating (m) 
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    lambda = lambda_sm(bb); 
    n = ref(:, bb);         % refractive index vector for stack at lambda 
    q = (n.^2 - n(1)^2*sin(phi0*pi/180)).^0.5; 
    xi = q.*(2*pi/lambda); 
     
    %% Transfer Matrix Model Calculation %% 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    % inputs 
    % n:        refractive index for given wavelength, lambda 
    % q:        propagation factor (angle dependent) 
    % xi:       phase change wave experiences as it traverses the film 
    % t:        thickness of each film 
    % lambda:   wavelength currently under investigation, numerically 
     
    % returns 
    % tpp:      forward propagating transmission coefficient (p-polarized) 
    % tmp:      reverse propagating transmission coefficient (p-polarized) 
     
    [tp,tm,T(bb),R(bb),IglassITO(bb),A_tot(bb)] = TMM(n, q, xi, t, t_top_substrate, 
lambda, polarization,phi0); %IglassITOp(bb) 
     
    %% Calculate EE (electric field), Q (time avg'd abs.), and G (exc. gen. rate) for 
each layer%% 
     
    priority = 1; 
    layer_priority = active_priority; 
     
    while min(layer_priority) <100 %if satisfied, there are still active layers left 
to consider 
         
        if min(layer_priority) > priority 
            priority = priority + 1; 
        end 
         
        for x = 2:s+1         % stack layer index 
             
            dend(x) = round(t(x)/dz); %total number of points in film 
            for y = 1:dend(x)     %layer segment index 
                 
                z = round(sum(t(1:x-1))/dz+y); %mesh point within entire stack 
                tt(z) = sum(t(1:x-1))+y*dz;    %depth within device stack (including 
glass) 
                 
                E = (tp(x)*exp(1i*xi(x)*y*dz) + tm(x)*exp(-
1i*xi(x)*y*dz))*(q(x)/n(x)); 
                EE(z, bb) = IglassITO(bb)*abs(E)^2; 
                 
                % time averaged absorbed power versus mesh point in stack 
                Q = ((4*pi*c*eta0*imag(n(x))*real(n(x)))/(2*lambda))*EE(z, bb); 
                G_Abs(z, bb) = (lambda/(h*c))*Q;  %exciton generation rate from E-
Field 
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            end 
             
            %% FD-ODE calculations %% 
            %%%%%%%%%%%%%%%%%%%%%%%%% 
             
            if layer_priority(x) == priority; 
                 
                d(x,1:dend(x)) = dz*(1:dend(x)); %depth vector within layer in meters 
                 
                % define vectors for exc gen, lifetime, and diff length 
  
                G_Absv = G_Abs(round(sum(t(1:x-1))/dz+1):round(sum(t(1:x))/dz), bb); 
                if G_Abs_Off(x) == 1 %If G_Abs_Off = 1, the  
                    G_Absv = G_Absv.*0; 
                end 
                tauv(1:dend(x),x)=ones(dend(x),1)*tau(x); 
                 
                %% Calculate k_F (Forster transfer rate) for EDs %% 
                k_Fv = zeros(dend(x),1); %initialize k_F vector 
                 
                if ED(x) == 1 %this layer is an exciton donor (ED) through Forster 
transfer 
                     
                    for y = 2:s+1 %stack layer index (looking for EA's) 
                         
                        if EA(y) == 1 %then that layer is an exciton acceptor (EA) 
                             
                            t_EA = t(y); %thickness of EA 
                            t_ED = ones(dend(x),1)*t(x); %vector of thicknesses of ED 
layer for use in calculations below 
                             
                            %ED is on left of and/or above EA 
                            if y > x 
                                %calculate distance between ED and EA (if there are 
layers inbetween) 
                                t_int = -t(y); 
                                for z = x+1:y 
                                    t_int = t_int + t(z); 
                                end 
                                 
                                d_EA = t_ED - d(x,1:dend(x))' + t_int;% + 
dz/10000;%vector of distances from points in ED to start of EA 
                                d_EA = flipud(d_EA); %there's obviously a way to do 
this without flipping. I just can't think that way right now 
                                k_Fv = k_Fv + 
(pi*rho(y)*R_F(x,y)^6)/12/dz.*(tauv(1:dend(x),x).^-1) .* ((d_EA+dz-dz_F).^-2 - 
(d_EA+dz).^-2 + (d_EA+dz+t_EA).^-2 - (d_EA+dz-dz_F + t_EA).^-2); 
                                k_Fv = flipud(k_Fv); 
                            %ED is on right of and/or below EA 
                            elseif y < x 
                                 
                                %calculate distance between ED and EA (if there are 
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layers inbetween) 
                                t_int = -t(y); 
                                for z = y:x-1 
                                    t_int = t_int + t(z); 
                                end 
                                 
                                d_EA = d(x,1:dend(x))' + t_int;% + dz/10000; 
                                k_Fv = k_Fv + 
(pi*rho(y)*R_F(x,y)^6)/12/dz.*(tauv(1:dend(x),x).^-1) .* ((d_EA-dz_F).^-2 - (d_EA).^-
2 + (d_EA + t_EA).^-2 - (d_EA-dz_F + t_EA).^-2); 
                            end 
                             
%                             k_Fv = k_Fv + 
(pi*rho(y)*R_F(x,y)^6)/6.*(tauv(1:dend(x),x).^-1) .* (d_EA.^-3 - ((d_EA + t_EA).^-
3)); 
                             
                        end 
                         
                        for nn = 1:dend(x) 
                            z = round(sum(t(1:x-1))/dz+nn); %mesh point within entire 
stack 
                            k_F(z,bb) = k_Fv(nn); 
                        end 
                    end 
                end 
                 
                %% Calculate G_F (Forster generation rate) for EAs %% 
                G_Fv = zeros(dend(x),1); 
                 
                if EA(x) == 1 %layer is an exciton acceptor 
                     
                    t_EA = t(x); %thickness of EA 
                     
                    for y = 2:s+1 %check for ED's 
                        if ED(y) == 1 % then that layer is an exciton donor (FRET) 
                             
                            %EA is on left of and/or above ED 
                            if y > x 
                                 
                                %calculate distance between point in EA and ED (if 
there are layers inbetween) 
                                t_int = -t(x+1); 
                                for z = x+1:y 
                                    t_int = t_int + t(z); 
                                end 
                                 
                                d_ED = t_EA - d(x,1:dend(x))' + t_int;% + dz;%vector 
of distances from point in EA to start of ED 
                                 
                                for  nn=1:dend(x) 
                                    d_pp = (d_ED(nn) + d(y,1:dend(y)))'; 
                                    %G_Fv(nn) = G_Fv(nn) + ((pi*rho(x)*R_F(y,x)^6)/2) 
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.* sum(dz.*p(1:dend(y),y).*(d_pp.^-4).*(tauv(1:dend(y),y).^-1)); 
                                    G_Fv(nn) = G_Fv(nn) + ((pi*rho(x)*R_F(y,x)^6)/12) 
.* sum(1/dz.*p(1:dend(y),y).*(tauv(1:dend(y),y).^-1).*((d_pp-dz_F).^-2 - (d_pp).^-2 + 
(d_pp + dz).^-2 - (d_pp-dz_F + dz).^-2)); 
                                     
