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ABSTRACT

Systematic Controller Design for Dynamic 3D Bipedal Robot Walking

by

Brian G. Buss

Chair: Jessy W. Grizzle

Virtual constraints and hybrid zero dynamics (HZD) have emerged as a powerful frame-

work for controlling bipedal robot locomotion. Initially conceived as a method for gait and

controller design and stability analysis for robots with a single unactuated degree of freedom,

the theory was applied successfully to the rigid, planar bipedal robots Rabbit and ERNIE.

Subsequent development of the theoretical framework allowed for systems with multiple

degrees of underactuation, making possible its application to the compliant planar biped

MABEL. Effective use of compliance helped MABEL walk blindly over rough terrain and

set a running speed record for bipedal robots with knees. Research aimed at using HZD

for 3D bipedal robots further demonstrated its potential, but also revealed an important

difference with respect to the planar case with a single degree of underactuation: in the

3D case, the choice of virtual constraints has a deciding effect on the stability of a periodic

orbit. Furthermore, it was found that making a good choice of virtual constraints to ensure

stability of an orbit is a subtle and often challenging problem.

ix



This thesis makes both experimental and theoretical contributions to the control of un-

deractuated 3D bipedal robots. On the experimental side, we present the first realization of

3D dynamic walking using virtual constraints. The experimental success is achieved by aug-

menting a robust planar walking gait with a novel virtual constraint for the lateral swing hip

angle. The resulting controller is tested in the laboratory on a human-scale bipedal robot

(MARLO) and demonstrated to stabilize the lateral motion for unassisted 3D walking at

approximately 1 m/s. MARLO is one of only two known robots to walk in 3D with stilt-like

feet.

On the theoretical side, we introduce a method to systematically tune a given choice of

virtual constraints in order to stabilize a periodic orbit of a hybrid system. The method

is based on an analysis of the Poincaré map for a hybrid control system in closed loop

with a parameterized feedback law. Under the assumption that the feedback law generates a

periodic orbit that does not depend on the controller parameters, we introduce a Taylor series

approximation of the linearized Poincaré map and formulate an optimization problem to

choose the controller parameters to stabilize its fixed point. Importantly, this method makes

possible systematic stabilization without the need to recompute the linearized Poincaré map

at each iteration of the optimization. We demonstrate the optimization method to stabilize

a walking gait for MARLO, and show that the optimized controller leads to improved lateral

control compared to the nominal virtual constraints. We also describe several extensions

of the basic method, allowing the use of a restricted Poincaré map and the incorporation

of disturbance rejection metrics in the optimization. Together, these methods comprise an

important contribution to the theory of HZD.
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CHAPTER 1

Introduction

1.1 Motivation

The advantages of legs for moving about are abundantly manifest in nature. Insects and

legged mammals navigate with apparent ease in even the most challenging terrain on earth.

They can walk or run on uneven ground, jump over obstacles, make use of isolated footholds,

and shrink their support base to weave up nearly vertical cliffs. Furthermore they do so with

great elegance and energetic efficiency, making use of natural dynamics and compliance [1].

Although wheels can achieve greater energetic efficiency than legs [2], wheeled vehicles

are confined to relatively smooth surfaces and only moderate slopes. Thus it is natural

to consider legged robots for applications such as construction, home care, and disaster

response [3, 4]. Bipedal robots, in particular, have received significant attention, due in

part to the human factors of man-machine cooperation, and in part to the desire to create

machines capable of interacting with the environment in the same way humans do [5]. While

the motivations for this focus on bipedalism may be application dependent, it is intuitive

that a machine capable of bipedal locomotion (possibly in addition to multipedalism or even

wheeled locomotion) may be better equipped to operate in diverse environments than other

1



robots.1

While legged robots promise greater mobility than robots with wheels or tracks, the

challenge of building machines which realize this mobility remains largely unmet. Although

significant advances have been made since the first powered walking machines appeared over

four decades ago [7], the performance of today’s state-of-the-art robots is still far from that

of their counterparts in nature. Most current bipedal robots will topple in the face of mild

terrain variation or external disturbances [8]. A particular challenge is creating machines

which simultaneously exhibit agility, robustness, and energetic efficiency [9–11]. Extreme

examples of robots which excel in one area at the expense of another are PETMAN [12],

which exhibits dynamic walking and robustness to external pushes at high energetic cost, and

the Cornell Ranger [13], whose energetic efficiency surpassed even that of human walking,

but which cannot clear a 5 cm obstacle.

Creating machines with performance comparable with humans in terms of speed, agility,

robustness, and energetic efficiency will certainly require focused research in a broad spec-

trum of robotics-related disciplines, including actuator design, computer vision, planning,

and control. In this thesis we focus on control, with a dedicated focus on dynamic walking.

Dynamic walking

A central problem in bipedal walking is how to avoid falling down. Humans and animals

routinely rely on future reaction forces to compensate tipping moments [14]. In contrast,

most bipedal walking robots (including ASIMO, HUBO, KHR-2, HRP-2, WABIAN, and

others) try to compensate for destabilizing moments with current reaction forces (in order

to keep the zero moment point (ZMP) in the interior of the support region) [15–17]. This

constraint unnecessarily limits the allowable gaits, and typically results in slow, deliberate,
1JPL’s DARPA Robotics Challenge contender, RoboSimian, is an interesting example of a robot using

multiple means of locomotion to handle the complex environment of a simulated disaster [6].
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flat-footed walking.

An alternative paradigm has emerged which emphasizes natural dynamics over strict

local controllability. Limit cycle walking (LCW), as it is known, has its origins in the studies

of purely passive walking machines initiated by Tad McGeer [18], and encompasses a broad

class of approaches which aim for orbital stability of periodic motions [19]. Limit cycle

walkers avoid falling much as humans do: by repeatedly placing their legs so as to catch

themselves, then allowing their natural dynamics to carry them through the next step.

In this work we will pursue control strategies based on limit cycle walking. We will

develop methods applicable to underactuated bipedal robots (that is, robots having fewer

actuators than degrees of freedom). One reason for this focus is that by restricting our at-

tention to motions satisfying a ZMP constraint, we would forfeit much of the agility which

originally motivated our interest in legged locomotion. Another important reason for study-

ing underactuation is that even a fully actuated 3D robot can become underactuated when

walking. The source of underactuation may be planned (as when seeking to execute a

human-like rolling foot motion) or unanticipated (such as when an uneven walking surface

precludes three non-collinear points of contact, or when the object under the foot rolls or

causes slipping [20]). By studying underactuation directly, we hope to establish effective

and systematic methods for achieving truly dynamic walking and for handling unanticipated

underactuation where it occurs.

1.2 Current state of research

Much of the literature on control of bipedal robots can be organized according to the

principle used to ensure balance. As demonstrated by the examples seen so far, the degree

of imbalance tolerated and the methods harnessed for dealing with imbalance vary widely.

The earliest work focused on static crawlers, which maintain balance by moving slowly and

3



keeping their center of mass over the convex region of support provided by the feet [21].

At the other end of the spectrum, passive dynamic walkers are never statically stable; that

they can achieve stable periodic walking (even without sensing or actuation) is a result of the

stabilizing effects of foot impacts and open loop behaviors such as swing leg retraction [18,22].

Between these two extremes are a variety of approaches, all of which may contribute in part

to the goal of creating machines which can operate reliably in a complex world.

1.2.1 Zero moment point

By far the most commonly used principle for ensuring balance in bipedal robots is the zero

moment point (ZMP). Introduced implicitly in the work of Vukobratović as early as 1968,

the ZMP is defined variously as the (unique) point on the ground at which “the influence

of all forces acting on the mechanism can be replaced by a single force” [23] or “at which

the moment of the total inertia force becomes zero” [24] (see also [17]).2 The significance

of the ZMP lies in the fact that if the ZMP remains in the interior of the convex support

region provided by a rigid foot, the ground reaction forces acting on the foot will balance

the tipping moment induced by inertial forces, and the foot will remain flat on the ground.

On the other hand, when the ZMP reaches the boundary of the support region, the foot

may begin rotating about its edge. Rotation of the stance foot leads to underactuation and

complicates control. Therefore one approach to ensuring balance is to prescribe motions

which are known a priori to maintain the ZMP within the support region. Using a ZMP-

based control strategy, Kato’s group at Waseda University first achieved “quasi-dynamic” 3D

walking in 1983 and “dynamic” walking in 1984 with the bipeds WL-10R and WL-10RD [25].

The vast majority of 3D bipedal robots developed in the last three decades also use

locomotion algorithms based on the ZMP [15–17, 25]. Often this principle is adopted in

conjunction with an assumption that the robot is fully actuated except at the foot-ground
2It has been pointed out that the ZMP is equivalent to the center of pressure [24].
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interface [23]. Thus, as long as the ZMP constraint is satisfied, arbitrary motions of the

robot body can be achieved.

One limitation resulting from the ZMP constraint is that admissible walking patterns

must maintain a non-trivial support region. Such a pattern may not be possible when

kinematic constraints or terrain variations prevent the foot from making contact with the

environment in three non-collinear points. Furthermore this constraint usually precludes

walking gaits which exhibit human-like characteristics, including heel strike and toe off.

However, several authors have presented methods for controlling the ZMP during part of a

gait while still allowing the possibility of an underactuated phase [26,27].

1.2.2 Capturability

Pratt and colleagues formalized the notion of capturability to characterize the essential

property of a viable legged system: that it does not fall down [8, 28] (see also [10]). Cap-

turability is defined in terms of the existence of control inputs which bring a legged system

to a stop after a finite number of steps. Capture regions are places on the ground where a

robot can step in order to come to a stop. It was shown that capture regions are analyt-

ically computable for several simple biped models. Analytically computed capture regions

based on simple models were shown to be useful in rejecting disturbances in simulation and

experiments with the 3D biped M2V2 [28]. In principle, this method is not restricted to

particular classes of robot, gait, or feedback control structure, though formal analysis for

complex robots is still a challenge.

The definition of capturability seems to place it close to static or ZMP-based approaches.

Indeed, the experiments with M2V2 involved the robot being pushed while standing still.

Capturability is used to plan a single step, after which the robot returns to its quiet standing.

Others have used capture points for quasi-dynamic lateral walking [29]. But capturability can

contribute to dynamic walking as well. PETMAN, for example, has demonstrated robust,
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dynamic walking by adjusting the foot step placement relative to the instantaneous capture

point [12].

1.2.3 Hybrid zero dynamics

To deal directly and effectively with underactuation, Grizzle, Westervelt, Chevallereau,

and colleagues introduced the notions of virtual constrains and hybrid zero dynamics (HZD)

[30–32]. Virtual constraints are functions of the robot state zeroed through feedback control;

they provide an intuitive and flexible way to coordinate the links of an underactuated robot,

and so to design walking motions. Additionally, virtual constraints define a subset of the

state space (called the zero dynamics manifold) on which the virtually constrained system

evolves. When the zero dynamics manifold is invariant under the instantaneous impact

map as well as the continuous dynamics, it is possible to study stability of periodic orbits

for the full-order model by analyzing the same orbit for a reduced-order model (called the

restriction dynamics) [30, 33]. It is generally faster to check stability of a periodic orbit for

the restriction dynamics than of the same orbit for the original system.

For a rigid, planar robot, the task of designing a zero dynamics which is compatible with

the impact map is straightforward [32, Theorem 5.2]. The introduction of a constructive

method (based on an event-based update of the virtual constrains) for ensuring hybrid in-

variance in systems with more than one degree of underactuation made HZD applicable to

a much broader class of systems [34].

HZD was first demonstrated on the planar point-foot robots Rabbit and ERNIE [32].

Motivated by the energetic benefits of a rolling contact, Martin, Post, and Schmiedeler

extended HZD for curved feet [35]. Allowing for compliance in the zero dynamics improved

the robustness and energetic efficiency of walking with MABEL [36]. It was also shown that

virtual compliance could be added to the zero dynamics for stable running [37]. MABEL set

walking and running speed records for bipedal robots with knees.

6



Yang, et al. introduced a framework based on HZD which facilitates the control of

aperiodic walking [38]. By designing specialized step-up, step-down, and recovery controllers

and switching between them appropriately, Park and colleagues demonstrated walking over

rough terrain [11,39]. Without any exteroception or prior knowledge of the terrain, the robot

accommodated steps of different heights, including a 20 cm step-down (20% of leg length).

A recent development which promises further improvements in disturbance rejection is

the ability to use nonholonomic virtual constraints [40]. This opens up the possibility of

achieving velocity-based foot placement using the rigorous theoretical framework of HZD.

HZD has been used in the study of 3D locomotion as well [41–45]. One important

discovery was that for systems with multiple degrees of underactuation, stability of a periodic

orbits may depend on the particular choice of virtual constrains [42]. Three approaches for

finding a stable orbit or stabilizing an existing orbit were presented. First, virtual constraints

were modified based on intuition regarding the dynamics of bipedal walking. Though not

systematic, a new set of virtual constraints was found which resulted in a stable orbit.

Unfortunately, the same intuition did not stabilize periodic orbits for a similar model of

a compliant 3D biped [45, 46]. The second approach involved redesigning the gait with

a stability criterion included in the objective function. Finally, an event-based outer-loop

controller was designed to stabilize a given orbit.

1.2.4 Limit cycle walking

Robots employing HZD for periodic motions are one example of the wider class of limit

cycle walkers [19]. Limit cycle walking embraces underactuation, preferring to let the natural

dynamics of the system govern its overall behavior. In addition to (purely) passive dynamic

walkers, this class includes passive-based walkers which attempt to mimic the motion of

unactuated walkers on flat ground with minimal control input. While passive dynamic

walkers show extreme sensitivity to ground slope [47], Spong and Bullo showed how to
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replicate the motion of a passive walker on a whole range of ground slopes [48]. Dubbed

controlled symmetries, the method relies on potential energy shaping and thus requires full

actuation.

Mechanical design plays an enormous role in most successful limit cycle walkers. For

example, the Cornell biped and Denise make use of specially shaped feet to achieve lateral

stability [49]. Denise features a one DOF hip which maintains the torso angle symmetric

relative to the two leg angles in the sagittal plane. Compliance often plays an important role,

reducing the actuator impedance to allow the robot to respond naturally to disturbances from

the environment. Flame and TUlip both employ series elastic actuators for this purpose [4].

Additionally, passive ankle roll joints are fitted with compliant elements to help with lateral

stabilization. Flame has demonstrated walking over an 8 mm (approximately 1.3% of leg

length) step down. To our knowledge TUlip has only walked with assistance [50].

1.2.5 Intuitive approaches

A pioneer in dynamic legged robot locomotion, Marc Raibert jumped over the problem

of walking to tackle hopping and running. He devised a control scheme which decomposed

the task of hopping on one leg into three parts. In the vertical axis, a regular hopping

oscillation was created and maintained by controlling the total energy. By adjusting the

length of a springy leg at key times in a gait cycle, the hopper could either inject or remove

energy from the hopping motion. In the horizontal axis, forward velocity was regulated by

foot placement, while posture was regulated by adjusting the hip angle during the stance

phase. To determine appropriate foot placement, Raibert introduced the CG print, defined

as “the locus of points over which the center of gravity will travel during the next stance

period” [51]. The desired position of the foot in the next stance phase was adjusted from

the center of the CG print to compensate for velocity errors. Experiments with 2D [52] and

3D [53] hoppers validated the control decomposition. Raibert showed that the same method
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extends readily to multi-legged robots using one-leg gaits (i.e., gaits for which only one leg

is in contact with the ground at a time), and that by coordinating multiple legs to act as

one (a so-called virtual leg), gaits such as bounding and trotting were possible [54]. While

Raibert’s work did not address walking, it is nevertheless significant because it demonstrates

the viability of achieving legged locomotion—an apparently complex task—using relatively

simple control schemes. Furthermore, some of the same ideas may be directly applicable to

walking robots.

Other researchers have demonstrated the versatility of comparably simple control laws.

Using a 3D spring loaded inverted pendulum model, Peuker, Maufroy, and Seyfarth [55]

and Sharbafi et al. [56] compared several leg adjustment strategies. They found several

simple strategies which resulted in stable running over a large range of parameters and

initial conditions. General features of human and animal locomotion such as swing leg

retraction [57,58] and the control of ground reaction forces to create a virtual pivot point [59]

have also been analyzed using inverted pendulum models, and may prove useful for practical

walking control strategies.

For robots that can directly control the torque at each joint, Pratt, Dilworth, and Pratt

[60] described an intuitive control design method using “virtual forces”. Given a collection

of virtual (or hypothetical) components such as springs or dampers connected between the

robot and the environment, virtual model control (VMC) computes joint torques which would

balance the external forces the robot would experience due to the virtual components. Joint

torques are computed using the Jacobian transpose. Virtual components offer intuitive

parameters for the designer to adjust in tuning the controller performance. By adding a

higher level controller to modify the parameters of the virtual components in an event-based

manner, the researchers demonstrated walking on level ground and on moderate ramps with

the planar robots Spring Turkey and Spring Flamingo [61].

Yin, Loken, and van de Panne established a control framework for controlling bipeds
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in simulation [62]. Dubbed SIMBICON (SIMple BIped CONtrol), the strategy involves

specifying a finite state machine and a reference pose for each state. Local PD control is

used to drive each joint toward its reference angle in each state. Torso and swing hip angles

are controlled relative to the world frame, and the desired swing hip angle is updated at

each instant based on the distance between the CoM (or the midpoint between the hips)

and the stance foot. This framework has been used in simulation of 2D and 3D bipeds

to produce robust walking with a variety of gaits and in various directions. Coros et al.

used a similar approach which combined reference trajectories with local joint control and

virtual forces (as in VMC) to simulate various gaits and skills for a quadruped with a flexible

spine [63]. Building on this modified framework, a trotting controller was implemented on

the 3D quadrupedal robot StarlETH. The resulting gait was robust to terrain disturbances

and external pushes [64].

The simplicity, flexibility, and apparent robustness of controllers designed with strategies

like SIMBICON, VMC, or Raibert’s decomposition are remarkable. However, these strategies

do not provide tools for formally analyzing the stability of resulting gaits.

1.2.6 Stability and disturbance rejection

Underactuation in dynamic walking demands that special attention be paid to stability.

We distinguish between periodic and aperiodic motions, and between motion planning and

motion control.

For a given system and periodic orbit, stability is most often assessed using the Poincaré

map. Designing stable periodic orbits is a more challenging task. Chevallereau et al. [42]

integrated a stability criterion in an optimization to design a stable gait. The burden of

computing the Poincaré map at each iteration was partially mitigated by employing HZD,

which allows stability to be assessed in terms of the (much smaller) restricted Poincaré map.

The method was demonstrated to design a gait for a rigid, five-link 3D biped model with
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restricted yaw. An alternative approach was proposed by Diehl et al. [65], which introduced

a smoothed approximation to the spectral radius. Here, again, gait design was formulated

as an optimization problem. The objective function included the smoothed spectral radius

and a regularization term to penalize the use of excessive actuator torque. It was shown

that the smoothed spectral radius can be evaluated efficiently by solving a relaxed Lyapunov

equation. However, the computational burden of computing the linearized Poincaré map

apparently remains. The method was demonstrated for the design of an open-loop stable

walking gait for a planar two-link walking mechanism.

Transverse linearization provides a means to stabilize both periodic and aperiodic mo-

tions for underactuated systems [66–68]. The linearization embodies the idea of a mov-

ing Poincaré section, where the transverse coordinates are the coordinates on the section.

Transverse linearization has been used to stabilize walking of a compass biped on rough

ground [69]. However, scaling the method to higher-order systems may be challenging; it

would require solving the stabilization problem for a periodic linear system, which might

involve, for example, solving a time-periodic matrix Riccati differential equation [66].

Assessing stability of aperiodic motions is less straightforward. Perhaps the most promis-

ing notion of stability for aperiodic legged locomotion is the mean first passage time (MFPT)

[70]. This metric is based on a model of the biped and the environment as a stochastic sys-

tem, where a subset of the state space is lumped into one absorbing (failed) state. The

MFPT is the expected number of steps completed before the system enters the failed state.

Recent work has suggested how the MFPT and cost of transport (a measure of energetic

efficiency) can be combined in a cost function for controller design [71].

The notion of stochastic stability somewhat blurs the line between stability and distur-

bance rejection for bipedal robots. The gait sensitivity norm was introduced as a measure of

disturbance rejection, but may prove useful for robust gait design as well [72]. Various other

cost functions have been used to incorporate disturbance rejection into gait design [73].
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1.3 Contributions

The work presented in this thesis builds on and contributes to the well-established frame-

work of hybrid zero dynamics in the following ways:

First experimental realization of 3D walking with virtual constraints. We

present the first experimental realization of 3D bipedal walking using virtual constraints.

This is an important part of the validation of earlier theoretical results extending the theory

of hybrid zero dynamics to 3D robots. The experimental success is achieved by augmenting

a robust planar walking gait with a novel virtual constraint for the lateral swing hip angle.

The resulting controller is tested in the laboratory on a human-scale bipedal robot (MARLO)

which has no sensing or actuation in the foot or ankle. The controller stabilizes the lateral

motion for unassisted 3D walking at 1 m/s.

