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CHAPTER I

Introduction

The desire to understand fundamental quantum processes in nature drives cur-

rent research on technologies that exploit and enhance our understanding of quantum

mechanics. One area receiving much interest is quantum information. In its simplest

form, quantum information uses the principles of coherent superposition, a corner-

stone of quantum theory, to represent information. A yes or a no (a 1 or a 0) is an

example of how to represent classical information; however, by utilizing the principle

of superposition, quantum information allows for a system to exist in a state of both

yes and no (1 and 0) simultaneously. We call this a quantum bit or qubit. The versa-

tility provided here gives rise to a multitude of improvements over classical schemes:

encryption, information transport and computing times are a few examples of current

technologies that would be greatly enhanced using quantum information. Yet for all

the positive impacts and improvements that can be made using quantum mechanics,

a deeper understanding of its role in nature is what truly energizes research. This

thesis will demonstrate how fundamental tests of quantum mechanics are coupled

to improvements in the field of quantum information. To begin, a well-motivated

quantum system is chosen for study. This work will focus on solid-state quantum

dots (QDs) and their interactions with the radiation field. QDs are small islands

( 20nm in diameter and 3nm tall) grown in semiconductor structures. Dots exhibit
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three-dimensional confinement and under the proper circumstances a single electron

can be confined to the dot. This ground-state electron will serve as the qubit (spin-up

or spin-down) as it relates to quantum information. The QD spin state is addressed

via application of optical fields where the emitted or scattered radiation is used to

read-out or transport information from the system. The measurement of scattered

or emitted radiation and how that relates to the dynamics of the QD system give

insight into properties such as entanglement, which can be exploited in a number of

ways. Additionally, classification of QDs as single emitters is determined by observing

the scattered radiation arrival statistics. With a single electron in the ground state

there exists an optically accessible excited state transition by way of electron-hole

pair creation (an exciton). This three quasi-particle state (the confined electron and

the electron-hole pair) is referred to as a trion. Once excited to the trion state, a

decay via spontaneous emission will leave the dot in either of the spin states (up or

down), or more precisely in a superposition of spin states. Now the emitted radiation,

or single photon pulse, carries the information of the spin-state in its polarization or

frequency. Determining, or measuring, the photon pulse in one of these degrees of

freedom will collapse the QD spin wavefunction into a single state. For example, if

radiative decay to spin-up corresponds to a horizontally (H) polarized decay channel,

then a polarization sensitive detector would collapse the wavefunction to spin up if

H polarized radiation is registered. So, actions performed on the single photon pulse

have an influence on the spin state coherence. Interference between this single photon

pulse and a similar pulse from another system on a beam splitter, say, can influence

both respective systems similarly. In some cases the systems that produced the pho-

ton pulses (maybe two QDs) can become entangled with each other. Other situations

may involve information coded in one single photon pulse to be transferred, through

interference, to the other pulse and, by virtue of its entanglement with the system of

origin (the QD spin), this information is transferred to that system. This information
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transfer is referred to as teleportation. This thesis will explore the role of interference

in information transfer and how this can be used to further the field of quantum infor-

mation. Involved, is a detailed description of the entanglement generated between a

QD and a single photon pulse and the properties of the photon pulse itself. A further

investigation, tackles the manipulations that can be made through interference with

this photon pulse. The beginning is the study of two photon pulses generated by the

same QD. These are not generated at the same time but one after another where the

first photon pulse is delayed to ensure temporal overlap on the beam splitter. An

added complication arises when a separate QD is used for the second photon pulse

due to mismatch in frequency and decay profiles, however, if QDs have a viability

for future applications interactions between separate dots must be realized. Finally,

the use of a completely different source of single photon pulses permits the study of

a QDs interaction with disparate systems and further analysis of interference. For

this thesis the single photon pulse pairs generated in spontaneous parametric down-

conversion (SPDC) are employed due to their already established impact on quantum

information and the ability to create high brightness sources. As all of these exper-

iments involve building statistics, detection efficiencies and brightness of sources is

extremely important to attain the signal to noise necessary for claims of entangle-

ment and teleportation. All aspects of the preceding experiments shall be discussed,

including the difficulties in performing the measurements and significance to the field

arising from their completion.
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CHAPTER II

Quantum Dots for Quantum Information

Architectures

2.1 Introduction

The pursuit for a working quantum computer is one of the most important tech-

nological endeavors of the modern era, requiring scalable quantum computing archi-

tectures. By replacing classical computing bits with quantum bits (qubits), we are

able to exploit the nature of quantum mechanics to drastically improve computing

power and encryption protocols. While a classical bit can be either 0 or 1, a qubit ex-

ists as a superposition of two states meaning that it is simultaneously in both states

until a measurement is performed. This effect allows for computation times much

smaller than classical computers. Though the field is still young, some research has

already been done on determining what systems could be used to build a quantum

computer. A few different systems have emerged as promising qubits: trapped ions,

Nitrogen vacancy centers in diamond, superconducting qubits, donor-spins in silicon,

and semiconductor quantum dots (QDs). This chapter discusses some of the current

systems studied for quantum information applications and focus particularly on QDs

and their potential as a quantum computing qubit.
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2.2 Other Platforms

Though QDs will be the focus of this work, a short study of the current competing

technologies is necessary to get an accurate look at the field of quantum information.

Furthermore, many of the techniques and protocols studied and developed for the

following systems are useful when studying QDs. Since many of these systems utilize

optical manipulation and readout methods, the primary tools for quantum dots, much

can be gained by study of dissimilar systems.

2.2.1 Trapped Ions and Neutral Atoms

Perhaps the most mature technology for quantum information platforms; trapped

ions are enhanced by the fact that all of the optical control techniques now used in

a varied of other solid-state systems had their origin in atomic systems. Many of the

quantum information protocols, like DLCZ, began in atoms [28]. Indeed, spin-photon

entanglement and teleportation using matter qubits (not just entangled photon pairs)

were first done in atomic systems [12, 68, 4, 59]. For all the advantages of atomic

system, scalability has been the main issue, though there is much work being done

to improve this [79, 40, 20]. There are even emerging techniques for quantum error

correction, which will be the only way a universal quantum computer can avoid the

crippling effects of decoherence [21].

One disadvantage these systems have is scalability, and though all quantum infor-

mation systems suffer from this problem, the field of atoms has a harder time with

overcoming the obstacle. In order to get an atom prepared in such a way that you

can preform the necessary quantum information techniques to do meaningful manip-

ulations, complicated atom-trapping techniques are employed. The scaling of these

techniques has been achieved to some degree, but solid-state qubits have the advan-

tage that they are stationary and can exploit nano-fabrication techniques to create

large arrays of structures. Atoms are approaching this state but it is hard to imagine
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a laptop quantum computer powered by an atom cloud. Of course quantum tech-

nologies maybe so fundamentally difficult that a quantum computer laptop is not a

realistic thing to consider when evaluating the merits of each quantum technology.

2.2.2 Nitrogen Vacancy Centers in Diamond

Nitrogen vacancy (NV) centers in diamond occur as defects in the diamond struc-

ture where a Nitrogen atom couples with a vacancy (lack of a carbon atom) to form

an optically accessible system. In principle this system has the added bonus that the

dynamics can be observed at room temperature. However, the optical transitions in

NV centers become highly broadened by phonons so most of the experiments are car-

ried out at cryogenic temperatures. This limitation is not as fundamentally crippling

as it is in GaAs systems where the exciton simply does not exist at room temperature.

The electron qubit in the NV is shown to be an attractive qubit for quantum comput-

ing and many of the crucial entanglement protocols have been achieved by previous

groups [81]. Distant spin entanglement was recently achieved in these systems as well

[8].

Recently NV centers have emerged as useful tools for magnetic sensing and this

may be their technological future[54]. The nuclear spin coupling to the electron spin

coupled with the optical readout method allows these devices to sense very small

changes in magnetic fields. By placing the NV in a diamond cantilever, fine magnetic

sensing of phenomena such as Majorana fermion states in solids, and topological

insulators may be possible.

There are additional solid-state systems that exist for the purposes of quantum

computing and each has it’s own advantages and disadvantages. With this in mind,

likely the most powerful quantum technology may be a hybrid of two or three utilizing

the strengths exhibited by each.
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2.2.3 Spontaneous Parametric Down Conversion

Spontaneous parametric down conversion (SPDC) describes the process by which

a nonlinear medium generates single photon pairs when irradiated by a strong op-

tical pump field. Due to conservation of energy the emerging photons’ frequencies

must add to the pump frequency ωp = ω1 + ω2. Additionally, these two photons

can form polarization entangled states [48]. The entanglement can be exploited to

do a number of protocols involving Bell state measurements, and universal quantum

gates [46, 67]. Since SPDC quantum information technologies or linear optical quan-

tum computing (LOQC) do not contain a matter qubit, scaling can be difficult when

considering quantum algorithms requiring large numbers of qubits. However, quan-

tum cryptography platforms requiring fewer qubit states and the ability to transport

protected quantum information across long distances, as demonstrated between the

Canary Islands, is powerful [53].

For the reasons described above our group has teamed up with Paul Kwiat’s group

at the University of Illinois to get the QD spin-photon entangled state to interact with

SPDC photons using teleportation. The robustness of photons as an information

channel make this endeavor useful and the field of quantum information is moving

more towards trying to implement hybrid-quantum systems. As we have seen each

quantum information system has its own strengths and weaknesses and we hope to

utilize both strengths of the QD-SPDC hybrid system to accomplish interesting and

useful science.

2.3 QD Spins as Qubits

The main topic of this work will be on the optical study and manipulation of

QDs. In particular we will focus on optical spin manipulations of a single electron

confined to a QD structure. Using selective charging provided by a diode structure,
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we are able to confine a single electron to the QD and, under an applied magnetic field

in the direction transverse to the crystal growth direction, exploit the qubit nature

of the electron spin (aligned and anti-aligned to the direction of the field). The

optical techniques used in initialization and readout of the spin state are discussed in

detail and through careful analysis of these optical interactions we are able to extract

interesting information about the coherence of the QD optical transitions. Since the

spin states are split, if we construct our experiment in such a way that we cannot

tell which of the states the photon decayed to and only that there was a photon

present, then we have a spin-photon entangled state. Verifying this entanglement

is an important part of this work since it is the crux of the teleportation protocol

we wish to implement. If the QD photon is not entangled with the spin state then

teleportation cannot occur. This will be discussed in more detail later.

Almost 20 years ago DiVincenzo outlined criteria that should be met for QDs to

be viable as a quantum information platform [51, 27]. Here we outline the criteria

and the current status of QD technologies as it relates to each:

I Identification of well defined qubits. The QD system we mainly study in

our lab consists of a single electron confined to the QD. This electron provides us with

a qubit when a magnetic field is applied, where addressing and accessing the qubit

spin has been achieved by many different groups including our own. The electron

qubit is not the only qubit that can be utilized in QD structures. Some groups use

the hole spin instead of the electron and even the ground and excited state of QD

exciton can form a qubit. For now we will restrict our discussion to the electron qubit.

IReliable state preparation. For many quantum information protocols we

must be able to initialize to a pure spin state. The entanglement experiment dis-

cussed in chapter V, and indeed all subsequent measurement utilizing spin-photon

entanglement (teleportation, spin-spin entanglement, etc.) rely on the ability to ini-

tialize to a single spin state. Our group has shown the nature of this initialization
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before and by nature of our successful entanglement experiment we can infer good

initial state preparation [72, 88].

ILow decoherence rate. In practice the decoherence rate of the qubit is mea-

sured by how many operations (spin flips) one can perform before the spin state

decoheres. Using nuclear spin locking techniques discovered by our lab we are able

to achieve electron coherence time on the order of µs [89]. The gate operations on a

QD spin can be generated by an optical pulse of width 2ps, meaning 106 operations

can be performed before decoherence [66, 45].

IUniversal set of quantum gates. Any quantum operation can be constructed

out of a control-not (cnot) gate and a qubit rotation. This was demonstrated in our

group previously [50]. However, the scalability of such an operation is questionable

and a more elegant approach would be to utilize coupled quantum dots or quantum

dot molecules (QDM) to generate two-qubit spin gates [22].

IStrong qubit-specific measurements For this case we are looking for a non-

destructive measurement of the spin state. So, by measuring the spin state one

destroys the coherence by transferring population to an excited state that can then

decay to the other spin state (This is the readout method used in the spin-photon

entanglement verification), this criteria is not satisfied. In atomic physics they utilize

what is known as a cycling transition. Essentially this is a closed loop transition that

only exists for one of the qubit states so no population can be transferred to the other

qubit state. In QDMs, discussed above, a specific charge configuration can lead to a

non-destructive cycling transition that can be used as a readout method [44].

2.4 Quantum Teleportation

As discussed in section 2.2.3, our final goal is to show teleportation between the

spin-photon entangled state from the QD and a controllable single photon state from

a SPDC source. In order to achieve this teleportation we must first verify that the
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photon spontaneously emitted from the QD carries information about the spin state

and when interfered with a SPDC photon, the information coded on the SPDC photon

is teleported onto the spin state of the QD. Quantum teleportation has been achieved

in other systems including both QDs and SPDC, and for a pedagogical description of

teleportation, Bouwmeester et. al. is a good reference [13].

2.5 Conclusion

Here we have outlined some of the current technologies for quantum information

architectures. In particular, QDs were discussed in greater depth and the DiVincenzo

criteria was laid out for QDs as viable quantum computing qubits, where we have

demonstrated nearly all of the required criteria. The integration of the QD system

with the SPDC system will be discussed later in the thesis.
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CHAPTER III

Electronic properties of Self-Assembled

InAs/GaAs Quantum Dots

3.1 Introduction

The QDs studied in this thesis are self-assembled Indium Arsenide (InAs) dots

grown using molecular beam epitaxy. The InAs is deposited on a Gallium Arsenide

(GaAs) structure, the details of GaAs structure will be discussed later, where a 7%

mismatch in the lattice constant creates strain fields in the crystal. The strain fields

give rise to the island structures that, when capped with more GaAs, become our

QDs. The three dimensional confinement leads to a number of interesting properties

particularly when considering optical interactions. This chapter will discuss the bulk

properties of crystal structures, particularly GaAs, and how the three dimensional

confinement achieved in QD heterostructures leads to atomic-like behavior.

3.2 Bulk Semiconductor Properties

The semiconductor systems of interest in this thesis are III-V structures. An

important property to keep in mind throughout the discussion of the optical and

electronic properties of these solids is that bare atoms, the III category (In and Ga)

and the V category (As), have electron valence shells in the s and p orbitals. While in a
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crystal the properties become more complicated due to the periodicity and interaction

in the solid, the carriers still retain s and p type characteristics. GaAs and InAs are

both zincblende structures, meaning it has a tetrahedral structure where each atoms is

surrounded by four atoms of the opposite type. The electronic band structure (shown

in figure 3.1) behaves as a parabola at the center of the first Brillouin zone (k = 0),

or the Γ point. Additionally, at the center of the Brillouin zone, the eigenfunctions

in each band retain the symmetry inherent to that bands basis functions. For the

valence band, the basis functions are x, y, and z, indicating a p orbital-like; and the

conduction band basis functions are s orbital-like [76]. When we include spin the total

angular momentum, j = l+s, we obtain additional states in both the conduction and

valence band. For the conduction band we have only two states since j = 1/2 and

jz = ±1/2, however the valence band becomes more complicated and is summarized

in the table below.

Valence band states

Total angular momentum (j) z-projection (jz) Band label

1/2 ±1/2 Split-off (SO)

3/2 ±1/2 light hole (LH)

3/2 ±3/2 heavy hole (HH)

An important consequence of the angular momentum states is that we must consider

the effect of spin-orbit coupling. Spin-orbit coupling arises from the fact that an

electron moving in an electric field will observe an effective magnetic field due to

relativistic effects. The Hamiltonian for this interaction can be approximated from

the Dirac equation, assuming an isotropic spin-orbit interaction in the crystal,

Hso ≈ λsoL · S. (3.1)
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Where λso is a constant. Using the fact that J2 = (L + S)2, we can replace Eqn 3.1

with the following,

Hso ≈ λso
J2 − L2 − S2

2
. (3.2)

The split off (SO) band is shifted in energy from the light hole (LH) and heavy

hole (HH) bands by the interaction energy extracted from Eqn. 3.2,

∆so =
3

2
~2λso. (3.3)

The energy associated with this splitting is much larger than any that would arise

from strain or confinement and as such the SO band is neglected in our experiments.

The next consideration is given to the HH and LH bands. For this treatment it

is necessary to look at the periodic potential in crystalline solids and solve for the

wavefunctions of electrons in one of the bands. The periodic potential can be written

as V (r) = V (r + R) and the corresponding Bloch states for an electron in a specific

band b become,

〈r|Ψb
k〉 = eik·rubk(r). (3.4)

As discussed above, at the Γ point we can take angular momentum to be a good

quantum number and use the angular momentum states in further discussion. An

important note is that away from k = 0 this assumption is no longer valid and

care must be taken to use the correct approach when solving for the bandstructure.

The famous k · p method for calculating band structure is most commonly used for

calculations away from the center of the first Brillouin zone[39]. For now it is useful

to write the Bloch states from Eqn. 3.4 for the HH and LH in the angular momentum

representation as |ujjz〉, with j being the total angular momentum number and jz the z
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Figure 3.1: The electronic band structure for GaAs (or InAs). Due to spin-orbit
coupling the split-off (SO) band is shifted in energy by ∆so. Since this
is a diagram of the bulk band structure the light hole (LH) and heavy
hole (HH) bands are degenerate, however, when strain and confinement
are introduced, as is the case for QDs, the degeneracy is broken.
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projection of angular momentum. We have included the Clebsch-Gordon coefficients

and the arrow (↑ and ↓) direction signifies the spin states along the crystal growth

direction (z).

|u3/2

+3/2〉 = − 1√
2
|x+ iy〉 ↑

|u3/2

−3/2〉 =
1√
2
|x− iy〉 ↓

|u3/2

+1/2〉 = − 1√
6
|x+ iy〉 ↓ −2|z〉 ↑

|u3/2

−1/2〉 =
1√
6
|x− iy〉 ↑ +2|z〉 ↓ (3.5)

Of note is the fact that under confinement the LH band becomes split from the HH

band, this fact will become important when we discuss QDs since they are a highly

confined system in three dimensions. For now we will continue the discussion of QDs

by discussing the growth process and then optical coupling. The background we have

developed in this section will become important when discussing the interaction of

light with semi-conductors and specifically QDs

3.3 QD Growth

The InAs/GaAs QDs studied in this thesis are created in the Stranski-Krastanov

(SK) growth mode via molecular beam epitaxy (MBE). The 7% lattice mismatch

between the InAs and GaAs enables islands to form due to strain effects at the

interface. A key aspect of the SK growth mode is that as the InAs is deposited

on the GaAs substrate it will adapt to the GaAs lattice constant creating a thin

layer (wetting layer). Once the wetting layer has reached a critical thickness, the

intrinsic lattice constant of InAs dominates and pancake-like islands begin to form

(figure 3.2). The islands are finally capped with GaAs and form the three dimensional

confinement. The adaptation of the InAs lattice constant across the dot gives rise to
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Figure 3.2: The Stranski-Krastanov (SK) growth mode involves depositing a thin
layer of InAs atop a GaAs substrate; at first the InAs adapts to the
GaAs lattice constant but as more is InAs is deposited the strain causes
pancake-like islands to form.

large strain effects that shift the energy of the QD structure. So the total energy now

contains contributions from many interactions: strain, confinement, InAs bandgap,

and exciton binding energy. From our own measurements on these structures we

have determined the QD energy distribution to be centered around 1.3eV, and the

bandgap and exciton binding energy are known to be roughly 0.35eV. This means

that the confinement and strain play a major role in determining the energy of these

QD structures.