                                    z = round(sum(t(1:x-1))/dz+nn); %mesh point 
within entire stack 
                                    G_F(z,bb) = G_Fv(nn); %Forster generation rate 
within entire stack 
                                end 
                                 
                            %EA is on right of and/or below ED 
                            elseif y < x 
                                 
                                %calculate distance between point in EA and ED (if 
there are layers inbetween) 
                                t_int = -t(y); 
                                for z = y:x-1 
                                    t_int = t_int + t(z); 
                                end 
                                 
                                d_ED = d(x,1:dend(x))' + t_int; 
                                 
                                for  nn=1:dend(x) 
                                    d_pp = (d_ED(nn) + t(y) - d(y,1:dend(y)))'; 
                                    %G_Fv(nn) = G_Fv(nn) + ((pi*rho(x)*R_F(y,x)^6)/2) 
.* sum(dz.*p(1:dend(y),y).*(d_pp.^-4).*(tauv(1:dend(y),y).^-1)); 
  
                                    G_Fv(nn) = G_Fv(nn) + ((pi*rho(x)*R_F(y,x)^6)/12) 
.* sum(1/dz.*p(1:dend(y),y).*(tauv(1:dend(y),y).^-1).*((d_pp-dz_F).^-2 - (d_pp).^-2 + 
(d_pp + dz).^-2 - (d_pp-dz_F + dz).^-2)); 
  
                                    z = round(sum(t(1:x-1))/dz+nn); %mesh point 
within entire stack 
                                    G_F(z,bb) = G_Fv(nn); %Forster generation rate 
within entire stack 
                                end 
                            end 
                             
  
                        end 
                    end 
                end 
                 
                %% determine boundary conditions and choose case 
                ext = char(film{x, 2}); % read the layer identifier tag 
                bc = regexprep(ext, 'active','','ignorecase'); 
                bc = strtok(bc,','); %remove extraneous info s.a. 'tvar1' or 'mvar' 
                 
                [p(1:dend(x),x), flux_hj(x, bb), flux_pop(x, bb), G_Abs_tot(x, bb) 
G_F_tot(x,bb), k_F_tot(x,bb), recomb_tot(x,bb)] = DriftDiffusion(D(x), 
tauv(1:dend(x),x), G_Absv, G_Fv, k_Fv, eta_cc(x), 0, d(x,1:dend(x)), bc);     
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                pp(round(sum(t(1:x-1))/dz)+(1:dend(x)), bb) = p(1:dend(x),x); % exc 
population versus position 
                 
                layer_priority(x) = 100; %tag this active layer as finished 
            end 
             
            %% EQE Calculation For Each Wavelength %% 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
             
            Nph = 0.5*c*eta0/(h*c/lambda);  % photons/(m^2 s) 
            Ne = abs(flux_hj(x, bb)); %electrons/(m^2 s) from HJ 
            Ne_G = abs(G_Abs_tot(x,bb)); 
  
            EQESp(x, bb) = Ne/Nph;  % EQE per layer per wavelength 
            EQE_G_Sp(x,bb) = Ne_G/Nph; 
             
        end 
         
        EQE(bb) = sum(EQESp(:,bb)); 
        EQE_G(bb) = sum(EQE_G_Sp(:,bb)); 
         
    end 
     
end 
%% Use EQE and AM1.5 spectrum to calculate device current 
subcell_no = size(subcell_Jmpp_Jsc);subcell_no=subcell_no(2); %total # of subcells 
subcell = 1; 
J_subcell = zeros(1,subcell_no); 
J_pc_subcell = zeros(1,subcell_no); 
J_hj_subcell = zeros(1,subcell_no); 
Jmpp_subcell =  zeros(1,subcell_no); 
J_layer = zeros(1,s); 
J_pc_layer = zeros(1,s); 
J_hj_layer = zeros(1,s); 
Jmpp_layer =  zeros(1,s); 
  
if length(lambda_s) > 1 %only interpolate if more than one wavelength being 
calculated over 
    for x = 1:s 
        J_pc_layer(x) = sum(qe*photonDens(lambda0:lambdaf).*interp1(lambda_s, 
EQESp_pc(x,:), lambda0:lambdaf)/10); % mA/(cm^2) 
        J_hj_layer(x) = sum(qe*photonDens(lambda0:lambdaf).*interp1(lambda_s, 
EQESp_hj(x,:), lambda0:lambdaf)/10); % mA/(cm^2) 
        J_layer(x) = sum(qe*photonDens(lambda0:lambdaf).*interp1(lambda_s, 
EQESp(x,:), lambda0:lambdaf)/10); % mA/(cm^2) 
        Jmpp_layer(x) = J_layer(x) * subcell_Jmpp_Jsc(subcell); %mA/cm^2 
  
        J_pc_subcell(subcell) = J_pc_subcell(subcell)+J_pc_layer(x); 
        J_hj_subcell(subcell) = J_hj_subcell(subcell)+J_hj_layer(x); 
        J_subcell(subcell) = J_subcell(subcell)+J_layer(x); 
        Jmpp_subcell(subcell) = Jmpp_subcell(subcell)+Jmpp_layer(x); 
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        if strfind(film{x,2},'rz')==1 
            subcell = subcell+1; 
            J_subcell(subcell) = 0; 
            Jmpp_subcell(subcell) = 0; 
        end 
end 
end 
%% Device Property Outputs %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% G_F_tot(6,1) 
% k_F_tot(7,1) 
% flux_hj(6,1) 
% G_Abs_tot(7,1) 
% k_F_tot(7,1)./G_F_tot(6,1) 
  
G_F_tot(7,1) 
k_F_tot(6,1) 
flux_hj(7,1) 
G_Abs_tot(7,1) 
k_F_tot(6,1)./G_F_tot(7,1) 
  
  
IQE_tot = EQE./A_tot; 
A_active = EQE_G; 
IQE_active = EQE./A_active; 
  
% divide the current by the number of heterojunctions (series operation) 
J = min(J_subcell); 
Jmpp = min(Jmpp_subcell); 
  
output.dz = dz; 
output.t = t; 
output.tt = tt; 
output.pp = pp; 
output.subcell = subcell; 
output.J = J; 
output.Jmpp = Jmpp; 
output.J_layer = J_layer; 
output.J_pc_layer = J_pc_layer; 
output.J_hj_layer = J_hj_layer; 
output.J_subcell = J_subcell; 
output.J_pc_subcell = J_pc_subcell; 
output.J_hj_subcell = J_hj_subcell; 
output.Jmpp_subcell = Jmpp_subcell; 
output.EE = EE; 
output.EQE = EQE; 
output.IQE_tot = IQE_tot; 
output.IQE_active = IQE_active; 
output.A_active = A_active; 
output.Qp = Q; 
output.G_Abs = G_Abs; 
output.G_F = G_F; 
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output.k_F = k_F; 
  
output.G_Abs_tot = G_Abs_tot; 
output.G_F_tot = G_F_tot; 
output.k_F_tot = k_F_tot; 
output.recomb_tot = recomb_tot; 
output.flux_hj = flux_hj; 
  
output.R = R; 
output.T = T; 
output.A_tot = A_tot; 
output.IglassITOp = IglassITOp; 
output.wl = lambda_s; %put in GUI 
end 
  
