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ABSTRACT

Measuring Influence and Topic Dependent Interactions in Social Media Networks
Based on a Counting Process Modeling Framework

by

Donggeng Xia

Advisor: Professor George Michailidis

Data extracted from social media platforms, such as Twitter, are both large in scale

and complex in nature, since they contain both unstructured text, as well as struc-

tured data, such as time stamps and interactions between users. Some key questions

for such platforms are (i) to determine influential users, in the sense that they gen-

erate interactions between members of the platform and (ii) identifying important

interactions between nodes in the corresponding user network.

Regarding the first question, common measures used both in the academic liter-

ature and by companies that provide analytics services are primarily variants of the

popular web-search PageRank algorithm applied to networks that capture connections

between users. In this work, we develop a modeling framework using multivariate in-

teracting counting processes to capture the detailed actions that users undertake on

such platforms, namely posting original content, reposting and/or mentioning other

users’ postings. Based on the proposed model, we also derive a novel influence mea-

sure. We discuss estimation of the model parameters through maximum likelihood

and establish their asymptotic properties. The proposed model and the accompa-

x



nying influence measure are illustrated on a data set covering a five year period of

the Twitter actions of the members of the US Senate, as well as mainstream news

organizations and media personalities.

We then turn our attention to the problem of identifying important interactions

both globally and also based on the particular topics under discussion. We modify

the previously introduced modeling framework, so that topic dependent interactions

can also be identified. We extend our previous algorithm to accommodate the new

framework and also establish asymptotic properties of the key model parameters. We

illustrate the results on the same Twitter data set.
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CHAPTER I

Introduction

1.1 Background and Literature Review

Leading business and non-profit organizations are integrating growing volumes of

increasingly complex structured and unstructured data to create big data ecosystems

for content distribution, as well as to gain insights for decision making. A recent,

substantial area of growth has been online review and social media platforms, which

have fundamentally altered the public discourse by providing easy to use forums for

the distribution and exchange of news, ideas and opinions. The focus in diverse areas,

including marketing, business analytics and social network analysis, is to identify

trends and extract patterns in the vast amount of data produced by these platforms,

so that more careful targeting of content distribution, propagation of ideas, opinions

and products, as well as resource optimization is achieved (Dave, 2015; Probst et al.,

2013).

One platform that has become of central importance to both business and non-

profit enterprises is Twitter. According to its second quarter 2014 financial results

announcement, Twitter had more than half a billion users in July 2014, out of which

more than 271 million were active ones (Twitter , 2014). Although Twitter lags behind

in terms of active users to Facebook, it is nevertheless perceived by most businesses

and non-profit organizations as an integral part of their digital presence (Bulearca
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and Bulearca, 2010).

The mechanics of Twitter are as follows: the basic communication unit is the ac-

count. The platform allows account users to post messages of at most 140 characters,

and thus has been described as the Short Message Service (SMS) of the Internet.

As of mid-2014, over half a billion messages were posted on a daily basis. Further,

Twitter allows accounts to “follow” other accounts, which means the follower receives

notification whenever the followed account posts a new message. Thus, the follow-

follower relations serve as a primary channel for content to spread within the social

networking platform. Accounts tend to interact with each other over these channels

in two directed ways. First, an account can copy or rebroadcast another account’s

tweet, which is referred to as a “retweeting”. Second, an account can mention an-

other account within a tweet by referring to their account name with the @ symbol as

a prefix. These two actions, retweeting and mentioning, are directed responses from

one account to another and thus, provide the mechanisms for online conversation.

The mechanics of Twitter, together with the original messages generated by users,

give rise to rich Big Data. Specifically, the content of the message, together with

easily searchable key terms or topics that use the # symbol as a prefix, constitute a

large corpus of unstructured text. The hashtag function enables searches to identify

emerging themes and topics of discussion. In 2014, more than 2.1 billion search queries

were generated (Twitter , 2014). Further, the following built-in capability, creates a

network for potential information flow and dissemination, while the retweeting and

mentioning actions create subnetworks of actual interactions between user accounts.

A key problem in all social networking platforms is that of identifying user influ-

ence, since such users are capable of driving action (e.g. steer discussions to particular

themes and topics) or provoking interactions amongst other users and thus, are also

potentially more valuable to businesses (Trusov et al., 2010). In fact, as argued in

SAS (2015), insight from social networking platforms “enhance the customer journey

2



across all customer touch points - customer care, brand marketing, public and commu-

nity relations, merchandising and more.” Thus, the ranking of Twitter users based on

their influence constitutes both an active research topic and a business opportunity, as

manifested by services such as Klout (Klout , 2014) and PeerIndex (PeerIndex , 2014)

that market and sell to businesses and other organizations influence scoring metrics.

The most standard metric employed is the number of followers an account has. How-

ever, a number of studies (Cha et al., 2010; Weng et al., 2010) have concluded that

it is not a good indicator, since most followers fail to engage with the messages that

have been broadcast. For that reason, the number of retweets an account receives

(Kwak et al., 2010) is a better measure of influence. Since we are interested in rank-

ing of users, more sophisticated influence measures based on the popular PageRank

(Page et al., 1999) and HITS (Kleinberg , 1999) ranking algorithms, widely used for

ranking search results on the Web, have been used (Haveliwala, 2003; Kwak et al.,

2010; Weng et al., 2010; Gayo-Avello et al., 2011). However, these algorithms have

been developed for and applied to the followers network, which clearly captures the

general popularity of users, but not necessarily of their influence. For example, the

twenty most followed accounts with a minimum of 25 million followers comprise of

entertainers and athletes, the sole exception being President Obama.

1.2 Outline of the Thesis

In Chapter 2, we propose to measure an account/user’s influence on the Twitter

social media platform, by taking into consideration both their ability to produce new

content by posting messages, and also to generate interactions from other accounts

through retweeting and mentioning. To that end, we build a statistical model for an

account’s actions and interactions with other accounts. It uses a counting process

framework to capture the posting, retweeting and mentioning actions. In addition,

based on this model we introduce a novel influence measure that leverages both

3



the follower network (that captures the potential for posted messages to generate

interactions with other users) and the intensity over time of the basic actions involved

(posting, retweeting and mentioning).

Chapter 3 considers the problem of identifying important interactions between

nodes in the user network. In our proposed framework, as presented in Chapter 2,

we still model actions occurring on the nodes as counting processes. However, we

allow for a much more flexible parameterization than the one used in the previous

chapter. Instead of having two global parameters for each node, reflecting capability

to generate responses (α) and susceptibility to respond to other nodes’ actions (β),

we allow for independent parameters between every pair of nodes for selected topics.

We then define an edge’s importance as the expected ”influence” the followed node

can borrow from its follower on the other end of the edge, after a unit length of time,

with a single action.

Hence,underlying the model in this thesis is the idea that conversations, and

in particular the rate of directed activity, between accounts reveal their real-world

position and influence. The modeling frameworks of the two chapters are illustrated

on a closely knit community, namely that of the members of the United States Senate,

the upper legislative house in the bicameral legislative body for the United States.

Two senators are democratically elected to represent each state for six year terms. We

further augment the set of Twitter accounts analyzed by including selected prominent

news organizations (e.g. Financial Times, Washington Post, CNN), as well as popular

bloggers (e.g. Nate Silver, Ezra Klein), the accounts of President Obama and the

White House, and two influential federal agencies (the US Army and the Federal

Reserve Board); for details refer to Section 3.6. Thus, we examine an ecosystem of

key participants that influence the political conversation and discourse of the country.

The retweeting and mentions interactions from our data are drawn as directed

edges in Figure 1.1. Given this sequence of network snapshots, we identify particular

4
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Figure 1.1: Weekly Twitter (mentions and retweet) network statistic time-series and
drawings. The nodes (Twitter accounts) contain democratic senators
(blue circles), republican senators (red squares), media (purple triangles),
and government agencies (green stars).

senators and news agencies that tend to elicit interactions from other accounts (i.e.,

have many incoming edges relative to how often they tweet), thus revealing their

influence on Twitter. Our results in Section 3.6 further indicate that the proposed

approach produces influence measures for the U.S. Senators that correspond more

closely with their legislative importance than purely network-based solutions based

on the PageRank algorithm.
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CHAPTER II

Measuring Influence in Twitter Ecosystems

using a Counting Process Modeling Framework

2.1 Background and Literature Review

There has been a great deal of work on ranking nodes in online social networks

by their influence motivated by fundamental questions in marketing, such as how

to identify the best set of users to create cascades or viral campaigns. Probst et al.

(2013), in an extensive survey article, find that the most common measures to quantify

the influence of a certain node are completely based on network topology and fail

to account for “further characteristics of influential users” or the actual dynamics

on the social network. They identify several papers that propose variations to the

core idea of measuring influence with network metrics of the followers network. An

illustration of the standard methodology with data similar to ours is Dubois and

Gaffney (2014), where Canadian political communities on Twitter are explored using

degree, clustering coefficient, and other network metrics calculated from the followers

network to identify “opinion leaders”, i.e., accounts that steer online conversations.

To create a more nuanced influence measure that addresses the challenges high-

lighted by Probst et al. (2013) and references therein, researchers have begun to utilize

the content of the communication like the underlying topic or theme of conversation,

6



which allows for more realistic models, since some individuals are authoritative or re-

ceptive to others only along certain topical dimensions. As such, a number of recent

works have extended the classical network topology measures to account for topic

of conversation. Haveliwala (2003) and Weng et al. (2010) take into account topic

similarity of the actual messages and the social link (followers network) structure via

modified PageRank algorithms that are applied to the followers network. Barbieri

et al. (2013) propose a similar idea for the related problem of identifying the optimal

choice of initial users for inducing cascades. The model we propose relates to these

previous works by also separating behavior according to the topic of conversation.

Our contribution lies in measuring influence with actual conversation dynamics by

combining the mentions and retweets along different topics with the followers link

structure.

Our approach extends recent work in the Statistics community, which uses count-

ing processes to combine conversation dynamics (mentions and retweets) with the

followers network structure. In this stream of literature, the hazard rate represents

a measure of influence and typically quantifies the effect of a message from one node

on each of its followers (Gomez-Rodriguez et al., 2013; Du et al., 2012). Thus, as

in (Fleming and Harrington, 2013), the interactions between nodes are modeled as

independent counting processes. The model posited in this work exhibits certain key

differences, as illustrated in Figure 2.1, because the hazard rate of a node to retweet

or mention is a function of the cumulative effect of tweets from its followers. The use

of interacting counting processes is an important modeling nuance, since it allows for

more realistic account behavior. For instance, accounts that are very popular and

receive many tweets on the same topic within a short period of time usually respond

once both out of convenience and to avoid spamming their followers. Thus, the model

we posit should result in more accurate influence measures for Twitter ecosystems

like the US Senate that we investigate in Section 7.
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Figure 2.1: Solid lines in panel (a) represent edges in the followers network. Panel
(b) illustrates the proposed model, where node d decides to retweet or
mention by the cumulative effect of the three tweets from nodes a, b, and c.
Panel (c) illustrates the standard counting process model on interactions
between nodes as introduced in Fleming and Harrington (2013). Instead
of considering the cumulative effect of the three tweets, node d makes a
decision on whether to respond (retweet or mention) three separate times.

The remainder of this chapter is organized as follows: in Section 2.2, we review

recent literature on measuring influence in online social networks. In Section 2.3, we

introduce the modeling framework and the proposed influence measure. Section 2.4

presents the algorithm to obtain the model parameter estimates, as well as establish

their statistical properties and those of the influence measure in Section 2.5. The

performance of the model is evaluated on synthetic data sets in Section 2.6, while the

US Senate application is presented in Section 2.7. Finally, some concluding remarks

are drawn in Section 2.8.

2.2 The model and the influence measure

We start our presentation by defining some key quantities for future developments.

Let G = (V, L) denote the followers network, where V corresponds to the set of nodes

of all the Twitter accounts under consideration and L = {Li,j, 1 ≤ i 6= j ≤ n} the

edge set between them and captures whether an account follows another account..

Note that the network is bidirectional in nature and not necessarily symmetric, since

account i may follow account j, but not vice versa. In principle, L can be dynamically

8



evolving, but in this work we consider L to be static and not changing over time. As

explained in the introductory section, in the Twitter platform, accounts (nodes) can

undertake the following three actions: post a new message, retweet a message posted

by another account that they follow and finally mention another account that they

follow. Further, the vast majority of messages posted, retweeted or mentioned have

key terms (with a # prefix) that identify the topic(s) that are discussed.

Next, we define the following two key counting processes. Let Nj(t, l) denote the

total number of retweets and mentions that account j generates on topic l by time

t and let Aj(t, l) denote the total number of posted messages by account j on topic

l by time t. Define αj to be a parameter that captures the long-term capability

of account j to generate responses by other accounts from the content posted, and

βj a parameter that captures the long term susceptibility of account j to respond

(retweet/mention) to the postings of the accounts it follows. In this thesis, we mainly

focus on Nj(t, l) since it reflects the interactions between accounts while Aj(t, l) is

frequently related to accounts’ own habit of posting. We model {Nj(t, l)}ni=1 as a set

of counting processes through their hazard rates, using a version of Cox (Cox , 1972)

proportional hazard model; specifically, the hazard rate λj,l(t) of process Nj(t, l) is

given by

λj,l(t) = λ0,l(t) exp

(∑
i 6=j

Lij(αi + βj) log(Mi(t, l) + 1)

)
, (2.1)

where

Mi(t, l) = (Ni(t, l) + Ai(t, l))I(Ni(t, l) + Ai(t, l) ≤ F ) + F · I(Ni(t, l) + Ai(t, l) > F ).

Aj(t, l) + Nj(t, l) is the total number of posting, retweets and mentions for account

j on topic l by time t. And we consider the effect of seeing actions from account i

can get saturated when the total number of actions reaches the constrain, F . We

assume that the parameters αi, βi ∈ (−∞,∞), since accounts and their users may be
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positively or negatively inclined towards other accounts, as well as being more keen in

joining specific conversations or passively retweeting messages from favorite accounts.

The nonparametric baseline component λ0,l(t) is time varying. In general, we would

expect this baseline to be small for large times t, since topics in social media platforms

have a high churn rate; they become ”hot” and generate a lot of action over short time

scales and after awhile it stops being discussed (Kwak et al., 2010). The model posits

that account j interacts with other accounts at a baseline level λ0,l(t), modulated by

its ability to generate responses by accounts in its followers network, as well as its

own susceptibility to respond to accounts it follows postings and rebroadcasting of

messages. Note that we model the retweet-mention process Nj(t, l), since it reflects

interactions between nodes and use the total activity process Mj(t, l) as a covariate.

To complete the modeling framework, denote the set of topics in the data as

{1, . . . ,Γ}. Further, let T lj =
{
T lj,1, . . . , T

l
j,nlj

}
, t = 1, · · · , nlj, denote the set of time

points that account j took action (post, retweet, mention) on topic l, until our end of

observation time point t0. Finally, for identification purposes, we require one member

of the parameter vector Ω = (α1, α2, . . . , αn, β1, . . . , βn) to be set to a fixed value, and

without loss of generality we set α1 = 0. Following, Andersen and Gill (1982), we

employ a partial-likelihood function to obtain estimates of Ω. Specifically, we treat

the baseline λ0,l(t) as a nuisance parameter and decomposing the full-likelihood to

obtain

PL(t) =
∏

1≤l≤Γ

 ∏
1≤j≤n

∏
1≤k≤nlj ,T lj,k≤t

λj(T
l
j,k)∑

1≤i≤n λi(T
l
j,k)


Plugging the exact form of the hazard rate from (2.1) into the partial-likelihood

function (PL), we get:

PL(t) =
∏

1≤l≤Γ

 ∏
1≤j≤n

∏
1≤k≤nj ,T lj,k≤t

exp
(∑

i 6=j Lij(αi + βj) log(Mi(T
l
j,k, l) + 1)

)
∑

1≤i≤n exp
(∑

u6=i Lui(αu + βi) log(Mu(T lj,k, l) + 1)
)


(2.2)
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2.2.1 The Influence Measure

Leveraging the structure of the model, we propose to measure an account’s (node)

influence as the total hazard rate change it will bring to its followers. Specifically,

for an account j its relative hazard rate (ignoring the baseline) at time t is given by:

Hj = exp
(∑

k 6=j log(Mk(t, l) + 1)Lkj(αk + βj)
)

. Further, the contribution of node i

is H
(i)
j = exp (log(Mi(t, l) + 1)Lij(αi + βj)). Then, after some algebra we obtain that

the total hazard rate change i brings to its followers can be written as:

TH(i) =
∑
j 6=i

Lij · exp (log(Mi(t, l) + 1)(αi + βj)) . (2.3)

Since Mi(t, l) is a random value, we approximate it by its observed average value,

M̄i, calculated from the data over all topics and time points. Hence, the influence

measure becomes

˜TH
(i)

=
∑
j 6=i

Lij · exp
(
log(M̄i + 1)(αi + βj)

)
. (2.4)

Finally, we express it in a log-scale, so as to linearize the scale and make it compatible

with the range of values of the response and susceptibility parameters α and β:

Ξ(i) = log

[∑
j 6=i

Lij · exp
(
log(M̄i + 1)(αi + βj)

)]
. (2.5)

In real application, we estimate Ξ(i) by using the estimated α̂i and β̂j values.
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2.3 Computation and Inference

Next, we present a Newton-type algorithm for computing the parameter estimates

Ω. The logarithm of the partial likelihood function (3.3) is given by

LL(t) = log(PL(t))

=
∑

1≤l≤Γ

 ∑
1≤j≤n

∑
1≤k≤nlj ,T lj,k≤t

∑
i 6=j

Lij(αi + βj) log(Mi(T
l
j,k, l) + 1)

−
∑

1≤j≤n

∑
1≤k≤nlj ,T lj,k≤t

log

[ ∑
1≤i≤n

exp

(∑
u6=i

Lui(αu + βi) log(Mu(T
l
j,k, l) + 1)

)]
(2.6)

The objective function corresponds to LL(t0), which considers all events k in its

equation (3.11). For the sake of notation simplicity, we will use LL to represent LL(t0)

in the rest of the paper. Due to its smoothness, we employ Newton’s algorithm that

uses the gradient and the Hessian of LL. The detailed expressions for the gradient

vector G ≡ ∇ΩLL and the Hessian H ≡ ∇Ω∇Ω(LL) are given in the Appendix.

Algorithm 1 Estimating the parameters by Newton’s algorithm

1: Initialize the vector Ω value by α1 = . . . = αn = β1 . . . = βn = 0
2: Define s as a positive thresholding constant for the minimum step size
3: while t > s do
4: Calculate G by using (2.11) and (2.12)
5: Calculate H by using (2.13) to (2.18)
6: Find the optimum positive τ value such that Ω − τ ·H−1G will maximize the

log-partial-likelihood (3.11)
7: Update Ω← Ω− τ ·H−1G.
8: In the updated Ω, set α1 = 0.
9: end while

10: return Ω

To speed up calculations, we take advantage of the structure of the problem, as

explained in detail in the Appendix.

