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ABSTRACT 

COMPUTATIONAL STUDY OF SOCIAL INTERACTIONS 

AND COLLECTIVE BEHAVIOR DURING HUMAN 

EMERGENCY EGRESS 

 

Chair: Sherif El-Tawil 

Egress of occupants from a facility is normally straightforward. Problems arise when an 

emergency is present and many occupants are attempting to egress as quickly as possible, 

at which point egress can become life threatening. There are many reported events in 

history where emergency egress resulted in extensive loss of life and injuries.  

Egress research depends heavily on computational modeling because ethical and safety 

concerns preclude running experiments involving emergency crowd evacuations. However, 

to date, existing egress models rarely take into account meaningful social interactions and 

adherence to cultural norms, both of which are commonly present among egressing 

occupants and have significant influence on their egress response. The objective of this 

study is to develop a new methodology to address this gap using an Agent-Based 

computational platform. 

A novel method, termed Scalar Field Method (SFM), is proposed to accomplish this goal. 

The new technique draws on an analogy to a charged particle in an electromagnetic field 

to simulate the decision making process of an agent as it navigates through a facility and 

considers social interactions in its quest to egress. Two categories of social interactions are 

accounted for: 1) pre-existing social relationships associated with social identities, and 2) 



xii 

informal relations in collective behaviors such as lining up in counter-flow, queuing, and 

collective mobility. The latter is achieved by requiring an agent to establish informal and 

transient leader-follower relationships with others while adjusting its behavioral patterns 

as warranted by the situation.  

Simulation results demonstrate the model’s capabilities of handling social interactions, 

modeling reasonable egress behavior, and mimicking self-organized social gathering and 

collective behavior during egress. Comparisons with field studies show that the 

computational results correlate realistically with experimental data. A case study of the 

Station Nightclub fire that occurred in Rhode Island in 2003 and killed 100 occupants 

demonstrates that the proposed computational tools have strong potential for quantitatively 

exploring the influence of social level traits on egress situations. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction and Motivation  

Egress is the action of going out of a facility or leaving a place. Egress of occupants is 

generally straightforward under normal conditions. Problems arise when an emergency is 

present and many occupants are attempting to egress as quickly as possible, at which point 

egress can become life threatening. As shown in Table 1-1, there are many reported events 

in history where emergency egress resulted in extensive loss of life and injuries. 

Although experiments on egress under non-emergency situations have been carried out by 

multiple research groups (Isobe et al. 2004a, b; Fang et al. 2010; Kretz et al. 2006a, 2006b), 

ethical and safety concerns preclude running experiments involving emergency crowd 

evacuations because of the risk of injuring participants. Therefore, research in this area 

typically focuses on analysis of actual previous events and/or computational modeling. 

Until now, good documentation of real events is generally scarce (Aguirre et al. (2011a), 

making computational simulation an important research tool in this field. 

Dozens of egress models have been published over the past half century (Kuligowski 2008). 

The most realistic among these techniques is Agent-Based modeling, which is a 

computational simulation methodology used to build an artificial society. In such models, 

evacuees are represented by computer-driven entities (agents) that have their own 
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characteristics, are adaptive and capable of interacting with each other and with their 

environment. The interactions of interdependent agents generate complex systems, 

potentially leading to emergent behavior at the system level (Aguirre et al. 2011a). 

Table 1-1: List of egress-related disasters1 

Year Location Event 
Deaths (D) & 

Injuries (I) 

2012 Port Said, Egypt Disaster in football stadium 74 D 

2011 Kerala, India Stampede near Sabarimala temple 102 D, 100 I 

2010 Phnom Penh, Cambodia Stampede on bridge in festival 349 D 

2010 Kenya Stampede in stadium 7 D, dozens I 

2010 Duisburg, Germany The Love Parade disaster 21 D, 500 I 

2010 Amsterdam, Netherland Riot during ceremony on Dam Square 63 I 

2010 Kunda, India, Stampede after temple gate collapse 71 D, 200 I 

2010 Uttar Pradesh, India Stampede in temple 66 D, 40 I 

2008 Rajasthan, India Stampede in temple 147 D, 55 I 

2008 Himachal Pradesh, India Stampede in Naina Devi Temple 145 D, 100 I 

2007 Sunchon, North Korea Crowd crush in a stadium 6 D, 34 I 

2006 Ibb, Yemen Campaign rallies in stadium 51 D 

2006 Manila, Philippines Outside a stadium 71 D 

2006 Mecca, Saudi Arabia Stampede at entrance of a bridge 362 D 

2005 Baghdad, Iraqi Stampede on bridge because of rumor 1005 D 

2005 Maharashtra, India Stampede in a Hindu temple 300 D 

2004 Beijing, China Stampede during Lantern Festival 37D, 15I 

2004 Mecca, Saudi Arabia Stampede near a bridge 251 D 

2003 Rhode Island, US The Station nightclub fire 100 D 

2003 Chicago, US In the stairway after a pepper spray use 21 D 

2001 Accra, Ghana Fans riot in football stadium 126 D 

2000 Denmark Incidence in concert at Roskilde Festival 9 D 

1999 Minsk, Belarus Stampede at the Nemiga metro station 53 D 

1998 Minas, Saudi Arabia Minas bridge stampede 119 D, 180 I 

1996 
Guatemala City, 

Guatemala 

Audience stampede in World Cup 

qualifying football match 
90 D, 150 I 

1994 Brazzaville, Congo (B) Stampede during religious activity 150 D 

1994 Mecca, Saudi Arabia Stampede near a bridge 270 D 

1993 Madison, US 
A crowd crush after a football game at 

UW–Madison's Camp Randall Stadium 
73 I 

1993 Hong Kong, China A crowd crush at Lan Kwai Fong 21 D, 48 I 

1992 Munich, Germany 
Crowd in pop star Michael Jackson's 

debut Dangerous concert 
500 I 

                                                 
1 Collated from online resources:  

<http://wenku.baidu.com/view/26d889b81a37f111f1855bb0.html> “Bloody memory: review of severe 

stampede events” 

and < http://en.wikipedia.org/wiki/Stampede> “Stampede” on Wikipedia 
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1990 Mecca, Saudi Arabia Stampede in an underground walkways 1426 D 

1989 Sheffield, England The Hillsborough disaster 96 D, 300 I 

1988 Kathmandu, Nepal Stampede in stadium since weather 100 D, 300 I 

1986, 1984 Harrisburg Deval, India Stampedes 50 D, 200 D 

1985 Brussels, Belgium The Heysel Stadium disaster 39 D 

1982 Moscow, Russia Luzhniki disaster in eponymous stadium 66 D 

1979 Cincinnati, US The Who Concert Stampede 11 D 

The vast majority of published models assume that evacuees are intent on leaving as 

quickly as possible without meaningful social interaction and adherence to cultural norms 

(Santos et al 2004). Many of the published egress models prior to the early 2000s were 

based upon the panic assumption, which has been discredited (Aguirre et al. 2011b). Some 

recent models still assume that competitive behavior dominates egress response (e.g. 

FDS+Evac, in Korhonen et al. 2010). However, recent field work has shown that evacuees 

perform complex maneuvers (Challenger et al 2009; Aguirre et al. 2011b) and behave 

deliberately rather than in a non-cooperatively competitive manner or mindless panic. 

Some of these studies show that social and social-psychological factors significantly 

influence pedestrians’ movements (Santos et al. 2004; Moussaïd et al. 2010; Aguirre et al. 

2011b). In particular, pedestrians can evacuate in an ordered and/or cooperative manner, 

and social collective behaviors are present and consequential during egress. 

Adequate and rigorous validation of egress models is a common challenge. Simulation 

results are rarely calibrated by actual events, because disasters are stochastic and often 

poorly documented. Aguirre et al (Aguirre et al 2011a) summarize the shortcomings and 

key points of validation work of existing computational studies. 

1.2 Objectives 

The general objectives of this dissertation are to develop an Agent-Based computational 

platform for human egress simulation, investigate the effects of social interactions and 

culture norms on egress behavior, mimic realistic social gathering and collective behavior, 

and calibrate and validate the model with empirical results, experiments and real-world 

disasters. Specific objectives are as follows: 
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(1) Investigate physical characteristics, behavior traits and social relationships of 

human egress, and develop a method that can comprehensively address cultural 

norms and adequately incorporate social relationships that take place during egress.  

 

(2) Using the new method, develop an Agent-Based computational platform that 

models rational behavior, simultaneously taking into account an evacuee’s desire 

to egress and his/her social relationships. Test the model in proof-of-concept 

scenarios and calibrate it with empirical result of existing egress studies. 

 

(3) Implement the developed Agent-Based platform to simulate social collective 

behavior in scenarios of queueing, collective mobility, and lining up in counter-

flow. Calibrate and validate with field observations and experiments. 

 

(4) Conduct case studies and validate the model through a real-world event, the Station 

Nightclub Fire (Figure 1-1), which occurred in 2003 and during which 100 people 

died.  

  

(a) Ruins after the fire   (b) Plan view of the building before fire  

Figure 1-1: The Station Nightclub Fire2 (2003, Rhode Island) 

                                                 
2 Pictures adapted from online resources: 

<http://www.boston.com/news/local/articles/2008/09/21/the_cost_of_tragedy/> “The cost of tragedy” 

<http://frogstorm.com/?p=3609> “The Station Nightclub Fire” 
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1.3 Structure of the Dissertation 

This dissertation is comprised of seven Chapters. Chapter 1 introduces general information 

and objectives about this work. Chapter 2 reviews the existing studies related to human 

evacuation and egress simulation. Chapters 3 to 6 address objectives 1 to 4. The final 

chapter summarizes this dissertation and draws key conclusions. Following is a brief 

description of the 7 chapters: 

Chapter 1: Introduction. General information about this study is provided and the 

objectives and structure of the dissertation are outlined. 

Chapter 2: Literature Survey. This chapter discusses the state-of-the-art in human egress 

behavior studies and computational work, the latter of which specifically focuses on Agent-

Based models. 

Chapter 3: Scalar Field Method: Model Development. Based on rationality assumption, a 

new technique termed Scalar Field Method (SFM) is created to model human desire to take 

action. As a result, it can encompass rational agent behavior and is simultaneously able to 

account for a complex network of relationships at the social level. 

Chapter 4: Scalar Field Method: Model Implementation and Preliminary Validation. 

Development of an Agent-Based platform named EgressSFM and preliminary validation 

are presented. The EgressSFM platform is comprised of building and environment model, 

autonomous agent model and other auxiliary modules (e.g. I/O control, display etc.). The 

agent model implements the SFM theory, and can explicitly simulate the “thinking” 

process of an occupant. Preliminary validation studies show the ability of the new software 

to mimic reasonable evacuation behavior, and its potential for exploring the significance 

of social relationships during egress. 
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Chapter 5: Modeling Social Collective Behavior. The EgressSFM platform is enhanced to 

include a leader-follower model. The model interprets local social interactions and 

collective behavior and then uses this information to mimic three particular scenarios: 

lining up in counter-flow, queuing, and collective mobility. To achieve this, an agent 

establishes informal and transient leader-follower relationships with others while adjusting 

its behavioral patterns as warranted by the situation. The proposed model is calibrated to 

existing field data and then validated using another set of field data, where it is shown that 

the new model is capable of reasonably simulating social collective behavior during egress. 

Chapter 6: Case Study of the Station Nightclub Fire. The Station Nightclub event is 

simulated using EgressSFM, taking into account fire and smoke hazards. The simulation 

results are compared with actual data from the post-event investigation showing that the 

proposed model is reasonable. The capability of the proposed Agent-Based platform to 

quantitatively explore the influence of social level traits is demonstrated through a series 

of hypothetical exercises. 

Chapter 7: Summary and Conclusions. The dissertation is summarized and the conclusions 

drawn from the research accomplished are presented in this chapter. 
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CHAPTER 2 

LITERATURE SURVEY 

 

2.1 Introduction 

This chapter discusses the state-of-the-art in theoretical and computational studies of 

human egress, with specific focus on Agent-Based simulation. Observations and discussion 

of human egress behavior based on field observations, experiments and real-world disasters 

are first described in Section 2.2. In Section 2.3, Agent-Based Modeling and other egress 

simulation techniques are reviewed. This is followed by a literature survey of existing 

Agent-Based egress models in Section 2.4. 

2.2 Human Egress Behavior and Characteristics 

Researchers have studied the egress response of humans, especially under emergencies, in 

multiple ways through the use of videos, field observations, surveys, experiments and 

simulation. The studies have generally focused on individual and group behaviors. The 

former mainly focuses on an evacuee’s egress response as an unattached actor intent on 

rapid escape. The latter considers the evacuee’s social attributes, e.g. formation of groups; 

interaction with family members, and self-organized collective behavior, e.g. line 

formation. 

Study of an individual’s egress behavior typically assumes that an escaping individual will 

move according to “least effort” (Still 2000), aiming to minimize time and costs, avoid 
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congestion and maximize speed (Challenger et al. 2009). Typically, people will take the 

fastest route (Challenger et al. 2009), and prefer not to take detours (Helbing et al. 2001). 

In addition, evacuees try to keep a certain distance from other people and from walls and 

obstacles to avoid collisions (Thompson 2004; Challenger et al. 2009). Moreover, people 

prefer to move at their maximum walking speed rather than run to conserve energy 

(Challenger et al. 2009). 

To capture an individual’s egress behavior, early researchers proposed and used the “panic” 

assumption, e.g. Helbing et al. (2000). When panic dominates behavior, it is assumed that 

evacuees seek to egress without undergoing a rational thinking process, e.g. in a selfish, 

mad, instinctive manner. However, this point of view has been discredited (Aguirre et al. 

2011b). As discussed in Aguirre et al. (2011a), there is strong evidence in the social science 

literature that evacuees act rationally and normatively during emergency evacuations and 

that panic response during crises is rare (also see Aguirre et al. 1998, 2005, 2011b; 

Kuligowski et al. 2010; Schadschneider et al. 2009). In addition, among members of 

evacuating gatherings, cooperative behavior is common and preexisting social affiliations 

have an important effect on the collective response of people (Santos et al 2004; Moussaid 

et al 2010). 

One point of particular importance is the presence of preexisting social relationships (such 

as kinship, friendship, etc.) among evacuees (Yang et al 2005). It has been commonly 

observed that those evacuating tend to do so in groups (Challenger et al. 2009; Moussaid 

et al 2010; Chu et al 2012). Participants with meaningful social relations tend to stay 

together, potentially increasing the dangers they collectively face (Johnson et al. 1994). 

For example, in a thoughtful investigation of human behavior during the Station nightclub 

disaster that killed 100 and injured nearly 200 persons in 2003, Aguirre et al (Aguirre et al 

2011a, b; Best 2013) summarized six type of social groups that influenced evacuees’ social 

relationships: alone, co-worker, friend, dating partner, family member, and multiple level.  

They demonstrated that social relationships played important roles and many group 

members attempted to find other members in their social group instead of evacuating 

immediately. Besides the effect of preexisting social relationships, pedestrians can 
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evacuate in an ordered and/or cooperative manner, and social collective behaviors are 

present and consequential during egress, rendering inappropriate the often-used practice of 

selecting the closest exit to describe egress behavior (Cialdini 1993; Pan 2006; Aguirre et 

al. 2011b; Chu et al 2012). 