%% Build a stack of material properties %% 
function [t, film, ref, D, tau, eta_cc, ED, EA, active_priority, rho, R_F, G_Abs_Off] 
= StackBuild(scan, tvar, mvar) 
% build the thickness vector and refractive index array via internal 
% function, StackBuild 
  
% inputs % 
% stack:        name of text file containing stack information 
% tvar:         array containing new thickness for film with tvar tag in file 
% mvar:         array containing new material for film with mvar tag in file 
  
% returns % 
% t:            array containing thickness of each layer 
% t_top_substrate:  thickness of second layer in stack (should be either substrate or 
air) 
% film:         array containing name of each film 
% dev:          number of devices (defined by recombination zones [for tandems]) 
% ref:          matrix of refractive index vs wavelength for each film 
% Ld:           array containing exciton diffusion length for each film 
% tau:          array containing exciton lifetime for each film 
  
t = scan{2}*1E-9; 
s = size(t,1); 
ref = zeros(s,120); 
D = zeros(1,s); 
Ld = zeros(1,s); 
tau = zeros(1,s); 
eta_cc = zeros(1,s); 
EA = zeros(1,s); %for tagging exciton acceptors later (Forster transfer) 
ED = zeros(1,s); %for tagging exciton donors later (Forster transfer) 
G_Abs_Off = zeros(1,s); 
active_priority = zeros(1,s)+100; %initialize priority for considering active layers 
rho = zeros(1,s); %molecular density of material in nm^-3 
% buld refractive index matrix of stack from materials database 
for x = 1:s 
    mat = char(scan{1}(x)); 
    ext = char(scan{3}(x)); 
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    if isfinite(strfind(ext,'var')) == 1 
        N = str2double(ext(strfind(ext, 'var')+3:size(ext,2))); 
        switch ext(strfind(ext, 'var')-1) 
            case 't' 
                t(x) = tvar(N)*1E-9; 
                %disp([mat,' is now ',num2str(tvar(N)),' nm']); 
            case 'm' 
                mat = mvar{N}; 
                %disp(['layer ',num2str(x),' is now ',mat]); 
        end 
    end 
     
    %set priority for considering active layers 
    
    if isempty(strfind(lower(ext), 'active')) == 0 
        active_priority(x) = 1; 
    end 
     
    if isempty(strfind(ext, 'ED')) == 0 
        ED(x) = 1; %tag which active layers will have be an exciton donor for Forster 
transfer 
        active_priority(x) = 2; 
    end 
     
    if isempty(strfind(ext, 'EA')) == 0 
        EA(x) = 1; %tag which active layers will have be an exciton acceptor for 
Forster transfer 
        active_priority(x) = 4; 
        if isempty(strfind(lower(ext), 'abs_off')) ==0 
            G_Abs_Off(x)= 1; 
        end 
    end 
     
    if isempty(strfind(ext, 'ED,EA')) == 0 
        active_priority(x) = 3; 
    end 
     
    if isempty(strfind(lower(ext), 'active')) == 1 
        active_priority(x) = 100; 
    end 
     
    % Load values from materials.mat (e.g. Ldsubpc, not Ld.subpc) 
    vars = {['n',mat], ['D',mat], ['Ld',mat], ['tau',mat], ['eta_cc',mat], 
['rho',mat]}; 
    g = load('materials.mat', vars{:}); 
    ref(x,:) = g.(vars{1}); 
    D(x) = g.(vars{2}); 
    Ld(x) = g.(vars{3}); 
    tau(x) = g.(vars{4}); 
    eta_cc(x) = g.(vars{5}); 
    rho(x) = g.(vars{6}); 
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    film{x, 1} = mat; 
    film{x, 2} = ext; 
end 
  
%populate R_F (Forster radii) 
R_F = zeros(s,s); 
for x = 2:s 
    if ED(x) == 1 
        for y = 2:s 
            if EA(y) == 1 
                dat = load('materials.mat'); 
                R_F(x,y) = dat.(strcat('R_F',film{x,1},film{y,1})); 
            end 
        end 
    end 
end 
clear(mat, 'g'); 
  
end 
%% Transfer Matrix Method %% 
function [tpp, tmp, Ti, Ri, IglassITOp, Ai] = TMM(n, q, xi, d, d_substrate, lambda, 
polarization, phi0) 
incov = @(S)[abs(S(1,1))^2    -abs(S(1,2))^2;   abs(S(2,1))^2   (abs(det(S))^2-
abs(S(1,2)*S(2,1))^2)/abs(S(1,1))^2]; 
  
layers = length(d); 
  
% Initialize variables 
phi = zeros(layers,1);%zeros(1,layers); 
rp_left = zeros(layers,1); 
rp_left_ = zeros(layers,1); 
tp_left = zeros(layers,1); 
rp_right = zeros(layers,1); 
tp_right = zeros(layers,1); 
  
rs_left = zeros(layers,1); 
rs_left_ = zeros(layers,1); 
ts_left = zeros(layers,1); 
rs_right = zeros(layers,1); 
ts_right = zeros(layers,1); 
  
d(2) = d_substrate; 
  
x = 1; 
phi(x) = phi0*pi/180; 
kz(x) = 2*pi*n(x)/lambda*cos(phi(x)); 
beta(x) = d(x)*kz(x); 
L(:,:,x) = [exp(-1i*beta(x)) 0; 0 exp(1i*beta(x))]; 
  
rp = zeros(1,layers-1); 
tp = zeros(1,layers-1); 
Ip = zeros(2,2,layers); 
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for x = 2:layers 
    phi(x) = asin(n(x-1)*sin(phi(x-1))/n(x)); 
    kz(x) = 2*pi*n(x)/lambda*cos(phi(x)); 
    beta(x) = d(x)*kz(x); 
    L(:,:,x) = [exp(-1i*beta(x)) 0; 0 exp(1i*beta(x))]; 
     
    rp(x-1) = -(n(x)*cos(phi(x-1))-n(x-1)*cos(phi(x)))/(n(x)*cos(phi(x-1))+n(x-
1)*cos(phi(x))); % doesn't match paper convention, but is correct 
    rs(x-1) = (n(x)*cos(phi(x))-n(x-1)*cos(phi(x-1)))/(n(x)*cos(phi(x))+n(x-
1)*cos(phi(x-1))); % doesn't match paper convention, but is correct 
     
    tp(x-1) = 2*n(x-1)*cos(phi(x-1))/(n(x)*cos(phi(x-1))+n(x-1)*cos(phi(x))); 
    ts(x-1) = 2*n(x-1)*cos(phi(x-1))/(n(x)*cos(phi(x))+n(x-1)*cos(phi(x-1))); 
     