The steps of the optimization are given in Algorithm 1. As stated in the algorithm,
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s is a positive constant to judge the convergence of the the Newton’s algorithm. The

computational complexity of this algorithm is dominated by the computation of H.

Denote by mn = max1≤j≤n{nj}. Based on (2.11) and (2.12), it costs O(Γnmn)

operations to calculate an entry of G. Further, since G is of dimension 2n, it takes

O(Γn2mn) to obtain the entire G vector. Analogously, based on (2.13) to (2.18), it

costs O(Γnmn) operations to calculate an entry of H, if proper book-keeping is used

on the results obtained for the gradient G. Further, since H is of dimension n2, it takes

O(Γn3mn) to obtain the entire H matrix. Hence, the overall time complexity for each

iteration of the algorithm is of the order O(max{Γn3mn}). The time complexity for

the whole algorithm is then O(max{Γn3mnR}), where R is the number of repetitions

needed for the algorithm to converge, which depends on the threshold s. Empirically,

with s = 10−3, in our simulations in Section 6 and real data analysis in Section 7, we

found the algorithm generally converges in no more than 10 repetitions.

2.4 Properties of the Ω̂ estimates

Next, we establish that the estimator Ω̂ which maximizes (3.11) will converge to

the true parameter Ω in probability under certain regularity conditions.

Theorem 1. Conditions:

A. (Bounded hazard rate) C0 ≤ λ0,l(t) ≤ C1 for 0 ≤ t ≤ t0 1 ≤ l ≤ Γ,

B. (Bounded parameters) max1≤i,j≤n{|αi|, |βj|} ≤ C2,

C. (Limited posting frequencies)

P (Aj(t+ h, l)− Aj(t, l) ≥ 1) ≤ C3 · h,

P (Nj(t+ h, l)−Nj(t, l) ≥ 1) ≤ C3 · h,
(2.7)

when t, h ≥ 0, t+ h ≤ t0.

D. (Positive definite limit of Hessian) Let Ω′ be any choosable parameter vector
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satisfying (B). For large enough Γ and some C4, we have the holding condition to

hold on the smallest eigenvalue of −∇Ω′∇Ω′LT (Ω′, t), at Ω′ = Ω, t = t0,

P (λmin (−∇Ω′∇Ω′LT (Ω′, t)) |Ω′=Ω,t=t0 > C4)→ 1, as Γ→∞,

where

LT (Ω, t) ≡ Γ−1

−
Γ∑
l=1

λ0,l(u) log

∑
j

exp

∑
i 6=j

Lij(α
′
i + β′j) log(Mi(t, l) + 1)


·

 n∑
j=1

exp

 ∑
1≤i≤n,i6=j

Lij(αi + βj) log(Mi(t, l) + 1)


(2.8)

In the four Conditions A, B, C and D above, C0, C1, C2, C3 and C4 are all positive

constants. Under these conditions, we will have:

Ω̂→P Ω as Γ→∞.

The detailed proof is given in Section 2.8.4.

When we have some information on the boundaries of the baseline hazard rate

and parameter values, Condition A and B of Theorem 1 can be straight forwardly

verified. We have the following Lemma 1 to show one example of counting processes

in which Condition C naturally holds. It is however quite difficult to derive conditions

under which Condition D will hold. As shown in Section 6, we propose to verify it

empirically.

Lemma 1 When both Aj(t, l) and Nj(t, l) are both poisson processes and the

hazard rate of Aj(t, l) is smaller than a constant K, Condition C in Theorem 1 is

satisfied.

The detailed proof is also presented in Section 2.8.3.
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Based on Theorem 1, by leveraging the properties of continuous functions, we can

establish the consistency of the proposed influence measure.

Proposition 1. Let Ξ(t) = (Ξ1(t), · · · ,Ξn(t)) denote the n-dimensional vector

of influence measures at time t. Further, denote by Ξ̂(t) = (Ξ̂1(t), · · · , Ξ̂n(t)) their

empirical estimates. Under the conditions of Theorem 1, we have that

∥∥∥Ξ̂(t)− Ξ(t)
∥∥∥→P 0 (2.9)

for any t ≥ 0.

Based on Theorem 1, the proof of the proposition is straightforward, since each

element of the vector Ξ̂ is a continuous function of Ω̂.

2.5 Performance evaluation

In this section, we evaluate the proposed model and influence measure on synthetic

data. We start by outlining the data generation mechanism.

Step 1: Building the followers network L.

The tasks employed for step 1 are presented next.

• First, for each node i, generate K1(i) from a uniform distribution on the integers

{1, . . . , K}, where K = b∗n/2c and b∗·c is the floor function that returns the

maximum integer not larger than the value inside.

• Generate F1(i) for node i by randomly sampling K1(i) users from {1, . . . , n}\{i}

. If k ∈ F1(i), let Lik = 1, 1 ≤ i ≤ n.

• For each node j, sample K2(j) uniformly from the set {1, . . . , K}. Generate

F2(i) for node j by randomly sampling K2(j) users from {1, . . . , n}\{j} . If

k ∈ F2(j), let Lkj = 1, 1 ≤ j ≤ n.
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At the end of this procedure, every node in the network has at least one follower and

at least an account that it follows.

Step 2. Generate the post, retweets and mentions sequences.

Since the baseline hazard rate λ0,l(t) always gets canceled out within the partial-

likelihood function (3.3), we select λ0,l(t) as λ0,l(t) = a, whenever 0 ≤ t ≤ t0 and

λ0,l(t) = 0 when t > t0, where a is a small positive constant.

We then generate actions on this network with Algorithm 2 below for each topic

l ∈ Γ1 or Γ2. In this algorithm, we first let each node send out a number of tweets with

distribution Binomial(J, p) at t = 0. Then we generate the retweets and mentions in

the standard survival analysis way, by using the hazard rate (2.1), as in the algorithm

below.

Algorithm 2 Generate Group A actions

1: Initialize Indicator which is the sequence to record the nodes that have mentioned
or retweeted as an empty sequence.

2: Initial t=0. Let each node has a tweet with probability p.
3: Let each node send out tweets from Binomial(J, p).
4: while t < t0 (stopping time for all topics) do
5: Generate survival time for each node with its hazard rate (2.1)
6: Find node i with the shortest time ts.
7: if t+ ts < t0 then
8: Update t to be t+ts. Record the node that has done this retweet or mention.
9: end if

10: if t+ ts > t0 then
11: Break
12: end if
13: end while
14: return Indicator

We first illustrate the performance of the Newton estimation algorithm, on a

random network of varying size. We set the parameter a = 0.5 for the baseline

hazard rate and choose a time horizon of t0 = 7, to emulate a week’s worth of data.

We also select the parameters Ω uniformly at random in the interval [−0.3, 0.3].

Due to the bounded baseline hazard rate and simulated parameters, and since

the retweets and mentions are generated as Poisson, Condition A, B, C of Theo-
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rem 1 have been satisfied. Then we empirically ”check” Condition D. With a large

Γ = 1000, network size n = 10, 50, we repeated Step 1 and 2 for 20 times to simulate

the network and actions. In each repetition, the square root of the smallest eigen-

value of λmin (−Γ∇Ω′∇Ω′LT (Ω′, t)) |Ω′=Ω,t=t0 is computed. The results are plotted in

Figure 2.2.

Figure 2.2: Diagnostics for Condition D with the simulated data:
[λmin (−Γ∇Ω′∇Ω′LT (Ω′, t)) |Ω′=Ω,t=t0 ]1/2 at Γ = 1000, n = 10 (left)
and n = 50 (right). Due to large variations, the square root of the
smallest eigenvalues is shown for better visualization.

In the plot, it can be seen that smallest eigenvalues of

[λmin (−Γ∇Ω′∇Ω′LT (Ω′, t)) |Ω′=Ω,t=t0 ]
1/2

are generally large and greater than 0.5.

Then as we have verified all conditions are satisfied with network sizes n = 10, 50

and Γ = 1000, we plot in Figure 2.3 the mean squared error of the parameter and

influence estimates ‖Ω̂−Ω‖√
2n−1

and ‖Ξ̂−Ξ‖√
n

to check the performance of our estimation al-

gorithm, where ‖ · ‖ corresponds to the `2 norm of a vector. The results are based

on 20 replicates of the underlying followers networks, as well as the actions (postings,

retweets and mentions) data.

It can be seen that the quality of the estimates improves as a function of the

number Γ of topics discussed, while it deteriorates as a function of the number of
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Figure 2.3: Mean squared error of the model parameter estimates Ω (left) and Ξ
(right).

nodes in the followers network L. Another way to look at the quality of the estimates,

is to examine the relative error of the parameter and influence estimates, given by

‖Ω̂−Ω‖
‖Ω‖ and ‖Ξ̂−Ξ‖

‖Ξ‖ .

It can be seen in the following Figure that especially the influence measure which

is of prime interest in applications, exhibits a small (less than 10%) relative error

rate.

Figure 2.4: Mean relative error of the model parameter estimates Ω (left) and Ξ
(right).

Next, we use a size 10 network, specially constructed to gain insight into the

workings of the proposed influence measure. The settings for the data generation are

as follows: Γ = 500, α1 = 0, α2 = −2, α3 = · · · = α10 = 0.2 and β1 = · · · = β10 = 0.

Finally, the topology of the followers networks is given in Figure 2.5.
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Figure 2.5: Artificial topology of a plot with ”unpopular” node.

Since α2 = −2, node 2 is an ”unpopular” one and hence can hardly generate any

retweets and mentions of its postings. On the other hand, all nodes have approx-

imately an equal number of followers, which suggests that their ranking according

to the PageRank metric (or many other popular ones based on that network like

Haveliwala (2003) and Weng et al. (2010)) will be approximately similar. The results

based on a single realization of the user actions data generation process is shown in

Figure 2.6. It can be seen that relying on the followers network structure gives a false

impression, while the proposed influence measure that incorporates the actions of the

accounts provides a more insightful picture.

2.6 Identifying Influential Senators

Tweets and follower lists are collected using Twitter’s API and consist of approx-

imately 200,000 tweets and 4671 follower links within the set of 120 accounts from

April 2009 to July 2014. The retweeting and mentions interactions are drawn in Fig-
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Figure 2.6: Proposed influence VS PageRank Influence, in a plot with ”unpopular”
node.

ure 1.1, where accounts are registered to 55 Democratic politicians (U.S. Senators and

the President of the U.S.), 46 Republican Senators, 2 government organizations (U.S.

Army and the Federal Reserve Board), and 16 media outlets, including newspapers

(Financial Times, Washington Post, New York Times, Huffington Post), television

networks (MSNBC, Fox News, CNN, CSPAN), reporters (Nate Silver (538), Ezra

Klein) and television hosts (Bill O’Reilly, Sean Hannity). The figure shows some pe-

riods of increased activity, as in the months surrounding the inauguration of President

Obama (January 2013), the debate on raising the debt ceiling of the US government

and its temporary suspension around April 2013 and the summer of 2014 (soccer

World Cup). Note that the sudden increase during the summer of 2014 may be an

artifact of rate limiting data acquisition. Specifically, Twitter’s API allows access

to only the past 3000 tweets for any account. As a consequence, for extremely high

volume users, like newspapers and television networks, our data traces their Twitter

usage for months. For the least active users in our data, 3000 tweets dates back

multiple years.

An inspection of actual tweets in Table 2.1 shows, consistent with Golbeck et al.

(2010), that senators tend to retweet and mention as a means of self or legislative

promotion. In fact, we see a number of references to legislative activity, such as
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calls for gun reform, carbon emissions, and references to actual bills on overtime pay,

domestic violence protections, among others. Senators often cite news coverage by

retweeting or mentioning news media accounts that support their political agenda,

which would suggest that the media outlets collectively have enormous influence. This

also suggests that Twitter is utilized by senators as part of a larger strategy to build

and coalesce public support in order to pass bills through congress.

To test these hypotheses and also rigorously compare the proposed influence mea-

sure to PageRank applied to the followers networks (which constitutes the backbone

of many ranking algorithms of Twitter accounts), we perform a regression analysis

to assess how well each measure explains legislative leadership in Congress. Our re-

sponse variable is the leadership score, published by www.govtrack.us (GovTrack.us ,

2014). GovTrack creates the leadership score by applying the PageRank algorithm to

the adjacency matrix of bill cosponsorship data. Thus, the leadership score for each

senator is a number between 0 and 1, where higher values denote greater legislative

leadership. The regression model we are interested in is

Leadership = βInfluence + ΘControls, (2.10)

where Influence contains the proposed measure and/or PageRank, and Controls in-

cludes party affiliation, gender, age, and number of years in the senate. Seniority

endows a number of benefits including preferential assignment to committees. Thus,

these control variables likely associate strongly with legislative leadership.

To estimate the proposed influence measure, the data is organized into weekly

intervals after using the follow-follower relations to construct the adjacency matrix

L. In Twitter it is common to use “hashtags” or the # symbol followed by a user-

specified category to identify context, which, as mentioned in Section 1 can be used

as an indicator of different conversations. However, we find that senators do not
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Table 2.1: Actual tweets mentioning or retweeting the most influential accounts over
from May 15, 2014 to July 3, 2014.

Date Account Tweet

05/19/2014 Menendez “.@SenBlumenthal & in #NJ the avg student loan
debt is over $29K. It’s unacceptable! #GameofLoans
http://t.co/hUJMSeJbfd”

05/23/2014 Cornyn “RT @nytimes: Former Defense Secretary
Gates Is Elected President of the Boy Scouts
http://t.co/C7STUSVIP3”

05/27/2104 Blumenthal “RT @msnbc: @SenBlumenthal calls for reviving gun
reform debate after mass shooting near Santa Barbara:
http://t.co/7sqtf1IAFy”

06/02/2014 Markey “RT @washingtonpost: A huge majority of Amer-
icans support regulating carbon from power plants
http://t.co/lj6ieL5D1Y http://t.co/2CA63hTqmm”

06/17/2014 Markey “Proud to intro new bill w @SenBlumenthal 2 pro-
tect domestic violence victims from #gunviolence
http://t.co/MsgK40oLiT http://t.co/ynEHrEbh2x”

06/20/2014 Blumenthal “Proud to stand w/ @CoryBooker & others on enhancing
rules to reduce truck driver fatigue. Their safety & safety
of others is paramount. -RB”

06/20/2014 Markey “Proud to support our workers and this commonsense
bill w @SenatorHarkin Keeping Track: Overtime Pay,
via @nytimes http://t.co/TnAS96Hro5”

06/25/2014 Durbin “Watch now: @OfficialCBC @HispanicCaucus @CAPAC
@USProgressives @SenatorCardin on racial profiling
#MoreThanAProfile http://t.co/ZX0Eu65dgi

06/25/2014 Cardin “RT @TheTRCP: Thank you @SenatorCardin for stand-
ing with sportsmen today for #CleanWater #protect-
cleanwater”

06/27/2014 Markey “Thanks @alfranken @CoryBooker @amyklobuchar
@SenBlumenthal for joining me in support of community
#broadband http://t.co/O8Px2MzrCg”

06/27/2014 Menendez “Took my first #selfie at #NJs @ALJBS! Hope
@CoryBooker is proud of his NJ Sen colleague.
http://t.co/FrEJonUy9d

06/28/2014 Booker “Thanks Adam RT @AIsaacs7 Props to @CoryBooker
and @SenRandPaul for their bipartisanship in introduc-
ing their amendment #MedicalMarijuana”
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utilize hashtags often. To overcome this challenge, we follow previous works on Twit-

ter (Hong and Davison, 2010; Ramage et al., 2010) by applying probabilistic topic

modeling, which was first introduced in Blei et al. (2003). Extensive work in com-

puter science and applied statistics has led to fast algorithms capable of analyzing

extremely big text archives. Due to space constraints, for statistical and algorithmic

details on the topic model, see Blei (2012); Blei and Lafferty (2007) and references

therein.

Topic modeling applied to the data results in a soft clustering of tweets into 10

groups (topics), which is appropriate since a single tweet could touch on multiple

issues. Thus, tweets are assigned to topics that had at least 0.25 probability. Given

the fast moving landscape of social media, based on the original clustered 10 groups,

new topics are assigned each week, leading to 2770 topics in total for the entire data

set. After preprocessing, we apply Algorithm 3 to estimate the α and β parameters for

every account using all data. The final influence measure is constructed by computing

the influence measure vector Ξ̂ over different time intervals to study how influence

evolved; i.e. Ξ̂ was computed by using the average of Mi(Tm, l) over all time points

in Tm and topics, where Tm denotes the m−th time interval of interest.

The first time interval T1 we investigate is May 15, 2014 - July 3, 2014, which

captures the most active period in our data and also represents a period when rate

limiting is not a concern, i.e., the data for even high volume users extends this far.

During this time several major events occurred worldwide, including the soccer World

Cup, debate on immigration reform, and the Islamic State in Iraq and the Levant

(also known as the ISIS or ISIL) began an offensive in northern Iraq. Table 2.2 shows

the top ten most influential accounts under the proposed method and PageRank

(Page et al., 1999) calculated from the followers network. Both methods estimate

that the Financial Times is the most influential Twitter account, and in general find

that the media has an enormous influence that facilitates online conversation between
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Figure 2.7: Weekly Twitter retweet and mention network drawings for the 2014 sum-
mer. Top ten most influential accounts are labeled and node sizes are
proportional to the estimated influence under the proposed model. The
nodes (Twitter accounts) contain democratic senators (blue circles), re-
publican senators (red squares), media (purple triangles), and government
agencies (green stars).

politicians. We see from Figure 2.7 that these top accounts were actively retweeted

and mentioned throughout this period.

Next, we estimate the regression model in Equation 3.15. We note that Senators

Baucus, Kerry, Cowan, Lautenberg, and Chiesa are scored by govtrack.us, but are

not in our analysis. Max Baucus and John Kerry are left out, because they vacated

their Senate seats to become, respectively, Ambassador to China and U.S. Secretary

of State. Mo Cowan succeeded Kerry and was senator from February 1, 2013 to

July 16, 2013 until a special election could be held. Cowan chose not to run in the

election. Likewise, due to the death of Senator Frank Lautenberg, Jeffrey Chiesa was

appointed by Governor Chris Christie to be the junior senator from New Jersey from
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Table 2.2: Top ten rankings according to the proposed model and PageRank from
May 15, 2014 - July 3, 2014.

Rank Proposed Measure PageRank

1 Financial Times Financial Times
2 Washington Post U.S. Army
3 NYTimes CNN
4 MSNBC Barack Obama
5 Ezra Klein CSPAN
6 Fox News New York Times
7 Cory Booker Washington Post
8 Ben Cardin Cory Booker
9 Nate Silver (538) MSNBC

10 Richard Blumenthal Wall Street Journal

Table 2.3: Estimated R-squared values for different regression models, where the pro-
posed measure and/or PageRank is included in the set of independent
variables and the influence is computed for the entire data sample. We
consistently find that the proposed measure is a better indicator of legisla-
tive importance.

