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ABSTRACT

Copula Regression Models for the Analysis of Correlated Data with Missing Values

by
Wei Ding

Advisor: Peter X-K Song

The class of Gaussian copula regression models provides a unified modeling frame-

work to accommodate various marginal distributions and flexible dependence struc-

tures. In the presence of missing data, the Expectation-Maximization (EM) algo-

rithm plays a central role in parameter estimation. This classical method is greatly

challenged by multilevel correlation, a large dimension of model parameters, and a

misaligned missing data mechanism encountered in the analysis of data from col-

laborative projects. This dissertation will develop a series of new methodologies to

enhance the effectiveness of the EM algorithm in dealing with complex correlated

data analysis via a combination of new concepts, estimation approaches, and com-

puting procedures. The dissertation consists of three major projects given as follows.

The focus of Project 1 is on the development of an effective EM algorithm in

Gaussian copula regression models with missing values, in which univariate location-

scale family distributions are utilized for marginal regression models and Gaussian

copula for dependence. The proposed class of regression models includes the classical

multivariate normal model as a special case and allows both Pearson correlation and

rank-based correlations (e.g. Kendall’s tau and Spearman’s rho). To improve the

ix



implementation of the EM algorithm, following Meng and Rubin (1993), we establish

an effective peeling procedure in the M-step to sequentially maximize the observed

log-likelihood with respect to regression parameters and dependence parameters. In

addition, the Louis formula is provided for the calculation of the Fisher information.

The EM algorithm is tailored for misaligned missing data mechanism under struc-

tured correlation structures (e.g. exchangeable and first-order autoregression). We

run simulation studies to evaluate the proposed model and algorithm, and to compare

with both model-based multiple imputation and hot-deck imputation methods.

Project 2 is devoted to a critical extension of Project 1, where the assumption

of structured correlation structure is relaxed, so the resulting model and algorithm

can be applied to deal with complex correlated data with missing values. The key

new contribution in the extension concerns the development of EM algorithm for

composite likelihood estimation in the presence of misaligned missing data. We pro-

pose the complete-case composite likelihood, which is more general than the classical

pairwise composite likelihood, to handle both point-identifiable and partially identi-

fiable parameters in the Gaussian copula regression model. Estimation of a partially

identifiable correlation parameter is given by an estimated interval. Both estima-

tion properties and algorithmic convergences are discussed. The proposed method is

evaluated and illustrated by simulation studies and a quality-of-life data set.

Motivated by an electroencephalography (EEG) data collected from 128 electrodes

on the scalps of 9 months old infants, Project 3 concerns the regression analysis of

multilevel correlated data. Indeed multilevel correlated data are pervasive in practice,

which is routinely modeled by the hierarchical modeling system using random effects.

We develop an alternative class of parametric regression models using Gaussian cop-

ulas and implement the maximum likelihood estimation. The proposed model is very

x



flexible; in the aspect of regression model, it can accommodate continuous outcomes,

discrete outcomes or outcomes of mixed types; and in the aspect of dependence, it

can allow temporal (e.g. AR), spatial (e.g. Matern), clustered (e.g. exchangeable), or

combined dependence structures. Parameters in the proposed model have marginal

interpretation, which is absent in the hierarchical model when outcomes of interest

are non-normal (e.g. binary or ordinal categorical). Moreover, it allows the presence

of missing data. The proposed EM algorithm with peeling procedure provides a fast

and stable parameter estimation algorithm. The proposed model and algorithm are

assessed by simulation studies, and further illustrated by the analysis of EEG data

for the adverse effect of iron deficiency on infants’ visual recognition memory.
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CHAPTER I

Introduction

1.1 Summary

The class of Gaussian copula regression models provides a unified modeling frame-

work to accommodate various marginal distributions and flexible dependence struc-

tures. In the presence of missing data, the Expectation-Maximization (EM) algo-

rithm plays a central role in parameter estimation. This seminal method is greatly

challenged by complex data structures, such as multilevel correlation, large dimension

of model parameters, and a misaligned missing data pattern that we have encoun-

tered in our collaborative projects at University of Michigan. This dissertation aims

to develop a set of new statistical methodologies and algorithms to enhance the ap-

plications of the EM algorithm to deal with complex correlated data analysis. Based

on new concepts, estimation approaches, and computing procedures as well as their

combinations, we hope to yield more flexible and effective analytic tools to analyze

complex correlated data. The dissertation consists of three major projects described

as follows.

Project 1 focus on the development of an effective EM algorithm in Gaussian cop-

ula regression models with missing values, in which univariate location-scale family

distributions are utilized for marginal regression models and Gaussian copula for

1
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dependence. The proposed class of regression models includes the classical mul-

tivariate normal model as a special case and allows both Pearson correlation and

rank-based correlations (e.g. Kendall’s tau and Spearman’s rho). To improve the

implementation of the EM algorithm, following Meng and Rubin (1993), we establish

an effective peeling procedure in the M-step to sequentially maximize the observed

log-likelihood with respect to regression parameters and dependence parameters. In

addition, Louis’ formula is provided for the calculation of the Fisher information.

The EM algorithm is particularly tailored for the so-called misaligned missing data

mechanism under structured correlation structures (e.g. exchangeable and first-order

autoregression). We run extensive simulation studies to evaluate the proposed model

and algorithm, and to compare our method with both model-based multiple impu-

tation and hot-deck imputation methods.

Project 2 is devoted to a critical extension of Project 1, where the assumption of

structured correlation structure is relaxed, so the resulting model and algorithm can

be applied to deal with complex correlated data with missing values. The key new

contribution in the extension concerns the development of the peeling algorithm for

composite likelihood estimation in the presence of misaligned missing data pattern.

We propose the complete-case composite likelihood for estimation, which is more

general than the classical pairwise composite likelihood. The proposed method is in-

tended to handle both point-identifiable and partially identifiable parameters in the

Gaussian copula regression model. Estimation of a partially identifiable correlation

parameter is given by an estimated interval. Both estimation properties and algorith-

mic convergences are discussed. The proposed method is evaluated and illustrated

by simulation studies and a quality-of-life data set.

Motivated by an electroencephalography (EEG) data collected from 128 electrodes
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on the scalps of 9 months old infants, Project 3 concerns the regression analysis of

multilevel correlated data. Arguably, multilevel correlated data are pervasive in

practice, which is routinely modeled by the hierarchical modeling system using ran-

dom effects. We develop an alternative class of parametric regression models using

Gaussian copulas and implement the maximum likelihood estimation. The proposed

model is very flexible; in the aspect of regression model, it can accommodate contin-

uous outcomes, discrete outcomes or outcomes of mixed types; and in the aspect of

dependence, it can allow temporal (e.g. AR), spatial (e.g. Matérn), clustered (e.g.

exchangeable), or a mixture of dependence structures. Parameters in the proposed

model have marginal interpretation, which is absent in the hierarchical model when

outcomes of interest are non-normal (e.g. binary or ordinal categorical). Moreover,

it allows the presence of missing data. The proposed EM algorithm with peeling

procedure provides a fast and stable iterative procedure for parameter estimation

algorithm. The proposed model and algorithm are assessed by simulation studies,

and further illustrated by the analysis of EEG data for the adverse effect of iron

deficiency on infant’s visual recognition memory.

1.2 Objectives

The Objective of Chapter II is to develop the Gaussian copula regression model

(Song (2000); Song et al. (2009a)) to analyze correlated data with missing values. The

proposed class of multidimensional regression models for correlated data have various

meritorious features that have led to its popularity in practical studies. First, the

copula regression model allows to define, evaluate and interpret correlations between

variables in a full probability manner, in a very similar way to that of the classical

multivariate normal distribution which has been extensively studied in the statistical
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literature and widely applied in the analysis of multivariate data. Second, from the

copula regression model various types of correlations are furnished to address differ-

ent questions related to a joint regression analysis. For example, depending on if the

marginal distributions are normal or skewed, it provides Pearson linear correlation or

rank-based nonlinear correlations (e.g., Kendall’s tau or Spearman’s rho). Moreover,

these correlations types may be represented either in a form of unconditional pair-

wise correlation, or in a form of conditional pairwise correlation. Third, the copula

regression model has the flexibility to incorporate marginal location-scale families to

adjust for confounding factors, which is of practical importance. Last, the availabil-

ity of the full joint probability model gives rise to the great ease of implementing

powerful EM algorithm to handle missing data in a broad range of multi-dimensional

models where the regression parameters in the mean model and the correlation pa-

rameters can be estimated simultaneously under one objective function. In such a

framework, both estimation and inference are safeguarded by the well-established

classical maximum likelihood theory.

Largely motivated by a collaborative project concerns a quality of life study on

children with nephrotic syndrome, the objective of Chapter III centers on a further

extension of the Gaussian copula regression analysis methodology proposed in Chap-

ter II by addressing two challenging problems. One is the difficulty of estimating

correlation parameters when misaligned missing pattern occurs between variables.

By misaligned missingness we mean a missing data pattern in which two variables

are measured in disjoint subsets of subjects and have no overlapped observations.

The other is the issue of parameter identifiability, which is a serious consequence

from misaligned missing data pattern encountered in the estimation of unstructured

correlation matrix. Note that estimating correlation matrix is indeed required in a



5

joint regression analysis of multiple correlated outcomes. We propose a complete-

case composite likelihood method to perform estimation and inference for the model

parameters, in which the above two major methodological challenges are handled

via a composition of are marginal distributions of observed variables. Also, the cor-

relation parameters that are not point-identified are estimated by both lower and

upper bounds that form interval estimation for the partially identifiable parameters.

For implementation, the effective peeling optimization procedure is modified for the

composite likelihood to estimate point-identifiable parameters. We investigate the

performance of complete case composite likelihood method, and compare it with the

maximum likelihood estimation given in Chapter II through simulation studies.

The objective of Chapter IV focuses on the development of Gaussian regression

models for multilevel correlated data. This work is motivated by a collaborative

project that aims to assess the adverse effect of prenatal iron deficiency on infant’s

visual recognition memory. In this study, memory is measured by electroencephalog-

raphy (EEG) sensor net of 128 electrodes, from which event-related potential (ERP)

such as low slow wave is extracted to quantify the capacity of memory. A major

technical challenge arises from a multilevel dependence structure, including tempo-

ral, spatial and clustered correlations. When an ERP outcome is skewed, multilevel

rank-based correlations are appealing, which are naturally supplied by the Gaussian

copula model. Thus, in this project we extend the framework of Gaussian copula

regression models by accommodating multiple types of correlations. This flexibility

of dependence modeling allows us to analyze complex data structures in the regres-

sion analysis and to provide more comprehensive results than those obtained by a

subset of data with one-level correlation. This extension of copula model to mul-

tilevel correlation is established by the utility of Kronecker product of correlation
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matrices. We also extend the peeling procedure to carry out estimation of the model

parameters, which is particularly useful to deal with potentially a large number of

correlation parameters. Both simulation studies and data analysis examples will be

provided to illustrate the proposed methodology. In the presence of missing data,

the EM algorithm with the peeling procedure is used in implementation.

1.3 Literature Review

The amount of the literature related to my dissertation research topics is so vast

that it is not possible to review all major articles in this chapter. Instead, below

I attempt to provide my review based on the set of references that I have actually

read in a reasonable detail.

1.3.1 Correlated Data

Multi-dimensional regression models for correlated data involve typically the spec-

ification of both correlation structures and marginal mean models that can be formu-

lated by the classical univariate generalized linear model (GLM) (Nelder and Baker

(1972)). Although the great popularity of quasi-likelihood approaches to analyzing

correlated data, such as generalized estimating equation (GEE) (Liang and Zeger

(1986)) and quadratic inference function (QIF) (Qu et al. (2000)), a fully specified

probability model with interpretable correlation structures is actually a desirable

formulation to address the need of evaluating correlations between variables. It is

known that in the quasi-likelihood method correlations are treated as nuisance pa-

rameters, so that their estimation and interpretation are not of primary interest in

data analysis. This treatment may not always be desirable and can be improved by

some will-behaved dependence models such as copula models (Joe (1997)).
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1.3.2 Missing Data

Missing data is an important issue in statistics, and can deliver a significant

influence on the conclusions. There are many reasons for the occurrence of missing

data: no information is collected for some subjects, certain subjects are unwilling

to provide sensitive or private information, subject’s dropout due to moving, or

researcher cannot collect the whole data due to time or budgetary limitations.Three

mechanisms of missing data (Rubin, 1976, Rubin (1976)) are commonly considered

in the data analysis, including (i) missing completely at random (MCAR) when

the missing mechanism is independent from both observed and missing data; (ii)

missing at random (MAR) when the missing mechanism is not related to missing

data; and (iii) missing not at random (MNAR) when the missing mechanism depends

on missing.

In terms of handling missing data, the complete case analysis, which is often used

in practice for convenience, simply discards any cases with missing values on those

of the variables selected and proceeds with the analysis using standard methods.

Obviously, the data attrition reduces the sample size, resulting potentially in a great

loss of estimation efficiency. EM algorithm (Dempster et al. (1977)) is a widely

used iterative algorithm to carry out the maximum likelihood estimation in a sta-

tistical analysis with incomplete data. Multiple Imputation (Rubin (2004)) provides

an alternative approach useful to deal with statistical analysis with missing values.

Instead of filling in a single value for each missing value, (Rubin (2004)) multiple

imputation procedure actually replaces each missing value with a set of plausible

values that represent the uncertainty about the right value to impute. When data

come from skewed distributions, hot-deck Imputation (Andridge and Little (2010))

is also widely used, where a missing value is imputed with a randomly drawn similar
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record in terms of the nearest neighbors criterion. One caveat of hot-deck imputa-

tion is that it is a single imputation method, which may fail to provide desirable

uncertainty associated with missing values. In addition, the number of imputed data

sets is critical to obtain proper data analysis results, and a small number may lead

to inappropriate inference. Some researchers have recommended 20 to 100 imputa-

tion data sets or even more (Graham et al. (2007)), which appears computationally

costly in practice. The imputation methods may become nontrivial and no longer

straightforward when data distributions are skewed and adjusting for confounding

factors is needed.

1.3.3 Copula

Copula is a joint multivariate probability distribution of random variables, and

the marginal probability distribution of each variable is uniform, and is used to

model the dependence between random variables. Sklar’s Theorem (Sklar (1959))

states that for a multivariate joint distribution, there exists a suitable copula that

not only links the univariate marginal distribution functions, but also captures the

dependence. The representation of a copula model separates the marginal models

and the dependence model.

Most of recently published works on the copula regression models have been fo-

cused on analyzing fully observed data; for example, Song (2007); Czado (2010); Joe

et al. (2010); Genest et al. (2011); Masarotto et al. (2012); Acar et al. (2012). There

is little knowledge available concerning how the analysis may be done in the presence

of missing data.

Gaussian copula is a generated model from multivariate normal distribution by

inverse normal transformation, where the correlation matrix under Gaussian copula

is the Pearson correlation matrix of the normal distributed quantiles. Gaussian cop-
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ula regression model (Song (2000); Song et al. (2009a)) is an useful probability model

for the correlated data because of the following meritorious features. First, the Gaus-

sian copula regression model allows us to define, evaluate and interpret correlations

between variables in a full probability manner, and the classical multivariate normal

distribution is a special the Gaussian copula regression model. Second, from the cop-

ula model various types of correlations are provided to answer for different questions.

For example, it provides Pearson linear correlation or rank-based nonlinear correla-

tions (Kendall’s tau or Spearman’s rho), depending on if the marginal distributions

are normal or skewed. Moreover these correlations may be obtained either in a

form of unconditional marginal pairwise correlation, or in a form of conditional pair-

wise correlation. Third, the copula model has the flexibility to incorporate marginal

GLMs to adjust for confounding factors, which is of practical importance. Last, the

availability of the full probability model gives rise to the great ease of implementing

powerful EM algorithm to handle missing data in a broad range of multi-dimensional

models where the regression parameters in the mean model and the correlation pa-

rameters can be estimated simultaneously under one objective function. In such a

framework, both estimation and inference are safeguarded by the well-established

classical maximum likelihood theory.

1.3.4 EM Algorithm

The EM algorithm proposed by Dempster et al. (1977) is widely used to find the

maximum likelihood estimators of a statistical model in cases where the equations

cannot be solved directly, or with the presence of missing data. It contains two it-

erative steps. Expectation step (E-step) calculates the expectation of the observed

log likelihood function, based on the conditional distribution of missing data given

observed data under estimate of the parameters of current iteration, and maximiza-
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tion step (M-step) finds the parameter that maximize the observed log likelihood

function.

In the expectation conditional maximization (ECM) algorithm proposed by Meng

and Rubin (1993), each M-step is replaced with a sequence of conditional maximiza-

tion steps (CM-steps) where one or a group of parameters are maximized sequentially,

conditionally on the other parameters being fixed.

1.3.5 Composite Likelihood Method

Composite likelihood (Lindsay (1988)) has received increasing attention in the

recent statistical literature. It is also known as a pseudo likelihood (Molenberghs

and Verbeke (2005)) in longitudinal data setting, or an approximate likelihood (Stein

et al. (2004)) in spatial data setting, or a quaisi-likelihood (Hjort et al. (1994);

Glasbey (2001); Hjort and Varin (2008)) in spatial and time series data settings.

As composite likelihood may be treated as a special class of inference functions,

statistical inference can be established by an application of the standard theory of

inference functions (Chapter 3, Song (2007)). For example, Godambe information

matrix (Godambe (1960)) is typically used to obtain the asymptotic variance of

a composite likelihood estimator, and in the presence of missing data, Godambe

information matrix is calculated according to an empirical procedure suggested by

Gao and Song (2011).