In the course of this work we also performed an experimental comparison of the effect of

swing leg retraction on disturbance rejection for a planar gait. Finally, our modified lateral

hip constraint can be seen as a variation of the SIMBICON strategy; in this regard, we have

provided the first (partial) experimental implementation of this strategy for a bipedal robot.

Systematic selection of virtual constraints. Virtual constraints and hybrid zero

dynamics have proven extremely useful for gait design for underactuated walking robots;

however a systematic means for stabilization of 3D gaits has remained elusive. We address

this challenge by introducing a method to tune the choice of virtual constraints based on an

optimization. In fact, the method is more general, applying not only to virtually constrained

robotic systems, but to a larger class of periodic orbits for hybrid (and non-hybrid) systems.

We analyze the linearized Poincaré map and show that orbital stability can be formulated as

an optimization problem which can be solved efficiently with available software optimization

packages.

We also extend the basic optimization framework in two ways: First, we show how
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to incorporate into the optimization a measure of the ability of the closed-loop system to

reject disturbances due to uncertainty in the switching manifold of the hybrid system. We

also show how the optimization framework can be used in conjunction with the restricted

Poincaré map. This latter extension provides one solution to the long-outstanding problem

of systematically choosing virtual constraints for stability.

Experimental validation of systematic virtual constraint design. Finally, we

demonstrate the optimization method to systematically stabilize a walking gait for MARLO.

For this experimental work, MARLO is fitted with smaller, toroidal feet which better match

the point-foot model. The optimized controller leads to improved lateral control compared

to the nominal virtual constraints.

1.4 Overview of thesis

The remainder of this thesis is structured as follows: Chapter 2 reviews background

material on hybrid models, virtual constraints, and zero dynamics. Chapter 3 provides a

description of the robot that will be used in experiments and introduces two models for the

robot: a hybrid model for control design and a more realistic model assuming compliant

ground contact for controller evaluation. In Chapter 4 we present the the first successful 3D

walking experiments and the associated control laws. We also present some experimental

work with MARLO in planar mode, which helped in the development of the 3D controller.

In Chapter 5 we present a systematic method for stabilizing gaits based on optimization of a

linearized Poincaré map. The use of this optimization method is demonstrated in Chapter 6

to stabilize a 3D walking gait. Experimental comparisons of the optimized an nominal

controllers are compared. Finally, Chapter 7 summarizes the conclusions and discusses

future directions.
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CHAPTER 2

Background

In this chapter we collect some of the facts that will be used throughout the thesis.

The material here is standard. A good reference for the material on zero dynamics is [32].

Poincaré maps for continuous systems are discussed in detail in [74]; the extension to hybrid

systems is discussed in [32,33].

2.1 Hybrid systems

A hybrid system consists of a discrete set of phases, only one of which is “active” at any

time, a set of rules for determining how the system transitions among them, and, for each

phase, a continuous dynamical model. The discrete dynamics of a hybrid model with M

phases is defined by a directed graph with M nodes. Here we will be concerned with hybrid

models with one or two phases, and we will assume that the graph is a cycle with transitions

1→ 1 or 1→ 2→ 1.

A hybrid control system is a hybrid system for which the continuous dynamics includes

an external input, as in

ẋ = f(x, u), (2.1)

where x ∈ X is the state of the dynamical system, X is the state manifold, u ∈ U is a
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control input, and U is the set of admissible controls. Augmenting (2.1) with a feedback law

u = Γ(x) results in an autonomous (or closed-loop) hybrid system, with continuous dynamics

of the form

ẋ = f̄(x) = f(x,Γ(x)). (2.2)

The continuous dynamics may also have validity conditions which, when violated, indicate

a change of phase (i.e., a discrete “jump” to different discrete state). We assume that the

validity conditions associated with each continuous model may be expressed as σ(x) > 0,

where σ : X → R is a C1 function.1 Under mild conditions, σ defines a codimension-1

embedded submanifold S of X , called the switching manifold.2

When the state of the continuous system meets the switching manifold S, an instanta-

neous change occurs, and the model enters a new continuous phase. We will call this event

an impact. The impact map ∆i→i+1 : Xi → Xi+1 transfers the pre-impact state x−i to the

post-impact state x+
i+1 = ∆i→i+1(x−i ), where the subscripts i, i + 1 index the discrete state

of the model (using addition mod M) and the superscripts “−” and “+” indicate the instants

immediately before and after the impact, respectively. After the impact event, the model

evolves according to the continuous dynamics of the new state.

Collecting the data yields the hybrid system {Σi}Mi=1, where

Σi :


ẋi = fi(xi, ui), x−i /∈ Si

x+
i+1 = ∆i→i+1(x−i ), x−i ∈ Si.

(2.3)

Careful definitions of solutions of hybrid systems are given in [32, 76]. Intuitively, the
1In general, there may be multiple validity conditions (i.e., σ could be vector-valued instead of scalar-

valued). The assumption that the graph representing the discrete dynamics is a cycle means that we need
consider only one condition in each phase.

2Specifically, if X is a 2N -manifold and 0 is a regular value of σ : X → R (i.e., if the derivative dσx at
x is surjective at every point x ∈ σ−1(0)), then the preimage σ−1(0) is a dimension (2N − 1) embedded
submanifold of X [75]. Any (relatively) open subset of σ−1(0) is also an embedded submanifold of X .
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solution starting from x0 ∈ Xi \ Si is formed by integrating the continuous dynamics until

the trajectory intersects the switching manifold Si, then applying the impact map ∆i→i+1

and repeating this process. (If the initial condition x0 lies in Si, then one first applies the

impact map, then integrates.)

2.2 Stability analysis by the method of Poincaré

Consider a single-phase closed-loop hybrid system Σ of the form (2.3) (where we take

ui = u ≡ 0, so that we may think of Σ as being autonomous). Let ϕ(t, x0) be the solution of

the continuous dynamics ẋ = f(x) at time t starting from x0 at time t = 0. Suppose there

is a periodic solution ϕ∗(t) with minimal period T ∗ > 0. The standard method for assessing

the stability of the orbit O := {ϕ∗(t) | 0 ≤ t < T ∗ } is the method of Poincaré, which we

describe here.

Suppose the orbit O intersects the switching manifold S transversely at a single point x∗.

Then there is some open neighborhood U ⊂ S of x∗ such that, for all x0 ∈ U , the solution

ϕ(t, x0) eventually returns to S (intersecting transversely). For convenience, we will assume

that we can take U = S. We define the time-to-impact map TI : S → R̄+ by

TI(x) := inf{ t ≥ 0 | ϕ(t, x) ∈ S }. (2.4)

Then the Poincaré map P : S → S is defined by

P (x) := ϕ(TI(∆(x)),∆(x)) = (ϕTI ◦∆)(x), (2.5)

where ϕTI (x) := ϕ(TI(x), x).

A necessary and sufficient condition for the orbit O to be locally exponentially stable is

that all of the eigenvalues of the linear map DP (x∗) lie in the interior of the unit circle [33].
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If Λ: S → Rn−1 is a coordinate system on S, then the derivative DP (x∗) can be expressed

in the coordinates defined by Λ as

DP̂ (x∗) = DΛ(x∗)
I − f(x∗)∂σ(x∗)

∂x
∂σ(x∗)
∂x

f(x∗)

Φ(TI(x∗), x∗)
∂∆̂(x∗)
∂x

(2.6)

where P̂ := Λ ◦ P ◦ Λ−1, ∆̂ := ∆ ◦ Λ−1, and Φ is the solution of the variational equation

Φ̇(t, x0) = ∂f(ϕ(t, x0))
∂x

Φ(t, x0)

Φ(0, x0) = I.

(2.7)

For more details on the variational equation, see [74].

2.3 Virtual constraints and zero dynamics

Consider a mechanical system governed by the standard second-order dynamics

D(q)q̈ +H(q, q̇) = B(q)u, (2.8)

where q ∈ Q ⊂ RN is a vector of generalized coordinates and u ∈ U ⊂ Rm is a control

input. Defining the state vector x = (q, q̇), we can write (2.8) as the first-order control-affine

dynamical system

ẋ =

 q̇

−D(q)−1H(q, q̇)


︸ ︷︷ ︸

f(x)

+

 0

D(q)−1B(q)


︸ ︷︷ ︸

g(x)

u. (2.9)

We assume that the system is underactuated, i.e., that the dimension N of q is greater than

the number m of independent actuators.3

3Examples of control designs based on zero dynamics for the fully actuated [77] and overactuated [78]
cases are found in the literature.
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An output function h : X → Rm for the control system (2.9) is said to have uniform

vector relative degree 2 at x0 ∈ X if LgLfh(x0) is nonsingular and there is a neighborhood U

of x0 such that Lgh(x) = 0 for all x ∈ U . A function defined on Q can be trivially redefined

on X , so Lie derivatives and the notion of relative degree of this function are also defined in

this case.

A constraint of the form

h(q) = 0 (2.10)

enforced by sensing and feedback control is called a holonomic virtual constraint.4 Enforce-

ment of virtual constraints leads to a reduction in the dimension of a dynamical system.

Specifying and (approximately) enforcing appropriate virtual constraints is a flexible and in-

tuitive way to coordinate the motions of a mechanical system. We will describe a particularly

convenient class of virtual constraints and its use for gait design in Section 4.2.

Let h : Q → Rm be a smooth function. Define y = h(q), and suppose we wish to ensure

y ≡ 0. Differentiating y yields

ẏ = ∂h

∂q
q̇ =: Lfh

ÿ = ∂h

∂q
q̈ + ∂

∂q

(
∂h

∂q
q̇

)
q̇

= ∂h

∂q
D−1B︸ ︷︷ ︸
LgLfh

u+ ∂

∂q

(
∂h

∂q
q̇

)
q̇ − ∂h

∂q
D−1H︸ ︷︷ ︸

L2
f
h

.

If h has uniform vector relative degree 2 at a point q ∈ Q, then the m × m matrix
∂h
∂q

(q)D(q)−1B (called the decoupling matrix) is non-singular in a neighborhood of q and

the feedback

u∗(q, q̇) =
(
∂h

∂q
D−1B

)−1 [
∂h

∂q
D−1H − ∂

∂q

(
∂h

∂q
q̇

)
q̇

]
(2.11)

4As noted in Section 1.2, it is also possible to define and use non-holonomic virtual constraints.
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results in the linear output dynamics

ÿ = 0. (2.12)

If the initial condition x(t0) of (2.9) is such that the output satisfies y(t0) = ẏ(t0) = 0, the

feedback (2.11) ensures that y(t) = ẏ(t) = 0 ∀t ≥ t0. The maximal dynamics compatible

with the output being identically zero is called the zero dynamics.

Hypotheses guaranteeing the existence and uniqueness of the zero dynamics for systems

with a single degree of underactuation (i.e., for which m = N − 1) are given in [32, Lemma

5.1]; similar hypotheses assure the existence for systems with any degree of underactuation

(i.e., 0 < m < N).

Lemma 1 (Existence and uniqueness of the zero dynamics). Consider a system with dy-

namics (2.8) and an output function h : Q → Rm. Suppose

1. there exists an open set Q̃ ⊂ Q such that h has uniform vector relative degree 2 in Q̃;

2. there exists a smooth function ϑ : Q̃ → RN−k such that Φ = [h;ϑ] : Q̃ → RN is an

embedding; and

3. there exists at least one point in Q̃ where h vanishes.

Then the set

Z =
{

(q, q̇) ∈ T Q̃ | h(q) = 0, ∂h
∂q
q̇ = 0

}
(2.13)

is a smooth embedded submanifold of TQ of dimension 2(N − m) and the feedback (2.11)

renders Z invariant under the continuous dynamics (2.8). Z is called the zero dynamics

manifold. The zero dynamics is given by

ż = fzero(z) = f(z) + g(z)u∗(z) (2.14)

for z ∈ Z.
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Note that with u(q, q̇) = u∗(q, q̇), the origin is not asymptotically stable for the output

dynamics (2.12). Exponentially stabilizing the origin renders Z attractive; this is done by

adding PD feedback control as in

u(q, q̇) = u∗(q, q̇)−
(
∂h

∂q
D−1B

)−1 (
KP

ε2 y + KD

ε
ẏ
)
, (2.15)

whereKP > 0 andKD > 0 are diagonal gain matrices, and ε is a tuning parameter controlling

the settling time.

We have shown that under reasonable hypotheses, the set of virtual constraints defined

by a function h : Q → Rm induces a dynamical system having a lower dimension than the

original dynamical system. We now extend this idea to the hybrid setting.

2.4 Hybrid zero dynamics

Consider a single-phase hybrid system Σ of the form (2.3), together with an output

function h : X → Rm satisfying the hypotheses of Lemma 1. Suppose a feedback controller

is chosen which renders Z attractive and invariant. If the initial state x0 lies in Z, the

system will continue to evolve according to the zero dynamics until the trajectory reaches

the switching manifold, at which point the impact map is applied. If ∆(S ∩ Z) ⊂ Z, then

the post-impact state x+ = ∆(x−) will lie in Z. In this case, the zero dynamics manifold is

said to be compatible with the impact map. As Z is invariant under the forward dynamics

as well, we also say that Z is hybrid invariant.

In general, the zero dynamics manifold may not be hybrid invariant. Ensuring hybrid

invariance is possible by an event-based modification of the virtual constraints [34,42]. The

idea is to add to h a term hc which is updated after each impact to zero the error. This idea

is formalized by the notion of a deadbeat hybrid extension of Σ.
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We introduce a set of parameters for the purpose of achieving impact invariance of Z.

Denote these parameters by κ and suppose they take values in K ⊂ Rr. At each impact, the

value of κ will be updated according to a rule v : S → K which will be described shortly.

Adjoining κ to Σ gives the parameterized extension

Σe :


(ẋ, κ̇) = (f(x) + g(x)u, 0) , (x−, κ−) /∈ S × K

(x+, κ+) =
(
∆(x−), v(x−)

)
, (x−, κ−) ∈ S × K.

(2.16)

For convenience we define xe := (x, κ), fe(xe) := (f(x), 0), ∆e(x, κ) = (∆(x), v(x)), Xe :=

X ×K and Se := S × K.

We then define a sufficiently smooth extended output function he : Q×K → Rm as

he(q, κ) := h(q)− hc(q, κ), (2.17)

where hc(q, κ) vanishes for q such that θ(q) = θ−. Finally, we let v be a function such that

he(∆(x), v(x)) = 0

Lfehe(∆(x), v(x)) = 0
(2.18)

for every (x, κ) ∈ Se ∩ Ze, where Ze := { (x, κ) ∈ Xe | he(x, κ) = 0, Lfehe(x, κ) = 0 }. This

update law ensures that ∆e(Se ∩ Ze) ⊂ Ze, which leads us to define the hybrid system

Σe|Ze :


(ż, κ̇) = (fzero(z, κ), 0) (z−, κ−) /∈ Se ∩ Ze

(z+, κ+) =
(
∆(z−), v(z−)

)
(z−, κ−) ∈ Se ∩ Ze,

(2.19)

called the hybrid zero dynamics. Figure 2.1 illustrates the properties of hybrid invariance

and attractivity.

The importance of the hybrid zero dynamics is in part due to the fact that it facilitates

21



(a) (b)

Figure 2.1: Intuitive picture of hybrid zero dynamics. (a) The zero dynamics manifold Z is
a dimension 2(N −m) submanifold of X . Hybrid invariance of Z is illustrated by the green
trajectory which remains in Z even after application of the impact map ∆. (b) Attractivity
of Z implies that trajectories that start off the zero dynamics manifold converge to it.

stability analysis. Specifically, consider a periodic orbit O of the full system Σ whose closure

intersects S transversely. Then the so-called trivial lift Oe := O×{κ∗} (where κ∗ := v(Ō∩S))

is also an orbit of the hybrid extension Σe. Finally, if h vanishes on O, then Oe is a

periodic orbit of the hybrid zero dynamics. If the transverse dynamics (i.e., the dynamics

ÿ = KP
ε2
y + KD

ε
ẏ resulting from (2.15)) converge sufficiently rapidly, then local exponential

stability of O for the full system is equivalent to local exponential stability of Oe for the

hybrid zero dynamics [33,34].
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CHAPTER 3

Hardware Description and Mathematical Models of

MARLO

In this chapter we provide a description of MARLO, the bipedal robot used to validate

the control methods developed in this thesis. We also present two mathematical models

of MARLO. The first is a hybrid model used for gait and controller design. The hybrid

model assumes that walking consists of alternating phases of right and left stance, with

instantaneous transitions between the phases. The second incorporates a compliant ground

model with friction; this model allows us to evaluate the effects of non-instantaneous double

support and non-trivial feet. The robot and hybrid model were previously described in [45],

where more details can be found.

3.1 Mechanical design

MARLO is one of three ATRIAS 2.1 bipedal robots designed by Jonathan Hurst at

Oregon State University’s Dynamic Robotics Lab. The robot has a rigid torso and two

three-degree-of-freedom (DOF) legs. Each leg is composed of a four-bar linkage and a pair

of brushless DC motors. The motors are connected to two of the links of the four-bar linkage

through 50 : 1 harmonic drives and fiberglass leaf springs, forming a type of series elastic
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Figure 3.1: MARLO, an ATRIAS 2.1 bipedal robot. ATRIAS-series robots were designed by
Jonathan Hurst and the Dynamic Robotics Laboratory at Oregon State University. (Photo:
Joseph Xu)
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actuator. The springs serve as energy storage elements, which may enable more efficient

locomotion especially at high speeds. They also isolate the motors from impact at the feet,

and provide an indirect means of estimating ground contact forces. The motors and harmonic

drives are stacked into a compact hip module weighing approximately 12 kg (approximately

25% of the mass of the robot). The links comprising the leg are made of carbon-fiber tubes

and account for approximately 5% of the total mass of the robot.

In addition to the two DOF of the four-bar linkge in the sagittal plane, each leg has one

DOF for hip adduction and abduction. Hip adduction is driven by brushless DC motors

located at the top of the torso, acting through a gear ratio of 26.7 : 1.

The torso accounts for approximately 40% of the total mass of the robot and has room

to house the on-board real-time computing, LiPo batteries, and power electronics for the

motors. Off-board power was used for all experiments reported in this thesis. For the exper-

iments reported in Chapter 4, the real-time computer was off-board; for later experiments,

the real-time computer was on-board. The overall mass of the robot is 55 kg.

MARLO can be fitted with several different types of foot; these are shown in Figure 3.2.

For planar walking, simple point feet are used. For the 3D experiments reported in Chapter 4,

commercial prosthetic feed are used. These feet allow the robot to stand motionless without

assistance before initiating a walking gait. For later experiments, a smaller (8 cm diameter)

toroidal foot is used. This foot better matches the point-foot model while still providing

some torque to limit yawing.

3.2 Sensor suite

MARLO is equipped with proprioceptive sensors only. Eight 32-bit absolute encoders

measure the angles of the upper leg links and harmonic drive outputs relative to the torso.

The nominal resolution is 5.6× 10−7 degrees; however the noise floor is well above the quan-
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Figure 3.2: Different types of foot used on MARLO. From left to right: “point foot”, pros-
thetic foot, toroidal foot. Note the force/torque sensor mounted above the toroidal foot.

tization level, resulting in an effective measurement precision on the order of 10−4 degrees.

Incremental encoders on the hip motors count 10,000 ticks per revolution for a resolution of

0.036◦; after the hip motor to hip angle gear ratio of 26.7 : 1, the effective precision of the

hip angle is 0.0013◦. During the experiments reported in Section 4, MARLO was equipped

with a MEMS IMU (LORD Microstrain 3DM-GX3-25) to measure the orientation of the

torso. For later experiments, the MEMS IMU was replaced with a fiber optic gyro-based

IMU (KVH 1750).

The torso orientation is supplied to the controller at 500 Hz (Microstrain) or 1 kHz

(KVH) and converted to an Euler angle representation. Encoder measurements are supplied

at the same rate as the control loop (1 kHz for the early experiments, and 2 kHz later on).

Derivatives of the Euler angles and of the joint angles are estimated numerically.

During the later experiments, MARLO was also fitted with a 6-axis force/torque sensor

in each ankle (visible in Figure 3.2). The sensors roughly double the moment of inertia of the

legs about the leg motor axis. They also increase the leg length by 8 cm. Due to problems

with the force/torque sensor interface to the real-time computer, data from these sensors
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−qxT

q1R
q2Rq1Lq2L

qyT

q3R

q3L

Figure 3.3: Coordinate definitions for MARLO model. Torso position and orientation are
taken relative to an inertial frame. The remaining coordinates are body coordinates. In the
sagittal plane, leg and gear angles are measured relative to the torso. Hip angles are also
measured relative to the torso, with the angle increasing as the foot moves toward the inside.

were not used by the controller for the experiments reported here.

3.3 Generalized coordinates

To describe MARLO’s orientation, we attach a coordinate frame to the torso with the

z-axis pointing up and the y-axis pointing forward. The orientation RT of MARLO’s torso

in the world frame is represented by the Euler angles (qzT, qyT, qxT) defined by

RT = Rz(qzT)Ry(qyT)Rx(qxT),

where Rx, Ry, and Rz are basic rotation matrices about the x-, y-, and z-axes, respectively.

We will call qzT, qyT, and qxT the torso yaw, roll, and pitch angles, respectively.