    Ip(:,:,x-1) = 1/tp(x-1)*[1 rp(x-1); rp(x-1) 1]; 
    Is(:,:,x-1) = 1/ts(x-1)*[1 rs(x-1); rs(x-1) 1]; 
end 
  
x0 = 3;             % first layer of coherent stack 
xend = layers-1;    % last layer of coherent stack 
xb   = xend; 
  
% P-polarized (TM) 
Sp_left = Ip(:,:,x0-1); 
Sp_right = Ip(:,:,xend); 
rp_left(x0)  = Sp_left(2,1)/Sp_left(1,1); 
rp_left_(x0) = -Sp_left(1,2)/Sp_left(1,1); 
tp_left(x0)  = 1/Sp_left(1,1); 
rp_right(xend) = Sp_right(2,1)/Sp_right(1,1); 
tp_right(xend) = 1/Sp_right(1,1); 
  
% S-polarized (TE) 
Ss_left = Is(:,:,x0-1); 
Ss_right = Is(:,:,xend); 
rs_left(x0)  = Ss_left(2,1)/Ss_left(1,1); 
rs_left_(x0) = -Ss_left(1,2)/Ss_left(1,1); 
ts_left(x0)  = 1/Ss_left(1,1); 
rs_right(xend) = Ss_right(2,1)/Ss_right(1,1); 
ts_right(xend) = 1/Ss_right(1,1); 
  
for x = x0:xend 
    xb = xb-1; 
     
    % P-polarized (TM) 
    Sp_left = Sp_left*L(:,:,x)*Ip(:,:,x); 
    Sp_right = Ip(:,:,xb)*L(:,:,xb+1)*Sp_right; 
    rp_left(x+1)  = Sp_left(2,1)/Sp_left(1,1); 
    rp_left_(x+1) = -Sp_left(1,2)/Sp_left(1,1); 
    tp_left(x+1)  = 1/Sp_left(1,1); 
    rp_right(xb) = Sp_right(2,1)/Sp_right(1,1); 
    tp_right(xb) = 1/Sp_right(1,1); 
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    % S-polarized (TE) 
    Ss_left = Ss_left*L(:,:,x)*Is(:,:,x); 
    Ss_right = Is(:,:,xb)*L(:,:,xb+1)*Ss_right; 
    rs_left(x+1)  = Ss_left(2,1)/Ss_left(1,1); 
    rs_left_(x+1) = -Ss_left(1,2)/Ss_left(1,1); 
    ts_left(x+1)  = 1/Ss_left(1,1); 
    rs_right(xb) = Ss_right(2,1)/Ss_right(1,1); 
    ts_right(xb) = 1/Ss_right(1,1); 
     
end 
Ib23p = incov(Sp_left); 
Ib23s = incov(Ss_left); 
  
tpp = tp_left(1:xend)./(1-
rp_left_(1:xend).*rp_right(1:xend).*exp(1i.*2.*xi(1:xend).*d(1:xend))); 
tmp = tpp(1:xend).*rp_right(1:xend).*exp(1i.*2.*xi(1:xend).*d(1:xend)); 
tps = ts_left(1:xend)./(1-
rs_left_(1:xend).*rs_right(1:xend).*exp(1i.*2.*xi(1:xend).*d(1:xend))); 
tms = tps(1:xend).*rs_right(1:xend).*exp(1i.*2.*xi(1:xend).*d(1:xend)); 
  
% Account for incoherent front substrate 
Ibp(:,:,1) = incov(Ip(:,:,1)); 
Ibs(:,:,1) = incov(Is(:,:,1)); 
Lb(:,:,2) = abs(L(:,:,2)).^2; 
  
Sbp = Ibp(:,:,1)*Lb(:,:,2)*Ib23p; 
Sbs = Ibs(:,:,1)*Lb(:,:,2)*Ib23s; 
IglassITOp = [1,0]*Ib23p*[1/Sbp(1,1);0]; 
IglassITOs = [1,0]*Ib23s*[1/Sbs(1,1);0]; 
  
Rbfp = Sbp(2,1)/Sbp(1,1);  % Reflectance at the front interface 
Tbfp = 1/Sbp(1,1);         % Transmittance at the front interface 
  
Rbfs = Sbs(2,1)/Sbs(1,1);  % Reflectance at the front interface 
Tbfs = 1/Sbs(1,1);         % Transmittance at the front interface 
  
    if polarization == 'TM' 
  
        Ri = Rbfp; 
        Ti = Tbfp*real(n(end))/n(1); 
        Ai = 1-Ri-Ti; 
  
    elseif polarization == 'TE' 
  
        Ri = Rbfs; 
        Ti = Tbfs*real(n(end))/n(1); 
        Ai = 1-Ri-Ti; 
  
    end 
end 
%% Diffusion Calculations %% 
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function [pf, flux, flux_pop, G_Abs_tot, G_F_tot, k_F_tot, recomb_tot] = 
DriftDiffusion(D, tau, G_Abs, G_F, k_F, eta_cc, R, d, type) 
% Feng-Ghosh Model (Modified to include Forster Transfer) 
% ddLd^2/tau*d^2(p)/(dz)^2 - p/tau + G_Abs - k_F*p + G_F = dp/dt 
  
global dz 
  
ddn = length(d);      % total number of mesh points in layer 
p0 = zeros(ddn, 1);   % presize the population density vector 
  
%% Calculate S.S. Exciton Population and Flux to HJs 
  
M = zeros(ddn);   %Initialize matrix with governing equation for each mesh point 
A = zeros(ddn,1); %Initialize right-hand-side vector 
  
switch upper(type) 
     
    %% Reflect Left, Dissociate (Quench) Right %% 
    case {'RD','RQ'} 
        M(1,1) = -(2 + dz^2/(D *tau(1)) + k_F(1)*dz^2/D); %First row zero flux 
        M(1,2) = 2; 
         
        M(ddn,ddn) = 1; %Zero value at right 
         
        for i = 2:ddn-1 
            for j = 1:ddn 
                if i==j 
                    M(i,j) = -(2 + dz^2/(D*tau(i)) + k_F(i)*dz^2/D); 
                elseif i == j+1 
                    M(i,j) = 1; 
                elseif i == j-1 
                    M(i,j) = 1; 
                end 
            end 
        end 
         
        A(2) = -dz^2/D*(G_Abs(1) + G_Abs(2) + G_F(1) + G_F(2)); 
        for i = 3:ddn - 2 
            A(i) = -dz^2/D*(G_Abs(i)+G_F(i)); 
        end 
        A(ddn-1) = -dz^2/D*(G_Abs(ddn-1) + G_Abs(ddn) + G_F(ddn-1) + G_F(ddn)); 
         