1.3.6 Partial Identification

For the case of completely misaligned missingness considered in this thesis, for

the unstructured correlation matrix, some of correlation parameters may not be fully

identifiable. Manski (2003) proposed several approaches to address such a partial

identification problem in parameter estimation. A parameter is said to be partially
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identifiable if the true parameter is not point-identifiable but a range of parame-

ter values containing the true value is identifiable. Fan and Zhu (2009) provided a

method to determine the lower and upper bounds of the parameter range in the set-

ting of bivariate copula models, where the pairwise correlation parameter is partially

identified by an estimated parameter range. However, Fan and Zhu (2009)’s method

does not work for a general d-dimensional copula model, and it is not clear at this

moment how easily an extension of their method may be accomplished analytically.

This thesis aims to develop a new composite likelihood method to overcome this

estimation difficulty.

1.3.7 Multilevel Model

Multilevel data, also known as hierarchical data, clustered data, and nested data,

are a common type of data structure in spatio-temporal analysis, or when subjects

are grouped by some specific clusters. For example, Aitkin and Longford (1986)

designed a two-level model for educational data, in which students are clustered in

schools. Random effects model, also known as variance components model, is one of

the most popular methods to estimate parameters in multilevel models.

Random effects model was introduced by Laird and Ware (1982), where both

“fixed” and “random” effects are respectively referred to as the population-average

and subject-specific effects. Related theories and applications of random effects mod-

els in data analysis may be found in Verbeke et al. (2010); Liang and Zeger (1986);

Zeger et al. (1988), and Zeger and Liang (1986), among others.

1.3.8 Motivating data I: Quality of Life Study

Nephrotic Syndrome (NS) is a common disease in pediatric patients with kidney

disease. The typical symptom of this disease is characterized by the presence of
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edema that significantly affects the health-related quality of life in children and ado-

lescents. The PROMIS (Fries et al. (2005); Gipson et al. (2013)) is a well-validated

instrument to assess pediatric patient’s quality of life. The instrument consists of

7 domains, including pain interference, fatigue, depression, anxiety, mobility, social

peer relationship, and upper extremity functioning. In the data, two QoL scores,

pain and fatigue, are measured on two exclusive sets of subjects due to some logistic

difficulty at the clinic. That is, out of 224 subjects, 107 subjects have QoL measure-

ments of pain, but no QoL measurements of fatigue, while the other 117 subjects

have QoL measurements of fatigue but no QoL measurements of pain. Interestingly,

QoL measurements of anxiety have been fully recorded on all 224 individuals with

no missing data.

1.3.9 Motivating data II: Infants’ Visual Recognition Memory Study

Infants’ visual recognition memory study aims to evaluate whether or not, and

if so, how, iron deficiency affects visual recognition memory for infants. We refer

to some of important related work that has been summarized in de Haan et al.

(2003). Infants’ memory capability is measured by the activity of the brain during a

period of 1700 milliseconds using electroencephalograph (EEG) net with 128-channel

sensors on the scalp (Reynolds et al. (2011)). The data collection occurs at two time

points: when an infant sees his/her mother’s picture and when he or she sees a

stranger’s picture. At each time point, an event-related potential (ERP) of interest,

late slow wave (LSW), is extracted from after the standard data processing, which

is widely used as primary outcomes of visual recognition memory. In total, there are

91 children in this study, with fully observed data. 20 out of 128 electrodes are of

interest with 5 in each of the four subregions.
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1.4 Outline of Dissertation

This dissertation is organized as follows: In Chapter I, we give an overview about

my dissertation and an introduction to related works. In Chapter II, we develop a

peeling algorithm in Gaussian copula regression model and provide a solution to the

misaligned missing data pattern. In Chapter III, we present a complete-case compos-

ite likelihood method as an alternative solution to the analysis of missing data with

the misaligned missing pattern, which Gaussian copula regression model is used as

an example to illustrate this approach. In Chapter IV, a multilevel Gaussian copula

regression model is developed with peeling algorithm. In concluding some discussions

and future work are presented in Chapter V. The connection and structure between

Chapter II, III, are IV are displayed in Figure 1.1.

Figure 1.1: Connection and Structure of the Dissertation
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CHAPTER II

EM Algorithm in Gaussian Copula with Missing Data

2.1 Summary

Rank-based correlation is widely used to measure dependence between variables

when their marginal distributions are skewed. Estimation of such correlation is

challenged by both the presence of missing data and the need for adjusting for con-

founding factors. In this paper, we consider a unified framework of Gaussian copula

regression that enables us to estimate either Pearson correlation or rank-based cor-

relation (e.g. Kendall’s tau or Spearman’s rho), depending on the types of marginal

distributions. To adjust for confounding covariates, we utilize marginal regression

models with univariate location-scale family distributions. We establish the EM al-

gorithm for estimation of both correlation and regression parameters with missing

values. For implementation, we propose an effective peeling procedure to carry out

iterations required by the EM algorithm. We compare the performance of the EM

algorithm method to the traditional multiple imputation approach through simula-

tion studies. For structured types of correlations, such as exchangeable or first-order

auto-regressive (AR-1) correlation, the EM algorithm outperforms the multiple im-

putation approach in terms of both estimation bias and efficiency.

14
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2.2 Introduction

Estimation of rank-based correlation is frequently required in practice to evaluate

relationships between variables when they follow marginally skewed distributions.

However, estimation of such correlation becomes a great challenge in the presence

of missing data and with the need of adjusting for confounders. Most of recently

published works on the copula models have been focused on analyzing fully observed

data, e.g., Czado (2010); Joe et al. (2010); Genest et al. (2011); Masarotto et al.

(2012); Acar et al. (2012), and there is little knowledge available concerning how the

analysis may be done in the presence of missing data.

In terms of handling missing data, the complete case analysis, which is often used

in practice for convenience, simply discards any cases with missing values on those

of the variables selected and proceeds with the analysis using standard methods.

Obviously, the data attrition reduces the sample size, resulting potentially in a great

loss of estimation efficiency. EM algorithm (Dempster et al. (1977)) is a widely

used iterative algorithm to carry out the maximum likelihood estimation in a sta-

tistical analysis with incomplete data. Multiple Imputation (Rubin (2004)) provides

an alternative approach useful to deal with statistical analysis with missing values.

Instead of filling in a single value for each missing value, (Rubin (2004)) multiple

imputation procedure actually replaces each missing value with a set of plausible

values that represent the uncertainty about the right value to impute. When data

come from skewed distributions, Hot-Deck Imputation (Andridge and Little (2010))

is also widely used, where a missing value is imputed with a randomly drawn similar

record in terms of the nearest neighbor criterion. One caveat of Hot-Deck imputa-

tion is that it is a single imputation method, which may fail to provide desirable
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uncertainty associated with missing values. In addition, the number of imputed data

sets is critical to obtain proper data analysis results, and a small number may lead

to inappropriate inference. Some researchers have recommended 20 to 100 imputa-

tion data sets or even more (Graham et al. (2007)), which appears computationally

costly in practice. The imputation methods may become nontrivial and no longer

straightforward when data distributions are skewed and adjusting for confounding

factors is needed.

Multi-dimensional regression models for correlated data involve typically the spec-

ification of both correlation structures and marginal mean models that can be formu-

lated by the classical univariate generalized linear model (GLM) (Nelder and Baker

(1972)). Although the great popularity of quasi-likelihood approaches to analyzing

correlated data, such as generalized estimating equation (GEE) (Liang and Zeger

(1986)) and quadratic inference function (QIF) (Qu et al. (2000)), a fully specified

probability model with interpretable correlation structures is actually a desirable

device to achieve the objective of evaluating correlations between variables. It is

known that in the quasi-likelihood method correlations are treated as nuisance pa-

rameters, so that their estimation and interpretation are not of primary interest in

data analysis.

In this paper we consider the Gaussian copula regression model (Song (2000);

Song et al. (2009a)) as the probability model for the correlated data because of the

following meritorious features. First, the copula model allows us to define, evaluate

and interpret correlations between variables in a full probability manner, very similar

to the classical multivariate normal distribution. Second, from the copula model var-

ious types of correlations are provided to answer for different questions. For example,

it provides Pearson linear correlation or rank-based nonlinear correlations (Kendall’s
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tau or Spearman’s rho), depending on if the marginal distributions are normal or

skewed. Moreover these correlations may be obtained either in a form of uncondi-

tional marginal pairwise correlation, or in a form of conditional pairwise correlation.

Third, the copula model has the flexibility to incorporate marginal GLMs to adjust

for confounding factors, which is of practical importance. Last, the availability of

the full probability model gives rise to the great ease of implementing powerful EM

algorithm to handle missing data in a broad range of multi-dimensional models where

the regression parameters in the mean model and the correlation parameters can be

estimated simultaneously under one objective function. In such a framework, both

estimation and inference are safeguarded by the well-established classical maximum

likelihood theory.

It is of interest in the context of copula models to investigate and compare the

two principled methods of handling missing data, EM algorithm and multiple im-

putation, as well as their computational complexity. Since the development of the

EM algorithm is not trivial in the framework of Gaussian copula models, we propose

an efficient peeling procedure to update model parameters in the M-step due to the

involvement of a multi-dimensional integral. To adjust for confounding factors in the

marginals, we focus on the location-scale family distribution in marginal regression

models to embrace the flexibility of marginal distributions.

We compare the performance of the EM algorithm to the multiple imputation

approach through simulation studies. For structured types of correlations, such as

exchangeable or first-order auto-regressive (AR-1) correlation matrix, the EM al-

gorithm method outperforms the multiple imputation approach in both aspects of

estimation bias and efficiency. These two approaches perform similarly when the

correlation matrix is unstructured.
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This paper is organized as follows. Section 2.3 describes the Gaussian cop-

ula model. Together with some examples of practically useful models, Section 2.4

presents the details of the EM algorithm and Louis’ formula (Louis (1982)) for stan-

dard error calculation. Section 2.5 presents simulation study, and a data analysis is

included in Section 2.6. Section 2.7 provides some concluding remarks.

2.3 Model

The focus of this paper is on using EM algorithm in Gaussian copula to estimate

of correlation with missing data. We assume that there are n partially observed

subjects. For a subject, let Y = (y1, y2, · · · , yd)′ be a d-dimensional random vector

of continuous outcomes, part of which is observed and the other part is missing.

Denote by Rj as a missing data indicator, where Rj = 0 or 1 if the jth element yj

is missing or observed. Note that this indicator is known but varies for different

subjects. Let ymis be the set of variables with missing data, and yobs be the set of

variables with observed data of a subject.

2.3.1 Location-Scale Family Distribution Marginal Model

Suppose θ = (θ1, θ2, · · · , θd)′, where each θj denotes a set of marginal parameters

associated with the jth(j = 1, · · · , d) marginal density function, fj(yj|θj). Denote by

uj = Fj(yj|θj) the marginal cumulative distribution function(CDF) corresponding

to the jth margin, where Fj is a location-scale family distribution parametrized by

a location parameter µj and a positive scale parameter σj, θj = (µj, σj). More

specifically, the marginal location-scale density function is given by

(2.1) fj(yj|θj) =
1

σj
f̃

(
yj − µj
σj

)
, j = 1, · · · , d,

where f̃(·) is the standard kernel density with
∫
R
yf̃(y)dy = 0, and

∫
R
y2f̃(y)dy = 1.

In this paper, f̃ may be taken as a parametric or a nonparametric kernel density,
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and parameter µj or σj may be modelled as a function of confounding covariates.

2.3.2 Gaussian Copula

A copula is a multivariate probability distribution in which the marginal prob-

ability distribution of each variable is uniform on (0, 1). Sklar’s theorem (Sklar

(1959)) states that every multivariate cumulative distribution function of a continu-

ous random vector Y = (y1, y2, · · · , yd)′ with marginals Fj(yj|θj) can be written as

F (y1, . . . , yd) = C (F1(y1), . . . , Fd(yd)), where C is a certain copula. In this paper,

Y is assumed to follow a d-dimensional distribution generated by a Gaussian copula

(Song (2000)), whose density function is given by

(2.2) f(Y |θ,Γ) = c(u|Γ)
d∏
j=1

fj(yj|θj), u = (u1, u2, · · · , ud)′ ∈ [0, 1]d,

where c(u|Γ) = c(u1, · · · , ud|Γ), u ∈ [0, 1]d, is the Gaussian copula density, with

uj = Fj(yj|θj), i = 1, · · · , d, and Γ is an d× d matrix of correlation.

Let qj = qj(uj) = Φ−1(uj) be the jth marginal normal quantile, where Φ is CDF

of the standard normal distribution. According to Song (2007), the joint density of

a Gaussian copula function c(·|Γ) takes the form:

(2.3) c(u|Γ) = |Γ|−
1
2 exp

{
1

2
Q(u)T (I− Γ−1)Q(u)

}
, u ∈ [0, 1]d

where Γ = [γj1j2 ]d×d is the Pearson correlation matrix of Q(u) = (q1(u1), · · · , qd(ud))′,

and I is the d × d identity matrix. Here | · | denotes the determinant of a matrix.

Marginally, uj ∼ Uniform(0, 1), and qj ∼ Normal(0, 1). When yj is marginally

normal distributed, matrix Γ gives the Pearson correlation matrix of Y ; otherwise, Γ

represents as a matrix of pairwise rank-based correlations. In fact, given a matrix Γ in

equation (4.3), two types of pairwise rank-based correlations, Kendall’s tau ([τj1j2 ]d×d

) and Spearman’s rho ([ρj1j2 ]d×d) can be obtained as follows: τj1j2 =
2

π
arcsin(γj1j2),
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and ρj1j2 =
6

π
arcsin(

γj1j2
2

) for j1, j2 = 1, · · · , d, j1 6= j2, respectively (McNeil et al.

(2010)).

2.3.3 Examples of Marginal Models

Among many possible marginal models, here we present two examples of marginal

models to illustrate our proposed method, with or without the inclusion of covariates.

These two following models are practically useful.

Example-1: Marginal Parametric Distribution

To adjust for confounding factors in the mean marginal model, let Xi = (1, xTi )T ,

i = 1, · · · , n. For the jth margin, the linear model is imposed on the location

parameter in equation (3.11), µij = E(yij|Xi) = h(XT
i βj), j = 1, · · · , d, where

βj = (βj0, βj1, · · · , βjp)′ is a (p+1)-element unknown regression vector, and h is a link

function. For convenience, denote the resulting model by Yij ∼ Fj(yj|µij(βj), σj).

As an important special case, we consider p = 0 (no covariates), and thus µij =

h(βj0) is a common parameter for all subjects i = 1, · · · , n. More generally, the

marginal distribution model with the CDF uij = Fj(yj|θj) may be a generalized

location-scale family distribution, such as gamma distribution, of which the loca-

tion parameter is 0, and the estimation procedure remains the same under a given

marginal parametric distribution. This will be discussed as an example in simulation

study in Section 2.5.1.

Example-2: Semi-parametric Marginal Distribution

If the type of the density function fj(yj), j = 1, · · · , d is unknown, there are

several possible forms available to specify equation (3.11). In this paper, we consider

an example of fully unspecified marginal distribution function Fj(yj), which will be
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estimated using the empirical distribution function. In this case, all the marginal

parameter θj is absorbed into the CDF.

2.4 EM Algorithm

Our goal is to estimate the model parameter (θ,Γ) in the presence of missing

data. This may be achieved by utilizing the EM algorithm. We propose an effective

peeling procedure in the EM algorithm, which serves as a core engine to speed

up the calculation of M-step in the copula model. Both E-step and M-step are

discussed in detail in Section 2.4.1, and the examples will be revisited in Section

2.4.2, respectively.

2.4.1 Expectation and Maximization

Computing the likelihood of (θ,Γ) and iteratively updating the model parameter

(θ,Γ) by maximizing the observed likelihood constitute the two essential procedures

of the EM algorithm, corresponding respectively to the expectation step (E-step) and

the maximization step (M-step). The details of these two steps are discussed below

under the setting where the forms of parametric marginal location-scale distributions

are given. When these marginal distribution of forms are unspecified, we replace

them by the corresponding empirical CDFs (see Example-2 above), and the resulting

approximate likelihood will be used in the EM algorithm.

E-step

Denote by uobs the subvector of observed margins of u and umis the subvector

of margins with missing values; similarly, qobs and qmis denote the corresponding

subvectors of transformed quantiles. Let Dobs and Dmis be the sets of indices for

components with observed data and missing data, respectively. Then D = Dobs∪Dmis

is the set of all indices, and Dobs∩Dmis is an empty set. Note that both Dobs and Dmis
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are subject-dependent, and its partition varies across subjects. Let dm = dim(ymis) =

|Dmis|.

At the E-step, the primary task is to calculate λ(θ,Γ|θ(t),Γ(t), yobs) for each sub-

ject, where the pair (θ(t),Γ(t)) are the updated values of (θ,Γ) obtained from the

t-th iteration. For the ease of exposition, suppress index i in the following formulas.