Counter-flow is a situation in which social collective behavior can occur. In counter-flow, 

groups of pedestrians walking in opposite directions meet head-on in a confined space. 

Field studies have shown that people form lines and follow an ad-hoc leader when 

pedestrian density is sufficiently high (Still 2000; Schadschneider et al 2009). Isobe et al 

(2004a) and Kretz et al (2006b) have conducted two independent experiments of counter-

flow in narrow corridors. The former measured total passing time over the corridor, while 

the latter measured passing time through three locations. Both experiments showed a 

generally linear dependence of passing time on population size and automatic line forming 

during counter-flow was documented. 

  

Figure 2-1: Counter flow movement (adapted from Fig. 9 & 10, p. 14-15, Still 2000) 

Queuing and collective mobility are other examples of social collective behavior, for in 

them social and cultural emergence is common, as people have to learn to cooperate with 

strangers while being guided by new sets of social norms. When an emergency occurs, 

evacuees may not be fully aware of the extent of the hazard because they have not yet been 

alarmed by officials or by visible fire or smoke, for example. They thus start to egress in a 

relaxed manner and are under relatively low anxiety. They keep common cultural norms, 

for example by queuing up when congestion occurs before an exit or doorway. In contrast 
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to competitive situations, queuing evacuees are considered to lead to more effective 

evacuation (Pan 2006, Challenger et al 2009). Collective mobility occurs when some 

evacuees are faced with uncertainties about what is going on and what they can do to 

protect themselves and others dear to them (Cialdini 1993; Pan 2006). For example, in a 

room with multiple egress points, evacuees who are uncertain about which way to move 

may choose to follow others who appear more deliberate in their actions. 

  

Figure 2-2: Queuing for egress (adapted from Fig. 25 & 26, p. 25-26, Still 2000) 

Based on a synthesis of the research outlined in the past studies discussed above, this 

dissertation assumes that evacuees present rational and autonomous behavior generally 

influenced by three types of intent: 

1. Egress behavior, which is driven by the intent to egress and influenced by obstacles 

and the surrounding environment. Evacuees are able to comprehensively consider 

multiple objectives, including the desire to exit a building, preserve private space, 

and not collide with walls and with other agents. An individual’s behavior tends to 

be competitive when this aspect of behavior is exclusively considered. 

 

2. Incorporation of social relationships, where an occupant conducts protective 

behaviors elicited in an attempt to benefit kin, intimate partners, and work 

associates, among others. A typical observed behavior is that kin related evacuees 
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meet first before escaping as a group during extreme events, e.g. the so-called 

“backtracking” phenomenon (Bryan 1995). 

 

3. Collective behavior, where an evacuee’s behavior can be cooperative or 

uncommitted to the welfare of others in the collectivity. The impact of this aspect 

can be significant in some scenarios, such as queuing before a door/exit, collective 

mobility, and lining up in a narrow corridor. 

The second and third behaviors are often considered as a single category of group behavior 

in the current literature (Moussaïd 2010; Chu et al 2012) primarily because social level 

relationships are not distinguished. However, in this work, they are viewed separately 

because of key differences among them. The former is often steady, permanent and with 

explicit specified objects associated with social roles and identities, whereas the latter is 

informal, temporary and without combined social identity. Another important distinction 

is that the former can act at a distance whereas the latter is normally invalid outside a 

limited zone, e.g. the visual field of an occupant. 

2.3 Egress Simulation Techniques 

Agent-Based Modeling (ABM) is a computational simulation methodology used to build 

an artificial society, and considered as one of the most realistic among existing egress 

simulation techniques (Aguirre et al. 2011a). In such model, evacuees are represented by 

computer-driven entities (agents) that have heterogeneous characteristics and are adaptive. 

Agents are autonomous units, capable of interacting with surrounding entities, the 

environment and other agents and able to make independent decisions. The interactions of 

interdependent agents generate complex systems, potentially leading to emergent behavior 

at the system level (Aguirre et al. 2011a). In particular, ABM allows modeling the complex 

social relationship network among agents to examine collective egress behavior during 

evacuation. A brief analysis of Agent-Based models is presented in section 2.4. 
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Most of the recently published agent-based egress models can be grouped into two 

categories based on their algorithms used for controlling the response of evacuees: pattern-

based, e.g. MASSEgress (Pan 2006) and SAFEgress (Chu et al 2012), and force-based, e.g. 

Social Force Model (Helbing et al. 1995, 2007) and FDS + Evac (Korhonen et al 2007, 

Heliӧvaara et al 2012), also termed rule based models and social force models by 

Pelechano et al. (2007). 

In typical pattern-based models, evacuees’ behaviors are governed by pre-defined 

behavioral patterns, each comprised of a hierarchy of potential actions triggered by various 

conditional judgments. In general, a possible difficulty with many pattern-based models is 

that pre-defining social interactions between agents can be unwieldy and becomes 

increasingly complex to design or implement as the number of socially interacting agents 

increases.  

Agents in force-based models are controlled by a mixture of real (physical) and virtual 

(social) forces. The motion of each evacuee is computed by solving the dynamic equations 

of motion of the system of particles representing a crowd (Helbing et al 1995, 2007). While 

early versions of such models did not address rotation of an evacuee, recent versions have 

overcome this difficulty by considering the torsional response of evacuees in the equations 

of motion (Langston et al 2006; Heliӧvaara et al 2012).  

Force-based models have been criticized by a number of researchers. For example, Still 

(2000) noted that pedestrians will not necessarily conserve momentum as implied by 

solution of the dynamic equations of motion. In particular, in a number of situations they 

can stop and start at will and in spite of the imposed social forces. Furthermore, 

Schadschneider et al. (2009) asserted that interactions between pedestrians need not satisfy 

Newton’s Third Law. A key limitation of force-based models is that they do not explicitly 

model the thinking process of an agent. As a result, the vectorial nature of adding social 

and physical forces, which is the basis of the method, becomes too restrictive for handling 

more complex social situations, e.g. groups of socially interacting agents, and the abrupt 

behavioral changes that occur in evacuations. 
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Most egress models strive to have evacuees moving freely in space in an effort to achieve 

the greatest realism possible. An alternative category of models, namely cellular automata 

(CA), is popular because of its simplicity. Typical CA models discretize space into a group 

of homogenous and discrete cells, which are normally rectangular, hexagonal or triangular. 

Each cell can be either empty or occupied by an evacuee or obstacle. An advantage of this 

type of model is that it can conveniently incorporate environmental hazards in the 

discretized space. For example, Tang et al (2008) incorporated a fire dynamics simulator 

(FDS) and geographic information system in CA to simulate evacuation in a fire scenario 

(Figure 2-3). By assuming occupants are “blind” because of smoke or darkness, Isobe et al 

(2004b) used CA models to compute the average escape time in a room without visibility. 

In general, however, CA models have difficulty in accurately representing human 

characteristics, including free movement (including rotation) and social traits. Because the 

grid cells are uniform, analysis of dense crowd could be problematic and depends on the 

model builder’s skill (Pan 2006). 

  

Figure 2-3: CA model developed by Tang et al (2008) 

Another technique used for egress simulation is the flow-particle model. Such models, 

which are among the earliest egress models proposed, assume that evacuees move 

analogously to fluid-like particles from one room to another. Yet another early technique 

is the fluid dynamics approach, which uses fluid dynamics principles to provide a 

macroscopic description of human evacuation. In such models, it is assumed that escaping 

occupants are analogical to a gas with a Boltzmann-like distribution under specific 

conditions (Henderson 1974). The third early technique is the “Distance maps” model 
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(Thompson et al 1995). As shown in Figure 2-4, the model evaluates spaces based on travel 

distances to exits and draw contour lines over a floor plan (map) to compute the shortest 

escape route of occupants. These early models lack the realism of their modern 

counterparts, especially agent based models, and are considered obsolete. 

2.4 Existing Agent-Based Egress Software 

Simulex is considered to be the predecessor of most modern agent-based evacuation 

software (Santos et al 2004). Designed to evaluate the evacuation efficiency of buildings, 

the model was developed to simulate the escape movement of crowds through complex 

user-defined building geometries (Thompson et al. 1995). One strong suit is its ability to 

handle building geometry and human locomotion in free space combining calibrations with 

various resources such as video evidence (Thompson 2004). Simulex falls short of reality 

because it does not consider any social interaction or collective behavior. 

  

Figure 2-4: “Distance maps” and Simulex (adapted from Thompson et al 1995; 2004) 

buildingEXODUS, created by the Fire Safety Engineering Group (Gwynne et al. 2001, 

2006), is a commercially successful evacuation simulation tool. Based on Agent-Based 

modeling techniques, the software takes into account evacuees’ various characteristics 

including positions, psychologies and physical restraints, and is comprised of six modules 

to simulate agent interaction: Occupant, Movement, Behavior, Geometry, Hazard, and 
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Toxicity. An advantage of this model is that it takes into account the influence of fire hazard 

by using a fluid dynamic model. However, the software has limitation in social and group 

effect treatment (Aguirre et al 2011a). 

Pelechano et al (2007) developed HiDAC (High-Density Autonomous Crowds) to simulate 

large and dense crowds of autonomous agents for the computer graphics community. The 

model enables agents to select one of multiple patterns of response such as bi-directional 

flow, queuing, pushing, etc. Implementing the response pattern, each agent conducts two 

level of actions: High-level, such as navigation, learning, communication between agents, 

and decision-making; and low-level, perception and a set of reactive behaviors such as 

collision avoidance and detection. The tool can mimic reasonable responses, e.g. the 

formation of wide or narrow queues in non-panic situations, as shown in Figure 2-5. 

HiDAC implements the “panic” assumption which has been discredited, and fails to model 

a human’s social level traits. 

  

Figure 2-5: Queues in HiDAC system (adapted from Pelechano et al 2007) 

MASSEgress is an Agent-Based model developed by Pan (2006) at Stanford University. 

Each agent is able to perceive the surrounding environment and choose one of several 

behavioral patterns including competitive, queuing, and herding (thereafter termed 

collective mobility) responses. These behavioral patterns are controlled by several 

perception-related parameters, such as importance, uncertainty, urgency and stress level. 

Each pattern is comprised of stochastic basic movements such as random walk, seek, target 
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following and etc. The complexity of its behavioral engine allows agents to move 

independently and stochastically at the micro level, and enables collective behaviors such 

as queuing and collective mobility near doors/exits (Figure 2-6). A drawback is its inability 

to incorporate environmental hazards, which can lead to an agent’s injury and death. 

Another limitation is that the model does not take into account social relationships and 

group effects among agents. 

 

Figure 2-6: Behavioral patterns in MASSEgress (adapted from Pan 2006) 

An upgraded version of MASSEgress, SAFEgress (Social Agent For Egress simulation), 

was developed by Chu et al (2012) at Stanford University. The new agent behavior models 

are comprised of individual behavioral models, group behavioral models, and crowd 

behavioral models. Like Figure 2-7 shows, SAFEgress implements three group behaviors 

including leader-following, group-member-following, and group-member-seeking 

responses. The prototype version of SAFEgress has produced preliminary results that 

exhibit certain grouping behaviors and interactions among the evacuees. Similar to 

MASSEgress, environmental hazards are not accounted for. In addition, the group behavior 
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models need to be refined to account for the type of gathering and social relations such as 

kinship, friendship, etc. 

 

Figure 2-7: Model architecture of SAFEgress (adapted from Chu et al 2012) 

The Social Force Model (Helbing et al. 1995, 2000, 2007) models human movement based 

on Newtonian mechanics. In it, each person in a crowd is represented by an agent. The 

agent is subjected to a series of virtual forces termed social forces and locomotion is 

computed by solving the dynamic equations of motion of the system of particles 

representing a crowd. The Social Force model has been shown to handle dense crowd 

situations well. As shown in Figure 2-8, older versions assumed an agent to be a circle and 

didn’t take account rotation of the agent. Newer versions improved an agent’s geometry, 

enabled agents to rotate and accounted for contact forces and moments between agents, e.g. 

the implementation in CrowdDMX (Langston et al 2006) and FDS + Evac (Korhonen et 

al 2007, Heliӧvaara et al 2012). Smith et al (2009) improved the CrowdDMX model’s 

ability to represent counter-flow. FDS + Evac is one of the newest models developed based 

on the social force assumption. They examined the capabilities of the model in various tests 

by comparing to empirical results and experiments. In particular, Heliӧvaara et al (2012) 

modeled counterflow situations by assuming that right-hand road traffic rules govern a 

pedestrian’s tendency to move in counter-flow situations. 
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Figure 2-8: Social Force Model (Helbing et al 2000) and FDS + Evac (Korhonen et al 2007) 

Researchers from University of Delaware and University of Michigan (Aguirre et al 2011a; 

Best 2013) conducted an investigation of human egress behavior during the Station 

nightclub disaster (2003) and developed an Agent-Based model to simulate the Station 

event. The model incorporated fire and smoke hazards and accounted for their effects on 

the egress process. Detailed demographic information and complex social group dynamics 

were incorporated. The model was validated by comparing its results to the observed field 

data, including the number of people injured and killed during the event. While powerful, 

the model’s locomotion algorithm and social interaction capabilities are limited and 

significantly improved upon in this dissertation. 

2.5 Summary 

The state-of-the-art of theoretical and computational studies of human egress are reviewed 

in this chapter. A critical assumption of three types of intent that influence human egress 

behavior is presented based on a synthesis of past studies. The literature review reveals that 

existing Agent-Based models generally do not address meaningful social interaction and 

adherence to cultural norms, key issues that are addressed in this dissertation. 
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CHAPTER 3 

SCALAR FIELD METHOD: MODEL DEVELOPMENT  

 

3.1 Introduction 

This chapter introduces the rational behavior assumption, discusses human egress 

characteristics, and then proposes a novel technique for modeling egress behavior. The new 

method, termed Scalar Field Method, draws on an analogy to a charged particle in an 

electromagnetic field. In the new model, virtual potential energies (VPEs), that can be 

made to represent both human will and social relationships, simulate the interactions that 

occur between an agent and its surrounding entities. Each agent has stochastic 

characteristics, is independent, and makes autonomous decisions regarding behavior by 

minimizing the VPE. Human physical characteristics and the rationality assumption are 

first presented in Section 3.2 and 3.3 respectively. Details of the Scalar Field Method is 

discussed in Section 3.4, followed by a description of how social relationships are 

incorporated in Section 3.5. 

3.2 Human Physical Characteristics 

Each agent is represented by a set of three circles (as shown in Figure 3-1), one for “torso” 

and two for “shoulders” at both sides. The radius of the “torso” is assumed to be an average 

of 0.15m, and each “shoulder” is 0.075m (0.45m is an average body width reported by Xu 

et al. (2010)). The centers of the two “shoulders” are located on the edge of the “torso,” 

and are on the same diameter, which crosses the center of the “torso”. The forward direction 
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is defined by a bar starting from the “torso” center and perpendicular to the diameter 

connecting the “shoulder” centers. This three circle model was first defined by Fruin (1971), 

and widely used in many Agent-Based models, e.g. Thompson et al (1995), Pan (2006), 

and Langston (2006). 