All internal joint angles are defined relative to the torso. For each i ∈ {R,L}, the angles

of the upper two links of the four-bar linkage are denoted q1i, q2i (shown in Figure 3.3). We

also define “gear angles” that correspond to the rotation angle of the output of the harmonic

27



drives; these are denoted qgr1i and qgr2i (gear angles are not shown in Figure 3.3 for clarity).

Link angles and gear angles are separated by the leaf springs. The reference gear angle is

chosen so that corresponding link and gear angles are equal (e.g., q1R = qgr1R) when the

spring is at rest. Finally, adduction angles of the hips are defined so that they increase as

the leg moves toward the mid-line; they are denoted by q3i.

The absolute position of the robot in the world frame is specified by the position p0 of

the point at the base of the torso where the axes of the hip joints intersect.

For the floating base model (also called the flight-phase model) we define the vector of

generalized coordinates

qf = (p0, qzT, qyT, qxT, q1R, q2R, q1L, q2L, qgr1R, qgr2R, q3R, qgr1L, qgr2L, q3L), (3.1)

where the subscript f indicates flight phase. The set of possible configurations is a called

the configuration manifold and is denoted Qf . Except near the Euler angle singularity

(qyT = ±90◦), the configuration manifold Qf is diffeomorphic to R3 × SO (3) × T10 where

Tn = S× · · · × S (n times) is the n-torus; however, for the present purpose we may consider

Qf to be an open subset of RNf , where Nf = 16 is the number of degrees of freedom of the

floating base model.

Generally, we will consider the robot in single support, where we assume one foot is

pinned to the ground. We define the generalized coordinates in single support by removing

p0 from qf :

qs = (qzT, qyT, qxT, q1R, q2R, q1L, q2L, qgr1R, qgr2R, q3R, qgr1L, qgr2L, q3L). (3.2)

We will denote the configuration manifold in single support by Qs, and will assume it is an

open subset of RNs , where Ns = 13 is the number of degrees of freedom of the model in
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single support.

Finally, we will sometimes consider the model of MARLO without springs (i.e., with

infinitely stiff springs). In that case the link angles q1R, q2R, q1L, q2L are redundant, so we

omit them. This leaves Nf = 12 and Ns = 9. For notational convenience, we will denote

the coordinates of the floating base and single support models without springs by qf and

qs; which pair of definitions we mean will be clear from the context. Thus the coordinate

vectors for the model without springs are defined by

qf = (p0, qzT, qyT, qxT, qgr1R, qgr2R, q3R, qgr1L, qgr2L, q3L) (3.3)

qs = (qzT, qyT, qxT, qgr1R, qgr2R, q3R, qgr1L, qgr2L, q3L) (3.4)

Note that, in each of the vectors (3.1)–(3.4), the last six coordinates are actuated, and

the others are not.

In this chapter we distinguish between single support and flight phases with subscripts.

Subsequently, we will be interested primarily with the single support model, and so, for

convenience, we will omit the subscript s and write simply q or Q.

3.4 Stance-phase dynamics

During single support we assume exactly one leg is in contact with the ground. The

dynamics of the robot is that of a pinned kinematic chain. We take qs as in (3.2) or (3.4).

Using the method of Lagrange, we derive the dynamics in right stance as

DR(qs)q̈s + CR(qs, q̇s)q̇s +GR(qs) = B(qs)u. (3.5)
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The subscript R indicates right stance. We can express (3.5) in the form (2.1) as

ẋs =

 q̇s

−DR(qs)−1(CR(qs, q̇s)q̇s +GR(qs))


︸ ︷︷ ︸

fR(xs)

+

 0

DR(qs)−1B(qs)


︸ ︷︷ ︸

gR(xs)

u. (3.6)

The state of the model is xs = (qs, q̇s), and the state manifold Xs is the tangent bundle TQs.

The dynamics in left stance is given by equations completely analogous to (3.5) and (3.6).

Note that the state xs is valid for both left and right stance.

This model is valid as long as the swing foot is above the ground, the normal component

Fn of the ground reaction force (GRF) on the stance leg is positive, and the tangential

component Ft = (Fx, Fy) of the GRF is in the friction cone ‖Ft‖ < µs|Fn|. When the GRF

conditions fail, the robot will slip or enter flight; in the design of normal walking controllers,

we do not consider solutions which exhibit these phenomena. The swing foot height condition

defines the switching manifold by σR(xs) = pzL(qs), where pzL is the vertical component of the

swing foot position. When σR(xs) decreases to zero, a transition occurs from right stance to

left stance.

3.5 Impact dynamics

The impact map is derived following the analysis of Hurmuzlu [79]. As the terms swing

and stance are not well defined during impact, we make the convention in this case that the

swing foot refers to the impacting foot. We assume that the swing leg hits the ground with

non-zero vertical velocity, and that it immediately sticks (i.e., it does not slip or bounce).

Simultaneously, the stance foot is assumed to lift off the ground without interaction. Fur-

thermore, we assume that the impact duration is infinitesimal so that the configuration is

constant throughout the impact event, and that the input torques u are finite.
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To derive the impact map we must consider the floating base model, with qf as in (3.1)

or (3.3). As before, the method of Lagrange is applied to derive the dynamics of the floating

base model, but this time we allow the possibility of external forces FR and FL on the end of

the right and left legs. If we let JR = ∂pR
∂qf

and JL = ∂pL
∂qf

represent, respectively, the Jacobians

of the right and left foot positions pR and pL, the dynamics of the floating base model is

Df (qf )q̈f + Cf (qf , q̇f )q̇f +G(qf ) = B(qf )u+ JTR(qf )FR + JTL (qf )FL. (3.7)

By integrating the dynamics (3.7) over the infinitesimal duration of the impact, we see

the post-impact state x+
f is related to the pre-impact state x−f according to

Df (qf )(q̇+
f − q̇−f ) = JTL (qf )F, (3.8)

where F is the impact intensity (the integral of FL(t)) and FR(t) = 0 throughout the impact.

The post-impact velocity of the impacting foot ṗ+
L = JLq̇

+
f must be zero according to our

assumptions; augmenting (3.8) with this constraint yields

Df (qf ) −JL(qf )T

JL(qf ) 0


q̇+

f

F

 =

Df (qf )q̇−f
0

 . (3.9)

Except at the leg singularities, Df (qf ) is positive definite and JL(qf ) full rank, so the matrix

on the left is non-singular. Blockwise inversion yields expressions for q̇+
f and F , as

q̇+
f

F

 =

Df (qf ) −JTL (qf )

JL(qf ) 0


−1 Df (qf )q̇−f

0

 =

∆̄f (qf )

∆̄F (qf )

 q̇−f (3.10)

where ∆̄F = −(JLD−1
f JTL )−1JL and ∆̄f = I + D−1

f JTL ∆̄F . Since the stance foot is fixed in

single support, the position p0 may be computed as a function Υ(qs) of the configuration.
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ẋs = fR(xs) + gR(xs)uẋs = fL(xs) + gL(xs)u

x+
s = ∆R→L(x−s ) ϕR(x−s ) = 0

x+
s = ∆L→R(x−s )ϕL(x−s ) = 0

Figure 3.4: Hybrid model for MARLO. The model for 3D walking includes left and right
stance phases.

Thus q̇f =
[
∂Υ
∂qs

T
I
]T
q̇s. Let ∆̄(qs) = [0Ns×3 INs×Ns ] ∆̄f (Υ(qs), qs)

[
∂Υ
∂qs

T
I
]T

; then (q+
s , q̇

+
s ) =

∆(q−s , q̇−s ) where the impact map ∆R→L : TQs → TQs is given by

∆R→L(q−s , q̇−s ) =

 q−s

∆̄(qs)q̇−s

 . (3.11)

Note that to derive the impact map ∆L→R we need only replace JL(qf ) with JR(qf ) in

(3.8)–(3.11).

3.6 Hybrid model

We assemble the continuous dynamics and impact dynamics into a hybrid model consist-

ing of alternating phases of right and left stance, with instantaneous transition between the

phases (see Figure 3.4). During each single support phase, only the stance leg is in contact

with the ground. Impacts occur when the swing foot height above the ground decreases to

zero. The collision is perfectly inelastic, and the former stance foot begins rising immediately.
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Combining these elements yields the hybrid model

ΣR :


ẋs = fR(xs) + gR(xs)u, x−s /∈ SR

x+
s = ∆R→L(x−s ), x−s ∈ SR

ΣL :


ẋs = fL(xs) + gL(xs)u, x−s /∈ SL

x+
s = ∆L→R(x−s ), x−s ∈ SL.

(3.12)

We use a dynamical model of MARLO which exhibits left-right symmetry. Thus, when

the desired gait is also left-right symmetric, we can consider the single-phase hybrid model

Σ:


ẋs = fR(xs) + gR(xs)u, x−s /∈ SR

x+
s = ∆R→R(x−s ), x−s ∈ SR

(3.13)

where ∆R→R = Sx ◦∆R→L, and SxSx = I2Ns×2Ns is a symmetry or relabeling matrix (see [32,

Section 3.4.2]).

3.7 Compliant ground model

The hybrid model we have developed is useful for control design using the method of

HZD described in Section 2.4. However, in practice several of the assumptions made in the

development of the hybrid model are not satisfied. The most prominent discrepancy is in the

foot model. While it is possible to develop a hybrid model and to apply HZD for robots with

non-trivial feet [35, 77], one may not wish to do so. An alternative method for evaluating

candidate controllers makes use of a compliant ground model. In such a model, the robot

is never pinned to the ground; reaction forces at each foot must support the weight of the

robot. A compliant ground model also makes it straightforward to model the effects of a

non-instantaneous double-support phase and of slipping. Impulsive forces and torques are
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not allowed in the compliant ground model. As a result, the model is continuous, not hybrid.

To model non-trivial feet, we define a collection of points Pi = {pi,1, . . . , pi,nF }, i ∈ {R,L}

rigidly attached to the end of each leg. Each foot point which lies at or below ground level is

subject to reaction forces. The ground model is based on a 3D extension of a model described

in the literature [80] for planar robots.1 It defines normal reaction forces as a function of the

ground penetration depth zG and velocity żG. In the vertical direction, the model is that of

a stiff, nonlinear spring-damper. The normal force is

Fn = k|zG|n − λav|zG|nżG − λbv|zG| sgn(żG)
√
|żG|. (3.14)

Tangential forces are computed with the LuGre friction model [81], which assumes the reac-

tion force Ft is proportional to the normal force Fn. The ratio µ = Ft/Fn is a dynamic term

whose derivative depends on the ground penetration depth zG, the horizontal foot velocity

v, and an internal state d representing average bristle deflection. The equation for µ is of

the form

µ̄(d, ḋ, v) = σh0d+ σh1ḋ+ αh2v + αh3 sgn(v)
√
|v| (3.15)

µ(d, ḋ, v) = 0.7 sat(µ̄(d, ḋ, v)/0.7). (3.16)

The reaction forces in x and y directions are modeled separately, giving

Fx = µ(dx, ḋx, vx)|Fn| ḋx = vx − |vx|
σh0

αh0
dx (3.17)

Fy = µ(dy, ḋy, vy)|Fn| ḋy = vy − |vy|
σh0

αh0
dy (3.18)

1Several terms in the ground model differ slightly from the corresponding terms found in [80]. It is
believed that the differences are negligible, especially when the parameters represent a very stiff ground
model, as they do here.
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where F = (Fx, Fy, Fn) is the ground reaction force, dx and dy represent the friction states

in the x and y directions, and sat(x) = x if |x| ≤ 1 and sat(x) = sgn(x) otherwise. Note

that the coefficient of friction is saturated independently in the two horizontal directions;

this ensures that the reaction force lies within the friction pyramid defined by |Fx| < µ√
2Fn

and |Fy| < µ√
2Fn. The friction pyramid is a conservative linear approximation to the friction

cone defined by
√
f 2
x + f 2

y < µFn. Both are standard in the literature [82, 83]. The friction

state (dx, dy) is reset to zero whenever the foot point is above ground level.

When multiple foot points are in contact with the ground, a moment is induced which

limits yawing. However, when only one foot point is in contact with the ground, there may

be a strong tendency to yaw. To limit this effect, we include the possibility of viscous friction

in the yaw axis about the end of each leg. The principle of virtual work implies that the yaw

damping moment on the right leg is given by

MR(qf , q̇f ) =


−γET

RERq̇f , if mink=1,...,nF p
z
R,k < 0

0, otherwise
(3.19)

where γ is the viscous friction damping constant, pzR,k is the vertical component of the

position of the kth right foot point and ER is the jacobian of the last row of the rotation

matrix relating the right foot frame to the body frame attached to the torso. An analogous

expression gives the yaw damping moment on the left leg ML.

The dynamics of the robot is given by

Df (qf )q̈f + Cf (qf , q̇f )q̇f +G(qf )

= B(qf )u+ML(qf , q̇f ) +ML(qf , q̇f ) +
nF∑
k=1

JTR,k(qf )FR,k +
nF∑
k=1

JTL,k(qf )FL,k (3.20)

where FR,k is the ground reaction force on the kth right foot point and JR,k = ∂pR,k
∂qf

.
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CHAPTER 4

Achieving Sustained Walking with MARLO

The theory of hybrid zero dynamics had proven extremely useful for planar walking, being

used successfully on robots such as Rabbit and ERNIE [32,84]. The initial conception of the

method, which required that the system have at most one unactuated degree of freedom, had

been extended for models with multiple degrees of underactuation. This development allowed

HZD-based control of MABEL, a planar robot with springs in series with the knee angle

actuator; effective use of compliance helped MABEL walk with great energetic efficiency

and even run with a strikingly human-like gait [11, 37]. The same development facilitated

extension of the methods of HZD to 3D robots, and various researchers had employed it in

the study of mathematical models of underactuated 3D dynamic walking [41–45]; however,

to our knowledge, the only experimentally-realized sustained 3D walking to make use of

virtual constraints employed a fully actuated, flat-footed gait on a NAO robot [44].

This chapter reports the first experimental demonstration of sustained dynamic 3D walk-

ing using virtual constraints. The walking was achieved with MARLO, an ATRIAS 2.1 robot

designed for underactuated 3D locomotion but previously used only in a planar mode (sup-

ported laterally by a boom). The walking gait employed here was first designed for a planar

model of MARLO using HZD. The initial implementation (using a modified version of the op-

timized gait) led to successful planar walking just three days after the first ATRIAS 2.1 robot
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was fully assembled. Early efforts at implementing a systematically-designed 3D walking gait

on MARLO proved challenging [46]. Therefore we used intuition and experimentation to ad-

just the successful planar gait and feedback controller to achieve sustained 3D walking. This

success demonstrated that sustained 3D walking can be achieved on MARLO; however, it

also highlights the drawbacks of “intuition.” In subsequent chapters, we will address this

problem with a more systematic method for stabilizing 3D walking, and will show improved

lateral control in 3D walking using that method.

The rest of the chapter is organized as follows. We first outline several challenges to

implementing a fully model-based gait design in these initial experiments. Section 4.2 then

describes the virtual constraints used to design the gait and controller for MARLO. In

Section 4.3 we describe a method for approximate gravity compensation for MARLO. Gravity

compensation helped mitigate the effects of torque saturation and communication delay by

improving enforcement of virtual constraints with lower feedback gains. In Section 4.4 we

investigate the role of swing leg retraction in disturbance rejection during planar walking

experiments. Lateral stabilization for 3D walking is addressed in Section 4.5, where we

describe the intuitive idea that led to a modified choice of virtual constraints for the lateral

hip angles. Section 4.6 presents experimental results.

4.1 Challenges

Being a prototype experimental robot with novel mechanical and electrical designs,

MARLO presents several challenges to control. Here we briefly summarize a few that were

significant influences in the experimental work reported in this chapter.

The first challenge is uncertainty in the robot dynamic model. The torso inertia is not

well known due to its heterogeneous construction. More significantly, harmonic drives in

series with each sagittal-plane leg motor exhibit nonlinear, position- and velocity-dependent
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friction. (In fact, position-dependent stiction turned out to be an indicator of motor com-

mutation errors associated with deteriorating sensors inside the motors.) Additionally, the

point-foot model is only a rough approximation of the rigid prosthetic foot (see Figure 3.2)

used in these early 3D walking experiments.

Another factor motivating experimental controller adaptations is the relatively low torque

output achievable with the current power system. The continuous current rating for the

amplifiers limits motor torque to 3 Nm. With an ideal transmission, this would equate to

150 Nm at each link, which is just enough to support the weight of the robot on one leg when

the knee is bent 67 degrees. However, friction in the harmonic drives reduces the output

torque applied to the links; the threshold of motion of the static friction is around 0.5 Nm,

or 17% of the maximum motor torque. Further complicating this issue is that neither motor

torques nor currents are measured; we only know the commanded current to each motor.

Furthermore, we later discovered a 4–6 ms round-trip delay affecting torque commands and

encoder measurements sent between the MATLAB-based controller and the firmware on

low-level interface boards.

Despite these challenges, MARLO successfully walked in 3D on rigid prosthetic feet

without any sensing or actuation in the foot or ankle, becoming the first human-scale bipedal

robot to do so. This work lays a foundation for experimental validation of the systematic

design methods we will describe in subsequent chapters.

4.2 Virtual constraints for 3D walking

Recall that a holonomic virtual constraint is a holonomic constraint enforced through

the action of a feedback controller to coordinate the motion of a mechanical system. One
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convenient form of virtual constraint is given by

0 = h(q) = h0(q)− hd(θ(q)), (4.1)

where the function h0 : Q → Rm determines which quantities are to be controlled and

hd : R → Rm determines the desired evolution of the controlled quantities as a function

of the so-called mechanical phase variable θ : Q → R.

4.2.1 Choosing what to control

The choice of controlled variables involves several considerations. First, it is convenient to

choose variables which have intuitive meaning for the designer. For bipedal robots, variables

such as leg and knee angles make more sense than motor shaft angles. The controlled

variables must be chosen so that the output h satisfies the technical conditions described in

Lemma 1 ensuring that we will be able to compute a feedback law u = Γ(q, q̇) to enforce the

constraint. Most importantly, the choice of controlled variables can have a significant impact

on the stability of a gait [42]. This is especially relevant for 3D walking on point feet, where

the unactuated dynamics in the lateral plane make stabilization particularly challenging.

Here we give one choice of controlled variables for MARLO which is intuitive and which

satisfies the required technical conditions. We will find that it works well for planar gaits,

but must be modified to achieve sustained 3D walking.

We specify one virtual constraint for each of MARLO’s six actuators. Four of the actu-

ators are associated with movement of the legs in the sagittal plane. In prior work with the

planar bipedal robot MABEL [11, 36, 37], the angle of the torso was chosen as one of the

controlled variables. This choice was particularly beneficial as MABEL had a heavy torso, so

controlling its motion especially just before impact was determined to improve robustness.

MARLO has a relatively light torso compared to the concentrated mass of the leg actuators
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located in the hips, so the benefits of controlling the torso angle in the sagittal plane are

less convincing. Instead we choose the angle of the virtual leg and the knee angle to be the

controlled variables in the sagittal plane. This choice has the advantage of being symmetric

with respect to the swing and stance leg, and is sufficiently intuitive to make the resulting

virtual constraints meaningful to the designer. Initially, we will choose the relative hip angles

as the controlled coordinates in the lateral plane. The nominal set of controlled variables is

h0(q) =



qgrLA,R

qgrLA,L

qgrKA,R

qgrKA,L

qHA,R

qHA,L



=



qgr1R+qgr2R
2

qgr1L+qgr2L
2

qgr2R − qgr1R

qgr2L − qgr1L

q3R

q3L



. (4.2)

With this choice, the virtual constraints have vector relative degree two [32].

4.2.2 Choosing the desired evolutions

The mechanical phase variable θ is defined to be the absolute angle between the virtual

leg and the ground in the sagittal plane, given by

θ(q) =


π
2 − qxT − q1R+q2R

2 , in right stance

π
2 − qxT − q1L+q2L

2 , in left stance.
(4.3)

It is convenient to normalize θ to the interval [0, 1] as

s(θ) = θ − θ+

θ− − θ+ , (4.4)
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where θ+ and θ− represent the values of θ at the beginning and end of a typical walking

step.

The desired evolutions hd are chosen to be 5th order Bézier polynomials. Letting α =

(α0, . . . , α5), where αk ∈ R6, k = 0, . . . , 5, denote the Bézier parameters, this yields pa-

rameterized virtual constraints of the form

h(q, α) = h0(q)− hd(θ(q), α), (4.5)

where

hd(θ, α) =
5∑

k=0

5!
k!(5− k)!s(θ)

k(1− s(θ))5−kαk. (4.6)

Using the first four constraints in a planar hybrid model of MARLO, stable periodic

planar gaits were found by choosing Bézier parameters through an optimization process

using fmincon.

4.3 Gravity compensation for robots with compliance

Given a set of virtual constraints, the task of the feedback controller is to enforce the

constraints by zeroing the output h(q). A feedback law which asymptotically zeroes the

output and renders the zero dynamics manifold forward invariant was given in (2.15); this

feedback law is a special case of input-output (or feedback) linearization [85]. However,

input-output linearization is known to be sensitive to model errors. This lack of robustness

stems from the fact that feedback linearization attempts to cancel the nonlinearities in the

input-output dynamics. Here we derive a control law which attempts to cancel only the

nonlinearities due to gravity. In doing so we improve enforcement of the virtual constraints

during walking experiments while avoiding some of the potential difficulties resulting from

uncertainty in the inertial parameters of the model.