The samples studied in this thesis are embedded in a diode structure (either

Schottky or PIN). The purpose this serves is to allow for selective charging of the

QD. By applying a voltage across the QD region the valence and conduction bands

will be altered as a function of bias. When sufficient bias is applied the lowest energy

state of a single QD will fall below the Fermi level and it is then energetically favorable
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Figure 3.3: In a diode structure the gate voltage applied across the sample alters the
conduction and valence band with respect to the Fermi level. When a
specific charging voltage is applied, Vc, the lowest energy state of the QD
falls below the Fermi level and an electron can tunnel into the dot creating
a negatively charged dot

for an electron from the n-doped GaAs substrate to tunnel into the QD. A cartoon

of this process is given in figure 3.3. With a single electron confined to the QD we

now have a single qubit ground state (the spin state of the electron will serve as this

qubit) making a singly charged QD, X−, a viable system for quantum computing

architectures. One of the most attractive aspects of the charged QD is its coupling

to light via creation of excitons (electron-hole pairs), which is discussed in section

IV. First we should take some time to describe the two types of samples used in this

work.

3.3.1 Schottkey Diode Sample

The sample used for most of the work in the first part of the thesis consists of

single self-assembled QDs embedded in a Schottky diode heterostructure shown in
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Figure 3.4: The Schottky diode structure provides a mechanism to selectively charge
the QDs with single electrons. The doped GaAs substrate

figure 3.4. The sample consists of a bottom layer of doped GaAs substrate that will

form the bottom contact for the Schottky diode. Next a Si(n)-doped layer provides

the electrons that can tunnel into the dot creating a negatively charged QD state.

On top a 40nm layer of intrinsic GaAs is grown before the InAs layer is grown.

The InAs dot layer is typically between 2-3nm and is capped by a 280nm layer of

intrinsic GaAs. The top Schottky is created using a final layer of Ti (∼5nm). The

doping concentration used is ∼ 1018cm−3, which gives a high concentration needed to

inject electrons into QD structures under appropriately applied gate voltage across

the diode.

As said this sample is used in the beginning part of the thesis and will be indicated

when used. There are two main drawbacks to this sample structure; the titanium top

contact is only semi-transparent due to its small thickness and this causes absorption
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Figure 3.5: The DBR layers directly behind the QD layer reflect radiation back and
allow us to collect more of the emitted or scattered light from the QD.
Improved light collection make more complicated photon counting exper-
iments possible.

at the surface both for incident radiation and scattered or emitted radiation from the

QD. Also, radiation into the GaAs substrate can be lost in the material easier. The

next sample design uses mirrors just below the QD layer to direct radiation out of

the top of the sample so it does not have to pass through the 0.5mm thick substrate

with high probability of loss. More will be discussed about this sample in the next

section.

3.3.2 PIN Diode Sample with Bragg Mirror for Increased Light Collec-

tion

During the later parts of this work it will become necessary to employ a sample

with better light collection than the usual Schottky diode structure. To accomplish

this layers of a distributed Bragg reflector (DBR) are grown just below the QD layer to

direct radiation back through the top of the sample. The doped substrate is essentially
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the same as before with identical doping concentration for charging. However, now

the alternating layers of aluminum arsenide (AlAs) and GaAs are deposited to form

the bottom distributed Bragg reflector (DBR) layers; in particular, 10 periods are

used with alternating size of 82nm/69nm (AlAs/GaAs). Additionally, these layers

are n-doped to provide electrons for QD charging. On top of the DBR layers is a

96nm of n-doped GaAs which forms the negative part, or bottom contact, of the PIN

diode. Then a layer of intrinsic GaAs (40nm) is grown to provide the base of the

InAs QD layer. The InAs layer is next and its growth procedure is identical to the

previous sample and is capped by another layer of intrinsic GaAs (66nm). These

intrinsic layers along with the dot layer form the ”I” part of the PIN diode. There

is actually another layer of n-doped GaAs (10nm) and intrinsic GaAs (40nm) before

the final p-doped GaAs (40nm) layer is grown to complete the diode. The reason for

this extra layer is to decrease the electric field at the QD layer so we can work at a

manageable voltage (∼0-1V) and avoid drawing too much current, which can lead to

local heating effects, so perhaps it is more accurate to call this a PININ diode. A

final set of four un-doped DBR layers completes the sample and provides us with a

weak cavity with about a 15nm width, giving us a Q-factor of ∼63. We see a slight

enhancement in counts, but Purcell effects have yet to be observed.

The placement of the contacts is extremely important for the stability of this

sample. Many earlier version included Schottky diode structures where we would

observe the QD resonances shift in energy on the order of minutes. The belief was

that charges were becoming trapped in the DBR layers since the diode applied an

electric field across the entire sample. So to try and avoid this problem a PIN diode

structure was introduced where the voltage contacts would be etched down to the

appropriate layer so that only the QD layer was subjected to the applied bias and not

the entire sample (seen in figure 3.5). Under these conditions we were able to show

stability of QD resonances and increased collection, which will be shown in the form
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of data later in the thesis.

A tremendous amount credit and gratitude goes to Allan Bracker and Dan Gam-

mon at the Naval Research Lab (NRL). They have been working on this sample

design for some time and have worked very closely with our lab to determine the

parameters that work and give the best results. We are grateful to them for their

hard work. Without the improvements over the Schottky diode sample, the newer

generation of experiments using QDs causing unfeasible integration times to get the

proper statistics for a measurement.

3.4 Optical coupling of QD states

To begin the discussion of optical coupling to QDs we will discuss briefly excitons

in bulk. Incident radiation with energy at or above the bandgap can promote an

electron from the valence band into the conduction band leaving behind a hole. For

the case where the exciton is extended over many lattice sites we use the band edge

electrons and holes to describe the excitonic dynamics [76]. These are known as

Wannier-Mott excitons. The other type of exciton is called a Frenkel exciton which

only extends to a few lattice sites. The theory for Frenkel excitons requires a full

treatment of the bandstructure and is not within the scope of this work. The Coulomb

interaction attracts the positive holes to the negative electrons and appears as a

potential term in the Hamiltonian for the electron-hole system. The Mott excitons

can be described using effective mass theory where we write the Schrödinger equation,

(
− ~2

2m∗e
∇2
e −

~2

2m∗h
∇2
h −

e2

4πε|re − rh|

)
Ψ = EΨ. (3.6)

Here Ψ is is given by the Bloch states derived from the periodic nature of the crystal,

Ψ = eik·ruk(r), (3.7)
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where uk(r) has the periodicity of the lattice. This two body problem can be distilled

to a one body problem mimicking the hydrogen atom Hamiltonian and solved in the

same way [77]. By rewriting the one-body Hamiltonian we can solve Schrödinger’s

equation for the two distinct parts giving us a plane wave solution and a hydrogen

like solution

H =

plane wave solutions to SE︷ ︸︸ ︷
~2K2

2(m∗e +m∗h)
+

~2k2

2m∗r
− e2

4π|r|︸ ︷︷ ︸
hydrogen-like solutions to SE

(3.8)

where,

k =
m∗eke +m∗hkh
m∗e +m∗h

r = re − rh

K = ke − kh

The plane wave solution is given by,

φ(R) = eiK·R (3.9)

with,

R =
m∗ere +m∗hrh
m∗e +m∗h

.

The exciton hydrogen-like envelope functions look like,

ψ100(r) =
1
√
πae

e−r/ae (3.10)

Here ae is the exciton Bohr radius and it varies from the usual a0 according to the

effective mass. The ae for these materials ranges from 10-50 nm. Also, from this

approach binding energies for the exciton arise and what we observe is that the typical

binding energy is around 5meV. Recalling that kT at room temperature is 25 meV,
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we can clearly see why these systems must be studied at liquid helium temperatures,

which is still 0.4 meV.

The techniques used in the next section to derive the selection rules for transi-

tions will be more like the techniques used in atomic physics using a matrix element

approach, but it is instructive to keep in mind the discussion of the exciton since it

is what gives rise to the optical coupling in the QD systems.

3.4.1 Selection Rules at Zero magnetic field

From section 3.2 we determined that the electronic bands obey the symmetry of

the point group at k = 0, and since these are direct bandgap semiconductors we

will use the angular momentum formalism to calculate the selection rules for QD

transitions. In section 3.3 we introduced a negatively charged QD, a single electron

confined to the ground state, and this will be the system of investigation for the

remainder of the thesis. With this in mind let us calculate the selection rules for a

singly charged QD at zero magnetic field.

For the purposes of this discussion it is sufficient to assume a semi-classical picture

where the electric field interacting with the dot is given by,

E(t) = Ecos(kz − ωt), (3.11)

with z as the propagation direction anti-parallel to the crystal growth axis. The semi-

classical Hamiltonian for interactions of radiation with an electron in the effective

mass approximation is given by,

Hem =
(p− eA)2

2m∗e
+ V (r). (3.12)

Here we have chosen to work in the Coulomb gauge, with A as the vector potential.

All of the rich semiconductor physics, such as confinement, that we discussed in
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section 3.2 has been swept into the V (r) term and we will consider the additional

terms as perturbations to the original eigenstates.

Htot =

H0︷ ︸︸ ︷
p2

2m∗e
+ V (r)− e

m∗e
p ·A︸ ︷︷ ︸
HI

+

neglect 2nd order︷ ︸︸ ︷
�
�

�
�e2

2m∗e
A2 (3.13)

The p · A can be rewritten in a more convenient form using the dipole moment,

µ = −er, and the electric field,

HI = µ · E = −er · E (3.14)

Since our goal is to find the allowed transitions in a single charged QD we should

look at the configuration of the ground and excited states. We start with an single

electron in the conduction band and a full valence band. An exciton (electron-hole

pair) is created when the system interacts with an optical field of sufficient energy.

The three particles now form a system we call a trion. An example of the electron

and hole configuration is given in figure 3.6. The two electrons in the conduction

band will have opposite spin leaving the hole spin as the angular momentum carrier.

As we saw before the conduction band states behave as s-like atomic orbitals and the

valence band states as p-like atomic orbitals. To calculate the selection rules we will

use the Wigner-Eckart theorem so describing both r and E in terms of their spherical

components is an important first step,

r±1 = ∓x± iy√
2

r0 = z (3.15)
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Figure 3.6: Upon excitation an electron from the valence band is promoted to the
conduction band leaving behind a hole. The two conduction band elec-
trons and the valence band hole form the trion excited state|Tz±〉, where
the ± indicates the direction of the hole spin. Due to Pauli exclusion the
two electrons in the conduction band will have opposite spin making the
hole spin the dominant angular momentum
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and we look at the polarization vectors when considering the electric field,

E = E0ε0 − E+1ε−1 − E−1ε+1, (3.16)

where,

ε±1 = ∓ x̂± iŷ√
2

and,

ε0 = ẑ.

Now we represent the ground states and trions states in terms of angular momentum,

|j,mj〉,

|z±〉 =
∣∣∣1
2
,±1

2

〉
,

|Tz±〉 =
∣∣∣3
2
,±3

2

〉
. (3.17)

Now to find the allowed transitions we look at the matrix elements for transitions

from the ground state to the excited state.

〈Tz+| − er · E|z+〉 =
〈

3

2
,+

3

2

∣∣∣ r0E0ε0 − r−1E−1ε+1 − r+1E+1ε−1

∣∣∣1
2
,+

1

2

〉
(3.18)

From Wigner-Eckart we are left with one non-vanishing Clebsch-Gordon coefficient,

〈
3

2

∥∥∥ er ∥∥∥1

2

〉〈
1

2
, 1,+

1

2
,+1|3

2
,+

3

2

〉
E−1ε+1 (3.19)

And the reduced matrix element gives us the strength of the dipole interaction. Here

we can plainly see that only ε+1 polarized light couples the |z+〉 → |Tz+〉. Similarly
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Figure 3.7: From the derived selection rules only circularly polarized light couple the
transitions and the cross transitions are forbidden at zero magnetic field.
Cartoons of the band diagram are shown beside each transition to show
the configuration in the conduction and valence band

we can write down the matrix elements for the other possible transitions

〈Tz−| − er · E|z−〉 =
〈

3

2

∥∥∥ er ∥∥∥1

2

〉〈
1

2
, 1,−1

2
,−1|3

2
,−3

2

〉
E+1ε−1

〈Tz−| − er · E|z+〉 = 0

〈Tz+| − er · E|z−〉 = 0

Therefore, we have shown that only circularly polarized light couples the trion tran-

sitions at zero magnetic field and by recalling that σ± = ∓ε±1, we can draw the

selection rules for this system and shown in figure 3.7

At zero magnetic field the electron states are degenerate making it hard to store

information in the spin state since there is no discernible difference between the two.

We could apply a magnetic field in the growth direction (Faraday geometry), but the

selction rules would remain unchanged since the axis of quantization is the same as

at zero field. So, the forbidden cross-transitions makes it impossible for us to transfer
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population from one to the other via the excited states. The goal would be for us to

mix these states and transitions while also splitting the electron energy. The way we

do this is by applying a transverse magnetic field (the Voigt geometry) that changes

the axis of quantization, thereby mixing the zero field ground and excited states. In

the next section we determine the selection rules for our system under such conditions.

3.4.2 Selection Rules in the Voigt Geometry

In the previous section we discussed the optical coupling to the QD system and

introduced the concept of a singly charged QD. The selection rules for the trions

states were derived, however one missing element was the ability to manipulate the

spin state. We will see that using a magnetic field in the Voigt geometry, changes the

axis of quantization thereby mixing the z-basis states allowing for cross transitions

to exist.

The Hamiltonian for the applied magnetic field B = Bx̂ is the same Zeeman

Hamiltonian we are accustomed to, only now we have both electron and hole spins

to take into account. The new Hamiltonian is,

HB = geµBB · Ŝe − ghµBB · Ŝh (3.20)

with ge and gh as the electron and hole g factors, respectively, and µB is the Bohr

magneton. We can easily see the mixing of the states by writing the Hamiltonian in

the z-basis,

HB =



|z+〉 |z−〉 |Tz+〉 |Tz−〉

〈z + | 0 1

2
~geµBB 0 0

〈z − | 1

2
~geµBB 0 0 0

〈Tz + | 0 0 0 − 1

2
~ghµBB

〈Tz − | 0 0 − 1

2
~ghµBB 0

 (3.21)
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When we solve for the new electron eigenstates and eigenenergies are,

|x±〉 =
|z+〉 ± |x−〉√

2

Ex± = ±1

2
geµBB (3.22)

Similarly for the trion states,

|Tx±〉 =
|Tz+〉 ± |Tx−〉√

2

ETx± = ∓1

2
ghµBB (3.23)

Now all that is left is to calculate the new selection rules in the Voigt geometry

using our new eigenstates. This follows that same basic premise as the calculation

done in section 3.4.1 using Eqns. 3.14 and 3.18, only now the transitions we are

looking for are the linear combinations of the old z-basis eigenstates. Since we have

already determined the z-basis matrix elements, the extensions is somewhat trivial

as shown below,

〈Tx+| − er · E|x−〉 =
−1

2

[〈
3

2
,+

3

2

∣∣∣+
〈

3

2
,−3

2

∣∣∣] er · E [∣∣∣1
2
,+

1

2

〉
−
∣∣∣1
2
,−1

2

〉]

=
−1

2

[〈
3

2
,+

3

2

∣∣∣ er · E ∣∣∣1
2
,+

1

2

〉
−
〈

3

2
,+

3

2

∣∣∣ er · E ∣∣∣1
2
,−1

2

〉]

− 1

2

[〈
3

2
,−3

2

∣∣∣ er · E ∣∣∣1
2
,+

1

2

〉
−
〈

3

2
,−3

2

∣∣∣ er · E ∣∣∣1
2
,−1

2

〉]
These matrix elements are exactly the same as we calculated before, so we can sim-

ply use the results from 3.18 and just using the polarization notation the allowed
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Figure 3.8: (a) The degenerate two-level system at zero magnetic field showing cir-
cularly polarized selection rules and forbidden cross-transitions. (b) The
introduction of a transverse magnetic field gives acts to mix the z-basis
ground and excited states and converts the circular polarization selection
rules into linear ones. Furthermore, this system leaves us with a well de-
fined qubit (|x+〉 and |x−〉), and the ability to transfer population from
one spin state to the other by utilizing the now optically accessible trion
states.

transitions become,

〈Tx + |er · E|x−〉 ∼ −ε+1 + ε−1 ∼ x̂

〈Tx + |er · E|x+〉 ∼ −ε+1 − ε−1 ∼ iŷ

〈Tx − |er · E|x−〉 ∼ −ε+1 − ε−1 ∼ iŷ

〈Tx − |er · E|x+〉 ∼ −ε+1 + ε−1 ∼ x̂ (3.24)

The x̂ and ŷ vectors correspont to horizontally (H) and vertically (V) polarized tran-

sitions, respectively. The final four level diagram that we will use for the remainder

of our magnetic field studies is shown in figure 3.8.

Now we we are working in a system with cross transitions, which allow us to

transfer population from one spin state to the other. Also, the splitting of the ground

state spin gives us a well defined qubit in the form |x+〉 and |x−〉. The remainder of
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the thesis will build up our ability to coherently manipulate the spin state. We will

show entanglement between a photon emitted from the QD and the spin state as well

as outline a new experiment to teleport information from another source onto the the

QD spin state, which utilizes the entangled photon.