 

Figure 3-1: An agent’s body geometry 

An agent’s mobility is constrained by its maximum rotational velocity and maximum 

translational velocities in four directions, i.e. forward, backward, and lateral (left and right). 

In one time-step, the agent’s actual movement can’t exceed those limits, but its movement 

can be accomplished toward any point within an area enclosed by those limits. Since the 

maximum velocity in the forward-facing direction is significantly higher than that 

associated with lateral and backward motion, the area reachable in one step is the egg-

shaped shaded one in Figure 3-2. The border in each quadrant is assumed to be a quarter 

ellipse that connects smoothly with the ellipses of the other quadrants. In addition, the agent 

is allowed to rotate at a rate smaller than the maximum rotational velocity. 
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Figure 3-2: Agent’s range of motion in one time step 

Age is considered to be an important factor in an evacuee’s mobility (Pan 2006). Adults 

are generally faster and more agile than children and seniors. Previous studies (Heliövaara 

et al. 2012; Thompson 2004) grouped the population into several categories with defined 

velocity ranges. In this study, only two categories are adopted: “adults”, which contains 

both males and females 15 to 65 years old, and “children + seniors”, which contains 

individuals with lower mobility than the first group. According to “CIA World Factbook” 

(Central Intelligence Agency 2013), the population distribution in the US is 20% children 

(≤14), 54% adults (15-64), and 26% seniors (≥65). Therefore, both categories are assumed 

to be equally represented in a group of agents as default in this work, although, for 

simplicity, all agents are assumed to have the same size. 

To reflect the stochastic nature of moving individuals, the maximum speeds of each agent 

are randomly determined from ranges that dependent on its age category. Adult agents are 

assumed to have a maximum forward speed that is randomly selected from a range of 0.95 

m/s to 1.55 m/s. Agents in the “children + seniors” category have a maximum forward 

speed in the range between 0.55 m/s to 1.25 m/s. The lateral speed limit is selected as 0.5 

m/s and the backward limit 0.2 m/s for the “adults” and as 0.3 m/s and 0.1 m/s for “children 

+ seniors”. The maximum rotational capability is randomly determined between 3 rad/s to 

4 rad/s for the “adults” and half of that value for “children + seniors”. These speeds are 
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based upon on information in previous studies (Tang 2008; Thompson 2004; El-Tawil et 

al. 2009). The initial orientation of each agent is allocated randomly. 

To describe an agent’s health condition, stamina is quantified as a scalar number termed 

energy level (terminology adapted from Aguirre et al 2011a and Best 2013). Environmental 

hazards are harmful and can lower the energy level. In particular, fire is assumed to kill the 

agent immediately, and the toxic effect of smoke is assumed to reduce an evacuees' stamina 

(Bryan 2002; Best 2013). The agent’s mobility is dependent on its energy level (Pauls 1977; 

Klote 1992).  

3.3 The Rationality Assumption 

In contrast to the “panic” or unconscious decision-making assumption adopted by many 

older emergency evacuation models, this study assumes that an evacuee’s physical 

behavior is driven by a rational “thinking process”. Recent studies suggest that rational 

behavior is commonplace during an emergency evacuation (Aguirre et al. 1998, 2005, 

2011b; Kuligowski et al. 2010; Schadschneider et al. 2009) and social and social-

psychological factors can significantly influence an evacuee’s behavior (Santos et al. 2004; 

Moussaïd et al. 2010). Agents are able to perceive and assess mental level factors, 

including desired goals and social and group relationships, and respond to those factors 

through locomotion. As discussed in Chapter 2, these desires may comprise the evacuee’s 

need to exit, avoid collision with walls and other agents, move towards related agents, and 

keep private spacing.  

Social and socio-psychological factors must be considered in assessing an evacuee’s desire 

to take action. Social relationships, which describe the interaction between people at the 

social level, must also be considered. However, since social relationships between 

evacuees can be complex, until now only the most dominant relationships have been 

accounted for in existing modeling schemes, constituting a problem that is rapidly being 

superseded in the scientific literature. The rational behavior assumption made herein is 
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applicable for both normal as well as crisis situations, for the literature shows that 

competitive behaviors that occur under crowding conditions are usually misunderstood as 

panic, for they show the absence of wishful intent to do harm. Although many events with 

a large numbers of deaths under extreme conditions have been reported, the majority of 

these events show that human responses are normative and pro-social (Aguirre et al. 2011a). 

3.4 The Scalar Field Method 

The Scalar Field Method (SFM) is proposed to control an agent’s motion. The new method 

can comprehensively consider social level effects and handle a complex network of social 

relationships among agents. The essence of this method is to evaluate the accumulation of 

a series of scalar quantities, which can be made to represent human desires and social and 

group relationships, and then solve an extremum collective behavior problem reflecting a 

rational decision-making process. 

SFM is based on the assumption that interactions exist between each object in the 

simulation, e.g. agent-to-agent, agent-to-wall, agent-to-exit, etc. These interactions can be 

quantified as scalar fields of virtual potential energy (VPE). The scalar fields can be easily 

and conveniently computed as a function of distance to other agents or objects in the 

environment, in a manner similar to what occurs for a charged particle in an 

electromagnetic field. In this analogy, agents are attracted to other related agents and exits 

similar to the attraction felts by particles with opposite charges. In addition, agents are 

repelled by barriers that impede their motion similar to particles with like charges. Because 

all the computations involve scalar quantities (hence the name of the method), the VPEs 

from various sources can be directly added together to form a comprehensive field around 

the agent that signifies the additive or subtractive effects of issues of importance to the 

agent. The analogy to electromagnetic fields implies that the desire to take action will be 

guided by the intent of minimizing the VPE. The premise of the model is that the lower the 

value of VPE, the greater will be the intent to take action, and vice versa. This makes it 

possible to model different social groups, which may be assumed to differ by the level of 
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commitment of their members to each other, such as kinship groups versus groups of casual 

observers. 

The proposed idea of VPE fields has some parallels to the Social Force Model proposed in 

(Helbing et al. 1995, 2007) but has several major advantages and benefits, including: 1) 

the scalar nature of the model makes handling it easier than the vector-based social force 

model; 2) social effects and physical forces are independent, unlike the social force model 

in which the two are mixed; and 3) it can accommodate rotational behavior by individual 

agents, which is ignored in many force-based models. The model also has some similarity 

to models that employ distance maps (Thompson 1995), but unlike such models is able to 

account for many more considerations in the decision making process. 

3.4.1 Modeling Human Desire to Take Action 

Several types of social behaviors can be included in the SFM, such as the desire to exit a 

building, preserve private space, not collide with walls and with other agents, and 

protective behaviors elicited in an attempt to benefit kin, intimate partners, and work 

associates, among others. Equations 3-1 through 3-8 are proposed for converting these 

sequences of behaviors into virtual potential energies as follows.  

The first (desire to exit a building) can be generally represented by making the VPE 

associated with it directly proportional to the distance between the agent and an exit as 

represented by Equation 3-1. Other things equal, the shorter the distance to an accessible 

exit, the smaller the VPE, and hence, the greater the propensity to move in that direction. 

The need to avoid collision with other agents and preserve private spacing, and the desire 

to prevent collision with walls, can be generally represented by making the VPE for both 

situations reciprocal to the distance between an agent and an adjacent agent or obstacle (i.e. 

Eq. 3-2 and 3-3). Another way to express it is that the repulsion between an agent and other 

agents, the preservation of social space of each agent, as well as adjacent physical objects 
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grows as the distance between them decreases. These issues are represented 

mathematically as follow: 

𝐸1𝑠 = 𝑐1𝑑1     (3-1) 

𝐸2𝑠 = 𝑐2
1

𝑑2
     (3-2) 

𝐸3𝑠 = 𝑐3
1

𝑑3
     (3-3) 

 where 𝐸1𝑠, 𝐸2𝑠 and 𝐸3𝑠 are the virtual potential energies of the three human desires 

or behaviors, agent to exit, agent to other agent, and agent to wall, respectively; 𝑐1, 𝑐2 and 

𝑐3 are constants; 𝑑1, 𝑑2 and 𝑑3 are the distances between agent and exit, other agent and 

wall, respectively.  

Equations 3-1 through 3-3 are conceptual equations and not general enough to permit 

practical implementation, so they are modified as shown in Equations 3-4 through 3-6. 

Graphical illustrations for these latter equations are presented in Figures 3-3 through 3-6. 

𝐸1 = 𝑐1(𝑑1 + 𝐷1𝑎 − 𝐷1𝑒cos⁡(Δ𝜃1))    (3-4) 

𝐸2 = {
𝑐2 (

1

(𝑑2−𝑅𝐴−𝑅𝑇,𝑜𝑡ℎ𝑒𝑟)
−

1

𝐷20
+ 𝐸2,𝑐𝑜𝑢𝑛𝑡𝑒𝑟)⁡, 𝑑2 − 2𝑅𝐴 < 𝐷20

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡, 𝑑2 − 2𝑅𝐴 ≥ 𝐷20

 (3-5) 

𝐸3 = {
𝑐3 (

1

(𝑑3−𝑅𝑇−𝑅𝑆)
−

1

𝐷30
) , 𝑑3 − 𝑅𝑇 − 𝑅𝑆 < 𝐷30

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡, 𝑑3 − 𝑅𝑇 − 𝑅𝑆 ≥ 𝐷30
   (3-6) 

 where 𝐸1 , 𝐸2  and 𝐸3  are the virtual potential energies of the three behaviors 

respectively; Δ𝜃1 in Equation 3-4 is the absolute value of the angle difference between the 
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forward facing orientation of an agent and the direction pointing to the target object (see 

Figure 3-3); 𝐷1𝑎 is a positive constant added to ensure that Equation 3-4 remains positive. 

𝐷1𝑒  is a coefficient associated with the orientation of an agent. 𝐷20  and 𝐷30  indicate 

influence distances in Equations 3-5 and 3-6, respectively. Agents and other entities within 

the influence zone (as shown, for example, in Figure 3-5) can interact together in a VPE 

sense, otherwise they are unable to influence one another. 𝑅𝐴 is the radius of an agent in 

the direction of interest. To simplify calculation of 𝑅𝐴, an agent is assumed to be enclosed 

by an ellipse with principal radii 𝑅𝑇 and 𝑅𝑇 + 𝑅𝑆, where 𝑅𝑇 and 𝑅𝑆 are the sizes of the 

torso and shoulder respectively. 𝑅𝑇,𝑜𝑡ℎ𝑒𝑟  is the size of the torso of the other agent in 

Equation 3-5, numerically equal to 𝑅𝑇.  

𝐸2,𝑐𝑜𝑢𝑛𝑡𝑒𝑟  is a term that accounts for an agents’ dodging behavior in a counter-flow 

situation, where agents attempt to prevent face-to-face situations as they are approaching 

other oncoming agents. The details of this term are shown in Equation 3-5.a.  

𝐸2,𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝛾2,𝑐 (
1

𝑑2−𝐷2𝑒(cos(∆𝜃2,𝑠𝑒𝑙𝑓)+cos(∆𝜃2,𝑜𝑡ℎ𝑒𝑟))
−

1

𝐷20,𝑐
)  (3-5.a) 

 𝛾2,𝑐 = 𝛾2(cos(∆𝜃2,𝑠𝑒𝑙𝑓) + cos(∆𝜃2,𝑜𝑡ℎ𝑒𝑟) + 3 ∗ cos(∆𝜃2,𝑠𝑒𝑙𝑓) cos(∆𝜃2,𝑜𝑡ℎ𝑒𝑟)) 

     (3-5.b) 

 𝐸2,𝑐𝑜𝑢𝑛𝑡𝑒𝑟 is a piecewise function that equals non-zero only when the agent can see 

other oncoming agents. In mathematical terms, 𝐸2,𝑐𝑜𝑢𝑛𝑡𝑒𝑟  has a finite value when 

∆𝜃2,𝑠𝑒𝑙𝑓 <
𝜋

2
 and 𝑑2 − 𝐷2𝑒(cos(∆𝜃2,𝑠𝑒𝑙𝑓) + cos(∆𝜃2,𝑜𝑡ℎ𝑒𝑟)) < 𝐷20,𝑐 , otherwise it equals 

zero. 𝛾2,𝑐 is a strength variable associated with 𝐸2,𝑐𝑜𝑢𝑛𝑡𝑒𝑟, that becomes lower as agents are 

less aligned and higher otherwise. 𝛾2,𝑐 is defined in Equation 3-5.b. ∆𝜃2,𝑠𝑒𝑙𝑓 is the absolute 

angle difference between the forward-facing orientation of an agent and the direction 

pointing to an adjacent ‘other’ agent, and ∆𝜃2,𝑜𝑡ℎ𝑒𝑟 is the corresponding angle difference, 

as seen by the other agent in Figure 3-6. 𝐷2𝑒 is a coefficient associated with orientation 

angles. It increases the VPE when an agent faces another adjacent agent, encouraging the 
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former agent to face away. 𝐷20,𝑐 is the influence distance of 𝐸2,𝑐𝑜𝑢𝑛𝑡𝑒𝑟. 𝛾2 in Equation 3-

5.b is the upper limit of the strength variable.  

 

 

 

 

Figure 3-3: Interaction between an agent and exit 

 



28 

 

Figure 3-4: Interactions between an agent and wall, and between agents 

 

 

 

 

Figure 3-5: Influence distances for inter-agent interaction 
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Figure 3-6: Angle differences for inter-agent interaction 

 

3.4.2 Visualization of VPE Fields 

To better visualize the spatial nature of the VPE field, consider Figure 3-7 and 3-8, which 

shows the VPE field for three agents located near a wall and an exit. As shown in Figure 

3-7, the agent in the middle is the target agent, for which VPE computations are being made 

in this example. It is clear from the Figure 3-8 that the VPE field decreases away from the 

wall and towards the exit. Also, there are spikes at the locations of the other two agents. 

Knowing this information, the target agent can now unambiguously select a step to 

minimize the VPE. Doing so from the perspective of the target agent means that the agent 

will move towards the exit, avoiding the wall while being aware of the two other agents 

who may serve as obstacles to the agent’s movement. It should be noted that Figure 3-8 

shows the VPE field perceived by the target agent only. The other two perceive their own 

VPE fields and simultaneously minimize their VPEs to compute their motions. The models 

for locomotion and rotation are discussed in next chapter. 
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Figure 3-7: Example of VPE visualization: spatial arrangement of entities 

 

 

 

Figure 3-8: VPE field perceived by target agent 
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3.5 Egress Behavior Incorporating Social Relationships 

Along the same lines described above, the general idea for modeling social relationships is 

that agents who are related (through kinship, dating partners and etc.) are attracted to one 

another more strongly than agents’ weaker social relationships with friends. The attraction 

is assumed to be linear for family members and elliptic for friends and co-workers, as 

outlined in Equations 3-7 and 3-8, respectively, to reflect the relative strengths of these 

relationships. For blood relatives, the interaction is assumed to be effective over long 

distances, and its VPE is proportional to the distance beyond a conferral zone, within which 

the family can talk and achieve a collective decision. Equation 3-7.a shows a conceptual 

equation (similar to Equations 3-1 through 3-3), which is modified to be Equation 3-7.b for 

implementation. The interaction between friends is assumed valid for a limited distance 

beyond which it is considered ineffective. The value of the VPE for friends is negative, 

lowering the total energy when they move together. 