    %% Dissociate (Quench) Left, Reflect Right 
    case {'DR','QR'} 
        M(1,1) = 1; %Zero value at left 
        M(ddn,ddn) = -(2 + dz^2/(D*tau(ddn)) + k_F(ddn)*dz^2/D);; %Last row zero flux 
        M(ddn,ddn-1) = 2; 
        for i = 2:ddn-1 
            for j = 1:ddn 
                if i==j 
                    M(i,j) = -(2 + dz^2/(D*tau(i)) + k_F(i)*dz^2/D); 
                elseif i == j+1 
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                    M(i,j) = 1; 
                elseif i == j-1 
                    M(i,j) = 1; 
                end 
            end 
        end 
         
        A(2) = -dz^2/D*(G_Abs(1) + G_Abs(2) + G_F(1) + G_F(2)); 
        for i = 3:ddn 
            A(i) = -dz^2/D*(G_Abs(i)+G_F(i)); 
        end 
         
    %% Dissociate (Quench) Left & Right 
    case {'DD','DQ','QD','QQ'} 
        M(1,1) = 1; %Zero value at left 
        M(ddn,ddn) = 1; %Zero value at right 
         
        for i = 2:ddn-1 
            for j = 1:ddn 
                if i==j 
                    M(i,j) = -(2 + dz^2/(D*tau(i)) + k_F(i)*dz^2/D); 
                elseif i == j+1 
                    M(i,j) = 1; 
                elseif i == j-1 
                    M(i,j) = 1; 
                end 
            end 
        end 
         
        A(2) = -dz^2/D*(G_Abs(1) + G_Abs(2) + G_F(1) + G_F(2)); 
        for i = 3:ddn - 2 
            A(i) = -dz^2/D*(G_Abs(i)+G_F(i)); 
        end 
        A(ddn-1) = -dz^2/D*(G_Abs(ddn-1) + G_Abs(ddn) + G_F(ddn-1) + G_F(ddn)); 
         
    %% Reflect Left & Right 
    case {'RR'} 
        M(1,1) = -(2 + dz^2/(D*tau(1)) + k_F(1)*dz^2/D); %First row zero flux 
        M(1,2) = 2; 
        M(ddn,ddn) = -(2 + dz^2/(D*tau(ddn)) + k_F(ddn)*dz^2/D); %Last row zero flux 
        M(ddn,ddn-1) = 2; 
        for i = 2:ddn-1 
            for j = 1:ddn 
                if i==j 
                    M(i,j) = -(2 + dz^2/(D*tau(i)) + k_F(i)*dz^2/D); 
                elseif i == j+1 
                    M(i,j) = 1; 
                elseif i == j-1 
                    M(i,j) = 1; 
                end 
            end 
        end 
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        for i = 1:ddn 
            A(i) = -dz^2/D*(G_Abs(i)+G_F(i)); 
        end 
         
    %% Bulk Heterojunction 
    case {'BHJ'} 
        M = 1; 
        A = 0; 
end 
  
%% Solve Matrix for S.S. Exciton Population 
pf = p0; 
pf = M\A; 
  
%% Calculate Total Incident Photons in Layer (i.e. Flux to HJ if IQE=1) 
flux_pop = 0; 
G_Abs_tot = 0; 
G_F_tot = 0; 
k_F_tot = 0; 
recomb_tot = 0; 
  
for i = 1:ddn 
    G_Abs_tot = G_Abs_tot + (G_Abs(i))*dz; 
    G_F_tot = G_F_tot + G_F(i)*dz; %gui 
    k_F_tot = k_F_tot + pf(i)*k_F(i)*dz; 
    recomb_tot = recomb_tot + pf(i)/tau(i)*dz; %gui 
end 
  
%% Calculate Flux to HJ(s) 
switch upper(type) 
    case {'RD','QD'} 
        flux = D*abs(pf(ddn)-pf(ddn-1))/(1*dz); 
    case {'DR','DQ'} 
        flux = D*abs(pf(1)-pf(2))/(1*dz); 
    case {'DD'} 
        flux = D*(abs(pf(1)-pf(2))/(dz) + abs(pf(ddn)-pf(ddn-1))/dz); 
    case {'RQ','QR','QQ','RR'} 
        flux = 0; 
    case {'BHJ'} 
        flux = eta_cc.*(G_Abs_tot+G_F_tot); 
end 
  
end 
%% Photon Density AM1.5G %% 
function N = photonDens(WL) 
global c h 
  
% wavelength for given power density data (in nm) 
dataWL = [*data removed to save space]; 
% power density at AM1.5 (Global Tilt) according to ASTMG173 (W/m^2/nm) 
pd_global_tilt = [*data removed to save space]; 
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s = length(dataWL); 
  
for i = 2:s(1,1) 
    pd = pd_global_tilt(i)*(dataWL(i)-(dataWL(i-1)))/1E9; %Irradiance (W/m^2) 
    nd(i) = pd./(h*c/dataWL(i)); %Photon flux 
end 
nd(1) = nd(2); 
  
% interpolate the power density for the desired input wavelengths 
N = interp1(dataWL,nd,WL,'linear','extrap'); 
  
end 
  
 
 

 



 114 

 

Bibliography 

 

1 Gledhill, S. E., Scott, B. & Gregg, B. A. Organic and nano-structured composite 
photovoltaics: An overview. Journal of Materials Research 20, 3167-3179, 
doi:10.1557/jmr.2005.0407 (2011). 

2 Hoppe, H. & Sariciftci, N. S. Organic solar cells: An overview. Journal of Materials 
Research 19, 1924-1945, doi:10.1557/jmr.2004.0252 (2011). 

3 Yue, D., Khatav, P., You, F. & Darling, S. B. Deciphering the uncertainties in life cycle 
energy and environmental analysis of organic photovoltaics. Energy & Environmental 
Science 5, 9163, doi:10.1039/c2ee22597b (2012). 

4 Darling, S. B. & You, F. The case for organic photovoltaics. RSC Advances 3, 17633, 
doi:10.1039/c3ra42989j (2013). 

5 Brabec, C. J. Organic photovoltaics: technology and market. Solar Energy Materials and 
Solar Cells 83, 273-292, doi:10.1016/j.solmat.2004.02.030 (2004). 

6 Che, X., Xiao, X., Zimmerman, J. D., Fan, D. & Forrest, S. R. High-Efficiency, Vacuum-
Deposited, Small-Molecule Organic Tandem and Triple-Junction Photovoltaic Cells. 
Advanced Energy Materials 4, n/a-n/a, doi:10.1002/aenm.201400568 (2014). 

7 Tang, C. W. Two-layer organic photovoltaic cell. Applied Physics Letters 48, 183-185, 
doi:10.1063/1.96937 (1986). 

8 Menke, S. M. & Holmes, R. J. Exciton diffusion in organic photovoltaic cells. Energy 
Environ. Sci. 7, 499-512, doi:10.1039/c3ee42444h (2014). 