3.5 Conclusion

This chapter served to introduce the theoretical background for semiconductor

QDs to provide some context as we move forward. We described the band structure

of the bulk materials in QDs and their optical properties. These properties extend

to the QD and we used that theoretical framework to determine the allowed optical

transitions in InAs QDs. Finally we showed that under a transverse magnetic field

we can create a spin qubit and use optical trion transitions to move between spin

states. The later chapters will focus heavily on the optical techniques we employ to

manipulate the spin states.
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CHAPTER IV

Optical Investigation of Single QDs

4.1 Introduction

The selection rules for both the neutral and trion systems derived in the previous

chapter give rise to allowable paths for manipulation of the QD ground and excited

states. Many quantum computing protocols require optical initialization, rotation

and readout of single spins and in the case of the trion system we see that this can

be accomplished by exploiting the derived energy level structure[2, 88, 66, 45]. This

chapter discusses the frequency domain and time domain optical techniques used

to identify QDs. Spectrally resolving the luminescence from a QD sample, after it

has been excited with a laser tuned above the band-gap, identifies individual QDs

present in our field of view. Narrow linewidth continuous wave (CW) lasers probe

the individual transitions to determine the energy of the state and the linewidth

associated with the transition. Pulsed lasers or time gated CW lasers are used to

study the time dynamics of QD transitions and also to manipulate the QD electron

spin. This chapter will cover the discovery and characterization of single QDs and

evolve to discuss how spin manipulations are carried out.
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4.2 Geometry of Optical Excitation

We begin by discussing how the laser field is made to interact with the QD sample.

As was discussed in chapter III, the QD samples are embedded in a diode structure

that allows tuning of the conduction and valence band relative to the fermi level. At

the appropriate applied bias an electron can tunnel into the QD and become confined,

giving rise to a trion system under excitation. To optically excite the system we use

a high numerical aperture lens, bolted to the sample to ensure that the sample-lens

system remains rigid while cooling to liquid Helium temperatures. The lens (Thorlabs

354330-B) has a focal length of 3.1mm and a numerical aperture of 0.68 creating a

tight, 1µm, beam spot. The dot fluorescence can then be collected by the focusing

asphere (the reflection geometry) or another asphere can be placed on the back of the

sample to collect the forward fluorescence (the transmission geometry). The sample-

asphere system can be seen in figure 4.1.

4.3 Photoluminescence Spectroscopy

The most versatile approach to identifying QD charge states and resonant energies

in a given field of view would be to ”turn on” all of the QDs in that region and collect

the light emitted from each of these using a spectrometer. Collecting the emission

from the QDs as a function of applied bias to the sample shows the energy of the

different charge states. The ’turning on” of the QD transitions is achieved by exciting

the sample above the QD band gap (discussed in chapter III) thereby injecting carriers

(electrons and holes) into the bulk. The carriers non-radiatively decay to the Γ point

where they then radiatively recombine at the specific QD charge state resonance

energy; this technique is known as photoluminescence (PL) spectroscopy. A 920nm

long-pass filter is placed before the spectrometer to remove the excitation laser light

so as not to saturate the spectrometer and only let through the light coming from the
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Figure 4.1: The asphere-sample mounting scheme. The aspheres are held in place on
either end of the ceramic sample mount by titanium mounts. The mounts
are rigidly clamped to the sample by using fine threaded set screws that
also act as a fine tuning of the asphere focus. Additionally, there are 4
set screws on the edge of the mount holding the lens in place and allow us
to excite different regions of the samples. The usage of brass set screws
and titanium lens mounts is done to avoid changes in alignment when a
magnetic field is applied.
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Figure 4.2: A typical diagram of a single grating spectrometer. The light is separated
by the grating and focused on to a liquid nitrogen cooled CCD

QD transitions.

The spectrometer used for these PL measurements is a HR640 single grating

spectrometer with a 1200 groves per mm (g/mm) grating. After the light is separated

into frequency components by the grating it is focused on to a charge-coupled device

(CCD) camera with 1024 pixel resolution. A schematic of this set-up is provided in

figure 4.2. A capture of the CCD is taken at different biases and integrated together

in a 3 dimensional plot where the deterministic charging is observed. An example

of a single spectrum is seen in figure 4.3, and a 3D plot showing the charging of the

different QD states is provided in figure 4.4.

PL is an excellent technique for the early characterization of QD transitions and

charge states but for the purposes of coherent spectroscopy and control it is somewhat

lacking. For more precise measurement and control of the QD transitions we move

to resonant CW excitation and readout. Using narrow linewidth CW lasers to probe
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Figure 4.3: A single spectrum taken using the CCD and the HR640 spectrometer.
The single peaks observed over the background are the individual QD
resonances separated in wavelength. The dots are excited with a laser
tuned just above the band gap (∼ 890nm) and the excitation laser is
filtered out using a 920nm long-pass filter leaving only the luminescence
from the excited QDs

36



Figure 4.4: A bias dependent PL map. We can see as the gate voltage is tuned
charge states will turn on and off. There is a ∼ 6meV difference between
the neutral exciton X0 and the negative exciton state, trion, X−1. This
serves as a guide to where the trion state should be in bias and voltage
but complete confirmation of the state comes from resonant excitation
experiments.

transitions we can extract more information about the QD optical transitions.

4.4 Resonant Optical Interactions with a Two Level System

Before we can discuss the techniques used in resonant excitation of a QD we must

first develop the theoretical framework for optical interactions. For simplicity we will

take the case of a resonant laser interacting with a two-level system, which is the zero

magnetic field structure for a trion system. We use a semi-classical approach to solve

for the steady state dynamics of an ideal system under resonant excitation. We can

start in the field interaction representation and write the Hamiltonian for this system

under influence of a semi-classical radiation field in the rotating-wave approximation

(RWA)[7].

˜H(t) =

 − δ

2
χ(t)∗

χ(t) δ

2

 (4.1)
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Figure 4.5: A sample 2 level system in the field interaction picture where χ is the Rabi
frequency and δ = 0 indicates that the radiation field is on resonance with
the transition.

Here δ = 0 corresponds to resonant excitation and χ is the Rabi frequency given by,

χ(t) =
µE0(t)

2~ (4.2)

A graphical description of the two level system is provided in figure 4.5.

The discussion follows the from that found in Ref[7]. It is useful to discuss coupling

of a radiation field to a 2 level system using the density matrix formalism. If we have

a hermitian operator O, we can look for the expectation value of O given an arbitrary

state |ψ(t)〉. We find that by representing |ψ(t)〉 using a linear combination of basis

kets
∑

n
an(t)|n〉 the expectation value becomes,

〈ψ(t)|O|ψ(t)〉 =
∑
n,m

a∗m(t)an(t)〈m|O|n〉 (4.3)

The density matrix, ρ(t) is made up of elements an(t)a∗m(t) so, ρ(t) = |ψ(t)〉〈ψ(t)|.
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Now the expectation value of O becomes,

〈ψ(t)|O|ψ(t)〉 = Tr[ρ(t)O]. (4.4)

In the field interaction picture we can now write solutions for the density matrix

elements for our 2 level system by using,

ρ̃ = e−i
ωt
2 σzρei

ωt
2 σz , (4.5)

and time evolution given by,

−i~dρ̃
dt

= [H̃ ′ρ̃] + relaxation terms (4.6)

Here σz is just the usual 2x2 Pauli matrix. From here we can go on to solve for the

matrix elements of ρ.

˙ρ11 = −iχ(t)∗ρ̃21 + iχ(t)ρ̃12 + γ2ρ22

˙ρ22 = iχ(t)∗ρ̃21 − iχ(t)ρ̃12 − γ2ρ22

˙̃ρ12 = −iχ(t)∗[ρ22 − ρ11] + iδρ̃12 − γρ12

˙̃ρ21 = iχ(t)∗[ρ22 − ρ11]− iδρ̃12 − γρ12 (4.7)

The relaxation terms from Eqn. 4.6 are included above where γ2 denotes the excited

state lifetime and γ coherence decay rate of ρ12. These two quantities are related by

γ = γ2/2 + Γ, where Γ is the dephasing decay rate and represents the collision rate

in atomic vapors. The meaning of these decay rates is worth further discussion.

The meaning of γ2 is simply the decay of population from the excited state to

the ground state. Now γ is slightly more complicated since it represents the decay

of the coherence terms ρ12 and ρ21. These terms correspond to the in phase and
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Figure 4.6: An example of a bloch sphere diagram where the green arrow represents
the state of the system.

out of phase components of the two level transition dipole moment with the applied

field. In the absence of dephasing the relationship of these two quantities reduces to

γ = γ2/2. This expression has a well known analogue in the world of NMR which

states that T2 = 2T1, where T1 is the spin-lattice relaxation rate and T2 is the is the

spin-spin relaxation rate [49]. The meaning of T1 in NMR is the rate by which the

spin magnetization relaxes, in the direction of the applied field, into equilibrium with

the surroundings; this can be compared to the radiative lifetime in atomic systems,

or 1/γ2. T2 represents the transverse decay of the spin magnetization in the direction

transverse to the applied magnetic field. A good way to think about this quantity is

by shifting the discussion of atomic systems to the Bloch sphere picture. An example

of the Bloch sphere for a two-level atom is provided in figure 4.6. The decay in length

of the bloch vector in the z direction gives the radiative lifetime and the decay in the

transverse plane gives the coherence decay rate, γ. The Bloch sphere visualization
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is a useful tool when considering the dynamics of a system. The rotations of the

Bloch vector in the transverse and longitudinal direction reveal information about

the coherent dynamics of the system.

With a better understanding of the decay terms in our system we can solve for

the steady-state solutions of equations 4.7 where in particular we get the expression

for the excited state population ρ22,

ρ22 =
2γ

γ2

|χ|2(
γ2 + δ2 + 4γ

γ2
|χ|2
) (4.8)

4.5 Voltage Modulated Absorption

To investigate the quantum dot trion transition we use narrow linewidth continu-

ous wave (CW) lasers tuned to the trion resonance. As the lasers scan across the trion

resonance a dip in the transmission of the laser through the sample will occur having

the Lorentzian profile dictated by Eqn. 4.8. The amount of the beam absorbed when

on resonance is usually about 0.1%, which is extremely difficult to observe over the

laser intensity fluctuations present in the optical set-up. To observe the signal buried

in the noise we employ a lock-in detection scheme.

The lock-in works by taking an input signal, in this case from an avalanche pho-

todiode (APD), and multiplies it by a reference signal and then integrates over a

specified time constant (usually 100ms-500ms). The lock-in will pick out a signal

occurring at the reference frequency. So, if there is a way to modulate the signal of

interest then we only will pick up signal in that specific frequency band and all other

sources of noise not in the reference frequency band will be highly suppressed. In

typical measurements using lock-in methods two optical fields are used and a single

modulation frequency is placed on one of the beams and this serves as the reference

for the lock-in. This is often referred to as a pump-probe method, where dynamics in

the system induced by the presence of the pump field will be modulated at ωpump so
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the signal observed in the probe field will be observed at ωpump. If we are looking at a

signal modulated at ωpump, then leakage of the pump beam on to the detector would

cause the lock-in to register a unwanted signal. In these experiments great care must

be taken to shield the detector from any pump light, this is generally achieved using

polarization rejection and/or spatial separation of the beams. The diode nature of

our set-up allows us to modulate the signal of interest without requiring a second

pump beam.

In our case the diode nature of the sample allows us to modulate the sample

instead of another beam. As noted previously in 3.3, the charge state of the QD and

detuning can be changed by adjusting the gate voltage across the Schottky diode.

So, by modulating the gate voltage using a square wave we can bring the trion on

and off resonance with an incident CW laser. By collecting the laser light after it has

interacted with the QD we should see a definitive drop in laser intensity as the dot is

switched on and off by the modulated voltage. The optical geometry for this scheme

is shown in figure 4.5.

Depending on the size of the applied modulation we can get different line shapes.

If we use a modulation depth that is less than the linewidth of the of the transition

we get a derivative lineshape. Typically we use modulation amplitudes that are of

order the linewidth or slightly larger (we refer to this as medium modulation). These

techniques are used first to find the energy of the QD transition after a PL bias map

is performed. A sample trace of a medium modulation scan is shown in figure 4.5. To

get a more accurate scan of the state linewidth using absorption we use large voltage

modulation and isolate the transition (seen in figure 4.5.

4.6 Resonant Rayleigh Scattering from a QD

The trion system described above provides us with a degenerate two level system

with circularly polarized selection rules as shown in Fig. 3.8a. Experiments involving
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!

Figure 4.7: The homodyne optical set-up. The sample gate voltage is choped by a
signal generator and as the QD is swept on and off resonance the input
laser beam experiences absorption when the voltage is on resonance. This
signal manifests in the lock-in as a DC signal that follows a Lorentzian
line shape as a function of detuning.
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Figure 4.8: An example absorption scan for a medium modulation depth of 50mVpp.
We can see that if we imagine decreasing this modulation the two features
will combine in a derivative lineshape. Even though this is absorption the
phase sensitive detection nature of the lock-in detection scheme gives both
a positive and negative peak. An added difference in this scan is that we
scan the detuning by scanning the voltage with respect to the a fixed laser
frequency. The mirror of this would be to scan the laser frequency while
keeping the offset voltage fixed as in figure4.5.
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Figure 4.9: An absorption scan similar to figure 4.5 only now the modulation depth
is increased to allow only one peak to appear in a given scan range.
Here, the laser is scanned while the voltage is kept fixed (aside from the
modulation of course) and a Lorentzian lineshape is recovered as the laser
passes across the trion resonance.
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photon counting with QDs, such as encountered in some entanglement protocols,

require the suppression of the excitation laser to allow the detection of photons that

are emitted or scattered by the QD exciton (or trion). A schematic of this detection

method can be found in figure 4.6. Previous measurements utilize lock-in detection

and avalanche photodiodes (APDs) to observe the absorption (a measure of the change

in transmission when the laser is on resonance vs off, or DT/T) of laser light by the

QD [1]. In those experiments, the APDs measures the transmitted laser intensity

instead of the direct single photon scatter from the QD. Here, we use polarization

rejection to filter out the excitation laser so that we are only sensitive to single photons

scattered from the QD (i.e. the resonant Rayleigh scattering).

For the degenerate two-level system described above linear polarization couples

both of the transitions, so we set our input laser to vertical (V ). Two aspheric

lenses are placed on either side of the QD sample, the front for excitation and the

back for collection. The QD will scatter in 4π, but we are only sensitive to the 2%

collected by the back asphere. The laser light however is almost completely collected

and therefore must be removed to observe the scattered photons. A polarizer set to

H in the transmission geometry suppresses the excitation laser by a factor of 105.

Unfortunately, this level of suppression is insufficient so the use of an optical fiber

for spatial filtering gives an extra factor of 100. A single photon avalanche detector

(SPAD), which is an APD operated in geiger mode (operated above the breakdown

voltage), is sensitive to single photon events that cause the device to register a single

event and reset. With the SPAD and a ∼ 107 level of suppression, scanning the laser

across a QD resonance reveals a Lorentzian shape signal shown in Fig. 4.11. The

state linewidth for this QD is 623±25 MHz.

A final important step before moving to the time-resolved data involving QDs is

to determine if the trion system of interest is indeed a single photon emitter. The

most common method to determine if a system is a single emitter is to perform a
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Figure 4.10: The optical set-up for resonant Rayleigh scattering. The excitation laser
is focused on the sample and then a combination of polarization and
spatial filtering is used to suppress the excitation laser and allow only the
scattered single photons to be observed by the single photon avalanche
photo-diode (SPAD).
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Figure 4.11: An example CW resonance fluorescence scan with a Lorentzian fit yield-
ing a line width of 623 ± 25 MHz.
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Figure 4.12: The intensity correlation spectrum, g(2)(τ), for a trion system at zero
magnetic field. The dip in the spectrum below 0.5 indicates the non-
classical nature of the emitter.

temporal intensity correlation measurement, g(2)(τ). The arrival times of the photons

are recorded in a Hanbury Brown and Twiss (HBT) type set-up where a dip at zero

delay indicates a non-classical signature[16, 63]. Data indicating the single emitter

nature of the QDs studied here is found in Fig. 4.12.

The excitation laser rejection and the ability to recover the resonant Rayleigh

scattered spectrum are essential to photon counting with QDs. The observation of

many of the coherent properties of the QD require the ability to do single photon

counting as seen in the g(2)(τ) measurements. In the next section more sophisticated

time tagging techniques, required to performed advanced correlation measurements,

are introduced.
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4.7 Time Domain Fluorescence

Here we present data probing the nature of coherent population oscillations, Rabi

oscillations, and discuss excitation techniques that are useful for other coherent con-

trol experiments using QDs [73].

In the previous section we reported on observations in the frequency domain using

CW lasers for excitation. A further tool we can use in characterizing the coherence

properties of QDs is to observe the fluorescence in the time domain. By time gating

the excitation of a QD, we can observe the dynamics during and after excitation that

are not available in CW measurements. By using an electro-optic modulator (EOM),

we time gate a resonant CW laser, synced to a picosecond event timer. The QD light

is time tagged using a single photon detector with 40 ps timing jitter and a RF pulse

generator sets the master clock and provides the pulse train for the EOM, which

intensity modulates the laser. Fig. 4.13 shows a typical diagram for this technique.

A direct measurement of the QD’s transient fluorescence follows the dynamics of

the excited state for this 2 level system. Using pulse widths less than the radiative

lifetime, we observe the characteristic exponential decay of the excited state popu-

lation (ρ22), shown in Fig. 4.14. From these data, we extract a radiative lifetime of

640 ± 25 ps which is the inverse of the population decay rate. As the incident power

increases, the exponential decay will increase until we reach a π pulse meaning all

the population has been transferred to the excited state. Increasing the power past

the π power drives the system back to the ground state before emission and thus

should decrease the counts present in the QD emission spectrum. Fig. 4.15a shows

that as the power increases the peak emission along the decay curve (the part of the

histogram after 250 ps) decreases. A more pronounced visual of this effect is seen

when we integrate over the emission and plot the integrated counts as a function of

square root of power, Fig. 4.15b. These are Rabi oscillations and are evident in the
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Figure 4.13: Diagram of a typical time tagged fluorescence set-up. The excitation
laser is rejected using polarization allowing detection of the QD fluores-
cence. The EOM is a Lithium Niobate Mach-Zhender where a DC bias
applied in one arm creates constructive or destructive interference at the
output and the RF input modulates between the constructive and de-
structive interference. This creates an amplitude modulated, quasi-CW,
pulse mirroring the shape of the applied RF signal.
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Figure 4.14: An integrated histogram of the time tagged emission from the QD on a
log scale with the exponential fit. Excitation is performed with a 250 ps
resonant pulse. The single exponential fit gives a lifetime of 640 ± 25 ps

Figure 4.15: (a) Histogram data from a resonant 250 ps pulse with increasing powers
showing the increase and decrease in emission as the power surpasses
the π power (12P0). (b) Integrated counts taken from the black dotted

triangle in (a), are plotted as a function of
√

(Power) to show the Rabi
turnover.
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formula for the excited state population under the influence of a driving field E0,

ρ22(t) = sin2

(
µE0t

2~

)
. (4.9)

Where µ is the optical dipole moment. This formula, however, neglects effects from

spontaneous emission and decoherence, which are vital to understanding the complete

dynamics of the system. Including these effects and solving for the excited state

population we find,

ρ22(t) =
Ω2

0

2(Ω2
0 + γγ2)

[
1−
(
cos(λt) +

γ + γ2

2λ
sin(λt)

)
e−

γ+γ2
2 t

]
(4.10)

with

λ =

√
Ω2

0 −
(γ − γ2)2

4

Ω0 =
µE0

~

(4.11)

Here, we assume resonant excitation, and the generalized Rabi frequency reduces to

the usual Ω0. The exponential in Eqn. 4.10 shows that the oscillation term decays

with the average of the longitudinal, γ2, and transverse, γ, decay rates. An interesting

physical interpretation to take from this is that as the optical Bloch vector rotates

about the one axis, x, it spends an equal amount of time in both y and z. The

magnitude along each axis will decay according to the separate decay rates where y

decays at γ, and z at γ2

Eqn. 4.10 follows the excited state population for a constant field, rendering the

analysis on the 250 ps pulse data incomplete when considering the time evolution

of ρ22 under constant driving field. To further probe the behavior of the excited

state, we should look at excitations with a duration larger than the radiative lifetime.