Response Proposed Measure PageRank R2

V 0.311
leadership V 0.276

V V 0.311
V 0.114

log( leadership
1−leadership

) V 0.098

V V 0.114
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Table 2.4: Regression estimates, where the response variable is the raw leadership
scores from GovTrack.us and influence is computed for the entire data
sample. R2 = 0.311; F = 8.228 on 5 and 92 DF (p-value: 0.000)
Variable Estimate Std. Error t value P (> |t|)
Intercept -0.086 0.232 -0.368 0.714
Proposed Influence 0.062 0.028 2.241 0.027
Republican -0.154 0.039 -3.945 0.000
Age 0.002 0.003 0.923 0.359
Years in Senate 0.007 0.003 2.518 0.014
Male 0.020 0.050 0.395 0.694

June 6, 2013 to October 31, 2013. He declined to run in the special election and thus,

is also not included in the analysis.

Since the leadership score provided by GovTrack are between 0 and 1, we es-

timate two models. One model uses the raw leadership scores, and another uses

log( leadership
1−leadership

) for the response variable. In both cases, as shown in Table 2.3, we

consistently find that the proposed influence measure explains more variation in lead-

ership and when both the proposed and PageRank influence measures are included

as independent variables, PageRank does not provide additional explanatory power.

Tables 2.4 and 2.5 show a significant positive coefficient for the proposed influence

measure, meaning that senators who are more influential in Twitter by successfully

steering conversation of their colleagues onto particular topics, tend to be more in-

fluential in real life in passing legislation. These results are consistent across differ-

ent time intervals. For instance, in the Appendix we present similar results, where

influence is calculated from January 1, 2013 to March 1, 2013 corresponding to se-

questration and also from November 1, 2012 to January 31, 2013 corresponding to

the president’s reelection and subsequent inauguration.
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Table 2.5: Regression estimates, where the response variable is log( leadership
1−leadership

), where
leaderhip is from GovTrack.us and influence is computed for the entire data
sample. R2 = 0.114; F = 2.334 on 5 and 92 DF (p-value: 0.048)
Variable Estimate Std. Error t value P (> |t|)
Intercept -3.590 2.604 -1.379 0.171
Proposed Influence 0.437 0.308 1.416 0.160
Republican -1.112 0.438 -2.538 0.013
Age 0.009 0.029 0.323 0.747
Years in Senate 0.034 0.032 1.063 0.290
Male 0.470 0.563 0.834 0.407

2.7 Discussion

The goal in this paper was to characterize the influence of users in a large scale

social media platform when given information about the detailed actions users take

on it. Our comprehensive analysis of the ecosystem comprising of US Senators and

influential government agency and media related accounts demonstrated that conver-

sations, and in particular the rate of directed activity, between accounts are correlated

with their real-world position and influence. We expect similar conclusions to hold

broadly for other types of directed interaction data when the nodes form a clearly

defined ecosystem or closely knit social group/community.

The proposed approach only utilizes network information (e.g. followers network),

plus time stamps of actions (e.g. retweets and mentions), thus allowing to process a

large volume of data. However, it does not consider the tone of the message (pos-

itive, negative or neutral), a topic addressed in Taddy (2013), where the goal is to

understand how messages related to a specific topic are perceived by other users.

Since in that approach the message content needs to be analyzed - a computationally

demanding task - Taddy (2013) develops efficient sampling designs for that task. It

is of interest though to combine such sampling ideas with the current approach in

order to be able to address user influence issues in very large ecosystems comprising

of millions of users.
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The modeling and statistical inference issues, associated with large scale data

obtained from these social media platforms are different from those in the related

literature on network community detection (Kolaczyk , 2009; Fienberg , 2012; Salter-

Townshend et al., 2012), where the goal is to identify relatively dense groups of

nodes (users), even though the underlying data (observed adjacency matrices) are

the same. Relative to other recent work on modeling directed networks, as in Perry

and Wolfe (2013), our study has important modeling differences motivated by the

online social media platform domain. For instance, our approach incorporates the

fundamental differences between actions like retweeting, mentioning, and posting. As

a consequence, our final influence measure, which sums all possible influences from

the social network, is able to outperform traditional topology driven approaches like

PageRank (Page et al., 1999). Perhaps most importantly, given the massive volumes

of data generated by platforms like Twitter, we presented a fast estimation algorithm

and established statistical properties for the model estimates and those of the final

influence measure.
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2.8 Estimation Algorithm and Proofs

2.8.1 Expressions for the gradient vector and Hessian matrix of the LL

function

Some rather straightforward algebra yields the following expressions for the ele-

ments of the gradient vector G ≡ ∇ΩLL:

∂LL

∂αi
=
∑

1≤l≤Γ

 ∑
1≤j≤n,j 6=i

∑
1≤k≤nlj

Lij log(Mi(T
l
j,k, l) + 1)

−
∑

1≤j≤n

∑
1≤k≤nlj

∑
v 6=i Liv log(Mi(T

l
j,k, l) + 1)∑

1≤v≤n exp
(∑

u6=v Luv(αu + βv) log(Mu(T lj,k, l) + 1)
)

· exp

(∑
u6=v

Luv(αu + βv) log(Mu(T
l
j,k, l) + 1)

)}
(2.11)

for 2 ≤ i ≤ n, and

∂LL

∂βj
=
∑

1≤l≤Γ

 ∑
1≤k≤nlj

∑
i 6=j

LijMi(T
l
j,k, l)

−
∑

1≤s≤n

∑
1≤k≤nls

(∑
u6=j Luj log(Mu(T

l
s,k, l) + 1)

)
∑

1≤v≤n exp
(∑

u6=v Luv(αu + βv) log(Mu(T ls,k, l) + 1)
)

· exp

(∑
u6=j

Luj(αu + βj) log(Mu(T
l
s,k, l) + 1)

)}
(2.12)

for 1 ≤ j ≤ n.

Next, we obtain the necessary expressions for the Hessian matrix H(LL). We

start by computing the sub-matrix of H that includes the second partial derivatives
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of LL with respect to the α parameters and obtain

∂2LL

∂α2
i

=

∑
1≤l≤Γ

− ∑
1≤j≤n

∑
1≤k≤nlj

∑
v 6=i Liv log(M2

i (T lj,k, l) + 1)∑
1≤v≤n exp

(∑
u6=v Luv(αu + βv) log(Mu(T lj,k, l) + 1)

)
· exp

(∑
u6=v

Luv(T
l
j,k)(αu + βv) log(Mu(T

l
j,k, l) + 1)

)

+
∑

1≤j≤n

∑
1≤k≤nlj

[∑
v 6=i Liv log(Mi(T

l
j,k, l) + 1) exp

(∑
u6=v Luv(αu + βv) log(Mu(T

l
j,k, l) + 1)

)]2

[∑
1≤v≤n exp

(∑
u6=v Luv(αu + βv) log(Mu(T lj,k, l) + 1)

)]2


(2.13)

When i 6= q, we similarly have

∂2LL

∂αi∂αq
=
∑

1≤l≤Γ

− ∑
1≤j≤n

∑
1≤k≤nlj

∑
v 6=i,q Liv log(Mi(T

l
j,k, l) + 1)Lqv log(Mq(T

l
j,k, l) + 1)∑

1≤v≤n exp
(∑

u6=v Luv(αu + βv) log(Mu(T lj,k, l) + 1)
)

· exp

(∑
u6=v

Luv(αu + βv) log(Mu(T
l
j,k, l) + 1)

)

+
∑

1≤j≤n

∑
1≤k≤nlj

∑
v 6=i Liv log(Mi(T

l
j,k, l) + 1)[∑

1≤v≤n exp
(∑

u6=v Luv(αu + βv) log(Mu(T lj,k, l) + 1)
)]2

· exp

(∑
u6=v

Luv(αu + βv) log(Mu(T
l
j,k, l) + 1)

)

·

[∑
v 6=q

Lqv log(Mq(T
l
j,k, l) + 1) exp

(∑
u6=v

Luv(αu + βv) log(Mu(T
l
j,k, l) + 1)

)]

(2.14)

Next, we obtain the sub-matrix of H that includes the second partial derivatives of
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LL with respect to the β parameters and get

∂2LL

∂β2
j

=
∑

1≤l≤Γ
∑

1≤s≤n

∑
1≤k≤nls

[(∑
u6=j Luj log(Mu(T

l
s,k, l) + 1)

)
exp

(∑
u6=j Luj(αu + βj) log(Mu(T

l
s,k, l) + 1)

)]2

[∑
1≤v≤n exp

(∑
u6=v Luv(αu + βv) log(Nu(T ls,k, l) + 1)

)]2

−
∑

1≤s≤n

∑
1≤k≤nls

(∑
u6=j Luj log(Mu(T

l
s,k, l) + 1)

)2

exp
(∑

u6=j Luj(αu + βj) log(Mu(T
l
s,k, l) + 1)

)
∑

1≤v≤n exp
(∑

u6=v Luv(αu + βv) log(Mu(T ls,k, l) + 1)
)


(2.15)

for 1 ≤ j ≤ n. When j 6= q, we can similarly have

∂2LL

∂βj∂βq
=
∑

1≤l≤Γ


∑

1≤s≤n

∑
1≤k≤nls

(∑
u6=j Luj log(Mu(T

l
s,k, l) + 1)

)
[∑

1≤v≤n exp
(∑

u6=v Luv(αu + βv) log(Mu(T ls,k, l) + 1)
)]2

· exp

(∑
u6=j

Luj(αu + βj) log(Mu(T
l
s,k, l) + 1)

)

·

(∑
q 6=j

Luq log(Mu(T
l
s,k, l) + 1)

)
exp

(∑
u6=q

Luj(αu + βq) log(Mu(T
l
s,k, l) + 1)

)}
(2.16)

Finally, we provide expressions for the cross-partials

∂2LL

∂αi∂βi
=
∑

1≤l≤Γ


∑

1≤s≤n

∑
1≤k≤nls

(∑
u6=i Lui log(Mu(T

l
s,k, l) + 1)

)
[∑

1≤v≤n exp
(∑

u6=v Luv(αu + βv) log(Mu(T ls,k, l) + 1)
)]2

· exp

(∑
u6=i

Lui(αu + βi) log(Mu(T
l
s,k, l) + 1)

)

·
∑
v 6=i

Liv log(Mi(T
l
s,k, l) + 1) exp

(∑
u6=v

Luv(αu + βv) log(Mu(T
l
s,k, l) + 1)

)}
(2.17)

When i 6= j,
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∂2LL

∂αi∂βj
=
∑

1≤l≤Γ


∑

1≤s≤n

∑
1≤k≤nls

(∑
u6=j Luj log(Mu(T

l
s,k, l) + 1)

)
[∑

1≤v≤n exp
(∑

u6=v Luv(αu + βv) log(Mu(T ls,k, l) + 1)
)]2

· exp

(∑
u6=j

Luj(αu + βj) log(Mu(T
l
s,k, l) + 1)

)

·
∑
v 6=i

Liv log(Mi(T
l
s,k, l) + 1) exp

(∑
u6=v

Luv(αu + βv) log(Mu(T
l
s,k, l) + 1)

)

−
∑

1≤s≤n

∑
1≤k≤nls

(∑
u6=j Luj log(Mu(T

l
s,k, l) + 1)

)
Lij log(Mi(T

l
s,k, l) + 1)∑

1≤v≤n exp
(∑

u6=v Luv(αu + βv) log(Mu(T ls,k, l) + 1)
)

· exp

(∑
u6=j

Luj(αu + βj) log(Mu(T
l
s,k, l) + 1)

)}

(2.18)

2.8.2 Implementation Issues

As outlined above, the maximum likelihood estimator is obtained by Newton’s

algorithm and detailed expressions for the respective gradient and Hessian are given in

Section 9.1. However, the structure of the problem allows us to precompute and store

several quantities for repeated use, thus saving on computational time in practice.

Note that the data containing the actions are stored according to their time stamps.

We start by computing four groups of quantities introduced by an action, labeled

respectively by indices j, l, k and possibly some other parameters, where j indicates

the node that takes the activity, l is the topic label and k represents the relative

sequence number of the action, in all the actions that node j has taken under topic l.

First, we define

Ej,v,k,l = exp

(∑
u6=v

Luv(αu + βv) log(Mu(T
l
j,k, l) + 1)

)
.
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Then, we compute

SEj,k,l =
∑

1≤v≤n

Ej,v,k,l,

and

MEj,i,k,l =
∑
v 6=i

Liv log(Mi(T
l
j,k, l) + 1)Ej,v,k.

Also, we have

LMj,s,k,l =
∑
u6=j

Luj log(Mu(T
l
s,k, l) + 1).

Then, based on the precomputed components values, the elements of the gradient

vector G ≡ ∇ΩLL are obtained as follows:

∂LL

∂αi
=
∑

1≤l≤Γ

 ∑
1≤j≤n,j 6=i

∑
1≤k≤nlj

Lij log(Mi(T
l
j,k, l) + 1) −

∑
1≤j≤n

∑
1≤k≤nlj

MEj,i,k,l
SEj,k,l


for 2 ≤ i ≤ n, and

∂LL

∂βj
=
∑

1≤l≤Γ

 ∑
1≤k≤nlj

∑
i 6=j

LijMi(T
l
j,k, l) −

∑
1≤s≤n

∑
1≤k≤nls

LMj,s,k,lEj,s,k,l
SEs,k,l


for 1 ≤ j ≤ n.

Regarding the Hessian, based on the four precomputed groups of quantities, we

start by computing the sub-matrix of H that includes the second partial derivatives

of LL with respect to the α parameters. We get

∂2LL

∂α2
i

=
∑

1≤l≤Γ

− ∑
1≤j≤n

∑
1≤k≤nlj

∑
v 6=i Liv log(M2

i (T lj,k, l) + 1)Ej,v,k,l

SEj,k,l
+
∑

1≤j≤n

∑
1≤k≤nlj

(MEj,i,k,l)
2

(SEj,k,l)
2


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When i 6= q, we similarly have

∂2LL

∂αi∂αq
=
∑

1≤l≤Γ

− ∑
1≤j≤n

∑
1≤k≤nlj

∑
v 6=i,q Liv log(Mi(T

l
j,k, l) + 1)Lqv log(Mq(T

l
j,k, l) + 1)Ej,v,k,l

SEj,k,l

+
∑

1≤j≤n

∑
1≤k≤nlj

MEj,i,k,lMEj,q,k,l
(SEj,k,l)2


Next, we obtain the sub-matrix of H that includes the second partial derivatives of

LL with respect to the β parameters and get

∂2LL

∂β2
j

=
∑

1≤l≤Γ

 ∑
1≤s≤n

∑
1≤k≤nls

(LMj,s,k,lEj,s,k,l)
2

(SEs,k,l)2
−
∑

1≤s≤n

∑
1≤k≤nls

(LMj,s,k,l)
2Ej,s,k,l

SEs,k,l


for 1 ≤ j ≤ n. When j 6= q, we can similarly have

∂2LL

∂βj∂βq
=
∑

1≤l≤Γ

 ∑
1≤s≤n

∑
1≤k≤nls

LMs,i,k,l · Ej,s,k,l · LMq,s,k,l · Eq,s,k,l
(SEs,k,l)2


Finally, we provide expressions for the cross-partials

∂2LL

∂αi∂βi
=
∑

1≤l≤Γ

 ∑
1≤s≤n

∑
1≤k≤nls

LMj,s,k,l · Es,i,k,l ·MEj,i,k,l

(SEs,k,l)
2


When i 6= j,

∂2LL

∂αi∂βj
=
∑

1≤l≤Γ

 ∑
1≤s≤n

∑
1≤k≤nls

LMj,s,k,l · Es,j,k,l ·MEs,i,k,l

(SEs,k,l)
2

−
∑

1≤s≤n

∑
1≤k≤nls

LMj,s,k,l · Lij log(Mi(T
l
s,k, l) + 1) · Es,j,k,l

SEs,k,l


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2.8.3 Proof of Lemma 1

First, under the condition that Nj(t, l) is a Poisson Process, we have

P (Ni(t+ h, l)−Ni(t, l) = k) =
(µi(t, h, l))

k

k!
exp(−µi(t, h, l)),

where µi(t, h, l) =
∫ t+h
t

λi(u, l)du. Since

|λi(t, l)| =

∣∣∣∣∣λ0,l(t) exp

(∑
k,k 6=i

Lki(t)(α
′
i + β′j) log(Mi(t, l) + 1)

)∣∣∣∣∣ ≤ C1 exp (2nC2 log(F + 1)) ,

we have

µi(t, h, l) ≤ C1n exp (2nC2 log(F + 1))h.

Then,

P (Ni(t+ h, l)−Ni(t, l) ≥ 1) =
∞∑
k=1

(µi(t, h, l))
k

k!
exp(−µi(t, h, l))

= exp(−µi(t, h, l))µi(t, h, l)
∞∑
k=1

(µi(t, h, l))
k−1

k!

≤ exp(−µi(t, h, l))µi(t, h, l)
∞∑
k=1

(µi(t, h, l))
k−1

(k − 1)!
= µi(t, h, l)

≤ C1 exp (2nC2 log(F + 1))h.

Similarly, we can show

P (Ai(t+ h, l)− Ai(t, l) ≥ 1) ≤ Kh.

If we let C3 = max{K,C1 exp (2nC2 log(F + 1))}, Condition C in Theorem 1 has

been satisfied.
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2.8.4 Proof of Theorem 1

Before we start the actual proof, to simplify the proof of Theorem 1, we first define

some notations:

El(t,Ω
′) =

n∑
j=1

λ0,l(t) exp

(∑
i,i 6=j

Lij(t)(α
′
i + β′j) log(Mi(t, l) + 1)

)

Φ′j = (φ′1j, . . . , φ
′
nj) := (α′1 + β′j, . . . , α

′
n + β′j)

′

E
(1)
lj (t,Ω′) =

(
∂El(t,Ω

′)

∂φ′1j
, . . . ,

∂El(t,Ω
′)

∂φ′nj

)
E

(2)
lj (t,Ω′) =

(
∂2El(t,Ω

′)

∂φ′ijφ
′
kj

)
1≤i,k≤n

(2.19)

To prove Theorem 1, we also need the following two lemmas.

Lemma 2.When Conditions A, B, C of Theorem 1 hold, if we define

el(t,Ω
′) = E[El(t,Ω

′)] =
∑
j

λ0,l(t)E

[
exp

(∑
i,i 6=j

Lij(t)(α
′
i + β′j) log(Mi(t, l) + 1)

)]
,

we will have

sup
t∈[0,t0],|αi|≤C2,|βj |≤C2

Γ−1

∣∣∣∣∣
Γ∑
l=1

[El(t,Ω
′)− el(t,Ω′)]

∣∣∣∣∣→p 0. (2.20)

sup
t∈[0,t0],|αi|≤C2,|βj |≤C2

Γ−1

n∑
j=1

∥∥∥∥∥
Γ∑
l=1

[
E

(k)
lj (t,Ω′)− e(k)

lj (t,Ω′)
]∥∥∥∥∥
∞

→p 0. (2.21)

where k = 1, 2, ‖ · ‖∞ gives the largest absolute value of entries of a vector (matrix)

and e
(1)
j (t,Ω′) and e

(k)
j (t,Ω′) are defined by

e
(1)
lj (t,Ω′) =

(
∂el(t,Ω

′)

∂φ′1j
, . . . ,

∂el(t,Ω
′)

∂φ′nj

)
e

(2)
lj (t,Ω′) =

(
∂2el(t,Ω

′)

∂φ′ij∂φ
′
kj

)
1≤i,k≤n
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Lemma 3. When Conditions A, B, C of Theorem 1 hold, following the definitions

of el(t,Ω
′), e

(1)
lj (t,Ω′) and e

(2)
lj (t,Ω′) in Lemma 2, we have:

(1) el(t,Ω
′), e

(1)
lj (t,Ω′) and e

(2)
lj (t,Ω′) are continuous function of Ω′ and t. Since

Ω′ and t can only be selected from compact sets, they are automatically uniform

continuous.