Given a subject, the λ-function λ(θ,Γ|θ(t),Γ(t), yobs) is the expected value of the log

likelihood function of (θ,Γ) with respect to the conditional distribution of ymis given

yobs and (θ(t),Γ(t)):

λ(θ,Γ|θ(t),Γ(t), yobs) =

∫
Rdm

ln {f(y|θ,Γ)} f
(
ymis|yobs, θ

(t),Γ(t)
)

dymis

=
∑
j∈Dobs

ln {fj(yj|θj)}+

∫
(0,1)dm

ln {c(u|θ,Γ)} c
(
umis|uobs, θ

(t),Γ(t)
)

dumis

+
∑
j∈Dmis

∫ 1

0

ln
[
fj
{
F−1
j (uj|θj)|θj

}]
c
(
uj|uobs, θ

(t)
j ,Γ

(t)
)

duj,(2.4)

where the right-hand side of equation (2.4) consists of three terms. The first term∑
j∈Dobs

ln {fj(yj|θj)} is a sum of marginal likelihoods over those observed margins

j ∈ Dobs, which can be evaluated directly. The second term is the observed likelihood,

although it is of dm dimension, its closed form expression can be analytically obtained.

To do so, let A = [Aj1j2 ]d×d = Γ−1 be the precision matrix. The log copula density

may be rewritten as follows:

(2.5) ln c(u|θ,Γ) =
1

2
ln |A|+ 1

2

d∑
j=1

(1− Ajj)q2
j −

1

2

d∑
j2 6=j1

Aj1j2qj1qj2 .
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It follows from equation (2.5) that∫
(0,1)dm

ln{c(u|θ,Γ)}c
(
umis|uobs, θ

(t),Γ(t)
)

dumis

=
1

2
ln |A|+ 1

2

∑
j∈Dobs

(1− Ajj)q2
j +

1

2

∑
j∈Dmis

(1− Ajj)
∫
R

q2
jφ(qj|qobs, θ

(t),Γ(t))dqj

−1

2

∑
j1 6=j2∈Dobs

Aj1j2qj1qj2 −
∑

j1∈Dobs

qj1
∑

j2∈Dmis

Aj1j2

∫
R

qj2φ(qj2|qobs, θ
(t),Γ(t))dqj

−1

2

∑
j1 6=j2∈Dmis

Aj1j2

∫
R2

qj1qj2φ2(qj1 , qj2|qobs, θ
(t),Γ(t))dqj1dqj2

=
1

2
ln |A|+ 1

2

∑
j∈Dobs

(1− Ajj)q2
j

+
1

2

∑
j∈Dmis

(1− Ajj)
[
1− (Γ

(t)
obs,j)

T (Γ
(t)
obs,obs)

−1Γ
(t)
obs,j +

{
(Γ

(t)
obs,j)

T (Γ
(t)
obs,obs)

−1q
(t)
obs

}2
]

−1

2

∑
j1 6=j2∈Dobs

Aj1j2qj1qj2 +
∑

j1∈Dobs

∑
j2∈Dmis

Aj1j2qj1

{
(Γ

(t)
obs,j2

)T (Γ
(t)
obs,obs)

−1q
(t)
obs

}
−1

2

∑
j1 6=j2∈Dmis

Aj1j2

{
Γ

(t)
j1,j2
− (Γ

(t)
obs,j1

)T (Γ
(t)
obs,obs)

−1Γ
(t)
obs,j2

}
−1

2

∑
j1 6=j2∈Dmis

Aj1j2

{
(Γ

(t)
obs,j1

)T (Γ
(t)
obs,obs)

−1q
(t)
obs

}{
(Γ

(t)
obs,j2

)T (Γ
(t)
obs,obs)

−1q
(t)
obs

}
,

where Γobs,j is the jth column of Γ with observed margins, and Γobs,obs is a submatrix

of Γ, whose columns and rows are observed margins. Also, φ(·) is the univariate

normal density, and φ2(·) is the bivariate normal density. The third term in equation

(2.4) may be rewritten as follows:

∑
j∈Dmis

∫ 1

0

ln
[
fj
{
F−1
j (uj|θj)|θj

}]
c
(
uj|uobs, θ

(t)
j ,Γ

(t)
)

duj

=
∑
j∈Dmis

E
[
ln
{
fj
(
F−1
j (uj|θj)|θj

)}
|yobs, θ

(t)
j ,Γ

(t)
]
,(2.6)

where uj is the CDF of normally distributed quantile qj with mean (Γ
(t)
obs,j)

T (Γ
(t)
obs,obs)

−1q
(t)
obs,

and variance
{

1− (Γ
(t)
obs,j)

T (Γ
(t)
obs,obs)

−1Γ
(t)
obs,j

}
, and the expectation E(·) may be evalu-

ated numerically using the method of Gaussian quadratures (Abramowitz and Stegun
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(1972)). The observed likelihood for the full data of n subjects is expressed as:

(2.7) λ(θ,Γ|θ(t),Γ(t), Yobs) =
n∑
i=1

λi(θ,Γ|θ(t),Γ(t), yi,obs),

where function λi(·) is given by equation (2.4). It is worth noting that equation

(2.6) is of critical importance as it turns a dm-dimensional integral a closed form

expression, which ensures the E-step to be numerically feasible and stable. As a

result, the evaluation of the E-step is computationally fast.

M-step

In the M-step we update parameters values by maximizing (2.7) with respect to

θ and Γ. Following the ECM algorithm (Meng and Rubin (1993)), we will execute

the M-step with several computationally simpler CM-steps. We propose a peeling

procedure to facilitate the computation in the M-step, which consists of four routines

given as follows.

Step M-1: Updating Marginal Parameters

For a specific marginal parameter θj, we obtain its update by sequentially maxi-

mizing the observed likelihood (2.7) as follows, for j = 1, · · · , d,

θ
(t+1)
j = arg max

θj

n∑
i=1

λi(θ
(t+1)
1 , · · · , θ(t+1)

j−1 , θj, θ
(t)
j+1, · · · , θ

(t)
d |Γ

(t), yi,obs).

This optimization is carried out numerically by a quasi-Newton optimization rou-

tine available in R function nlm, and this step is computationally fast as the opti-

mization involves only a set of low-dimensional parameters θj at one time.

Step M-2: Updating Correlation Parameters

If Γ is an unstructured correlation matrix, each off-diagonal element γj1j2 is up-

dated by maximizing the observed log-likelihood (2.7), which has a closed form ex-
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pression. That is, for j1, j2 = 1, · · · , d, j1 6= j2,

(2.8) γ
(t+1)
j1j2

=

∑n
i=1 q

(t)
ij1
q

(t)
ij2

1(Rij1 = 1)1(Rij2 = 1)∑n
i=1 1(Rij1 = 1)1(Rij2 = 1)

,

where 1(·) is an indicator function. Note that the diagonal elements γjj = 1, j =

1, · · · , d.

If Γ is a structured correlation matrix such as exchangeable or first-order auto-

regressive correlation, say Γ = Γ(γ), we update the correlation parameter γ by max-

imizing equation (2.7). This can be done numerically by applying R function optim

(Nelder & Mead, 1965). In both cases of exchangeable and first-order auto-regressive

correlations, there is only one correlation parameter involved in optimization, and

the related computing is fast.

Step M-3: Updating Quantiles

For each subject i = 1, · · · , n, the quantiles are updated by the posterior mean

for each margin j = 1, · · · , d, as follows:

q
(t+1)
ij =

 Γ
(t+1)
j,−j

(
Γ

(t+1)
−j,−j

)−1 (
q

(t+1)
i,−j

)T
, j ∈ Di,mis

Φ−1
{
Fj

(
yij|θ(t+1)

j

)}
, j ∈ Di,obs,

(2.9)

where Γ
(t+1)
j,−j denotes the jth row vector of matrix Γ(t+1) without the jth element,

Γ
(t+1)
−j,−j is a submatrix of matrix Γ(t+1) without the jth row and the jth column, and

q
(t+1)
i,−j is the subvector of quantiles for subject i, q

(t+1)
i , with the jth element deleted.

Note that the quantile updating is carried out by borrowing information from the

other correlated variables via matrix Γ(t+1).
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Step M-4: Updating Outcome Values

Based on the updated parameter θ(t+1) and quantiles q
(t+1)
ij , the outcome values

are updated as follows:

y
(t+1)
ij =

 F−1
j

{
Φ
(
q

(t+1)
ij |θ(t+1)

ij

)}
, j ∈ Di,mis

yij, j ∈ Di,obs.

(2.10)

2.4.2 Examples Revisited

Now we revisit the examples outlined in Section 2.3.3 in connection to the EM

algorithm.

Example-1: Marginal Parametric Distribution

Example 1 is straightforward, and the marginal parameters and correlation pa-

rameters can be estimated by directly applying the above EM algorithm.

Example-2: Semi-parametric Marginal Distribution

Since the marginal CDFs are no longer parametric, the step of updating marginal

parameters θ1, · · · , θd in the EM algorithm is void. At each iteration, we need to

update the missing values via Step M-4 and update matrix Γ via Step M-2. In

addition, quantiles qij, j ∈ Di,mis are updated by Step M-3, and consequently the

uniform variates uij, j ∈ Di,mis are updated as follows,

(2.11)

u
(t+1)
ij =

1

n

{
n∑
k=1

1(q
(t)
kj < q

(t)
ij ) +

1

2

}
, and q

(t+1)
ij = Φ−1

(
u

(t+1)
ij

)
, j = 1, 2, · · · , d,

where the term 1
2

in equation (2.11) is used to avoid u
(t+1)
ij = 0 leading to q

(t+1)
ij = −∞,

which causes numerical problem in the EM algorithm.
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2.4.3 Standard Error Calculation

Louis’ formula (Louis (1982)) is a well-known procedure useful to obtain standard

errors of the estimates from the EM algorithm. As shown in equation (2.12) below,

the observed Fisher Information matrix can be obtained via two information matri-

ces. The first term in equation (2.12) is the expected full-data information matrix,

while the second is the expected missing data information matrix. For the ease of

exposition, suppress index i in the following formulas.

I(θ̂, Γ̂) = −∇2ln {f(yobs|θ,Γ)} |θ=θ̂,Γ=Γ̂

= −Ifull + Imis

= −
∫
∇2ln {f(ymis, yobs|θ,Γ)} |θ=θ̂,Γ=Γ̂f(ymis|yobs, θ̂, Γ̂)dymis

+

∫
∇2ln {f(ymis|yobs, θ,Γ)} |θ=θ̂,Γ=Γ̂f(ymis|yobs, θ̂, Γ̂)dymis(2.12)

where ∇2 denotes the second order derivative with respect to the model parameters,

and (θ̂, Γ̂) are the estimates obtained as the final outputs of the EM algorithm.

Therefore, the Fisher Information matrix is

(2.13) I(θ̂, Γ̂) =
n∑
i=1

Ii(θ̂, Γ̂),

where Ii(θ̂, Γ̂) = −∇2li(θ̂, Γ̂), and li(θ̂, Γ̂) is the observed log likelihood evaluated at

the estimates for subject i, which can be calculated numerically via the following

expression:

li(θ̂, Γ̂) =
1

2
ln(|Âi|) +

1

2

∑
j∈Di,obs

(
1− Âi,jj

)
q̂2
ij −

1

2

∑
j1 6=j2∈Di,obs

Âi,j1j2 q̂ij1 q̂ij2

+
∑

j∈Di,obs

ln
{
fj(yij|θ̂j)

}
.(2.14)

Here Ai = (Γi)
−1 = [Ai,j1j2 ]dm,i×dm,i

, where Γi is the submatrix of Γ whose columns

correspond to the observed variables in yi for subject i, and dm,i counts the dimen-

sions. By R function hessian, the Hessian function of equation (2.14) can both be
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numerically carried out. This provides the observed Fisher information matrix I,

and moreover the asymptotic variance for (θ̂, Γ̂) is I(θ̂, Γ̂)−1.

2.4.4 Initialization

It is known that the quality of initial values is critical to the accuracy and effi-

ciency of the EM algorithm. The initial parameters values (θ
(0)
1 , θ

(0)
2 , · · · , θ(0)

d ,Γ(0))

may be given by the estimates obtained from the complete case analysis. Although

theoretically the initial values may be set arbitrary, all numerical experiences have

suggested that the closer initial values are to the true values, the faster the algorithm

converges.

2.5 Simulation Study

We conduct simulation experiments to evaluate and compare the performance of

the EM algorithm with the multiple imputation method. In our experiments, the

dimension of outcomes is set as d = 3, and dm = 1 or 2 for different subjects. Three

types of the correlation matrices Γ are considered: unstructured, exchangeable, and

first-order autoregressive. Both Multiple Imputation (Little and Rubin (2002)) and

Hot-deck Imputation (Andridge and Little (2010)) are included in the comparison.

Note that the R package of Multiple Imputation (R Package “MI”) applied here

is developed under multivariate normal distributions, so the skewness of the marginal

distributions for outcomes may result in estimation bias. In Hot-Deck Imputation (R

Package “HotDeckImputation”), as discussed above, each missing value is imputed

by a randomly drawn similar record in terms of the nearest neighbor criterion. To

adjust for confounders, Hot-Deck Imputation is adopted through the following steps.

First, we run regression on the complete cases; second, impute residuals of the missing

data, and then finally obtain imputed missing outcomes that will be used to run
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regression analysis on the “full” outcomes to yield the estimates of model parameters.

A naive approach is to use marginal data to obtain estimate of CDF Fj(yj|θ̂j), j =

1, · · · , d, if Fj is a parametric model, or F̂j(yj), j = 1, · · · , d by empirical CDF if Fj is

nonparametric model, and make inverse-normal transformation q̂j = Φ−1(Fj(yj|θ̂j))

or q̂j = Φ−1(F̂j(yj)), which are used to calculate cor(q̂j1 , q̂j2). Since the naive ap-

proach only uses marginal information and available data. Because it is inferior to

imputation methods that replace the missing data with plausible values. So in this

section, we did not include the naive approach in the comparison.

2.5.1 Skewed Marginal Model

We first examine the EM algorithm in the setting of the semi-parametric model

discussed in Example-2, Section 2.3.3. In this case, only correlation parameters

(Kendall’s tau) are updated. To generate data, the marginal distributions are set as

gamma distribution with the shape parameter α = 0.2 and rate parameter β = 0.1,

leading to the skewness 4.47. The correlation matrix Γ with γ12 = 0.3, γ13 =

0.5, γ23 = 0.4 is used, with the corresponding Kendall’s tau being (0.1940, 0.3333, 0.2620).

We compare the results obtained from the full data without missingness (regarded

as the gold standard) to the results obtained by the EM algorithm, Multiple Im-

putation, and Hot-Deck Imputation with incomplete data. The missingness percent

varies from 20% to 50%. The sample size is fixed at 200, while 1000 replicates are

run to draw summary statistics.

As shown in Table 2.1, with no surprise, in such a case of highly skewed dis-

tributions, the estimates of three Kendall’s tau parameters obtained from Multiple

Imputation are more biased. The estimation results from the EM algorithm and Hot-

Deck Imputation are comparable, but the EM algorithm method provides smaller

empirical standard errors. In both simple cases above, the EM algorithm works well.



30

T
ab

le
2.

1:
S

im
u

la
ti

on
re

su
lt

s
of

co
rr

el
at

io
n

(K
en

d
a
ll

’s
ta

u
)

p
a
ra

m
et

er
s

es
ti

m
a
ti

o
n

in
co

p
u

la
m

o
d

el
fo

r
m

a
rg

in
a
l

sk
ew

ed
d

is
tr

ib
u

te
d

d
a
ta

o
b

ta
in

ed
b
y

fu
ll

d
at

a
li

k
el

ih
o
o
d

,
E

M
al

go
ri

th
m

a
n

d
Im

p
u

ta
ti

o
n

m
et

h
o
d

s
w

it
h

d
iff

er
en

t
m

is
si

n
g

p
er

ce
n
ta

g
e.

(S
ta

n
d

a
rd

er
ro

r
ra

ti
o

is
ca

lc
u

la
te

d
b
y

a
ra

ti
o

of
tw

o
st

an
d

ar
d

er
ro

rs
b

et
w

ee
n

a
m

et
h

o
d

a
n

d
th

e
g
o
ld

st
a
n

d
a
rd

.)

F
u

ll
D

at
a

C
o
p

u
la

&
E

M
M

u
lt

ip
le

Im
p

u
ta

ti
o
n

H
o
t

D
ec

k
Im

p
u

ta
ti

o
n

%
m

is
b

ia
s(
×

10
−
2
)

st
d

.e
rr

b
ia

s(
×

1
0−

2
)

st
d

.e
rr

ta
b

le
b

ia
s(
×

1
0
−
2
)

st
d

.e
rr

ta
b

le
b

ia
s(
×

1
0
−
2
)

st
d

.e
rr

ta
b

le
0.

10
0.

04
40

-0
.1

4
1
.0

2
5
0

-1
.7

8
1
.0

7
2
7

0
.0

4
1
.1

2
7
3

20
%

0.
00

0.
04

02
-0

.4
6

0
.9

8
5
1

-3
.1

2
1
.0

9
9
5

-0
.0

5
1
.1

1
4
4

0.
05

0.
04

34
-0

.2
0

1
.0

0
6
9

-2
.3

6
1
.1

0
6
0

-0
.0

1
1
.0

9
4
5

-0
.0

3
0.

04
54

-0
.3

0
1
.0

6
3
9

-2
.7

7
1
.0

7
7
1

-0
.1

3
1
.1

7
1
8

30
%

-0
.1

0
0.

04
16

-0
.6

3
1
.0

6
7
3

-4
.8

8
1
.1

3
7
0

-0
.3

1
1
.1

5
6
3

0.
04

0.
04

42
-0

.3
2

1
.0

4
5
2

-3
.6

5
1
.0

9
0
5

0
.0

1
1
.1

5
1
6

-0
.1

5
0.