Increasing the pulse width and continuing to monitor the fluorescence in the same
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Figure 4.16: A scaled histogram of the 2 ns excitation pulse (black) and the resultant
QD fluorescence (blue) when the excitation pulse is suppressed using
polarization rejection.

way allows for the direct probe of Eqn. 4.10.

As the pulse width and power are increased, we begin to see oscillations in the

time tagged emission. A scaled example of the pulse and the quantum dot scattering

are shown in Fig. 4.16. The oscillation frequency increases linearly with the square

root of power as expected. Due to the previous determination of the population

decay lifetime, 1/γ2, only the Rabi frequency and decoherence lifetime, γ, are left as

unknowns. Using data for multiple input powers we can fit Eqn. 4.10 during the

excitation pulse leaving Ω0 and γ as fitting parameters. From the fits we extract a

decoherence lifetime, 1/γ, of 1.22 ± 0.06 ns. In the absence of pure dephasing we

would expect that 2γ = γ2, which is what we observe and is consistent with other

studies done on InAs QDs[87]. Also, of interest is the comparison of this time domain

data to the CW data shown in Fig. 4.11 of the previous section. The line width

extracted from the CW laser scan is 623 ± 25 MHz, which would imply a decoherence
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Figure 4.17: Histograms of time resolved QD fluorescence resulting from a 2 ns exci-
tation pulse. The time-dependent Rabi oscillations are seen to increase
in frequency as the excitation power increases. The input powers are
given on each graph.

lifetime of 511 ± 21 ps. Since the time domain measurements indicate a much longer

coherence time we must conclude that the frequency domain measurements of the line

width are broadened by some spectral wandering process, which has been previously

proposed[86, 42].

Previous studies of Rabi oscillations in QDs utilize short pulses, 2 ps, to drive the

oscillations and are observed as a function of the electric field by way of a CW readout

laser[80]. Additional experiments show the onset of Rabi oscillation as they manifest

in the intensity correlation function, g2(t), of the QD emission[63]. However, our

experiment is unique in that we are able to follow the time evolution of the system
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as predicted by the solution to the initial value problem of an exciting field, Eqn.

4.10. By using both long (2 ns) and short (250 ps) pulse studies we have determined

that the frequency domain response of the QD appears to be broadened beyond the

natural linewidth by a spectral wandering process and that the optical decoherence

rate is limited by the spontaneous emission rate. Verification of this has profound

implications for QDs as nodes in a quantum memory since many architectures utilize

photons as carriers of quantum information between nodes[23, 28, 91]. A short optical

coherence time would significantly diminish the effectiveness of such systems.

4.8 Optically Induced Spin Rotations

Before we can move on to more complicated entanglement and teleportation stud-

ies with QD spins and photons we must first develop a technique to coherently control

the QD spin state using fast pulses. The speed of these pulses ( 2ps) is consistent

with the DiVincenzo criteria for a scalable quantum network using QDs[51], which is

fast gate operations. In the most simplest form, gate operations are merely spin flips,

which is what we will be discussing in this section.

As stated previously, section 3.4.2, the trion system in the Voigt geometry gives

rise to a four level system with linearly polarized selection rules. The ground state

spin (|x+〉 and |x−〉) is the qubit of interest and rotations or spin flips will refer to

manipulations of this spin state. By using a pulse detuned from the trion states we

can drive a two-photon or stimulated Raman transition [19, 30]. The system can

now be thought of as an effective two level system consisting of the ground state

spins, where π pulses and π/2 pulses will transfer population or place the system in

a superposition of spin states, respectively. A schematic of the level diagram and the

pulse detuning is given in figure 4.8.

Now we look at the current system when acted upon using this Raman pulse to

determine the best way to model spin rotations which will become important in the
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Figure 4.18: The four level diagram for a trion in the Voigt geometry under excitation
of a detuned ( 250GHz) Raman pulse that drives spin flips between |x+〉
and |x−〉 dependent on the pulse area.

next chapter. So we can write the full Hamiltonian in the field interaction picture

under the influence of a detuned pulse as,

˜H(t) =


−~∆e

2
0 V13 V14

0 ~∆e
2

V23 V24

V31 V32 ~ω0 − ~∆h
2

0

V41 V42 0 ~ω0 +
~∆h

2

 (4.12)

Where the electric field of the pulse is modeled as,

Ep(t) = 1/2Epsech
(
t

τ

)
(ε̂e−iωpt + ε̂∗eiωpt) , (4.13)

with τ as the pulse width. Using a general definition of ε̂,

ε̂ =
x̂+ eiφŷ√

2
, (4.14)
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we can write the expressions for the Vij terms above,

V13 = V24 = V31 = V42 =
~χp√

2
sech

(
t

τ

)
(e−iωpt + eiωpt)

V14 = V23 = −V32 = −V23 =
i~χp√

2
sech

(
t

τ

)(
eiφe−iωpt + e−iφeiωpt

)
We can solve for the equations of motion for the four state amplitudes using,

ċi(t) =
1

i~
∑

Hijcj(t) (4.15)

and recall that in the field interaction picture the amplitudes become,

c1(t) = c̃1(t), c2(t) = c̃2(t)

c3(t) = c̃3(t)e
−iωpt, c4(t) = c̃4(t)e

−iωpt.

Solving for the equations of motion,

˙̃c1(t) =
i∆e

2
c̃1(t)−

iχp√
2

sech
(
t

τ

)(
˙̃c3(t) + i ˙̃c4(t)e

iφ
)

˙̃c2(t) = −i∆e

2
c̃2(t)−

iχp√
2

sech
(
t

τ

)(
i ˙̃c3(t)e

iφ + ˙̃c4(t)
)

˙̃c3(t) = −i
(
ω0 − ωp −

∆h

2

)
c̃3(t)−

iχp√
2

sech
(
t

τ

)(
˙̃c1(t)− i ˙̃c2e

iφ(t)
)

˙̃c4(t) = −i
(
ω0 − ωp +

∆h

2

)
c̃4(t)−

iχp√
2

sech
(
t

τ

)(
˙̃c2(t)− i ˙̃c1e

iφ(t)
)

For a sufficiently large detuning (δ = ω0 − ωp > ∆h) the excited state amplitudes

become adiabatically eliminated and we are left with,

˙̃c1(t) ≈
iχ2

p

2δ
sech2

(
t

τ

)
c̃2(t)

(
eiφ − e−iφ

)
˙̃c2(t) ≈

iχ2
p

2δ
sech2

(
t

τ

)
c̃1(t)

(
eiφ − e−iφ

)
(4.16)
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Figure 4.19: Timing diagram for the spin rotations experiment. The first 4ns pulse
initializes the system to |x+〉 and the Raman pulse rotates the spin state
where the 4ns pulse from the next shot reads out the population in the
|x+〉 state. As the power on the Raman pulse is changed, the amount of
population in |x+〉 will change and the scattering in the readout pulse
will reflect that.

. Here φ is set to represent the polarization state of the input pulse. For example, in

the case of σ+, φ = π/2 and we are left with,

˙̃c1(t) ≈ −
iχ2

p

δ
sech2

(
t

τ

)
c̃2(t)

˙̃c2(t) ≈
iχ2

p

δ
sech2

(
t

τ

)
c̃1(t)

By solving these equations we can write a unitary transformation matrix for the

rotations of the spin state,

R(θ) =

 cos
(
θ

2

)
−isin

(
θ

2

)
−isin

(
θ

2

)
cos
(
θ

2

)
 (4.17)

where the angle θ is given by,

θ =
χ2
pτ

δ
.

So we can see that by adjusting the Rabi frequency (χp) the pulse area is adjusted

and the rotation we are able to induce between |x+〉 and |x−〉 is changed.

To verify that this detuned Raman pulse drives spin flips in our system we use
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scattering off the trion transitions to readout the spin state. The experiment will

use a 4ns EOM pulse similar to the one discussed above as both the initialization

and readout of the spin state. This initialization pulse is tuned to the |x+〉 → |Tx+〉

transition, which optically pumps all the population into the |x−〉 state ( a sample

timing diagram for this spin rotation experiment can be found in figure 4.8). Next

a Raman pulse of variable power (which maps into pulse area) is used to rotate the

spin state and depending on the area can give a full rotation of the spin back into

|x+〉 or a partial rotation. The optical pumping pulse from the next shot of the

experiment will scatter a photon only if the spin state is in |x+〉. So by looking

for scattering events in the readout pulse and comparing that with the Raman pulse

power we should see a clear sinusoidal dependence of the |x+〉 spin state population

as a function of
√

power[45, 66]. This dependence can be seen clearly in figure 4.8.

We build statistics by integrating each power point.

In order to effectively drive rotations of the QD spin state optically we must use a

detuned Raman pulse. This technique has the added advantage that we adiabatically

eliminate the excited trion states so there is no stray scattering during the spin flip

process that could contribute to background. The rotation pulse will become impor-

tant when discussing entanglement and teleportation since these schemes require the

ability to rotate a coherent superposition of spin states in to a population of a single

spin state. This feat is accomplished by using a π/2 pulse area pulse which we will

discuss more in the next chapter.

4.9 Conclusion

In this Chapter we have laid out the recent techniques developed to manipulate

QDs in a more versatile way. The direct detection of the light scattered from a QD

is a recent technological feat, and the use of EOMs to gate CW laser has already

yielded results interesting to the field. The Rabi oscillations observed during a long
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Figure 4.20: Data showing that as the power in the Raman pulse is increased the
population in |x+〉 traces out a sine wave as a function of

√
power as we

would expect from equation 4.17. The sine fit is included as a guide to
the eye.
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excitation pulse give us insight to the optical decoherence nature of the QD and allow

us to extract a decoherence time consistent with no pure de-phasing. The ability

to follow the excited state population evolution is itself unique and has never been

achieved in QDs before. One might take for granted that QDs give data similar to

a well behaved two level system, but it is not obvious that such a system would be

capable of suppressing the many-body physics to reveal a more elegant behavior.

62



CHAPTER V

Entanglement Verification Between a QD spin and

a photon

5.1 Introduction

This chapter follows data and analysis on entanglement between a photon emit-

ted from a QD and its electron spin qubit previously published by our group[72],

and others[37, 25]. As was previously discussed, a single electron confined to a QD

provides an exceptional candidate for quantum computing. To make this system vi-

able there must be some way to coherently transport information from one quantum

node to another. A straightforward way to accomplish this is by using the sponta-

neously emitted photon from the QD to transmit the spin qubit information between

nodes. Such a technique requires entanglement between the emitted photon and the

spin qubit[28, 23, 91]. Experimental verification of this entanglement is vital to the

feasibility of QDs for quantum computing.

5.2 Theoretical background: Jaynes-Cummings Model

In this section, a theoretical description of the proposed entanglement is presented.

A photon emitted from |Tx−〉 has two paths: a H polarized photon emitted and an

electron in |x−〉, or a V photon and an electron in |x+〉. Superficially, the resulting
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spin state and the polarization state of the photon appear to be entangled, however

a rigorous approach would be more satisfying. The following treatment will use the

conventions from Berman and Malinovsky, and follow closely their treatment of the

Jaynes-Cummings Hamiltonian [7]. We start with the Jaynes-Cummings Hamiltonian

in the dipole and rotating-wave approximation for a 3 level system (which is a good

approximation since the |Tx+〉 is not involved in the spontaneous emission process)

with photons in H and V .

H = ~ωTx−σTx−z + ~ωx−σx−z + ~ωx+σ
x+
z (5.1)

+
∑
j

~ωHja†HjaHj +
∑
j′

~ωV j′a†V j′aV j′

+ ~

[∑
j

gHj
(
σH+ aHj + a†Hjσ

H
−

)
+
∑
j′

gV j′
(
σV+aV j′ + a†

V j′σ
V
−

)]

The state we investigate is,

|ψ(t)〉 =
∑
j

bHj(t)e
−i(ωHj+ωx+)t|x+; 1Hj〉 (5.2)

+
∑
j′

bV j′(t)e
−i(ωV j′+ωx−)t|x−; 1V j′〉+ cD(t)e

−iωTx− t|Tx−; 0〉

Where |E; 0〉 denotes the dot is in the excited state and there is no photon, while

|x+; 1H〉 denotes the QD ground state corresponding to a H emitted photon, and

the sum is over all of the emitted photon modes. Applying the Schrodinger equation
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gives,

i
∑
j

ḃHj(t)e
−i(ωHj+ωx+)t|x+; 1jH〉 (5.3)

+ i
∑
j′

ḃV j′(t)e
−i(ωV j′+ωx−)t|x−; 1V j′〉

+ iċD(t)e
−iωTx− t|Tx−; 0〉

= −|x+; 1H〉

(∑
j

gHjcD(t)e
−iωTx− t

)

− |x−; 1V 〉

(∑
j′

gV j′cD(t)e
−iωTx− t

)

+ |E; 0〉

(∑
j

gHjbHj(t)e
−i(ωHj+ωx+)t +

∑
j′

gV j′bV j′(t)e
−i(ωV j′+ωx−)t

)

Writing the equations of motion for the state amplitudes gives us,

ḃH(t) = i

(∑
j

gHjcD(t)eiδHjt

)
(5.4)

ḃV (t) = i

(∑
j′

gV j′cD(t)e
iδV j′ t

)

ċD(t) = −i

(∑
j

gHjbHj(t)e
−iδHjt +

∑
j′

gV j′bV j′(t)e
−iδV j′ t

)

with

δHk,V k′ = ωHk,V k′ + ωx+,x− − ωTx− . (5.5)

If we put in a decay from the excited state by hand we can solve these equations by

direct integration.

cD(t) = e−Γt (5.6)
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Now the expression for the k and k′ mode of bH(t) and bV (t) becomes,

bHk(t) =
gHk

δHk − iΓ
e(iδHk−Γ)t (5.7)

bV k′(t) =
gV k′

δV k′ − iΓ
e(iδV k′−Γ)t (5.8)

These coefficients form the Lorentzian line shape we expect from the spontaneous

emission. Additionally, equation 5.4 indicates that the state amplitude cD is now

entangled with the H and V photon. This calculation could be taken further to en-

compass another excited state with more complicated dynamics. However, for the

purposes of this paper, showing the entangled nature of the system is sufficient to

proceed. The overlap we have shown is Loretzian, and a much more rigorous calcu-

lation, modeling the detection process, has shown the full recovery of entanglement,

if a fast detector is used[71].

5.3 Entanglement Background and Set-up

The protocol we use to verify the entanglement demonstrates correlation between

the spontaneously emitted photon’s polarization state and the final spin state. The

correlation measurements are performed in two orthogonal bases x and z for the

spin state, which correspond to linear and circular polarization for the photon. This

technique has been utilized in previous demonstrations of entanglement between a

matter qubit and an emitted photon[12, 83, 84, 81]. We will be working with the

energy level structure shown in Fig. 3.8b and will be focusing on a photon emitted

from the |Tx−〉 state resulting in the entangled state described in Eqn. 5.9. As

described above the entanglement of interest is between the spin state (|x+〉 and

|x−〉) and the polarization state of the photon (|H〉 and |V 〉). The frequency is also

entangled with the spin and will destroy the entangled state if the frequencies are

resolvable by elements in the set-up. To eliminate this problem we employ a fast
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detection scheme where the timing resolution of the single photon detector used to

observe the entangled photon is (48 ps) faster than the bandwidth of the ground state

splitting (set at ∆e/2π = 7.35 GHz) to destroy the ”which-path” information[71]. The

resulting entangled state of the system becomes,

|Ψ〉 =
|H〉|x+〉 − i|V 〉|x−〉√

2
(5.9)

The time resolved fluorescence techniques developed in section 4.7 are essential

when initializing the system, generating the entanglement, and finally reading out

the spin state. To begin we must initialize to a pure state, |x−〉, using an EOM

to gate a narrow bandwidth CW laser similar to the 2 ns pulse employed earlier to

generate Rabi oscillations. This pulse is tuned to the |x+〉 ↔ |Tx+〉 transition for 4

ns and results in optical pumping to the |x−〉 state. Following this initialization a

pulse (250 ps), shorter than the radiative lifetime, excites to the |Tx−〉 state. In order

to transfer the entire population to the excited state we employ the technique shown

in Fig. 4.15 of section 4.7 to determine the π power. Once the pulse is turned off,

the excited state will decay to one of two paths creating the entangled state of Eqn.

5.9[29]. The experiment is performed at a repetition rate of 76 MHz, so the optical

pumping pulse from the next shot of the experiment will act as a readout of the |x+〉

state since it is already tuned to that transition.

A diagram of the optical set-up can be seen in figure 5.3 where we show the set-up

for the full rotated basis experiment. When investigating the linear basis in the next

section we simply exclude the rotation pulse and the sync for the experiment is set

by the internal repetition rate of the pulse generator.
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Figure 5.1: The optical set-up for the spin photon entanglement verification. The
CW lasers are gated using EOMs synced with the MIRA rep-rate. A
4ns pulse is used as the initialization pulse and the readout pulse and
the 250ps pulse is used to create population in |Tx−〉, where a decay will
create the spin-photon entangled state of interest. For the linear basis
correlations in section 5.4 the rotation (MIRA) pulse is removed and the
master clock is set by the internal pulse generator rep-rate. Two detectors
are used in these experiments since we want to measure two events within
a single frame and the detectors have significant dead-time making them
useless for 100ns after a ”photon” event is registered.
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5.4 Linear Basis Correlations

The linear basis measurement correlation is rather straightforward. We need to

determine the conditional probabilities of a H or V photon emitted and being in

|x−〉 or |x+〉. The use of polarization rejection makes this measurement easy to

perform. However, in the z (rotated) basis, polarization selection happens using σ+

or σ− polarized light, since we are correlating these polarizations with |z+〉 and |z−〉,

which are linear combinations of the nondegenerate x basis states and hence evolve in

time. Our detection scheme requires a collection polarization orthogonal to the input

polarization (see section 4.6). This demands that the short pulse excitation laser

be narrow enough in frequency to only excite to |Tx−〉, since the input polarization

would not prohibit it from coupling to |Tx+〉. The EOM generated pulse provides us

with the narrow band excitation required.