41



Consider a fully actuated, rigid dynamic system (e.g., a robotic manipulator) with gen-

eralized coordinates q1. A Lagrange model may be written as

D(q1)q̈1 + C(q1, q̇1)q̇1 +G(q1) = Bu, (4.7)

where G(q1) = ∂Vgrav
∂q1

(q1)T and Vgrav(q1) is the gravitational potential energy. As the system

is fully actuated, B is square and non-singular. Gravity compensation is realized by letting

the input u take the form u = u0+ugrav, where ugrav = B−1G. With this input, the dynamics

is reduced to D(q1)q̈1 + C(q1, q̇1)q̇1 = Bu0; this is the dynamics of the same system in the

absence of gravity.

In an underactuated system, it generally is not possible to cancel fully the effects of grav-

ity, as the input matrix B will not be invertible. Partial cancellation of G might be achieved

by a least squares solution ugrav = arg minu‖Bu−G‖2; however, where underactuation arises

from compliance in series with actuation, the resulting feedforward torque may fail to signifi-

cantly alter the dynamics. To see why, it is convenient to write the model in a form proposed

by Spong [86]. Spong showed that under reasonable assumptions, the dynamics of such a

system can be decomposed into a “rigid” dynamics and an “actuator” dynamics with elastic

coupling. We let q2 represent the actuator angles multiplied by their gear ratios and augment

(4.7) with actuator dynamics and elastic coupling terms. We make a slight generalization

from the original work by allowing the dimension n of q1 to exceed the dimension m of q2

(which is equal to the number of actuators); we simply require that the spring deflections

may be written as BT q1− q2 (instead of q1− q2 as in the cited work). The inertia matrix for

the rigid robot is D(q1); the rotor inertias Izzk are multiplied by the squared gear ratios m2
k

to compute the diagonal actuator inertia matrix J = diag{m2
1Izz1 , . . . ,m

2
mIzzm}. Potential

energy is the sum of that due to gravity, which depends only on q1, and that due to elasticity,
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which is 1
2k(BT q1 − q2)T (BT q1 − q2). We have

D(q1)q̈1 + C(q1, q̇1)q̇1 +G(q1) +Bk(BT q1 − q2) = 0 (4.8a)

Jq̈2 − k(BT q1 − q2) = u. (4.8b)

With this model we see there is no hope of directly (i.e., algebraically) compensating for

the gravitational term G(q1), as it is coupled to the inputs u through a double integrator.

However, as Spong showed, in the limit as the spring stiffness becomes infinite, the rigid

model is recovered; that is, as k →∞ the dynamics (4.8) approaches

(D(q1) +BJBT )q̈1 + C(q1, q̇1)q̇1 +G(q1) = Bu (4.9a)

BT q̈1 − q̈2 = 0 (4.9b)

This model has only n − m degrees of underactuation, while the original has n. More

importantly the large components of G(q1) lie in the range of B, so the least squares solution

ugrav = (BTB)−1BTG(q1) will be larger.

To understand in what sense, if any, ugrav compensates for the effects of gravity, we

consider the system (4.8) in steady-state. Suppose first that the velocity q̇1 is zero and

the configuration q1 is such that G(q1) is in the range of B. Then ugrav is a solution to

G(q1) = Bu, and, for q2 = BT q1 − k−1ugrav, the system satisfies (q̈1, q̈2) = 0. Thus (q1, q2) is

an equilibrium configuration corresponding to the constant input ugrav. It follows that ugrav

compensates the (steady-state) effect of gravity. Note also that ugrav = −k(BT q1 − q2), so

the actuator and spring torques are equal, as they must be in equilibrium. If G(q1) is not in

the range of B, ugrav will be equal to the spring torque which minimizes the effect of gravity.

We can now see that the feedforward torque effectively establishes an equilibrium position

for the gear angles q2 close to that which the system would have in steady-state.
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We may extend this analysis to the more general model which does not make the simpli-

fying assumptions found in [86]. This is done by adding a Lagrange multiplier λ to eliminate

spring deflection (i.e., to enforce the constraint q̈sp = 0 where the qsp = Jspq is the spring

deflection). We have

D(q)q̈ + C(q, q̇)q̇ +G(q) + kJTspJspq = Bu+ JTspλ (4.10a)

Jspq̈ = 0. (4.10b)

Note that here G(q) = ∂Vgrav
∂q

(q) and kJTspJspq = ∂Vspring
∂q

(q), where Vspring(q) = 1
2kq

T
spqsp. This

system can be written as

D(q)q̈ + ΠC(q, q̇)q̇ + ΠG(q) + kΠJTspJspq = ΠBu (4.11)

where the projection matrix Π = I − JTsp(JspD−1JTsp)−1JspD
−1. If we define B̄ = ΠB and

Ḡ = ΠG, the gravity compensation torque is given by

ugrav = (B̄T B̄)−1B̄T Ḡ. (4.12)

4.4 Swing leg retraction

The second enhancement which provided a significant improvement in robustness comes

from observations of humans and animals. These locomotors often brake or reverse the

swing leg just before impact. This behavior, termed swing leg retraction, has been shown to

improve stability robustness in spring-mass models of running [57,58].

We implement retraction of the swing leg by a simple modification of the virtual con-

straints. As defined in (4.2) and (4.5), the swing leg angle is he second element of the output

y = h(q, α); thus we need only modify the Bézier parameters corresponding to this con-
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Figure 4.1: Virtual constraints for swing leg retraction.

straint. We make use of elementary properties of Bézier curves: specifically, the Mth-order

Bézier curve B(s, α) with parameters α = (α0, . . . , αM) takes the value α0 at s = 0 and

the value αM at s = 1; furthermore, the derivative ∂B(s,α)
∂s

takes the values M(α1 − α0) and

M(αM − αM−1) at s = 0 and s = 1, respectively.

We do not wish to modify the step length, which is related to the swing leg angle at

s = 1; so we leave αM unchanged. Instead, to induce a retraction of the swing leg at impact,

we increase the value of αM−1 for the swing leg angle virtual constrain. We could also modify

the intermediate control points α1, . . . , αM−2; however it is not usually necessary to do so.

Figure 4.1 compares the Bézier polynomials for the nominal and modified swing leg angle

virtual constraints. The modified evolution was selected by adjusting αM−1 and running a

series of walking experiments during which the boom was occasionally pushed.

Robustness to external disturbances was verified (imprecisely) by pushing or kicking the

boom as MARLO walked. Adding 10 degrees to the swing leg angle component of αM−1

caused the horizontal velocity of the swing toe to be nearly zero at an unperturbed impact.

More exaggerated leg retraction tended to cause the robot to stomp without noticeably

improving stability robustness. Figure 4.2 shows the step speeds during two experiments

(without and with enhanced swing leg retraction) where the boom was pushed from behind

while the robot walked. Enhanced swing leg retraction allowed the robot to continue walking
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Figure 4.2: Effect of swing leg retraction on disturbance rejection. The plots indicate the step
speed during two experiments where the boom was pushed. In each plot, the heavy red stems
indicate steps where the experimenter was in contact with the boom. Note the significant
left-right asymmetry due to the boom. (Top) Without enhanced swing leg retraction, the
velocity increased after the push and remained higher than normal for multiple steps until
the robot tripped and eventually fell. (Bottom) With enhanced swing leg retraction, the
step velocity returns to nominal within about one step after the push. In this experiment
the robot rejected multiple pushes before falling.
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Figure 4.3: Video snapshots from robust 2D walking experiment. Frames are 334 ms apart.
The robot took several steps after being kicked. The experimenter stopped the robot to
prevent it from walking into the wall. The video is available on YouTube.

after several pushes, while it otherwise became unstable and eventually fell.

We also verified that the control design remained stable and robust when the torso

pitch encoder measurement was replaced with the lower-bandwidth IMU-derived (LORD

Microstrain 3DM-GX3-25) pitch angle, and when prosthetic feet were used instead of point

feet. The desired knee angles were modified by hand to accommodate the prosthetic feet

without scuffing. The robot successfully walked over slightly uneven terrain while subjected

to external disturbances (pushes) even under these conditions. Figure 4.3 shows snapshots

from a video of this experiment.
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4.5 Lateral control for 3D walking

Early efforts to implement a systematically-designed 3D walking gait on MARLO were

instrumental in solving new challenges related to gait initiation. However, despite some

promising results, the MARLO had never taken more than about six consecutive steps [46]

in 3D. The controller in use employed virtual constraints based on the controlled variables

defined in (4.2). These virtual constraints give rise to a periodic orbit which is unstable

[42, 45]. Instability was evident in experiments, where a common failure mode begins with

poor lateral foot placement which results in the robot rolling over the stance foot. The

problem is that the nominal virtual constraint makes the desired hip angle independent

of torso roll instead of modulating foot placement to compensate for rolling motions, as a

human would do.

To achieve lateral stability we implemented a revised hip control strategy. The essence

of the strategy is to let the angles of the hips with respect to the world frame approximately

mirror each other in the frontal plane. A similar “mirror law” in the sagittal plane was

first proposed in [30]. Our lateral hip control law can also be seen as a modified form of

the balance control strategy used in SIMBICON [62]. SIMBICON and variations thereof

have been used in simulation of a variety of legged creatures [63, 87] and in experiments

with a quadrupedal robot [64]. We first summarize the original algorithm, then describe the

modified version used in our experiments.

4.5.1 Nominal SIMBICON algorithm

SIMBICON is a framework for the control of bipedal walking or running. It is based

on a finite-state machine having a fixed target pose for each state. Within each state, PD

control is used to drive individual joints toward the corresponding target angles. The swing

hip and the torso angle are controlled relative to the world frame. The stance hip torque τA
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is computed from the torso torque τtorso and the swing hip torque τB as τA = −τtorso − τB.

One additional element is needed to provide feedback for balance. The desired swing hip

angle is updated continuously by a feedback law of the form

ψsw,d = ψsw,d0 + cpd+ cdḋ (4.13)

where ψsw,d is the instantaneous target swing hip angle, ψsw,d0 is the nominal target swing

hip angle specified by the state machine, and d is the horizontal distance between the CoM

and the stance ankle. The midpoint between the hips is used as an approximation of the

CoM. In 3D, the nominal algorithm uses the same balance strategy in both the frontal and

sagittal planes.

4.5.2 Swing hip angle

The experiments reported in this paper use a modified form of SIMBICON to compute

the desired swing hip angle in the lateral plane. We do not use SIMBICON in the sagittal

plane. We define absolute hip angles

ψR = −qyT − q3R (4.14)

ψL = qyT − q3L (4.15)

so that both increase as the foot moves outward. We set ψst = ψR and ψsw = ψL in

right stance; in left stance these definitions are reversed. These definitions are illustrated in

Figure 4.4.

Instead of adjusting the desired swing hip angle based on the distance d as in (4.13), we

use the absolute stance hip angle ψst. This angle can be thought of as a linear approximation
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Figure 4.4: Coordinate definitions for lateral balance control strategy.

of d. The desired angle is

ψsw,d = ψsw,d0 + cpψst, (4.16)

where ψsw,d0 and cp are control parameters.

One consequence of this strategy is that the swing foot generally moves inward during

the beginning part of each step, and outward near the end. This is undesirable, as it brings

the feet closer together during the middle of the step, increasing the likelihood that the feet

will collide. It also increases tracking errors, particularly near the end of the step where they

result in poor foot placement. We wish to modify (4.16) to reduce this inward motion.

For practical implementation, it is also helpful to ensure that errors near the beginning of

each step are relatively small. Large post-impact errors result in large torques being applied

when the support state of the robot is uncertain. Trying to correct a large error in the

swing hip angle while the “swing” foot is still on the ground, for example, can generate large

moments which cause the robot to yaw.

We address both of these issues simultaneously. To reduce the inward motion of the
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swing foot we add a term to the right hand side of (4.16) which depends on the gait phase

variable s. We also add a correction term which zeroes the error at s = 0 and vanishes as s

approaches one. The resulting expression for the desired swing hip angle is given by

ψsw,d = (1− s)3ψsw − 3(1− s)2s (bsw + aqyT ) +
(
3(1− s)s2 + s3

)
(ψsw,d0 + cpψst) (4.17)

where a = −1 in right stance and a = 1 in left stance. The parameter bsw biases the value

of ψsw,d in the middle of a step in order to keep the feet apart. When s = 0 this equation

gives ψsw,d = ψsw, and when s = 1 it reduces to (4.16). Note that (4.17) defines ψsw,d as

cubic Bézier polynomial in s. It differs from the desired evolutions as the coefficients of the

polynomial in (4.17) are updated continuously. To write the virtual constraint 0 = ψsw,d−ψsw
in the form (4.1) we define

h0,sw(q) =
(
1− (1− s)3

)
q3,sw − 3(1− s)2sbsw

+
(
3s2 − 2s3

)
(a(1 + cp)qyT + ψsw,d0 − cpq3,st) .

(4.18)

This quantity replaces q3L (in right stance) or q3R (in left stance) in (4.2); the corresponding

element of hd(θ) is set to zero.

4.5.3 Torso control

Our method for controlling the torso also differs slightly from the SIMBICON strategy.

Lateral torso control is easily accomplished by substituting a virtual constraint on the torso

roll in place of the constraint on the stance hip. However, a satisfactory control design should

also maintain the hip angles safely within their workspace. We make the tradeoff between

torso and (relative) hip control explicit by defining a new actuated coordinate

h0,st(q) = aγqyT + (1− γ)(q3,st − bst), (4.19)
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where bst is the nominal desired stance hip angle, and γ ∈ R. Note that γ = 0 corresponds

to relative hip angle control (the nominal output function), while γ = 1 corresponds to pure

torso control (as in SIMBICON). Setting γ > 1 causes the robot to lean the torso toward

the stance foot, and γ < 0 causes the robot to lean the torso beyond the hip neutral position

in the direction of the roll. The quantity h0,st(q) replaces q3R (in right stance) or q3L (in left

stance) in (4.2); the corresponding element of hd(θ) is set to zero.

The swing hip feedback torque is treated as a known disturbance on the torso. Its effect

is canceled though disturbance feedforward.The same result is achieved in SIMBICON by

the choice of τstance.

4.6 Experiments

4.6.1 Method

All 3D experiments were performed with prosthetic feet. The robot began in a static

pose with the feet together. During a brief injection phase, the knees were extended, causing

the robot to begin pitching forward. As the pitch rate crossed a predetermined threshold,

a transition controller was applied. This controller uses virtual constraints similar to the

walking control but with a shorter step length; it is designed to help the robot accelerate to

the walking gait. After the transition step, the regular walking controller was applied. At

impacts, θ+ and α were updated to reduce post-impact errors.

4.6.2 Results

The revised lateral balance control strategy was introduced to find a baseline controller

for 3D walking. Thus the initial goal in our 3D experiments was to get the robot to walk as

far as possible. Whereas with the nominal virtual constraints (4.2), the robot never walked

more than six steps at a time, with the revised strategy, the robot was able to walk the full
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Figure 4.5: Coordinate plots from 3D walking experiments. (Top) Roll angle versus the
normalized mechanical phase variable s, where s is increased by 1 in left stance to show the
2-step periodic rocking motion. (Bottom) Swing knee angle versus swing leg angle.

length of the lab repeatedly.

Proper control of torso roll facilitates lateral swing foot placement. However, when the

torso was controlled without regard for the stance hip angle, there were large oscillations in

both hip angles. Setting γ = 0.7 in (4.19) led to a better compromise, with increased torso

movement, but reduced hip oscillations. Figure 4.5 shows the roll angle versus s and the

swing leg coordinates for the middle 8 seconds of a 3D walking experiment.

With the planar controller augmented with this modified form of SIMBICON for lateral

control, the robot walked both indoors on a flat laboratory floor and outdoors, on mildly

sloped and uneven terrain. To achieve the outdoor walking on sloped terrain, the torso bias

was manually adjusted. Outdoor walking was less robust, indicating the need for further

work to enhance stability to ground variations. Snapshots from videos are shown in Fig. 4.6.
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Figure 4.6: Video snapshots from two 3D walking experiments. Frames are 200 ms apart.
Videos of indoor (top row) and outdoor (bottom row) experiments are available online [88].

4.7 Summary

This work demonstrated that MARLO is capable of sustained 3D walking. Starting with

a planar gait, we made several modifications to improve virtual constraint enforcement and

disturbance rejection. To stabilize the lateral rocking motion, we implemented novel lateral

virtual constraints based on an intuition and experience. Experimental tuning of the new

virtual constraints led to sustained, repeatable 3D walking in the laboratory. However, the

process of finding the gait and feedback controller is unsatisfying, as it relies too heavily on

intuition and experimental tuning.

Our objective is the development of general methods for gait and controller design. In

the ensuing chapters, we will describe a systematic method for choosing virtual constraints

to stabilize an orbit and demonstrate the method for stabilization of a 3D walking gait.

The systematically-chosen virtual constraints lead to improved lateral control in 3D walking
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experiments, demonstrating the utility of the method.
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CHAPTER 5

Systematic Controller Selection via Optimization

A significant amount of trial-and-error preceded the successful 3D walking experiments

reported in Section 4.6. This was in part due to the challenge of guiding the robot state

into the basin of attraction of a periodic orbit from an initial static configuration. Better

gait initiation methods would certainly help in this regard; however, gait initiation is only

part of the challenge. A prior question, stated in the context of HZD, is How can we choose

virtual constraints so that a resulting periodic orbit is exponentially stable? In this chapter

we outline a method to tune virtual constraints for exponential stability based on nonlinear

optimization.

Part of the material in this chapter is presented in a different form in [89,90].

5.1 Approaches to systematic stabilization

The essential tool we will use in this chapter is the Poincaré map introduced in Section 2.2.

We noted that local exponential stability of a periodic orbit O intersecting the Poincaré

section S transversally can be expressed in terms of the spectral radius of the Jacobian of

the Poincaré map evaluated at x∗ = Ō∩S. Thus it is natural to address stability of periodic

orbits in an optimization problem for which either the objective or the constraint includes
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the spectral radius of the Jacobian of the Poincaré map. For example, several authors [42,65]

propose optimization problems the form

minimize
ζ

ρ(A(ζ))

subject to gE(ζ) = 0

gI(ζ) ≥ 0,

(5.1)

where ζ combines parameters of the periodic orbit and the feedback controller, A(ζ) is the

Jacobian of the Poincaré map of the closed-loop system, ρ(A) is the spectral radius of A (or

an approximation to it), and gE(ζ) and gI(ζ) are constraint functions which ensure that the

solution is periodic and feasible for the physical system.

This formulation has the potential advantage of choosing simultaneously both the pe-

riodic orbit and a stabilizing feedback control law. Unfortunately, including the spectral

radius generally makes the problem non-smooth and non-convex. Consider, for example, the

problem of minimizing the spectral radius of A(ξ) =
[

0 1−ξ
ξ 1

]
over the scalar ξ. The eigenval-

ues of A(ξ) are 1
2 ±

√
1
4 − (ξ2 − ξ); the corresponding spectral radius is shown in Figure 5.1.

For this example the spectral radius even fails to be Lipschitz.

Another drawback is that computing the Poincaré map is often computationally ex-

pensive. As there generally is no closed-form expression for the Poincaré map nor for its

Jacobian, these are usually obtained by numerical integration of the closed-loop dynamics

together with numerical differentiation. Thus a significant question will be how to cast the

problem in a form that facilitates numerical solution of the resulting optimization problem.

Previous work in this area has highlighted several different approaches for finding stable

periodic orbits of a hybrid system. Chevallereau et al. [42] formulated a gait design prob-

lem using HZD, which allows stability of a resulting periodic orbit to be analyzed using a

restricted Poincaré map of dimension one less than the dimension of the zero dynamics man-
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Figure 5.1: Spectral radius of A(ξ) as a function of ξ.

ifold. As the Jacobian of the restricted Poincaré map can be computed much more efficiently

than that of the full map, this method allowed for direct optimization of the spectral radius

of the linearized Poincaré map during the gait design process for a rigid, five-link 3D biped

model with restricted yaw. This method is especially attractive for systems with few de-

grees of underactuation, since underactuation increases the dimension of the zero dynamics

manifold and hence of the restricted Poincaré map.

An alternative approach was proposed by Diehl et al. [65], which introduced a smoothed

approximation to the spectral radius. Here, again, gait design was formulated as an op-

timization problem. The objective function included the smoothed spectral radius and a

regularization term to penalize the use of excessive actuator torque. It was shown that

the smoothed spectral radius can be evaluated efficiently by solving a relaxed Lyapunov

equation. However, the computational burden of computing the linearized Poincaré map

apparently remains. The method was demonstrated for the design of an open-loop stable

walking gait for a planar two-link walking mechanism.

Here we address the stabilization problem by itself, assuming that the gait design pro-

cess has already produced a suitable periodic orbit. We present a method to optimize the

stability of the orbit without the need to recompute the Poincaré map at each iteration of

the optimization algorithm. The key to this method is to restrict attention to parameter-

ized families of feedback controllers satisfying a given set of hypotheses, which allows us to
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approximate the Poincaré map by a truncated Taylor series.