04
37

-0
.0

9
1
.1

7
1
6

-4
.3

2
1
.2

4
4
9

-0
.1

5
1
.2

7
9
2

50
%

-0
.1

4
0.

04
13

-0
.5

5
1
.1

8
4
0

-7
.1

0
1
.2

7
3
6

-0
.4

6
1
.3

0
9
9

-0
.1

1
0.

04
28

-0
.4

3
1
.1

8
6
9

-5
.9

9
1
.2

4
5
3

-0
.4

0
1
.2

9
4
4



31

2.5.2 Misaligned Missing Data

Motivated from one of our collaborative projects on a quality of life study (see the

detail in Section 2.6), we consider a rather challenging missing data pattern in this

simulation study. That concerns the so-called misaligned missingness, which refers

to a situation where two correlated variables have missing values on exclusive sub-

sets of subjects. In a completely misaligned missing case, where there is no overlap

between two margins, Hot-Deck imputation fails to work, and the method of mul-

tiple imputation cannot effectively capture between-variable correlations, resulting

in poor estimation of correlation parameters. However, when the correlation matrix

is specified by a structured form in the Gaussian copula model, the EM algorithm

is able to utilize the correlation structure for information sharing, and consequently

the resulting estimation of model parameters is highly satisfactory.

The simulation setup is given as follows. Following Example-1 in Section 2.3.3, we

include two covariates X1 ∼ Bin(1,0.5) and X2 ∼ Γ(2,1), and generate residuals ε in a

linear model with µj = XTβj, j = 1, 2, 3 from a tri-variate normal with the marginal

N(0,1) and first-order autoregressive correlation matrix with parameter γ = 0.5.

The missing mechanism concerns missing at random (MAR) with a partially mis-

aligned pattern with specified as follows. A tri-variate outcome (Y1, Y2, Y3)′ is subject

to be missing at random, where Y1 is fully observed, while each of Y2 and Y3 has

45% missing data that are partially misaligned, with only 10% of subjects have an

overlap on the observed parts of Y2 and Y3. The reason that a partial misalignment

is considered here is to allow the Hot-Deck Imputation method possibly in the part

of the comparison. The EM algorithm procedure and notations follow as discussed
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in Exmaple-1, Section 2.3.3. The missing probability in the marginal of Y2 is,

P (R2 = 0|X1, Y2) =


0.45, if X1 = 1;

0.81, if X1 = 0, and Y2 > µ2;

0.09, if X1 = 0, and Y2 < µ2.

The missing probability in the third marginal Y3 is given by,

(2.15) P (R3 = 0|R2) =


0, if R2 = 0;

0.45

1− 0.45
, if R2 = 1.

We compare the results obtained from the EM algorithm with those from the gold

standard using the full data, the multiple imputation and the Hot-Deck imputation.

In addition, this comparison includes two types of standard errors: the first type is

the empirical standard error in four methods, and the other type is the average of

1000 model-based standard errors obtained from Louis’ formula discussed in Section

2.4.3, which is only provided in the EM algorithm.

2.6 Data Example

Nephrotic Syndrome (NS) is a common disease in pediatric patients with kidney

disease. The typical symptom of this disease is characterized by the presence of

edema that significantly affects the health-related quality of life in children and ado-

lescents. The PROMIS (Fries et al. (2005); Gipson et al. (2013)) is a well-validated

instrument to assess pediatric patient’s quality of life. The instrument consists 7

domains, but here we only choose 3 domains with missing misalignment pattern for

illustration. In the data, two QoL measures, pain and fatigue, are measured on

two exclusive sets of subjects due to some logistic difficulty at the clinic; out of 226

subjects, 107 subjects have measurements of pain, but no measurements of fatigue,

while the other 117 subjects have measurements of fatigue but no measurements of
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pain. In addition, two subjects have neither measurements of pain nor measure-

ments of fatigue. Interestingly, measurements of anxiety have been fully recorded on

all 226 individuals with no missing data. In this case, Hot-Deck imputation does not

work. We first apply the complete case univariate analysis of each QoL domain score

(Y1 = anexiety, Y2 = pain, Y3 = fatigue) on covariates of age, gender, edema, race

(white, black, and other as reference), and estimate the linear correlation coefficient

of the residuals as 0.6830 between anxiety and pain and 0.5106 between anxiety and

fatigue, which turns out to be approximately the square of the correlation coefficient

between anxiety and pain. This suggests us use first order autoregressive correlation

for matrix Γ in the copula model.

The EM algorithm has two advantages to handle this misaligned missing data

pattern. One is that we can estimate both marginal and correlations parameter

adjusting for the confounders, where the information across the three QoL scores

can be shared to improve efficiency. The other is the prediction of the missing

QoL scores by using the correlated QoL scores together with the marginal regression

models, which requires the availability of inverse correlation matrix, Γ−1.

The observed data and predicted data from the EM algorithm are all shown in

Figure 2.1. The triangles indicate patients with missing fatigue data, and the circles

correspond to patients with missing pain data. Between pain and fatigue QoL scores,

outcomes have no overlap. The circles and triangles are well distributed and appear

to lie in elliptical in the first two scatter plots. In the third plot, the reason that the

predicted triangles appear a straight line is the use of AR-1 correlation matrix, and

the shape of these points may change to another pattern when a different correlation

structure is used.

In Table 2.3, the standard errors for the estimates obtained by the multiple im-
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Table 2.3: Estimation of correlation and marginal regression parameters in the copula model for
quality of life study obtained by univariate analysis, EM algorithm and Multiple Impu-
tation.

Univariate Analysis Copula&EM Multiple Imputation
Outcome Covariates estimate std.err estimate std.err estimate std.err

Intercept 40.5406 4.1387 39.3566 4.4013 40.5406 4.1387
Age 0.0068 0.2451 0.0879 0.2607 0.0068 0.2451

Gender 1.8753 1.4392 1.8749 1.5306 1.8753 1.4392
Anxiety Edema 5.2453 2.1133 5.0332 2.2474 5.2453 2.1133

White 0.4908 2.0272 0.8502 2.1558 0.4908 2.0272
Black 4.7095 2.3491 4.5299 2.4981 4.7095 2.3491
σ 10.33 * 10.9813 0.5165 10.2107 *

Intercept 41.3243 6.1947 36.9533 7.8865 45.1838 5.7978
Age 0.0649 0.3575 0.3587 0.4551 -0.0029 0.3418

Gender 0.3423 2.0304 0.1196 2.5849 0.3112 1.9516
Pain Edema 6.0597 3.3437 4.8594 4.2569 7.7273 3.2138

White 1.2991 3.3331 2.8328 4.2434 -1.3024 3.1549
Black 6.8171 3.7939 6.5658 4.8300 3.5309 3.5994
σ 10.58 * 13.4695 0.8805 11.2709 *

Intercept 30.9033 5.5260 30.9030 4.6716 31.5289 4.6886
Age 0.7043 0.3275 0.7043 0.2768 0.6351 0.2844

Gender 0.6004 1.9962 0.6005 1.6876 0.7472 1.6722
Fatigue Edema 7.7774 2.6296 7.7774 2.2230 8.0216 2.2691

White 3.6899 2.4766 3.6900 2.0937 3.2258 2.1573
Black 7.1261 2.8784 7.1261 2.4334 7.0781 2.5138
σ 9.568 * 8.0890 0.5504 9.2272 *

Correlation γ - - 0.6851 0.0395 0.4001 -
* unavailable in R function lm for linear regression.

putation are calculated by the conventional method given by Little & Rubin (2002).

Moreover, some findings in the results shown in Table 2.3 are noteworthy. First,
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Figure 2.1: Plots of observed and predicted residuals from the EM algorithm.
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the estimated rank-based correlations Kendall’s τ and Spearman’s ρ between anx-

iety and pain are, respectively, τ12 = 0.4805 and ρ12 = 0.6677, between anxiety

and fatigue are τ13 = 0.3110 and ρ13 = 0.4524, and between pain and fatigue are

τ23 = 0.4805 and ρ23 = 0.6677. In addition, the estimated correlation parameter by

the multiple imputation approach is clearly smaller than that obtained by the EM

algorithm. This is because the key difference is that the EM algorithm makes use of

the correlation structure to access the entire data, whereas the imputation method

does not. Imputation methods are based on available observed information, but not

on the correlation structure. Moreover, the EM algorithm provides a straightforward

calculation of asymptotic standard error of the correlation parameter for inference;

for example, p-value for H0 : γ = 0 is of practical importance.

In addition, with regard to the effect of edema in pain, according to clinical

information available on Mayo Clinic Website, pain is not regarded as one of key

symptoms associated with edema. Both results obtained by the EM algorithm and

the univariate analysis are in the agreement with this clinical information, indicating

no significant effect of edema on pain score, while the multiple imputation method

reports an opposite result.

2.7 Discussion

This paper presents a Gaussian copula framework that provides both marginal

Pearson correlations, and marginal rank-based correlation in the presence of missing

data. The EM-algorithm is developed and implemented to estimate both marginal

parameters and correlation parameters. The proposed methodology allows to adjust

for confounding factors via marginal regression models to obtain adjusted marginal

correlation estimates, which are useful in practice. We propose a peeling procedure
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in the M-step to facilitate the computation of updating parameter values. In ad-

dition, missing values may also be updated as part of the EM-algorithm. The EM

algorithm outperforms imputation-based methods when the marginal outcomes are

skewed and/or missing data patterns are fully or severely misaligned.

For the completely misaligned missing data pattern, Hot-Deck Imputation does

not work, and the multiple imputation cannot effectively utilize the correlation struc-

ture in data imputation and parameter estimation. When the correlation matrix is

structured, EM algorithm can fully access the correlation structure in the Gaussian

copula, and share information across different outcome variables, and therefore the

resulting estimates from the EM algorithm are satisfactory. Note that structured cor-

relation (e.g., exchangeable) is seen in other families of copulas, such as Archimedean

copulas, in which expansion of the EM algorithm with misaligned missing data is

feasible and worth a further study.

The EM algorithm developed in a parametric Gaussian copula framework may

be sensitive to model misspecification. Model diagnostics are required before to

draw final conclusions. Several authors have proposed diagnostic methods, such as

Masarotto et al. (2012); Joe (1997); Genest et al. (1995); Ané and Kharoubi (2003),

among others. However, how these diagnostic approaches may perform in the case of

incomplete data remains unknown and is an interesting future work. Furthermore,

Segers et al. (2013) proposed a one-step estimation for correlation parameters in the

Gaussian copula, which is shown to be efficient after a novel one-step adjustment,

and this approach may be applied to improve the M-step of the EM algorithm.

For the case of completely misaligned missingness, when the correlation ma-

trix is unstructured, the correlation parameters are not fully identifiable. Manski

(2003) introduced several approaches for partial identification problem, and Fan
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and Zhu (2009) developed a method to determine the bounds, within which the

estimates of correlation parameters of a copula model are partially identified by a

parameter set. Following the notation given in Fan and Zhu (2009), we consider

µ(x, y) = xy for the problem of covariance estimation. This function is super-

modular because its cross-derivative is 1, and this function is symmetric and marginal

variances are finite. Thus, according to Fan and Zhu (2009) theory, we can es-

tablish a partial identification range for the correlation parameter in the presence

of misaligned missing data with the lower and upper bounds, denoted by γLj1,j2

and γUj1,j2 . They are the lower and upper bounds of correlation parameter γj1,j2

given by γLj1,j2 =
[∫ 1

0

{
F−1
j1

(u|θj1)F−1
j2

(1− u|θj2)
}
du− µj1µj2

]
/σj1σj2 , and γUj1,j2 =[∫ 1

0

{
F−1
j1

(u|θj1)F−1
j2

(u|θj2)
}
du− µj1µj2

]
/σj1σj2 , where quantiles functions F−1

j1
and

F−1
j2

may be estimated by available data of yj1 and yj2 . This direction of research is

worth a thorough exploration.



CHAPTER III

Composite Likelihood Approach in Gaussian Copula
Regression Models with Missing Data

3.1 Summary

Misaligned missing data occur in many large-scale studies due to some impedi-

ments in data collection such as policy restriction, equipment limitation and bud-

getary constraint. By misaligned missingness we mean a missing data pattern in

which two sets of variables are measured from disjoint subgroups of subjects with

no overlapped observations. An analytic challenge arising from the analysis of such

data is that some of correlation parameters related to those misaligned variables are

not point identifiable but possibly partially identifiable. This parameter identifica-

tion issue hinders us from utilizing classical multivariate models in the data analy-

sis. To overcome this difficulty, we propose a composite likelihood approach based

on marginal distributions of variables with full observations, so that the resulting

pseudo likelihood is free of any unidentifiable parameters. After obtaining estimates

of the point identifiable parameters, we further estimate the parameter range for

partially identifiable parameters. For implementation, we develop an effective peel-

ing optimization procedure to obtain estimates of point identifiable parameters. We

investigate the performance of the proposed composite likelihood method through

simulation studies, with comparisons to the classical maximum likelihood estimation

39
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obtained from both EM algorithm and multiple imputation strategy. The proposed

method is illustrated by one data example from our collaborative project.

3.2 Introduction

We consider a d-dimensional parametric model, f(x; ξ), x ∈ X ⊂ Rd and ξ ∈

Ξ ⊂ Rm, where ξ is the parameter of interest. Suppose that an incomplete data is

collected from n partially observed subjects. For a subject, let y = (y1, y2, · · · , yd)T

be a d-dimensional random vector of outcomes, part of which is observed and the

other part is missing. Denote by Rj as a missing data indicator, where Rj = 0 or 1 if

the j-th margin yj is missing or observed. Note that this indicator is known and varies

across different subjects. In this paper, we focus on a special type of missing data

pattern, termed as misaligned missingness. In an example of misaligned missingness

between two variables, say the first two margins y1 and y2, the sum of their missing

data indictors on each subject is always 1, namely R1 + R2 = 1. This implies that

the pair of variables is not observed simultaneously among subjects. An obvious

difficulty in the analysis of such data is that the correlation parameter between these

two variables is not point identifiable. This consequently gives rise to some analytic

challenges that cannot be easily handled in the framework of the classical maximum

likelihood estimation.

This misaligned missing data pattern was encountered in one of our collaborative

projects concerning a quality of life (QoL) study on pediatric patients with nephrotic

syndrome at the University of Michigan Children’s Hospital. A typical symptom of

this common kidney disease is characterized by the presence of edema that affects

the quality of life in children and their families. PROMIS (Fries et al. (2005)) is a

well-validated instrument widely used to assess QoL of patients with renal disease,
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which consists of seven QoL domains, including pain interference, fatigue, depression,

anxiety, mobility, social peer relationship, and upper extremity functioning. These

seven QoL scores are intrinsically correlated. A scientific objective of this study was

to perform a joint regression analysis of the QoL scores on patient’s characteristics

such as edema condition. The difficulty in the required analysis arises from the

carelessly designed data collection in that two QoL measures, pain interference and

fatigue, were measured on two disjoint subgroups of children in order to save the

study cost. Since the correlation parameter between pain interference and fatigue is

not point identifiable due to the misaligned missingness, the required joint analysis

of these seven QoL scores cannot be carried out straightforwardly by any existing

methods in the literature.

In effect, such missing data pattern may occur in many other practical settings due

to various reasons. For example, in the data generation by a high-throughput tech-

nology, variables (or features) are typically measured by allocating bio-samples into

multiple batches, each containing a disjoint subset of samples. When certain batches

partially fail due to technical limitations, some of features may be measured on ex-

clusive subsets of bio-samples, leading to misaligned missingness. In practice, those

features with misaligned missingness are routinely discarded in the data analysis. In

the emerging field of data harmonization where data sets from multiple surveys are

combined to form a mega data set, some of variables may be measured by different

instruments that do not contain identical sets of questions for a trait measurement

(e.g. cognitive function). In this case, although being highly correlated, the trait

measures from different data sources are misaligned missing.

To handle missing data, the complete-case analysis is often employed in practice

mostly for technical convenience, which simply discards any cases with missing values
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and proceeds with the analysis using standard methods. Obviously, the data attrition

is a concern, because the reduced sample size may result potentially in a substantial

loss of estimation efficiency. For remedy, EM algorithm (Dempster et al. (1977)) is

a widely used iterative algorithm to carry out the maximum likelihood estimation

with incomplete data. In the case of misaligned missingness, EM algorithm is no

longer applicable under the full parametric model f(x; ξ), because some parameters

in the full model are not point identifiable. Multiple Imputation (Rubin (2004))

provides an alternative approach, which is extensively used in statistical analysis with

missing values. Instead of filling in a single value for each missing value, multiple

imputation procedure replaces each missing value with a set of plausible values that

represent the uncertainty about the right value to impute. Being a non-model based

imputation method, hot-deck imputation (e.g. Andridge and Little (2010)) is also

widely used, where a missing value is imputed with a randomly drawn similar record

in terms of the nearest neighbor criterion. However, in the case of the misaligned

missing data pattern, the hot-deck imputation cannot work in full capacity, because

misaligned missingness prohibits us from borrowing information between margins

with no overlapped observations. Multiple imputation is based on a multivariate

distribution assumption, often the multivariate normal distribution, which cannot

work under the full distribution, either, when some of correlation parameters are

not point identifiable due to the misaligned missingness. As a result, the efficacy of

imputation may get harmed because only marginal distributions, rather than the full

distribution, are used in the imputation. Some related numerical evidence is later

provided in our simulation studies and data analysis examples in this paper.