(2) el(t,Ω
′), e

(1)
lj (t,Ω′) and e

(2)
lj (t,Ω′) are bounded on the selectable sets of αi, β

′
j ∈

[−C2, C2] and t ∈ [0, t0].

(3) el(t,Ω
′) is bounded away from zero.

Proof of Lemma 2

First, we focus on the proof of (2.20). Given ε0 > 0, h > 0 since the choosable set

for Ω′, [−C2, C2]n and [0, t0] are all bounded compact, we can have [−C2, C2]n× [0, t0]

to be covered by a number of nε0,h open sets OSi ≡ {Ω′, t : ‖Ω′−Ωi‖∞ < ε0, |t− ti| <

h, 1 ≤ i ≤ nε0,h.

Then for any Ω′, t we can always find it to fall in a certain, say OSi. Now we can

have

sup
t∈[0,t0],|αi|≤C2,|βj |≤C2

Γ−1

∣∣∣∣∣
Γ∑
l=1

[El(t,Ω
′)− el(t,Ω′)]

∣∣∣∣∣
= max

1≤i≤nε
sup

(Ω′,t)∈OSi
Γ−1

∣∣∣∣∣
Γ∑
l=1

[El(t,Ω
′)− el(t,Ω′)]

∣∣∣∣∣
≤ max

1≤i≤nε

(
Γ−1

∣∣∣∣∣
Γ∑
l=1

[El(ti,Ωi)− el(ti,Ωi)]

∣∣∣∣∣+ sup
(Ω′,t)∈OSi

Γ−1

∣∣∣∣∣
Γ∑
l=1

[El(t,Ω
′)− El(ti,Ωi)]

∣∣∣∣∣
)

+ sup
(Ω′,t)∈OSi

Γ−1

∣∣∣∣∣
Γ∑
l=1

[el(t,Ω
′)− el(ti,Ωi)]

∣∣∣∣∣
The rest of the proof is organized as follows. In Step 1, we bound the first term in

the last inequality above. In Step 2 and 3, we try to find appropriate ε0 and h values

to bound the second term, respectively. The results from Step 2 and 3 are combined

together, and the third term is bounded in Step 4. In Step 5, we show (2.21).
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Step 1 First, we show that for each selectable Ω′, t, Γ−1
∣∣∣∑Γ

l=1 [El(t,Ω
′)− el(t,Ω′)]

∣∣∣ =

oP (1). Since λ0,l(t) < C1 and Mi(t, l) values are not larger than F , by looking at each

term in Ej(t,Ω
′), we have

sup
1≤l≤Γ,0≤t≤t0

E

[
λ0,l(t) exp

( ∑
1≤i≤n,i 6=j

(αi + βj) log(Mi(t, l) + 1)

)]2

≤ (C1)2E

[
exp

(
2

∑
1≤i≤n,i 6=j

(αi + βj) log(Mi(t, l) + 1)

)]

≤ (C1)2E

[
exp

(
4C2

∑
1≤i≤n,i6=j

log(F + 1)

)]

≤ (C1)2 exp (4nC2 log(F + 1))

Let C5 = (C1)2 exp (4nC2 log(F + 1)). Then,

Var [El(t,Ω
′)] = Var

[
n∑
j=1

λ0,l(t) exp

( ∑
1≤i≤n,i6=j

(αi + βj) log(Mi(t, l) + 1)

)]

≤ n
n∑
j=1

E

[
λ0,l(t) exp

( ∑
1≤i≤n,i6=j

(αi + βj) log(Mi(t, l) + 1)

)]2

< n2C5,

Now, due to the independency between topics, for any ε > 0,

P

(
Γ−1

∣∣∣∣∣
Γ∑
l=1

[El(t,Ω
′)− el(t,Ω′)]

∣∣∣∣∣ > ε

)
≤
∑Γ

l=1 Var(El(t,Ω
′))

Γ2ε2

<
n2C5

ε2Γ
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Step 2. Similarly to the derivation in Step 1,

∣∣∣∣∣Γ−1

Γ∑
l=1

∂El(t,Ω
′)

∂α′i

∣∣∣∣∣
=

∣∣∣∣∣Γ−1

Γ∑
l=1

n∑
j=1

∂El(t,Ω
′)

∂φ′ij

∣∣∣∣∣
=

∣∣∣∣∣Γ−1

Γ∑
l=1

n∑
j=1

λ0,l(t) log(Mi(t, l) + 1) exp

(∑
i,i 6=j

Lij(t)(α
′
i + β′j) log(Mi(t, l) + 1)

)∣∣∣∣∣
≤Γ−1 log(F + 1)

Γ∑
l=1

n∑
j=1

∣∣∣∣∣λ0,l(t) exp

(∑
i,i 6=j

Lij(t)(α
′
i + β′j) log(Mi(t, l) + 1)

)∣∣∣∣∣
≤C1 log(F + 1)n exp (2nC2 log(F + 1)) ,

and similarly we can show,

∣∣∣∣∣Γ−1

Γ∑
l=1

∂El(t,Ω
′)

∂φ′ij

∣∣∣∣∣ ≤ C1 log(F + 1)n exp (2nC2 log(F + 1))

are bounded by a constant. Let C6 = C1 log(F + 1)n exp (2nC2 log(F + 1)), then

∥∥∥∥∥Γ−1

Γ∑
l=1

El(t,Ω
′)− Γ−1

Γ∑
l=1

El(t,Ω
′′)

∥∥∥∥∥ ≤ C6‖Ω′ − Ω′′‖2.

Step 3. In this step, we try to find the appropriate h. For any t ∈ [0, t0] and Ω′

satisfying Condition B in Theorem 1, let E
(1)
l,i,M(t,Ω′) = ∂El(t,Ω

′)
∂Mi(t,l)

. For any h > 0 such

that t+ h ∈ [0, t0], we can then expand El,M(t+ h,Ω′) at t, at the first order with a

continuous derivative as in equation below:

El,M(t+h,Ω′) = El,M(t,Ω′)+
n∑
i=1

E
(1)
l,i,M(t+θh,Ω′)·(Mi(t+ h,Ω′)−Mi(t,Ω

′)) (2.22)

Similar to our previous derivation, we can show that there exists a constant C7
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that supl,i,t,Ω′ |E(1)
l,i,M(t+ θh,Ω′)′| ≤ C7. By (2.22), we then have

|El,M(t+ h,Ω′)− El,M(t,Ω′)| ≤
n∑
i=1

C7 · (Mi(t+ h,Ω′)−Mi(t,Ω
′)) ≤ nC7F (2.23)

Recall our definition of of M(t, l) that

Mi(t, l) = (Ni(t, l) + Ai(t, l))I(Ni(t, l) + Ai(t, l) ≤ F ) + F · I(Ni(t, l) + Ai(t, l) > F )

We have

P (Mi(t+ h, l)−Mi(t, l) ≥ 1) ≤ P (Ni(t+ h, l)−Ni(t, l) ≥ 1) + P (Aj(t+ h, l)− Aj(t, l) ≥ 1)

≤ C8h,

where C8 = 2C3. Then

P

(
max
1≤i≤n

[Mi(t+ h, l)−Mi(t, l)] ≥ 1

)
≤

n∑
i=1

P (Mi(t+ h, l)−Mi(t, l) ≥ 1)

≤ nC8h.

(2.24)

Now, we look back at Γ−1
∣∣∣∑Γ

l=1[El(t+ h,Ω′)− El(t,Ω′)]
∣∣∣. If we want this value

to be larger than ε > 0, by (2.23), we need at least KΓ ≡ b Γε
nC7F
c of the term

El(t + h,Ω′) − El(t,Ω
′) to be non-zero, i.e. max1≤i≤n[Mi(t + h, l) −Mi(t, l)] to be

non-zero.

Then, when 0 < h = ε
2n2C8C7F

, let t1, t2 be (arbitrary) time points in [t, t+ h] and

t̂1(t, h,Ω′) t̂2(t, h,Ω′) to be the pair of values that maximize
∣∣∣∑Γ

l=1[El(t1,Ω
′)− El(t2,Ω′)]

∣∣∣.
We want to mention that this pair of maximizers always exists since on any sample

path, there are only a finite number of possible combinations of the Mit, l values.

From the combination that maximizes the absolute difference, we can find the corre-

sponding t̂1(t, h,Ω′) and t̂2(t, h,Ω′). Then, noticing that (2.23) holds for any Ω′, by
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(2.24) and the fact that Mi(t, l) is non-decreasing in t,

P

(
Γ−1 sup

t1,t2∈[t,t+h],Ω′

∣∣∣∣∣
Γ∑
l=1

[El(t1,Ω
′)− El(t2,Ω′)]

∣∣∣∣∣ > ε

)

= P

(
Γ−1 sup

Ω′

∣∣∣∣∣
Γ∑
l=1

[El(t̂1(t, h,Ω′),Ω′)− El(t̂2(t, h,Ω′),Ω′)]

∣∣∣∣∣ > ε

)

≤
Γ∑

K=KΓ

∑
VK⊂{1,...,Γ}

∏
i∈VK

P ( max
1≤i≤n

[Mi(t̂1(t, h,Ω′) + h, l)−Mi(t̂2(t, h,Ω′), l)] ≥ 1)

≤
Γ∑

K=KΓ

∑
VK⊂{1,...,Γ}

∏
i∈VK

P ( max
1≤i≤n

[Mi(t+ h, l)−Mi(t, l)] ≥ 1) (by the nondecreasing property)

≤
Γ∑

K=KΓ

 Γ

K

 (nC8h)K(1− nC8h)Γ−K

≡ P0,Γ,ε Let ti = i·h
2
, 0 ≤ i ≤

⌊
2t0
h

⌋
. The total time interval [0, t0] can then be

covered by the series of sets, Si = [ti, ti+1], 1 ≤ i ≤
⌊

2t0
h

⌋
− 1, Sb 2t0

h c =
[
tb 2t0

h c, t0
]
.

Since for any |t1− t2| < h, the two time points must be contained in the union of two

subsequent Sis, we have

P

(
Γ−1 sup

|t1−t2|<h,Ω′

∣∣∣∣∣
Γ∑
l=1

[El(t1,Ω
′)− El(t2,Ω′)]

∣∣∣∣∣ > ε

)

= P

(
Γ−1 max

0≤i≤b 2t0
h c−1

sup
t1,t2∈Si

⋃
Si+1,Ω′

∣∣∣∣∣
Γ∑
l=1

[El(t1,Ω
′)− El(t2,Ω′)]

∣∣∣∣∣ > ε

)

≤
b 2t0
h c−1∑
i=0

P

(
Γ−1 sup

t1,t2∈Si
⋃
Si+1,Ω′

∣∣∣∣∣
Γ∑
l=1

[El(t1,Ω
′)− El(t2,Ω′)]

∣∣∣∣∣ > ε

)

≤
⌊

2t0
h

⌋ Γ∑
K=KΓ

 Γ

K

 (nC8h)K(1− nC8h)Γ−K ≡ PΓ,ε

(2.25)

PΓ,ε can be viewed as ⌊
2t0
h

⌋
P

(
Γ∑
i=1

Yi ≥ KΓ

)
,
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where Yi, 1 ≤ i ≤ Γ are i.i.d random variables with Binomial(1, nC8h). Since KΓ

Γ
=

2nC8h, and h does no depends on Γ, by the law of large numbers, we can show that

PΓ,ε converges to zero as Γ→∞.

Step 4. Actually what we have shown in Step 2 and 3 is stronger than what we

need. In this step, we show that (2.20) holds.

For any ε > 0, for given Ω′′′ and t,∈ [0, t0], from Step 2 and 3, we can see that for

any Ω′,Ω′′ and t, t′ that satisfy ‖Ω′′ − Ω′‖∞ < ε
C6

, |t′′ − t| < h = ε
2n2C8C7F

, we have

P

(
Γ−1 sup

Ω′,Ω′′,t,t′

∣∣∣∣∣
Γ∑
l=1

[El(t
′,Ω′′)− El(t,Ω′)]

∣∣∣∣∣ > 2ε

)

≤P

(
Γ−1 sup

t,t′,Ω′

∣∣∣∣∣
Γ∑
l=1

[El(t
′,Ω′)− El(t,Ω′)]

∣∣∣∣∣+ Γ−1 sup
t,t′,Ω′,Ω′′

∣∣∣∣∣
Γ∑
l=1

[El(t
′,Ω′′)− El(t′,Ω′)]

∣∣∣∣∣ > 2ε

)

≤P

(
Γ−1 sup

t,t′,Ω′

∣∣∣∣∣
Γ∑
l=1

[El(t
′,Ω′)− El(t,Ω′)]

∣∣∣∣∣ > ε

)

+P

(
Γ−1 sup

t,t′,Ω′,Ω′′

∣∣∣∣∣
Γ∑
l=1

[El(t
′,Ω′′)− El(t′,Ω′)]

∣∣∣∣∣ > ε

)

≤PΓ,ε + 0 = PΓ,ε → 0, as Γ→∞.

Then, due to the pointwise convergence in probability as proved in Step 1, for any

Ω′′ and t′ that satisfy ‖Ω′′ − Ω′‖∞ < ε
C6

, |t′′ − t| < h = ε
2n2C8C7F

, we also have

Γ−1 sup
Ω′′,t′

∣∣∣∣∣
Γ∑
l=1

[el(t
′,Ω′′)− el(t,Ω′)]

∣∣∣∣∣ < 2ε

Since the choosable set for Ω′, [−C2, C2]n and [0, t0] are all bounded compact, we

can have [−C2, C2]n× [0, t0] to be covered by a number of nε open sets OSi ≡ {Ω′, t :

‖Ω′ − Ωi‖∞ < ε
C6
, |t− ti| < h = ε

2n2C8C7F
}, 1 ≤ i ≤ nε.

Then for any Ω′, t we can always find it to fall in a certain, say OSi. Now we can
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have

sup
t∈[0,t0],|αi|≤C2,|βj |≤C2

Γ−1

∣∣∣∣∣
Γ∑
l=1

[El(t,Ω
′)− el(t,Ω′)]

∣∣∣∣∣
= max

1≤i≤nε
sup

(Ω′,t)∈OSi
Γ−1

∣∣∣∣∣
Γ∑
l=1

[El(t,Ω
′)− el(t,Ω′)]

∣∣∣∣∣
≤ max

1≤i≤nε

(
Γ−1

∣∣∣∣∣
Γ∑
l=1

[El(ti,Ωi)− el(ti,Ωi)]

∣∣∣∣∣+ sup
(Ω′,t)∈OSi

Γ−1

∣∣∣∣∣
Γ∑
l=1

[El(t,Ω
′)− El(ti,Ωi)]

∣∣∣∣∣
)

+ sup
(Ω′,t)∈OSi

Γ−1

∣∣∣∣∣
Γ∑
l=1

[el(t,Ω
′)− el(ti,Ωi)]

∣∣∣∣∣
≤ max

1≤i≤nε

(
Γ−1

∣∣∣∣∣
Γ∑
l=1

[El(ti,Ωi)− el(ti,Ωi)]

∣∣∣∣∣+ sup
(Ω′,t)∈OSi

Γ−1

∣∣∣∣∣
Γ∑
l=1

[El(t,Ω
′)− El(ti,Ωi)]

∣∣∣∣∣+ 2ε

)

Then, combing what we have proved in Step 1,

P

(
sup

t∈[0,t0],|αi|≤C2,|βj |≤C2

Γ−1

∣∣∣∣∣
Γ∑
l=1

[El(t,Ω
′)− el(t,Ω′)]

∣∣∣∣∣ > 6ε

)

≤ P

(
max

1≤i≤nε

(
Γ−1

∣∣∣∣∣
Γ∑
l=1

[El(ti,Ωi)− el(ti,Ωi)]

∣∣∣∣∣
)
> 2ε

)

+ P

(
max

1≤i≤nε

(
sup

(Ω′,t)∈OSi
Γ−1

∣∣∣∣∣
Γ∑
l=1

[El(t,Ω
′)− El(ti,Ωi)]

∣∣∣∣∣
)
> 2ε

)

≤
nε∑
i=1

P

((
Γ−1

∣∣∣∣∣
Γ∑
l=1

[El(ti,Ωi)− el(ti,Ωi)]

∣∣∣∣∣
)
> 2ε

)

+
nε∑
i=1

P

((
sup

(Ω′,t)∈OSi
Γ−1

∣∣∣∣∣
Γ∑
l=1

[El(t,Ω
′)− El(ti,Ωi)]

∣∣∣∣∣
)
> 2ε

)

≤ nεn
2C5

4ε2Γ
+ nεPΓ,ε → 0, as Γ→∞.

We have proved (2.20).

Step 5. In this step, we show that (2.21) holds.

Since El(t,Ω
′), 1 ≤ l ≤ Γ are independent, Γ−1

∑Γ
l=1 |El(t,Ω′) − el(t,Ω

′)| →P 0

is equivalent to Γ−1
∑Γ

l=1 |El(t,Ω′) − el(t,Ω′)| → 0, a.e. Since Γ−1
∑Γ

l=1El(t,Ω
′) has

bounded continuous second order derivatives, we have
∑n

j=1 ‖Γ−1
∑Γ

l=1[E
(1)
lj (t,Ω′) −
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e
(1)
lj (t,Ω′)]‖∞ → 0, a.e. Similarly, since El(t,Ω

′) has bounded continuous third order

derivatives, we have
∑n

j=1 ‖Γ−1
∑Γ

l=1[E
(2)
lj (t,Ω′)− e(2)

lj (t,Ω′)]‖∞ → 0, a.e. Then, simi-

lar to the derivations in Step 2, 3 and 4, we can show all the entries of Γ−1
∑Γ

l=1E
(1)
lj (t,Ω′)

and Γ−1
∑Γ

l=1E
(2)
lj (t,Ω′) have similar properties in Ω′ and t. Then similar to Step 4,

we can show (2.21).