Importantly, the hypotheses will ensure that for each choice of controller parameters,

the same periodic orbit is a solution of the resulting closed-loop system. Thus, while the

Poincaré map is, in general, a function of the controller parameters, its fixed point is not.

The parameterized, linearized Poincaré map induces a parameterized discrete-time linear

system for which stability of the origin is equivalent to a certain bilinear matrix inequality

(BMI). A BMI optimization problem is then formulated to choose the controller parameters.

5.2 Orbital stability as an optimization problem

5.2.1 Problem formulation

Consider the system with impulse effects

Σ:


ẋ = f(x, ξ), x− /∈ S

x+ = ∆(x−, ξ), x− ∈ S
(5.2)

with flow f and reset map ∆ parameterized by ξ ∈ Ξ, where Ξ is an open, connected

subset of Rp. We assume the state space X is an open, connected subset of Rn, and that

f : X × Ξ → Rn and the impact map ∆: S × Ξ → X are C2. We also assume that S is

nonempty and there exists a C1 function σ : X → R such that

S = {x ∈ X | σ(x) = 0, σ̇(x) < 0 } (5.3)

and 0 is a regular value of σ. Thus S is an embedded submanifold of X of codimension one.

We denote the unique solution of ẋ = f(x, ξ) starting from x(0) = x0 by ϕ(t, x0, ξ), for all

t ≥ 0 such that the solution exists. We also define the time-to-reset map T : X × Ξ → R≥0
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as the first time at which the solution ϕ(t, x0, ξ) intersects the switching manifold S, i.e.,

T (x0, ξ) := inf { t ≥ 0 | ϕ(t, x0, ξ) ∈ S } . (5.4)

Our analysis assumes that there exists an orbit O transversal to S for the parameterized

closed-loop hybrid model (5.2) which is independent of the controller parameters ξ. Formally,

we require

Assumption 2 (Common periodic orbit). There exists a state x∗0 ∈ X \ S such that

(O1) the solution of ẋ = f(x, ξ) with x(0) = x∗0 is independent of ξ for all t ≥ 0;

(O2) the reset map evaluated at x∗f := ϕ(T (x∗0, ξ), x∗0, ξ) satisfies ∆(x∗f , ξ) = x∗0 ∀ξ ∈ Ξ; and

(O3) the solution ϕ(t, x∗0, ξ), t ≥ 0 intersects S transversely.

We denote the nominal solution of ẋ = f(x, ξ) by ϕ∗(t) := ϕ(t, x∗0, ξ), the time to impact

at x∗0 by T ∗ := T (x∗0, ξ), and the periodic orbit of the system with impulse effects (5.2) by

O := {ϕ∗(t) | 0 ≤ t < T ∗ }.

5.2.2 Linearized Poincaré map for the parameterized system

Taking the switching manifold S as the Poincaré section, the Poincaré map P : S×Ξ→ S

is defined by

P (x, ξ) := ϕ (T (∆(x, ξ), ξ),∆(x, ξ), ξ) . (5.5)

Transversality, together with differentiability of f and ∆, ensures that the Poincaré map is

well defined and differentiable in a neighborhood of x∗f . Furthermore, Assumption 2 implies

that x∗f is a fixed point of P for all ξ ∈ Ξ.

The Poincaré map allows us to study the behavior of solutions of the hybrid system by

sampling the solution each time it intersects the impact manifold S. It is convenient to
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represent P in local coordinates. Let Λ: U → Rn−1 be a local coordinate system on an open

subset U ⊂ S containing x∗f . We can express the Poincaré map in the coordinates z defined

by Λ as P̂ (z, ξ) := Λ (P (Λ−1(z), ξ)). Then for any choice of ξ, exponential stability of the

periodic orbit O is equivalent [33] to exponential stability of z∗f = Λ(x∗f ) for the discrete-time

system

z[k + 1] = P̂ (z[k], ξ), k = 0, 1, . . . , (5.6)

which is in turn equivalent to exponential stability of the origin for the linearized system

δz[k + 1] = ∂P̂

∂z
(z∗f , ξ) δz[k], k = 0, 1, . . . , (5.7)

where δz[k] := z[k]− z∗f .

In order to exponentially stabilize the periodic orbitO, we would like to choose ξ such that

the spectral radius of ∂P̂
∂z

(z∗f , ξ) is less than one. But as P̂ depends nonlinearly on ξ, directly

optimizing the spectral radius might be computationally expensive. As an alternative, we

can expand the Taylor series approximation of P̂ in (5.7). Since x∗f is a fixed point of P for

all ξ ∈ Ξ, it follows that
∂P̂

∂ξ
(z∗f , ξ) = 0, ∀ξ ∈ Ξ; (5.8)

so we compute the sensitivity of ∂P̂
∂z

(z∗f , ξ) with respect to ξ. For a sufficiently small pertur-

bation ∆ξ about a nominal choice ξ∗ of the parameters, (5.7) can by approximated by

δz[k + 1] =
(
∂P̂

∂z
(z∗f , ξ∗) +

p∑
i=1

∂2P̂

∂ξi∂z
(z∗f , ξ∗) ∆ξi

)
δz[k], (5.9)

where ∆ξ := (∆ξ1, · · · ,∆ξp)T := ξ − ξ∗.
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To simplify notation, we define1

A0 := ∂P̂

∂z
(z∗f , ξ∗)

Ai := ∂2P̂

∂ξi∂z
(z∗f , ξ∗), i = 1, . . . , p

and

A(∆ξ) := A0 +
p∑
i=1

Ai ∆ξi,

and we write (5.9) as

δz[k + 1] = A(∆ξ) δz[k], k = 0, 1, . . . . (5.10)

5.2.3 Optimization problem

Our objective is to choose values for ∆ξ that stabilize the orbit O of the closed-loop

system (5.2). Provided ∆ξ is small, the Taylor series approximation (5.10) gives us a way to

do this without having to recompute the Poincaré map at each iteration. We formulate the

search for ∆ξ as an optimization problem which tries to minimize a weighted combination of

the squared spectral radius of A(∆ξ) and the 2-norm of ∆ξ. Letting w be the scalar weight,

we have the problem
minimize

∆ξ
w ρ (A(∆ξ))2 + ‖∆ξ‖2

2

subject to ρ (A(∆ξ)) < 1
(5.11)

Some comments on this optimization problem formulation are in order. First, we note

that the optimization problem still makes sense when we set w = 0. This may be desirable

when a large margin between the spectral radius and the unit circle is not expected to
1For comparison with [89, 90], note that A(∆ξ) can also be written as A0 + Ā(∆ξ ⊗ In×n), where Ā =

[A1 A2 · · · Ap], or as A0 +B(In×n⊗∆ξ), where the columns of B are simply a permutation of the columns
of Ā. The symbol “⊗” denotes the Kronecker product.
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provide significant benefits.2 Second, it is trivial to relax this problem (by omitting the

constraint) when feasibility problems arise; the relaxed problem (with w 6= 0) may prove

useful in providing a better nominal value of ξ about which to linearize the Poincaré map

for subsequent constrained optimization. Finally, we note that this problem is not formally

well-posed, since the infimum of the cost may not be attained on the open set defined by the

constraints. Here and elsewhere, we will ignore such technicalities.

The framework we have introduced can be extended in various ways. For example, we

could search for ∆ξ which simultaneously stabilizes a collection Ω of orbits. To do so, we

would simply linearize the associated Poincaré maps and form an optimization problem with

constraints ρ(Aω(∆ξ)) < 1, ω ∈ Ω and cost ‖∆ξ‖2
2 +∑

ω∈Ω wω ρ(Aω(∆ξ))2.

In the following sections we present two more extensions: First, we show how to incorpo-

rate a measure of robustness to uncertainty in the switching manifold into the optimization.

We also extend the method for optimization with a restricted Poincaré map.

5.3 Disturbance rejection as an optimization problem

5.3.1 Problem formulation

A robot walking over rough terrain will experience impacts earlier or later than expected

when walking on flat ground, which may cause it to deviate from its nominal gait. This

motivates us to seek a method to minimize the effect of ground height disturbances on a

walking gait.

To address this problem, we consider the system with impulse effects (5.2) with two

modifications: First, we assume the impact map may be extended in a physically meaningful

way to a C2 function ∆: X × Ξ → X on the whole state space (or at least on an open
2For example, Hobbelen and Wisse [72] demonstrated that the spectral radius is poorly correlated with

the ability of a bipedal robot to reject disturbances.
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neighborhood of S in X ). This is necessary in order to ascertain the effect of impacts

occurring outside of S. Second, we will assume that impacts occur when the state x intersects

a generalized impact manifold

Sd = {x ∈ X | σ(x)− d = 0, σ̇(x) < 0 }, (5.12)

where d represents an input from the environment which is constant within each step. We

will allow d to take values in a closed interval D := [−dmax, dmax] ⊂ R for some dmax > 0.

For a model of bipedal walking, if σ represents the swing foot height, then an impact occurs

in Sd when the robot steps up a height d. We may assume that the impact map does not

depend explicitly on d; this assumption implies no loss of generality, since ∆ depends on x

and, at impacts, d = σ(x). In what follows, we shall consider d as a disturbance.

Corresponding to the switching manifold Sd we define the extended time-to-reset function

Te : X × Ξ×D → R≥0, given by

Te(x0, ξ, d) := inf {t > 0 |ϕ(t, x0, ξ) ∈ Sd} , (5.13)

and the extended Poincaré map Pe : X × Ξ×D → X , given by

Pe(x, ξ, d) := ϕ (Te (∆(x, ξ), ξ, d) ,∆(x, ξ), ξ) . (5.14)

Formally, the extended Poincaré map defined here is not a Poincaré map at all, though its

restriction to a codimension-1 submanifold is a hybrid version of the generalized Poincaré

map defined in [74, Appendix D]; Pe maps a point x ∈ X to the next intersection of the

trajectory with Sd, assuming an impact first occurs at the point x.

Finally, we will augment the modified system with a performance output h : X → Rl.

The goal of the optimization problem will be to minimize the effect of the disturbance on
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the performance output.

5.3.2 Discrete-time system for disturbance rejection

The map Pe defines the controlled discrete-time system

x[k + 1] = Pe (x[k], ξ, d[k]) , k = 0, 1, . . .

y[k] = h(x[k])
(5.15)

in which d[k] ∈ D, k = 0, 1, . . . represents the disturbance input and y[k] the performance

output. Linearization of (5.15) around (x∗f , ξ, 0) results in

δx[k + 1] = ∂Pe
∂x

(x∗f , ξ, 0) δx[k] + ∂Pe
∂d

(x∗f , ξ, 0) d[k]

δy[k] = ∂h

∂x
(x∗f ) δx[k].

(5.16)

Note that because Pe is defined on X , we do not need to define a coordinate system on S

before linearizing as we did in (5.7).

Once again, we may expand the Taylor series approximation of ∂Pe
∂x

(x∗f , ξ, 0) with the

sensitivities of ∂Pe
∂x

and ∂Pe
∂d

to find

δx[k + 1] =
(
∂Pe
∂x

(x∗f , ξ∗, 0) +
p∑
i=1

∂2Pe
∂ξi∂x

(x∗f , ξ∗, 0) ∆ξi
)
δx[k]

+
(
∂Pe
∂d

(x∗f , ξ∗, 0) +
p∑
i=1

∂2Pe
∂ξi∂d

(x∗f , ξ∗, 0) ∆ξi
)
d[k]

δy[k] = ∂h

∂x
(x∗f ) δx[k].

(5.17)

It is shown in [89, Section V] that the disturbance sensitivity matrix ∂Pe
∂d

(x∗f , ξ, 0) is indepen-
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dent of ξ and hence, ∂2Pe
∂ξi∂d

(x∗f , ξ∗, 0) = 0. Consequently, (5.17) can be rewritten as follows

δx[k + 1] = Ae(∆ξ) δx[k] +Be d[k]

δy[k] = Ce δx[k],
(5.18)

where

A0,e := ∂Pe
∂x

(x∗f , ξ∗, 0)

Ai,e := ∂2Pe
∂ξi∂x

(x∗f , ξ∗, 0), i = 1, . . . , p

Be := ∂Pe
∂d

(x∗f , ξ∗, 0)

Ce := ∂h

∂x
(x∗f )

and

Ae(∆ξ) = A0,e +
p∑
i=1

Ai,e∆ξi.

5.3.3 Optimization problem

We now turn our attention to the disturbance rejection problem, which we describe first

for the case of a bipedal robot. We consider the scenario (illustrated in Figure 5.2) where

the robot starts on the nominal orbit at x∗f ∈ S0, encounters a step of height d[0] ∈ D at

the end of the first step, and finally takes one more step, this time not encountering any

disturbance. We will try to minimize the effect of the disturbance in the first step on the

value of the performance output at the end of the second step.

Remark. Our approach is quite similar to that introduced by Hobbelen and Wisse [72].

Specifically, our performance output is nothing more than a gait indicator. Both methods
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Figure 5.2: Illustration of the disturbance rejection problem for bipedal walking. The robot
starts on the nominal orbit at x[0] = x∗f ∈ S0. At the end of the first step, it encounters a
step of height d[0] ∈ D. It takes one more step, this time not encountering any disturbance.

quantify the effect of the disturbance on the performance output by linearizing the Poincaré

map with a disturbance input. The primary difference is that the gait sensitivity norm

defined in [72] computes the H2 norm of the transfer function from the disturbance to the

output, while we focus on the single-event disturbance shown in Figure 5.2. One advantage

of the gait sensitivity norm relative to our approach is that it considers the effect of the

disturbance on all subsequent steps, which is not captured in our performance metric. On the

other hand, we present a method to optimize the controller with respect to the performance

metric. The optimization can be written as an nonlinear program, as is done in this section,

or as a BMI optimization, as is done in Section 5.5.

For a general system, we assume that d[0] ∈ D is an unknown disturbance and d[1] = 0.

The change in the performance output at time k = 2 caused by the disturbance d[0] is given

by δy[2] = CeAe(∆ξ)Be d[0]. Minimizing the output over all possible disturbances yields

min
∆ξ

max
d[0]∈D

‖δy[2]‖2 = min
∆ξ

dmax ‖CeAe(∆ξ)Be‖2. (5.19)
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Combining this new objective with the original problem (5.11) yields the robust stability

optimization problem

minimize
∆ξ

w1 ρ (A(∆ξ))2 + w2 d
2
max ‖CeAe(∆ξ)Be‖2

2 + ‖∆ξ‖2
2

subject to ρ (A(∆ξ)) < 1
(5.20)

where w1 and w2 are positive weighting factors affecting the tradeoff between convergence

rate, disturbance rejection capability, and perturbation size.

5.4 Systematic controller design using a restricted Poincaré map

We now specialize the presented optimization procedure for controller design using a

restricted Poincaré map. The restricted Poincaré map takes advantage of time-scale sep-

aration and invariance induced by the underlying controller to isolate the dynamics on a

submanifold of the state space. Using the restricted Poincaré map in conjunction with the

optimization-based stabilization method offers several potential benefits. First, by focus-

ing on the restriction dynamics, we can design stabilizing virtual constraints independent

of the controller used to stabilize the zero dynamics manifold. This means that the BMI

optimization can be used specifically to shape the zero dynamics. Of course, this simplifies

subsequent tuning of the controller for the full model, since the stabilizing effect of the zero

dynamics is independent of the feedback gains. Perhaps more importantly, by optimizing

the virtual constraints directly, the optimization produces more insightful results in the sense

that a control designer may be able to better interpret the optimized results. Finally, using

the restricted Poincaré map reduces the size of the resulting optimization problem. This

can result in much faster optimizations, and may make optimization feasible for systems of

greater dimension than otherwise possible using available software packages.

The restricted Poincaré map originates in the context of hybrid zero dynamics, where
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a feedback controller creates an invariant submanifold Z in the state space. It has been

shown [33, 34] that under appropriate conditions, stability of an orbit of the closed-loop

system can be determined by studying the stability of the same orbit for the system restricted

to the invariant manifold. By introducing a parameterized family of invariant manifolds, we

can systematically select one invariant manifold in order to stabilize an orbit. In order

to meaningfully perform the sensitivity analysis required for the systematic selection of

a submanifold, we must carefully consider the local smoothness of the parametrization.

This is the objective of Sections 5.4.1 and 5.4.2, which essentially parallel the development

in [34]. Indeed, our first result (Theorem 3) is partly a restatement of [34, Corollary 11] for a

parameterized class of systems. The key novelty in the development here is the introduction

of a smoothly parameterized output function (see (5.23)) and a smoothly parameterized

family of coordinate charts (see (5.34)). Section 5.4.3 then presents expressions for the

Jacobian of the restricted Poincaré map.

Notation. In the following, a map which has ξ as an explicit argument will be de-

noted with a subscript Ξ. Fixing a particular value of ξ defines a restricted map (see, for

example, (5.23)), which will be denoted with a subscript ξ. Since these maps differ only in

their domains, we will usually define explicitly only one of the maps (for example, the map

TI,ξ : X ×K → R̄+ in (5.29)), with the understanding that, by convention, any reference to

the associated map (e.g., the extended map TI,Ξ(x, κ, ξ) := TI,ξ(x, κ)) is defined in relation

to the first.3
3Formally, to define TI,Ξ as an extension of TI,ξ from X ×K to X ×K× Ξ, we must define the family of

maps {TI,ξ}ξ∈Ξ.
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5.4.1 Parameterized restriction dynamics

Consider the control system

Σ:


ẋ = f(x) + g(x)u, x− /∈ S

x+ = ∆(x−), x− ∈ S
(5.21)

with state x ∈ X and input u ∈ U , where X and U are open, connected subsets of Rn and

Rm, respectively. We assume f : X → Rn, g : X → Rn×m, and ∆: S → X are sufficiently

smooth. We also assume that S is nonempty and there exists a sufficiently smooth function

σ : X → R such that S = {x ∈ X | σ(x) = 0, σ̇ < 0 } and 0 is a regular value of σ. Suppose

(ϕ∗(t), u∗(t)) , t ≥ 0 is a periodic solution of Σ with minimal period T ∗ > 0 such that the

closure of O := {ϕ∗(t) | t ≥ t0 } intersects S transversely at a single point x∗f := Ō ∩ S.

In order to stabilize the orbit O, we will define a parameterized family of submanifolds of

the state space and a corresponding family of feedback laws which renders the submanifolds

hybrid invariant. In general, achieving hybrid invariance requires event-based control. Thus

we introduce a set of parameters (distinct from those which index the family of submanifolds

and feedback laws) into the control system Σ for the purpose of achieving impact invariance.

Denote these parameters by κ and suppose they take values in K ⊂ Rr. At each impact, the

value of κ will be updated according to an input v determined by a rule vΞ which will be

described shortly. Adjoining κ to Σ gives the hybrid extension

Σe :


(ẋ, κ̇) = (f(x) + g(x)u, 0) , (x−, κ−) /∈ S × K

(x+, κ+) =
(
∆(x−), v

)
, (x−, κ−) ∈ S × K.

(5.22)

For convenience we define xe := (x, κ), fe(xe) := (f(x), 0), and ge(xe) := (g(x), 0).

Let Ξ be an open, connected subset of Rp, and let hΞ : X ×K×Ξ→ Rm be a sufficiently

smooth function which vanishes on OΞ := O× {κ∗} ×Ξ for some κ∗ ∈ K. Suppose, further,
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that for each ξ ∈ Ξ, the output function

hξ(x, κ) := hΞ(x, κ, ξ) (5.23)

for Σe has uniform vector relative degree k in X ×K. Define

ZΞ := { (x, κ, ξ) ∈ X ×K × Ξ | hξ(x, κ) = Lfehξ(x, κ) = · · · = Lk−1
fe

hξ(x, κ) = 0 }, (5.24)

and, for each ξ ∈ Ξ,

Zξ := { (x, κ) ∈ X ×K | hξ(x, κ) = Lfehξ(x, κ) = · · · = Lk−1
fe

hξ(x, κ) = 0 }. (5.25)

As hΞ vanishes on the (lifted) orbit, it follows that for each ξ ∈ Ξ, Zξ is not empty. Thus,

for each ξ ∈ Ξ, Zξ is a codimension-(km) embedded submanifold of X ×K. Furthermore, if

the distribution span{g1(x), . . . , gm(x)} is involutive, where gi is the ith column of g, then

the unique input u = u∗ξ(x, κ) which renders Zξ invariant under the forward dynamics of Σe

is given by

u∗ξ(x, κ) = −
(
LgL

k−1
f hξ(x, κ)

)−1
Lkfhξ(x, κ). (5.26)

A feedback law Γξ : X × K → U which coincides with u∗ξ in Zξ (i.e., for which Γξ(x, κ) =

u∗ξ(x, κ) for all (x, κ) ∈ Zξ) will be said to be compatible with Zξ. Note that u∗(t) =

u∗ξ(ϕ(t), κ∗).

To achieve impact invariance, we will update the parameters κ in a step-to-step manner
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[34, 42]. We let vΞ : X × Ξ→ K be a sufficiently smooth function such that

hΞ(∆(x), vΞ(x, ξ), ξ) = 0

LfehΞ(∆(x), vΞ(x, ξ), ξ) = 0
...