There is little work available in the literature concerning statistical methods to

handle partially identifiable parameters. A parameter is said to be partially identifi-
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able if the true value of a parameter is not point identifiable but a range of parameter

values containing its true value is identifiable. As a trivial example, a correlation

parameter is always partially identifiable because interval [−1, 1] is a valid range

for a correlation parameter. Manski (2003) proposed approaches to addressing such

a parameter identification problem in estimation. Fan and Zhu (2009) developed a

method in the setting of bivariate copulas to determine both lower and upper bounds

for the range of the pairwise dependence parameter. However, their method does

not work for a general d-dimensional multivariate model.

In this paper, we develop a new approach to handling parameter estimation in

the presence of partially identifiable parameters. Our new approach, termed as

the complete-case composite likelihood, takes the advantage of composite likelihood

that allows the composition of a pseudo likelihood function through the utility of only

marginal distributions. Because only those marginal distributions with observed data

are used, the resulting composite likelihood will not contain any unidentifiable pa-

rameters. Consequently, estimation of point identifiable parameters becomes feasible

without invocation of the EM algorithm or the multiple imputation scheme. Com-

posite likelihood, proposed first by Besag (1974, 1977) and later formally formulated

by Lindsay (1988), has received increasing attention in the recent statistical litera-

ture because of its computational ease. This method has been successfully applied

in many areas, including generalized linear mixed models (Renard et al. (2004)),

statistical genetics (Fearnhead and Donnelly (2002)), spatial statistics (Hjort et al.

(1994); Heagerty and Lele (1998); Stein et al. (2004); Varin and Vidoni (2005); Bai

et al. (2012, 2014)), longitudinal data analysis (Molenberghs and Verbeke (2005))

and multivariate survival analysis (Parner (2001)), among others. It has demon-

strated to possess good theoretical properties, such as estimation consistency, and
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can be utilized to establish hypothesis testing procedures, as well as model selection.

For more detail, refer to Varin et al. (2011) and additional references therein.

Among extensive publications in composite likelihood methodology, there is very

limited work concerning the statistical method with incomplete data in the current

literature. Gao and Song (2011) developed the EM algorithm for composite likelihood

estimation. Molenberghs et al. (2011) studied the double robustness of composite

likelihood estimation for incomplete data under missing at random (MAR) mecha-

nism. Much remains unknown. For example, whether or not the inverse probability

weighting (IPW, Horvitz and Thompson (1952)) technique is needed in the com-

posite likelihood when data are missing under MAR. The method of IPW has been

shown of critical importance in generalized estimation equation (GEE, Liang and

Zeger (1986)) to ensure estimation consistency. In this paper, we show that like the

maximum likelihood estimation, IPW is not required in the proposed complete-case

composite likelihood to establish estimation consistency under the MAR mecha-

nism, including the misaligned missing pattern. Moreover, for partially identifiable

parameters, we provide consistent estimation for both upper and lower bounds of

the parameter range via certain constraints on the model validity. It turns out that

in the setting of copula models, our method provides a narrower estimated range for

the dependence parameter than that given by Fan and Zhu (2009).

This paper is organized as follows. Section 3.3 describes the complete-case com-

posite likelihood estimation method, including statistical inference and properties.

Section 3.4 presents the implementation via peeling algorithm. In Section 3.5, we

consider an important application based on Gaussian copula regression model with

location-scale family marginal distribution to illustrate the proposed methodology.

Section 3.6 presents simulation results, and Section 3.7 presents a data analysis ex-
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ample. Section 3.8 provides some concluding remarks. All proofs of theories are

included in the Appendix.

3.3 Method

3.3.1 Complete-Case Composite Likelihood

We propose to use the composite likelihood function to estimate point identifiable

parameters in the model f(x; ξ). First, we partition the set of parameters, ξ, into two

disjoint subsets, one containing all point identifiable parameters, denoted by η, and

the other containing all partially identifiable parameters, denoted by ζ. Obviously,

ξ = η ∪ ζ, η ∈ Rm1 , and ζ ∈ Rm2 , with m1 +m2 = m.

Let S denote the collection of all possible subsets of {1, · · · , d}, and S is the same

for all subjects. Let ws ∈ {0, 1}, s ∈ S, with
∑
s∈S

ws = 1, be an indicator of subset

s. Let ξs = {ξ{k}, k ∈ s} be the subset of ξ corresponding to the margins indexed

by set s; ξ{k}, k = 1, · · · , d is the single-element subset of ξ corresponding to the

j-th univariate marginal distribution. Let fs be the marginal density function with

respect to the margins in set s, namely ys = {yk, k ∈ s}. Denote Dobs = {k,Rk = 1}

is the subset of indices that correspond to the observed margins.

For one subject, we construct the complete-case composite likelihood as of the

following form:

(3.1) Lc(ξ|y,R) =
∏
s∈S

fs(ys|ξs)ws = fobs(yobs|ηobs),

where ws = ws(R) = I{s = Dobs}, and ηobs = ξs|s=Dobs
. For convenience, we use fobs

denote the marginal density of variables in Dobs, whose dimension is |Dobs| = (d−dm).

Obviously, these three terms, fobs, yobs, ηobs vary across subjects. In this paper, the

subscript “obs” indicates those margins confined within set Dobs. It is easy to see that

the set of all point identifiable parameters is the union of such ηobs parameters from
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all subjects, i.e., η = ∪iηi,obs, where ηi,obs is the set of point identifiable parameters

for subject i. As a matter of fact, for each subject, the complete-case composite

likelihood of ξ is a function of the reduced parameter, ηobs, given yobs and R. Note

that in general, we have |Dobs| > 1, and this dimension varies from subject to subject.

It is worth pointing out that, for each subject, there is only one term ws equal to 1,

i.e., when s = Dobs. Moreover, the log complete-case composite likelihood function

for one subject is given by

(3.2) lc(ηobs|yobs,R) = ln fobs(yobs|ηobs).

Therefore, the log complete-case composite likelihood function for the random

sample of n subjects is given by,

(3.3) lc(η|Yobs,R) =
n∑
i=1

lc,i(ηobs|yi,obs,Ri),

where subscript i indexes subject i, Yobs = ∪ni yi,obs and R = ∪ni=1Ri.

The composite likelihood estimator of the point identifiable parameter, η̂, is ob-

tained by maximizing the objective function in (3.3), namely η̂ = arg maxη lc(η|Yobs,R).

3.3.2 Likelihood Orthogonality

We first establish the likelihood orthogonality in the presence of misaligned miss-

ing data in Theorem III.1. We show that under the MAR mechanism, the complete-

case composite likelihood estimation of η is not affected by the missing data mecha-

nism. This is a well-known property in the classical maximum likelihood estimation

(Rubin (1976)). This implies that unlike GEE, in the proposed complete-case com-

posite likelihood estimation, IPW is not required for estimation consistency in the

MAR mechanism, including the case of misaligned missing data pattern.

For one subject, denote ymis = {yj, Rj = 0}, and for the entire sample, Ymis =

∪ni=1yi,mis.
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Theorem III.1. (Validity)Suppose that the MAR mechanism is governed by f(R|Yobs, φ),

where φ is a parameter in the missing data mechanism and different from the param-

eters η in the data measurement mechanism. Then, the observed likelihood function

for the random sample of n subjects is given by,

Lobs(ξ, φ|Yobs,R) = f(Yobs|η)f(R|Yobs, φ),

where f(Yobs|η) =
∏n

i=1 fobs(yi,obs|ηi,obs), and f(R|Yobs, φ) =
∏n

i=1 f(Ri|yi,obs, φ).

It is worth pointing out that this likelihood orthogonality is different form the

classical result, due to the fact that the first factor f(Yobs,η) does not contain any

unidentifiable parameters. Indeed, we here present a generalization of the classi-

cal observed likelihood of compete cases to overcome the hurdle of the misaligned

missing data pattern. Moreover, this form of composite likelihood allows us to esti-

mate parameter η and establish related large sample properties in the framework of

composite likelihood estimation.

The result of Theorem III.1 holds because of the following arguments. By defini-

tion, the observed likelihood function takes the form,

Lobs(ξ, φ|Yobs,R) =

∫
f(Y,R|ξ, φ)dYmis

=

∫ n∏
i=1

{f(yi|ξ)f(Ri|yi, φ)dyi,mis} .

The MAR mechanism implies that, for a subject, f(R|y, φ) = f(R|yobs, φ).
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Therefore,

Lobs(ξ, φ|Y,R) =

∫ n∏
i=1

{f(yi,obs,yi,mis|ξ)f(Ri|yi,obs, φ)dyi,mis}

=

∫ n∏
i=1

{f(yi,obs,yi,mis|ξ)dyi,mis}
n∏
i=1

f(Ri|yi,obs, φ)

=
n∏
i=1

∫
f(yi,obs,yi,mis|ξ)dyi,misf(R|Yobs, φ)

=
n∏
i=1

fobs(yi,obs|ηi,obs)f(R|Yobs, φ)

= f(Yobs|η)f(R|Yobs, φ).

Because the above likelihood orthogonality between η and φ, we can estimate the

point identifiable parameters η simply using the first factor f(Yobs|η) =
∏n

i=1 fobs(yi,obs|ηi,obs).

This is the rationale for the formulation of complete-case composite likelihood as pre-

sented in equation (3.3).

Consequently, for the set of point identifiable parameters η, the complete-case

composite score function is given by,

(3.4) Ψ(Y,R;η) =
∂

∂η
lc(η|Yobs,R) =

∂

∂η
ln f(Yobs|η).

It follows from Theorem III.1 that it is easy to show that the function Ψ in

equation (3.4) is an unbiased inference function, as stated in Theorem III.2.

Theorem III.2. (Unbiasedness)Assume the full model f(x; ξ) is correctly spec-

ified at the true value ξ0 = (η0, ζ0). Let η ⊂ ξ be the subset of point identifiable

parameters. The complete-case composite score function Ψ is unbiased at the true

values η0, i.e., Eη0
Ψ(Y,R|η0) = 0.

The proof of Theorem III.2 is given in the appendix. Because this property

of unbiasedness, IPW is not required to establish estimation consistency for the

parameters η.
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3.3.3 Large-Sample Properties

Large-sample properties may be easily established by following the theory of com-

posite likelihood (Varin et al. (2011)), and the theory of inference function (Song

(2007)). To make this paper self-contained, here we present three important proper-

ties, including consistency, asymptotic normality, and efficiency, which are essential

for statistical inference.

Theorem III.3. (Consistency) Under some mild regularity conditions (Def 3.5,

Song (2007)), the complete-case composite likelihood method provides a consistent

estimator, i.e., ηn
p→ η0, under pη0

. �

Applying Theorem 3.8 in Song (2007), we establish the following theorem.

Theorem III.4. (Asymptotic Normality) Under some mild regularity conditions

(Def 3.5, Song (2007)), the asymptotic normality holds for the complete-case compos-

ite likelihood estimator η̂, and the asymptotic variance of η̂ is the inverse of Godambe

information G, i.e.,

(3.5)
√
n(η̂ − η0)

d→ N(0,G−1(η0)), under pη0
,

where G(η) = H(η)TJ(η)−1H(η), with sensitivity matrix H(η) = E
{
−∇ηΨ(Y,R;η)

}
,

and variability matrix J(η) = var {Ψ(Y,R;η)} (Godambe (1960)).

The asymptotic variance matrix of η̂ is consistently estimated by

(3.6) v̂ar(η̂) =
1

n
Ĝ−1(η̂) =

1

n
Ĥ−1(η̂)Ĵ(η̂)Ĥ−1(η̂),

with H and J being consistently estimated by,

(3.7) Ĥ(η̂) = − 1

n

n∑
i=1

{∑
s∈S

ws
∂2logfs(yi,s|ξs)

∂η∂ηT

}
,
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and

(3.8) Ĵ(η̂) =
1

n

n∑
i=1

(∑
s∈S

ws
∂logfs(yi,s|ξs)

∂η

)(∑
s∈S

ws
∂logfs(yi,s|ξs)

∂η

)T

.

Numerically, using an R function hessian in R package numDeriv, we can calculate

this Hessian matrix easily, while using an R function grad in R package numDeriv,

we can also compute the gradients conveniently.

Furthermore, we can establish the full asymptotic efficiency of the complete-case

composite likelihood in Theorem III.5.

Theorem III.5. (Barlett Identity) For the point identifiable parameters estimated

from the complete-case composite likelihood function, under some mild regularity con-

ditions (Def 3.5, Song (2007)), the sensitivity matrix and the variability matrix are

equal, i.e., H(η) = J(η).

It follows from Theorem III.5, that the Godambe information Γ(η) = H(η), so

the proposed η̂ achieves the full efficiency. According to Song et al. (2005), the

sandwich form given by the Godambe information matrix demonstrates desirable

numerical stability than either the sensitivity matrix or the variability matrix, and

has been recommended for practical use, especially when both matrices are involved

numerical derivatives as done by two R packages. Therefore, in this paper, we follow

the recommendation and use the sandwich form to obtain model-based standard

errors.

3.3.4 Estimation of Partially Identifiable Parameters

For a correctly specified model, the set of partially identifiable parameters ζ may

be restricted within certain bounds over which the assumed model is valid. For

example, Fan and Zhu (2009) provided certain sharp bounds for the pairwise cor-

relation parameter in a bivariate copula model. In this paper, we consider a more
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general setting of a d-dimension multivariate model and estimate bounds of partially

identifiable correlation parameter under the misaligned missing data pattern.

For the ease of exposition, we first consider a simple case of a correlation param-

eter, say, for the first and second margins. Denote the correlation matrix of y by

Γ = var(y) = (γij)d×d; then γ12 is the target correlation parameter. Because γ12 is

not point identifiable, it is not involved in the complete-case composite likelihood

above. To estimate the upper and lower bounds for γ12, we utilize the constraint of

non-negative definiteness for a correlation matrix; that is, determinant |Γ| ≥ 0. This

implies that the upper and lower bounds for γ12 are given by,

(3.9) γU12 = ΓT
3:d,1Γ

−1
3:d,3:dΓ3:d,2 +

(
1− ΓT

3:d,1Γ
−1
3:d,3:dΓ3:d,1

) 1
2
(
1− ΓT

3:d,2Γ
−1
3:d,3:dΓ3:d,2

) 1
2 ,

and

(3.10) γL12 = ΓT
3:d,1Γ

−1
3:d,3:dΓ3:d,2 −

(
1− ΓT

3:d,1Γ
−1
3:d,3:dΓ3:d,1

) 1
2
(
1− ΓT

3:d,2Γ
−1
3:d,3:dΓ3:d,2

) 1
2 ,

where a : b denotes column a to column b.

It is important to note that both bounds, respectively, are functions of the other

entries of the correlation matrix, all of which are supposedly point identifiable. To

help visualize the bounds, an example is provided in Figure 3.1. It illustrates the

upper and lower bounds of a partially identifiable parameter γ12 for a d×d exchange-

able correlation matrix, Γ where all correlation parameters, except γ12 and γ21 are

0.6. The dimension d varies from 3 to 20. It is easy to see that as the dimension

increases, the parameter range becomes narrower.

Generalizing the above idea, we propose a general method to estimate bounds of

two or more partially identifiable correlation parameters. For example, if in addition

to γ12, γd−1,d is also partially identifiable. Denote Γ−k,−k, k = 1, · · · , d, as the

submatrix of Γ with both the k-th column and the k-th row deleted. Applying the
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Figure 3.1: Upper and Lower Bounds for a Partially Identifiable Correlation Parameter
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procedure (3.9) and (3.10) to two submatrices Γ−d,−d and Γ−(d−1),−(d−1), both of

which have no involvement of γd−1,d, we obtain two pairs of bounds for γ12, denoted

by (γL12(d), γ
U
12(d)) and (γL12(d−1), γ

U
12(d−1)), respectively. Then, the resulting bounds are

γL12 = max(γL12(d), γ
L
12(d−1)), and γU12 = min(γU12(d), γ

U
12(d−1)). In the same way, we can

obtain bounds γLd−1,d and γUd−1,d for γd−1,d. Furthermore, for any γ12 ∈ (γL12, γ
U
12),

applying the procedure discussed above, we can obtain even narrower bounds for

γd−1,d, vice versa for γ12.

To discuss the issue of inference for the bounds, we again start with a simple

case of one partially identifiable parameter γ12. Noting that the estimated bounds

γ̂U12 and γ̂L12 are functions of all points identifiable parameters given by matrix Γ.

Denote Γ−12 as the vector of elements from the lower matrix of Γ without γ12,
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and the asymptotic variances of Γ−12 are corresponding submatrix of
Ĝ−1(η̂)

n
. Ap-

plying the multivariate delta’s method, we can derive the asymptotic variances as

v̂ar(γ̂U12) = ∇γU12(Γ̂)Tvar(Γ̂−12)∇γU12(Γ̂), and v̂ar(γ̂L12) = ∇γL12(Γ̂)Tvar(Γ̂−12)∇γL12(Γ̂),

where ∇γU12(Γ) and ∇γL12(Γ) are the gradient vectors of γU12 and γL12 with respect to

the point identifiable elements in Γ.

For models with two or more partially identifiable parameters, the derivation of

the delta’s method may become rather tedious in the general setting. At this moment,

we carry out only need-based derivations in a given problem under investigation.

3.4 Implementation

Peeling algorithm is developed to obtain estimates of point identifiable parameters

η that maximize the complete-case composite likelihood. This algorithm proceeds

over a sequence of iterative steps on multiple subsets of parameters. Suppose we

partition η into g disjoint groups, say, (η1, · · · ,ηg). Maximizing the complete-case

composite likelihood with respect to η is carried out by sequentially updating each

subset of parameters, from η1 to ηg.