As shown in Figure 3-9, the distance between kin-related agents is computed assuming a 

straight-line distance in the same room. When in different rooms, the distance is taken as 

the indirect distance needed to travel to one another, as shown in Figure 3-10. When kin-

related agents are close enough to one another, i.e. in the conferral zone, within a radius of 

𝐷4𝑏, shown in Equation 3-7.b, they are considered to have achieved contact and are able to 

decide on a collective course of action. In this case, they stop travelling towards one another 

and seek to exit as a group. The same ideas apply to the friend-relationship. Both sets of 

VPEs are expressed as: 

 𝐸4𝑠 = 𝑐4𝑑4     (3-7.a) 

𝐸4 = {
𝑐4(𝑑4 − 𝑑4

′ ), 𝐷4𝑏 < 𝑑4
𝑐4𝐷4𝑏⁡⁡⁡⁡⁡⁡, 𝐷4𝑏 ≥ 𝑑4

   (3-7.b) 
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𝑑4
′ = {

𝐷4𝑒
Δ𝜃4

𝜋/2
, Δ𝜃4 < 𝜋/2

0⁡⁡⁡⁡⁡⁡⁡, Δ𝜃4 ≥ 𝜋/2
    (3-7.c) 

𝐸5 = {𝑐5
√𝐷50

2 − 𝑑5
2, 𝐷50 ≥ 𝑑5

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡, 𝐷50 < 𝑑5

       (3-8) 

 where 𝐸4 and 𝐸5 are the virtual potential energies of the two social relationships 

considered: kin-relationship and friend-relationship, respectively; 𝑐4 and 𝑐5 are calibration 

constants for the two social relationships, respectively. The former constant is positive but 

the latter is negative to ensure that the VPE becomes lower as the agents get closer. 𝑑4 and 

𝑑5 are distances between kin-related agents and between friend-agents, respectively; Δ𝜃4 

in Equation 3-7.c has a similar definition as Δ𝜃1 in Equation 3-4; 𝐷4𝑏 is the distance within 

which agents can communicate and decide on their collective action as discussed above; 

𝑑4
′  is a term employed to ensure that an agent achieves the correct orientation, towards its 

target; 𝐷4𝑒  is a coefficient associated with the orientation angles. 𝐷50  is the influence 

distance of 𝐸5. 

 

Figure 3-9: Modeling social relationships: when agents are in the same room 
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Figure 3-10: Modeling social relationship: when agents are in different rooms 

 

To compute the distance between an agent and another object, a point on the agent and 

another on the object are needed. For agents, locations of the agents’ center points are 

selected for computation. For surrounding entities, e.g. walls, the other point is selected as 

the point closest to the agent on the other object. Figure 3-4 shows how the distance is 

computed for an agent near a wall. To alleviate numerical and logical difficulties associated 

with an agent exiting through a doorway, the end point is selected as the closest point on 

an imaginary semi-circle located at the door, with a diameter equal to the door width (see 

Figure 3-3). After the agent enters the door area (within the imaginary semi-circle) and 

before it successfully exits through, the end point for calculating 𝑑1 is specified ‘far’ (e.g. 

10 m) behind the door to enable correct exit through the doorway region. 



34 

3.6 Summary 

Based on the rationality assumption, the newly developed technique, Scalar Field Method, 

is presented herein to comprehensively model both human will and social level effects and 

to address a complex network of pre-existing social relationships among agents. The 

technique is based on an analogy to a charged particle in an electric field. Each agent 

(charged particle) considers the effects of the environment and other social influences 

(electric field) by algebraically adding the virtual potential energies of competing issues 

and selecting a decision that minimizes the total virtual energy. A discussion of physical 

characteristics during human egress is also presented. 
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CHAPTER 4 

SCALAR FIELD METHOD: MODEL IMPLEMENTATION 

AND PRELIMINARY VALIDATION  

 

4.1 Introduction 

This chapter describes a newly developed Agent-Based egress platform implementing the 

Scalar Field Method, and shows several preliminary results. The platform, named 

EgressSFM, is comprised of a building and environment model, autonomous agent model, 

and other auxiliary modules such as display, output/reader, etc. The building and 

environment model outlines the geometric constraints and incorporates hazards like fire 

and smoke. The agent model contains nine modules with various functions, and can 

explicitly simulate the “thinking” and behavioral process of an occupant. The preliminary 

results show the ability of the new model to simulate reasonable egress behavior, and its 

potential for exploring the influence of social relationships during egress.  

EgressSFM’s architecture is first described in Section 4.2. Then the building and 

environment model, agent model, and the auxiliary modules are discussed in Section 4.3 

through Section 4.5. In section 4.6, constants and randomness of the model are then 

summarized. Several preliminary results are presented in Section 4.7. 
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4.2 Model Architecture 

The EgressSFM is comprised of the building and environment model, agent model, and 

auxiliary modules, which are organized as shown in Figure 4-1. The Building and 

Environment Model outlines building rooms with various functions, geometries, spaces, 

and environmental hazards. The Agent Model represents stochastic and autonomous 

escaping occupants. Other Auxiliary Modules enables functions of display, input/output 

control, and geometries. More details are discussed in Sections 4.3 through 4.5. 

Building and
Environment Model 

EgressSFM

Agent Model
Auxiliary 
Modules 

Brain

Memory

Status

Attributes

Sensor

Behavior

Legs

Body Geometry

Auxiliary Memory

Display

Input

Output

Reader

Geometries

Interior Spaces

Doors

Exits

Windows

Fires

Smoke

Oxygen Zones

 

Figure 4-1: Model Architecture 
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4.3 Building and Environment Model 

The building and environment model consists of the agents and the space they are in. The 

space is comprised of a collection of components which include four specific types: exits, 

doors, windows, and interior spaces (see example in Figure 4-2). Each component is 

characterized by information such as its location, geometry, and other connected 

components. One important feature of the building model is the presence of geometric 

constraints imposed by walls and other obstacles. Agents will avoid these obstacles 

according to Equation 3-6. Each building component is logically connected to neighboring 

components, e.g. in Figure 4-2 the connector between the kitchen and living room connects 

the interior spaces of these two components. When an agent stands inside one component, 

it has the ability to navigate to the adjacent area when computing its escape route, as shown 

in Figure 4-3. Therefore, an evacuation route can be formed as a chain of connected 

building components. 

  

Figure 4-2: Building floor plan (left), components and walls (right) 

Exits are special building components that serve as destinations for egress. Agents reaching 

exits are considered to have reached their destination and to have safely exited. Windows 

are another set of building components that are normally impassable. They can switch 

functions and enable egress after a specified time, reflecting the possibility of breaking 
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them during an emergency. Around 100 people escaped through broken windows during 

the Station nightclub fire (Aguirre et al 2011a). 

  

Figure 4-3: A possible egress route (left) through a chain of components (right) 

The environment model takes into account fire and smoke hazards. Fire is assumed to start 

in a series of rectangle areas with stochastic sizes and start times. By switching on fire in 

adjacent areas, it is feasible to model the spread of fire (an example is shown as shaded 

areas in Figure 4-4.a through c and discussed in more detail in Chapter 6). An agent that is 

still present in an activated fire zone is considered to have been killed by the fire. As 

discussed in Chapter 6, the geometric information and start times of fire are currently 

hardwired in EgressSFM based on published fire analysis results for specific events. In the 

future, it can be incorporated in the overall platform through a fire dynamics module. 

Smoke has a toxic effect on agents and reduces their energy level as discussed earlier. 

Unlike fire, which is localized, smoke is assumed to be widely spread over the entire 

building as soon as a fire starts. As done in Aguirre et al (Aguirre et al 2011a; Best 2013), 

the impairment due to smoke occurs gradually. It need to be mentioned that the toxic effect 

is assumed to be not present in some areas, termed oxygen zones (adapted from Best 2013). 

Such areas, e.g. dark area in Figure 4-4.d, are near windows and exits and have fresh air 

ventilation that prevents the toxic effect of smoke on agents. Agents in such areas suffer 



39 

no additional reduction in energy level and continue at their current level, which would 

otherwise have been reduced due to smoke exposure.  

   

4-4.a     4-4.b 

   

4-4.c     4-4.d 

Figure 4-4: Simulation of fire (a-c) and oxygen zone (d) 

4.4 Agent Model 

Each agent model is comprised of nine modules: 1) brain, which calculates the VPE field 

and determines the most appropriate way to move within this field; 2) memory, which 
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stores the agent’s knowledge, including the building map, social relationships, movement 

history, etc.; 3) status, which represents the agent’s state, such as healthy or injured; 4) 

attributes, which contains information about an agent’s characteristics such as maximum 

velocity for forward, lateral, and backward motion, maximum rotating velocity, etc.; 5) 

sensor, which enables the agent to observe the environment and communicate; 6) behavior, 

which describes the agent’s behavior pattern and decision-making process; 7) legs, which 

execute the locomotion decisions made by the brain; 8) body geometry, which sets up and 

draws the components of the agent’s body for the purposes of animation, and 9) auxiliary 

memory that stores specific variables, including location and orientation information of the 

current and next time-steps, global numbering identity, etc. 

Each agent is independent and autonomous, and its behavior can be summarized by 5 steps 

in every time-increment as shown in the procedure in Figure 4-5. The process is applied in 

random order to each agent to avoid providing preferential treatment to any particular agent.  

1) Observe the environment and update “memory”. Agents are allowed to 

communicate with each other when necessary, e.g. to exchange map information. 

 

2) Compute the reachable area and associated “sampling points” based on the current 

location and orientation. 

 

3) Search for an evacuation route through all building components, i.e. interior spaces, 

doors and exits.  

 

4) Compute VPEs at the sampling points and reach an appropriate decision to move. 

To avoid overlapping, agents must take into account the projected action of adjacent 

agents and group members as discussed later on. 

 

5) Wait until all agents reach their decisions, then execute all movements 

simultaneously.  
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The default condition is that each agent is assumed to be completely knowledgeable about 

the floor plan. The knowledge could also be specified as incomplete, e.g. an agent can be 

aware of only one exit when multiple exits are present. Using the available knowledge, 

each agent searches for all evacuation routes at every time-step, based on its current 

location and orientation. The search method is based on traversal algorithms, which 

explores all possible evacuation routes by implementing the connection information of the 

building and environment model. The preferred route, barring knowledge or social 

considerations, is the one that minimizes the estimated travel distance.  

 

Figure 4-5: Algorithm controlling an agent’s response 
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An agent’s locomotion is decomposed into translation and rotation. Before a movement is 

executed, an agent needs to first consider whether to rotate or not. To do so, the agent 

calculates the VPE field at 8 rotational sampling points (R points) as shown in Figure 4-6 

(star markers), and rotates to face the direction with the lowest value. These R points are 

equidistant and located on a circle, centered with the center of the agent and radius 0.2m. 

Since rotational behavior is limited by the maximum angular velocity, the desired 

orientation may not be achieved in one time-step. The number of sampling points is 

selected based on sensitivity studies to be as low as possible to reduce computational 

demands yet, at the same time, reasonably cover the field around an agent. 

 

 

 

Figure 4-6: Rotational sampling points (R points) 
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Figure 4-7: Translation sampling points (T points) 

 

As outlined in Figure 4-5, an agent is ready to translate once an orientation decision is 

made, and can move within the finite egg-shaped area shown in Figure 4-7. VPE values 

are computed at 13 translational sampling points (T points, diamond-shaped points shown 

in Figure 4-7) and the agent then moves to the location with the lowest value. Lateral and 

backward movement can be accomplished in this step. The sampling points, both R points 

and T points, are updated and refreshed at each time-step based on the current location and 

orientation. 

Before making a final locomotion decision, each agent must also consider the possible 

movements of others. A full analysis that accounts for every possible outcome for all 

interacting agents is computationally prohibitive. For example, the number of possible 

movement combinations for two neighboring agents is 13 x 13 = 169. The outcome of all 

these computations may also be incorrect if agents possess incomplete information or are 

not cooperating with each other. To overcome these difficulties, the agent model adopts a 

one-time approach to estimate the possible movements of other agents through the 

following algorithm. 
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Consider 3 agents A, B and C. 1) Agent A estimates B’s and C’s best solutions based on 

the Scalar Field Method. This is done by assuming insufficient information and non-

cooperation. Specifically, agent A does not consider the possibility of rotational or social 

effects (since they do not know them) playing a role in the predicted actions of B or C. 2) 

When A is calculating its “actual” behavior, B and C’s actual locations are replaced by 

their “estimated locations”. 3) The same process is repeated for B and C. Because this one-

time approach is computed based on the current locations of agents before movements are 

executed, the order of computing the estimations of other agents’ behavior does not affect 

the result of the approach. 

The implication of the steps described above is that an agent’s decision, which describes 

the preferred location and orientation at the next time-step, will not be executed 

immediately after the calculation of the VPE field. Rather, it is executed after all other 

agents make their decisions as shown in the algorithm in Figure 4-5. If the agent’s decision 

is to rotate, the agent will turn around in order to face the preferred orientation, but the 

changed angle will be less than or equal to the product of the maximum angular velocity 

and the time-step. If the decision is to translate, the agent will move to the preferred location 

while keeping the current orientation. 

The proposed locomotion logic has several characteristics: 1) Agents are able to turn 

around when needed. 2) By rotating first, an agent opens up a larger potential movement 

space, i.e. the front of the rotated egg shaped space around it. 3) An agent can make minor 

adjustments laterally or forward/backward without changing its orientation, i.e. the agent 

is able to adjust its position when waiting at the edge of the gathering by moving laterally. 

4) The decision-making process is separated from the physical execution of the motion. 5) 

Floor friction is assumed to be sufficient to permit the agent to suddenly turn around, start, 

stop or change its velocity. 6) Agents travel along reasonable paths of motion.  

A perturbation process is used to prevent stalemate at a narrow door or passageway, where 

two agents can get stuck because they seek the same spot. This situation, which is a 

modeling anomaly, does not represent agents immobilized due to extreme crowding, a 



45 

situation beyond the scope of this work. To resolve this issue, the process requires any 

active agent to check its movement history within the last 3 time-steps. If the agent appears 

stalled, determined from the fact that its position remains unchanged during this history, it 

moves a small distance in a random direction in an attempt to break the stalemate. 

Numerous exercises showed that this scheme is effective in resolving stalemate situations. 

4.5 Auxiliary Modules 

The display module enables real-time visualization of the evolution of parameters of the 

environment and agents, e.g. open or closed exit, initiation of fire, movement of agents, 

etc. As shown in Figure 4-8, when EgressSFM is running, the display module uses different 

colors to highlight various objects: interior spaces, doors, exits, and windows are white, 

yellow, green, and dark green respectively. Agents are also colored spectrally in several 

switchable ways to visualize their energy levels and social relationships, e.g. agents change 

colors from green to yellow to red gradually based on the remaining energy level compared 

to the initial level. Alternatively, agents in one group are given the same color to enable 

tracking of group effects.  
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Figure 4-8: Display interface 

 

EgressSFM’s input and output control is achieved through input, output, and reader 

modules. The input module initializes the building, environment and agents. Besides 

providing real-time display capabilities, EgressSFM records all agents’ profiles, including 

demographic information and behavioral histories in txt format through the output module. 