In the x basis, the conditional probabilities we want to find are, P (x+ |H), P (x−

|H), P (x+ |V ), and P (x− |V ). For example, P (x+ |H) reports the probability that

the system is in state |x+〉 if a H photon is emitted after excitation to |Tx−〉 what is

the probability of population in |x+〉, this should be unity for perfect correlation. For

the positive correlations, P (x + |H) and P (x − |V ), the timing diagram is shown in

Fig. 5.2. The following description is how we determine P (x+ |H), and the extension

to P (x − |V ) is obvious. Using V polarized input light, so we can collect the H

polarized emission, once the state is initialized to |x−〉 we excite with a π pulse to

|Tx−〉 and measure the time of decay. If a photon is detected along the decay then the

QD should be in |x+〉 and the readout (initialization pulse from the next shot of the

experiment) will scatter a photon. By correlating this with readout pulses in distant

shots of the experiment, which should have no correlation, we are able to observe a

strong positive correlation (Fig. 5.3).

For negative correlations, P (x−|H) and P (x+|V ), we insert an extra 250 ps pulse

(see Fig. 5.4). Again, we will describe the case for the detection of H polarized light,
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Figure 5.2: Pulse sequence for determining positive correlations for P (x+|H). A pho-
ton emitted in the dashed region will only be detected if it is a H photon
and therefore scattering should occur with a probability of 1 during the
spin readout. To normalize this measurement, correlations between detec-
tion of a photon in the dashed region and scattering from a spin readout
of a distant shot are set to 1/2 since the entire system has been reset from
shot to shot.

Figure 5.3: Conditional probability data for P (x+|H) and P (x−|V ) where the distant
shot number is label and the average correlations between a photon in the
emission region of shot 0 and a readout photon from all distant shots, have
been set to 1/2.
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Figure 5.4: Pulse sequence for anti-correlation measurements of P (x−|H) and P (x+
|V ). The addition of an extra 250 ps pulse serves as a readout of the |x−〉
state. If a photon is found in the emission region of the first pulse then
an H photon was emitted and there can be no population in |x−〉 so
no emission should occur in both emission regions of the same shot. As
before the normalization is determined by correlating with distant shots.

P (x − |H). The initialization and first excitation are the same as before, however,

the additional 250 ps pulse acts as a readout for |x−〉. If a detection occurs after the

first 250 ps pulse, then we should expect nothing in the second since the QD is now

in state |x+〉. The anti-correlation is seen by correlating detection in the first 250

ps pulse with the second and is normalized by correlating with second pulses from

distant shots of the experiment. The anti-correlation signals are seen in Fig. 5.5. A

summary of all four x basis conditional probabilities is shown in Fig. 5.8a.

5.5 Rotated Basis Correlations

As stated before the z basis measurement is more complicated since it is time

dependent, allowing the measurement of two conditional probabilities at the same

time. Since we wish to look for P (z ± |σ+) and P (z ± |σ−) polarization projection

along a circular axis (e.g. σ+) is required, and the orthogonal circular polarization

(e.g. σ−) must be the input, so we can reject the excitation lasers. The experimental

sequence begins in the same way as the x basis; a 4 ns optical pumping pulse initializes

to |x−〉. Next, a 250 ps π pulse transfers the QD population to |Tx−〉 where the

system decays generating the entangled photon. The photon is then polarization
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Figure 5.5: conditional probability data for P (x−|H) and P (x+|V ) where the distant
shot number is label and the average correlations between a photon in the
emission region of shot 0 and a spin readout photon from all distant shots,
have been set to 1/2.

selected leaving the system momentarily in |z+〉 = (|x+〉 − |x−〉)/
√

2 or |z−〉 =

(|x+〉+ |x−〉)/
√

2. However, the spin begins to precess under unitary time evolution

about the x axis until it is rotated into a population (into |x+〉 or |x−〉) by a π/2

Raman pulse. The spin rotation is achieved by using a detuned broadband pulse

driving a two-photon transition. Since the rotation pulse is circularly polarized it

non-destructively couples all the transitions allowing geometrical phase rotation of

the QD spin, dependent on the pulse area. The rotation occurs about the optical

axis, in our case z[66, 45]. Finally, the optical pumping pulse from the next shot of

the experiment reads out the population in |x+〉. The mathematical description of

this sequence is shown below and a timing diagram appears in Fig. 5.6.

〈σ ± |Ψ〉 = |x+〉∓|x−〉
2

(5.10)

U(τ)〈σ ± |Ψ〉 = e−i
∆e
~ τ |x+〉∓|x−〉

2
(5.11)

|〈x+ |Rσ∓(π/2)U(τ)〈σ ± |Ψ〉|2 = 1

4
(1 + sin ∆eτ) (5.12)

Here the projection 〈x + | represents the readout of the |x+〉 state and the rotation

is a π/2 rotation about the z axis,
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Figure 5.6: Timing diagram for the z (rotated) basis measurement. The entangled
photon is emitted randomly along an exponential decay and some time
τ later is rotated from a coherence into a population by a detuned π/2
Raman pulse. The population is |x+〉 is then readout by the following
initialization pulse acting as a readout. Time binning of the emission with
respect to the rotation creates an exponentially weighted fringe pattern,
which signifies coherent electron precession.

Rσ∓(π/2) =
[
|x+〉〈x+ |+ |x−〉〈x− | ± i(|x+〉〈x− |+ |x−〉〈x+ |)

]
/
√

2.

From this analysis, the time, τ , between emission and detection is crucial, and

to observe the frequency of precession, ∆e (the spin difference frequency), we must

utilize a low magnetic field to keep ∆e smaller than the detector bandwidth. The

added complication in choosing the correct magnetic field strength is in the excited

state splitting. Since we are using polarization that will couple to all transitions, we

must use frequency selectivity to only excite to |Tx−〉. Taking into account these

complications, we use a 1.1T magnetic field giving an excited state and ground state

splitting of 4.62GHz and 7.35GHz, respectively. The emission from the excited state

will be randomly distributed along the exponential decay, so by time binning the

emission with respect to the stationary rotation pulse a fringe pattern will emerge

weighted by the exponential decay. This fringe pattern will peak when the time

between emission and rotation is sufficient for the Bloch vector to be rotated into

|x+〉 by a π/2 rotation, and dip when rotated into |x−〉. This oscillation occurs at

the spin difference frequency, ∆e. After correlating a photon scatter event in the

4 ns pulse with an observed decay after the 250 ps pulse and subtracting out the

exponential we can see a fringe signal emerge, where the conditional probabilities can
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Figure 5.7: The fringe pattern recovered by time binning the photon emission, fol-
lowing the 250 ps pulse when a readout photon is detected as well. This
coincidence should only occur at certain times during the electron preces-
sion as evident from this fringe pattern. The exponential decay has been
divided out to make the fringes easier to observe. A sinusoidal fit recov-
ers the spin precession frequency and reveals the conditional probabilities
from the contrast.

be read directly from the fringe contrast (see Fig. 5.7)

By requiring that the conditional probabilities sum to one we can extract the

following for the x basis measurement: P (x+ |H) = 0.94± 0.05, P (x− |H) = 0.06±

0.01, P (x + |V ) = 0.16 ± 0.01, P (x − |V ) = 0.84 ± 0.04. The z basis conditional

probabilities are: P (z + |σ−) = 0.69± 0.04, P (z − |σ−) = 0.31± 0.04, P (z − |σ+) =

0.70 ± 0.05, P (z + |σ+) = 0.30 ± 0.05. For both the x and z bases the conditional

probabilities combine (see Fig. 5.8) to give a lower bound on the entanglement fidelity,

calculated using established techniques [12].

F ≥ 1

2

(
ρHx+,Hx+ + ρV x−,V x− − 2

√
ρHx−,Hx−ρV x+,V x+ +

ρσ−z+,σ−z+ − ρσ−z−,σ−z− + ρσ+z−,σ+z− − ρσ+z+,σ+z+

)
(5.13)

We find a lower bound on the fidelity of F ≥ 0.59± 0.04. It is important to note that

this lower bound is mostly limited by the fringe contrast in the z basis measurement,
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Figure 5.8: The combined conditional probabilities for the (a) x basis, where the
probabilities are extracted from previous graphs and constrained to add
up to 1n and (b) z basis, where the probabilities are read directly from
the fringe contrast.

which is diminished by the finite timing resolution of the detector. In many protocols

for entangling multiple quits via interference of the entangled photons, the detector

timing resolution is not vital[60, 9].

Here we have shown that the spontaneously emitted photon from a QD is entan-

gled with its spin state, having profound implications to the world of quantum infor-

mation. QDs have the advantage that they can be easily integrated into an industrial

infrastructure designed around semi-conductor fabrication. using on-chip photonics

waveguides these entangled photons can be directed to many different quantum nodes

making a scalable quantum architecture possible.

5.6 Conclusion

The demonstration that a photon emitted from a QD is entangled with the ground

state spin qubit has numerous implications for quantum information. We can now

send these photons to any distant node and retain the spin information coded on

them. The information transfer is typically mediated by the interference of entangled

photons on a Hong-Ou-Mandel (HOM) interferometer, which projects the entangled
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matter qubits to a specific state upon coincidence causing them to coherently evolve

together[43, 60, 9]. In this way, two separate QDs could be entangled. Also we

can use the entangled nature of the emitted photon to teleport information onto the

QD spin state [36]. The possible experiments greatly increase when you consider

the capabilities for manipulation and coherent control of QDs. Experiments such as

these further the case that QDs can indeed be considered viable and useful when

considering the future of quantum technologies.
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CHAPTER VI

Coherence Properties of QD Radiation

6.1 Introduction

In the previous chapter we verified the entanglement between a photon emitted

from a QD and the QD spin state. The next step in developing QDs as a viable quan-

tum information technology is the ability to transport this entanglement to distant

places or use the entangled nature to encode quantum information on the QD spin

state via intermediate interference of the entangled photon with another photonic

state. This interference is conducted using a Hong-Ou-Mandel (HOM) interferometer

which will be discussed in detail later in the chapter. The HOM works by exploit-

ing the indistinguishability of two photonic envelopes incident on separate ports of a

beam splitter. So we will need to study the properties of the radiation scattered in

our system to test for indistinguishability and some other interesting quantum optics

measurements will come out of this. However, before any of these experiments can

begin we address the limitations inherent in the previous Schottky diode sample used

to conduct all measurements up to now. The light collection from this sample is far

too low to conduct any of the above mentioned HOM interference experiments. So

we move to the sample discussed in 3.3.2 with a DBR mirror behind the QD layer to

redirect the radiation in the backward direction.

This chapter discusses the new quantum optics measurements we are capable of
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achieving with the increased light collection of the new sample structures. Also we

will look into how this can be used to study the coherence properties of the scat-

tered and emitted radiation from these QD structures. The experimental techniques

and the results derived from this chapter will be important moving forward with a

teleportation scheme using QD spin-photon entangled states.

6.2 New Sample With Higher Light Collection

The sample structure discussed in 3.3.2 provides us with a mirror in the form of

alternating AlAs and GaAs layers that act to reflect the radiation back through the

excitation beam path. The PL techniques used here are identical to those previously

discussed in 4.3. A sample spectrum and bias dependent PL map are provided for

comparison in figures 6.2 & 6.1, respectively.

The absorption measurements differ in that they are taken in the reflection ge-

ometry so it is slightly unclear how to interpret the results. A schematic of the

reflection geometry homodyne measurement is given in figure 6.3. The homodyne

detection scheme we use in transmission relies on the fact that the interacting (part

that induces absorption in the QD) and non-interacting part of the laser field are co

propagating so the phase of the signal can be well understood. In the reflection ge-

ometry there are many surfaces that the laser field can reflect off of (the top surface,

or any one of the DBR layers) that can affect the phase of the signal. Since all the

reflections and the part of the laser field that interacts with the dot will be mixed on

the APD we cannot necessarily trust the phase of the signal. Due to the ambiguity

of the signal, we only use the lock-in homodyne signal as a more accurate measure

of the trion transition frequency and bias existence range. An example of a DR/R

(homodyne) scan is given in figure 6.4

As stated above the previous techniques (PL and DR/R) serve quite well to iden-

tify the QD resonance, but due to ambiguities in the lock-in signal the best way for
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Figure 6.1: A single PL spectrum from the DBR sample. We can see that there are
many dots in this region so care must be taken to identify and readout a
single dot.
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Figure 6.2: A bias dependent PL map taken on the DBR sample. As the bias across
the dot layer is scanned spectra are taken indicating the charging of the
QD states and allow us to identify good candidates for negatively charged
QDs.

us to more accurately study the properties of the trion is to look at resonant Rayleigh

scattering. The theory of this was developed previously in 4.6. A sample Rayleigh

scattered scan is provided in figure 6.2. This spectrum is taken by scanning the laser

across the trion resonance and using a 90:10 beamsplitter to collect 90% of the scat-

tered radiation from the QD transition (set-up shown in figure 6.2). Of course 90% of

the reflected laser light is also present on top of the desired signal, so we use a polar-

izer set orthogonal to the input polarization is used to filter out the excitation laser

similar to how we took data in the Schottky diode sample. To provide additional

rejection we use a single mode (SM) fiber as a spatial filter. The reason a spatial

filter helps with polarization rejection is that the polarization vectors become altered

compared to the other parts of the wavefront are diffracted by the high curvature of

the focusing asphere. If we try to use just polarization as the filtering mechanism

and image the beam we can clearly see what is known a Maltese cross pattern, shown

in figure 6.2, where the parts of the beam hitting the outer parts of the lens have a
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Figure 6.3: The set-up for a homodyne detection scheme in the reflection geometry.
The measurement of merit will be the change in reflection on resonance
over the laser reflection intensity or DR/R.
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Figure 6.4: A sample scan of DR/R spectrum where the bias across the QD layer is
modulated and scanned while the laser frequency is fixed. The methods of
detection are identical to those used in the previous DT/T measurements.

different polarization than the center. By using a spatial filter we reject these bright

lobes and only allow the scattered radiation of interest through to the detector. After

the rejection techniques we can now observe the scattered radiation using a single

photon detector and by performing background subtraction we are left with a clean

Lorenztian line shape as the excitation laser scans across the trion resonance (figure

6.2). One key difference in the Rayleigh scattered spectra is that with the DBR sam-

ple the peak counts are close to 300kcps as opposed to 4kcps when using the Schottky

diode sample for similar Rabi frequencies. So, with the new sample structure we

are able to increase the counts in the collection channel by almost a factor of 100.

This increase makes it possible to extend the spin-photon entanglement more compli-

cated experiments requiring more than a two-fold coincidence, such as teleportation

and distant QD entanglement. Before we move into the discussion of teleportation

there are a few interesting quantum optics experiments now possible using the newly
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Figure 6.5: Set-up used to take resonant Rayleigh scattering in the reflection geome-
try.
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Figure 6.6: Image of The Maltese cross created by the depolarization of the outer
parts of the laser wavefront induced by the edges of the high curvature
focusing lens. By using a spatial filter we can collect only the signal from
the middle and reject the depolarized outer parts of the beam.
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Figure 6.7: A sample Rayleigh scattering scan showing the QD trion transition at
zero field. The peak counts increase by a factor of 50 to 100 times for a
similar Rabi frequency as the Schottky diode samples.
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improved light collection.

6.3 Observation of the Mollow Triplet

The above mention Rayleigh scattering is sometimes referred to as resonance flu-

orescence in the literature. Fluorescence evokes the idea of emission and while there

are certain situations throughout this work where emission is the proper way to model

the observed process, such as in the creation of the spin-photon entangled state from

5.5 or in the lifetime measurement of figure 4.14, this is not always the proper lan-

guage. A common misconception is that the radiation collected during a CW scan are

emitted from the QD and occur at the QD resonance frequency. In fact the theory

for CW excitation reveals that, in the low power limit, the radiation is scattered at

the driving laser frequency, so a more apt name would be to call this process reso-

nant Rayleigh scattering [7]. As the power is increased however, a frequency resolved

emission spectrum reveals the onset of in-elastic scattering in the form of the Mollow

triplet, reported earlier in QDs [64, 61].

Previous studies in our lab have investigated the Mollow triplet spectrum by using

a pump probe approach, but we have never before observed it directly in the scattered

radiation spectrum [85]. The best way to begin the discussion of this phenomenon is

to start with a theoretical discussion of the in the atom-field picture. We can begin

by looking at the Hamiltonian in the rotating wave approximation,

H =
~ω0

2
σz +

∑
k,k

~ωka†kak + ~χ(σ+e
−iωt + σ−e

iωt)

+
∑
k

~(gkσ+ak + g∗kσ−a
†
k) (6.1)

86



Figure 6.8: The optical diagram for taking frequency resolved data. The pressure
tuned cavity is adjusted by using a computer controlled valve to scan the
pressure in the cavity and change the pass frequency across the entire free
spectral range of 40GHz with a linewidth of 400MHz
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Where χ is half the Rabi frequency and,

gk = −iµ21

√
ωk

2~ε0V
sin θk. (6.2)

A detailed calculation of the spectrum is carried out in several quantum optics texts

[7, 74]. In typical Rayleigh scattering the scattering process is calculated to out to

first order in the applied field and the result is scattered radiation at the laser drive

frequency (ω = ωk from conservation of energy) . The state amplitudes that remain

to first order go like,

ċ2;0 = −γ2

2
c2;0 − iχeiδtc1;0 (6.3)

ċ1;k ≈ −igkeiδktc2;0 (6.4)

Using the convention from [7], where ω0 is the transition frequency, δ = ω0 − ω

and δk = ω0 − ωk, with c1;k describing the QD in state 1 and the field in state k.

Recall, that γ2 is the longitudinal decay rate and the transverse decay rate is given

by γ = γ2/2. Carrying through the calculation reveals that for long times, to remove

transient effects, the scattered spectrum occurs at the laser frequency as expected.

However, this calculation can be carried out to additional orders in the field which

gives rise to additional intermediate resonance states with scattering symmetric about

the laser frequency. This process is seen in figure 6.3. Of interest is the case where

three separate frequency components are present in the scattered field spectrum (Mol-

low triplet) having the resonance condition 3ω − ωA − ωB − ωC . The intermediate

resonances cases go like,

γ & |2ω − ωA − ω0| (6.5)

γ & |3ω − ωA − ωB − ω0| (6.6)
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Figure 6.9: Cartoon of a multi-field scattering process ωC is the laser frequency and
the red and blue shifted sidebands are ωA and ωB.

From this we get three peaks in the scattered spectrum centered about the laser

drive frequency forming the Mollow triplet. Where ωB and ωA form the blue and

red detuned sidebands, respectively, and ωC corresponds to the laser frequency. The

sidebands are inelastic scattering events and the central peak contains both the in-

elastic and elastic components. Including higher order scattering events only adjusts

the position of the sidebands and to extract information from the widths and weights

of the spectrum requires a calculation out to all orders in the field. Since our ex-

perimental apparatus is limited to low resolution scans, the presence of the Mollow

triplet peaks and their dependence on input power, as expected, is the result of merit

in this experiment.