Lk−1
fe

hΞ(∆(x), vΞ(x, ξ), ξ) = 0

(5.27)

for every (x, κ, ξ) ∈ (S × K × Ξ) ∩ ZΞ. If vΞ satisfies (5.27) on the larger set (S × K × Ξ),

then vΞ is said to be deadbeat. Equation (5.27) represents km constraints; thus, in general,

we need r ≥ km independent parameters κ to ensure impact invariance.

Now consider the parameterized extension Σe, together with a parameterized output

function hξ having uniform vector relative degree k, a feedback law Γξ compatible with the

manifold Zξ, and a parameter update law vΞ which satisfies (5.27). Together these define a

parameterized family of closed-loop systems

Σ̄ξ :


(ẋ, κ̇) = (f(x) + g(x) Γξ(x, κ), 0) , (x−, κ−) /∈ S × K

(x+, κ+) =
(
∆(x−), vξ(x−)

)
, (x−, κ−) ∈ S × K,

(5.28)

where, according to our convention, vξ(x) := vΞ(x, ξ).

Denote the unique solution of fξ(x, κ) := (f(x) + g(x) Γξ(x, κ), 0) starting from (x, κ) by

ϕξ(t, x, κ), the time to impact

TI,ξ(x, κ) := inf{ t ≥ 0 | ϕξ(t, x, κ) ∈ S × K}, (5.29)

and the point of impact

ϕTI,ξ(x, κ) := ϕξ(TI,ξ(x, κ), x, κ). (5.30)

Note that ϕξ(t,∆(x∗f ), κ∗) = (ϕ∗(t), κ∗), 0 ≤ t < T ∗; thus ϕξ(t,∆(x∗f ), κ∗) intersects S × K
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transversely at the single point (x∗f , κ∗) = ϕTI,ξ(∆(x∗f ), κ∗).

5.4.2 Parameterized Poincaré map

We can now define the Poincaré map Pξ : S × K → S ×K for Σ̄ξ as

Pξ(x, κ) := ϕTI,ξ ◦∆ξ(x, κ), (5.31)

where

∆ξ(x, κ) := (∆(x), vξ(x)) . (5.32)

By construction, Zξ is hybrid invariant for the closed-loop system Σ̄ξ, so we can also define the

restriction dynamics Σ̄ξ|Zξ and the restricted Poincaré map Pξ|Zξ : Zξ∩(S×K)→ Zξ∩(S×K).

However, the domain of this restricted Poincaré map has dimension n− km− 1 + r ≥ n− 1

due to the presence of the parameters κ. If the output function hΞ is chosen such that the

intersection Zξ ∩ (S × K) is a product (Z̃ξ ∩ S) × K for some Z̃ξ ⊂ X , then it is more

convenient to define the restricted Poincaré map as the function ρξ : Z̃ξ → Z̃ξ satisfying

Pξ(x, κ) = (ρξ(x), vξ(x)), ∀(x, κ) ∈ (Z̃ξ ∩ S)×K. (5.33)

The domain of ρξ has dimension n− km− 1.

Let ξ∗ be a nominal choice of the parameter vector ξ. Suppose there is a sufficiently

smooth function ΛΞ : UΞ → Rn−km−1×Rr×Rkm, defined on a neighborhood UΞ ⊂ S×K×Ξ

of (x∗f , κ∗, ξ∗) and partitioned as ΛΞ = (ΛΞ,1, ΛΞ,2, ΛΞ,3), such that for all ξ ∈ Ξ, the function

Λξ : Uξ → Rn−km−1 × Rr × Rkm defined by

Λξ(x, κ) := (ΛΞ,1(x, κ, ξ), ΛΞ,2(x, κ, ξ), ΛΞ,3(x, κ, ξ))

=: (Λξ,1(x, κ), Λξ,2(x, κ), Λξ,3(x, κ))
(5.34)
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is a diffeomorphism on the set Uξ satisfying4 Uξ×{ξ} = UΞ∩ (S ×K×{ξ}), and Λξ satisfies

the following:

• Λξ,1 and Λξ,3 are independent of κ;

• Λξ,2(x, κ) = κ; and

• Λξ,3(x, κ) = 0⇐⇒ x ∈ Z̃ξ.

We will call such a pair (UΞ,ΛΞ) a parameterized coordinate chart. Despite the terminology,

(UΞ,ΛΞ) is not, itself, a coordinate chart, as the dimension of UΞ exceeds that of the codomain

of ΛΞ by p; but for each ξ ∈ Ξ, the pair (Uξ,Λξ) is a coordinate chart on the projected ξ-slice

Uξ. Furthermore, (Uξ,Λξ) represents Uξ ∩ (Z̃ξ ×K) as a slice of Uξ.

The representation P̂ξ of Pξ in the coordinates (ζ, κ, η) defined by Λξ is given by P̂ξ :=

Λξ ◦ ϕTI,ξ ◦∆ξ ◦ Λ−1
ξ . Similarly, the representation ρ̂ξ of ρξ in the coordinates ζ defined by

Λξ is given by5 ρ̂ξ(ζ) := Λξ,1 ◦ ϕTI,ξ ◦∆ξ ◦Λ−1
ξ (ζ, κ∗, 0). The following theorem describes the

structure of the linearized Poincaré map for the closed-loop system Σ̄ξ.

Theorem 3 (Structure of the linearized Poincaré map). Consider the parameterized family

of closed-loop systems {Σ̄ξ}ξ∈Ξ, where Σ̄ξ is formed from Σe in closed-loop with the feedback

law Γξ(x, κ) := ΓΞ(x, κ, ξ) and update law vξ(x) := vΞ(x, ξ) for sufficiently smooth functions

ΓΞ : X ×K× Ξ→ U and vΞ : X × Ξ. Denote the corresponding family of Poincaré maps by

{Pξ}ξ∈Ξ. Suppose the following additional hypotheses are satisfied:

(H1) There is a non-trivial periodic orbit O of Σ whose closure intersects S transversely at

a single point x∗f .

(H2) There is a sufficiently smooth function hΞ : X × K × Ξ → Rm which vanishes on

O × {κ∗} × Ξ for some κ∗ ∈ K.
4That is, Uξ is the projection onto S × K of the ξ-slice of UΞ.
5Note that we could use any other value κ ∈ K in the definition of ρ̂ξ, since this value is ignored by ∆ξ.
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(H3) For each ξ ∈ Ξ, the function hξ defined by (5.23) has uniform vector relative degree k

in X ×K.

(H4) For each ξ ∈ Ξ, there exists a submanifold Z̃ξ ⊂ X such that Zξ∩(S×K) = (Z̃ξ∩S)×K;

furthermore, Z̃ξ ∩ S is a codimension-(km) embedded submanifold of S.

(H5) For each ξ ∈ Ξ, the feedback law Γξ is compatible with Zξ.

(H6) The parameter update law vΞ satisfies (5.27) for every (x, κ, ξ) ∈ (S × K × Ξ) ∩ ZΞ.

(H7) There exists a parameterized coordinate chart (UΞ,ΛΞ) defined on a neighborhood UΞ ⊂

S ×K × Ξ of (x∗f , κ∗, ξ∗) for some nominal parameter vector ξ∗.

Then, for any ξ ∈ Ξ, there exists a neighborhood Vξ ⊂ X ×K of (∆(x∗f ), κ∗) and a coordinate

transformation Ψξ : Vξ → Rn−km ×Rr ×Rkm such that when Pξ is represented in the coordi-

nates zξ = (ζ, κ, η) defined by Λξ, its Jacobian about the fixed point (ζ∗, κ∗, η∗) = Λξ(x∗f , κ∗)

is

∂P̂ξ
∂zξ

(ζ∗, κ∗, η∗) =


∂ρ̂ξ
∂ζ

(ζ∗) 0 ?

? 0 ?

0 0 SφTI,ξ (ζ̄
∗, κ∗, η∗)S∆ξ

(ζ∗, κ∗, η∗)

 , (5.35)

where SφTI,ξ (ζ̄
∗, κ∗, η∗) := D3(Λξ,2 ◦ ϕTI,ξ ◦Ψ−1

ξ (ζ̄∗, κ∗, η∗)) is the sensitivity of the transverse

dynamics of the trajectory evaluated at (ζ̄∗, κ∗, η∗) = Ψξ(∆(x∗f ), κ∗), and S∆ξ
(ζ∗, κ∗, η∗) :=

D3(Ψξ,3◦∆ξ ◦Λ−1
e,ξ(ζ∗, κ∗, η∗)) is the sensitivity of the transverse dynamics of the impact map.

Furthermore, we can write the Jacobian of the parameterized restricted Poincaré map
∂ρ̂ξ
∂ζ

(ζ∗) as a differentiable function of the parameter vector ξ.

The proof is sketched. For each ξ ∈ Ξ, existence of the coordinate chart (Vξ,Ψξ) and the

form of ∂P̂ξ
∂zξ

given by (5.35) essentially follow from [34, Corollary 11]. Specifically, hypothe-

ses (H1)–(H3) imply that, for each ξ ∈ Ξ, the set Zξ defined by (5.25) is a (non-empty)

codimension-(km) embedded submanifold of X × K [91, Lemma 5.1.1]. Hypothesis (H5)
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ensures that Γ renders Zξ forward invariant, while (H6) ensures impact invariance. As the

orbit O is contained in Zξ (by (H2)) and as Λξ and Ψξ both represent (open subsets of) Zξ
as slices, it follows that η∗ = 0 and P̂ξ(ζi, κi, η∗) = (ζf , κf , η∗) for all (ζi, κi) ∈ Rn−km−1×Rr,

whence the two block zeros in the bottom row of ∂P̂ξ
∂zξ

. Furthermore, Pξ is independent of

κ (by (5.31)), whence the block zeros in the middle column of ∂P̂ξ
∂zξ

. Differentiability of the

Jacobian ∂ρ̂ξ
∂ζ

(ζ∗) is a consequence of the smoothness of the local parametrization by ξ.

The structure of the Jacobian of P̂e implies that its spectrum is simply the union of

the spectra of the diagonal blocks ∂ρ̂ξ
∂ζ

(ζ∗), 0, and SφTI,ξ (ζ̄
∗, κ∗, η∗)S∆ξ

(ζ∗, κ∗, η∗). As shown

in [34], the spectra of SφTI,ξ (ζ̄
∗, κ∗, η∗) and S∆ξ

(ζ∗, κ∗, η∗) can be made arbitrarily small by

adjusting, respectively, the feedback gains and the parameter update law. (In fact, if the

parameter update law is chosen to be deadbeat, then S∆ξ
(ζ∗, κ∗, η∗) = 0.) Thus, to stabilize

the periodic orbit, we need only choose ξ so that the spectral radius of the Jacobian of the

restricted Poincaré map is less than one. The next subsection derives an expression for this

Jacobian.

5.4.3 Computing the linearized restricted Poincaré map

The linearized Poincaré map depends on ξ through the feedback law Γξ, the update

law vξ, and the coordinate transformation Λξ. We have carefully constructed each of these

elements so that their composition is a differentiable function of ξ. Suppose the dependence

of Ψξ on ξ is also nice; that is, suppose there is a sufficiently smooth function ΨΞ such that

ΨΞ(x, κ, ξ) = Ψξ(x, κ). Then we can make the dependence on ξ more explicit by defining

P̂Ξ(ζ, κ, η, ξ) := (ΛΞ ◦ ϕTI,Ξ ◦∆Ξ ◦ Λ̄−1
Ξ )(ζ, κ, η, ξ), (5.36)

where the definitions of ϕTI,Ξ and ∆Ξ follow from (5.29) and (5.32) according to our conven-

tion, and Λ̄Ξ(x, κ, ξ) := (ΛΞ(x, κ, ξ), ξ).
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We can further expand P̂Ξ as

P̂Ξ(ζ, κ, η, ξ) = (ΛΞ ◦ ϕTI,Ξ ◦ Ψ̄−1
Ξ ) ◦ (Ψ̄Ξ ◦∆Ξ ◦ Λ̄−1

Ξ )(ζ, κ, η, ξ), (5.37)

where Ψ̄Ξ(x, κ, ξ) := (ΨΞ(x, κ, ξ), ξ). The arguments proving the preceding theorem imply

that the Jacobians SΦΞ and S∆Ξ of (ΛΞ ◦ϕTI,Ξ ◦ Ψ̄−1
Ξ ) and (Ψ̄Ξ ◦∆Ξ ◦ Λ̄−1

Ξ ), when partitioned

compatible with zΞ := (ζ, κ, η, ξ), have the form

P̂Ξ

∂zΞ
(ζ∗, κ∗, η∗, ξ∗) =


SΦΞ,11 SΦΞ,12 SΦΞ,13 SΦΞ,14

0 I 0 0

0 0 SΦΞ,33 0





S∆Ξ,11 0 S∆Ξ,13 0

S∆Ξ,21 0 S∆Ξ,23 S∆Ξ,24

0 0 S∆Ξ,33 0

0 0 0 I


. (5.38)

Standard results imply that the Jacobian of (ΛΞ ◦ ϕTI,Ξ ◦ Ψ̄−1
Ξ ) can be expressed as

(ΛΞ ◦ ϕTI,Ξ ◦ Ψ̄−1
Ξ ) =

I − ( ∂σ̂
∂zξ

f̂ξ

)−1

f̂ξ
∂σ̂ξ
∂zξ

 ∂ϕ̂T
∂zΞ

, (5.39)

where f̂ξ := DΛξfξ ◦ Λ−1
ξ and σ̂ := σ ◦ Λξ are the representations of fξ and σ in local

coordinates, ∂ϕ̂T
∂zΞ

is an extended monodromy matrix (i.e., the monodromy matrix with an

additional block column corresponding to the parameters ξ), zξ := (ζ, κ, η), and zΞ :=

(ζ, κ, η,Ξ). The Jacobian of the restricted Poincaré map can be expressed as the upper left

block of the product (5.38):

∂ρ̂

∂ζ
(ζ∗, ξ) = SΦΞ,11S∆Ξ,11 + SΦΞ,12S∆Ξ,21 . (5.40)
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5.5 Formulation via bilinear matrix inequalities

We now present alternative formulations of the optimization problems (5.11) and (5.20)

with linear cost functions and linear and bilinear matrix inequality (LMI/BMI) constraints.

For a given choice of ∆ξ, stability of the origin for (5.10) is equivalent to a certain matrix

inequality, as shown by the following theorem. The proof is an application of the Schur

complement lemma, which asserts that the pair of matrix inequalities Q(x) > 0, R(x) −

S(x)TQ(x)−1S(x) > 0 is equivalent to the single matrix inequality

Q(x) S(x)

S(x)T R(x)

 > 0, (5.41)

with Q(x) and R(x) symmetric. See [92] for a proof of an alternative version of Schur’s

lemma.6

Theorem 4 (BMI for Stabilization of the Origin). For fixed ∆ξ ∈ Rp, the origin δz = 0 is

exponentially stable for (5.10) if there exist a scalar µ > 0 and a symmetric matrix W ∈ Rn×n

such that  W A(∆ξ)W

WA(∆ξ)T (1− µ)W

 > 0. (5.42)

Proof. Schur’s lemma and (5.42) imply that W > 0 and WA(∆ξ)TW−1A(∆ξ)W − (1 −

µ)W < 0, or, multiplying on the left and right by W−1,

A(∆ξ)TW−1A(∆ξ)− (1− µ)W−1 < 0. (5.43)

But (5.43) implies that the Lyapunov function V [k] := δz[k]TW−1δz[k] satisfies V [k + 1] <
6The two statements of the lemma differ by a similarity transformation which exchanges the roles of Q

and R, and those of S and ST . It is also assumed in [92] that Q(x), R(x), and S(x) are affine in x; this
assumption implies that (5.41) is a linear matrix inequality, but is otherwise not required. In our case (5.41)
will be bilinear.
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(1 − µ)V [k]. As W−1 > 0, this proves ‖δz[k]‖2
2 < (1 − µ)kκ‖δz[0]‖2

2 where κ is ratio of the

largest to the smallest eigenvalue (i.e., the condition number) of W−1.

The preceding theorem gives sufficient conditions for exponential stability, provided ∆ξ is

not so large that the Taylor series approximation (5.10) fails. Noting that, by Schur’s lemma,

‖∆ξ‖2
2 < γ is equivalent to

[
I ∆ξ

∆ξT γ

]
> 0, we have the following optimization problem

minimize
W,∆ξ,µ,γ

− w µ+ γ

subject to

 W A(∆ξ)W

WA(∆ξ)T (1− µ)W

 > 0

Ip×p ∆ξ

∆ξT γ

 > 0

µ > 0.

(5.44)

We now demonstrate the equivalence between the BMI formulation (5.44) and the NLP

formulation (5.11). Suppose (W,∆ξ, µ, γ) is feasible for the BMI problem. Then by Theo-

rem 4, ∆ξ is feasible for the NLP. Conversely, if ∆ξ is feasible for the NLP, then for any

0 < µ < 1−ρ(A(∆ξ)), the Lyapunov equation A(∆ξ)TXA(∆ξ)− (1−µ)X = 0 has a unique

positive definite solution X. Letting W = X−1 and γ > ‖∆ξ‖2
2, it follows that (W,∆ξ, µ, γ)

is feasible for the BMI problem.

Now let ∆ξ be such that A(∆ξ) is Hurwitz. The BMI optimization will drive µ ↗

1 − ρ(A(∆ξ))2 and γ ↘ ‖∆ξ‖2
2, so the limiting cost of (W,∆ξ, µ, γ) for the BMI problem

will differ from the cost of ∆ξ for the NLP only by a constant (−w). This proves that the

NLP and the BMI are equivalent.

Similarly, the robust stability optimization problem (5.20) may be expressed in terms of
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LMIs and BMIs as

minimize
W,∆ξ,µ,γ,η

− w1 µ+ w2η + γ

subject to

 W A(∆ξ)W

WA(∆ξ)T (1− µ)W

 > 0

 Il×l CeAe(∆ξ)Be

BT
e Ae(∆ξ)TCT

e η/d2
max

 > 0

Ip×p ∆ξ

∆ξT γ

 > 0

µ > 0.

(5.45)

5.6 Solver performance comparison

We have shown how the search for stabilizing virtual constraints may be formulated

as an optimization problem with bilinear matrix inequality constraints. Other well-known

examples of control problems which can be expressed in terms of BMIs include robust,

low-order, and decentralized feedback controller synthesis problems [92, 93]. The potential

utility of BMIs for solving a variety of challenging control problems has motivated research

into efficient BMI solvers. Unfortunately, BMIs are, in general, nonlinear, non-smooth,

and non-convex; furthermore the BMI feasibility problem (that is, the problem of finding

a feasible solution to a particular BMI) is known to be NP-hard [94]. Nevertheless, BMI

optimization problems still possess special structure which can be exploited by specialized

solvers. For example, Hassibi, How, and Boyd [95] proposed an iterative method for solving

BMI problems. The proposed method uses a linearized approximation of the BMI at each

step, resulting in a semi-definite program which, being convex, can be solved efficiently. The

optimization problems which appear in subsequent chapters were solved using PENBMI [96]
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together with YALMIP [97], which provides a MATLAB interface to general purpose solvers.

One potential benefit of the BMI formulation is the linear cost and the structured con-

straints. In principle, these could make the optimization problem easier to solve. However,

the structure comes at a cost: the NLP (5.11) has only p free variables, while (5.44) has

n(n+ 1)/2 + p+ 2. Both formulations are non-smooth and non-convex.

To understand how these formulations compare, we examined the performance of two

solvers (PENBMI and MATLAB’s fmincon) for the problems (5.44) and (5.11), respectively,

for different choices of n and p. The problem data Ai, i = 0, 1, . . . , p were randomly generated

with elements independently drawn from a zero mean Gaussian with standard deviation7

0.4
√
n. For each (n, p) pair we generated twenty problems and solved them with both

solvers. We then computed the ratio of the median computation times, and the difference

in the median achieved cost. Figure 5.3 illustrates the results.

For these test problems, the BMI solver is much slower than the NLP solver except

when n is very small. Furthermore, the optimal cost to which the BMI solver converged

is in almost every case greater than the optimal cost found by the NLP solver. This may

indicate that the solver is not fully exploiting the structure of the problem (5.44). That

structure could potentially be exploited to great advantage by iterative schemes which, for

example, alternately solve a Lyapunov equation (with ∆ξ fixed) and an LMI optimization

(with W fixed). On the other hand, that either solver successfully minimizes the cost function

in a reasonable amount of time for much larger problems (in terms of n) than those solved

in [42,65] suggests that Taylor series approximation of the Poincaré map is a very worthwhile

tool for controller design.

There are obvious limitations to this parametric study. First, there are numerous options

and tolerances which could be adjusted to alter the performance of each solver; we have not

made that effort here, except to significantly relax the tolerance for the BMI solver. Second,
7Empirically, this scaling of the standard deviation normalizes the expected spectral radius of Ai to 0.4.
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(a) (b)

Figure 5.3: BMI versus NLP solver performance comparison. The plots compare computa-
tion time T and optimal cost J for BMI and NLP problem formulations as a function of the
problem size.

we have used default (or zero) initial conditions; yet there may be much better methods for

initializing each solver. For example, the BMI might be initialized by finding the smallest

perturbation (if it exists) in a single element of ∆ξ which stabilizes the system, then solving

a Lyapunov equation to find an initial matrix W . A third limitation is that the randomly

generated data almost certainly fail to represent the structure of most practical problems.