9 Gregg, B. A. Excitonic Solar Cells. The Journal of Physical Chemistry B 107, 4688-4698, 
doi:10.1021/jp022507x (2003). 

10 Pettersson, L. A. A., Roman, L. S. & Inganäs, O. Modeling photocurrent action spectra of 
photovoltaic devices based on organic thin films. Journal of Applied Physics 86, 487, 
doi:10.1063/1.370757 (1999). 

11 Peumans, P., Yakimov, A. & Forrest, S. R. Small molecular weight organic thin-film 
photodetectors and solar cells. Journal of Applied Physics 93, 3693, 
doi:10.1063/1.1534621 (2003). 

12 Ghosh, A. K. & Feng, T. Merocynanine organic solar cells. Journal of Applied Physics 
49, 5982, doi:10.1063/1.324566 (1978). 



 115 

13 Chen, W., Nikiforov, M. P. & Darling, S. B. Morphology characterization in organic and 
hybrid solar cells. Energy & Environmental Science 5, 8045, doi:10.1039/c2ee22056c 
(2012). 

14 Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer Photovoltaic Cells: 
Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. 
Science 270, 1789-1791, doi:10.1126/science.270.5243.1789 (1995). 

15 Chen, G. et al. Co-evaporated bulk heterojunction solar cells with >6.0% efficiency. Adv 
Mater 24, 2768-2773, doi:10.1002/adma.201200234 (2012). 

16 Pandey, R., Zou, Y. & Holmes, R. J. Efficient, bulk heterojunction organic photovoltaic 
cells based on boron subphthalocyanine chloride-C70. Applied Physics Letters 101, 
033308, doi:10.1063/1.4737902 (2012). 

17 Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. 
Nature 376, 498-500, doi:10.1038/376498a0 (1995). 

18 Yakimov, A. & Forrest, S. R. High photovoltage multiple-heterojunction organic solar 
cells incorporating interfacial metallic nanoclusters. Applied Physics Letters 80, 1667, 
doi:10.1063/1.1457531 (2002). 

19 Lassiter, B. E., Kyle Renshaw, C. & Forrest, S. R. Understanding tandem organic 
photovoltaic cell performance. Journal of Applied Physics 113, 214505, 
doi:10.1063/1.4807910 (2013). 

20 Pandey, R. & Holmes, R. J. Characterizing the charge collection efficiency in bulk 
heterojunction organic photovoltaic cells. Applied Physics Letters 100, 083303, 
doi:10.1063/1.3686909 (2012). 

21 Braun, C. L. Electric field assisted dissociation of charge transfer states as a mechanism 
of photocarrier production. The Journal of Chemical Physics 80, 4157, 
doi:10.1063/1.447243 (1984). 

22 Peumans, P. & Forrest, S. R. Very-high-efficiency double-heterostructure copper 
phthalocyanine/C[sub 60] photovoltaic cells. Applied Physics Letters 79, 126, 
doi:10.1063/1.1384001 (2001). 

23 Peumans, P. & Forrest, S. R. Separation of geminate charge-pairs at donor–acceptor 
interfaces in disordered solids. Chemical Physics Letters 398, 27-31, 
doi:10.1016/j.cplett.2004.09.030 (2004). 

24 Chan, M. Y., Lai, S. L., Lau, K. M., Lee, C. S. & Lee, S. T. Application of metal-doped 
organic layer both as exciton blocker and optical spacer for organic photovoltaic devices. 
Applied Physics Letters 89, 163515, doi:10.1063/1.2362974 (2006). 

25 Gebeyehu, D. et al. Highly efficient p–i–n type organic photovoltaic devices. Thin Solid 
Films 451-452, 29-32, doi:10.1016/j.tsf.2003.10.087 (2004). 

26 Lassiter, B. E. et al. Organic photovoltaics incorporating electron conducting exciton 
blocking layers. Applied Physics Letters 98, 243307, doi:10.1063/1.3598426 (2011). 

27 Yi, Y. et al. The interface state assisted charge transport at the MoO(3)/metal interface. J 
Chem Phys 130, 094704, doi:10.1063/1.3077289 (2009). 

28 Shrotriya, V., Li, G., Yao, Y., Chu, C.-W. & Yang, Y. Transition metal oxides as the 
buffer layer for polymer photovoltaic cells. Applied Physics Letters 88, 073508, 
doi:10.1063/1.2174093 (2006). 

29 Hiroshi Kageyama, H. K., Yutaka Ohmori, and Yasuhiko Shirota. MoO3 as a Cathod 
Buffer Layer Material for the Improvement of Planar pn-Heterojunction Organic Solar 



 116 

Cell Performance. Applied Physics Express 4, 032301, doi:10.1143/APEX.4.032301 
(2011). 

30 van Dijken, A., Perro, A., Meulenkamp, E. A. & Brunner, K. The influence of a 
PEDOT:PSS layer on the efficiency of a polymer light-emitting diode. Organic 
Electronics 4, 131-141, doi:10.1016/j.orgel.2003.08.007 (2003). 

31 Hirade, M. & Adachi, C. Small molecular organic photovoltaic cells with exciton 
blocking layer at anode interface for improved device performance. Applied Physics 
Letters 99, 153302, doi:10.1063/1.3650472 (2011). 

32 Zhang, G. et al. Cascade-energy-level alignment based organic photovoltaic cells by 
utilizing copper phthalocyanine as bipolar carrier transporting layer. Applied Physics 
Letters 94, 143302, doi:10.1063/1.3114379 (2009). 

33 Cnops, K., Rand, B. P., Cheyns, D. & Heremans, P. Enhanced photocurrent and open-
circuit voltage in a 3-layer cascade organic solar cell. Applied Physics Letters 101, 
143301, doi:10.1063/1.4757575 (2012). 

34 Heidel, T. D. et al. Reducing recombination losses in planar organic photovoltaic cells 
using multiple step charge separation. Journal of Applied Physics 109, 104502, 
doi:10.1063/1.3585863 (2011). 

35 Hong, Z. R. et al. Antenna effects and improved efficiency in multiple heterojunction 
photovoltaic cells based on pentacene, zinc phthalocyanine, and C[sub 60]. Journal of 
Applied Physics 106, 064511, doi:10.1063/1.3187904 (2009). 

36 Schlenker, C. W. et al. Cascade Organic Solar Cells. Chemistry of Materials 23, 4132-
4140, doi:10.1021/cm200525h (2011). 

37 Griffith, O. L. & Forrest, S. R. Exciton management in organic photovoltaic multidonor 
energy cascades. Nano Lett 14, 2353-2358, doi:10.1021/nl501112z (2014). 

38 Verreet, B. et al. The characterization of chloroboron (iii) subnaphthalocyanine thin films 
and their application as a donor material for organic solar cells. Journal of Materials 
Chemistry 19, 5295, doi:10.1039/b902342a (2009). 

39 Gommans, H. H. P. et al. Electro-Optical Study of Subphthalocyanine in a Bilayer 
Organic Solar Cell. Advanced Functional Materials 17, 2653-2658, 
doi:10.1002/adfm.200700398 (2007). 