Proof of Lemma 3

Following Step 5 in the Proof of Lemma 1, considering the existence of all the

third order derivatives, it becomes obvious that el(t,Ω
′), e

(1)
lj (t,Ω′) and e

(2)
lj (t,Ω′) are

continuous in Ω′ and t. Since the selectable sets of αi, β
′
j ∈ [−C2, C2] and t ∈ [0, t0] are

all compact, ej(t,Ω
′), e

(1)
j (t,Ω′) and e

(2)
j (t,Ω′) are also bounded. Actually, an actual

bound can be got following our argument in Step 1 of Lemma proof. At last, since

El(t,Ω
′) =

n∑
j=1

λj,l(t)

=
n∑
j=1

λ0,l(t) exp

(∑
i,i 6=j

Lij(t)(α
′
i + β′j) log(Mi(t, l) + 1)

)

≥
n∑
j=1

C0 exp (−2nC2 log(F + 1))

= nC0 exp (−2nC2 log(F + 1))

Then, by the properties of almost sure convergence, we can also get

ej(t,Ω
′) ≥ nC0 exp (−2nC2 log(F + 1)) .

Lemma 3 has been proved.

To prove Theorem 1, we also need the following w lemmas, which are originally

the Theorem II.1 and Corollary II.2 of (Andersen and Gill , 1982).

Lemma 4. Let E be an open convex subset ofRp and let F1, F2, . . . , be a sequence

of random concave functions on E such that for any x ∈ E, FΓ(x)→P f(x) as n→∞
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where f is some non-random function on E. If f is also concave, then for all compact

A ⊂ E,

sup
x∈A
|FΓ(x)− f(x)| →P 0, as Γ→∞

Lemma 5. Suppose f has a unique maximum at x̂ ∈ E. Let x̂Γ maximize FΓ.

Then under the condition of Lemma 4, x̂Γ → x̂ as n→∞.

Proof of Theorem 1

We prove the Theorem by combining the results in Lemma 1 and Lemma 2, in

the following 3 steps.

Step 1

In this step, we first analyze some properties of the counting processes and repre-

sent the log-likelihood function by using integrals of counting processes as a prepara-

tion. We notice that by stating that λj, l(t) is the hazard rate of Nj(t, l), we actually

have that the processes Kj(t, l) defined by

Kj(t, l) = Nj(t, l)−
t∫

0

λj,l(t)du

= Nj(t, l)−
t∫

0

λ0,l(t) exp

(∑
i,i 6=j

Lij(u)(α′i + β′j) log(Mi(u, l) + 1)

)
du

(2.26)

j = 1, . . . , n, t ∈ [0, t0], are local martingales on the time interval [0, t0]. As a conse-

quence, they are in fact local square integrable martingales, with

〈Kj(·, l), Kj(·, l)〉(t) =

t∫
0

λj(u, l)du, 〈Ki(·, l1), Kj(·, l2)〉 = 0, i 6= j or l1 6= l2, (2.27)

i.e. Ki(t, l1) and Kj(t, l2) are orthogonal when i 6= j or l1 6= l2.
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Let TN(t, l) =
∑

iNi(t, l), also based on the definition of Nj(t, l), we have

LL(Ω′, t) =
Γ∑
l=1

 n∑
j=1

t∫
0

∑
1≤i≤n,i6=j

Lij(α
′
i + β′j) log(Mi(u, l) + 1)dNi(u, l)−

t∫
0

log

(
n∑
j=1

exp

(∑
i,i 6=j

Lij(u)(α′i + β′j) log(Mi(u, l) + 1)

))
dTN(t, l)


(2.28)

Now based on (2.28), we consider the process

X(Ω′, t) = Γ−1(LL(Ω′, t)− LL(Ω, t))

= Γ−1


Γ∑
l=1

t∫
0

n∑
j=1

∑
1≤i≤n,i6=j

Lij(α
′
i + β′j − αi − βj) log(Mi(u, l) + 1)dNj(u, l)

−
t∫

0

log


∑n

j=1 exp
(∑

1≤i≤n,i 6=j Lij(α
′
i + β′j) log(Mi(u, l) + 1)

)
∑n

j=1 exp
(∑

1≤i≤n,i6=j Lij(αi + βj) log(Mi(u, l) + 1))
)
 dTN(u, l)


(2.29)

where recall that Γ denotes the number of topics under consideration.

Step 2

By definition, Ω̂ maximizes X(Ω′, t) defined in (2.29). In this step, we find another

easier to analyze function to approximate X(Ω′, t). Notice that if we replace dNj(t, l)
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with the hazard rates of Nj(t, l), λj,l(t) in (2.29), we can get

R(Ω′, t) = Γ−1


Γ∑
l=1

t∫
0

λ0,l(u)
n∑
j=1

∑
1≤i≤n,i6=j

Lij(α
′
i + β′j − αi − βj) log(Mi(u, l) + 1)

· exp

(∑
i 6=j

Lij(t)(αi + βj) log(Mi(u, l) + 1)

)
du

−
t∫

0

λ0,l(u) log


∑

j exp
(∑

i 6=j Lij(α
′
i + β′j) log(Mi(u, l) + 1)

)
∑

j exp
(∑

i 6=j Lij(αi + βj) log(Mi(u, l) + 1)
)


·

(
n∑
j=1

exp

( ∑
1≤i≤n,i6=j

Lij(αi + βj) log(Mi(u, l) + 1)

))
du

}

=

t∫
0

LT (Ω′, u)du.

(2.30)

For each Ω′, X(Ω′, t)−R(Ω′, ·) can be written as sums of Kj(t, l) defined in (2.26).

By Theorem 2.4.3 in (Fleming and Harrington, 2013), we have

< X(Ω′, t)−R(Ω′, t), X(Ω′, t)−R(Ω′, t) >= B(Ω′, t),

where

B(Ω′, t) = Γ−2

Γ∑
l=1

t∫
0

S(u, l)λ0,l(u)du,

where S(u, l) is given by

S(u, l) =
n∑
j=1

( ∑
1≤i≤n,i 6=j

Lij(α
′
i + β′j − αi − βj) log(Mi(u, l) + 1)

− log


∑n

j=1 exp
(∑

i,i 6=j Lij(α
′
i + β′j) log(Mi(u, l) + 1)

)
∑n

j=1 exp
(∑

i,i 6=j Lij(αi + βj) log(Mi(u, l) + 1)
)

2
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Let

Ql(Ω
′, t) =

t∫
0

S(u, l)λ0,l(u)du.

Then Ql, l = 1 . . . ,Γ are independent. We can write B(Ω′, t) as

B(Ω′, t) = Γ−2

Γ∑
l=1

Ql(Ω
′, t)

Similar to the proof of Lemma 2, since α′i, β
′
j, αi, βj,Mi(u, l), 1 ≤ i, j ≤ n, u ∈

[0, t0], we can find a constant C8, such that E[(Ql(Ω
′, t))2] < C8. Then we will have

∣∣∣∣∣ΓB(Ω′, t)− Γ−1

Γ∑
l=1

E[Ql(Ω
′, t)]

∣∣∣∣∣→P 0.

Therefore by the inequality of Lenglart (I.2), we see that X(Ω′, t) should converge

in probability to the same limit as R(Ω′, t) for each Ω′, when at least one of they

converges.

Step 3

In this step, we show R(Ω′, t) converges and analyze the limit function. Note that

by using the notations in (3.24), R(Ω′, t) can be simplified to

R(Ω′, t) =

t∫
0

Γ−1

Γ∑
l=1

[
n∑
j=1

(Φ′j − Φj)
′E

(1)
lj (u,Ω)− log

{
El(u,Ω

′)

El(u,Ω)

}
El(u,Ω)

]
du

It follows that by our assumption, λ0,l < C1, and Lemma 1 and Lemma 2, for each

Ω′, as Γ→∞,

|R(Ω′, t0)− P (Ω′, t0)| →P 0,
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where

P (Ω′, t0) =

t0∫
0

Γ−1

Γ∑
l=1

[
n∑
j=1

(Φ′j − Φj)
′e

(1)
lj (u,Ω)− log

{
el(u,Ω

′)

el(u,Ω)

}
el(u,Ω)

]
du

(2.31)

Following our argument in Step 3, equivalently we should have

|X(Ω′, t0)− P (Ω′, t0)| →P 0, (2.32)

By Lemma 4, since X(Ω′, t0) are concave (as will be shown in Lemma 5 below)

for all Γ, we have convergence in (2.32) is equivalent to

sup
Ω′
|X(Ω′, t0)− P (Ω′, t0)| →P 0

Also as shown in Lemma 4 below, P (Ω′, t0) is concave and uniquely maximized at

Ω′ = Ω. Since by definition, Ω̂ maximizes X(Ω′, t), then by Lemma 5, Ω̂→ Ω.

Lemma 6. Under the Conditions A, B, C,D of Theorem 1, the P (Ω′, t0) defined

in (2.31) is concave and uniquely maximized at Ω′ = Ω.

Lemma 7. LT (Ω′, t) and X(Ω′, t) are both concave in Ω′.

Proof of Lemma 6:

We establish the concavity of P (Ω′, t0) and its unique maximizer based the evalu-

ation of its first and second derivative of P1(Ω′, t0) to show its convexity. By Lemma

2, we may evaluate the first and second derivatives of P (Ω′, t0) inside the integral(cf.

Bartle, 1966, Corollary5.9). We compute the first derivatives as

∂P (Ω′, t0)

∂β′j
=

t0∫
0

Γ−1

Γ∑
l=1

[
I ′ne

(1)
lj (u,Ω)− I ′ne

(1)
lj (u,Ω′)

el(u,Ω)

el(u,Ω′)

]
du
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and

∂P (Ω′, t0)

∂α′i
=

t0∫
0

Γ−1

Γ∑
l=1

[
n∑
j=1

G′ie
(1)
lj (u,Ω)− (α′1, . . . , α

′
n)′
∑
j

G′ie
(1)
lj (u,Ω′)

el(u,Ω)

el(u,Ω′)

]
du

(2.33)

where In is the n× n-dimensional diagonal matrix and Gi is a n-dimensional vector

with all zeros expect one on the i-th entry.

Note that the above parital derivatives are all zero at Ω′ = Ω. Further, the Hessian

matrix of P (Ω′, t0) can be written as

∇Ω′∇Ω′P (Ω′, t0) = −T ′DT, (2.34)

where T =
(
∂(Φ′

1)′

∂α′
2
, . . . ,

∂(Φ′
1)′

∂α′
n
, . . . , ∂(Φ′

n)′

∂α′
2
, . . . , ∂(Φ′

n)′

∂α′
n
,
∂(Φ′

1)′

∂β′
1
, . . . ,

∂(Φ′
1)′

∂β′
n
, . . . , ∂(Φ′

n)′

∂β′
1
, . . . , ∂(Φ′

n)′

∂β′
n

)′
is a matrix of zeros and ones, which describes the linear combination relationship be-

tween φ′ij and α′i + β′j. Matrix D is a block diagonal matrix of dimension n2 × n2,

with a number of n block matrix of size n× n, Dj, 1 ≤ j ≤ n, on the diagonal, where

Dj =

t0∫
0

Γ−1

Γ∑
l=1

T ′
[
e

(2)
lj (u,Ω) + e

(1)
lj (u,Ω)⊗2 el(u,Ω)

el(u,Ω′)

]
du,

where ”⊗2” denotes the outer product of a vector. Then the entries of∇Ω′∇Ω′P (Ω′, t0)

will be linear combinations of el and e
(k)
lj , k = 1, 2, 1 ≤ l ≤ Γ, 1 ≤ j ≤ n.

The exact form of ∇Ω′∇Ω′P (Ω′, t0) in (2.34) may look intimidating. But from the

definition of LT (Ω′, t) in (2.8) we can see LT (Ω′, t) and P (Ω′, t) in (2.30) have exactly

the same Hessian matrix. Then, again Lemma 1 and 2 implies as Γ→∞,

∥∥∥∥∥∥
t0∫

0

∇Ω′∇Ω′LT (Ω′, t)dt−∇Ω′∇Ω′P (Ω′, t0)

∥∥∥∥∥∥
∞

→P 0. (2.35)
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By Condition D of Theorem 1, we have

lim
Γ→∞

P (λmin (−∇Ω′∇Ω′LT (Ω′, t0)|Ω′=Ω) > C4) = 1

By (2.25) we have proved and the continuity of the function λmin(·), we can find a

constant δ (not depending on Γ and Ω), such that

lim
Γ→∞

P

(
min

t∈[t0−δ,t0]
λmin (−∇Ω′∇Ω′LT (Ω′, t)|Ω′=Ω) >

C4

2

)
= 1 (2.36)

We can write

t0∫
0

∇Ω′∇Ω′LT (Ω′, t)|Ω′=Ωdt =

t0∫
t0−δ

∇Ω′∇Ω′LT (Ω′, t)|Ω′=Ωdt+

t0−δ∫
0

∇Ω′∇Ω′LT (Ω′, t)|Ω′=Ωdt

(2.37)

By the definition of integration and the fact that the first integration on the right

hand side of the equation above exists, from (2.36), we should also have

lim
Γ→∞

P

λmin

− t0∫
t0−δ

∇Ω′∇Ω′LT (Ω′, t)|Ω′=Ωdt

 >
C4δ

2

 = 1 (2.38)

Also, since LT (Ω′, t) is concave (as shown in Lemma 5), also by the definition of

integration and the fact that the second integration on the right hand side of (2.37)

exists, we have the following Hessian matrix

t0−δ∫
0

∇Ω′∇Ω′LT (Ω′, t)|Ω′=Ωdt

to be at least semi-positive definite. Based on (2.38) Actually, we have already shown

that

lim
Γ→∞

P

λmin

− t0∫
0

∇Ω′∇Ω′LT (Ω′, t)|Ω′=Ωdt

 >
C4δ

2

 = 1
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Therefore, combining the result in (2.35), we have

λmin

− t0∫
0

∇Ω′∇Ω′P (Ω′, t0)|Ω′=Ω

 ≥ C4δ

2
(2.39)

Since P (Ω′, t0) has zero derivative at Ω′ = Ω, and by (2.39), P (Ω′, t0) is uniquely

maximized at Ω. Lemma 4 has been proved.

Proof of Lemma 7:

Considering the definition of X(Ω′, t) and LT (Ω′, t) as in (2.29) and (2.8), ignoring

the terms linear in Ω′, we notice that X(Ω′, t) and LT (Ω′, t) are both positively

weighted sums (with weights independent of Ω′) of

LEl(Ω
′, t) ≡ − log

[
n∑
j=1

exp

( ∑
1≤i≤n,i 6=j

Lij(α
′
i + β′j) log(Mi(u, l) + 1)

)]
.

Then, to finish the proof of the lemma, it is equivalent to show the concavity of

LEl(Ω
′, t). Let

SEl(Ω
′, t) =

n∑
j=1

exp

( ∑
1≤i≤n,i 6=j

Lij(α
′
i + β′j) log(Mi(u, l) + 1)

)

For any a, b > 0 and a + b = 1 and Ω′k = (α′k,2, . . . , α
′
k,n, β

′
k,1 . . . , β

′
k,n), k = 1, 2,
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satisfying Condition B of Theorem 1, by Jensen’s inequality, we have

SEl(aΩ′1 + bΩ′2, t)

=
n∑
j=1

exp

( ∑
1≤i≤n,i6=j

Lij(aα
′
1,i + aβ′1,j + bα′2,i + bβ′2,j) log(Mi(u, l) + 1)

)

≤

(
n∑
j=1

exp

( ∑
1≤i≤n,i 6=j

Lij(α
′
1,i + β′1,j) log(Mi(u, l) + 1)

))a

·

(
n∑
j=1

exp

( ∑
1≤i≤n,i 6=j

Lij(α
′
2,i + β′2,j) log(Mi(u, l) + 1)

))b

= [SEl(Ω
′
1, t)]

a
[SEl(Ω

′
2, t)]

b

And the above inequality is just equivalent to

− log(SEl(aΩ′1 + bΩ′2, t)) ≥ −a log(SEl(Ω
′
1, t))− b log(SEl(Ω

′
2, t)).

Lemma 5 has been proved.

2.9 Additional Senator Results

Table 2.6 shows the top ten most influential accounts under the proposed method

for different time periods. We see consistent results with the findings from summer

2014. Important newspapers like the Financial Times and Washington Post still

appear in the top ten when utilizing the full data. Other prominent accounts include

senators that have leadership positions, like Harry Reid (Senate Majority Leader) and

several others with high profile committee chairmanships or ranking appointments.

Tables 2.7 and 2.8 show regression results for the sequestration period, and Ta-

bles 2.9 and 2.10 show regression results for the inauguration period. The results are

consistent with the results presented in the main text. Regressing directly on the

leadership scores shows a strongly significant and positive coefficient for the proposed
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Table 2.6: Top ten rankings under the proposed model for different time intervals.
Rank Sequestration 2014 Inauguration Entire Data

1 Leahy Leahy Financial Times
2 Grassley Grassley Grassley
3 Mikulski Begich Leahy
4 Begich Mikulski Cruz
5 Shaheen Johanns Washington Post
6 McCaskill Reid Reid
7 Reid McCaskill Begich
8 Blunt Graham Mikulski
9 Graham Shaheen Ezra Klein

10 Collins Hagan Schatz

Table 2.7: Regression estimates, where the response variable is the raw leadership
scores from GovTrack.us and influence is computed from January 1, 2013
to March 1, 2013. R2 = 0.327; F = 8.839 on 5 and 92 DF (p-value: 0.000)
Variable Estimate Std. Error t value P (> |t|)
Intercept -0.153 0.228 -0.669 0.505
Proposed Influence 0.074 0.028 2.689 0.009
Republican -0.153 0.039 -3.960 0.000
Age 0.002 0.003 0.833 0.407
Years in Senate 0.007 0.003 2.532 0.013
Male 0.020 0.050 0.397 0.692

influence measure. The regressions with transformed leadership scores show effects

are moderately significant.
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Table 2.8: Regression estimates, where the response variable is log( leadership
1−leadership

), where
leaderhip is from GovTrack.us and influence is computed from January 1,
2013 to March 1, 2013. R2 = 0.119; F = 2.466 on 5 and 92 DF (p-value:
0.038)
Variable Estimate Std. Error t value P (> |t|)
Intercept -3.925 2.574 -1.525 0.131
Proposed Influence 0.504 0.312 1.614 0.110
Republican -1.103 0.437 -2.526 0.013
Age 0.008 0.029 0.267 0.790
Years in Senate 0.033 0.031 1.062 0.291
Male 0.465 0.561 0.830 0.409

Table 2.9: Regression estimates, where the response variable is the raw leadership
scores from GovTrack.us and influence is computed from November 1, 2012
to January 31, 2013. R2 = 0.328; F = 8.839 on 5 and 92 DF (p-value:
0.000)
Variable Estimate Std. Error t value P (> |t|)
Intercept -0.132 0.220 -0.597 0.552
Proposed Influence 0.072 0.026 2.726 0.008
Republican -0.154 0.039 -3.978 0.000
Age 0.002 0.003 0.797 0.427
Years in Senate 0.007 0.003 2.616 0.010
Male 0.020 0.050 0.395 0.693

Table 2.10: Regression estimates, where the response variable is log( leadership
1−leadership

),
where leaderhip is from GovTrack.us and influence is computed from
November 1, 2012 to January 31, 2013. R2 = 0.117; F = 2.402 on 5 and
92 DF (p-value: 0.043)

Variable Estimate Std. Error t value P (> |t|)
Intercept -3.578 2.495 -1.434 0.155
Proposed Influence 0.452 0.297 1.521 0.132
Republican -1.105 0.437 -2.527 0.013
Age 0.007 0.029 0.255 0.800
Years in Senate 0.035 0.031 1.113 0.269
Male 0.460 0.561 0.819 0.415
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CHAPTER III

Measuring Topic Dependent Edge Importance in

Twitter Ecosystems Using a Counting Process

Modeling Framework

3.1 Introduction

Over the past two decades, the functional properties of edges in complex networks

have gained much attention in literature, (Miritello et al., 2011) (Dorogovtsev and

Mendes , 2002) (Newman, 2003). The importance (weights) of edges, a key factor in

determining structural properties of a network has also been fairly extensively studied.