Fourth, we have not compared the performance for the robust stability problem (5.45).

Fifth, state-of-the-art solvers for general NLPs are well established, while efficient solvers for

BMI problems are still relatively immature. It is expected that continued research will yield

significant improvements for BMI optimization.
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CHAPTER 6

Stable 3D Walking with Hybrid Zero Dynamics and

Systematic Optimization

The experiments described in Chapter 4 represent an advance in underactuated dynamic

walking. The dynamic nature of the walking gaits achieved is perhaps comparable only to

PETMAN and its successor ATLAS, both of which feature additional sensing and actuation

in the ankles. Furthermore, these first successful walking experiments represent the initial

experimental validation of the utility of virtual constraints for 3D bipedal robot walking.

In this chapter we build on the experimental success of Chapter 4 and the theoretical

developments of Chapter 5. Our purpose is two-fold: First, we demonstrate the use of

the optimization-based method for systematic design of stabilizing virtual constraints for

MARLO. Second, we contribute to the validation of the methods of hybrid zero dynamics

for 3D bipedal walking by bringing the gait and controller design closer to the experimental

implementation. Both of these objectives support our aim to establish systematic gait and

controller design methods for bipedal robots.

In contrast to the gait presented in Chapter 4, which was hand-tuned based on earlier

planar walking, the gait design presented in this chapter is based on the 3D robot model.

The gait design is realized by setting up an optimization to find a feasible periodic orbit and
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a set of virtual constraints for the 3D model. In this stage we incorporate the intuitively-

developed controlled coordinates (described in Section 4.5) for lateral stabilization. We

analyze the stability of the resulting orbit using the method of Poincaré, and optimize the

controlled coordinates using the method developed in Section 5.2. The resulting controller

is tested both in simulation and experiments with MARLO.

6.1 Virtual constraints for 3D walking

As we discovered in Chapter 4, the choice of controlled variables in the lateral plane is

critical for successful walking. Intuition and experience both suggest that stability is unlikely

to be achieved when virtual constraints ignore lateral motion of the robot. This motivated

the SIMBICON-like controlled variable defined by (4.18). While this lateral swing hip virtual

constraint effectively stabilized the walking gait, tuning the parameters of the the output

was a delicate task.

From (4.18), the controlled variable used previously is equivalent to

h0,sw(q) =
(
1− (1− s)3

)
q3,sw − 3(1− s)2sbsw

+
(
3s2 − 2s3

)
(a(1 + cp)qyT + ψsw,d0 − cpq3,st) , (6.1)

where s is the normalized mechanical phase variable (see (4.4)). For gait design and subse-

quent controller optimization, it is more convenient to choose a controlled variable that is

linear in q. To that end we consider (6.1) with bsw = ψsw,d0 = 0, cp = 0.85, and s = 1.

In the sagittal plane, we use the same controlled variables as in Chapter 4 (see (4.2)).
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The complete set of controlled variables is

h0(q) =



qgrLA,R

qgrLA,L

qgrKA,R

qgrKA,L

qHA,R

h0,sw



=



qgr1R+qgr2R
2

qgr1L+qgr2L
2

qgr2R − qgr1R

qgr2L − qgr1L

q3R

q3L − (1 + cp)qyT − cpq3R



. (6.2)

Since h0 is linear, we can also express it as H∗q where H∗ ∈ Rm×N is full rank.

As before, the mechanical phase variable θ is taken to be the angle of the virtual stance

leg relative to the ground (see (4.3)).

Specification of the virtual constraints defines the submanifold Z on which the hybrid

zero dynamics evolves. This submanifold has dimension 2(N −m) = 6, where N = 9 is the

number of degrees of freedom of the model without springs in single support and m = 6 is

the number of virtual constraints. We define coordinates on Z as

z =



qzT

qyT

θ

q̇zT

q̇yT

θ̇



=



qzT

qyT

3π
2 − qxT − qgrLA,st

q̇zT

q̇yT

−q̇xT − q̇grLA,st



, (6.3)

where qgrLA,st = qgrLA,R in right stance and qgrLA,st = qgrLA,L in left stance.
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Table 6.1: Constraints for forward walking gait design

Inequality constraints Equality constraints

workspace limits periodicity
torque limits foot height at impact
bounds on ∆θ hip constraints
foot clearance s− = 1
final swing foot velocity
positive vertical impulse
minimum horizontal COM velocity
minimum forward COM displacement

6.2 Gait design through optimization

As before, we let hd be a vector of 5th order Bézier polynomials. Then the gait de-

sign process consists of finding a set of Bézier parameters α and an initial condition z(0)

which together yield a periodic orbit of the hybrid restriction dynamics. For this we set

up a constrained nonlinear optimization. The constraints include upper and lower bounds

on the optimization variables, as well as the inequality and equality constraints listed in

Table 6.1. These constraints are used to ensure that the resulting periodic orbit will be

physically meaningful. The “hip constraints” listed in the table represent equality con-

straints on several Bézier parameters relating to the desired hip angles; their purpose is to

limit the aggressiveness of the desired hip motion. We do not constrain the mechanical phase

variable θ to be monotonic along the periodic orbit; we simply verify afterward that this is

the case for the optimized gait.

The cost function is chosen as the norm of the equality constraint violation. This choice

is a good first step for finding feasible gaits, which is our goal here. It is also common to

optimize for energetic efficiency [84] or robustness [73].

The initial condition for the optimizer is based on the experimental walking gait from
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Figure 6.1: Feasibility of the walking gait.

Section 4.5.

Figure 6.1 illustrates the feasibility of the designed gait. Ground reaction forces remain

safely within the friction cone, with the maximum ratio of tangential to vertical forces less

than 0.4. All motor torques remain less than 3 Nm, which is the continuous torque limit for

MARLO’s amplifiers. The swing foot height is more than adequate for flat ground walking.

Figure 6.2 shows phase portraits for the designed gait in right stance. From these plots

it is easy to see that the gait is periodic (modulo yaw). The robot yaws approximately 11

degrees over the course of one step. Because the model and gait are symmetric, the robot
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Figure 6.2: Phase portraits for the walking gait.

will yaw 11 degrees in the opposite direction during the following left stance phase. With

the current foot model, which includes only viscous damping of yaw at the stance foot,

achieving a significant reduction in the yaw motion would potentially require the robot to

perform awkward motions, which is undesirable. In the experiments, where stiction at the

foot is also present, the yaw motion will lead to the robot executing a slow turn over the

course of multiple steps.

In our gait design we have used the model without springs. Figure 6.3 illustrates a

comparison of two simulations: one using the rigid model, and one using the model with

springs (assuming a spring stiffness of 7500 Nm/rad and a damping ratio of 0.5). The

trajectories from the two models are in very good agreement, with the greatest deviation

(1.3 degrees) occurring shortly after impact.
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Figure 6.3: Comparison between the models with and without springs. Time trajectories for
the model without springs are solid, while trajectories for the model with springs are dashed.

6.3 Closed-loop design and stability analysis

The gait design process yields a periodic orbit which lies in the zero dynamics manifold

Z. It is the task of the feedback controller to enforce the virtual constraints by rendering Z

attractive and invariant under the forward dynamics of the closed-loop system. To create a

hybrid zero dynamics, the controller must also ensure invariance of Z under the impact map.

Here we present a feedback control law which achieves hybrid invariance, allowing us to study

stability of the periodic orbit using the restricted Poincaré map. We also present and analyze

several variations on the control law which will be used in experiments. These variations do

not ensure invariance of Z, but will nevertheless approximately enforce the virtual constraints

and may do so more safely in the presence of inevitable model uncertainty.
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6.3.1 Feedback linearization

Recall that the input-output linearizing feedback (2.15) renders Z forward invariant and

attractive. Using this feedback law in simulation permits us to study the effects of different

choices of virtual constraints on the stability of an orbit. Because exact (forward) invariance

is achieved, when this feedback law is combined with the event-based updates described

below, we can isolate the stabilizing effect of the choice of virtual constraints from the effect

of PD control. However, as noted earlier feedback linearization is known to be sensitive to

parametric uncertainty in the model. For this reason we will only use (2.15) for gait design

and stability analysis.

6.3.2 PD + feedforward

Following [84], we make use of a modified version of (2.15) for experimental implemen-

tation. The modification consists of substituting regressed torques for u∗ and a constant

matrix T for the decoupling matrix LgLfh. The feedforward torque is determined from

the simulation model by regressing the torques along the periodic orbit as 5th order Bézier

polynomials in the normalized mechanical phase variable s. Thus the feedback law used is

given by

uexp = u∗(s, ατ )− T−1 (KP

ε2 y + KD

ε
ẏ) (6.4)

where ατ represents the Bézier coefficients of the feedforward torque.

6.3.3 Event-based update

For hybrid invariance, we employ event-based updates to the output function h, as de-

scribed in Section 2.4. Formally, this creates a deadbeat hybrid extension [34] of the system,

with the parameters α of the desired evolution and the initial value θ+
i of the mechanical

phase variable being updated at the beginning of each step and remaining constant until
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the next impact. After each impact, we compute the value h+
0 = h0(q+) and derivative

ḣ+
0 = ∂h0

∂q
(q+)q̇+ of the controlled coordinates from the post-impact state (q+, q̇+). We then

update the phase normalization

s(θ) = θ − θ+
i

θ− − θ+
i

, (6.5)

with the initial value θ+
i = θ(q+) of the mechanical phase variable in step i. The parameters

α of the desired evolutions are then updated so that



hd(θ(q+), α) = h+
0

∂hd
∂θ

(θ(q+), α)∂θ
∂q
q̇+ = ḣ+

0

hd(θf , α) = hd(θf , α∗),

(6.6)

where α∗ is the nominal parameter set. This update law ensures that the post-impact error

and its derivative are zero.

6.3.4 Stability analysis

To evaluate the stability of the designed gait under various choices of feedback we com-

pute the linearized Poincaré maps of the corresponding closed-loop systems. Jacobians are

estimated by symmetric differences with a uniform step size of 10−4 radians. Feedback gains

KP , KD, and ε were chosen based on walking experiments.

Feedback linearization with event-based update. Hybrid invariance, together with

the deadbeat nature of the event-based update law, imply that the non-zero eigenvalues of

the linearized Poincaré map for the closed-loop system will simply be the eigenvalues of the

linearized restricted Poincaré map, which are {−1.84,−1, 0.75,−0.49, 0.43}. The eigenvalue

-1 corresponds to yaw, and is expected as neither the robot dynamics nor the feedback

controller depend on yaw [43, Prop. 4].
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Feedback linearization without event-based update. For this feedback law the

dominant eigenvalues are {−1.64,−1, 0.75,−0.46, 0.35}. This feedback law will be used

in conjunction with BMI optimization to determine how the virtual constraints should be

modified to achieve exponential stability of the orbit.

PD + feedforward with event-based update. For experiments, we implement only

the approximate feedback linearization using the regressed feedforward torques and constant

decoupling matrix. When event-based updates are used in conjunction with this feedback

law, the dominant eigenvalues become {−1.99,−1, 0.72,−0.54, 0.24}. One motivation for

using event-based updates even when the continuous feedback law does not ensure forward

invariance is to reduce the magnitude of discontinuities in the torque during experiments.

PD + feedforward without event-based update. Disabling the event-based up-

dates leads to a simpler control law which nevertheless approximately enforces the virtual

constraints. The dominant eigenvalues in this case are {−1.77,−1, 0.74,−0.54, 0.23}.

6.4 Optimization of controlled coordinates

In order to use the optimization-based methods of Chapter 5 to stabilize the orbit O,

we must first have a parameterized family of feedback controllers such that the closed-loop

system satisfies Assumption 2. Specifically, O must be a solution of the closed-loop system

independent of the choice of controller parameters. Since we already know that stability

depends critically on the choice of controlled variables, it is natural to let the optimization

refine our controlled variables. We could also parameterize the mechanical phase variable θ

and the feedback gains KP and KD, but we do not pursue this here.
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6.4.1 Parametrization of virtual constraints

From the gait design process we know the trajectory ϕ(t), 0 ≤ t < T of the system

along a periodic orbit. As θ is monotonic along the trajectory, there is a function qd(θ)

such thatqd(θ(ϕ(t))) = ϕ(t), 0 ≤ t < T . It follows that, for any matrix H, the quantity

H (q − qd(θ(q))) vanishes along the orbit. Parameterizing H by ξ, we can define a family of

virtual constraints1

y = h(q, ξ) = H(ξ) (q − qd(θ(q))) . (6.7)

Furthermore, the original constraints given by (6.2) are included in this family as

y = H∗ (q − qd(θ(q))) . (6.8)

Since h(q, ξ) vanishes along the orbit for any ξ, (6.7) induces a parameterized family of

feedback controllers satisfying Assumption 2.

As a technical condition, we should require that the parameter set Ξ be chosen such

that the regularity conditions of Lemma 1 (which ensure existence of the zero dynamics) are

satisfied for all ξ ∈ Ξ. Since existence of the zero dynamics is equivalent to invertibility of

the decoupling matrix
∂h

∂q
D−1B = H

(
I − ∂qd

∂θ

∂θ

∂q

)
D−1B

at every point along the orbit, we are apparently faced with the task of finding the set of

ξ ∈ Rp such that no non-zero element of the row span of H(ξ) lies in the left nullspace

of
(
I − ∂qd

∂θ
∂θ
∂q

)
D−1B at any point along the orbit. In practice, it is easier simply to check

invertibility of the decoupling matrix for the optimized result.

For the experiments reported here, we consider a parametrization of H which allows each

virtual constraint to depend on the torso roll angle. The motivation for this is that the torso
1Note that we have omitted the argument α since it will be fixed for a given orbit.
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pitch is already coupled into the virtual constraints through the mechanical phase variable,

but the roll angle is not. We hypothesize that by allowing the virtual constraints to vary

with the roll angle, the robot will be able to compensate appropriately when its roll deviates

from the nominal orbit. We therefore have

H(ξ) =



0 ξ1 0 1
2

1
2 0 0 0 0

0 ξ2 0 0 0 0 1
2

1
2 0

0 ξ3 0 −1 1 0 0 0 0

0 ξ4 0 0 0 0 −1 1 0

0 ξ5 0 0 0 1 0 0 0

0 ξ6 − (1 + cp) 0 0 0 −cp 0 0 1



. (6.9)

The nominal controlled coordinates in (6.2) are simply H∗q = H(ξ∗)q, where ξ∗ = 0 is the

nominal choice of parameters.

Because we have chosen not to make the virtual constraints yaw-dependent, the linearized

Poincaré map of the closed-loop system will have an eigenvalue of -1 for all values of ξ. Thus,

to proceed with an optimization “modulo yaw”, we must eliminate the yaw coordinate, which

we do by a simple projection. Specifically, we compute the Jacobian A0 = ∂P
∂x

(x∗f , ξ∗) of the

corresponding Poincaré map, and the sensitivities Ai, i = 1, . . . , 6 of A0 with respect to

perturbations in ξi. We then remove the first row and column of each. The resulting

matrices are assembled into the affine matrix function A(∆ξ) = A0 + A1∆ξ1 + · · ·+ A6∆ξ6

comprising the model data needed for the BMI optimization problem (5.44). Using PENBMI

and YALMIP we solve this optimization problem with the cost weight w = 10.

6.4.2 Results

The optimal perturbation of ξ is found to be ∆ξ = (−0.26, 0.20, 0.30,−0.23,−0.06, 0.24),

and the corresponding spectral radius of A(∆ξ) is 0.28.
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When the revised virtual constraints are used in each of the closed-loop systems described

in Section 6.3.4, the eigenvalues of the linearized Poincaré map are: Feedback lineariza-

tion with event-based update: {−1,−0.68, 0.68,−0.32, 0.08}; Feedback linearization with-

out event-based update: {−1, 0.58,−0.42,−0.42, 0.32}; PD + feedforward with event-based

update: {−1,−0.34,−0.34, 0.56,−0.39}; PD + feedforward without event-based update:

{−1,−0.34,−0.34, 0.53,−0.04}. As before, the eigenvalue -1 corresponds to yaw.

We see that the revised virtual constraints stabilize the orbit for the closed-loop system

with any of the control laws considered.

6.5 Experimental evaluation

6.5.1 Method

The controller design presented in this chapter was evaluated on MARLO. We compared

the controller based on the nominal virtual constraints with the BMI-optimized constraints.

Experiments were performed on flat ground in the laboratory, where MARLO can walk

approximately 7-8 meters during a single experiment.2 A snapshot from one walking experi-

ment is shown in Figure 6.4. During these experiments, the real-time computer was on-board

the robot. Power was supplied by an off-board battery bank carried on a mobile gantry. The

gantry is designed to catch the robot when power is cut at the end of an experiment, or

in the event of an early failure. It does not support the robot or provide any stabilization

during the walking experiments.

In each experiment the controller executes a gait initiation sequence as follows:

1. Posing. With the robot suspended from the gantry, the robot is posed in a neutral

configuration with both legs side-by-side. The robot is then lowered to the ground and
2The lab is about 12.5 meters long; however, equipment near the perimeter of the lab and the need to

pose the robot in front of the mobile gantry limit the maximum walking distance to about 8 meters.
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Figure 6.4: Laboratory setup for 3D walking experiments. The robot begins in Posing mode
on the black mats.

begins supporting its own weight. Because the toroidal feet are not large enough to

achieve static balance, an experimenter manually stabilizes the robot in the sagittal

plane. He seeks to minimize the force required to hold the robot, ensuring that the

COM is close to the center of the ground contact area. After the robot is nearly

balanced, the controller waits for the experimenter to release the robot before entering

the Injection phase. Release is detected by comparing the pitch rate to a pre-specified

threshold (-3 degrees per second).

2. Injection. When the pitch rate crosses the threshold, the controller enters a short

(300 ms) Injection phase. The goal during this phase is to initiate a lateral rocking

motion away from the left leg so that the robot does not roll excessively on the first

step. During this phase the controller rapidly extends the left knee 5 degrees from the

posing configuration.

3. Transition. The controller then enters the Transition phase, in which it takes a
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short first step. The goal of this phase is to accelerate the robot forward in order

to approach the periodic orbit. The transition step employs hand-modified virtual

constraints originally based on an optimization [46].

4. Walking. After a single transition step, the controller enters the Walking phase,

where it remains for the duration of the experiment. Swing leg impact is detected

using the knee angle spring deflection on the swing and stance legs. After each impact,

the virtual constraint parameters are updated to zero the error y and its derivative ẏ.

During the first five steps of the Walking phase, the torso is offset two degrees forward

to help the robot gain speed.

During the Transition and Walking phases, control is based on virtual constraints of the

form (4.2); only the Bézier parameters and the scaling of θ differ. During the Posing phase

the controller regulates the controlled coordinates to a setpoint. In the injection phase, a

time-based phase variable is used to ramp the swing knee angle.

Prior to the experiments reported here, we ran a series of experiments in which the virtual

constraints were minimally adjusted to achieve walking. This is necessary due to persistent

discrepancies between the model and the robot, most notably relating to the torso mass

distribution and to friction in the harmonic drives. The swing knee angle virtual constraint,

in particular, required the most tuning. We hypothesize that this is due to a combination of

stiction in the harmonic drives and the rapid change in the desired knee angle. To address

this we reduced the maximum desired knee angle. We also made the desired stance knee

angle constant to reduce bouncing. Finally, the swing knee angle feedforward torque was

adjusted by hand to improve tracking. These adjustments are shown in Figures 6.5 and 6.6.

The −5 degree offset in leg angles shown in Figure 6.5 biases the torso backward. During

the first two experiments reported below, the offset was −2 degrees.

In each experiment the robot was allowed to walk until: 1) the robot approached the
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Figure 6.5: Comparison between nominal and modified virtual constraints. The nominal
desired evolutions are solid, and the modified evolutions are dashed.

perimeter of the walking area; 2) the state of the robot left a (conservative) safe operating

region; or 3) an experimenter cut motor power. The last of these occurred twice; in both

cases the robot lost forward momentum and appeared to be on the verge of falling when the

power was cut.

6.5.2 Results

We performed several walking experiments using both the nominal and the optimized

controlled coordinates. Additionally, we tested each choice of controlled coordinates with

and without event-based updates. A summary of these experiments is provided in Table 6.2.