40 Giebink, N. C., Lassiter, B. E., Wiederrecht, G. P., Wasielewski, M. R. & Forrest, S. R. 
Ideal diode equation for organic heterojunctions. II. The role of polaron pair 
recombination. Physical Review B 82, doi:10.1103/PhysRevB.82.155306 (2010). 

41 Morris, S. E. & Shtein, M. High efficiency organic photovoltaic cells based on inverted 
SubPc/C60/ITO cascade junctions. Organic Electronics 15, 3795-3799, 
doi:10.1016/j.orgel.2014.08.046 (2014). 

42 Kulshreshtha, C. et al. New interfacial materials for rapid hole-extraction in organic 
photovoltaic cells. Journal of Materials Chemistry A 1, 4077, doi:10.1039/c3ta00808h 
(2013). 

43 Greiner, M. T. et al. Universal energy-level alignment of molecules on metal oxides. Nat 
Mater 11, 76-81, doi:10.1038/nmat3159 (2012). 

44 Kahn, A., Koch, N. & Gao, W. Electronic structure and electrical properties of interfaces 
between metals and ?-conjugated molecular films. Journal of Polymer Science Part B: 
Polymer Physics 41, 2529-2548, doi:10.1002/polb.10642 (2003). 



 117 

45 Mutolo, K. L., Mayo, E. I., Rand, B. P., Forrest, S. R. & Thompson, M. E. Enhanced 
open-circuit voltage in subphthalocyanine/C60 organic photovoltaic cells. J Am Chem 
Soc 128, 8108-8109, doi:10.1021/ja061655o (2006). 

46 Dresselhaus, M. S., Dresselhaus, G. & Eklund, P. C. Science of Fullerenes and Carbon 
Nanotubes.  484 (Academic, 1996). 

47 Luhman, W. A. & Holmes, R. J. Investigation of Energy Transfer in Organic 
Photovoltaic Cells and Impact on Exciton Diffusion Length Measurements. Advanced 
Functional Materials 21, 764-771, doi:10.1002/adfm.201001928 (2011). 

48 Centurioni, E. Generalized matrix method for calculation of internal light energy flux in 
mixed coherent and incoherent multilayers. Applied Optics 44, 7532, 
doi:10.1364/ao.44.007532 (2005). 

49 Gommans, H. et al. On the Role of Bathocuproine in Organic Photovoltaic Cells. 
Advanced Functional Materials 18, 3686-3691, doi:10.1002/adfm.200800815 (2008). 

50 Lunt, R. R., Giebink, N. C., Belak, A. A., Benziger, J. B. & Forrest, S. R. Exciton 
diffusion lengths of organic semiconductor thin films measured by spectrally resolved 
photoluminescence quenching. Journal of Applied Physics 105, 053711, 
doi:10.1063/1.3079797 (2009). 

51 Kawamura, Y., Sasabe, H. & Adachi, C. Simple Accurate System for Measuring 
Absolute Photoluminescence Quantum Efficiency in Organic Solid-State Thin Films. 
Japanese Journal of Applied Physics 43, 7729-7730, doi:10.1143/jjap.43.7729 (2004). 

52 Byrne, H. J. et al. Time-resolved photoluminescence of solid state fullerenes. Chemical 
Physics Letters 204, 461-466, doi:10.1016/0009-2614(93)89187-m (1993). 

53 Xiao, X., Zimmerman, J. D., Lassiter, B. E., Bergemann, K. J. & Forrest, S. R. A hybrid 
planar-mixed tetraphenyldibenzoperiflanthene/C70 photovoltaic cell. Applied Physics 
Letters 102, 073302, doi:10.1063/1.4793195 (2013). 

54 Beaumont, N. et al. Boron Subphthalocyanine Chloride as an Electron Acceptor for 
High-Voltage Fullerene-Free Organic Photovoltaics. Advanced Functional Materials 22, 
561-566, doi:10.1002/adfm.201101782 (2012). 

55 Giebink, N. C., Wiederrecht, G. P., Wasielewski, M. R. & Forrest, S. R. Ideal diode 
equation for organic heterojunctions. I. Derivation and application. Physical Review B 82, 
doi:10.1103/PhysRevB.82.155305 (2010). 

56 Pandey, R., Gunawan, A. A., Mkhoyan, K. A. & Holmes, R. J. Efficient Organic 
Photovoltaic Cells Based on Nanocrystalline Mixtures of Boron Subphthalocyanine 
Chloride and C60. Advanced Functional Materials 22, 617-624, 
doi:10.1002/adfm.201101948 (2012). 

57 Gurney, N. F. M. a. R. W. Electronic Processes in Ionic Crystals.  (Oxford University 
Press, 1940). 

58 van Mensfoort, S. L. M., Shabro, V., de Vries, R. J., Janssen, R. A. J. & Coehoorn, R. 
Hole transport in the organic small molecule material α-NPD: evidence for the presence 
of correlated disorder. Journal of Applied Physics 107, 113710, doi:10.1063/1.3407561 
(2010). 

59 Renshaw, C. K., Zimmerman, J. D., Lassiter, B. E. & Forrest, S. R. Photoconductivity in 
donor-acceptor heterojunction organic photovoltaics. Physical Review B 86, 
doi:10.1103/PhysRevB.86.085324 (2012). 



 118 

60 Sim, M., Kim, J. S., Shim, C. & Cho, K. Cascade organic solar cells with energy-level-
matched three photon-harvesting layers. Chemical Physics Letters 557, 88-91, 
doi:10.1016/j.cplett.2012.11.087 (2013). 

61 Barito, A. et al. Recovering lost excitons in organic photovoltaics using a transparent 
dissociation layer. Journal of Applied Physics 113, 203110, doi:10.1063/1.4807416 
(2013). 

62 Foertig, A. et al. Nongeminate Recombination in Planar and Bulk Heterojunction 
Organic Solar Cells. Advanced Energy Materials 2, 1483-1489, 
doi:10.1002/aenm.201200718 (2012). 

63 Tress, W., Leo, K. & Riede, M. Influence of Hole-Transport Layers and Donor Materials 
on Open-Circuit Voltage and Shape of I-V Curves of Organic Solar Cells. Advanced 
Functional Materials 21, 2140-2149, doi:10.1002/adfm.201002669 (2011). 

64 Cheyns, D. et al. Analytical model for the open-circuit voltage and its associated 
resistance in organic planar heterojunction solar cells. Physical Review B 77, 
doi:10.1103/PhysRevB.77.165332 (2008). 

65 Seaman, C. H. Calibration of solar cells by the reference cell method—The spectral 
mismatch problem. Solar Energy 29, 291-298, doi:10.1016/0038-092x(82)90244-4 
(1982). 

66 Guan, Z.-L. et al. Direct determination of the electronic structure of the poly(3-
hexylthiophene):phenyl-[6,6]-C61 butyric acid methyl ester blend. Organic Electronics 
11, 1779-1785, doi:10.1016/j.orgel.2010.07.023 (2010). 