The data is taken by setting a CW laser on resonance with the QD’s trion tran-

sition and collecting the scattered radiation. A pressure-tuned etalon is used to

frequency resolve the emission from the QD after we filter out the excitation laser.

An optical diagram of the experiment can be found in figure 6.3. The etalon has

a linewidth of 400MHz so high resolution scans are not possible in the current con-

figuration. As it stands now the line shapes extracted will be a convolution of the
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Figure 6.10: Frequency resolved Resonance fluorescence from the QD trion transition.
The laser is fixed on resonance and a pressure-tuned etalon is scanned
through the resonance with a linewidth of 400MHz, so high resolution
scans are not available and the resulting spectrum is a convolution of
the linewidth of the trion transition and the etalon. Even with this
limitation we can still see clear sideband emerge as the driving radiation
field is increased far beyond saturation.

instrument response of the etalon and the actual linewidth of the state. From the

data we can see the expected dependence of the sidebands on the increasing power of

the drive field. Future directions might include a high resolution scan of the Mollow

spectrum and compare that to the transient measurements of γ and γ2 extracted in

previously in 4.7.

6.4 Indistinguishability of QD Radiation

The study of indistingushability is an important tool when considering quantum

coherence and applications to quantum technologies. Photons provide an attractive
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carrier of quantum information due to their robustness against decoherence when

compared to other technologies. The coherence properties of QD scattered and emit-

ted radiation have been studied in the past to determine the single emitter nature

of the QD and the purity of the emitted field. [58, 62, 78, 70, 94]. For the case of

our system the ability to show the single emitter nature is essential and was done

previously in this work (see figure 4.12). Our group up to this point has not stud-

ied the indistinguishability of radiation from the QD and this is an important step

moving forward. The ultimate goal of teleportation relies on the interference of field

envelopes from different sources which necessitates the investigation of the level of

indistinguishability present in the individual sources themselves.

6.4.1 Theoretical Background

The indistinguishable interference of interest occurs when overlapping photon en-

velopes enter a 50/50 beam splitter and exit through the same port [43, 31]. The

theoretical description of the beam splitter gives an insight to why this should be the

case. The following theoretical discussion uses input and output states described us-

ing single kets and creation and annihilation operators. It is crucial to note that this

is not strictly the true since the emitted radiation field from the QD is a multi-mode

field owing to the bandwidth associated with the decay process. The multi-mode

nature of the field affects the indistinguishability measurement in the form of noise

in the coincidence spectrum and is observed as a rise in coincides above zero centered

about zero delay, which can be observed in figure 6.4.3.

If we first consider two photon envelopes incident on two different input ports of

a beam splitter, as seen in figure 6.4.1, then we can write down all the cases that

can occur in this geometry. We start by describing the input and output ports of the

beam splitter using creation operators. In a simple case, if we have an input state

in the a port described by |1〉a we can also write this as a†|0〉a. The output case is
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Figure 6.11: This figure depicts the possible output configurations for two input sin-
gle photon envelopes incident on a 50/50 beam splitter. For the case
where keta and |b〉 are overlapping in frequency, polarization, timing,
and spatial distribution, then both states will exit the same port of the
beam splitter, a phenomenon measured by a drop in coincidence when
detecting the outputs of the beam splitter.

then a probabilistic superposition of the creation operators for each output state of

the beam splitter (c† and d†).

c† + d†√
2
|0〉cd. (6.7)

For the case where we have a photon present at each input port of the beam splitter,

we will use b† to describe the creation of a photon in the second input port and we

are left with the input state,

|1, 1〉ab = a†b†|0, 0〉ab. (6.8)

The beam splitter acts like a unitary transformation on the input states given by,

U(a, b→ c, d) =

 1 1

1 −1

 . (6.9)

Now the new output states are given by the following creation operators,

c† + d†√
2
|0, 0〉cd and

c† − d†√
2
|0, 0〉cd (6.10)
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for a and b inputs respectively. So if we consider the case of Eqn. 6.8 and use Eqn.

6.10 then we are left with the following output configuration,

1

2
(c†2 − d†2−c†d† + d†c†︸ ︷︷ ︸

−[c,d]

)|0, 0〉cd (6.11)

Due to the bosonic nature (symmetric under exchange) of photons the commutator

[c, d] vanishes leaving,

c†2 − d†2

2
|0, 0〉cd. (6.12)

The result of this indicates that there is a random but equal probability that both

states will exit either c or d but never both at the same time for identical input states

a and b. So, for overlapping input photonic states we should see no coincidence counts

when detectors are placed on each output port of the beam splitter [43, 10, 56, 69].

Verifying that the single photons from our QD are indistinguishable is critical for any

teleportation protocol relying on intermediate interference as ours does [37, 65, 75, 13].

Section 6.4.3 provides the data confirming the indistinguishability from the QD, but

before this it is useful to develop the theory for HOM interference when the input

states of a beam splitter have different frequency or polarization field components..

6.4.2 Qubit Interference in a HOM

The teleportation protocol we use, and in fact many of the other entanglement

swapping protocols used in previous experiments, rely on the interference of entangled

photonic qubits [13, 60, 23, 8]. A single qubit state can be described by a two-

dimensional Hilbert space, however, if we look at the interaction of two separate

qubits, one in each arm of a beam splitter then we must describe this combined

system using a four-dimensional Hilbert space [57, 55]. We use a polarization basis

to describe the qubits but the extension to frequency qubits, which we use in the

teleportation protocol, is trivial. If we take the two input states to be the following
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photonic polarization qubits,

|ψ〉1 =
|H〉1 + |V 〉1√

2
and |ψ〉2 =

|H〉2 + |V 〉2√
2

(6.13)

Then the new Hilbert space can be written using four new states,

|Ψ+〉 =
1√
2

(|H〉1|V 〉2 + |V 〉1|H〉2)

|Ψ−〉 =
1√
2

(|H〉1|V 〉2 − |V 〉1|H〉2)

|Φ+〉 =
1√
2

(|H〉1|H〉2 + |V 〉1|V 〉2)

|Φ+〉 =
1√
2

(|H〉1|H〉2 − |V 〉1|V 〉2) . (6.14)

These are the famous Bell states for a four dimensional Hilbert space, sometimes

called the Bell basis [5]. A crucial thing to note is that only one of these states is

antisymmetric under particle exchange, |Ψ−〉. For indistinguishable states the total

wavefunction for each case should be symmetric, leading to an anti-symmetric spatial

distribution for the case of |Ψ−〉[35]. If a and b indicate the spatial configuration of

the input states, then the following are the resultant sates for two qubits incident on

two input ports of a beam splitter,

|Ψ+〉 =
1√
2

(|H〉1|V 〉2 + |V 〉1|H〉2) (|a〉1|b〉2 + |b〉1|a〉2)

|Ψ−〉 =
1√
2

(|H〉1|V 〉2 − |V 〉1|H〉2) (|a〉1|b〉2 − |b〉1|a〉2)

|Φ+〉 =
1√
2

(|H〉1|H〉2 + |V 〉1|V 〉2) (|a〉1|b〉2 + |b〉1|a〉2)

|Φ+〉 =
1√
2

(|H〉1|H〉2 − |V 〉1|V 〉2) (|a〉1|b〉2 + |b〉1|a〉2) . (6.15)

From this we see that |Ψ−〉 can be differentiated from the other states due to its

spatial wavefunction. Coincidence clicks (a photon in each output port of a beam
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splitter) will occur only in the case of an anti-symmetric input spatial state and

therefore project the input field to the anti-symmetric state, |Ψ−〉. As we will see

in the next chapter the projection to the anti-symmetric bell state results when the

qubits are orthogonal and if another state (a QD spin state) is entangled with one of

the qubits then the entangled state becomes orthogonal to the other qubit state. This

process is referred to as teleportation since the information from one photonic qubit

is transferred to the state entangled with the other photonic qubit via orthogonal

projection.

This result will become crucial in chapter VIII when we discuss the teleportation

protocol. The ability to distinguish a single photonic state from the four possible is

used to herald successful teleportation. Since the coincidence can only occur for the

case of an anti-symmetric photonic Bell state then we are confident that a projection

to this state has occurred [60].

6.4.3 HOM Between Successively Emitted QD Radiation

The following describes the experiment to determine indistinguishability of QD

Radiation. This data is taken in the time domain so we use a 250ps pulse from

an electro-optic modulator to excite the trion state similar to the technique used in

section 4.7 and the optical diagram in figure 4.13. The time-gated fluorescence from

the QD is now split into two arms, say l1 and l2. These two paths are then recombined

on a beam splitter, which will serve as the HOM interferometer. The path length of l2

is delayed in such a way that if a photon packet enters l2 and another photon packet

generated in the next shot of the experiment goes through l1 then they will arrive on

the beam splitter at the same time, or l2 = l1 + cτ . Where c is the speed of light and

τ is the repetition rate of the EOM generated pulse. A schematic of this experiment

can be found in figure 6.4.3. By adjusting the input polarization on the beam splitter

input we are able to alter the polarization component of the input field and show that
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Figure 6.12: HOM setup for checking indistinguishability of QD radiation. The dot
radiation is split by a fiber beam splitter and one of the lengths is delayed
such that an event from the next shot of the experiment will interfere
with it on the beam splitter. The polarizers on the output are used to
control the polarization state of the beam splitter inputs since polariza-
tion is one of the characteristics that must be identical for interference.
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Figure 6.13: HOM data for a QD interfering with itself. The field emitted from the
one shot of the experiment is interfered with a field from a delayed shot
of the experiment. By adjusting the polarization states of the HOM in-
put ports we can show that when the fields have different polarizations
they are distinguishable and the coincidence at time zero increases. Al-
ternatively, for the case where the fields are indistinguishable we can see
that the coincidence at time zero drops significantly.

for the same or parallel polarization ( ‖ ) the fields should show no coincidences at

similar arrival times. If we set the polarization of the beam splitter inputs orthogonal

to eachother ( ⊥ ) then the photon states will be distinguishable and the coincidences

will rise. Data showing this effect is given in figure 6.4.3. The data is taken using

a start-stop photon counting method similar to previous work [36, 33, 38]. The two

pulses are overlapped by looking at a histogram of the pulse arrival times on the beam

splitter, where a delay in one of the arms can be adjusted to achieve good temporal

overlap of the QD decay packet. Once the timing of the photon packets on the beam

splitter is set we integrate data for an hour to build good statistics and analyze. By

using a start stop technique we can see that the events cluster in discrete time bins

corresponding to arrival. The distance between them is the repetition rate of the
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experiment. In the case where the polarizations are parallel the coincidences should

go to zero so the number of counts in the zeroth time bin is dramatically reduced

compared to when we look at longer times which should average out to one similar

to a intensity correlation measurement (g2(0)). As expected, when the polarizations

are perpendicular the coincidences at time zero increase due to the distinguishability

of the input radiation.

6.5 Conclusion

In this chapter we have looked at a new sample that enables us to get much higher

counts by almost a factor of 100 better than the previous samples. This enables us

to study the properties of our QD system even better than before. We are able to

recover the Mollow triplet by frequency resolving the scattered radiation from the QD

transition, which, up to now was done using pump-probe methods in our lab instead

of direct detection. We are also able to show HOM interference between successively

emitted pulses from the trion state; and though the emitted radiation is by nature

multi-mode we can still recover the dip in coincidences at zero delay predicted by the

quantum model of the beam splitter. We determined that the QD radiation shows

a high degree of indistinguishability that is crucial for further experiments involving

teleportation. Finally, qubit interference was discussed in the context of a HOM

measurement. These results will be important in the teleportation work later in the

thesis.
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CHAPTER VII

Spontaneous Parametric Down Conversion

7.1 Introduction

This chapter will discuss the physics behind spontaneous parametric down conver-

sion (SPDC) and how we will utilize it as a source of single photons for teleportation.

The teleportation experiment, discussed in detail in the next chapter, will utilize the

single photons created in the SPDC process to teleport information onto the QD spin

state. This is achieved by means of interference of an SPDC photon with the photon

from the spin-photon entangled state of the QD, discussed in chapter V. For the tele-

portation protocol we only require the fact that the SPDC system can be made into

a high brightness source of single photons. In expanding beyond the teleportation

discussed in this thesis the fact that photon pairs created in SPDC can be entangled

allows us to extend the teleportation protocol to entangle two distant QDs. In the

following discussions we will outline the theory of SPDC, how we can increase the

output intensity using a cavity and the entangled nature of the photon pairs that are

created.

The high brightness SPDC source we will use to generate the photon states to

be teleported onto the QD spin is built at the University of Illinois In Paul Kwiat’s

lab. We currently have a collaborative effort with this group to achieve the goal of

teleportation and beyond using the SPDC source.
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7.2 Theoretical Background

From non-linear optics, we know that the optical response of a medium is given

by the polarization (P̃ )represented as a power series in the applied electric field Ẽ(t),

P̃ (t) = χ(1)Ẽ(t) + χ(2)Ẽ2(t) + χ(3)Ẽ3(t) + ... (7.1)

Where the χ(i)s are referred to as the ith order optical susceptibilities [15]. The linear

susceptibility χ(1) contributes to well known effects like the index of refraction of a

material and the higher order term contribute to non-linear properties like, second

harmonic generation (SHG) [34] and SPDC for χ(2); and third harmonic generation

and four-wave mixing for χ(3). Since the χ(2) non-linear susceptibility gives rise to the

SPDC effect we are interested in exploiting for the teleportation experiment this is

what we will be the focus. One important aspect here is that χ(2) vanishes for media

possessing inversion symmetry. This fact can be easily seen by looking at an applied

electric field Ẽ(t) = E0 cosωt where if we change Ẽ to −Ẽ then the polarization must

change sign as well. Taking this to its mathematical conclusion we find that,

P̃ (t) = −P̃ (t) = χ(2)Ẽ2(t), (7.2)

which can only occur in the case where P̃ (t) = 0. So the crystal structure used to

generate the photon pairs must lack inversion symmetry.

In the case of SPDC we are looking to create two photons from an input pump

beam. By convention these photons are called the signal and the idler and due to

conservation they must satisfy the following phase matching conditions,

kp = ks + ki (7.3)
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and

ωp = ωs + ωi. (7.4)

The photons generated in this process must be created in pairs otherwise we are

left with a coherent state and any kind of single photon interference techniques we

wish to use are ineffectual due to the large number of modes present in the field.

For SPDC or spontaneous parametric fluorescence, as many older text refer to it,

the fact of simultaneous photon creation has been verified for some time [17]. For

our case it is instructive to briefly discuss how this comes about. A more detailed

description of this is provided in Yariv’s Quantum Electronics text book [92]. The

parametric florescence effect we are looking for arrives from a quantum description

of the output fields of frequency ωs and ωi, however the intense pump can still be

described classically. Using the Polarization of a medium we can write an expression

for the energy function using,

P = −∇EU(E) (7.5)

and we can write U(E) as,

U(E) = −ε0

2
χijEiEj −

2ζijk
3

EiEjEk + ... (7.6)

Where the χ and ζ are the tensor non-linear susceptibilities discussed previously.

The second term in the expression will serve as the Hamiltonian density for the

parametric interaction of interest and we us the pump electric field is given by,

Ep(r, t) = Ep(r) cosωpt),

H =

∫
V

U(E)dv = g~ cosωpt(a
†
s − as)(a

†
i − ai) (7.7)

Here a† and a are the creation and annihilation operators for the field modes of the
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signal and idler, and g represents the following,

g =
ζ

3

√
ωsωi
εsεi

∫
V

Ep(r)Es(r)Ei(r)dv (7.8)

We can solve for the equations of motion in the Heisenberg representation and find,

ȧs
† = iωsa

†
s −

ig

2
aie

iωpt (7.9)

ȧi = −iωiai −
ig

2
a†se
−iωpt (7.10)

Solutions to these equations are given by,

a†s(t) =
[
a†s(0) cosh

(
gt

2

)
+ iai(0) sinh

(
gt

2

)]
eiωst (7.11)

ai(t) =
[
a(
i0) cosh

(
gt

2

)
− ia†s(0) sinh

(
gt

2

)]
e−iωit (7.12)

In the teleportation experiment we are most interested in the number of quantum in

the field so we look at terms that look like the photon number operator n(t) = aa†.

Since we are in the Heisenberg picture if we calculate the expectation value of n(t),

the wavefunctions are the initial amount of quanta in the field at time t = 0 (just

as the pump irradiates the medium), |ns0〉 and |ni0〉. We find an expression for the

number of photons in the field,

〈ns(t)〉 = ns0 cosh2
(
gt

2

)
+ (1 + ni0 sinh2

(
gt

2

)
(7.13)

〈ni(t)〉 = ni0 cosh2
(
gt

2

)
+ (1 + ns0 sinh2

(
gt

2

)
(7.14)

The important part of these equations is noting that at time when there are no initial

photons of ωs and ωi (ns0 = ni0 = 0) the pump induces single photon production due

to the 1 + n0 term. In this way if the input pump radiation is the only applied field

present then the non-linear medium emits spontaneous radiation at ωs and ωi. This is
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Figure 7.1: SDPC pair creation. Here the H photons and the V photons emerge from
the crystal in different cones and where those cones overlap we cannot tell
if the photon is a H or V photon until the polarization state is measured
which tells us what the state of the other photon is.

the single photon production we are looking for and will exploit for the teleportation

experiment.

7.3 Entangled Photon Pairs from SPDC

The non-linear crystals used in this work and others involving SPDC are bi-

refringent, meaning that different polarizations propagate differently in the crystal

and for pair creation the signal and idler have different polarizations (this is known

as the type II phase matching condition). The most obvious way to see this is by

observing the light cones created by the fast and slow axes of the crystal. A cartoon

of this phenomenon can be seen in figure 7.3. The two cones come out as H and V

polarized radiation and by looking at the figure we can clearly see that if we select

out the overlapping parts then two polarization entangled photons are present [48].

The combined entangled state of the photons is,

|Φ〉12 =
|H〉1|V 〉2 + |V 〉1|H〉2√

2
(7.15)

Where the fact that we cannot tell what the polarization state of the photon is until

a polarization measurement gives rise to the entanglement. For example, if we placed
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polarization sensitive detector set to pass H in one of the overlapped beams then

when an event is registered we instantly know the polarization state of the photon in

the other overlapped beam.