The reader module enables the model to read the txt format of past exercises and displays 

it. Therefore, as shown in Figure 4-9, EgressSFM has two ways of running: simulation 

mode, which runs new simulation based on given input, and playback mode, which reads 

and displays past simulations. 

Top bar to show 

statistical results 

Bottom bar to control 

display module 

Fire 

Walls 

Agents are colored by 

various social groups 

Close exits 

Open exits 
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Past exerciseInput
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Write Read

Display
 

Figure 4-9: Simulation mode and playback mode of EgressSFM 

There are several geometry-related modules, specifically point, location, orientation, and 

line modules. Each of them comprises related geometric information related to the entity 

they represent and contain several specified functions for geometry-related computations, 

e.g. computing the shortest distance from one point to a line segment. 

4.6 Calibration Constants and Randomness 

Selecting reasonable values for the 15 constants in Equations 3-1 through 3-8 is necessary 

for computing meaningful and robust VPE fields. The magnitudes of coefficients 𝑐1 to 

𝑐5fall into several categories as follows: 1) relatively weak interactions, e.g. 𝑐2 in Equation 

3-5 and⁡𝑐5 and Equation 3-8, are assigned to be 5 and -5 respectively, and 𝑐3 in Equation 

3-6 is 1; 2) strong interaction, e.g. 𝑐1 in Equation 3-4, is taken as 200; 3) primary interaction, 

e.g. 𝑐4 in Equation 3-7, is 2000. Clearly, these are arbitrary values that were selected to 

ensure reasonable looking motion and interactions between the agents in a multitude of 

simulations as described later on. These values can be refined as future research clarifies 

and quantifies the issues addressed in this work. 
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As shown in Table 4-1, four parameters are associated with influence distances in Equation 

3-5, 3-5a, 3-6 and 3-8: 𝐷20, 𝐷20,𝑐, 𝐷30 and 𝐷50. As shown in Figure 3-5, influence distance, 

𝐷20 in Equation 3-5, is anisotropic, i.e. 1.6m for forward and 1.386m for lateral movements, 

based on Thompson’s study (Thompson 2004). It is taken as 0.5m for backward movement. 

𝐷20,𝑐 is assumed to be 2.5m, which is close to the dodging distance of 3.0m proposed by 

Heliövaara et al. (2012). 𝐷30 is assumed to be half of the lateral distance of 𝐷20, i.e. 0.693m.  

𝐷50 is an arbitrary large number chosen to be 10m.  

The three constants associated with orientation angles, 𝐷1𝑒, 𝐷2𝑒 and 𝐷4𝑒 in Equations 3-4, 

3-5a and 3-7c are taken as 0.5m, 0.25m and 1.0m respectively. 𝛾2, which is the upper limit 

of the strength parameter in Equation 3-5.b, is taken as 1.2. 𝐷1𝑎, the positive constant for 

reducing numerical difficulty in Equation 3-4, is an arbitrary large number, selected as 10m. 

The conferral distance, 𝐷4𝑏 in Equation 3-7.b is taken as 1.0m. 

Table 4-1: Constants of Equations 3-1 through 3-8 

Constant Description Value 

𝒄𝟏 Magnitude coefficient of Eq. 3-4, between agent and exit 200 

𝒄𝟐 Magnitude coefficient of Eq. 3-5, private spacing between agents 5 

𝒄𝟑 Magnitude coefficient of Eq. 3-6, wall spacing to an agent 1 

𝒄𝟒 Magnitude coefficient of Eq. 3-7, between kin related agents 2000 

𝒄𝟓 Magnitude coefficient of Eq. 3-8, between friends -5 

𝑫𝟐𝟎 Influence distance in Eq. 3-5, private spacing between agents Anisotropic3 

𝑫𝟐𝟎,𝒄 Influence distance in Eq. 3-5a, dodging distance 2.5 m 

𝑫𝟑𝟎 Influence distance in Eq. 3-6, wall spacing to an agent 0.693 m 

𝑫𝟓𝟎 Influence distance in Eq. 3-8, between friends 10 m 

𝑫𝟏𝒆 Constant associated with orientation angle in Eq. 3-4 0.5 m 

𝑫𝟐𝒆 Constant associated with orientation angle in Eq. 3-5a 0.25 m 

𝑫𝟒𝒆 Constant associated with orientation angle in Eq. 3-7c 1.0 m 

𝜸𝟐 Upper limit of the strength parameter in Eq. 3-5.b 1.2 

𝑫𝟏𝒂 Positive constant for reducing numerical difficulty in Eq. 3-4 10 m 

𝑫𝟒𝒃 Conferral distance in Eq. 3-7.b 1.0 m 

                                                 
3 See text for details 
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4.7 Preliminary Tests 

Several proof-of-concept simulations are conducted with different environments and agent 

configurations to showcase the realism of the model and its potential to be used for 

exploring the influence of social relationships during egress. 

4.7.1 Doorway Test 

A doorway test is used to study the restrictive effect of door width on the specific flow rate 

(SFR). The SFR is the number of persons passing through each meter width of doorway 

per second. Randomly oriented agents are distributed in a square-shaped configuration (5m 

x 5m) centrally aligned with the target door as shown in the insert in Figure 4-10. They are 

then allowed to exit, passing through the door with the intention of reaching a ‘destination’ 

zone. The SFR is calculated at mid length of the passageway, and is computed for door 

widths ranging from 0.7m to 3m according to given equations as follows (Thompson et al. 

1995):  

𝑄 = {
⁡⁡

80

𝑤(𝑇90−𝑇10)
⁡ , 𝑤 ≥ 1.1𝑚

⁡⁡
65

𝑤(𝑇70−𝑇5)
⁡⁡⁡ , 𝑤 < 1.1𝑚

    (4-1) 

 where Q is the specific flow rate, w is the passageway width. 𝑇5, 𝑇10, 𝑇65, and 𝑇70 

represent the times that first 5, 10, 70 and 90 agents take to pass through the doorway 

respectively. 

Because each simulation is stochastic, ten simulations are conducted for each door width. 

The results of the average SFR are plotted in Figure 4-10. The insert in Figure 4-10 shows 

that the well-known radial pattern forms, while the response curves show that the overall 

relationship between SFR and doorwidth is roughly bilinear. SFR is significantly restricted 

when the door width is less than 1.2m as earlier noted by Thompson (2004); similar bilinear 
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relations were also observed in multiple references (Pan 2006; Heliövaara et al. 2012; 

Thompson 2004). Results from previous studies of MASSEgress and Simulex (extracted 

from Pan (2006)) are also included in Figure 4-10, and are close to the results from this 

study.  

 

Figure 4-10: Doorway Test 

 

4.7.2 Density Test 

In order to study the dependence of SFR on agent density, a series of tests with various 

agent densities are conducted using an enclosed loop as shown in Figure 4-11. This exercise 

is similar to the corridor test by Heliövaara et al. (2012). SFRs are monitored when agents 

walk through four check lines shown in Figure 4-11. Test results in Figure 4-12 show that 

as the density increases from 0 to 3.2 persons/m2, the specific flow rate first rises and then 

decreases after a critical density near 2.4. The shaded area in Figure 4-12 summarizes the 

range of results from two previous studies (Heliövaara et al. 2012; Daamen 2004). Clearly 

the proposed model is within the range of published results. 
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Figure 4-11: Snapshots of Density Test 

 

Figure 4-12: Specific flow rates under various agent densities 
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4.7.3 Egress from Multiple Rooms  

This exercise occurs in a building floor with multiple rooms. The floor is modeled after the 

CEE department’s building (GG Brown Memorial Laboratory) at the University of 

Michigan as shown in Figure 4-13, where light grey spaces are spaces that can be occupied 

and dark grey areas are doors and exits. The initial conditions are shown as Figure 4-13.a, 

where 58 agents with random orientations are distributed in various rooms. Figure 4-13.b 

through 4-13.d presents snapshots at intermediate times in one simulation, and Figure 4-14 

shows the recorded paths, which are autonomously selected by the agents to exit. A more 

careful observation of a single agent’s behavior indicates that the model is working well. 

Each agent correctly waits or rotates when necessary, follows a smooth, logically selected 

path, and passes slower agents when necessary. 

 

4-13.a      4-13.b 

 

4-13.c      4-13.d 

Figure 4-13: Egress from multiple rooms: snapshots at initial and intermediate times 
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Figure 4-14: Egress from multiple rooms: escaping paths 

 

4.7.4 Simple Social Relationship 

When simple social relationships are introduced, the response of the agents significantly 

changes, compared to a situation where such relationships are not accounted for. In one 

test, shown in Figure 4-15, six agents with random orientations are initially located in two 

connected rooms (Figure 4-15.a). Three of them (light colored) are family-related. The 

other three (dark colored) are not related. During the process of evacuation, family 

members are attracted to one another first and meet at an intermediate point (within the 

specified conferral zone), before escaping as a group (Figure 4-15.b and 4-15.c). The other 

agents evacuate individually, and more quickly. Some observations from real-world events 

support such significant changes in agent response. For example, some couples, i.e. group 

members, were reported meeting first before escaping as a group during extreme events, 

as discussed in Aguirre et al. (2011b). Yang et al. (2005) also reveal the significance of kin 

behavior. 
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a. Initial configuration b. Family trying to reach 

conferral zone 

c. Family exiting as a group 

Figure 4-15: Simple social relationship test 

 

4.7.5 Dual Exits Egress Test 

To further investigate the influence of the social relationship on an agent’s behavior, 

especially in a more complex building environment, the dual exits egress test is proposed. 

A social relationships network involving four families is introduced. Snapshots in Figure 

4-16 show one run of this test. Family members are represented as light colored with 

various shapes signifying different families. These families seek each other before 

egressing. Dark colored agents are not related. Each family forms a group with strong 

cohesive bonding, and moves together (Figure 4-16.b to 4-16.d). Two control tests between 

agents with and without such social relationships networks are compared and their paths 

are shown in Figures 4-16.e and 4-16.f. Their behaviors are significantly different due to 

the social effects, as evinced by the multitude of intersecting lines in the box with dotted 

lines in Figure 4-16e. The box shows where various agents impeded one another’s motion 

in their attempt to reach a conferral zone and evacuate as a group. Based on test 

observations, these results duplicate findings by Aguirre et al. (2011b) that agents with 

strong social bonding (family related) also influence agents who behave individually. 

Crossing flow and walking in groups are also mentioned in the recent study by Chu et al. 

(2012). 
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a. Agents in initial configuration b. Snapshot at intermediate time 1 

 
c. Snapshot at intermediate time 2 

 
d. Snapshot at intermediate time 3 

  
e. Family relationships active f. No family relationships 

Figure 4-16: Dual exits egress test 



56 

4.8 Summary 

By implementing the Scalar Field Method, the Agent-Based platform, EgressSFM, is 

developed and presented. The EgressSFM is comprised of the building and environment 

model, agent model, and other auxiliary modules. In particular, the agent model can 

explicitly simulate the “thinking” and behavioral response of an occupant during egress. 

The preliminary validations are conducted to show the EgressSFM’s ability of mimicking 

reasonable egress behavior, and its potential for exploring the influence of social 

relationships during egress process. 

  



57 

 

CHAPTER 5 

MODELING SOCIAL COLLECTIVE BEHAVIOR  

 

5.1 Introduction 

As discussed in Chapter 2, people can exhibit social collective behavior during egress, such 

as queueing, collective mobility, and lining up in counter-flow. Such behaviors are seldom 

correctly simulated in literature because most existing models lack the means for 

incorporating meaningful social interactions. In this chapter, a leader-follower model is 

proposed and implemented in conjunction with the Scalar Field Method (SFM) in the 

EgressSFM. The new model interprets local social interactions and collective behavior and 

then uses this information to mimic the three collective scenarios mentioned above. To 

achieve this, an agent establishes informal and transient leader-follower relationships with 

others while adjusting its behavioral patterns as warranted by the situation. The proposed 

model is calibrated to existing field data and then validated using another set of field data, 

where it is shown that the new model is capable of reasonably simulating social collective 

behavior during egress. 

In the rest of this chapter, the theoretical background pertaining to social systems and 

collective behavior are presented first in Section 5.2. The follower behavior model is then 

introduced in Section 5.3, followed by a presentation of the model’s development and its 

implementation in Section 5.4. Finally, a series of validation and capability-demonstration 

simulations are presented in Section 5.5 and 5.6. 
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5.2 Social System and Informal Rules 

Collective behavior such as queueing, collective mobility, and lining up in counter-flow 

are self-organized social systems, since they develop stable patterned modes of interaction 

among participants (Parsons 1951). According to Parsons and Smelser (1957), social 

systems have several functional problems, the most distinctive of which is the integrative 

problem, which pertains to the emotional and social maintenance needed to tie members to 

the system. Mann (1969) studied Australian football queues and indicated that cohesion 

was achieved in the queue once informal rules were established, which allowed individual 

members to adjust to the normative behavioral pattern of the collectivity. 

Inspired by Mann, aggregation and cohesion are considered in this work to be common 

collective behaviors in social systems occurring during egress. To maintain cohesion, 

egressing pedestrians must change their behavioral patterns such that queuing members 

merge with the queue, move and then exit in order; people in situations of collective 

mobility track leaders; and pedestrians line up in a counterflow to reduce congestion and 

ease movements. These behavioral changes occur because informal rules are established 

and take effect, as they do in real situations. The model proposed in this chapter develops 

four behavioral patterns that will be discussed in the following sections. 

5.3 Follower Behavior, Informal Relations, and Social Collective 

Behavior 

Although formal rules in different social systems have various formats and effects, one 

common result in any social system may be that an evacuee makes the decision to follow 

a leader. Follower behavior in this work is defined as that in which a pedestrian follows 

other pedestrians without establishing a formal and steady social relationship. This type of 

behavior is strongly supported by experimental observations. Isobe et al (2004a) and Kretz 

et al (2006b) did two series of experiments to study courter-flow in narrow corridor. They 

observed pedestrians choosing to follow closely behind other persons moving in the desired 
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general direction. Follower behavior, as well as lane formation, is also discussed in many 

analysis and simulation studies, e.g. Helbing et al (2001), Burstedde et al (2001), 

Hoogendoorn et al (2005), and Schadschneider et al (2009). Queuing behavior, where 

pedestrians form a waiting line when a leading person stops, is also observed and discussed 

by many studies. Pan (2006) conducted simulations of competitive and queuing behavior 

in a doorway test and shows different passing times and flow rates for them. 