67 Tong, X., Lassiter, B. E. & Forrest, S. R. Inverted organic photovoltaic cells with high 
open-circuit voltage. Organic Electronics 11, 705-709, doi:10.1016/j.orgel.2009.12.024 
(2010). 

68 Tseng, Y.-C., Mane, A. U., Elam, J. W. & Darling, S. B. Ultrathin molybdenum oxide 
anode buffer layer for organic photovoltaic cells formed using atomic layer deposition. 
Solar Energy Materials and Solar Cells 99, 235-239, doi:10.1016/j.solmat.2011.12.004 
(2012). 

69 Rand, B., Burk, D. & Forrest, S. Offset energies at organic semiconductor 
heterojunctions and their influence on the open-circuit voltage of thin-film solar cells. 
Physical Review B 75, doi:10.1103/PhysRevB.75.115327 (2007). 

70 Zhang, M., Wang, H. & Tang, C. W. Effect of the highest occupied molecular orbital 
energy level offset on organic heterojunction photovoltaic cells. Applied Physics Letters 
97, 143503, doi:10.1063/1.3491214 (2010). 

71 Onsager, L. Initial Recombination of Ions. Physical Review 54, 554-557, 
doi:10.1103/PhysRev.54.554 (1938). 

72 Wagenpfahl, A., Rauh, D., Binder, M., Deibel, C. & Dyakonov, V. S-shaped current-
voltage characteristics of organic solar devices. Physical Review B 82, 
doi:10.1103/PhysRevB.82.115306 (2010). 

73 Glatthaar, M. et al. Efficiency limiting factors of organic bulk heterojunction solar cells 
identified by electrical impedance spectroscopy. Solar Energy Materials and Solar Cells 
91, 390-393, doi:10.1016/j.solmat.2006.10.020 (2007). 

74 Lilliedal, M. R., Medford, A. J., Madsen, M. V., Norrman, K. & Krebs, F. C. The effect 
of post-processing treatments on inflection points in current–voltage curves of roll-to-roll 
processed polymer photovoltaics. Solar Energy Materials and Solar Cells 94, 2018-2031, 
doi:10.1016/j.solmat.2010.06.007 (2010). 



 119 

75 Uhrich, C. et al. Origin of open circuit voltage in planar and bulk heterojunction organic 
thin-film photovoltaics depending on doped transport layers. Journal of Applied Physics 
104, 043107, doi:10.1063/1.2973199 (2008). 

76 Schlenker, C. W. & Thompson, M. E. The molecular nature of photovoltage losses in 
organic solar cells. Chem Commun (Camb) 47, 3702-3716, doi:10.1039/c0cc04020g 
(2011). 

77 Yang, J. & Shen, J. Effects of the hole barrier in bilayer organic light-emitting devices. 
Journal of Physics D: Applied Physics 33, 1768-1772, doi:10.1088/0022-3727/33/15/303 
(2000). 

78 Matsumoto, N. & Adachi, C. Exciplex Formations at the HTL/Alq3Interface in an 
Organic Light-Emitting Diode: Influence of the Electron−Hole Recombination Zone and 
Electric Field. The Journal of Physical Chemistry C 114, 4652-4658, 
doi:10.1021/jp9121062 (2010). 

79 Liu, F., Paul Ruden, P., Campbell, I. H. & Smith, D. L. Exciplex current mechanism for 
ambipolar bilayer organic light emitting diodes. Applied Physics Letters 99, 123301, 
doi:10.1063/1.3640232 (2011). 

80 Verreet, B. et al. Decreased Recombination Through the Use of a Non-Fullerene 
Acceptor in a 6.4% Efficient Organic Planar Heterojunction Solar Cell. Advanced Energy 
Materials, n/a-n/a, doi:10.1002/aenm.201301413 (2014). 

81 Cnops, K. et al. 8.4% efficient fullerene-free organic solar cells exploiting long-range 
exciton energy transfer. Nat Commun 5, 3406, doi:10.1038/ncomms4406 (2014). 

82 Kulshreshtha, C. et al. Open-circuit voltage dependency on hole-extraction layers in 
planar heterojunction organic solar cells. Applied Physics Letters 99, 023308, 
doi:10.1063/1.3610962 (2011). 

83 Noh, S., Suman, C. K., Hong, Y. & Lee, C. Carrier conduction mechanism for 
phosphorescent material doped organic semiconductor. Journal of Applied Physics 105, 
033709, doi:10.1063/1.3072693 (2009). 

84 Fleissner, A., Schmid, H., Melzer, C. & von Seggern, H. Trap-controlled hole transport in 
small molecule organic semiconductors. Applied Physics Letters 91, 242103, 
doi:10.1063/1.2820448 (2007). 

85 Kageyama, H., Ohishi, H., Tanaka, M., Ohmori, Y. & Shirota, Y. High-Performance 
Organic Photovoltaic Devices Using a New Amorphous Molecular Material with High 
Hole Drift Mobility, Tris[4-(5-phenylthiophen-2-yl)phenyl]amine. Advanced Functional 
Materials 19, 3948-3955, doi:10.1002/adfm.200901259 (2009). 

86 Borsenberger, P. M., Pautmeier, L., Richert, R. & Ba ̈ssler, H. Hole transport in 1,1-
bis(di-4-tolylaminophenyl)cyclohexane. The Journal of Chemical Physics 94, 8276, 
doi:10.1063/1.460112 (1991). 

87 Frenkel, J. On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors. 
Physical Review 54, 647-648, doi:10.1103/PhysRev.54.647 (1938). 

88 Scully, S. R., Armstrong, P. B., Edder, C., Fréchet, J. M. J. & McGehee, M. D. Long-
Range Resonant Energy Transfer for Enhanced Exciton Harvesting for Organic Solar 
Cells. Advanced Materials 19, 2961-2966, doi:10.1002/adma.200700917 (2007). 

89 Menke, S. M., Luhman, W. A. & Holmes, R. J. Tailored exciton diffusion in organic 
photovoltaic cells for enhanced power conversion efficiency. Nat Mater 12, 152-157, 
doi:10.1038/nmat3467 (2013). 



 120 

90 Barito, A. et al. Universal Design Principles for Cascade Heterojunction Solar Cells with 
High Fill Factors and Internal Quantum Efficiencies Approaching 100%. Advanced 
Energy Materials, n/a-n/a, doi:10.1002/aenm.201400216 (2014). 

91 Sullivan, P. et al. Halogenated Boron Subphthalocyanines as Light Harvesting Electron 
Acceptors in Organic Photovoltaics. Advanced Energy Materials 1, 352-355, 
doi:10.1002/aenm.201100036 (2011). 

92 Vasseur, K. et al. Controlling the texture and crystallinity of evaporated lead 
phthalocyanine thin films for near-infrared sensitive solar cells. ACS Appl Mater 
Interfaces 5, 8505-8515, doi:10.1021/am401933d (2013). 

 