Suppose iteration t has been completed, and η(t) is available. At the (t + 1)-th

iteration, given that the first (j−1) subgroups of η have been updated, updating the

jth subset ηj is obtained by maximizing the following the complete-case composite

likelihood,

η
(t+1)
j = arg max

ηj

n∑
i=1

lc,i

(
η

(t+1)
1 , · · · ,η(t+1)

j−1 ,ηj,η
(t)
j+1, · · · ,η(t)

g |Yobs,R
)
,

where lc,i is given in equation (3.3).

The above optimization may be done numerically using a quasi-Newton optimiza-

tion routine available in R function nlm. This step of optimization is computationally
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fast as it involves only a set of low-dimensional parameters vector ηj. At the com-

pletion of iteration (t+ 1), g subsets of parameters are updated, denoted as η(t+1).

After the peeling algorithm converges, the upper and lower bounds for each par-

tially identifiable parameter in ζ will be estimated according to suitable formulas de-

termined in a given problem. For example, the bounds of γ12 are calculated through

equations (3.9) and (3.10). Fill γ12 by its upper or lower bound results in the two

estimated correlation matrices, denoted by ΓU and ΓL, respectively.

3.5 Gaussian Copula Regression Model

We now apply the proposed method to an important example of Gaussian copula

regression model with location-scale family marginal model. This development pro-

vides a needed preparation for the analysis of the quality-of-life data in the motivating

example introduced in Section 3.2. A Gaussian copula regression model consists of

two components: marginal regression model and Gaussian copula dependence model,

both of which are presented in detail below.

3.5.1 Location-Scale Family Distribution Marginal Model

Suppose θ = (θ1,θ2, · · · ,θd)T , where each θk denotes a set of marginal param-

eters associated with the kth(k = 1, · · · , d) marginal density function, fk(yk|θk).

Denote by uk = Fk(yk|θk) the marginal cumulative distribution function(CDF)

corresponding to the kth margin, where Fk is a location-scale family distribution

parametrized by a location parameter µk and a positive scale parameter σk, θk =

(µk, σk). More specifically, the marginal location-scale density function is given by

(3.11) fk(yk|θk) =
1

σk
f̃

(
yk − µk
σk

)
, k = 1, · · · , d,

where f̃(·) is the standard kernel density with
∫
R
yf̃(y)dy = 0.
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To specify a marginal regression model, let Xi = (1,xTi )T , i = 1, · · · , n. For

the kth margin, the linear model is imposed on the location parameter in equation

(3.11), µik = E(yik|Xi) = h(XT
i βk), k = 1, · · · , d, where βk = (βk0, βk1, · · · , βkp)T

is a (p + 1)-element unknown regression vector, and h is a known link function.

For convenience, denote the resulting model by Yik ∼ Fk(yk|µik(βk), σk). As an

important special case, we may consider p = 0 (no covariates), namely µik = h(βk0)

is a common location parameter for all subjects i = 1, · · · , n.

3.5.2 Gaussian Copula

A copula is a multivariate probability distribution in which the marginal prob-

ability distribution of each variable is uniform on (0, 1). According to Sklar’s the-

orem (Sklar (1959)), a multivariate cumulative distribution function of a continu-

ous random vector Y = (y1, y2, · · · , yd)T with marginals Fk(yk) can be written as

F (y1, . . . , yd) = C (F1(y1), . . . , Fd(yd)), where C is a suitable copula. In this paper,

we assume that Y follows the d-dimensional distribution generated by a Gaussian

copula (Song (2000)). The d-variate density function of Y is given by

(3.12) f(Y|θ,Γ) = c(u|Γ)
d∏

k=1

fk(yk|θk), u = (u1, u2, · · · , ud)T ∈ [0, 1]d,

with Gaussian copula function c(·|Γ) of the following form:

(3.13) c(u|Γ) = |Γ|−
1
2 exp

{
1

2
Q(u)T (I− Γ−1)Q(u)

}
, u ∈ [0, 1]d ,

where Γ = (γk1k2)d×d is the Pearson correlation matrix of normal quantiles Q(u) =

(q1(u1), · · · , qd(ud))T , and qk = qk(uk) = Φ−1(uk) is the kth marginal normal quantile,

k = 1, · · · , d. Here Φ denotes the univariate CDF of the standard normal distribu-

tion, and I is the d× d identity matrix, and | · | denotes the determinant of a matrix.

Marginally, uk ∼ Unif(0, 1), and qk ∼ N(0, 1). When all margins yk are normal dis-
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tributed, matrix Γ gives the Pearson correlation matrix of Y; otherwise, Γ represents

a matrix of pairwise rank-based correlations (e.g., Kendall’s τ or Spearman’s ρ).

3.5.3 Complete-Case Composite Likelihood

In the presence of misaligned missing data pattern, the complete-case composite

likelihood in equation (3.1), for one subject, may be written as follows,

(3.14) Lobs
c (ξ|y,R) =

∏
s∈S

fs(ys|ξs)ws =
∏
s∈S

{
c(us|Γs)

∏
k∈s

fk(yk|θk)

}ws

,

where c(us|Γs) = |Γs|−
1
2 exp

{
1

2
qTs (I− Γ−1

s )qs

}
is the density function under Gaus-

sian copula for the corresponding set s due to the property of marginal closure.

To estimate (θ,Γ) by using the complete-case composite likelihood of a random

sample of n subjects, for each subject i = 1, · · · , n denote uobs = {uk, k ∈ Dobs}, and

Γobs = {γk1k2 , k1, k2 ∈ Dobs}. The marginal density of Gaussian copula is given by,

for uobs ∈ [0, 1]|Dobs| is given by,

(3.15) c(uobs|Γobs) = |Γobs|−
1
2 exp

{
1

2
qobs(uobs)

T
(
I− Γ−1

obs

)
qobs(uobs)

}
,

and the logarithm of the complete-case composite likelihood function for one subject

is,

(3.16) l(η|yobs) =
∑
j∈Dobs

lnfk(yk|θk)−
1

2
ln|Γobs|+

1

2
qobs(uobs)

T
(
I− Γ−1

obs

)
qobs(uobs).

Denote A = Γ−1 as the precision matrix. The complete-case composite score function

is given by,

(3.17) Ψ(Y,R;η) =
∂

∂(θ, A)
l(η|Yobs,R).

Proposition III.6. (Uniqueness) Assume the Gaussian copula regression model

is correctly specified. Then, the complete-case composite score function in equation

(3.17) has a unique zero at the true values, (θ0,Γ0), i.e., E
(θ0,Γ0)

Ψ(Y,R|θ0,Γ0) = 0.
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This uniqueness property ensures that the complete-case composite likelihood

estimator (θ̂, Γ̂) converges to the true values in probability.

We like to comment that the Fan and Zhu (2009)’s sharp bounds are actually wider

than ours. According to Fan and Zhu (2009) theory, the lower and upper bounds of

correlation parameter γk1,k2 are given by γLk1,k2 =
[∫ 1

0

{
F−1
k1

(u|θk1)F−1
k2

(1− u|θk2)
}
du− µk1µk2

]
/σk1σk2 ,

and γUk1,k2 =
[∫ 1

0

{
F−1
k1

(u|θk1)F−1
k2

(u|θk2)
}
du− µk1µk2

]
/σk1σk2 . By some routine cal-

culations, we find that in the Gaussian copula framework, the upper and lower bound

are equal to -1 and 1, respectively.

3.5.4 Implementation

Below are some details of the peeling algorithm to update parameters in both

location-scale family marginal model and Gaussian copula.

Step 1: To Update Marginal Parameters

Suppose iteration t has been completed, for a specific marginal parameter θk, k =

1, · · · , d, we first denote qobs\k = {qk′ , k′ ∈ Dobs, k
′ 6= k}, which is the subvector

of qobs without the component qk. Let q
(k−1|t+1)
obs be the vector where the elements

k′ < k have been updated in the (t + 1)th iteration where the elements k′ > k

have been updated in the tth iteration, and q
(k−1|t+1)
obs\k be the subvector of q

(k−1|t+1)
obs

excluding qk. Thus, q
(t+1)
obs = q

(d|t+1)
obs = q

(0|t+2)
obs . Therefore, the corresponding partial

log complete-case composite likelihood may be written as, for k = 1, · · · , d,

θ
(t+1)
k = arg max

θk

{
n∑
i=1

I{Ri,k = 1}
[
lnfk(yi,k|θk) +

1

2
q2
i,k − (q

(k−1|t+1)
i,obs\k )T (Γ

(t)
i,obs\k)

−1q
(k−1|t+1)
i,obs\k

]}
.

Note that when Rik = 0 and yik is missing, lc,ik = 0.

After θ(t+1)k have been updated, we obtain u
(t+1)
ik = Fk(yik|θ(t+1)

k ) and q
(t+1)
ik =

Φ−1(u
(t+1)
ik ), for k = 1, · · · , d, and i = 1, · · · , n. So the iteration (t+ 1) for marginal

parameters has been completed.
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Step 2: To Update Point-Identifiable Correlation Parameters

To update the point identifiable correlation parameters,

Γ̂ = arg max
Γ

{
n∑
i=1

[
−1

2
ln|Γobs| −

1

2
(q

(t+1)
i,obs )TΓ−1

i,obsq
(t+1)
i,obs

]}
,

when Γk1k2 is partially identifiable, temporarily put a zero in the entry.

Step 3: To Estimate Partially Identifiable Correlation Parameters

Follow the instruction in Section 3.3.4.

3.6 Simulation Experiments

We conduct extensive simulation experiments to evaluate the performance of the

complete-case composite likelihood method, and to compare it with the classical EM

algorithm and imputation methods. In the first two experiments, the dimension of

outcomes is set as d = 3, and one or two outcomes may be subject to missing (i.e.,

|Dobs| = 1 or 2) across subjects. In the third experiment, the dimension of outcomes

is set as d = 5, in which two or three outcomes may be missing (i.e., |Dobs| = 2 or 3)

across subjects, so that the misaligned missingness occurs in two pairs of outcomes.

3.6.1 Three-Dimensional Linear Regression Model

The setup of the first simulation is similar to the motivating example of 3-

dimensional QoL scores, in which a pair of the outcomes is misaligned missing. In

the scenario of 3-dimensional linear regression model, there is a partially identifiable

correlation parameter for the first and second margins, while the third margin is

set only under MAR. In the marginal regression models, we include two covariates

X1 ∼ Bin(1,0.5) and X2 ∼N(0,1) in the linear model with µk = XTβk, k = 1, 2, 3

and generate residuals from a tri-variate normal N3(0,Γ) with the standard nor-
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mal marginal N(0,1) and an unstructured correlation matrix Γ with parameters

(γ12, γ13, γ23) = (0.5, 0.4, 0.3).

The following missing mechanism is set for the first margin:

P (R1 = 0|X1, Y1) =


0.3, if X1 = 1;

0.42, if X1 = 0, and Y1 > µ1;

0.18, if X1 = 0, and Y1 < µ1.

For the second margin, set R2 = 1 − R1 to generate the misaligned missingness

between the first two outcomes. The above missing data model leads to on average

30% missing in the first variable and 70% missing in the second variable. MAR for

the third variable is given by P (R3 = 0|X2) = 0.2Φ(X2) leading to on average 10%

missing.

The sample size n is fixed at 200, we run 1000 replicates to draw summary statis-

tics. We compare the results obtained from the complete-case composite likelihood

with the peeling algorithm to those obtained from the gold standard of the maxi-

mum likelihood estimation using the full data, the maximum likelihood estimation

via EM algorithm, and the method of multiple imputations. In comparison, two

types of standard errors are reported: the first type is the empirical standard error

in the three methods under the misaligned missing data, and the other type is the

average of 1000 model-based standard errors obtained from the inverse information

matrix in equation (3.6) in the proposed method, from the Louis’s formula in the

EM algorithm, and from Raghunathan (2004)’s method in the multiple imputation.

As shown in Table 3.1, in the presence of misaligned missing data, the proposed

complete-case composite likelihood method outperforms the EM algorithm. Taking

a close look at the estimation results for the parameters of the second regression

model where on average 70% of outcome observations are missing. The bias for the
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estimation of the scale parameter σ2 is not ignorable and the difference between the

empirical and the average model-based standard errors is large. The reason that the

MLE with the EM algorithm performs poorly is that there is no information shared

between the first two variables in the updating of γ12, and such estimation instability

propagates great damage on the estimation of the other two correlation parameters

and standard error estimation. The multiple imputation method performs well for

the estimation of the marginal regression parameters, but badly for the estimation of

γ12 with large bias. The gap between the empirical standard error and the average

model-based standard error is so substantial that inference for the parameters in the

second marginal model would be problematic. Such large gap in the standard errors

may be attributed to the fact that the method proposed in Raghunathan (2004) is

based on marginal univariate regression model, rather than on a multivariate analysis.

The same issue exacerbates in estimation of the second order moment parameters,

such as scale parameters and correlation parameters, from the EM algorithm. This

is because in the EM algorithm assumes that the full model is available, in which

borrowing information across margins is essential. The existence of any partially

identifiable parameters makes the sharing of information impossible. So, the results

from both the EM algorithm and the multiple imputation method appear strongly

biased and cannot be trusted in real world applications.

The estimates of partially identifiable parameter γ12 provided by the EM algorithm

and the multiple imputation method are incorrect with excessively large biases. In

contrast, our method provides an estimated range (−0.7543, 0.9943) ⊂ (−1, 1) as

well as associated standard errors for both lower and upper bound estimates. The

data information of the third margin does help us to reach a narrower parameter

range than (−1, 1).
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3.6.2 Integration of Four Data Sources

In the second simulation experiment, we aim to examine the performance of the

proposed method to deal with missing data when multiple data sources are combined.

We consider integrate 4 data sets, each of which is generated from a tri-variate linear

regression model with normally distributed errors, similar to the model used in the

first simulation experiment in Section 3.6.1. Simulation setup is given as follows.

For the first data set, three marginal outcomes are fully observed; for the second

data set, the first margin is not measured (fully missing), but the second and the

third margins are fully observed; for the third group, only the first margin is fully

observed, but the second and the third margins are not measured (fully missing); for

the fourth data set, 30% of subjects have missing values at random, according to the

following missing mechanism,

P (R0 = 0|X1, Y1) =


0.3, if X1 = 1;

0.42, if X1 = 0, and Y1 > µ1;

0.18, if X1 = 0, and Y1 < µ1,

where R0 is a missing indicator for a subject, and when R0 = 0, one or two margins

are randomly missing with equal probability.

In each data set the 3-dimensional regression model is specified in the same form

as that given in the first simulation study in Section 3.6.1. The sample size is for

each data source is fixed at 100, so the total sample size of the integrated data is 400.

We run 1000 replicates to draw summary statistics. We compare the results obtained

from the complete-case composite likelihood with the peeling algorithm with those

obtained from the gold standard using the full data, from the EM algorithm, from the

multiple Imputation method, and from the hot-deck imputation method. The two

imputation methods are implemented under the default settings of R packages MI
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and HotDeckImputation, respectively. Similar to the first simulation experiment in

Section 3.6.1 our comparison on the two types of standard errors are also included.

As shown in Table 3.2, both estimates and standard errors obtained from complete-

case composite likelihood method and the EM algorithm are all close to the true val-

ues. This is because in this data integration, the misaligned missingness in one data

source disappears when the multiple data sets are combined. Also, the standard er-

rors from the complete-case composite likelihood and the EM algorithm appear to be

similar. This is due to the fact that under MAR both the MLE and the complete-case

composite likelihood estimation are fully efficient (refer to Theorem III.5). For the

multiple imputations methods, noticeable differences appear between the empirical

standard errors and the average model-based standard errors for marginal regression

parameters remain in this simulation study. Overall, the complete-case composite

likelihood and the EM algorithm outperform the two imputation methods, judged

by both bias and standard errors.

3.6.3 Estimation with Two Partially Identifiable Parameters

The third simulation study aims to provide additional numerical evidence on the

proposed complete-case composite likelihood estimation when there are two partially

identifiable correlation parameters. This is a more complicated scenario than the first

simulation that contains only one partially identifiable parameter. Here we consider

a five-dimensional linear regression model with normally distributed errors, where

two pairs of marginal outcomes are subject to misaligned missing. We adopt the

same univariate regression model with two covariates as that specified in the first

simulation study, and the correlation matrix Γ for the 5-dimensional correlated errors
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is specified as follows: 

1 0.6 0.5 0.4 0.3

0.6 1 0.5 0.45 0.3

0.5 0.5 1 0.5 0.5

0.4 0.45 0.5 1 0.6

0.3 0.3 0.5 0.6 1


.

The misaligned missingness between the first two margins is generated by the

probability model given in Section 3.6.1, and the misaligned missingness for the last

two margins is generated according to the following probability model: for the fourth

margin, we set

P (R4 = 0|X2, Y4) =


0.4, if X2 > 0;

0.48, if X2 < 0, and Y4 > µ4;

0.32, if X2 < 0, and Y4 < µ4;

and for the last margin, set R5 = 1 − R4. The above missing data model gives

rise on average 40% missingness in the fourth variable and 70% missingness in the

fifth variable. In this setting, both correlation parameters γ12 and γ45 are not point

identifiable.

The sample size is fixed at 200, and we run 1000 replicates to draw summary

statistics. We compare the complete-case composite likelihood to the gold standard

of the maximum likelihood estimation using the full data in terms of both estimation

bias and standard error.