   

Figure 5-1 People form lanes (adapted from Helbing et al 2001, Schadschneider et al 2009) 

Follower behavior in this work is achieved by establishing a social interaction between 

each follower-leader couple. This transient social interaction is termed “informal relation” 

to differentiate it from the steady and formal social relationships that originate from social 

roles and identities in a group.  The critical difference between the model proposed herein 

and previous research in this area is that social collective behavior, specifically queuing, 

collective mobility and lining up in counter-flow, is interpreted as variants of different 

follower behaviors driven by informal rules and relatively new social relations. For 

example, an agent in a high density counter-flow situation will recognize that confined 

space coupled with heavy oncoming traffic necessitates lane formation and subsequent 

follower behavior. In a non-emergency situation, agents queue up, and when there is 

uncertainty follow a moving leader. 
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5.4 Simulating Social Collective Behavior 

In the present model the assumed follower behavior is implemented as an extension of the 

EgressSFM proposed in Chapter 4. The original Agent-Based platform assumes that an 

agent’s movement is in response to only one normative behavioral pattern. In contrast, the 

leader-follower model proposed herein augments the decision making process with several 

distinct behavioral patterns triggered by four Boolean parameters (true-or-false): 

uncertainty or not, high or low stress level, besieged in a slow crowd or not, follower or 

leader status. The values of the four parameters are determined by the agent’s “memory” 

and its perception of the surrounding circumstances. In this work, uncertainty means that 

floor plan in the agent’s “memory” is incomplete to the point where it fails to compute a 

clear egress route. The stress level is considered to be either high or low based on whether 

hazards (such as fire and smoke) are visible or not, respectively. ‘Besieged in slow crowd’ 

is defined as a situation where an agent is surrounded by other agents and its cumulative 

speed rate (absolute value) over past five time-steps is lower than 0.05 m/s. Follower or 

leader status is the role an agent plays in a group. 

The algorithmic steps of activating a specific behavioral pattern are shown in Figure 5-2. 

An agent first perceives its environment and surrounding agents, and then selects a 

behavioral pattern. Four behavioral patterns are specified in this work: competitive 

individual, besieged-in-crowd, queuing, and, collective mobility as defined next. 

Uncertainty is the first parameter to be considered: if there is uncertainty, the agent 

becomes part of a collective mobility entity; otherwise, the agent considers the other three 

patterns by estimating its stress level. If the stress level is high, the agent tends to be 

competitive unless it is besieged in a slow-moving dense crowd. In the latter condition, the 

agent follows the besieged-in-crowd behavioral pattern. When the stress level is low, the 

agent is more patient and queues when there is congestion or moves in a straightforward 

competitive manner in open spaces. These behavioral patterns are codified as follows: 
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 Competitive Behavior: the agent clearly knows the egress route, and moves directly 

toward the next target door/exit. During egress, no informal relationship is 

established with other agents and no group relationship slows the movement 

towards egress. 

 

 Besieged-in-crowd: the agent, stuck in a slow-moving dense crowd, establishes an 

informal relationship with the agent directly in front, assuming that that agent is 

advancing towards the same target. In such a situation, the follower agent 

temporarily adopts the VPE computation of the leader agent to direct its movement.  

 

 Queuing: the agent, deciding to join in and move with a queue, first searches for 

and follows the nearest queuing member in the queue. The agent then follows the 

agent ahead and nearest in the same queue after merging with the queue. The VPE 

computation between the agent and its egress door/exit is temporarily replaced by 

that between the agent and its leader. 

 

 Collective mobility: the agent, having high uncertainty regarding its egress route, 

decides to follow a group of agents. After observing other agents’ movements, the 

agent identifies the largest moving mass of agents. It then establishes an informal 

relationship with and follows the front and nearest agent in the moving mass. The 

VPE computation between the agent and its egress door/exit is temporarily replaced 

by that between these two agents. 
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Figure 5-2: The major algorithm steps of choosing a behavioral pattern 

As described in Chapter 3, an agent makes decisions regarding behavior by minimizing the 

VPE. Due to its nature, the competitive individual pattern employs the basic SFM 

relationships described by Equations 3-4 through 3-6. However, the other three behavioral 

patterns incorporate additional considerations. In particular, the follower agent temporally 

replaces Equation 3-4 (which models agent-exit interaction) with Equation 5-1, which 

models the interaction of the informal relation between follower-leader couple. Equation 

5-1 is identical to Equation 3-4, except that d is replaced by 𝑑1
′ , the distance between the 

follower and the leader and 𝐸1
′  is the virtual potential energy of the informal relation. As a 

result of minimizing the VPE, the follower agent tends to shorten the distance to the leader 

agent, and therefore follow the leader. 

𝐸1
′ = 𝑐1(𝑑1

′ + 𝐷1𝑎 − 𝐷1𝑒cos⁡(Δ𝜃1))    (5-1) 

An agent who is a leader to a follower agent may itself be a follower of yet another leader. 

The agent at the front of a group is termed the absolute leader (AL). When an AL agent 

Perceive environment; 

Estimate the parameters of stress level, uncertainty, besieged in slow-moving crowd or not, 

leader or not; 

If there is uncertainty, 

 Conduct collective mobility behavior; 

ELSE  

 IF stress level is high, 

  IF besieged in slow-moving corwd 

   Conduct besieged-in-crowd behavior; 

  ELSE 

   Conduct competitive behavior; 

 ELSE  

  IF a queue is formed at a door or exit  

   Conduct queuing behavior; 

  ELSE 

   Conduct competitive behavior; 
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meets on-coming non-AL agents, the advancing AL conducts VPE computations with the 

on-coming non-AL agents who are not in the same group. To give the AL agent priority 

commensurate with the fact that it is leading a group, the VPE in Equation 3-5 is modified 

as shown in Equations 5-2 and 5-3. The factor 𝜆𝐴𝐿 is selected to be 4.0 based on a series of 

sensitivity studies as discussed later on. 

𝐸2⁡𝑛𝑜𝑛−𝐴𝐿⁡𝑡𝑜⁡𝐴𝐿 = 𝜆𝐴𝐿𝐸2    (5-2) 

𝐸2⁡𝐴𝐿⁡𝑡𝑜⁡𝑛𝑜𝑛−𝐴𝐿 =
1

𝜆𝐴𝐿
𝐸2    (5-3) 

 where 𝐸2⁡𝑛𝑜𝑛−𝐴𝐿⁡𝑡𝑜⁡𝐴𝐿 is the virtual potential energy perceived by a non-AL agent, 

reflecting the interaction between itself and an on-coming AL agent; 𝐸2⁡𝐴𝐿⁡𝑡𝑜⁡𝑛𝑜𝑛−𝐴𝐿 is the 

VPE perceived by an AL agent reflecting the presence of the non-AL agent. 𝐸2 is the basic 

inter-agent interaction computed by Equation 3-5 and modified by Equations 5-2 and 5-3 

when warranted. 𝜆𝐴𝐿 is the absolute leader priority factor. When there are AL to AL or 

non-AL to non-AL interactions, and between group members, Equation 3-5 governs. 

Once the VPE computations are done, the decision-making process and locomotion 

execution are generally consistent with the original model. An agent first observes the 

environment and refreshes its perception of the current situation. It then computes the 

surrounding accessible space that it can achieve in one time-step, and associated “sampling 

points” associated with rotation and translation for VPE computations. As described in 

Chapter 4, “sampling points” are a limited number of points that cover the area reachable 

by the agent during one time-step. The agent next searches for an egress route and use the 

computed VPEs at the sampling points to reach an appropriate locomotion decision. The 

informal rules and behavioral patterns described above take effect at this step since the 

informal relations are now established. As described earlier, the agent then waits until all 

other agents reach their decisions, and they execute their movements simultaneously. 
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5.5 Calibration and Validation of Counter-Flow Test with Experiments 

Counter-Flow tests are conducted to show that the model has the ability to reasonably 

handle a counter-flow scenario, and to calibrate and validate its results against experimental 

field data. Two independent research groups, Isobe et al (2004a) and Kretz et al (2006b), 

conducted counter-flow experiments involving university students. Selected experiments 

from the former study are used to calibrate the proposed model. Then, experiments from 

Kretz et al. (2006b) are used to validate the calibrated model. 

5.5.1 Calibration with Isobe’s Counter-flow Test 

Isobe et al (2004a) conducted counter-flow experiments in a 12 m by 2 m corridor with 

open boundaries at both ends as shown in Figure 5-3.a. Two groups of pedestrians with an 

equal number of people (ranging from 5 to 35 individuals) walked in opposite directions 

from one end of the corridor to the other (Figure 5-3.b), and their movements were 

monitored and measured. In Figure 5-3, the opposing groups of agents have different colors 

(light and dark) and AL agents are specially designated (have no infill) and linked via a 

line to follower agents. Figures 5-3.b, 5-3.c and 5-3.d show snapshots of one simulation of 

the test where agents form self-organized counter flow movement involving long chains of 

people passing each other. The chains and counter flow movement are supported by field 

observations (see Figure 2-1, adapted from p.p. 14-15 in Still 2000). 

A single person’s passing time is defined as the time spent travelling from the initial 

location to the final destination, and the average passing time is the average of the passing 

times of all people. Based on Isobe’s data, an unimpeded pedestrian walks with a speed 

between 1.1 m/s and 1.3 m/s. In the following simulations, agents walk at speeds randomly 

selected from this range. To account for the stochastic nature of the simulations, ten runs 

are conducted for each situation and average results are presented. Extensive sensitivity 

studies showed that ten simulations are sufficient to adequately reflect the range of 

variability in the simulations. 
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2.a      2.b 

 
2.c      2.d 

Figure 5-3: Counter-flow simulation of Isobe’s test 

 

The test is simulated by the proposed leader-follower model and the results are shown in 

Figure 5-4. The solid markers in Figure 5-4 show the computed average passing time for 

priority indices, 𝜆𝐴𝐿 (Equations 5-2 and 5-3) ranging from 3 to 5. The hollow markers in 

Figure 5-4 show the experimental data. Trends of the test results are generally consistent 

with the experiments that the average time rises when more pedestrians are in the corridor. 

It is important to note that the trends change when the number of agents reaches 50. At this 

point, the response of the group transitions from competitive, due to the relatively abundant 

space in the corridor, to besieged-in-crowd, as the group slowed down to deal with the 

increased congestion. Accordingly, the influence of 𝜆𝐴𝐿⁡is negligible at low population 

density, but becomes more significant as the number of individuals increases. Based on 

comparisons between simulation and experimental data, 𝜆𝐴𝐿 is selected to be 4. 
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Figure 5-4: The average passing time of Isobe’s counterflow test 

 

5.5.2 Validation with Kretz’s Counter-flow Test 

Kretz et al conducted another series of counter-flow experiments in which up to 67 

participants were divided into two groups (not necessarily equal in size) and allowed to 

interact in a head-on manner in a corridor. As shown in Figure 5-5, the researchers set up 

3 cameras spaced at 5m along the corridor to monitor the experiment. In contrast to Isobe’s 

experiment that measured the total time required for all agents to move to the exit 

destination, Kretz et al measured the passing time needed by one group to pass a particular 

camera station.  
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Figure 5-5: Kretz’s counter-flow test (extracted from Kretz et al 2006b) 

The proposed leader-follower model (using 𝜆𝐴𝐿=4) is used to simulate a particular situation 

tested by Kretz et al., in which a 50% counter-flow situation is used and in which 

participants were divided into two equal groups. Groups of 5, 16 and 32 agents (each side) 

respectively were modeled. The maximum walking speed of the agents in the following 

exercises is selected with a range of 1.2 m/s to 1.7 m/s as measured in the experiment. The 

initial distribution of agents was assumed to be random at the starting time although this is 

not reported by Kretz et al. The experiment and simulation results are shown in Figure 5-

6 and 5-7, in which the hollow markers are the averages of 10 runs and the bars show the 

range of experimental results (Figure 5-6). Figure 5-7 shows that the passing times grow 

almost linearly with group size, which is consistent with Kretz’s observation. Moreover, 

the simulation results fall well within the range of experimental data. 

 

Figure 5-6: Experiment result (Kretz et al 2006) 
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Figure 5-7: Simulation result of Kretz’s counterflow test 

 

5.6 Simulation of Queuing and Collective Mobility 

Two series of simulations are conducted to showcase the proposed model’s ability to mimic 

social collective behavior of queuing and collective mobility. Unlike Section 5.5, the 

population of agents are assumed to be the same as discussed in Chapter 3, i.e. both 

categories of “adults” and “children + seniors” are assumed to be equally represented 

among agents. Accordingly, for “adults” the maximum velocities in forward, lateral, and 

backward are 0.95 - 1.55 m/s, 0.5 m/ s and 0.2 m/s respectively; and for “seniors and 

children”, these numbers are 0.55 - 1.25 m/s, 0.3 m/s and 0.1 m/s. 

5.6.1 Doorway Test with both Competitive and Queuing 

Doorway tests are conducted under two distinct behavioral patterns, i.e. competitive and 

queuing, and the results are presented in Figures 5-8 through 5-10. Similar to the doorway 

test shown in Section 4.7.1, 100 randomly oriented agents are distributed in a square-

shaped configuration (5m x 5m) centrally aligned with the target door. They are then 
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allowed to exit, passing through the door with the intention of reaching a ‘destination’ zone. 

The specific flow rate (SFR), i.e. the number of persons passing through each meter width 

of doorway per second, is computed for door widths ranging from 0.7m to 3m and is 

calculated at mid length of the passageway. 

 

   

Single-Line Queuing Double-Line Queuing Triple-Line Queuing 

Figure 5-8: Doorway test with competitive and queuing (dark agents are queuing) 

 

The relationship between SFR and door width for competitive agents has been studied by 

multiple researchers (Thompson et al 1995; Pan 2006; Heliövaara et al 2012; also see 

Section 4.7.1) and is often considered to be a monotonically increasing curve with a 

roughly bilinear trend. Figure 5-9 shows the computed “Competitive” response, which 

follows the expected bilinear trend. Section 4.7.1 discussed comparisons between this 

computed response and other well established data. When queuing is present, however, the 

SFR response changes. The proposed model predicts a flat SFR response, denoted 

“Queuing” in Figure 5-9, while Pan (2006) predicts a descending curve, designated 

“MASSEgress” in Figure 5-9. The discrepancy is related to the assumption made by Pan 

(2006) that only a single-line queue can form, whereas in the current work, the number of 
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queues increases as the door width grows, a fact supported by field observations (e.g. Still 

2000). As shown in Figure 5-8, single, double, triple (or more) lines can form as the door 

width increases. The dark colored agents in Figure 5-8 are queuing members, whereas 

light-colored agents are not, but instead are on their way to merge with the queue(s). Figure 

5-10 shows that multiple queues lead to faster exit times than a single queue as the door 

width grows.  

 

Figure 5-9: Specific flow in doorway test with competitive and queuing behaviors 

As noted by others (Pan 2006, Challenger et al 2009) and predicted by the proposed model 

(Figures 5-9 and 5-10), queueing leads to a higher SFR and, therefore, lower egress time 

than competitive behavior when the door is narrow (less than about 0.9 m). Narrow 

doorways promote clogging of competitive agents. In contrast, queuing agents are well-

organized and cooperative so they pass through faster. However, when the door is wide, 

the opposite happens, i.e. the SFR of competitive agents is higher and exit time is lower 

than those of queuing agents. Since queuing members move in order, the group’s moving 

velocity is constrained by the slowest members, and hence the average speed of the group 

tends to be smaller than that of a similar group of competitive agents. Moreover, the wider 

door alleviates the tendency for competitive agents to clog up the exit.  
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Figure 5-10: Egress time in doorway test with competitive and queuing behaviors 

The SFR curve of queuing members in Figure 5-9 shows three stages of development over 

the ranges of 0.7-0.9 m, 1.0-1.9 m, and 2.0-3.0 m divided by two vertical dashed lines in 

Figure 5-9. Each stage is related to the number of queues formed, i.e. single, double or 

triple lines, respectively. Transition from single to double then triple lines is gradual. For 

example, in the range of 1.0.-1.9 m, two queuing members move initially in single file but 

occasionally switch to two lines when the door width is around 1.0 m. When the door width 

is in the second stage, there are predominantly two queues. As the door width grows, the 

behavior gradually switches to three lines and so on. The proposed leader-follower model 

compares well with MASSEgress in the range of 0.7-0.9m. However, since MASSEgress 

is only able to simulate single-line queuing, its results are not applicable for the other ranges.  