A number of LOQC protocols can be carried out using the polarization entangled

nature of these photon pairs [46, 67]. Additionally, one of the seminal works of

quantum teleportation was accomplished using SPDC pairs [13]. Since the goal of

this work is to achieve teleportation between a SPDC photon and a QD spin we

will discuss the work in [13]. This protocol involves two SPDC sources: one acting

as a source of single photons to be teleported, the other as an entangled pair to be

teleported on. Here we will use the notation from the paper. We can write an initial

state we wish to teleport,

|ψ〉1 = α| ↔〉1 + β| l〉1 (7.16)

from one of the SPDC sources. The photons from the other SPDC source will be

polarization entangled in the following way,

|ψ〉23 =
1√
2

[| ↔〉2| l〉3 − | l〉2| ↔〉3] (7.17)

Here | ↔〉 and | l〉 represent the polarization state of the photon. If |ψ〉1 and |ψ〉2

are interfered on a beam splitter then coincidence clicks projects the photons to the

anti-symmetric entangled state,

|ψ−〉12 =
1√
2

[| ↔〉1| l〉2 − | l〉1| ↔〉2] (7.18)

The anti-symmetric projection was discussed in 8.3. Once photon 1 and 2 are pro-

jected to this state then photon 3 is projected to the initial state placed on 1. This

occurs because once coincidence occurs we are projected to |ψ−〉12 so regardless of

the initial state of 1, 2 is now the opposite of that. And since 2 and 3 were initially
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entangled to begin with 2 and 3 are orthogonal and thus the state of 3 becomes the

state of 1,

|ψ〉3 = α| ↔〉3 + β| l〉3 (7.19)

The essence of this teleportation is how we describe the teleportation of matter qubits

via intermediate photon interference, so the discussion here is an instructive back-

ground for our own experiment.

7.4 High-brightness SPDC source

In all of the previously mentioned SPDC experiments the count rates are quite low

compared to what we need to do our experiment, and the field of LOQC is growing

to more complicated designs and measurements involving 6 and 8 fold coincidence

measurements. So it is easy to see why increasing the count rates (called brightness

in the literature, but when discussing single photons this is not the best language.

Nevertheless we will use it here since it is the standard of the field ) of single photon

pair creation would be ideal. These high brightness SPDC sources are created by

placing a strong cavity around the down conversion crystal to enhance emission in a

narrow band (depending on the cavity linewidth).

The birefringent type phase matching condition that is described above makes

integration into a cavity and in fact any optical system more challenging. Addition-

ally the type II phase matching condition only occurs for the case where the cones

overlap so a majority of the photon pair events are thrown out. To alleviate this

problem we move to a periodically poled nonlinear crystal, specifically periodically

poled potassium titanyl phosphate (KTiOPO4) or PPKTP. This poling gives rise to

a new quasi-phase matching condition ,

kp = ks + ki +
2π

Λ
(7.20)
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Figure 7.2: A PPKTP crystal with a cavity formed around it by HR coatings to
enhance specific SPDC frequencies. The rounded crystal is a normal KTP
crystal used to create a double-resonant cavity and enhance the quasi-
phase matching condition. Since the PPKTP crystal is still birefringent
the rounded KTP compensates for this so the H and V polarized photons
exit the cavity at the same time.

where Λ is the pole spacing [32]. This more relaxed phase matching condition allows

us to achieve type II phase matching for almost any k vector. So, collinear type II

phase matched SPDC pairs are now achievable. Figure 7.4 is an example of a PPKTP

crystal for creating collinear entangled photon pairs. The extra rounded crystal in

the figure helps to form the cavity that will enhance the brightness of these entangled

pairs and assists in achieving the quasi-phase matching condition [90].

For this experiment we will use a 5mm PPKTP crystal with a high reflective (HR)

coating of 99% at 942nm on one side. A KTP (2.5mm length) crystal with a rounded

end and reflective coating of 90% at 942nm is placed on the other side forming a

double-resonant cavity with an overall cavity length of 15mm. In previous cavity-

enhanced SPDC experiments the goal was to show coupling to atomic transitions

so the cavity linewidths were 7MHz [3, 93]. However, since the bandwidth given

by the QD trion lifetime is closer to 200MHz, this is the regime we will target for

the SPDC cavity. Matching of the SPDC bandwidth to the QD bandwidth ensures

larger coincidence counts in the HOM during interference. The cavity is placed in

a temperature stabilized housing where temperature tuning will enable us to adjust
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the center frequency of the SPDC cavity to match the center frequency of the QD.

Since QDs are inhomogeneously broadened the ability to tune the SPDC cavity to

match various QD transitions is important. However, the tuning range of the cavity

is somewhat diminished due to limitations in temperature tuning. We are generally

only able to achieve a tuning range of 2nm so we must find a QD around 942nm and

the temperature tuning can be adjusted to align exactly with the QD transition. The

distributions of our QD resonances are centered around 945nm so finding a QD at

942nm is not that challenging. We typically see 10-20 QDs in 1µm2 and have a field

of view of 15µm2, so finding a dot in the desired range is not a major concern.

A 40ps pulse width mode-locked TiSaph laser is sent through a PPKTP crystal

(not the cavity SPDC crystal) for second harmonic generation (SHG) the 461nm beam

is then sent through the cavity SPDC set-up where polarization entangled photon

pairs are created at 942nm with a 200MHz bandwidth. The cavity is locked to a

reference laser using a Pound-Drever-Hall (PDH) locking method [11]. A mechanical

chopper that blocks the locking beam when photon pairs are present so as not to flood

the single photon detectors with the locking beam locks the cavity intermittently. In

principle the cavity lengths for H and V polarized light are different but the addition

of the concave surface to the ”output coupler” KTP crystal adjusts the pathlengths in

such a way that the pairs emerge from the cavity simultaneously and collinearly [90].

In order to avoid a higher photon number than 2 we operate below ( 700mW) the

optical parametric oscillation (OPO) limit for this cavity (2.8W) [52, 41]. An optical

diagram of this entire process is provided in figure 7.4 With these high brightness

sources we are able to achieve the proper statistics within a reasonable integration

time to show teleportation between SPDC photonic states and a QD spin state.
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Figure 7.3: The cavity enhanced SPDC optical diagram. The 50 ps pulses are gener-
ated using a Tsunami laser and are fed into the SPDC set-up where the
beams are split with one going to the Pound-Drever-Hall (PDH) locking
set-up and the other to generate SPDC. The SPDC beam is doubled using
a ppKTP crystal to 471nm and then sent through the cavity enhanced
SPDC crystals to generate the down converted photons. The Chopper
from the PDH set-up only locks the cavity when the laser is on so the
detectors are not flooded with unwanted laser light. The residual 471 nm
light is filtered using an edge filter and only the 942nm light of interest is
sent to the teleportation set-up after the polarization beam splitter (PBS)
picks one of the polarizations for heralding.
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7.5 Conclusion

The cavity enhanced SPDC source discussed here is what will be used to carry out

the teleportation experiment discussed in the next chapter. Some fundamentals of

SPDC were discussed in this chapter to provide context and theoretical background

for the coming experiments. We must understand the aspects of our apparatus in

order to predict issues and analyze our results. The extension beyond teleportation

requires a more in-depth understanding of SPDC than simply thinking of it as a

push button source of photon pairs. So understanding how the process arises and the

progression of the technique is important for this whole body of work.
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CHAPTER VIII

Teleportation between a SPDC photon and a QD

spin state

8.1 Introduction

Quantum teleportation has been studied for some time in systems that generate

entangled photon pairs [13, 14, 6, 18, 82]. More recently the scheme of teleportation

using a beam splitter and HOM interference is investigated to mediate entanglement

swapping between two matter qubits (NV spins and trapped ions)[59, 8]. Until very

recently, July 2015, this result had never been verified in QD spins [26]. The ability to

transmit quantum information to different quantum memories or nodes will be crucial

when scaling up any quantum technology. The resistance to decoherence exhibited

by photons make them the best candidate to transmit this information. The fact

that emitted photons can have their degrees of freedom entangled with the degrees

of freedom of a qubit means that quantum information encoded on the qubit can be

teleported onto another qubit via interference of the entangled photon states. We

have already verified that this spin-photon entanglement is present in our QD system

and this chapter will describe how we can extend this entanglement to do a more

interesting experiment involving teleportation.

Since entangled photon pairs started and continue to lead the field of quantum
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teleportation, it is not only straight forward but ideal to use this system to teleport in-

formation on a QD spin. This has the added benefit that both these systems are useful

in many quantum information protocols and creating a hybrid quantum information

architecture is useful for the maturation of the field of quantum technologies. The

previous chapter discussed the theory for SPDC entangled pairs and how the down-

conversion crystal can be placed in a temperature tuned cavity to enhance brightness

and create pairs having a narrow bandwidth. We will use the high-brightness single

photon packets to code information on the photons for teleportation on the spin state.

8.2 Theory of Teleportation

The implementation of this teleportation protocol relies heavily on the fact that

two photonic qubits incident on a beam splitter will result in coincident clicks at the

exit port in the case of an anti-symmetric Bell state. This result is discussed in section

8.3. The fact that an anti-symmetric projection occurs constrains the input states

and can herald a teleportation of information. The interference relies on the fact that

two photons in identical modes when incident on a beam splitter will always emerge

along the same path, as discussed in section 6.4. So, two detectors placed in either

output arm of a beam splitter would see a drop in coincidence counts as the two input

photons become completely overlapped. By extension two non-identical photons, say

of different frequency, could emerge in different arms resulting in coincident clicks on

the detectors. This can be taken further by considering two input photonic states

that are each a superposition of two different photon modes, in our case frequency,

with one of the photon states being entangled with some matter qubit, which we will

take to be our QD spin.

Recall from the entanglement section the polarization component is filtered out

(section 5.5) leaving the photon in a superposition of the two transition frequencies

(we will call |R〉 and |B〉 for red and blue). In the entanglement measurement a fast
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detection scheme is employed to remove this frequency or which-path information

[71]. However, in the case of teleportation this ”color” qubit will act as the mediator

of the entanglement and we will be interfering photonic qubits with different colors

instead of different polarizations, but the resulting interaction can be calculated in

the same way [59].

Let us consider the spin-photon entangled state from the QD to be,

|Ψ〉1qd =
|R〉1|x+〉qd + |B〉1|x−〉qd√

2
(8.1)

Here the subscripts denote the photonic part and the QD part. This is important for

bookkeeping when we include a qubit from another photonic state. The photonic state

from the SPDC source is split into two frequencies by an electo-optic phase modulator

(EOPM) and the amount of each frequency can be controlled experimentally. The

SPDC photon wavepacket is given by,

|φ〉2 =
Cr|R〉2 + Cb|B〉√

2
. (8.2)

The coefficients, Cr and Cb, are experimentally controllable by adjusting the amount

of each frequency component present in the EOPM. Upon coincident detection in the

HOM we know that the photons emerged from different paths and were therefore in

different modes. However, there is no way to determine which input photonic qubit

emerged on a given side, this leads to a projection of the photons to an intermediate

anti-symmetric entangled state |Ψ−〉12.

|Ψ−〉12 =
|R〉1|B〉2 − |B〉1|R〉2√

2
(8.3)

Where the photonic states are now orthogonal to each other requiring the initial state
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of photon 2 be instantly teleported onto |ψ〉qd giving [6],

|ψ〉qd =
Cb|x+〉 − Cr|x−〉√

2
(8.4)

By adjusting the coefficients and reading out the spin state we are able to show that

the spin state populations follow the experimentally controllable photonic qubit from

the SPDC source.

This section describes the teleportation theory but there are several experimental

constraints to consider and also the phase of the signal has not been discussed at all.

The phase factor was important to keep track of for the entanglement experiment

and we will discuss how to keep track of it in this experiment next.

8.3 Calculation of the Relevant Phases and Timing Consid-

erations

One important advantage to using the HOM for mediating teleportation or en-

tanglement swapping is that the timing resolution need not be sub-nanosecond like

in the entanglement verification. The following calculations will show that this is the

case and will look at the form of our signal for the teleportation protocol.

If we start with the QD spin-photon entangled state after the polarization com-

ponent is filtered out, we have,

|ψ〉qd =
|R〉|x+〉 − i|B〉|x−〉

2
(8.5)

And as we saw before this will oscillate at the photon frequencies between when the

photon is detected and when it is rotated. This time between detection and rotation is

what required the constraint in the timing resolution in the entanglement experiment.
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so the state evolves like,

|ψ〉qd =
eiωR(td−t)|R〉|x+〉 − ieiωR(td−t)|B〉|x−〉

2
(8.6)

Where td is the detection time and t will become the rotation time when we apply the

π/2 pulse, which will act to rotate the coherence into a population. It is important

to note that the rotation time is fixed by the experiment since the rotation pulse

repetition rate is what sets the master clock for the experiment. Now the frequency

qubit generated in the EOPM after the SPDC source will evolve as well until it is

detected.

|φ〉spdc =
Cre

iωR(Tc−td)|R〉2 + Cbe
iωB(Tc−td)|B〉√

2
(8.7)

Where here Tc is the creation time and td is the detection time. Important to note

is that the detection time, td, is the same for both of these packets since they are

incident on a HOM and we are looking for coincident clicks. By combining the result

from Eqn. 8.3 the state teleported onto the spin state is,

|ψ〉qd =
Cbe

iωB(Tc−td)eiωR(td−tr)|x+〉 − CreiωR(Tc−td)eiωR(td−t)|x−〉
4

(8.8)

Factoring out a global phase and canceling out the td we are left with,

|ψ〉qd =
cbe
−i∆(t−Tc)|x+〉 − Cr|x−〉

4
(8.9)

Now applying the rotation pulse R, which will set t now to tr and projecting to the

|x+〉 by looking at the initialization pulse from the next shot of the experiment as the

readout of the spin state as we did in the entanglement experiment. The ∆ describes

the frequency difference of the photon states and corresponds to the spin difference

frequency.

〈x+ |R|ψ〉qd =
Cbe

−i∆(tr−Tc) + iCr
4

(8.10)
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if we take the case where Cr = 1 and we put an oscillation on Cb, like eiφ then when

we look at the signal we are left with,

|〈x+ |R|ψ〉qd|
2

=
1− sin [∆(tr − Tc) + φ]

16
(8.11)

Here we have laid out the considerations of the phase and shown that the detection

time cancels out so the need for fast timing is not required due to the nature of the

HOM interference. Additionally, we can see that as the coefficient Cb is adjusted we

will see an oscillation in the signal in Eqn. 8.11. So that by counting the coincidences

in a single shot we are able to see the counts rise and fall as we adjust Cb. The next

sections will discuss the experimental implementation of the experiment, but before

we can discuss the entire experimental apparatus we need to introduce the phase

modulator that will be used to generate the two frequencies from the SPDC beam to

match the QD spin-photon entangled frequencies.

8.3.1 Electro-optic Phase Modulator

The way we generate the two frequencies is by using an electro-optic phase modu-

lator (EOPM). This device consists of a crystal waveguide in our case we use lithium

niobate (LiNbO3) modulators provided by EOSpace Inc. Lithium niobate is attrac-

tive for use in these devices since its refractive index is subject to change by the

application of an electric field through the crystal. Also, the response of the material

is quite high so modulations in the crystal on the time scale of 100 picoseconds is

possible (note we use EOMs previously to achieve pulse widths of 250ps, so clearly

the response in lithium niobate is capable of reaching high speeds). Unlike the regular

EOMs which are amplitude modulators, these EOPMs only modulate the phase of the

input radiation using a radio frequency (RF) input. The RF signal electrically drives

the crystal changing the refractive index of the material and switching the phase of
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any field in the crystal. A field in the crystal under no RF input will have the form

Aeiωt, now if we input a RF signal into the crystal with a frequency ν we get,

Aei(ωt+B sin(νt)). (8.12)

We can expand this expression out to all orders and attain the following expression,

Aei(ωt+B sin(νt)) = Aeiωt

(
J0(B) +

∑
n=1

Jn(B)einνt +
∑
n=1

(−1)nJn(B)e−inνt

)
. (8.13)

Where Jn(B) are Bessel functions derived from a useful expression [24],

eiB sin θ =

∞∑
n=−∞

Jn(B)einθ. (8.14)

The RF input creates sidebands at integer multiples of the RF drive frequency of

decreasing amplitude. By driving the EOPM at a frequency set to match the spin

difference frequency, ∆, and setting the SPDC source to match one of the QD tran-

sitions, the side band generated will match the other QD transition frequency. Now

the frequency components in each photonic qubit are matched.

It is one thing to generate sidebands from a laser field but a scattered single photon

is fundamentally different[47]. To determine that we can get multiple frequencies

we send the Rayleigh scattered single photons from the QD through the EOPM and

frequency resolve the output. A schematic for this experiment is shown in figure 8.3.1.

The CW laser is set resonant to the QD transition with collection in the reflection

geometry as in chapter VI. The excitation laser is blocked using polarization and the

single photons are sent into the EOPM where they are then sent through a pressure

tuned etalon with a 400MHz linewidth and a free spectral range of 40GHz. By

adjusting the pressure in the etalon cavity housing, using a computer controlled gas

valve, we are able to scan through the etalon’s entire free spectral range to determine
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s

Figure 8.1: Set-up to determine if single photons scattered off the QD transitions will
be split into multiple frequencies after sent through an EOPM with and
RF drive. The frequencies are resolved using a pressure tuned cavity with
a line width of 400MHz. The linewidth does not allow for high resolution
scans, but if the RF drive is set to many GHz we should easily be able to
resolve it.
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Figure 8.2: The data shows a frequency resolved scan when sent through the EOPM
with the RF drive off (black) and on (red). The frequency is set using
a Hewlett-Packard function generator (HP8672a) with the drive set to
3.2GHz

frequency separations. The CW linewidth of the QD trion transition we are interested

in is 1.7GHz so the etalon linewidth should not limit this measurement. Of course the

resulting spectrum will be a convolution of the linewidth of the etalon and the QD

linewidth but we are mostly interested in frequency resolving peaks separated by 5-

8GHz (the range of the spin splitting for the teleportation measurement), so resolving

this will not be a problem for this optical system. Figure 8.3.1 shows scanned etalon

data with the RF output applied to the EOPM and with no signal applied to the

EOPM. We can clearly see from this data that the scattered photons are split into

different frequencies corresponding to the RF drive frequency. When selecting the

frequencies we use an air-spaced etalon to filter our the unwanted frequencies, leaving

only the two frequencies that will be interfered with the QD photonic qubit. The air
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spaced etalon we are using is manufactured specially by Tec Optics with a free spectral

range of 652GHz and a finesse of 120. The etalon is chosen with these parameters

to give a linewidth of 5.2GHz so we can generate sidebands 7.5GHz (the typical spin

difference frequency) apart and only pass two components.

8.3.2 Qubit Interference Generated by EOPM

Finally, before we move into the experimental implementation of the teleportation

we must determine that the state generated from the phase modulator is a frequency

qubit. To do this we take the output of the phase modulator with a 5GHz RF

frequency applied to the EOPM and use the etalon mentioned in the previous section

to only allow 2 frequencies to pass. We can repeat the experiment from section

6.4.3, by sending the single photon pulse through The EOPM before we split the

arms and delay one for interference (figure 6.12). The frequency qubit should be

identical to the delayed qubit and we expect to see a clear drop in coincidences at

time zero corresponding to indistinguishability. Figure 8.3 shows that the degree of

indistinguishability present for the frequency qubit is nearly identical to that of just

a single photon with the RF drive on the EOPM switched off [37]. The polarization

of the input HOM arms are set parallel to each other and if they were perpendicular

we would see the normalized coincidences rise to 0.5 as in figure 6.13.