Table 3.3 indicates that the estimates of point identifiable parameters from the

complete-case composite likelihood method are close to the true values, with slightly

larger standard errors than those given by the golden standard. This is not a sur-

prise because the complete-case composite likelihood estimation utilizes the reduced
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Figure 3.2: Bounds for Partial Identifiable Parameters
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sample based only on the set of observed data. Also, a high agreement between

the empirical standard error and the average model-based standard error is evident

across all parameters. For the two partially identifiable parameters, their respective

upper and lower bounds for γ12 and γ45 are calculated by the method discussed in

Section 3.3.4 and displayed in Figure 3.2. In this figure the solid boundaries of the

rectangle represent their individual upper and lower bounds for γ12 and γ45, respec-

tively, and the dashed lines are the true the one-dimensional parameter range. The

black dot represents the true values of these two correlation parameters. The gray

area shows the joint range of the two parameters, which is slightly smaller than the

rectangle area because of some internal constraint between γ12 and γ45. In other

words, with a parameter value indicated by x in the figure, the correlation matrix Γ
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is not necessarily positive definite.

3.7 PROMIS Data Analysis

PROMIS data was introduced in Section 3.2 as a motivating example. Here,

we present the relevant detail concerning the joint regression analysis of three QoL

scores domains (pain, fatigue, and anxiety) where pain and fatigue are misaligned

missing. Out of 224 subjects, 108 subjects have measurements of pain but no mea-

surements of fatigue, while the other 116 subjects have measurements of fatigue but

no measurements of pain. In addition, two subjects have neither measurements of

pain nor measurements of fatigue. Interestingly, measurements of anxiety have been

fully recorded on all 224 individuals with no missing data.

We first conduct the complete-case univariate analysis of each QoL domain score

(y1 = Pain, y2 = Fatigue, y3 = Anxiety) on covariates of age (x1), gender (x2),

edema (x3), race (white, x4; black, x5; and other as reference). Next, we consider

a three-dimensional Gaussian copula regression model to jointly analyze the three

domain scores. Since these QoL measurements are all highly positively skewed, we

adopt gamma distribution for the marginal outcomes. In this case, it is natural to use

rank-based correlation Kendall’s tau in matrix Γ, and the corresponding standard

errors of the estimated tau correlations are obtained by the delta method using the

transformation relationship between Pearson correlation and Kendall’s tau (Ding and

Song (2014)). The Kendall’s tau is estimated as 0.368 between fatigue and anxiety

and 0.569 between pain and anxiety, while the correlation between fatigue and pain

is not point-identifiable.

In each mean marginal model, the mean of gamma distribution takes a log-linear

model of the following form: µik = E(yik|Xi) = exp(XT
i βk), k = 1, 2, 3, where
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Xi = (1,xTi )T and regression vector βk = (βk0, βk1, · · · , βk5)′, k = 1, 2, 3 is a 6-

dimensional unknown regression vector. Moreover, the shape parameter of the k-th

gamma margin is
1

σ2
k

.

Table 3.4 includes results obtained from the traditional estimation methods. In

the application of the EM algorithm, we run the algorithm twice with two different

initial values for the correlation parameters, which produces two very different esti-

mation results, especially the estimates of scale parameters and correlation parame-

ters. This suggests the EM algorithm does not converge. Also, we run the multiple

imputations twice, and also obtain two sets of estimation results. Although most

of the estimates are similar between the two multiple imputations, there does exist

a significant difference in the point estimation for the partially identifiable correla-

tion parameter γ12. Using the most reliable results obtained from our complete-case

composite likelihood method, we can conclude that edema is significantly associated

with two QoL domains of pain and anxiety but is not associated with QoL domain

fatigue. Also, black children tend to have higher QoL scores in pain and fatigue in

comparison to children of other race. Both age and gender are not important factors

for QoL in all three domains.

3.8 Concluding Remarks

In this paper we develop a complete-case composite likelihood approach to handle

regression analysis with misaligned missing data pattern. As shown in Theorem III.1,

this method indeed is also applicable to a general estimation framework with MAR

missing data mechanism. Regression analysis using the copula regression model is

useful to deal with nonlinear and non-normal univariate mean regression model.

This paper presents a meticulous treatment on missing data in the Gaussian copula
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regression model. An advantage of this proposed method is that it takes the observed

information into the formulation of likelihood function and more importantly only

point identifiable parameters are involved in the proposed likelihood, so estimation

of point identifiable parameters can proceed with no influence from unidentifiable

parameters. In addition, we propose to estimate bounds of a parameter range for

partially identifiable parameters.

We use the location-scale family as the class of marginal models in this paper. As

a matter of fact, as pointed out by Song et al. (2009b), the marginal regression model

in the framework of Gaussian copula regression models can be rather arbitrary; for

example, one may use the class of generalized linear models in the margins, which

was done by Song et al. (2009b) in the absence of missing data.

One limitation of this method is that when there are three or more partially

identifiable parameters in the estimation, the multivariate delta’s method for the

derivation of the asymptotic covariance for the bound estimates become tedious.

Some further exploration may be of interest.



68

T
ab

le
3.

1:
S

u
m

m
ar

y
of

si
m

u
la

ti
on

re
su

lt
s,

in
cl

u
d

in
g

av
er

a
g
e

p
o
in

t
es

ti
m

a
te

s,
em

p
ir

ic
a
l

st
a
n

d
a
rd

er
ro

rs
(E

S
E

)
a
n

d
av

er
a
g
e

m
o
d

el
-b

a
se

d
st

a
n

d
a
rd

er
ro

rs
(A

M
S

E
),

u
n

d
er

th
e

m
is

al
ig

n
ed

m
is

si
n

g
d

a
ta

p
a
tt

er
n

fo
r

3
-d

im
en

si
o
n

a
l

li
n

ea
r

re
g
re

ss
io

n
m

o
d

el
.

F
u

ll
D

at
a

C
o
m

p
le

te
-C

a
se

C
L

E
M

a
lg

o
ri

th
m

M
u

lt
ip

le
Im

p
u

ta
ti

o
n

R
es

p
on

se
T

u
re

V
al

u
e

E
st

im
at

e
E

S
E

/
A

M
S

E
E

st
im

a
te

E
S

E
/
A

M
S

E
E

st
im

a
te

E
S

E
/
A

M
S

E
E

st
im

a
te

E
S

E
/
A

M
S

E
β
1
0

0
-0

.0
01

4
0.

07
09

/
0
.0

7
0
6

-0
.0

6
3
4

0
.0

8
2
6

/
0
.0

8
2
2

-0
.0

6
6
3

0
.0

8
4
0

/
0
.0

8
2
2

-0
.0

8
7
9

0
.1

0
3
7

/
0
.0

7
0
8

β
1
1

1
1.

00
63

0.
14

25
/

0
.1

4
1
2

1
.1

2
5
5

0
.1

7
1
7

/
0
.1

6
4
3

1
.1

3
1
9

0
.1

7
4
0

/
0
.1

6
4
4

1
.1

3
4
2

0
.1

8
8
4

/
0
.1

4
1
5

β
1
2

1
0.

99
78

0.
07

35
/

0
.0

7
0
4

0
.9

9
9
9

0
.0

8
8
0

/
0
.0

8
1
7

0
.9

9
9
9

0
.0

8
9
0

/
0
.0

8
1
8

0
.9

9
9
8

0
.0

9
6
2

/
0
.0

7
1
0

σ
1

1
0.

99
36

0.
05

06
/

0
.0

4
8
9

0
.9

8
5
5

0
.0

6
1
9

/
0
.0

5
8
1

0
.9

2
2
8

0
.0

8
3
3

/
0
.0

5
0
7

0
.9

9
5
8

0
.0

6
9
1

/
-

β
2
0

0
-0

.0
04

6
0.

07
16

/
0
.0

7
0
3

0
.0

5
9
3

0
.1

2
4
7

/
0
.1

2
3
6

0
.0

6
8
3

0
.1

2
4
7

/
0
.1

2
3
7

0
.1

1
0
7

0
.2

1
5
6

/
0
.0

7
1
6

β
2
1

1
1.

00
31

0.
14

31
/

0
.1

4
0
5

0
.8

7
8
0

0
.2

5
3
6

/
0
.2

4
6
9

0
.8

6
0
6

0
.2

5
5
0

/
0
.2

4
7
1

0
.8

5
8
4

0
.2

7
8
6

/
0
.1

4
3
1

β
2
2

1
0.

99
77

0.
07

06
/

0
.0

6
9
9

0
.9

9
9
8

0
.1

2
9
8

/
0
.1

2
2
7

0
.9

9
9
5

0
.1

3
0
9

/
0
.1

2
2
8

1
.0

0
0
3

0
.1

4
0
8

/
0
.0

7
1
8

σ
2

1
0.

98
89

0.
04

96
/

0
.0

4
9
0

0
.9

6
4
4

0
.0

9
3
5

/
0
.0

8
6
0

0
.7

2
3
7

0
.2

1
5
2

/
0
.0

5
9
8

1
.0

0
6
7

0
.1

2
0
9

/
-

β
2
0

0
-0

.0
02

2
0.

07
45

/
0
.0

7
0
4

-0
.0

0
2
5

0
.0

7
7
8

/
0
.0

7
3
9

-0
.0

0
3
0

0
.0

7
8
3

/
0
.0

7
4
0

-0
.0

0
1
5

0
.0

8
2
1

/
0
.0

7
1
0

β
3
1

1
1.

00
56

0.
14

21
/

0
.1

4
0
7

1
.0

0
6
3

0
.1

4
7
1

/
0
.1

4
7
3

1
.0

0
7
0

0
.1

4
7
6

/
0
.1

4
7
6

1
.0

0
9
8

0
.1

5
2
3

/
0
.1

4
1
9

β
3
2

1
1.

00
26

0.
07

19
/

0
.0

7
0
0

1
.0

0
1
9

0
.0

7
4
4

/
0
.0

7
3
4

1
.0

0
1
7

0
.0

7
5
2

/
0
.0

7
3
6

1
.0

0
2
5

0
.0

7
8
8

/
0
.0

7
1
2

σ
3

1
0.

99
06

0.
04

99
/

0
.0

4
8
9

0
.9

9
0
4

0
.0

5
1
2

/
0
.0

5
1
4

0
.9

6
4
0

0
.0

5
3
5

/
0
.0

4
7
9

0
.9

9
8
4

0
.0

5
4
0

/
-

γ
1
2

0.
5

0.
49

77
0.

05
43

/
0
.0

5
2
7

-
-

/
-

-0
.3

5
3
8

0
.2

1
9
4

/
-

0
.0

9
6
2

0
.4

1
8
2

/
-

γ
U 1
2

0.
99

43
-

-
/

-
0
.9

8
1
2

0
.0

2
5
2

/
0
.0

2
3
5

-
-

/
-

-
-

/
-

γ
L 1
2

-0
.7

54
3

-
-

/
-

-0
.7

4
9
1

0
.1

0
4
0

/
0
.0

9
7
5

-
-

/
-

-
-

/
-

γ
1
3

0.
4

0.
39

46
0.

06
18

/
0
.0

5
9
0

0
.3

9
6
4

0
.0

7
6
2

/
0
.0

7
3
1

0
.4

7
3
6

0
.1

0
4
5

/
0
.0

5
5
0

0
.3

9
5
3

0
.0

8
6
5

/
-

γ
2
3

0.
3

0.
29

52
0.

06
51

/
0
.0

6
3
8

0
.2

9
2
4

0
.1

3
1
9

/
0
.1

2
0
9

0
.3

1
7
1

0
.1

3
9
4

/
0
.0

8
7
5

0
.2

8
3
1

0
.1

6
9
9

/
-



69

T
ab

le
3.

2:
S

u
m

m
ar

y
of

si
m

u
la

ti
on

re
su

lt
s

in
th

e
in

te
g
ra

ti
o
n

o
f

fo
u

r
d

a
ta

se
ts

,
in

cl
u

d
in

g
av

er
a
g
e

p
o
in

t
es

ti
m

a
te

s,
em

p
ir

ic
a
l

st
a
n

d
a
rd

er
ro

rs
(E

S
E

)
an

d
av

er
ag

e
m

o
d

el
-b

as
ed

st
an

d
ar

d
er

ro
rs

(A
M

S
E

),
u

n
d

er
va

ri
o
u

s
m

is
si

n
g

d
a
ta

p
a
tt

er
n

s
ov

er
fo

u
r

d
iff

er
en

t
d

a
ta

so
u

rc
es

,
ea

ch
o
f

w
h

ic
h

is
ge

n
er

at
ed

fr
om

a
th

re
e-

d
im

en
si

on
al

li
n

ea
r

re
g
re

ss
io

n
m

o
d

el

F
u

ll
D

at
a

C
o
m

p
le

te
C

a
se

C
L

M
L

E
/
E

M
M

u
lt

ip
le

Im
p

u
ta

ti
o
n

s
H

o
t-

D
ec

k
Im

p
u

ta
ti

o
n

T
u

re
V

al
u

e
E

st
.

E
S

E
/A

M
S

E
E

st
.

E
S

E
/
A

M
S

E
E

st
.

E
S

E
/
A

M
S

E
E

st
.

E
S

E
/
A

M
S

E
E

st
.

E
S

E
β
0

0
0.

00
12

0.
05

11
/

0.
05

00
0.

00
0
9

0
.0

5
8
4

/
0
.0

5
6
9

0
.0

0
0
8

0
.0

6
0
2

/
0
.0

5
6
9

0
.0

0
0
6

0
.0

6
8
7

/
0
.0

5
0
2

0
.0

0
0
8

0
.0

6
0
2

β
1

1
1.

00
10

0.
10

00
/

0.
10

00
1.

00
3
8

0
.1

1
3
0

/
0
.1

1
3
7

1
.0

0
3
9

0
.1

1
7
7

/
0
.1

1
3
8

1
.0

0
5
5

0
.1

2
0
0

/
0
.1

0
0
4

1
.0

0
3
9

0
.1

1
7
7

β
2

1
1.

00
28

0.
04

89
/

0.
05

00
1.

00
1
2

0
.0

5
6
5

/
0
.0

5
6
7

1
.0

0
1
5

0
.0

5
8
8

/
0
.0

5
6
7

0
.9

9
9
9

0
.0

6
0
8

/
0
.0

5
0
3

1
.0

0
1
5

0
.0

5
8
8

σ
1

0.
99

76
0.

03
53

/
0.

03
51

0.
99

6
9

0
.0

4
1
2

/
0
.0

4
1
0

1
.0

0
1
9

0
.0

4
1
9

/
0
.0

4
1
3

1
.0

0
1
4

0
.0

4
6
3

/
-

1
.0

0
1
9

0
.0

4
1
9

β
0

0
0.

00
17

0.
04

92
/

0.
04

98
0.

00
2
3

0
.0

5
7
3

/
0
.0

5
7
2

0
.0

0
2
1

0
.0

5
8
9

/
0
.0

5
7
2

0
.0

0
2
0

0
.0

6
7
5

/
0
.0

4
9
9

0
.0

0
2
1

0
.0

5
8
9

β
1

1
0.

99
98

0.
09

65
/

0.
09

97
1.

00
1
1

0
.1

1
1
1

/
0
.1

1
4
3

0
.9

9
9
8

0
.1

1
5
4

/
0
.1

1
4
4

0
.9

9
8
7

0
.1

2
2
2

/
0
.0

9
9
9

0
.9

9
9
8

0
.1

1
5
4

β
2

1
1.

00
17

0.
04

88
/

0.
04

98
1.

00
0
5

0
.0

5
7
3

/
0
.0

5
7
1

1
.0

0
0
4

0
.0

6
0
0

/
0
.0

5
7
2

1
.0

0
0
9

0
.0

6
2
4

/
0
.0

5
0
0

1
.0

0
0
4

0
.0

6
0
0

σ
1

0.
99

43
0.

03
52

/
0.

03
50

0.
99

3
4

0
.0

4
1
4

/
0
.0

4
1
1

0
.9

9
7
9

0
.0

4
1
8

/
0
.0

4
1
4

0
.9

9
6
6

0
.0

4
6
0

/
-

0
.9

9
8
0

0
.0

4
1
7

β
0

0
0.

00
10

0.
05

29
/

0.
04

99
0.

00
0
6

0
.0

6
0
2

/
0
.0

5
7
8

0
.0

0
0
4

0
.0

6
1
5

/
0
.0

5
7
9

0
.0

0
1
5

0
.0

7
0
7

/
0
.0

5
0
0

0
.0

0
1
0

0
.0

7
1
6

β
1

1
0.

99
80

0.
09

72
/

0.
09

98
0.

99
6
8

0
.1

1
5
0

/
0
.1

1
5
6

0
.9

9
5
8

0
.1

1
5
9

/
0
.1

1
5
7

0
.9

9
5
4

0
.1

2
4
2

/
0
.1

0
0
1

0
.9

9
7
9

0
.1

2
5
8

β
2

1
0.

99
98

0.
04

94
/

0.
04

97
0.

99
9
3

0
.0

5
6
7

/
0
.0

5
7
6

0
.9

9
9
1

0
.0

5
7
6

/
0
.0

5
7
6

0
.9

9
8
0

0
.0

6
3
4

/
0
.0

5
0
1

0
.9

9
8
8

0
.0

6
1
0

σ
1

0.
99

57
0.

03
47

/
0.