Figure 6.7 shows the approximate path taken (i.e., the projection of the midpoint between

the hips into the ground plane) during each of the experiments. Eight of the nine experiments

using BMI-optimized outputs ended because the robot reached the limit of the walking area
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Table 6.2: Summary of several walking experiments

ID Date Experiment
numbera

Controlled
coordinates

Event-based
update

Total
steps

Reason
ended

N1 Feb 6 22 nominal enabled 14 power cut
B1 23 optimized enabled 19 perimeter
B2 Feb 12 1 optimized enabled 14 perimeter
N2 3 nominal enabled 11 power cut
B3 4 optimized enabled 4 safety
N3 6 nominal enabled 10 safetyb

B4 7 optimized enabled 15 perimeter
N4 9 nominal enabled 4 safety
B5 10 optimized enabled 13 perimeter
N5 12 nominal enabled 3 safety
B6 Feb 13 3 optimized disabled 15 perimeter
B7 6 optimized disabled 20 perimeter
N6 8 nominal disabled 6 safety
N7 9 nominal disabled 14 safety
B8 10 optimized disabled 19 perimeter
B9 11 optimized disabled 19 perimeter

a Experiments are numbered sequentially each day. The experiment numbers skipped in this table
tested a different controller which is not reported here.

b Safety stop preceded by external disturbance from the safety cable.
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Figure 6.6: Comparison between nominal and modified feedforward torques. The nominal
feedforward torques are solid, and the feedforward torques are dashed.

in the lab. As shown in the figure, the robot tended to turn gradually to the right; thus in

most cases the robot reached the corner or the right wall instead of walking directly toward

the far end of the lab. The robot tended to turn less when using the nominal outputs;

however the effect may be partly due to the shorter distance walked: With the nominal

outputs the robot did not reach the end of the lab. In most of the experiments with the

nominal outputs, the controller software halted the robot because the state was outside the

safe operating region. In two of these cases, the torso roll angle exceeded a threshold; in one

case the norm of the output velocity ẏ exceeded a threshold; and in two cases the hip angles

were too narrow (meaning the feet might collide).

Figures 6.8 and 6.9 show the motion of the torso. Here the gradual turning is evident.

The average yaw rate was around −9.8 degrees per second with the nominal outputs and

−11.0 degrees per second with the optimized outputs. The torso pitch oscillates with each
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Figure 6.7: Approximate walking paths for 3D experiments. Experiments using the nominal
outputs are traced in blue, and those using the optimized outputs are traced in red. Dashed
lines indicate experiments in which event-based updates were disabled.
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Figure 6.8: Torso Euler angles with event-based updates enabled. The plots compare the
results from ten walking experiments, five of which used the nominal outputs (left column;
experiments N1, N2, N3, N4, N5) and five of which used the optimized outputs (right column;
experiments B1, B2, B3, B4, B5).
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Figure 6.9: Torso Euler angles with event-based updates disabled. The plots compare the
results from six walking experiments, two of which used the nominal outputs (left column; ex-
periments N6, N7) and four of which used the optimized outputs (right column; experiments
B6, B7, B8, B9).
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step. The amplitude of the oscillation (between 6–10 degrees peak to peak) is somewhat

larger than in simulation (5.5 degrees peak to peak; see Figure 6.3). The oscillation is more

pronounced when using event-based updates (Figure 6.8) compared to experiments where

the updates were disabled (Figure 6.9).

The most notable difference in the torso motion is in the roll angle. From the simulation,

we expect the peak-to-peak torso roll to be about 4.4 degrees. After a transient following gait

initiation, the optimized controller brings the torso oscillation to between 4 and 6 degrees

peak to peak. The nominal controller fails to effectively stabilize the torso roll. These results

do not change significantly when event-based updates are disabled.

To understand how the COM motion is affected by the different controllers, we plot in

Figures 6.10 and 6.11 the linearized COM position with respect to the right foot.3 From

these plots we see that the relative motion of the COM in the sagittal plane is very similar

for all four controllers tested. However, the motion of the COM in the lateral plane is quite

exaggerated when the nominal outputs are used. When the optimized outputs are used, the

COM is maintained very close to the nominal position.

The tracking errors were generally comparable. Figures 6.12 and 6.13 compare the desired

evolutions with the actual trajectories of the controlled coordinates for experiments N1 and

B1, respectively.

6.5.3 Discussion

These results suggest that the optimized virtual constraints are more effective at lateral

stabilization than the nominal constraints. The robot walked farther, more consistently,

and with less torso and COM oscillation in the lateral plane with the optimized virtual

constraints compared to the nominal virtual constraints. We propose a mechanism by which
3Computed as p̂COM(q) = JCOM (q − q0) where JCOM = ∂pR

COM
∂q (q)

∣∣
q=q0

is a constant matrix, pR
COM(q) is

the position of the COM with respect to the right leg, and q0 is a symmetric, upright nominal configuration.
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Figure 6.10: Linearized position of the COM with event-based updates enabled. The plots
compare the results from ten walking experiments, five of which used the nominal outputs
(left column; experiments N1, N2, N3, N4, N5) and five of which used the BMI-optimized
outputs (right column; experiments B1, B2, B3, B4, B5).
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Figure 6.11: Linearized position of the COM with event-based updates disabled. The plots
compare the results from six walking experiments, two of which used the nominal outputs
(left column; experiments N6, N7) and four of which used the BMI-optimized outputs (right
column; experiments B6, B7, B8, B9).
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Figure 6.12: Tracking of desired evolutions when using the nominal outputs. The data are
from experiment N1, and are representative of the other experiments. The dashed lines show
the desired evolution of the controlled variables, and the solid lines represent their actual
evolution.
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Figure 6.13: Tracking of desired evolutions when using the optimized outputs. The data are
from experiment B1, and are representative of the other experiments. The dashed lines show
the desired evolution of the controlled variables, and the solid lines represent their actual
evolution.
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this is achieved: In the lateral plane, the optimal perturbation ∆ξ primarily affects the swing

hip angle. Furthermore, the perturbation is such that the swing foot moves in the direction

the torso is rolling. This suggests that the optimized virtual constraints may improve foot

placement in the lateral plane, thereby keeping the COM closer to the stance foot. This

would reduce the tipping moment induced by gravity and thus reduce the magnitude of

step-to-step oscillations in the lateral plane.

The alternative to stabilizing motion through foot placement is to couple the dynamics

in such a way as to make within-stride adjustments to deviations from the desired orbit.

Within-stride adjustments might include using internal angular momentum to keep the lat-

eral position of the COM close to the stance foot, such as humans do when lunging or

“windmilling” their appendages [10]. The only appendages with which MARLO could wind-

mill to change its angular momentum in the lateral plane are the torso and the swing leg.

However, the perturbation on the stance hip (which would affect lateral lunging with the

torso) is very small, and the perturbation on the swing hip has the wrong sign to produce

the desired reaction torque to stabilize the COM by windmilling.

Compared to the behavior in the lateral plane, the behavior of the robot in the sagittal

plane under the two different sets of virtual constraints is surprisingly comparable. Given

the size of the perturbation in the sagittal-plane virtual constraints, we might have expected

a noticeable difference in the torso pitch, for example. It is possible that the actual effect

of the perturbations in the sagittal-plane virtual constraints is negligible; an interesting

follow-on to the experiments presented here would be to zero particular components of the

perturbation and compare the results.

One apparent side effect of the optimized virtual constraints is the persistent yawing.

While the robot tended to turn with both choices of virtual constraints, it did so more con-

sistently and slightly more rapidly with the optimized virtual constraints. Likely contributing

factors to the tendency to turn, in general, are asymmetry in the torso mass distribution
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and asymmetry in the gait initiation. That yawing is more pronounced with the optimized

virtual constraints is a consequence of the fact that we optimized the virtual constraints for

stability modulo yaw.

While the results of these experiments are promising, we acknowledge several limitations.

Due to the limited walking distance available in the lab, it is difficult to separate the effects

of initial conditions from the long-term behavior of the robot under a particular controller.

Variability in the initial conditions may be caused by small differences in how to robot is

posed, how the robot initially falls forward, and where it takes its first step. More impor-

tantly, the robot itself may change over time. The toroidal feet, knee joints, and spring

couplings may shift slightly from one experiment to the next. The batteries may also be-

come partially depleted. These factors make a rigorous comparison between controllers more

challenging.
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CHAPTER 7

Conclusion

While much progress has been made toward the development of bipedal robots capable

of operating in the real world, there are still significant gains to be made in terms of speed,

agility, robustness, and energetic efficiency. The limit cycle walking paradigm offers a vari-

ety of ideas and methods that can help secure these gains by taking advantage of natural

dynamics. In particular, limit cycle walking has demonstrated exceptional benefits in terms

of energetic efficiency, and, embodied in the framework of hybrid zero dynamics, in terms

of speed and robustness. A significant contribution of the theory of hybrid zero dynamics is

to provide rigorous and systematic tools for gait design and stability analysis. These tools

allow model-based design without the need to rely solely on simplified models such as the

inverted pendulum. Their efficacy is demonstrated by the successful walking achieved on

the rigid, planar robots Rabbit and ERNIE, and by the natural-looking running and robust

walking achieved on the compliant, planar biped MABEL. Extending these planar results

to the 3D setting will complement the ongoing work on humanoid walking to enable more

robust, dynamic, and energetically efficient robot locomotion in the future.

Previous work with 3D simulation models had established the viability of HZD-based

walking for 3D bipeds, but had also revealed an important difference with respect to the

planar case with a single degree of underactuation: in the 3D case, the choice of virtual
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constraints has a deciding effect on the stability of a periodic orbit. Furthermore, although

choosing virtual constraints to ensure stability of an orbit can be a subtle problem, there

was no systematic and scalable means of doing so. This thesis has addressed this problem by

introducing an optimization-based method to choose virtual constraints. It has also made

experimental contributions validating HZD-based control of 3D bipeds. These contributions

are summarized below.

7.1 Summary of contributions

First experimental realization of 3D walking with virtual constraints. We have

presented the first experimental realization of dynamic 3D walking using virtual constraints.

As in earlier studies, which used HZD for 3D walking in simulation, the virtual constraints

used in our initial experimental implementation are chosen based on intuition. Stability is

achieved by constraining the lateral swing hip angle to be a function of the torso roll angle

and of the lateral stance hip angle. This constraint implicitly adjusts the foot placement in a

step-to-step manner. The virtual constraints also incorporate swing leg retraction, designed

for robustness to external pushes with MARLO in a planar mode. The resulting controller is

tested in the laboratory on the human-scale bipedal robot MARLO. The controller stabilizes

the lateral motion for unassisted 3D walking at approximately 1 m/s. MARLO is one of

only two known robots to walk in 3D with stilt-like feet.

Systematic selection of virtual constraints. To address the problem of choos-

ing appropriate virtual constraints, we have introduced an optimization-based method to

tune controller parameters for hybrid and non-hybrid systems. The method assumes that

a parameterized feedback law generates a periodic orbit that does not depend on the con-

troller parameters. Thus, while the Poincaré map (and, in particular, the eigenvalues of its

Jacobian) may depend on the controller parameters, the fixed point does not. This allows
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us to study a Taylor series approximation of the linearized Poincaré map and formulate an

optimization problem to choose the controller parameters to stabilize its fixed point. Impor-

tantly, this method makes possible systematic stabilization without the need to recompute

the linearized Poincaré map at each iteration of the optimization, making it applicable to

systems of much greater dimension than previous methods. Furthermore, the optimization

problem can also be formulated with a linear cost and BMI constraints. This relates the

problem to other control problems which may be formulated as BMI optimization problems,

and may provide additional flexibility in choosing numerical solvers.

One extension of the basic method allows a measure of disturbance rejection capability

to be incorporated into the optimization. This makes it possible to choose controller param-

eters (such as virtual constraints) which are less sensitive to uncertainty in the switching

manifold of the hybrid system. We also show how the optimization framework can be used

in conjunction with the restricted Poincaré map. This extension allows the stabilization

problem to be solved using the lower-dimensional hybrid zero dynamics, just as the gait

design problem is solved. This may be advantageous for numerical reasons, since the lower

dimension may accelerate the optimization process. Furthermore, as the designer may be

able to understand the zero dynamics more readily than the full dynamics, optimizing the

controller for the restricted system may facilitate interpretation of the solution. Finally, op-

timization of the restricted dynamics isolates the effect of the feedback law used to stabilize

the zero dynamics manifold from the effect of the virtual constraints themselves, allowing

these two components of the controller design to be carried out separately, if desired.

Experimental validation of BMI-based constraint design. Finally, we have

demonstrated the systematic method for selecting virtual constraints to stabilize a walking

gait for MARLO. A nominal choice of virtual constraints was parameterized in such a way

as to allow each controlled coordinate to depend on the torso roll angle. We solved the BMI

formulation of the stabilization problem to find the optimal parameters. The controller was
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tested with MARLO walking on smaller, toroidal feet, which better match the point-foot

model. The optimized controller leads to improved lateral control compared to the nominal

virtual constraints.

7.2 Future directions

Systematic selection of the phase variable. The optimization-based method

for designing controllers opens up many new possibilities. In this work we have used the

optimization to select controlled variables for walking. Another possibility is to use the

optimization to select a mechanical phase variable. The phase variable not only serves as a

way of parameterizing time along a periodic orbit, but, much more importantly, partitions

the state space into equivalence classes (the level sets of θ). To each equivalence class,

the controller associates a single vector of desired outputs hd(θ). Thus a poorly chosen

mechanical phase variable might group into the same equivalence class points of the state

space where the robot behavior is very different. This would have important consequences

for stability and disturbance rejection, hence the motivation for making the choice of phase

variable systematic.

One way to parameterize the phase variable for optimization is analogous to the way

we parameterized the controlled variables: as a linear combination of the configuration q.

However, this could lead to difficulty when the solver chooses a linear combination which

is not monotonic along the orbit. As an alternative, one could form a collection of any

number of arbitrary functions of the configuration which are known to be monotonic along

the desired orbit, then parameterize the phase variable as a convex combination of these

functions.

Robustness and disturbance rejection. The optimizations described for stabiliza-

tion and disturbance rejection could be augmented with additional performance criteria. For
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example, we noted that our disturbance rejection metric is quite similar to Hobbelen and

Wisse’s gait sensitivity norm. In fact, one could easily incorporate the gait sensitivity norm

itself as part of the cost in the NLP.

An important area for continued research is in robustness of the optimized controllers.

We noted briefly that the optimization method extends trivially to simultaneous stabilization

of a collection of orbits. These orbits could all be for the same hybrid system, or they could

be orbits for different hybrid systems. It would be interesting to find a collection of “similar”

orbits for a collection of hybrid systems which differ in their parameters, and to look for a

controller which stabilizes all of the orbits. This has the flavor of a robust control problem,

but rigorously proving the robustness of the resulting controller for a wider collection of

hybrid models may be very challenging.

Walking in place. In all of the 3D experiments we have described, a key challenge was

starting from a static pose and guiding the robot toward the periodic orbit. An alternative

to the gait initiation process we have used (which required considerable hand tuning) is to let

the robot first walk in place, then slowly increase its forward momentum over multiple steps

until it is close to the periodic orbit. In fact, walking in place is interesting in its own right.

We have begun work toward an in-place walking controller for MARLO, which is described

in Appendix A. The gait design uses HZD with a phase variable defined in the lateral plane.

Because the phase variable is not monotonic during each stance phase, the stance phase is

split into two sub-phases. Using this lateral phase variable, we designed an in-place walking

gait. However, optimizing the controlled variables to stabilize the gait as we did for regular

walking required excessively large perturbations ∆ξ. We hypothesize that this is because

the parametrization of the virtual constraints was not sufficiently flexible. An interesting

problem would be to determine a more appropriate parametrization or a different class of

virtual constraints which would simplify stabilization of in-place walking.
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APPENDIX A

Walking in place

Walking in place is important both theoretically and practically. As a 3D point-foot

robot cannot stand still, the ability to walk in place could serve as a useful starting stage for

3D experiments with point feet. It is interesting theoretically because it introduces a new

challenge in control design. Application of HZD relies on the notion of a mechanical phase

variable. In forward walking there are various choices, including the virtual stance leg angle,

the horizontal position of the center of mass, and the horizontal position of the center of

pressure [98]. Walking in place differs from forward walking in the sense that there is not

an obvious choice of timing variable which is monotonic throughout each support phase. In

this chapter we show how this problem may be addressed, and present a controller design

for stable in place walking with MARLO.

In the next section we describe a hybrid controller for walking in place on point feet. In

the controller design, we do not worry about slow yawing motion; in fact, if the yaw can be

controlled, then this may prove useful for turning in place. Similarly, position is not actively

regulated; the goal is simply to stay up without travelling in any particular direction very

quickly.
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Figure A.1: Phase portraits for decoupled inverted pendulum model of walking. The motion
in the sagittal plane (a) is identical for left and right stance, while in the lateral plane (b)
the motion is mirrored about the vertical.

Gait design

Phase variable for walking in place

We have already noted that (forward) bipedal walking can be studied using inverted

pendulum models. The motion of the center of mass in the sagittal plane is modeled by a

pendulum which moves monotonically through the upright position, as shown in Fig. A.1a.

In the lateral plane, the center of mass initially moves toward the upright position, but it

stops short of the vertical and reverses direction in the latter half of the step (Fig. A.1b).

Walking in place may be considered a limiting case of forward walking as the stride length

approaches zero. In the basic inverted pendulum model, this corresponds to fixing the angle

of the center of mass in the sagittal place at the vertical; the curve in Fig. A.1a would then

collapse to a point at the origin. (In models with additional dynamics, such as an inverted

pendulum with a flywheel [10] or a bipedal robot, small periodic motions in the sagittal

plane might also result in periodic walking in place.) It is critical that the lateral velocity of

the center of mass changes sign strictly before the inverted pendulum reaches the vertical,

otherwise it will fall to the outside instead of rocking back toward the swing foot.
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Since walking in place is dominated by the lateral rocking motion, a natural choice for the

phase variable is the angle of the inverted pendulum in the lateral plane. But as this angle

is not monotonic within each stance phase (see Fig. A.1b), we cannot use it to parameterize

arbitrary virtual constraints. To illustrate what this means, suppose we are given a periodic

trajectory x∗(t), t = [0, T ] corresponding to an in-place walking gait. Then for a particular

choice of controlled coordinates h0(q), we might wish to determine desired evolutions hd(θ)

such that x∗(t) lies in the zero dynamics manifold Z = {x = (q, q̇)|h(x) = Lfh(x) = 0},

where h(q) = h0(q)− hd(θ). In other words, we want to find hd(θ) which satisfies

h0(q∗(t))− hd(θ(q∗(t))) ∀ t ∈ [0, T ]. (A.1)

Unless the controlled coordinates on the periodic orbit h0(q∗(t)) are symmetric in θ, this will

not be possible.

Since we do not wish to restrict our search to orbits satisfying (A.1), we have to parame-

terize the desired evolutions differently. One way to do this is to split the stance phase into

two distinct segments (which we will call “early” and “late”) such that θ is monotonic on

each segment. We then let the desired evolutions be given by

hd(θ) =


h1
d(θ), θ̇ ≥ 0

h2
d(−θ), θ̇ < 0.

(A.2)

It is worth mentioning a few consequences of this choice.

First, we have effectively introduced an additional continuous phase into our hybrid

model. The open-loop dynamics ẋ = f(x) + g(x)u of the system in the “early” and “late”

stance phases are identical; however, the parameterized feedback law u = Γ(x, α), the guard

set, and the discrete transition are different.
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Second, the existence of the zero dynamics is no longer guaranteed. To verify that the

zero dynamics exists for a given periodic orbit and choice of virtual constraints, we must

check a posteriori the invertibility of the matrix Dzero along the periodic orbit.

Third, we note that (A.2) still imposes a constraint on the periodic orbit: since ḣd(θ) = 0

whenever θ̇ = 0, the velocities of controlled coordinates must all simultaneously vanish at

the instant the rocking motion reverses direction. An interesting corollary is that, as long

as we choose h1
d and h2

d so that the desired evolutions hd are continuous at the direction

reversal, it is guaranteed that hd will be continuously differentiable at that point.

Finally, without imposing additional constraints on h1
d and h2

d, the control torques may

be discontinuous at the direction reversal. This is undesirable, and will be handled in the

controller design.

Motivated by the inverted pendulum model, we select as the phase variable θ a linear

approximation of MARLO’s position of the center of mass in the lateral plane. Specifically,

we set

θ(q) = −1.04qyT − 0.967q3R − 0.0154q3L. (A.3)

Gait design

The generalized coordinates q and velocities q̇ are continuous at the direction reversal. We

wish to ensure that the control torques u (and hence the accelerations q̈ are also continuous.

From (2.11) we have that the torques along the periodic orbit corresponding to the virtual

constraints 0 = h(q) = h0(q)− hd(θ) are

u∗ =
(
∂h

∂q
D−1B

)−1 [
∂h

∂q
D−1H − ∂

∂q

(
∂h

∂q
q̇

)
q̇

]

=
(
∂h

∂q
D−1B

)−1 [
∂h

∂q
D−1H − ∂

∂q

(
∂h

∂q
q̇

)
q̇

]
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If the controlled coordinates h0 are defined equivalently in the two phases, then to ensure

equality of u− and u+ it is sufficient that

∂h1
d

∂θ
= ∂h2

d

∂θ
. (A.4)

at the mid-stance transition.

If h1
d and h2

d are chosen to be Bézier polynomials in s, where s = θ−θ+

θ−−θ+ is normalized by

the initial and final values of θ in each phase, then (A.4) is equivalent to

(α1
M − α1

M−1) 1
θ−1 − θ+

1
= (α2

1 − α2
0) 1
θ−2 − θ+

2
. (A.5)

An optimization problem was defined to minimize the norm of the equality constraint

violation subject to constraints similar to those listed previously for forward walking (see

Table 6.1).
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