So from this experiment we can see that the frequency qubit generated from the

EOPM has a high degree of indistinguishability, which is important for the telepor-

tation protocol.

8.4 Experimental Implementation

A timing diagram for the experiment can be seen in figure 8.4. Similarly to

the entanglement experiment the top diagram describes the process for generating

the spin-photon entangled state that interferes with the SPDC photonic qubit rep-
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Figure 8.3: Interference data from a

resented in the bottom diagram. The teleportation experiment is set-up similar to

the entanglement experiment. The 4ns initialization/readout pulse optically pumps

the spin population to |x−〉 and the 250ps π-pulse selectively excites the population

to |Tx−〉. Decay from |Tx−〉 generates the spin-photon entangled state and after

the polarization is projected away we are left with Eqn. 8.1. The photon from the

QD is interfered on a beam splitter with the photonic qubit from the SPDC source.

The event from the SPDC source is generated using a pulsed Ti:Saph laser (Spectra

Physics Tsunami) with a pulse width of 40ps and locked to the repetition rate of the

MIRA (the 2ps rotation laser) so there is a single master clock for the experiment.

Since the MIRA is passively mode-locked, we use the sync signal generated from the

a fast photodiode in the MIRA cavity to lock the clocks of all the timing electronics

(the Tsunami laser, the HydraHarp TDC, the detectors, and the EOMs). The SPDC

generates polarization entangled states so a polarizing beam cube is used to sepa-

rate the co-linear radiation. One polarization is used to herald (idler) the presence

of a single photon pulse in the other polarization (signal), since single photon pulse

operation only occurs during a heralded process for SPDC. The signal beam is sent

through the EOPM generating the second frequency required to match the QD pho-

tonic qubit. The relative strengths of the frequencies is controlled by adjusting the
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Figure 8.4: The timing diagram for the teleportation protocol. The single photon
packets from the QD and the SPDC source are interfered on a beam split-
ter and coincident clicks heralds successful teleportation. The rotation
and readout are performed identically to the entanglement experiment.
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drive amplitude which effects the teleported coefficients discussed in section 8.2. If a

coincidence is registered in the HOM then this will herald a successful teleportation

and the 4ns initialization pulse from the next shot of the experiment will act as the

|x+〉 spin state readout yielding the signal in Eqn. 8.11. A schematic of the optical

set-up can be found in figure 8.5.

This is a four-fold coincidence measurement, so understanding the detection rate is

vital. To begin the QD collection efficiency, using a 20% detection efficiency detector,

in the old Schottky diode sample is ηqd ≈ 10−5. Since we have moved to a new

sample structure with higher light collection and upgraded our detector system to

superconducting nano-wire detectors (SCNWD) this efficiency has increased by a

factor of 500 leaving us with ηqd ≈ 5 × 10−3. The SPDC estimates for previously

achievable coincidence rates in similar cavity enhanced systems gives a rate of ≈

3 × 104s−1 when using a 20% efficiency detector. This leads to an overall collection

efficiency of ηspdc ≈ 4 × 10−2 for each photon generated in SPDC. Since the signal

beam from the SPDC will go through the EOPM, there is an extra loss of 70% in that

arm due to the efficiency and the insertion loss of the EOPM. Combining this with

the factors of 2 for the beam splitters and the fact that coincidence should only occur

1/4 of the time due to the 4 Bell states that are possible we get a final expression for

4 fold coincidence of,

P4fold =
ηqdηqd(0.30)ηspdcηspdc

16
× (76× 106MHz) = 0.57s−1 (8.15)

This shows that we should get 3.4 four-fold coincidences each minute. So to achieve

a proper signal to noise we want to get between 100 and 300 coincidences at the

maximum point of our derived signal from Eqn. 8.11. In the spin photon entanglement

experiment we were able to keep all the lasers and QD locked using servo-loops for

over 30 hours of integration time. For the teleportation experiment it is reasonable
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Figure 8.5: The optical schematic for the experimental implementation of the tele-
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rotation, and readout/initialization lasers. The SPDC source is the high
brightness source discussed in chapter VII.
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Figure 8.6: This is a Monte Carlo of what our signal might look like. Both the
coincidence rate and oscillation frequency have been randomized based
on a normal distribution centered around their theoretical values. Each
point on the x-axis corresponds to an hour of integration time.

to expect we could take 25 data points of 1 hour integration time for each point and

trace out the desired signal. A Monte Carlo (MC) simulation of what this signal

could look like is shown in figure 8.6. Using the MC data we can see that a definitive

signal should be possible for the 25 hour integration and we can extract a good sine

fit showing the dependence of the spin state on the input SPDC photonic qubit state.

The MC simulation is conducted by assigning the maximum amplitude of the

signal from Eqn. 8.11 as 200 ( the number of 4-fold coincidences in an hour for

maximum signal). To mimic counting errors and spurious coincidences a normal

distribution, with a standard deviation given by the Poisson statistics associated

with photon counting, is randomized and applied to the amplitude of each point.

Additionally, random numbers are selected from a normal distribution with a width
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associated with the timing of the electronics and applied to the ∆(tr−Tc) term in the

sine function. Note that these random numbers can be both negative and positive

since the normal distributions are each centered around zero. If we assign each of

these randomly addressed distributions an expression P25(counting) and P25(timing),

where the 25 represents the number of times this distribution is applied (for 25 hour

long integration runs at different values of φ). we are left with the signal,

SigMC = (200 + P25(counting)) (1− sin [∆ (P25(timing)) (tr − Tc) + φ]) (8.16)

This expression gives an idea of what the potential signal could look like and gives a

more realistic version of the experiment than simply plotting Eqn. 8.11.

8.5 Conclusion

Here we have laid-out the procedure for teleportation of a controllable state onto

a QD spin. The mathematical description of the teleportation was discussed and

we determined that the detector timing resolution is not as strict as the previous

entanglement experiment. We discussed the operation of a phase modulator and how

it can be used to generate sidebands in a laser and scattered photons. We showed

that scattered photons through a phase modulator with a RF drive through the

crystal exhibit the same sidebands that a laser field would. These sidebands can be

used to generate the frequency qubit required for teleportation. Implementation of

this protocol will open new prospects for entanglement swapping and transportation

of quantum information. The next and final chapter will discuss the new avenues

available after demonstration of this teleportation.
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CHAPTER IX

Conclusions and Future Directions

9.1 Concluding Remarks

In this work we have shown that QD transitions behave similar to atomic transi-

tions and that the methods we used to study atomic transitions can be used in QDs

as well. The motivation for QDs as a viable quantum computing architecture was

discussed. We show that using time gated quasi-CW laser pulses from EOMs allow

us to follow the excited state population in the time tagged scattering spectrum and

that the transverse and longitudinal optical decay rates we extract from these time

domain data are inconsistent with the numbers we arrive at from CW or frequency

domain measurements. The suspected reason for this is a spectral wandering process

which exists on time scales larger than the dephasing rate γ. This discovery is im-

portant since if we found dephasing mechanisms on a short time scale this could pose

a crippling problem when trying to do gate operations before the system dephases.

We showed that a spontaneously emitted photon from a QD trion state is en-

tangled with the ground state electron spin state. This result is crucial to verify if

QDs were to have a future in quantum computing. The Fidelity of 0.6 is roughly

84% of the detector limited fidelity so we were mostly harmed by the detector timing

resolution. We showed that this timing resolution though important when verifying

the entanglement is not a stringent requirement for entanglement swapping protocols
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or teleportation protocols that utilize a HOM interferometer to interfere two photon

states. So the timing resolution that limited us is not a problem going forward.

We discussed the theory behind HOM interference and how it is altered in the

case of entangled qubits. We took data showing interference between a QD scattered

photon and the same QD’s photon delayed by the repetition rate of the excitation

laser. By adjusting the polarization at the input of the HOM we moved from the case

of quantum interference when the photons are in identical modes to where the photons

are distinguishable and we recover the classical behavior of the beam splitter. We also

used an EOPM to create sidebands from the QD scattered photons and interfered

those with each other and found the same indistinguishability. This is crucial to our

experiment since we will be using the EOPM to create frequency qubits from the

SPDC photons for teleportation onto the QD spin. The HOM indistinguishability

of the photons from the EOPM coupled with the frequency resolved scans, using a

pressure tuned etalon, of the scattered photons through the EOPM in the presence of

an RF field to generate sidebands, provide compelling evidence for a frequency qubit

generated by single photons through a EOPM.

The original reason to use the tunable etalon was for resolving the EOPM side-

bands but it was also used to observe the Mollow triplet by frequency resolving the

scattering from a trion transition at zero magnetic field. This feat had never been ac-

complished in our lab except by means of pump-probe spectroscopy. We showed how

the Mollow triplet comes about and that the expected behavior of the sidebands un-

der increasing excitation powers is observed experimentally. The ability to frequency

resolve scattering and emission could aid data taking in a number of experiments.

We outlined the theory of SPDC and how we will use cavity enhancement to

generate larger rates of single photon pairs. These single photons will then be used in

the teleportation experiment that we laid out in the final chapter. Here we discussed

the theory of teleportation and completed a calculation of the relevant phases for
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the teleportation experiment. We found that the detection time (which needed to

have high timing in our entanglement experiment) cancels in the HOM and the high

timing requirement is loosened allowing us to use higher efficiency detectors. The

phase calculation yielded the form of our final signal and a MC simulation shed light

on what our potential signal would look like.

9.2 Future Directions

The next step in this work is to verify the outlined teleportation protocol upon

completion of the cavity enhanced SPDC source (expected date August 2015). The

first step is to simply show the ability to get good HOM interference between the

SPDC photons and the QD photons. This first step requires no field or spin read-

out/preparation, only the techniques already shown in 6.4.3. The feat of showing this

interference is already something other groups have not done. The teleportation pro-

tocol, though requiring long (25 hour) integration times to verify, is straight forward

now since the theory and considerations have been outlined here. The experimental

difficulties are by no mean simple to handle since it requires the locking of 2 CW lasers

and 2 Pulsed lasers with a magnetic field applied in the superconducting magnetic

cryostat. However, with the expertise already gained when performing the entangle-

ment experiment (2 CW lasers and 1 pulsed laser) it is certainly not a daunting task

to accomplish.

As stated in the last section, the Mollow triplet data can hold a compelling interest.

Using a higher resolution etalon could enable us to learn more about this spectrum

and even utilize the sideband emission for additional quantum optics measurements.

One that comes to mind is the extraction of γ and γ2. We saw before that CW data

for these quantities is in disagreement with time domain data but perhaps the in-

elastic scattering terms that form the sidebands could provide another piece to this

puzzle. Unfortunately, the current experimental apparatus is not sensitive enough for
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Figure 9.1: The SPDC source described here can couple with a QDs from distant
locations or even QD memories in distant locations and act as an en-
tanglement swapping intermediary. The entangled photo pairs from the
SPDC source will interfere with the spin-photon entangled state from
each QD and swap the entanglement between them causing the ground
state spins to precess coherently

this measurement.

The teleportation protocol we discussed here can be extended into a number of

different directions. The fact that SPDC creates entangled pairs is not exploited in

the current version of the experiment but it is a powerful tool to transport quantum

information. If we sent the second photon to another QD and performed the same

teleportation type interference then the entangled nature of the SPDC photons could

act as an intermediate entanglement swapping apparatus. The two distant QD spins

would now be entangled. A diagram of such a method is shown in figure 9.2. By

this method we are utilizing the spin-photon entangled state of the QD to entangle

distant spins. The entanglement of distant spins, and even spins on the same ship

is essential for performing quantum information protocols. This SPDC technology

does not need to be limited only to QDs, The same entanglement swapping can be
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Figure 9.2: A cartoon of a possible integrated photonic circuit. The mounds are QDs
embedded in the photonic crystal cavity. radiation from QDs can be
guided through the pathways to different QDs. On board detectors can
act as readouts.

achieved in any quantum information system. In fact, by tailoring the pump pulse

and adjusting the cavity we may be able to use the SPDC to entangle distant spins

of different platforms (a QD spin entangled with an NV spin). Were this achieved

then quantum memories based on different platforms could share information via this

SPDC entanglement bridge.

In order for the QD technology to mature beyond its current state we must move

to a more integrated design for the sample structures. Photonic crystal wave guides

can be utilized to transport light around a structure and can be used as information

pathway between distant QDs embedded in photonic crystal cavities. A cartoon

of this is shown in figure 9.2. The photonic waveguides act as pathways to form

an integrated circuit. With the emergence of nano-fabrication on-chip detectors to

readout the optical pathways are possible and would allow for many of the same

measurements conducted in free-space. One of the greatest challenges still facing

the field of QDs is the problem of inhomogeneous broadening of the QD resonances.
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The interference that enables entanglement swapping in a photonic crystal circuit,

requires that the QDs at each node have the same energy. Some advancement has

been made in this area but it is still an open field of research.

The study of quantum phenomena is one of the most important avenues in modern

science. In the case of this work and other like it we are able to probe these fundamen-

tal questions of entanglement and coherence while still addressing the technological

applications of such technologies. In the future the study of quantum technologies

will become more geared towards engineering of quantum systems, but we must never

lose sight of the intellectual curiosity displayed by the giants upon who’s shoulder we

stand. The continued journey to understand the world of quantum mechanics should

always be in the back of our minds when conducting this research.
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and P. Grangier. Quantum interference between two single photons emitted by
independently trapped atoms. Nature, 440(7085):779–782, 04 2006.

133



[11] Eric D Black. An introduction to pound–drever–hall laser frequency stabilization.
American Journal of Physics, 69(1):79–87, 2001.

[12] B. B. Blinov, D. L. Moehring, L. M. Duan, and C. Monroe. Observation of
entanglement between a single trapped atom and a single photon. Nature,
428(6979):153–157, 03 2004.

[13] D. Bouwmeester. Experimental quantum teleportation. Nature, 390:575–579,
1997.

[14] D. Bouwmeester, A. Ekert, and A. Zeilinger. The physics of quantum informa-
tion. 2000.

[15] Robert Boyd. Nonlinear optics. Academic Press, Burlington, MA, 2008.

[16] R Hanbury Brown and RQ Twiss. Correlation between photons in two coherent
beams of light. Nature, 177(4497):27–29, 1956.

[17] David C. Burnham and Donald L. Weinberg. Observation of simultaneity in
parametric production of optical photon pairs. Phys. Rev. Lett., 25:84–87, Jul
1970.

[18] Wesley B. Cardoso, A. T. Avelar, B. Baseia, and N. G. de Almeida. Teleportation
of entangled states without bell-state measurement. Phys. Rev. A, 72:045802,
Oct 2005.

[19] Pochung Chen, C. Piermarocchi, L. J. Sham, D. Gammon, and D. G. Steel.
Theory of quantum optical control of a single spin in a quantum dot. Phys. Rev.
B, 69:075320, Feb 2004.

[20] J. Chiaverini, J. Britton, D. Leibfried, E. Knill, M. D. Barrett, R. B. Blakestad,
W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, T. Schaetz, and D. J. Wineland.
Implementation of the semiclassical quantum fourier transform in a scalable sys-
tem. Science, 308(5724):997–1000, 05 2005.

[21] J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Brit-
ton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, and D. J. Wineland.
Realization of quantum error correction. Nature, 432(7017):602–605, 12 2004.

[22] Colin Chow. Towards a Universal Two-Qubit Gate with Self-Assembled InAs
Quantum Dot Molecules. Doctoral Thesis, University of Michigan, 2015.

[23] J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi. Quantum state transfer
and entanglement distribution among distant nodes in a quantum network. Phys.
Rev. Lett., 78:3221–3224, Apr 1997.

[24] David Colton and Rainer Kress. Inverse Acoustic and Electromagnetic Scattering
Theory (Applied Mathematical Sciences). Springer, 3rd ed. 2013 edition, 10 2012.

134



[25] Kristiaan De Greve, Leo Yu, Peter L. McMahon, Jason S. Pelc, Chandra M.
Natarajan, Na Young Kim, Eisuke Abe, Sebastian Maier, Christian Schneider,
Martin Kamp, Sven Hofling, Robert H. Hadfield, Alfred Forchel, M. M. Fejer,
and Yoshihisa Yamamoto. Quantum-dot spin-photon entanglement via frequency
downconversion to telecom wavelength. Nature, 491(7424):421–425, 11 2012.

[26] A. Delteil, S. Zhe, W.-b. Gao, E. Togan, S. Faelt, and A. Imamoglu. Generation
of heralded entanglement between distant hole spins. ArXiv e-prints, July 2015.

[27] D. P. DiVincenzo. Topics in Quantum Computers. eprint arXiv:cond-
mat/9612126, December 1996.

[28] L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller. Long-distance quantum
communication with atomic ensembles and linear optics. Nature, 414(6862):413–
418, 11 2001.

[29] Sophia E. Economou, Ren-Bao Liu, L. J. Sham, and D. G. Steel. Unified theory
of consequences of spontaneous emission in a λ system. Phys. Rev. B, 71:195327,
May 2005.

[30] C Emary and L J Sham. Optically controlled single-qubit rotations in
self-assembled inas quantum dots. Journal of Physics: Condensed Matter,
19(5):056203, 2007.

[31] H. Fearn and R. Loudon. Theory of two-photon interference. J. Opt. Soc. Am.
B, 6:917 –927, 1989.

[32] Alessandro Fedrizzi, Thomas Herbst, Andreas Poppe, Thomas Jennewein, and
Anton Zeilinger. A wavelength-tunable fiber-coupled source of narrowband en-
tangled photons. Opt. Express, 15(23):15377–15386, Nov 2007.

[33] E. B. Flagg. Interference of single photons from two separate semiconductor
quantum dots. Phys. Rev. Lett., 104:137401, 2010.

[34] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich. Generation of optical
harmonics. Phys. Rev. Lett., 7:118–119, Aug 1961.

[35] A. Zeilinger G. Weihs. Photon statistics at beam-splitters: an essential tool in
quantum information and teleportation, manual Chapter 1 - Introduction, page i.
Wiley, 2001.

[36] W. B. Gao, P. Fallahi, E. Togan, A. Delteil, Y. S. Chin, J. Miguel-Sanchez, and
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[42] Alexander Högele, Stefan Seidl, Martin Kroner, Khaled Karrai, Richard J. War-
burton, Brian D. Gerardot, and Pierre M. Petroff. Voltage-controlled optics of a
quantum dot. Phys. Rev. Lett., 93:217401, Nov 2004.

[43] C. K. Hong, Z. Y. Ou, and L. Mandel. Measurement of subpicosecond time
intervals between two photons by interference. Phys. Rev. Lett., 59:2044–2046,
Nov 1987.
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