For example, in (Tong et al., 2012), an edge’s importance is measured by its topology

strength in the connection network, while in (Toivonen et al., 2007), it is modeled

by the short time probability that a node can send messages to other nodes in the

network. In our proposed framework, as presented in the previous chapter, we take

into consideration the actions occurring from the nodes (such as posting, retweeting

and mentioning) on multiple edges simultaneously. To capture the temporal evolution

of actions, we model them as a counting process.

However, we allow for a much more flexible parameterization than the one used

in the previous chapter. Instead of having two global parameters for each node,

reflecting capability to generate responses (α) and susceptibility to respond to other
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nodes’ actions (β), we allow for independent parameters between every pair of nodes

for selected topics. With this extension we are trying to incorporate the heterogeneous

nature of topics discussed and the fact that for specific topics, selected nodes have

either greater susceptibility due to their particular interest, or greater capability for

generating responses, due to their perceived expertise. For example, if we considered

a general Twitter network, it is reasonable to assume that sport fans would engage

in a different manner when the topic under discussion involves sports (and even more

so, if it involves their favorite sport or favorite sport team) or the node posting is a

sports-writer or an athlete and hence it is generally perceived that (s)he has expertise

or additional information.

The remainder of the chapter is organized as follows: in Section 3.2, we introduce

the counting process modeling framework and the proposed edge importance measure.

Section 3.3 presents the computational algorithm we use to obtain the parameter

estimates, as well as establish their statistical properties and those of the influence

measure in Section 3.4. In Section 3.5, we use simulation studies to evaluate the

performance of the model, while the US Senate application is presented in Section

3.6. Finally, a short summary is given in Section 3.7.

3.2 The model and the influence measure

Leveraging the model developed in the previous chapter, we have similar defini-

tions of some key quantities for the network under consideration. We continue to

represent the followers network as G = (V, L) , where V corresponds to the set of

nodes of all the Twitter accounts under consideration and L = {Li,j, 1 ≤ i 6= j ≤ n}

the edge set between them. This network establishes potential channels of communi-

cation between accounts, since if an account follows another, then they can actively

interact. In principle, L can be dynamically evolving, but in this work we continue to

consider L to be static and not changing over time, which is a reasonable assumption
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for periods of time extending to months. We continue to consider the following three

actions: posting a new message, retweeting a message posted by another account that

they follow and finally mentioning another account that they follow in a new posted

message.

Next, we define the following two key counting processes. Still we use Nj(t)

to denote the total number of retweets and mentions that account j generates on

topic l by time t and let Aj(t, l) denote the total number of posted messages by

account j on topic l by time t. Denote the set of topics discussed by Γ. In the

model presented in the previous chapter, all topics were treated identically; thus,

the cardinality of the set Γ corresponds to the total “sample size”. However, in

practice different topics elicit different responses and/or interactions for different sets

of users, as briefly discussed in the introductory section. In principle, the set Γ can

be partitioned into several groups. However, for the sake of simplicity we consider

two groups; namely, Γ = Γ1
⋃

Γ2. We assume that an account has different long-term

interaction parameters with its followers on all topic sets. On topic set Γ1, we use αij

to denote account i’s interactions with its followers j ∈ L, while on set Γ2, we assume

the interaction to be αij + δi. The δi parameter captures the differential capability of

account i to elicit responses from all the other accounts on the followers’ network for

the subset of topics in Γ2.

We continue to adopt the previously described modeling strategy and model

{Nj(t, l)}ni=1 as a set of counting processes through their hazard rates, using a version

of Cox (Andersen and Gill , 1982) proportional hazard model; specifically, the hazard

rate λj,l(t) of process Nj(t, l) is given by

λj,l(t) = λ0,l(t) exp

(∑
i 6=j

Lij(αij) log(Mi(t, l) + 1)

)
, (3.1)
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when l ∈ Γ1 and

λj,l(t) = λ0,l(t) exp

(∑
i 6=j

Lij(αij + δi) log (Mi(t, l) + 1)

)
, (3.2)

when l ∈ Γ2, where

Mi(t, l) = (Ni(t, l) + Ai(t, l))I(Ni(t, l) + Ai(t, l) ≤ F ) + F · I(Ni(t, l) + Ai(t, l) > F ).

Aj(t, l) + Nj(t, l) is the total number of postings, retweets and mentions for account

j on topic l by time t. We also consider the effect of seeing actions from account i

can get saturated when the total number of actions reaches the constraint, F . We

assume that the parameters αij, δi ∈ (−∞,∞), since accounts and their users may be

positively or negatively inclined towards other accounts, and the accounts’ capability

can vary in a differential manner between the two topic sets. The nonparametric

baseline component λ0,l(t) is time varying. In general, due to limited time span, we

assume all the observations are made within [0, t0], since as observed in real data sets,

interest in a particular topic wanes fairly quickly. The model posits that account j

interacts with other accounts at a baseline level λ0,l(t), modulated by its (different)

ability to generate responses from its followers (in the two topic sets). Note that we

continue to model the retweet-mention process Nj(t, l), since it reflects interactions

between nodes and use the total effective activity process Mj(t, l) as a covariate.

To complete the modeling framework, let T lj =
{
T lj,1, . . . , T

l
j,nlj

}
, t = 1, · · · , nlj,

denote the set of time points that account j took action (post, retweet, mention)

on topic l, until the last observation time point t0. Finally, for identification pur-

poses, we require αij = 0 when Lij = 0, i.e., when account j does not follow i. Use

Ψ = (αij)1≤i,j≤n to denote the α matrix and ∆ to represent (δ1, . . . , δn). Then the

parameters of interest are Ω = {Ψ · L,∆}, where ”·” denotes the point-wise multi-

plication of two matrices. As before and following, Andersen and Gill (1982), we
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employ a partial-likelihood function to obtain estimates of Ω. Specifically, we treat

the baseline λ0,l(t) as a nuisance parameter and decomposing the full-likelihood to

obtain

PL1(t) =
∏

1≤l≤Γ

 ∏
1≤j≤n

∏
1≤k≤nlj ,T lj,k≤t

λj(T
l
j,k)∑

1≤i≤n λi(T
l
j,k)


Plugging the exact form of the hazard rate from (3.1) and (3.2) into the partial-

likelihood function (PL), we get:

PL1(t) =
∏
l∈Γ1

 ∏
1≤j≤n

∏
1≤k≤nj ,T lj,k≤t

exp
(∑

i 6=j Lijαij log
(
Mi(T

l
j,k, l) + 1

))
∑

1≤i≤n exp
(∑

u6=i Luiαui log
(
Mu(T lj,k, l) + 1

))


+
∏
l∈Γ2

 ∏
1≤j≤n

∏
1≤k≤nj ,T lj,k≤t

exp
(∑

i 6=j Lij(αij + δi) log
(
Mi(T

l
j,k, l) + 1

))
∑

1≤i≤n exp
(∑

u6=i Lui(αui + δu) log
(
Mu(T lj,k, l) + 1

))


(3.3)

3.2.1 The Edge Importance Measure

Next, we define the edge importance measure, leveraging the structure of the new

model. Specifically, for an edge (i, j) with Lij = 1, when λ0,l(t) = 1, and Mi(t, l) = 1,

other Mk(t, l) = 0, t ∈ [0, t0], k 6= i, j, account j’s hazard rate within unit time [0, 1]

on topic set Γ1 is given by

H
(1)
j = exp (log(2)αij) ,

and its hazard rate on topic set Γ2 is

H
(2)
j = exp (log(2)(αij + δi)) .
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From the properties of the exponential distribution, the probability that account j

will retweet i, within [0, 1] on topic set Γ1 is

P
(1)
ij = 1− exp [− exp (log(2)αij)] ,

and the probability that account j will retweet i, within [0, 1] on topic set Γ2 is

P
(2)
ij = 1− exp [− exp (log(2)(αij + δi))] .

Following our definition of accounts’ influences in the previous chapter, the influ-

ence of j on topic set Γ1 is given by

Ξ
(1)
j = log

[ ∑
1≤k≤n,k 6=j

Ljk · exp
(

log(M̄
(1)
j + 1)αjk

)]
, (3.4)

and its influence on topic set Γ2 can be written as

Ξ
(2)
j = log

[ ∑
1≤k≤n,k 6=j

Ljk · exp
(

log(M̄
(2)
j + 1)(αjk + δj)

)]
, (3.5)

where M̄
(1)
j and M̄

(2)
j are node j’s average number of actions on topic set Γ1 and Γ2

respectively. Therefore, on topic set Γ1, on edge (i, j), the influence i can borrow

from j with a single action, can be expressed as

ς
(1)
ij = P

(1)
ij · Ξ

(1)
j

= (1− exp [−t0 exp (log(2)αij)]) log

[ ∑
1≤k≤n,k 6=j

Ljk · exp
(

log(M̄
(1)
j + 1)αjk

)]
,

(3.6)
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and on topic set Γ2, the influence i that can be borrowed can be given by

ς
(2)
ij = P

(2)
ij · Ξ

(2)
j

= (1− exp [−t0 exp (log(2)(αij + δi))]) log

[ ∑
1≤k≤n,k 6=j

Ljk · exp
(

log(M̄
(2)
j + 1)(αjk + δj)

)]
.

(3.7)

We define ς
(1)
ij and ς

(2)
ij to be edge (i, j)’s importance on topic set Γ1 and Γ2, respec-

tively. When Lij = 0, let ς
(1)
ij = ς

(2)
ij = 0.

3.2.2 The set of influential edges

In this subsection, we use our definition of edge importance to capture the edges

that are essential for propagating or impairing the information flow process. Let

S
(c)
L = {ς(c)

ij : Lij = 1}, c = 1, 2, denote all the edge importance values on existing

edges, on the two topic sets. For any given probability p, we can build the following

two edge collections, which correspond to the p proportion of the most spawning and

jamming edges as follows.

S1(p)(c) = {(i, j) : ς
()
ij ≥ q

(c)
1−p} (3.8)

and

S2(p)(c) = {(i, j) : ςij ≤ qcp} (3.9)

where qcp are the quantile of set S
(c)
L of probability p, c = 1, 2.
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3.3 Computation and Inference

Next, we present a Newton-type algorithm for computing the parameter estimates

Ω. The logarithm of the partial likelihood function (3.3) is given by

LL0(t) = log(PL(t))

=
∑
l∈Γ1

 ∑
1≤j≤n

∑
1≤k≤nlj ,T lj,k≤t

∑
i 6=j

Lijαij log(Mi(T
l
j,k, l) + 1)

−
∑

1≤j≤n

∑
1≤k≤nlj ,T lj,k≤t

log

[ ∑
1≤i≤n

exp

(∑
u6=i

Luiαui log(Mu(T
l
j,k, l) + 1)

)]
+
∑
l∈Γ2

 ∑
1≤j≤n

∑
1≤k≤nlj ,T lj,k≤t

∑
i 6=j

Lij(αij + δi) log(Mi(T
l
j,k, l) + 1)

−
∑

1≤j≤n

∑
1≤k≤nlj ,T lj,k≤t

log

[ ∑
1≤i≤n

exp

(∑
u6=i

Lui(αui + δu) log(Mu(T
l
j,k, l) + 1)

)]
(3.10)
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To introduce sparsity on the differences of influence levels among topics, we add an

L1 penalty on ∆ to obtain the following penalized partial likelihood function.

LL(t) = log(PL(t))−
n∑
i=1

γ|δi|

=
∑
l∈Γ1

 ∑
1≤j≤n

∑
1≤k≤nlj ,T lj,k≤t

∑
i 6=j

Lijαij log(Mi(T
l
j,k, l) + 1)

−
∑

1≤j≤n

∑
1≤k≤nlj ,T lj,k≤t

log

[ ∑
1≤i≤n

exp

(∑
u6=i

Luiαui log(Mu(T
l
j,k, l) + 1)

)]

+
∑
l∈Γ2

 ∑
1≤j≤n

∑
1≤k≤nlj ,T lj,k≤t

∑
i 6=j

Lij(αij + δi) log(Mi(T
l
j,k, l) + 1)

−
∑

1≤j≤n

∑
1≤k≤nlj ,T lj,k≤t

log

[ ∑
1≤i≤n

exp

(∑
u6=i

Lui(αui + δu) log(Mu(T
l
j,k, l) + 1)

)]

−
n∑
i=1

γ|δi|

(3.11)

The objective function corresponds to LL(t0), which considers all events k in its

equation (3.11). For the sake of notational simplicity, we will use LL to represent

LL(t0) in the rest of the paper. To maximize LL(t0), due to the smoothness of LL0(t0),

we first compute the gradient G0 ≡ ∇ΩLL0(t0) and the Hessian H ≡ ∇Ω∇Ω(LL0(t0))

of LL0(t0). Then on the last n entries of G0, which is represented as Gn, update it to

Gn − γsign(∆). Denote the updated G0 as G. G and H are used as the approximate

gradient and Hessian of LL(t0) in Newton’s algorithm. The detailed expressions for

G0 and the Hessian H are given in the Appendix.

The steps of the optimization, with a given penalty γ in computing G, are given

in Algorithm 1. To speed up calculations, we take advantage of the structure of

the problem in actual applications, as explained in detail in the Appendix. Then γ is

selected with the one that minimize the estimation of the parameter. As stated in the
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Algorithm 3 Estimating the parameters by Newton’s algorithm

1: Initialize Ω value by αij = 0, δi = 0, 1 ≤ i, j ≤ n
2: Define s as a positive thresholding constant for the minimum step size
3: while τ > s do
4: Calculate G by using (3.16), (3.20) and (3.22)
5: Calculate H by using (3.18) to (3.21)
6: Find the optimum positive τ value such that Ω−τ ·H−1G will maximize the log-

partial-likelihood (3.11), when H is non-singular and find the optimum positive
τ value such that Ω− τ · (H − θI)−1G will maximize the log-partial-likelihood
(3.11), otherwise.

7: Update Ω← Ω−τ ·H−1G or Ω−τ · (H−θI)−1G, depending on H’s singularity
8: end while
9: return Ω

algorithm, s, θ are positive constants to judge the convergence of the the Newton’s

algorithm and to solve singularity problems when computing the inverse matrices.

The computational complexity of this algorithm is dominated by the computation

of H. Denote by mn = max1≤j≤n{nj}. Based on (3.16), (3.20) and (3.22), it costs

O(Γn2mn) operations to calculate an entry of G. Further, since G is of dimension

2n, it takes O(Γn3mn) to obtain the entire G vector. Analogously, based on (3.18)

to (3.21), it costs O(Γnmn) operations to calculate an entry of H, if proper book-

keeping is used on the results obtained for the gradient G. Further, since H is of

dimension n4, it takes O(Γn5mn) to obtain the entire H matrix. Hence, the overall

time complexity for each iteration of the algorithm is of the order O(max{Γn5mn}).

3.4 Properties of the Ω̂ estimates

Next, we establish that the estimator Ω̂ which maximizes (3.11) will converge to

the true parameter Ω = {Ψ ·L,∆} in probability under certain regularity conditions.

Theorem 2. Conditions:

A. (Bounded hazard rate) C0 ≤ λ0,l(t) ≤ C1 for 0 ≤ t ≤ t0 1 ≤ l ≤ Γ,

B. (Bounded parameters) max1≤i,j≤n{|αij|, |δi|} ≤ C2,
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C. (Limited posting frequencies)

P (Aj(t+ h, l)− Aj(t, l) ≥ 1) ≤ C3 · h, when h > 0, t+ h ≤ t0, (3.12)

D. (Balanced sets sizes) max
{
‖Γ1‖0
‖Γ2‖0 ,

‖Γ2‖0
‖Γ1‖0

}
< C4

E. (Positive definite limit of Hessian) Let Ω′ be any choosable parameter vector

satisfying (B). For large enough Γ and some C5, we have the holding condition to

hold on the smallest eigenvalue of −∇Ω′∇Ω′LT (Ω′, t), at Ω′ = Ω, t = t0,

P (λmin (−∇Ω′∇Ω′LT (Ω′, t)) |Ω′=Ω,t=t0 > C5)→ 1, as ‖Γ1‖0 →∞,

where

LT (Ω′, t) ≡ (‖Γ1‖0)−1

{∑
l∈Γ1

−λ0,l(u) log

{∑
j

exp

(∑
i 6=j

Lijα
′
ij log(Mi(t, l) + 1)

)}

·

(
n∑
j=1

exp

( ∑
1≤i≤n,i 6=j

Lijαij log(Mi(t, l) + 1)

))}

+(‖Γ1‖0)−1

{∑
l∈Γ1

−λ0,l(u) log

{∑
j

exp

(∑
i 6=j

Lij(α
′
ij + δ′i) log(Mi(t, l) + 1)

)}

·

(
n∑
j=1

exp

( ∑
1≤i≤n,i6=j

Lij(αij + δi) log(Mi(t, l) + 1)

))}

(3.13)

where ‖ · ‖0 computes the L0 (size) of a set.

In the five Conditions A through E above, C0, C1, C2, C3, C4 and C5 are all

positive constants. Under these conditions, we will have:

Ω̂→P Ω as ‖Γ1‖0, ‖Γ2‖0 →∞.

The detailed proof is given in the Appendix.
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Since Condition C in Theorem 2 is the same as the one in Theorem 1, Lemma 1

in Section 2.4 already gives one example in which this condition will hold. Based on

Theorem 2, by leveraging the properties of continuous functions, we can establish the

consistency of the proposed edge importance measure.

Proposition 2. Let ς(1) =
(
ς

(1)
ij

)
1≤i,j≤n

and ς(2) =
(
ς

(2)
ij

)
1≤i,j≤n

denote the n× n

dimensional matrix of edge importance. Further, denote by ς̂(1) =
(
ς̂

(1)
ij

)
1≤i,j≤n

and

ς̂(2) =
(
ς̂

(2)
ij

)
1≤i,j≤n

their empirical estimates. Under the conditions of Theorem 1, we

have that when ‖Γ1‖0, ‖Γ2‖0 →∞

∥∥ς̂(1) − ς(1)
∥∥

2
+
∥∥ς̂(2) − ς(2)

∥∥
2
→P 0, (3.14)

where ‖ · ‖2 computes the L2 norm. As a result, with any probability p ∈ (0, 1), when(
ς

(1)
ij

)
1≤i,j≤n

and
(
ς

(2)
ij

)
1≤i,j≤n

values are all distinct, we have

‖Ŝ1(p)(c)\S1(p)(c)‖0 →P 0,

where ‖ · ‖0 is the L0 norm of a set.