The simulations presented are driven by the presence of informal relationships that allow 

agents outside the queue to either join in the middle part of the queue or travel to the rear 

of the queue to join it. The merging location is determined by the agent’s location with 

respect to the line. If the agent is close to queuing members and finds space in the queue, 

it merges immediately. Otherwise, it waits for an opportunity to open up; alternatively, the 

agents who do not find an opportunity to merge tend to move to the rear of the line. Agents 
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inside the queue follow the member in front and wait in line when the AL stops or 

maneuvers slowly. When the doorway is narrow, more agents tend to move to the end of 

the queue and the queue ends up being very long. As shown in Figure 5-8, the queue shape 

is not necessarily a straight line. Instead, the queue propagates from follower to follower 

and its shape can be irregular. 

5.6.2 Egress from 2 Exits with Competitive and Collective Mobility 

Behaviors 

The situation in Figure 5-11 is intended to demonstrate the differences between competitive 

and collective mobility behaviors. It shows a lobby with 30 agents placed at random 

locations and with random orientations. The lobby has two exits leading to an adjacent 

corridor. Dark-colored agents are familiar with the floor plan, but light-colored ones are 

not. In a room with multiple exits, agents who are not familiar with the floor plan outside 

the room have difficulty computing a clear egress route. These agents are uncertain about 

what to do and decide to egress by patterns of collective mobility characterized by 

following the movement of other actors, as shown in Figure 5-11. When egress commences, 

in contrast to agents who are not experiencing uncertainty, agents who know the floor plan 

well select the closest exit and respond in a “competitive” manner (Figure 5-11.a). Agents 

with uncertainty observe the situation and then, failing to select an egress route, decide to 

follow an existing group. The dashed lines in Figure 5-11.b represent the informal follower-

leader relationships established in this process. 
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a. Competitive    b. Collective Mobility 

Figure 5-11: Egress from 2 exits with competitive and collective mobility behaviors 

 

5.7 Summary 

This chapter extends the SFM models and the corresponding EgressSFM platform to model 

certain key aspects of social collective behavior during human egress. The leader-follower 

model is based on the premise that informal and transient relationships can be established 

between an agent and others, temporarily modifying its egress response and essentially 

making the agent a follower. Three categories of follower behavior are addressed: queuing, 

collective mobility, and lining up in counter-flow. A calibration exercise followed by a 

validation study involving the use of published experimental data with human subjects 

show that social collective behavior during lining up in counter-flow situations can be 

reasonably modeled. Two series of simulations are presented to mimic social collective 

behavior of queuing and collective mobility. 
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CHAPTER 6 

CASE STUDY OF THE STATION NIGHTCLUB FIRE  

 

6.1 Introduction 

This chapter describes the deployment of EgressSFM to conduct a case study of the Station 

Nightclub fire, which occurred in Rhode Island in 2003. The Station building fire occurred 

on the night of February 20, 2003, and resulted in 100 fatalities. Of the many disasters that 

have occurred in the past, the Station Nightclub fire is unique because: 1) it is well 

documented, and 2) about 400 of the 465 occupants were members of various social groups 

such as spouses, dating partners, friends, and coworkers. As discussed earlier on and in 

Aguirre et al. (2011b), people in such social groups and relationships respond differently 

than unattached individuals during disasters. The developed EgressSFM platform is used 

study the event, focusing in particular on the calibration of various modeling parameters 

and comparisons between model results and the actual numbers of occupants evacuated 

and killed. After calibration, parametric studies are conducted to quantitatively investigate 

the influences of the presence of social relationships and familiarity of the building floor 

plan on the death and injury tolls. 

The background of the Station Nightclub fire is first presented in the remainder of this 

chapter. Assumptions of the computational case study are then discussed, followed by a 

presentation of the model’s calibration and implementation. Finally, a series of parametric 

simulation exercises are presented, showcasing the technique’s strong potential to 

quantitatively investigate the impact of social behaviors on egress. 



75 

6.2 Background of the Station Nightclub Fire 

The Station building fire occurred on the night of February 20, 2003 in a crowded nightclub, 

which is a single-story building with a wood frame. As shown in Figure 6-1, the building 

is comprised of multiple rooms such as the main hall (including a dance floor and raised 

platform), sunroom, main bar, kitchen, dart room, etc., and has four exit accesses designed 

for egress purpose: the front entrance exit, main bar side exit, kitchen side exit, and 

platform side exit. There are two groups of windows adjacent to the main bar and the 

sunroom.  

According to post-event investigation conducted by Grosshandler et al. (2005), the fire 

started at 11:08 pm after an ignition of polyurethane foam insulation near the raised 

platform. It spread quickly to the whole building in a few minutes and ultimately destroyed 

the building. Thirty seconds after the ignition, the band stopped playing and the crowd 

began to evacuate. The latest observed survivor escaped from the building at 4 minutes and 

8 seconds after the ignition. Around 5 minutes after the ignition, flames extended out of 

the building. For the purposes of this study, the simulation’s timeline count starts the 

moment the crowd began to evacuate (i.e. 30 seconds after ignition). 

When the disaster occurred, more than four hundred occupants were inside the building. 

Due to the fire, the platform side exit was destroyed and became impassable about 20 

seconds after ignition. Only 24 occupants escaped through the platform exit. The majority 

of the crowd tried to evacuate through the front entrance exit or the main bar side exit, and 

approximately 200 of them escaped safely. However, hundreds of evacuees clogged the 

spaces of the main hall, the main bar, and the corridor of the front entrance. To explore 

alternative accesses for evacuation, around 100 seconds after egress started, some 

occupants broke windows in the main bar room and sunroom, and 105 occupants fled out 

the building using these broken windows. Unfortunately, there were 100 occupants who 

died in this event because of fire and smoke injuries. 



76 

 

Figure 6-1: The Station building floor plan (adopted from Grosshandler et al. 2005) 

 

The availability of detailed demographic and interview data of the 465 occupants makes a 

numerical study feasible (Aguirre et al. 2011a, b; Torres 2010). Such data is comprised of 

occupants’ personal information, their familiarity with the building, their locations when 

the fire began, observations about social relationships, their behavioral responses, and the 

outcome of their escape effort. As discussed earlier, the evacuees are related at the social 

level through 179 groups including spouses, dating partners, friends, and coworkers. By 

deploying the Scalar Field Method, these relationships and groups can be comprehensively 

modeled, and quantitatively analyzed as shown later on. 
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6.3 Assumptions and Model Implementation 

Environmental hazards and estimation of an agent’s energy level are discussed in the 

following sections. They are combined and used to quantitatively describe impairments an 

agent’s stamina due to the hazards. This is followed by a presentation of their 

implementation in EgressSFM and interpretation of the surveyed data mentioned in Section 

6.2. 

6.3.1 Environmental Hazards 

As discussed earlier, environment hazards are harmful to an occupant’s health. In particular, 

fire can lead to burning and fatality, and the toxic effect of smoke reduces an agent’s energy 

level (EL). EL is a non-negative quantity, and the agent’s mobility is assumed to be 

dependent on its energy level. The lower the energy level is, the more damage the agent 

receives. Once the energy level is zero, the agent is assumed to have died. 

The building and environment model of EgressSFM takes into account fire and smoke 

hazards. As described in Chapter 4, fire is presented as a series of rectanglular areas with 

stochastic sizes and start times. The progression of fire is hardwired into the platform based 

on an analysis of the event documented by the National Institute of Standards and 

Technology (Grosshandler et al. 2005). The documented spread of fire is shown as shaded 

areas shown in Figure 6-2.a through 6-2.e. An agent that is still present within an activated 

fire zone is considered to have been killed by the fire.  

Smoke has a toxic effect on agents and gradually reduces their energy level over the entire 

building as soon as the fire starts. As shown in Aguirre et al (Aguirre et al 2011a; Best 

2013), the impairment due to smoke takes effect gradually. As discussed earlier, the toxic 

effect is assumed to be not present in the oxygen zones shown as dark areas in Figure 6-

2.f. Due to the fresh air ventilation near such areas, agents in these zones suffer no 

additional impairment and start to recover their energy level. 
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6-2.a Fire at t = 5s    6-2.b Fire at t = 20s 

 

6-2.c Fire at t = 50s    6-2.d Fire at t = 100s 

 

6-2.e Fire at t = 200s    6-2.f Oxygen zones 

Figure 6-2: Simulate fire (a-e) and oxygen zones (f) in the Station event 
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6.3.2 Agent’s Energy Level 

Before the fire occurs in the simulation, each agent is assumed to have an initial energy 

level. The initial energy levels of the occupants are based on occupant demographics with 

a stochastic element added to account for variability. The initial EL values are taken from 

previous researchers Aguirre et al. 2011b, Torres 2010, and Best 2013. After the simulation 

begins, each agent in the building suffers smoke damage over time, manifested by a 

reduction in energy level, until it is either evacuates or is killed. Its energy level is computed 

as follows (based on Best 2013): 

 When an agent is present in an active fire region, its energy level drops 

instantaneously to zero. This signifies that it is deceased.  

 

 Smoke leads to a gradual reduction in an agents’ energy levels in all building spaces 

except as noted next. The EL changes at the rate of -0.6, -0.8, and -1.2 EL/second 

during the time periods of 0 – 50 second, 50 – 100 second, and after 100 second, 

respectively.  

 

 Based on an analysis of oxygen volume fractions conducted by Grosshandler et al. 

(2005), as shown in Figure 6-3, agents in the main bar room are assumed to suffer 

damage at a decreased rate (80% of values specified above) because: 1) this room 

is far away from the fire, and the fire and smoke are impeded by the walls of the 

front entrance corridor and kitchen; and 2) this room accesses one side exit and 

multiple windows that can provide more fresh air than other rooms. 

 

 When an agent is present in an oxygen zone, the damage rates of EL are divided by 

a factor of -1.2 (Gill et al. 2010) to recognize the beneficial effects of oxygen. As a 

result, the EL gradually increases in oxygen zones. 
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Figure 6-3: Oxygen volume faction at 1.5m (left) and 0.6m (right) above the floor at 100s 

(adapted from Grosshandler et al. 2005) 

An injured agent is assumed to suffer mobility loss that is linearly dependent on the ratio 

of its current energy level to its initial energy level. If the energy level is equal to or higher 

than 80% of the initial energy level, the agent’s maximum velocities are not influenced. 

Otherwise, the agent’s maximum velocities in various directions are lowered in a linear 

correlation with the remaining energy level as shown in Equation 6-1. 

𝑚𝑎𝑥.𝑣

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙⁡𝑚𝑎𝑥.𝑣
= {

⁡0.2 +⁡
𝑒𝑛𝑒𝑟𝑔𝑦⁡𝑙𝑒𝑣𝑒𝑙

𝑖𝑛𝑖𝑡𝑖𝑎𝑙⁡𝑒𝑛𝑒𝑟𝑔𝑦⁡𝑙𝑒𝑣𝑒𝑙
,

𝑒𝑛𝑒𝑟𝑔𝑦⁡𝑙𝑒𝑣𝑒𝑙

𝑖𝑛𝑖𝑡𝑖𝑎𝑙⁡𝑒𝑛𝑒𝑟𝑔𝑦⁡𝑙𝑒𝑣𝑒𝑙
< 0.8

1.0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡,
𝑒𝑛𝑒𝑟𝑔𝑦⁡𝑙𝑒𝑣𝑒𝑙

𝑖𝑛𝑖𝑡𝑖𝑎𝑙⁡𝑒𝑛𝑒𝑟𝑔𝑦⁡𝑙𝑒𝑣𝑒𝑙
≥ 0.8

 (6-1) 

 

6.3.3 Egress Model Implementation 

As modeled in EgressSFM, the Station building model is comprised of a collection of exits, 

doors, windows, and interior spaces. Agents that reach exits are considered to have safely 

exited. Each exit has an open time and close time that determine whether this exit is 

available (passable) or not, respectively. Application of such open/close times is necessary 

to account for dynamic conditions during the fire, e.g. the side exits closed when the fire 

started in the Station event. Windows are a special set of exits that are normally impassable. 
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They can switch functions to enable egress after a specified open time is reached, reflecting 

the possibility of breaking them during an emergency. The building model automatically 

updates functions and availability of exits and windows according to the specified open 

times and close times shown in Table 6-1. Such times are based on the simulation timeline 

starting when the crowd begins to evacuate, and are adapted from Grosshandler et al. 

(2005). 

Table 6-1: Time of openings and closings of exits and windows 

Locations Open Time / s Close Time / s 

Front Entrance 0 None 

Platform Side Exit 0 30 

Main Bar Side Exit 15 None 

Kitchen Side Exit 30 None 

All Windows 100 None 

 

The agent’s normative behavior is controlled by the Scalar Field Method as discussed 

earlier in the dissertation. Unlike the multiple choices of behavior patterns in Chapter 5, 

agents herein are considered to have a high stress level because they can see smoke and 

fire and therefore behave in a competitive manner. A similar assumption was implemented 

in Pan (2006). The agent model is implemented to address the demographic and interview 

data of the Station Fire as follows: 

1. Personal demographic information of age, gender, initial energy level, and prior 

visit experience are considered. The term ‘prior visit experience’ pertains to 

whether the agent has visited the building before the night of the fire, i.e. it accounts 

for familiarity with the floor plan. 
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2. Initial location and orientation. Initial location of each occupant is determined 

based on coding of survivor interviews (Aguirre et al. 2011b; Torres 2010). Each 

agent’s initial orientation is randomly selected for each simulation. 

 

3. Social affiliation. Each agent is related to one of the 179 social groups and 

characterized by a specified type of relationship:  alone, co-workers, friends, dating 

partners, family members, and multiple level. The first term refers to an individual 

without pre-existing relationship to others. The last term means a group has 

multiple types of relationships among its group members. 

 

4. Group leader. A social group can have a leader that influences other members’ 

decisions in this group. In the case of the Station scenario, group leaders were 

identified and coded based on survivor interview data (Aguirre et al. 2011; Torres 

2010) and discussion by Best (2013). 

Age determines an agent’s mobility before being injured. As previously discussed, adults 

(15-64 yrs.) are generally faster and more agile than children (≤14 yrs.) and seniors (≥65 

yrs.). To reflect the stochastic nature, the maximum speeds of each agent are randomly 

determined from ranges that depend on its age category. For adults, the maximum 

velocities in forward, lateral, and backward motion are 0.95 - 1.55 m/s, 0.5 m/s, and 0.2 

m/s respectively; and for the rest, these numbers are 0.55 - 1.25 m/s, 0.3 m/s and 0.1 m/s. 

Prior visit experience influences an agent’s awareness of side exits, and can make the agent 

miss a closer exit because of lack of awareness. The surveyed data (Aguirre et al 2011a, b) 

shows almost half of the evacuees have no prior visit experience, and Grosshandler et al. 