From Theorem 2, the proof of the proposition is straightforward, since each ele-

ment of the matrix ς̂(1) and ς̂(1) is a continuous function of Ω̂.

3.5 Performance evaluation

The key steps for obtaining the synthetic data are identical to those in the previous

chapter; namely, generating the followers’ network and generating actions for the two

sets of topics Γ1 and Γ2, respectively.

As before, we first illustrate the performance of the Newton estimation algorithm,

on a random network of varying size. We set the parameter a = 0.5 for the baseline

hazard rate and choose a time horizon of t0 = 10, to emulate ten days worth of data.
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We also select the parameters Ω uniformly at random in the interval [−0.4, 0.4]. Due

to the bounded baseline hazard rate and simulated parameters, and since the retweets

and mentions are generated as Poisson, Condition A, B, C of Theorem 1 have been

satisfied. Then we empirically ”check” Condition D. With a large ‖Γ1‖0 = ‖Γ2‖0 =

500, network size n = 10, 30, we repeated Step 1 and 2 for 20 time s to simulate the

network and actions. In each repetition, the square root of the smallest eigenvalue

of λmin (−Γ∇Ω′∇Ω′LT (Ω′, t)) |Ω′=Ω,t=t0 is computed. The results are plotted in Figure

3.1. In the plot, it can be seen that smallest eigenvalues of

Figure 3.1: [λmin (−Γ∇Ω′∇Ω′LT (Ω′, t)) |Ω′=Ω,t=t0 ]1/2 at ‖Γ1‖0 = ‖Γ2‖0 = 500, n = 10
(left) and n = 30 (right).

[λmin (−Γ∇Ω′∇Ω′LT (Ω′, t)) |Ω′=Ω,t=t0 ]1/2 are generally larger or not smaller than 0.5.

Due to their large variations, we took square root to make the values of the smallest

eigenvalues easier to be reflected in plots. Due to their large variations, we took

square root to make the values of the smallest eigenvalues easier to be reflected in

plots.

Then as we have ”checked”, with network sizes n = 10, 30 and number of topics

generated ‖Γ1‖0 = ‖Γ2‖0 = 500 and another set of smaller topic sizes, and penalty

γ, we obtain three sets of values to estimate the relative error of the parameter

and importance estimates, ‖Ω̂−Ω‖2
‖Ω‖2 , ‖ς̂

(1)−ς(1)‖2
‖ς(1)‖ and ‖ς̂(2)−ς(2)‖2

‖ς(2)‖ . At n = 10, with γ ∈

{1, 2 . . . , 50}, and ‖Γ1‖0 = ‖Γ2‖0 = 500, we first observed that ‖Ω̂−Ω‖2
‖Ω‖2 was minimized

around γ = 10 and actually the errors only had small differences, based on the
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average of five replicates for each chosen γ. Due to the high time complexity of the

computation algorithm, we then only applied it to the network with n = 30 under

γ = 0, 10 and 50. We obtain the following Figure 3.2 to show the relative error of the

parameter and importance estimates

The results are based on 20 replicates of the underlying followers networks, as well

as the actions (postings, retweets and mentions) data. It can be seen in Figure 3.2

that with large enough topic sets, ‖Γ1‖ = ‖Γ2‖ = 500, the parameters and importance

measures, exhibit a small (less than 10%) relative error rate, where ‖ · ‖0 corresponds

to `0 norm.

Based on the estimated parameters α̂ij of the simulations, we examine more closely

the estimation results in the setting with ‖Γ1‖0 = ‖Γ2‖0 = 500. We estimate the

important edge collections Ŝk(p)
(c) as defined in (3.8) and (3.9), c, k = 1, 2. Then,

we check the performance of Ŝk(p)
(c) by looking at the proportions of edges in the

estimated sets, that are also coherent with the original ones:

‖Ŝk(p)(c)
⋂
Sk(p)

(c)‖0

‖Ŝk(p)(c)‖0

,

with c, k = 1, 2. The estimation results are shown in Figure 3.3. Sinceour interest

mainly focus on capturing the most spawning and jamming edges, we may only plot

with small p values.

From Figure 3.3, we can see that, generally Ŝk(p)
(c) estimates S

(c)
k (p) well with its

edges coinciding with those of Sk(p)
(c) with an accuracy of more than 80%, c, k = 1, 2.

Since the two sets (at the same p) contain almost the same number of edges, the rate

in Figure 3.3 can also be looked at as the proportion of edges in S
(c)
k (p) that are

captured by Ŝk(p)
(c). To include most of the extreme edges S

(c)
k (p), we propose to

use Ŝk(p)
(c). And at the same time, we hope the other edges (not in S

(c)
k (p)) are still

worth considering in the sense that they are included in Sk(4p)
(c), c, k = 1, 2. The
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Figure 3.2: Mean relative error of the model parameter estimates Ω (up), ς(1)(middle)
and ς(2) (down)
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Figure 3.3: Proportion of correct edges, from up to down: n=10, S1 (first);
n=10,S2(Second); n=30, S1 (Third); n=30, S2(fourth).
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results of this idea are depicted in Figure 3.4 below. In the figure, we computed

‖Ŝk(2p)(c)
⋂
Sk(p)

(c)‖0

‖Sk(p)(c)‖0

,

the coverage for real p proportional most important edges and

‖Ŝk(2p)(c)
⋂
Sk(4p)

(c)‖0

‖Ŝk(2p)(c)‖0

,

the accuracy rate, with c, k = 1, 2 for the network n = 30.

As can be seen from Figure 3.4, at small probability p values, generally more than

90% of edges in Ŝk(2p)
(c) can be captured in Sk(4p)

(c). With the exception of p = 0.01,

around (or more than) 90% of edges in S
(c)
k (p) have been included in Ŝk(2p)

(c).

3.6 Identifying Important Connections between Senators

Next, we re-examine our Tweeter data. Recall that there are about 200,000 tweets

and 4671 follower links within the set of 120 accounts from April 2009 to July 2014.

The recorded accounts are registered to 55 Democratic politicians (U.S. Senators and

the President of the U.S.), 46 Republican Senators, 2 government organizations (U.S.

Army and the Federal Reserve Board), and 16 media outlets, including newspapers

(Financial Times, Washington Post, New York Times, Huffington Post), television

networks (MSNBC, Fox News, CNN, CSPAN), reporters (Nate Silver (538), Ezra

Klein) and television hosts (Bill O’Reilly, Sean Hannity).

In the previous chapter, the focus was on identifying the most influential sena-

tors. This time, we are interested in exploring the importance of edges (connections)

in the followers network. Also, as both in Table 1 in the previous chapter and in

Golbeck et al. (2010), it is understood that senators tend to retweet and mention as a

means of self or legislative promotion. We have increased frequencies of data during
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Figure 3.4: Coverage and accuracy, from up to down: coverage of S1 (first); coverage
of S2(Second); accuracy of S1 (Third); accuracy of S2(fourth).
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some periods of hot topics, such as in the months surrounding the inauguration of

President Obama (January 2013), the debate on raising the debt ceiling of the US

government and its temporary suspension around April 2013 and the summer of 2014

(soccer World Cup). We would also like to understand whether the edges’ impor-

tances are different or not within and outside of these time periods. Given the high

computational complexity of the algorithm and the overall high volume of data, we

focus on the summer of 2014 (soccer World Cup)

Observations collected from April to June, 2014 form Group 2 of the data, and

others form Group 1. Topics sets Γ1 and Γ2 then correspond to these two time periods.

Although the 2014 summer period is relatively short in duration, it nevertheless

contains 55455 actions, which accounts for 40.88% of the tweets count. Given the

fast moving landscape of social media, new topics are assigned each week. Combined

with pre-assigned topic grouping based on key words, we get 2770 topics in total for

the entire data set.

Although not the main focus of this chapter, recall from (3.4) and (3.5), we can

still compute the nodes’ influences under our proposed model, for sets Γ1 and Γ2. To

rigorously justify our modeling of the data, we perform a regression analysis to assess

how well our influence measure can explain legislative leadership in Congress, by com-

paring to regression results applied with PageRank, on the followers networks (which

constitutes the backbone of many ranking algorithms of Twitter accounts). Our re-

sponse variable is the leadership score, published by www.govtrack.us (GovTrack.us ,

2014). GovTrack creates the leadership score by applying the PageRank algorithm to

the adjacency matrix of bill cosponsorship data. Thus, the leadership score for each

senator is a number between 0 and 1, where higher values denote greater legislative

leadership. The regression model we are interested in is

Leadership = βInfluence + ΘControls, (3.15)
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where Influence contains the two influences computed on Γ1 and Γ2, from our proposed

model and/or PageRank, and Controls includes party affiliation, gender, age, and

number of years in the senate. Seniority endows a number of benefits including

preferential assignment to committees. Thus, these control variables likely associate

strongly with legislative leadership.

To estimate the parameters in our proposed model and the two influence measures,

after preprocessing to get the topics, we apply Algorithm 3 to estimate the α and

δ parameters using all the data. The final influence measures, Ξ̂(1) and Ξ̂(2), are

constructed by using the average Mi(Tm, l), at all time points of a retweet or mention

happens, in Group 1 and Group 2, respectively.

Since the leadership score provided by GovTrack takes values between 0 and 1,

we estimate two models. One model uses the raw leadership scores, and another uses

log( leadership
1−leadership

) for the response variable. In both cases, as shown in Table 3.1, we

consistently find that the 2 newly proposed influence measures explains more variation

in leadership than our original proposed measure, and PageRank. This observation

may serve to suggest that the new more flexible model is more suitable, at the cost of

higher computational complexity due to proliferation of parameters from 2n for the

original models to n2 for the new model.

In the Senators’ social network, we are interested to find the most spawning and

jamming edges. As suggested by Figure 3.4, if we use 40 edges with largest (smallest)

importances to capture the true 20 most extreme (largest or smallest) edges, we

should have enough accuracy. Our estimated 40 edges with the largest importances,

on topic Γ1, are listed in Table 3.2. The list of the edges with the smallest edge

importances on the same topic set is given in Table 3.3. Similarly, the 40 estimated

edges with the largest importances, on topic Γ2, are listed in Table 3.4, while those

with the smallest edge importances on the second topic set are listed in Table 3.5.

A summary of the main findings is given next:
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Table 3.1: Estimated R-squared values for different regression models, where the two
new proposed influence measures, the original proposed measure or PageR-
ank is included in the set of independent variables and the influence is com-
puted for the entire data sample. We consistently find that the 2 newly
proposed measure is a better indicator of legislative importance.

Response New Influence New Influence Original Proposed PageRank R2

on Γ1 on Γ2

V 0.363
leadership V 0.353

V 0.311
V 0.276

V 0.361

log( leadership
1−leadership

) V 0.350

V 0.114
V 0.098

• There is a great deal of agreement between the most important edges for both

topics sets. This should be expected due to the fact that the two sets are

not separated by a careful topics selection. Obviously, Γ2 contains many more

discussions related to the World Cup, but on the other hand this are not con-

tentious issues that may produce disparate results.

• The results indicate that Jon Tester (Senator from Montana) is least influential,

which is consistent with his joining the Twitter platform in March 2012 and

overall being a low content producer (740 total tweets since April 15, 2015).

His Twitter activity should be juxtaposed with a prolific user like Cory Booker

(Senator from New Jersey) who has sent over 47.5K in less than 7 years and

a moderate user like John McCain (Senator from Arizona) who has tweeted

around 8.5K times since the beginning of 2009.

• It is worth noting that John McCain features prominently in both topics sets,

given his foreign policy expertise and immigration views. These discussion

topics feature prominently in both sets.

• In general, the strongest influences are between more “senior” Senators (e.g.
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Table 3.2: Top forty edges with largest proposed edge importance values from April
16, 2009 - April 30, 2014 (topic set Γ1).

Rank Followed Follower Rank Followed Follower

1 Mike Johanns Roy Blunt 21 Jeff Flake Mike Lee
2 The O’Reilly Factor John McCain 22 Rob Portman John McCain
3 Brian Schatz Ron Wyden 23 US Army John McCain
4 Mike Johanns Mike Lee 24 Sean Hannity John McCain
5 Claire McCaskill John McCain 25 Sheldon Whitehouse Chuck Schumer
6 Al Franken Chuck Schumer 26 Bill Nelson Mike Lee
7 Mike Johanns Dan Coats 27 Richard Shelby Lamar Alexander
8 Carl Levin John McCain 28 Brian Schatz Kirsten Gillibrand
9 Lindsey Graham John McCain 29 Mike Johanns Mark Kirk

10 Bill Nelson Bob Menendez 30 Susan Collins John McCain
11 Marco Rubio John McCain 31 Jerry Moran Mark Warner
12 John Walsh Harry Reid 32 Elizabeth Warren Tom Coburn
13 Jefferson Sessions Mike Lee 33 Tim Johnson Jeanne Shaheen
14 Mike Johanns Mark Begich 34 Mark Begich Tom Carper
15 Michael F. Bennet Jay Rockefeller 35 John Barrasso John McCain
16 Brian Schatz Dean Heller 36 John Boozman Mike Lee
17 Al Franken Barbara Boxer 37 Bill Nelson Mark Udall
18 Michael F. Bennet Mark Udall 38 C-SPAN John McCain
19 Mike Johanns Rand Paul 39 Debbie Stabenow Chuck Schumer
20 Dan Coats John McCain 40 Lisa Murkowski Mark Begich

Reid, Senate Majority Leader at the time, Levin -36 years in office and Chairman

of the powerful Armed Services Committee-, Collins -18 years in office and

ranking member of the power Committee on Appropriations, Sessions - 18 years

in office and ranking member of the influential Committee on the Judiciary, and

so forth).

3.7 Summary

In this chapter, we have proposed a novel measure of the edge importances in

large social platform, by considering the amount of influence an account can ”borrow”

from the follower the edge connects to, with a single action. The method is based on

using counting processes with exponential hazard rates, to model the time sequences
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Table 3.3: Top forty edges with smallest proposed edge importance values from April
16, 2009 - April 30, 2014 (topic set Γ1).

Rank Followed Follower Rank Followed Follower

1 Debbie Stabenow Jon Tester 21 Kay Hagan Jon Tester
2 Michael F. Bennet Jon Tester 22 Chris Coons Jon Tester
3 Mark Begich Jon Tester 23 Chuck Schumer Jon Tester
4 Claire McCaskill Jon Tester 24 Bernie Sanders Jon Tester
5 Mike Johanns Jon Tester 25 Barbara Mikulski Jon Tester
6 Al Franken Jon Tester 26 Richard Blumenthal Jon Tester
7 Chuck Grassley Jon Tester 27 Bob Menendez Jon Tester
8 Tim Johnson Jon Tester 28 Mark Warner Jon Tester
9 Jay Rockefeller Jon Tester 29 Heidi Heitkamp Jon Tester

10 Mary Landrieu Jon Tester 30 Joe Manchin Jon Tester
11 Jeanne Shaheen Jon Tester 31 WSJ Jon Tester
12 Jerry Moran Jon Tester 32 Ben Cardin Jon Tester
13 Barbara Boxer Jon Tester 33 Bob Casey Jon Tester
14 Tom Harkin Jon Tester 34 Chris Murphy Jon Tester
15 Mark Pryor Jon Tester 35 Kirsten Gillibrand Jon Tester
16 Ezra Klein Jon Tester 36 Dianne Feinstein Jon Tester
17 Sheldon Whitehouse Jon Tester 37 Tom Udall Jon Tester
18 Harry Reid Jon Tester 38 Dick Durbin Jon Tester
19 Mark Udall Jon Tester 39 Mike Crapo Jon Tester
20 Carl Levin Jon Tester 40 Patrick Leahy Jon Tester

of the actions users take on the platform. In the hazard rates, we use independent

parameters to model the long term capability for an account to bring on an action from

each of its followers and the parameters can be different on separate topic sets. The

parameters are then estimated by maximizing the log of a partial likelihood function,

with lasso penalty included to introduce sparsity on the differences between topic

sets. With the estimated parameters, for each edge, we then compute the probability

for a follower on the other end of the edge, to take an action due to the action the

followed account takes, within our observation time. The importance of the edge is

then estimated by the probability multiplied by the influence of the follower, which

is computed following our influence definition in our previous project. Applications

of our new model to the US senators data shows the larger flexibility in the hazard

rate model illustrate superior performance on explaining Senators’ leadership scores
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Table 3.4: Top forty edges with largest proposed edge importance values from May
1, 2014 - July 31, 2014 (topic set Γ2).

Rank Followed Follower Rank Followed Follower

1 Mike Johanns Roy Blunt 21 Dan Coats John McCain
2 The O’Reilly Factor John McCain 22 Rob Portman John McCain
3 Brian Schatz Ron Wyden 23 US Army John McCain
4 Claire McCaskill John McCain 24 Jeff Flake Mike Lee
5 Mike Johanns Mike Lee 25 Sheldon Whitehouse Chuck Schumer
6 Al Franken Chuck Schumer 26 Sean Hannity John McCain
7 Mike Johanns Dan Coats 27 Brian Schatz Kirsten Gillibrand
8 Carl Levin John McCain 28 Richard Shelby Lamar Alexander
9 Lindsey Graham John McCain 29 Jerry Moran Mark Warner

10 Bill Nelson Bob Menendez 30 Mike Johanns Mark Kirk
11 John Walsh Harry Reid 31 Bill Nelson Mike Lee
12 Marco Rubio John McCain 32 Susan Collins John McCain
13 Tim Johnson Jeanne Shaheen 33 Mark Begich Tom Carper
14 Jefferson Sessions Mike Lee 34 Claire McCaskill Barbara Mikulski
15 Mike Johanns Mark Begich 35 Elizabeth Warren Tom Coburn
16 Michael F. Bennet Mark Udall 36 Bill Nelson Mark Udall
17 Michael F. Bennet Jay Rockefeller 37 John Barrasso John McCain
18 Mike Johanns Rand Paul 38 Barbara Mikulski Ben Cardin
19 Brian Schatz Dean Heller 39 Debbie Stabenow Chuck Schumer
20 Al Franken Barbara Boxer 40 C-SPAN John McCain

in real life. And the estimated edge importances are consistent with our observation.

Recalling the content of Chapter 2, from the computation complexity and appli-

cation examples given in this thesis, it can be seen that our proposed models in the

two chapters are most useful when looking at an small scale ecosystem of related

users like the US Senators. They may also be useful for getting better insights into

the influence of subsets of users in a bigger network. But Due to scalability issues,

they are not yet appropriate to analyze huge network like the entire Twitter space.
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Table 3.5: Top forty edges with smallest proposed edge importance values from May
1, 2014 - July 31, 2014 (topic set Γ2).

Rank Followed Follower Rank Followed Follower

1 Debbie Stabenow Jon Tester 21 Chris Coons Jon Tester
2 Michael F. Bennet Jon Tester 22 Chuck Schumer Jon Tester
3 Mark Begich Jon Tester 23 Tim Johnson Jon Tester
4 Claire McCaskill Jon Tester 24 Bernie Sanders Jon Tester
5 Mike Johanns Jon Tester 25 Richard Blumenthal Jon Tester
6 Al Franken Jon Tester 26 Bob Menendez Jon Tester
7 Chuck Grassley Jon Tester 27 Mark Warner Jon Tester
8 Jay Rockefeller Jon Tester 28 Heidi Heitkamp Jon Tester
9 Mary Landrieu Jon Tester 29 Joe Manchin Jon Tester

10 Jeanne Shaheen Jon Tester 30 WSJ Jon Tester
11 Jerry Moran Jon Tester 31 Ben Cardin Jon Tester
12 Barbara Boxer Jon Tester 32 Bob Casey Jon Tester
13 Tom Harkin Jon Tester 33 Chris Murphy Jon Tester
14 Mark Pryor Jon Tester 34 Kirsten Gillibrand Jon Tester
15 Ezra Klein Jon Tester 35 Dianne Feinstein Jon Tester
16 Sheldon Whitehouse Jon Tester 36 Tom Udall Jon Tester
17 Harry Reid Jon Tester 37 Dick Durbin Jon Tester
18 Mark Udall Jon Tester 38 Patrick Leahy Jon Tester
19 Carl Levin Jon Tester 39 Patty Murray Jon Tester
20 Kay Hagan Jon Tester 40 Bob Corker Jon Tester

3.8 Estimation Algorithm and Proofs

3.8.1 Computation equations for Newton’s update to maximize LL

Note that LL = LL0(t0) − γ
∑

i=1 |δi|. To simplify notations, we will use LL0

to represent LL0(t0) in the rest of the paper. We will first give expressions for the

gradient vector and Hessian matrix of the LL0 function and modify them to maximize

LL. Some rather straightforward algebra yields the following expressions for the
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elements of the gradient vector G0 ≡ ∇ΩLL0:

∂LL0

∂αij1

=
∑
l∈Γ1


∑

1≤k≤nlj1

Lij1 log(Mi(T
l
j1,k
, l) + 1)

−
n∑
j=1

∑
1≤k≤nlj

Lij1 log(Mi(T
l
j,k, l) + 1) exp

(∑
u6=j1 Luj1αij log(Mu(T

l
j,k, l) + 1)

)
∑

1≤v≤n exp
(∑

u6=v Luvαuv log(Mu(T lj,k, l) + 1)
)


+
∑
l∈Γ2


∑

1≤k≤nlj1

Lij1 log(Mi(T
l
j1,k
, l) + 1)

−
n∑
j=1

∑
1≤k≤nlj

Lij1 log(Mi(T
l
j,k, l) + 1) exp

(∑
u6=j Luj1(αuj + δu) log(Mu(T

l
j,k, l) + 1)

)
∑

1≤v≤n exp
(∑

u6=v Luv(αuv + δu) log(Mu(T lj,k, l) + 1)
)


(3.16)

for 1 ≤ i, j1 ≤ n, i 6= j1, and

∂LL0

∂δi
=
∑
l∈Γ2


n∑
j=1

∑
1≤k≤nlj

Lij log(Mi(T
l
j,k, l) + 1)

−
n∑
j=1

∑
1≤k≤nlj

∑
v 6=i Liv log(Mi(T

l
j,k, l) + 1)∑

1≤v≤n exp
(∑

u6=v Luv(αuv + δu) log(Mu(T lj,k, l) + 1)
)

· exp

(∑
u6=v

Luv(αuv + δu) log(Mu(T
l
j,k, l) + 1)

)}
(3.17)

for 1 ≤ i ≤ n.

Next, we obtain the necessary expressions for the Hessian matrix H(LL0). We

start by computing the sub-matrix of H that includes the second partial derivatives
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of LL0 with respect to the α parameters and obtain

∂2LL0

∂αi1j1∂αi2j1
=
∑
l∈Γ1

−
n∑
j=1

∑
1≤k≤nlj

Li1j1Li2j1 log(Mi1(T lj,k, l) + 1) log(Mi2(T lj,k, l) + 1)∑
1≤v≤n exp

(∑
u6=v Luvαuv log(Mu(T lj,k, l) + 1)

)
· exp

(∑
u6=v

Luj1(T lj,k)αuj1 log(Mu(T
l
j,k, l) + 1)

)

+
∑

1≤j≤n

∑
1≤k≤nlj

Li1j1Li2j1 log(Mi1(T lj,k, l) + 1) log(Mi2(T lj,k, l) + 1)[∑
1≤v≤n exp

(∑
u6=v Luvαuv log(Mu(T lj,k, l) + 1)

)]2

· exp

(
2
∑
u6=j1

Luj1αuj1 log(Mu(T
l
j,k, l) + 1)

)}

+
∑
l∈Γ2

−
n∑
j=1

∑
1≤k≤nlj

Li1j1Li2j1 log(Mi1(T lj,k, l) + 1) log(Mi2(T lj,k, l) + 1)∑
1≤v≤n exp

(∑
u6=v Luvαuv log(Mu(T lj,k, l) + 1)

)
· exp

(∑
u6=v

Luj1(T lj,k)(αuj1 + δu) log(Mu(T
l
j,k, l) + 1)

)

+
∑

1≤j≤n

∑
1≤k≤nlj

Li1j1Li2j1 log(Mi1(T lj,k, l) + 1) log(Mi2(T lj,k, l) + 1)[∑
1≤v≤n exp

(∑
u6=v Luv(αuv + δu) log(Mu(T lj,k, l) + 1)

)]2

· exp

(
2
∑
u6=j1

Luj1(αuj1 + δu) log(Mu(T
l
j,k, l) + 1)

)}

(3.18)
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when 1 ≤ i1, j1, i2 ≤ n, i1 6= j1, i2 6= j1, and also

∂2LL0

∂αi1j1∂αi2j2

=
∑
l∈Γ1


∑

1≤j≤n

∑
1≤k≤nlj

Li1j1Li2j2 log(Mi1(T lj,k, l) + 1) log(Mi2(T lj,k, l) + 1)[∑
1≤v≤n exp

(∑
u6=v Luvαuv log(Mu(T lj,k, l) + 1)

)]2

· exp

(∑
u6=j1

Luj1αuj1 log(Mu(T
l
j,k, l) + 1)

)
exp

(∑
u6=j2

Luj2αuj2 log(Mu(T
l
j,k, l) + 1)

)}

+
∑
l∈Γ2


∑

1≤j≤n

∑
1≤k≤nlj

Li1j1Li2j2 log(Mi1(T lj,k, l) + 1) log(Mi2(T lj,k, l) + 1)[∑
1≤v≤n exp

(∑
u6=v Luv(αuv + δu) log(Mu(T lj,k, l) + 1)

)]2

· exp

(
2
∑
u6=j1

Luj1(αuj1 + δu) log(Mu(T
l
j,k, l) + 1)

)

· exp

(
2
∑
u6=j2

Luj2(αuj2 + δu) log(Mu(T
l
j,k, l) + 1)

)}

(3.19)

when 1 ≤ i1, j1, i2 ≤ n, i1 6= j1, i2 6= j1 and especially j1 6= j2.

Next, we obtain the sub-matrix of H that includes the second partial derivatives
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of LL with respect to the δ parameters and get

∂2LL0

∂δi1∂δi2
=
∑
l∈Γ2

− ∑
1≤j≤n

∑
1≤k≤nlj

∑
v 6=i1,i2 Li1vLi2v log(Mi1(T lj,k, l) + 1) log(Mi2(T lj,k, l) + 1)∑
1≤v≤n exp

(∑
u6=v Luv(αuv + δu) log(Mu(T lj,k, l) + 1)

)
· exp

(∑
u6=v

Luv(T
l
j,k)(αuj1 + δu) log(Mu(T

l
j,k, l) + 1)

)

+
∑

1≤j≤n

∑
1≤k≤nlj

∑
v 6=i1 Liv log(Mi1(T lj,k, l) + 1)[∑

1≤v≤n exp
(∑

u6=v Luv(αuv + δu) log(Mu(T lj,k, l) + 1)
)]2

· exp

(∑
u6=v

Luv(αuv + δu) log(Mu(T
l
j,k, l) + 1)

)

·
∑
v 6=i2

Liv log(Mi1(T lj,k, l) + 1) exp

(∑
u6=v

Luv(αuv + δu) log(Mu(T
l
j,k, l) + 1)

)}
,

(3.20)

when 1 ≤ i1, i2 ≤ n.

Finally, we provide expressions for the cross-partials

∂2LL0

∂αi1,j1∂δi2

=
∑
l∈Γ2

− ∑
1≤j≤n

∑
1≤k≤nlj

Li1j1Li2j1 log(Mi1(T lj,k, l) + 1) log(Mi2(T lj,k, l) + 1)∑
1≤v≤n exp

(∑
u6=j1 Luj1(αuv + δu) log(Mu(T lj,k, l) + 1)

)
· exp

(∑
u6=j1

Luj1(T lj,k)(αuj1 + δu) log(Mu(T
l
j,k, l) + 1)

)

+
∑

1≤j≤n

∑
1≤k≤nlj

Li1j1 log(Mi1(T lj,k, l) + 1) exp
(∑

u6=j1 Luj1(αuj1 + δu) log(Mu(T
l
j,k, l) + 1)

)
[∑

1≤v≤n exp
(∑

u6=v Luv(αuv + δu) log(Mu(T lj,k, l) + 1)
)]2

·
∑
v 6=i2

Li2v log(Mi1(T lj,k, l) + 1) exp

(∑
u6=v

Luv(αuv + δu) log(Mu(T
l
j,k, l) + 1)

)}
,

(3.21)

when 1 ≤ i1, i2, j1 ≤ n, i1 6= j1.
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After getting G0 and H, we let

G = G0 − γsign(∆) (3.22)

and use G and H in Newton’s update. The function sign(·) gives a (vector) of the

signs of the values.

3.8.2 Implementation Issues

As outlined above, the maximum likelihood estimator is also obtained by Newton’s

algorithm and detailed expressions for the respective gradient and Hessian are given in

the previous subsection. However, luckily enough, the structure of the problem again

allows us to precompute and store several quantities for repeated use, thus saving

on computational time in practice. Note that the data containing the actions are

stored according to their time stamps. We again start by computing four groups of

quantities introduced by an action, labeled respectively by indices j, l, k and possibly

some other parameters, where j indicates the node that takes the activity, l is the

topic label and k represents the relative sequence number of the action, in all the

actions that node j has taken under topic l.

First, we define

E
(1)
j,v,k,l = exp

(∑
u6=v

Luvαuv log(Mu(T
l
j,k, l) + 1)

)
.

and

E
(2)
j,v,k,l = exp

(∑
u6=v

Luv(αuv + δu) log(Mu(T
l
j,k, l) + 1)

)
.

We also define

O
(c)
j,i,k,l = Lij log(Mi(T

l
j,k, l) + 1)E

(c)
j,v,k,l, c = 1, 2.
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Then, we compute

SE
(c)
j,k,l =

∑
1≤v≤n

E
(c)
j,v,k,l,

and

ME
(c)
j,i,k,l =

∑
v 6=i

Liv log(Mi(T
l
j,k, l) + 1)E

(c)
j,v,k,

c = 1, 2. Also, we have

LMj,s,k,l =
∑
u6=j

Luj log(Mu(T
l
s,k, l) + 1).

Then, based on the precomputed components values, the elements of the gradient

vector G ≡ ∇ΩLL are obtained as follows:

∂LL0

∂αij1
=
∑
l∈Γ1


∑

1≤k≤nlj1

Lij1 log(Mi(T
l
j1,k
, l) + 1) −

∑
1≤j≤n

∑
1≤k≤nlj

O
(1)
j1,i,k,l

SE
(1)
j,k,l


∑
l∈Γ2


∑

1≤k≤nlj1

Lij1 log(Mi(T
l
j1,k
, l) + 1) −

∑
1≤j≤n

∑
1≤k≤nlj

O
(2)
j,i,k,l

SE
(2)
j,k,l


for 2 ≤ i ≤ n, and

∂LL0

∂δi
=
∑
l∈Γ1

 ∑
1≤j≤n,j 6=i

∑
1≤k≤nlj

Lij log(Mi(T
l
j,k, l) + 1) −

∑
1≤j≤n

∑
1≤k≤nlj

ME
(1)
j,i,k,l

SE
(1)
j,k,l


+
∑
l∈Γ2

 ∑
1≤j≤n,j 6=i

∑
1≤k≤nlj

Lij log(Mi(T
l
j,k, l) + 1) −

∑
1≤j≤n

∑
1≤k≤nlj

ME
(2)
j,i,k,l

SE
(2)
j,k,l


for 1 ≤ i, j1 ≤ n, i 6= j1.

Regarding the Hessian, based on the four precomputed groups of quantities, we

start by computing the sub-matrix of H that includes the second partial derivatives of
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LL with respect to the α parameters. We get when 1 ≤ i1, j1, i2 ≤ n, i1 6= j1, i2 6= j1,

∂2LL0

∂αi1j1∂αi2j1
=
∑
l∈Γ1

− ∑
1≤j≤n

∑
1≤k≤nlj

O
(1)
j1,i1,k,l

O
(1)
j1,i2,k,l

SE
(1)
j,k,l

+
∑

1≤j≤n

∑
1≤k≤nlj

O
(1)
j1,i1,k,l

O
(1)
j1,i2,k,l(

SE1
j,k,l

)2


+
∑
l∈Γ2

− ∑
1≤j≤n

∑
1≤k≤nlj

O
(2)
j1,i1,k,l

O
(2)
j1,i2,k,l

SE
(1)
j,k,l

+
∑

1≤j≤n

∑
1≤k≤nlj

O
(2)
j1,i1,k,l

O
(2)
j1,i2,k,l(

SE2
j,k,l

)2


When 1 ≤ i1, j1, i2 ≤ n, i1 6= j1, i2 6= j1 and especially j1 6= j2, we similarly have

∂2LL0

∂αi1j1∂αi2j2
=
∑
l∈Γ1

∑
1≤j≤n

∑
1≤k≤nlj

O
(1)
j1,i1,k,l

O
(1)
j2,i2,k,l(

SE1
j,k,l

)2 +
∑
l∈Γ2

∑
1≤j≤n

∑
1≤k≤nlj

O
(2)
j1,i1,k,l

O
(2)
j2,i2,k,l(

SE2
j,k,l

)2

Next, we obtain the sub-matrix of H that includes the second partial derivatives

of LL with respect to the δ parameters and get

∂2LL0

∂δi1∂δi2
=
∑
l∈Γ2

− ∑
1≤j≤n

∑
1≤k≤nlj

∑
v 6=i1,i2 Li1vLi2v log(Mi1(T lj,k, l) + 1) log(Mi2(T lj,k, l) + 1)E

(1)
j,v,k,l

SE
(2)
j,k,l

+
∑

1≤j≤n

∑
1≤k≤nlj

ME
(1)
j,i1,k,l

ME
(2)
j,i2,k,l[

SE
(2)
j,k,l

]2

when 1 ≤ i1, i2 ≤ n.

Finally, we provide expressions for the cross-partials

∂2LL0

∂αi1,j1∂δi2
=
∑
l∈Γ2

− ∑
1≤j≤n

∑
1≤k≤nlj

Li1j1Li2j1 log(Mi1(T lj,k, l) + 1) log(Mi2(T lj,k, l) + 1)E
(2)
j,j1,k,l

SE
(2)
j,k,l

+
∑

1≤j≤n

∑
1≤k≤nlj

O
(2)
j1,i1,k,l

ME
(2)
j,i2,k,l[

SE
(2)
j,k,l

]2

when 1 ≤ i1, i2, j1 ≤ n, i1 6= j1.
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3.8.3 Proof of Theorem 2

To simplify the notations, similar to what we have done in the proof of Theorem

1 in Chapter 1, we first define the following notations:

E1,l(t,Ω
′) =

n∑
j=1

λ0,l(t) exp

(∑
i,i 6=j

Lij(t)α
′
ij log(Mi(t, l) + 1)

)

E2,l(t,Ω
′) =

n∑
j=1

λ0,l(t) exp

(∑
i,i 6=j

Lij(t)(α
′
ij + δ′i) log(Mi(t, l) + 1)

)

Φ′1,j = (φ′1,1j, . . . , φ
′
1,nj) ≡ (α′1j, . . . , α

′
nj)
′

Φ′2,j = (φ′2,1j, . . . , φ
′
2,nj) ≡ (α′1j + δ′i, . . . , α

′
nj + δ′i)

′

E
(1)
k,lj(t,Ω

′) =

(
∂Ek,l(t,Ω

′)

∂φ′k,1j
, . . . ,

∂Ek,l(t,Ω
′)

∂φ′k,nj

)
, k = 1, 2

E
(2)
k,lj(t,Ω

′) =

(
∂2Ek,l(t,Ω

′)

∂φ′k,ijφ
′
k,qj

)
1≤i,q≤n

, k = 1, 2

(3.23)

Let we let

ek,l(t,Ω
′) ≡ E[Ek,l(t,Ω

′)],

e
(1)
k,lj(t,Ω

′) ≡

(
∂ek,l(t,Ω

′)

∂φ′k,1j
, . . . ,

∂ek,l(t,Ω
′)

∂φ′k,nj

)

e
(2)
k,lj(t,Ω

′) ≡

(
∂2ek,l(t,Ω

′)

∂φ′k,ij∂φ
′
k,i′j′

)
1≤i,j,i′,j′≤n

(3.24)

By Condition D of Theorem 2, we can let

X(Ω′, t) =
1

‖Γ1‖0

(LL(Ω′, t)− LL(Ω, t))

Following the Step 1 to 3 in the proof of Theorem 1 in Chapter 1, and put the

γ
‖Γ1‖0

∑n
i=1 |δi| into oP (1), it can be shown that

|X(Ω′, t)− P (Ω′, t)| →P 0, as ‖Γ1‖0, ‖Γ2‖0 →∞,
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where

P (Ω′, t0) =

t0∫
0

1

‖Γ1‖0

∑
l∈Γ1

[
n∑
j=1

(Φ′j − Φj)
′e

(1)
1,lj(u,Ω)− log

{
e1,l(u,Ω

′)

e1,l(u,Ω)

}
e1,l(u,Ω)

]
du

t0∫
0

1

‖Γ1‖0

∑
l∈Γ2

[
n∑
j=1

(Φ′j − Φj)
′e

(1)
2,lj(u,Ω)− log

{
e2,l(u,Ω

′)

e2,l(u,Ω)

}
e2,l(u,Ω)

]
du

Similar to our argument in Step 1 of the proof of Theorem 1, it can be shown

that P (Ω′, t0) is strictly concave and uniquely maxiimized at Ω′ = Ω. Further by

Condition E, the smallest eigenvalue of −∇Ω′∇Ω′P (Ω′, t0) is not smaller than C4, in

probability. Following the argument of Step 3 of the proof of Theorem 1, it can be

shown that Ω̂, the maximizer of X(Ω′, t) converges in probability to Ω.
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