(2005) mentions 2/3 of the occupants believed the main entrance to be the only exit. In this 

study, prior visit experience is assumed to determine an agent’s knowledge of the floor 

plan when the evacuation starts: an agent without prior visit experience is aware of the 

front entrance exit and main bar side exit only, and may be unaware of other side exits; an 

agent who visited the building previously is assumed to knows all the exits. However, an 

agent can learn from its perception of the surrounding environment. When an agent who 
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has no prior visit experience arrives in the building component adjacent to a side exit, i.e. 

the agent sees the exit, this agent updates its knowledge and may consider the exit as an 

alternative destination. 

Each agent establishes the same type of social relationships to other group members in the 

same group. Spouses and dating partners are interpreted as kin-related in the SFM, and co-

workers and friends are categorized as friend relationships. Multiple level is assumed to be 

friend-related for simplicity. If no group leader is specified in a social group, or this group 

is in response to weak interactions such as friends, group members are affiliated at social 

level from one to another uniformly. Otherwise, if a group leader is specified in a strongly 

bonded relationship like spouses, the group leader is responsible to lead the group, and the 

other group members are assumed to follow the leader. To do so, the leader establishes kin-

related interaction with each of the other group members, but non-leader members only set 

up a single interaction with the leader. In addition, the non-leader members duplicate the 

leader’s decision of escape route an approach the same exit. 

An agent has multiple choices of destination for egress, since there are four exits and two 

sides of windows. Selecting the right exit, particularly the platform exit, was discussed by 

previous researchers such as Grosshandler et al. (2005) and Pan (2006), and is necessary 

to obtain a reasonable number of agents passing through each exit. Both studies assumed 

the occupants to always select the closest exit and applied other algorithms to control their 

decisions. The former used two software packages, buildingEXODUS and Simulex. In the 

simulation with buildingEXODUS, the platform exit was assumed to be impassable after 

30s, and the front entrance was blocked at 90s. In the Simulex simulation, Grosshandler et 

al. (2005) first calculated number of occupants who would use the platform exit, which 

totaled 39, and then made the platform exit only visible to these 39 occupants. The latter 

study conducted by Pan (2006) assumed that only 20 occupants were aware of the existence 

of platform exit and 2/3 of the occupants believed that the main entrance was the only exit.  

In this study, the agent generally selects one exit to which the travel distance from the 

agent’s current location is the shortest. However, the final decision is dependent on 
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availability of exits, prior visit experience, and leadership, as discussed above. To address 

the platform exit and the fact that only a limited number of people escaped through it, a 

penalty is added to each agent’s perception of this particular exit’s distance to make it less 

desirable as an exit. This empirical approach is motivated by two facts: 1) the exit door 

swung inwards rather than outwards and hardware on the door was broken (Grosshandler 

et al. 2005), and 2) the exit was close to the fire and covered by heavy smoke shortly after 

the fire ignited (Figure 6-4). A 9-meter penalty is selected to be imposed through the 

parametric study shown in Figure 6-5, in which the number of agents using the platform 

exit is simulated with various penalty distances. As can be seen, the correct number of 

agents using the exit corresponds to the use of a 9 m penalty.  

 

 

Figure 6-4: The platform exit was covered by fire and smoke (Grosshandler et al. 2005) 
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Figure 6-5: Parametric study of the ‘penalty’ distance to the platform exit 

 

6.4 Validation and Hypothetical Investigations of Social Traits 

The egress scenario in the Station Building Fire is modeled, and the simulation results, 

which include number of occupants using each exits and people dying, are compared with 

the actual numbers as shown in Table 6-2. Because of the stochastic nature of the 

simulations, twenty simulations are conducted and average values are reported.  Clearly, 

the simulation results match the actual statistical data well. 

Table 6-2: Simulated and the actual data of escaped and deceased 

 Main exit Bar exit 
Kitchen 

exit 

Platform 

exit 
Windows Deceased 

Actual 128 78 17 24 105 100 

Simulated 135 81 12 26 106 105 

Standard 

Deviation 
14 9 6 1 6 12 
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To give an impression of how the simulation progresses, snapshots at the initial starting 

point and a series of intermediate times during one run of simulation are taken and 

presented in Figure 6-6. An important observation is that during the egress process, pre-

existing social relationships are taking effect and influencing agents’ decisions and 

behaviors. It can be seen that group behavior driven by strong interactions influences 

neighboring agents and is observed to lead to clogging and delays in egress. For example, 

in Figure 6-7.a agents in social groups (color coded in Figure 6.7a) are responding to kin-

related interactions thereby delaying others (green). Generally, the main exit, bar exit, and 

windows played primary roles for egress; on the other hand, other side exits were ignored 

by most agents. The toxic effect of smoke impaired agents’ health and lowered injured 

agents’ mobility, which impeded their egress. 

 

 

6-3.a t = 0s     6-3.b t = 5s 

 

6-3.c t = 10s     6-3.d t = 20s 
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6-3.e t = 30s     6-3.f t = 50s 

 

6-3.g t = 70s     6-3.h t = 100s 

 

6-3.i t = 130s     6-3.j t = 160s 

Figure 6-6: Egress from the Station building: snapshots at initial and intermediate times 
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6-4.a   6-4.b 

Figure 6-7: Agents pass narrow area when social relationships are present (a) or not (b) 

 

Two areas, as highlighted in Figure 6-8, are found to be critical for overall egress efficiency 

of the occupants in the building: the connection between the main bar and main hall, and 

the connection between the front entrance and main hall. Along with the corridor of the 

front entrance exit, these areas are filled with agents and become problematic because of 

the presence of strong social interactions, e.g. spouses and dating partners. Agents driven 

by such interactions tend to approach their groups, and such gatherings lead to traffic clogs 

in the connection areas. As a result, the overall egress is delayed by these bottlenecks.  

 

Figure 6-8: Crowded areas in the egress simulation 
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To investigate the influence of social traits in a quantitative manner, two series of 

simulations are conducted and then shown. The former one is based on a hypothesis termed 

“break down”— that each agent has a certain probability to ignore its social affiliations. 

The latter one is a control test to present the influence of prior visit experience. All 

simulations shown hereon are conducted twenty times to account for the stochastic nature 

of the problem. 

6.4.1. “Break Down” of Social Relationships 

As shown in Table 6-3, the numbers of agents using various exits and those that are 

deceased are compared in a sensitivity study of “break down” probabilities of 0%, 20%, 

40%, 60%, 80%, and 100%. In particular, the case of 0% assumes that every agent responds 

to its pre-existing relationships, and the case of 100% assumes that all agents ignore their 

social affiliations and egress alone as individuals. 

Table 6-3: Sensitivity study of “break down” probability 

Probability Main exit Bar exit 
Kitchen 

exit 

Platform 

exit 
Windows Deceased 

0% 135 81 12 26 106 105 

20% 145 88 13 26 100 93 

40% 147 95 15 27 98 83 

60% 156 110 14 27 91 66 

80% 170 116 14 28 84 53 

100% 178 123 11 29 79 45 

Actual 128 78 17 24 105 100 

 

Four plots are drawn in Figure 6-9 to showcase the tendencies of using front entrance exit, 

main bar exit, kitchen exit, and deceased agents versus the “break down” probability, 

respectively. They are generally linearly dependent on the probability. More agents 

successfully evacuate through the front entrance exit and main bar exit as the break down 
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probability increases. An example of the case of 0% is given in Figure 6-7.b to show the 

difference of clogging near narrow area to the case of 100% in Figure 6-7.a. On the contrary, 

the number of agents using windows to evacuate decreases because the number of 

remaining agents in the building decreases when the windows become passable at 100 

seconds. As a result, the number of deceased agents decreases and is almost half of the 0% 

condition when every agent drops its social relationships. Clearly, the presence of social 

relationships increases potential risk and delays the overall egress. This result is consistent 

with many previous studies, e.g. Johnson et al (1994), Cornwell (2003), and Aguirre et al 

(2011b). 

 

 

Figure 6-9: Sensitivity study of the “break down” hypothesis 
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6.4.2. Prior Visit Experience 

As discussed earlier, an agent who has no prior visit experience is considered to be aware 

of only a limited subset of exits, i.e. the kitchen exit and platform exit. To explore the 

influence of such limitations, a set of control tests, which are comprised of 0% and 100% 

“break down” cases are conducted under a hypothesis that all agents have prior visit 

experience and awareness of the full floor plan. The simulation results are drawn in four 

pie charts as shown in Figure 6-10, in which the numbers of agents using various exits and 

deceased agents are divided by the total agent number and presented as different 

components. In Figures 6-10.a and 6-10.b are results extracted from the exercises 

conducted previously where agents’ prior visit experience were pre-described according to 

the survey data (Aguirre et al 2011a, b), followed by the results where all agents are aware 

of the full floor plan shown in Figures 6-10.c and 6-10.d. Comparing Figure 6-10.a to 6-

10.c and 6-10.b to 6-10.d, the effect of no prior visit experience can be viewed for both 0% 

and 100% “break down” conditions. As expected, significantly more agents evacuate 

through the platform exit and kitchen exit, so the deceased agents are fewer. On the other 

hand, the number of agents who use the front entrance exit and the main bar exit are not 

affected because they are recognized in both series of tests. 

 

6-10.a      6-10.b 

Agents with pre-described prior visit experience incorporating “break down” of 0% (a) and 100% (b). 
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6-10.c      6-10.d 

All agents have prior visit experience with “break down” of 0% (c) and 100% (d). 

Figure 6-10: Influence of the Prior Visit Experience 

 

6.5 Summary 

This chapter reports on the use of the EgressSFM platform to model a historical egress 

scenario, the Station Building Fire. The platform is modified to incorporate environmental 

hazards of fire and smoke, and enabled to compute each agent’s stamina as an energy level, 

which impacts mobility. The case study considers the demographic and survey data of the 

occupants in the building when the fire happened. When calibrated, the simulation can 

capture the realism of the actual data, and shows EgressSFM’s ability to reasonably handle 

the complex social relationships and group behaviors present during egress. The parametric 

simulation exercises show that the presence of pre-existing social affiliations can delay the 

overall egress, and, logically, that lack of knowledge of the building floor plan can be an 

issue in limiting exit choices and the number of safe evacuations. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

 

7.1 Summary 

This dissertation developed: 1) the Scalar Field Method, 2) implemented it in the 

EgressSFM platform to model human social interactions and collective behavior during 

emergency egress, and 3) presented a series of validation studies and implementation 

exercises to showcase the fidelity and capabilities of the new technique. The study started 

with a survey of the literature on human egress research on individuals and groups. Key 

characteristics of the egress process were then described. Previous technologies and 

numerical studies on egress behavior were also reviewed, followed by an analysis of 

existing Agent-Based models for simulating egress behavior. Gaps in the literature were 

identified and used to formulate the research goals of this study. 

A key problem of modeling an evacuee’s “thinking” process was to comprehensively take 

into account social interactions, and it has been solved in this work by the newly proposed 

SFM. By drawing analogy to a charged particle in an electric field, the SFM evaluates the 

accumulation of a series of scalar quantities, which are made to represent human will and 

social relationships, to simulate the interactions that occur between an agent and its 

surrounding entities. The result of the “thinking” process of an agent is a ‘decision’ that 

minimizes the total virtual potential energy. 
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The developed EgressSFM platform is comprised of the building and environment model, 

agent model, and other auxiliary modules. In particular, the building and environment 

model outlines the geometric constraints and incorporates hazards of fire and smoke, and 

the agent model explicitly simulates the “thinking” process and behavioral response of an 

occupant. The preliminary validation studies show the ability of the EgressSFM to mimic 

reasonable egress behavior, and demonstrate its potential for exploring the influence of 

social relationships during egress. 

The social collective behaviors of queuing, collective mobility, and lining up in counter-

flow were analyzed and modeled through a newly proposed follower-leader model, in 

which an agent can establish informal and transient leader-follower relations with others 

while adjusting its behavioral patterns as warranted. The model is capable of reasonably 

simulating self-organized collective behavior during egress, and is calibrated and validated 

using experiment data. 

In the last phase of this work, a well-documented event, the Station Nightclub Fire, was 

simulated by using the EgressSFM platform.  Based on the demographic and surveyed 

information, a validation exercise was conducted, and its results were found to be 

reasonably close to the observed data. The EgressSFM platform was then exercised through 

a series of parametric simulations to quantitatively investigate the influence of social traits 

on egress behavior.   

7.2 Conclusions 

Within the scope of the studies conducted in this dissertation, conclusions can be drawn as 

follows: 

1) The Scalar Field Method is capable of handling a complex network of social 

relationships and comprehensively accounting for both human will and social level 

effects during egress. Based on SFM, the Agent-Based platform, EgressSFM, has 
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been shown to realistically model egress behavior through a series of validation and 

capability tests. In particular, the case study of the Station Nightclub Fire 

demonstrates that the EgressSFM is valuable for exploring human behavior and 

social interactions during egress. 

 

2) Social interactions are critical to group gathering and collective behavior during 

egress. Both pre-existing social relationships and informal relations are important 

and can change an evacuee’s “thinking” processes or behavioral patterns. 

 

3) Group gathering are related to social relationships. The type of the relationship 

correlates with people’s social identities, and determines the intensity by which 

people influence one another. 

 

4) Social collective behavior of queuing, collective mobility, and lining up in counter-

flow can be interpreted as variants of different follower behaviors, driven by a 

series of informal rules and temporary social relations. Particularly, such local and 

informal social interactions are critical to form self-organized collective behavior 

during egress. 

 

5) Effects of social level factors for human emergency egress can be quantitatively 

studied by implementing the EgressSFM platform. In particular, this work 

quantifies how and confirms that the presence of pre-existing social affiliations can 

delay overall egress of occupants, and lack of knowledge of a building floor plan 

can adversely influence the egress progress. 

7.3 Recommendations for Future Research 

The following topics are recommended for future research to further explore the effects of 

social interactions and collective behaviors during emergency egress: 
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1) Improving Building and Environmental Model: The building and environment 

model of the EgressSFM can be further developed and refined. For example, a fire 

dynamic simulator can be created to incorporate with the EgressSFM, so that the 

new model will be eligible for more events. Another possibility is to incorporate 

structural deformations of the building in disasters, e.g. earthquakes. 

 

2) Studying Coupling Effects of Hybrid Social Interactions of Pre-Existing Social 

Relationship, and Informal and Temporary Relations: The influence of these two 

types of social interactions are studied independently in this dissertation. However, 

it is possible that both of them exist and take effect simultaneously. Therefore, 

studying the coupling effects of such types of relations can be interesting and 

valuable for learning about a more complex society. 

 

3) Investigation of the Influence of Social Traits through Hypothetical Exercise: More 

hypothetical exercises can be conducted to study the influence of social traits 

similar to the “break down” and prior visit experience of the Station event presented 

in Chapter 6. Such exercises can be implemented to help researchers better 

understand the roles played by social level factors during egress. 

 

4) Assessment of Floorplan Design or Optimal Design of Egress: SFM and the 

EgressSFM platform have shown their abilities for modeling realistic egress 

behavior, so they can be employed to assess floorplans and discover improper 

design that may lead to potential danger, and to further improve egress response in 

large scale facilities. 
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