03
50

0.
99

3
4

0
.0

4
0
7

/
0
.0

4
1
2

0
.9

9
8
3

0
.0

4
1
4

/
0
.0

4
1
6

0
.9

9
8
3

0
.0

4
5
7

/
-

0
.9

9
5
6

0
.0

4
7
4

γ
1
2

0.
5

0.
49

94
0.

03
64

/
0.

03
73

0.
50

1
8

0
.0

5
2
8

/
0
.0

5
2
9

0
.5

0
9
3

0
.0

5
3
4

/
0
.0

5
1
8

0
.4

9
8
4

0
.0

6
4
3

/
-

0
.4

9
7
4

0
.0

6
0
2

γ
1
3

0.
4

0.
39

89
0.

04
06

/
0.

04
18

0.
40

0
9

0
.0

6
0
6

/
0
.0

5
9
4

0
.4

0
7
0

0
.0

6
0
8

/
0
.0

5
8
9

0
.3

9
9
4

0
.0

7
4
6

/
-

0
.4

0
0
2

0
.0

6
8
4

γ
2
3

0.
3

0.
30

05
0.

04
49

/
0.

04
52

0.
29

9
5

0
.0

5
4
8

/
0
.0

5
3
9

0
.3

0
7
0

0
.0

5
7
7

/
0
.0

5
3
7

0
.3

0
0
2

0
.0

6
4
0

/
-

0
.3

0
1
4

0
.0

6
3
6



70

Table 3.3: Summary of simulation results in a 5-dimensional linear model, including average point
estimates, empirical standard errors (ESE) and average model-based standard errors
(AMSE), under two pairs of misaligned missingness between the first and second margins
and between the fourth and fifth margins, respectively.

Full Data Complete-Case CL
Parameter True Value Estimate ESE/AMSE Estimate ESE/AMSE

β10 0 -0.0007 0.0726 / 0.0703 -0.0524 0.0830 / 0.0805
β11 1 0.9985 0.1439 / 0.1406 1.0998 0.1625 / 0.1610
β12 1 1.0027 0.0730 / 0.0699 0.9991 0.0836 / 0.0802
σ1 1 0.9896 0.0490 / 0.0490 0.9822 0.0596 / 0.0580
β20 0 -0.0004 0.0729 / 0.0704 0.0535 0.1269 / 0.1147
β21 1 1.0006 0.1408 / 0.1408 0.8882 0.2467 / 0.2307
β22 1 0.9997 0.0749 / 0.0702 1.0029 0.1269 / 0.1138
σ2 1 0.9906 0.0513 / 0.0489 0.9652 0.0933 / 0.0849
β30 0 -0.0025 0.0709 / 0.0702 -0.0022 0.0737 / 0.0727
β31 1 1.0054 0.1376 / 0.1405 1.0059 0.1433 / 0.1452
β32 1 0.9979 0.0727 / 0.0701 0.9974 0.0756 / 0.0726
σ3 1 0.9888 0.0480 / 0.0489 0.9866 0.0509 / 0.0511
β40 0 -0.0040 0.0695 / 0.0704 -0.0044 0.0856 / 0.0856
β41 1 1.0008 0.1416 / 0.1408 0.9975 0.1714 / 0.1714
β42 1 0.9995 0.0732 / 0.0701 0.9989 0.0876 / 0.0853
σ4 1 0.9907 0.0498 / 0.0491 0.9861 0.0658 / 0.0617
β50 0 -0.0006 0.0701 / 0.0705 -0.0019 0.1063 / 0.1029
β51 1 0.9948 0.1380 / 0.1409 0.9886 0.2124 / 0.2052
β52 1 1.0004 0.0718 / 0.0701 0.9978 0.1120 / 0.1020
σ5 1 0.9916 0.0505 / 0.0490 0.9787 0.0795 / 0.0748
γ12 0.6 0.5967 0.0471 / 0.0450 - - / -
γU12 0.9982 - - / - 0.9984 0.0461 / -
γL12 -0.4182 - - / - -0.4279 0.1321 / -
γ13 0.5 0.4988 0.0534 / 0.0526 0.4989 0.0636 / 0.0643
γ14 0.4 0.3979 0.0602 / 0.0588 0.4001 0.0894 / 0.0852
γ15 0.3 0.3019 0.0645 / 0.0635 0.3041 0.1243 / 0.1110
γ23 0.5 0.4957 0.0526 / 0.0527 0.4912 0.1068 / 0.0981
γ24 0.45 0.4480 0.0564 / 0.0560 0.4438 0.1341 / 0.1213
γ25 0.3 0.3010 0.0659 / 0.0635 0.2984 0.1775 / 0.1623
γ34 0.5 0.4978 0.0546 / 0.0526 0.4979 0.0732 / 0.0687
γ35 0.5 0.5014 0.0533 / 0.0523 0.5025 0.0896 / 0.0828
γ45 0.6 0.6003 0.0450 / 0.0448 - - / -
γU45 0.9846 - - / - 0.9853 0.0594 / -
γL45 -0.4579 - - / - -0.4578 0.1212 / -
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CHAPTER IV

Multilevel Gaussian Copula Regression Model

4.1 Summary

Motivated by an electroencephalography (EEG) data collected from 128 electrodes

on the scalps of 91 9-months-old infants, Project 3 concerns the regression analysis

of multilevel correlated data. Arguably, multilevel correlated data are pervasive in

practice, which are routinely modeled by the hierarchical modeling system often

utilizing random effects. We develop an alternative approach based on a class of

multi-dimensional parametric regression models in the framework of Gaussian cop-

ulas, in which implementation of the maximum likelihood estimation is established.

The proposed model enjoys great flexibility; in the aspect of regression model, it can

accommodate continuous outcomes, discrete outcomes or outcomes of mixed types,

while in the aspect of dependence, it can allow temporal (e.g. AR), spatial (e.g.

Matérn), clustered (e.g. exchangeable), or a mixture of these dependence structures.

Parameters in the proposed model have marginal interpretation, which is absent in

the hierarchical model when outcomes of interest are non-normal (e.g. binary or

ordinal). The EM algorithm introduced in Chapter II with the peeling procedure

provides a fast and stable iterative procedure for parameter estimation in this chap-

ter. The proposed model and algorithm are assessed by simulation studies, and

72
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further illustrated by the analysis of EEG data for an adverse effect of prenatal iron

deficiency on infant’s visual recognition memory.

4.2 Introduction

Multilevel data, also known as hierarchical data, clustered data, and nested data,

are a common type of data structure in temporal-spatial analysis, or when subjects

are grouped by some specific characters, as a generalization of regression model with

parameters that vary at more than one level. For example, Aitkin and Longford

(1986) designed a two-level model for educational data, in which students are clus-

tered in schools. Random effects model, also known as variance components model,

is one of the most popular methods to establish multilevel models.

Random effects model was introduced by Laird and Ware (1982), where the

“fixed” and “random” effects to respectively refer to the population-average and

subject-specific effects. Related theories and applications of random effects model in

data analysis can be found in Verbeke et al. (2010); Liang and Zeger (1986); Zeger

et al. (1988); Zeger and Liang (1986), among others.

Under the traditional random effects model, repeated measurements of subjects

within certain cluster, (e.g., students in a certain school in a study) are collected,

where the cluster factor is modeled as a random effect. Motivated from our col-

laborative study on infant’s visual recognition memory, where multilevel data are

measured from a multivariate setting, we consider a Gaussian copula multilevel re-

gression model as an alternative to the random effects model.

The multilevel Gaussian copula framework focuses on multilevel correlations,

which allows covariates to be incl.ded in the marginal regression model as well as

interactions within and between levels. This chapter will be organized as follows.
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Section 4.3 presents the background and exploratory analysis of EEG data, which

motivates the development of the proposed model. Section 4.4 describes the mul-

tilevel Gaussian copula model, with specific useful examples including ordinal and

mixed margins. Section 4.5 presents the peeling algorithm. Section 4.6 presents

simulation studies, and the EEG data analysis is included in Section 4.7. Section 4.8

provides some concluding remarks.

4.3 EEG Data

Infant’s visual recognition memory is an important marker of child development

in early age. According to Barker et al. (1989)’s theory of development origins, it

is hypothesized that mother’s exposure to toxicants and nutritional deficiency may

affect her child’s growth and development, such as neural functional development.

Subjects recruited into a collaborative project at University of Michigan, Center for

Human Growth and Development, are 9-months old infants without prenatal or acute

or chronic illness. To address the scientific hypothesis, this study aims to evaluate

whether or not, and if so, how, prenatal iron deficiency affects visual recognition

memory for infants. Refer to some of important related work in de Haan et al.

(2003). Event-related potential (ERP) is a widely used measure of a specific sen-

sory, cognitive, or motor event. In this study, infant’s memory capability reflecting

the activity of the brain is measured over a period of 1700 milliseconds using elec-

troencephalograph (EEG) net of 128-channel sensors on the scalp (Reynolds et al.

(2011)). Figure 4.1 shows the layout the 128-channel EEG sensor net. The REF

node is placed on the central top of the scalp.

The data collection occurs along with a sequence of pictorial stimuli at two time

points: when an infant sees his/her mother’s picture and when he or she sees a
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Figure 4.1: Contour of the 128-Channel EEG Sensor Net (L: left; R: right; A: anterior; P: posterior)

P 

A 

L R 

stranger’s picture. At each time point, an event-related potential (ERP) of interest,

late slow wave (LSW), defined as an average magnitude of EEG time series occurring

during the last 500 milliseconds, is extracted from the standard data processing. LSW

is widely used as a primary outcome of visual recognition memory. In total, there

are 91 children with fully observed data. According to our collaborator, there are

20 out of 128 electrodes are of particular interest, with 5 electrodes in each of the

four subregions. These four subregions are left-posterior (L-P, subregion 1), right-

posterior (subregion 2), left-anterior (L-A, subregions 3), and right-anterior (R-A,

subregion 4), outlined with polygons in Figure 4.1.

Figure 4.2 shows examples of the LSW related time series cross-classified by iron

status and pictorial stimulus. Figure 4.2 shows that the infants with iron sufficiency

appear to have more stable curves over the time window of 500 milliseconds, and

for the infants with prenatal iron deficiency contribute more volatile curves when
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stranger’s picture is presented than those when mother’s picture is presented.

Figure 4.2: LSW related time series cross-classified by iron status and stimulus.
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4.3.1 Data Exploration

Through data processing, including an average of 250 time series data points

on each node for each infant with different stimuli, we end up with a vector of 40

outcomes. The first 20 outcomes are LSW measurements on 20 electrodes under

the stimulus of mother’s picture, and the rest 20 are LSW measurements from the

stimulus of stranger’s picture. These two vectors of LSW data are collected at two

time pints on each infant, so they are serially correlated. We refer to this as the first

level of correlation. In each vector of 20 measurements, they are collected from 4

spatially correlated subregions of the highlighted polygons in Figure 4.1. This gives

rise to the second level correlation. Moreover, 5 electrodes in each subregion are also
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clustered and correlated. This may be regarded as the third level correlation.

In Figure 4.3, densities of LSW measurements are plotted over stimulus level

where five densities in each panel corresponding to 5 electrodes in each subregion.

Figure 4.3 indicates that LSW outcome is approximately normally distributed at each

electrode, and this is the data evidence that we utilize to specify normal distribution

as marginal model in the analysis.

Figure 4.4 and Figure 4.5 is the scatter plot of LSE measurements in each sub-

region stratified by pictorial stimuli, and Table 4.1 shows corresponding correlation

matrix of each subregion when infants are presented different pictorial stimuli. Based

on findings in Figure 4.4, Figure 4.5, and Table 4.1, we choose exchangeable matrix

to model the within cluster correlation.

Furthermore, using the average LSW measurements in each subregion, we explore

how iron status or stimulus affects region-level visual recognition memory. As shown

in Figure 4.6, it seems that the median LSW difference between two iron conditions

in subregion 3 is more evident when a stranger’s picture is presented to the infants.

In addition, some collected in the study. They are mothers’ age at birth of her

baby, gestational age (in weeks), cord blood Pb levels (in ug/dL), first born child or

not, baby gender (boy=1, girl=0), and delivery type (vaginal=1, C-section=0).

Figure 4.7 displays boxplots of subject-specific LSW measurements over two stim-

uli between girls and boys. Once again, such differences in subregion 3 is slightly

bigger than the other three subregions.

4.3.2 Mixed Effects Model

As a part of data exploration, we utilized mixed effects model to analyze the EEG

data. For the mixed effects model, the covariates mentioned above are included as

fixed effects factors. Subregions and pictorial stimuli are considered two completely
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Figure 4.3: Density of LSW measurements at each electrodes over stimulus level.
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Figure 4.4: Scatter Plot of LSW Measurements in Each Subregion Stratified by Pictorial Stimuli.
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crossed random effects factors nested to each infant, and node is nested random

effects factor in each subregion. The model may be written as follows,

(4.1) LSWitjk = XT
i β + b1,it + b2,itj + b3,ijk + εitjk,

where t = 1, 2 for mother and stranger’s pictorial stimuli, i = 1, · · · , 91 for 91 infants,

j = 1, · · · , 4 for 4 subregions, and k = 1, · · · , 5 for 5 nodes within each subregion.

Xi, i = 1, · · · , 91 are the fixed effects factors. b1,it is a random effect that introduces
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Figure 4.5: Scatter Plot of LSW Measurements in Each Subregion Stratified by Pictorial Stimuli.
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an exchangeable correlation among 20 nodes, because it is a common random variable

shared by 4 (subregions) × 5 (nodes in each subregion) LSWs, with the distribution

N(0, σ2
b1

). b2,itj introduces an exchangeable correlation among 5 nodes, because it

is a common random variable shared by LSWs from 5 nodes in subregion j, with

the distribution N(0, σ2
b2

). b3,ijk introduces an exchangeable correlation between two

time points, because it is a common random variable shared by LSW between two

time points, with the distribution N(0, σ2
b3

).
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Figure 4.6: Boxplots of region-specific LSW cross iron status and stimulus.
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Applying lmer function in R package “lme4” by default settings under REML,

Table 4.2 provides maximum likelihood estimates of the fixed effects from the mixed

effects model. For subregion dummy variables, subregion1 is defined as reference.

We notice that mother’s age and subregions are the only factor that has significant

effect on LSW. However, none of the effect of iron sufficiency or interaction term

between iron sufficiency and subregions is significant. Moreover, according to the

defined dummy variables, iron sufficiency is the interaction effect of iron sufficiency
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Figure 4.7: Boxplots of region-specific LSW cross iron status and stimulus.
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and subregion1, which is also not significant.

Table 4.3 provides the restricted maximum likelihood estimates of the variance

components from the mixed effects model. It is evident that the correlation estima-

tors are different from the preliminary results in Table 4.1.

Since we are interested in the effect of iron deficiency on LSW, especially in

certain subregions, and in the tempo and spatial correlations between LSW. The

mixed effects model is not able to provide such results in an easy way, and fails to
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Table 4.2: Maximum Likelihood Estimates of the Fixed Effects

Parameter Estimate Std.Err t.value
Intercept 0.7712 9.2935 0.083

Mother’s Age 0.2030 0.0776 2.616
Gestation Length -0.0350 0.2204 -0.159

Pb Level -0.2073 0.1630 -1.272
First Born 0.0513 0.5618 0.091

Baby Gender -0.0663 0.4168 -0.159
Delivery Type 0.0834 0.4957 0.168

Iron Sufficiency -0.0924 1.0008 -0.092
Subregion 2 -10.0819 1.1807 -8.539
Subregion 3 -3.9500 0.9797 -4.032
Subregion 4 -11.1144 1.2324 -9.019

Subregion 2*Iron Sufficiency 1.4786 1.8271 0.809
Subregion 3*Iron Sufficiency 1.6838 1.5161 1.111
Subregion 4*Iron Sufficiency 0.3843 1.9071 0.202

Table 4.3: Restricted Maximum Likelihood Estimates of the Variance Components

Groups Name Variance Std.Dev. Corr
Subregion / Infant Node 1 25.9395 5.0931

Node 2 15.3446 3.9172 -0.86
Node 3 9.0081 3.0013 -0.79 0.67
Node 4 26.3337 5.1316 -0.7 0.96 0.53
Node 5 53.8977 7.3415 -0.87 0.97 0.82 0.92

Infant Subregion 1 10.2222 3.1972
Subregion 2 50.6216 7.1149 -0.71
Subregion 3 27.6058 5.2541 -0.55 0.07
Subregion 4 57.2341 7.5653 -1 0.69 0.49

Pictorial Stimulus Mother 0.1532 0.3914
Residual 49.324 7.0231

detect the significance of iron deficiency’s effect. Moreover, the mixed effects model

is also not as easy as a marginal model to specify the correlation structure.

Here we develop a more straightforward method that combines the marginal mod-

els and dependence model, with fewer parameters.

4.4 Model

Motivated by the EEG data structure, we propose to develop a Gaussian copula

model for multilevel correlated data, an alternative method to analyze the EEG data.
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We here first assume that data are fully observed with no missing values, and

then later extend the proposed methodology by allowing missing values in responses

through the utility of EM algorithm. In the EEG data, for each subject, let Y =

(y1, · · · , y40)′ be a 40-dimensional random vector of LSW measurements from 20 of

electrodes under mother’s and stranger’s stimuli. As pointed above, a three-level

correlation among 40 LSW outcomes: the first corresponds to the serial dependence

between two stimuli; the second one is a spatial correlation of four subregions, and

the third one is the within-cluster correlation in each subregion. Furthermore, in the

proposed multilevel Gaussian copula regression model, the data are allowed to be

either continuous or discrete outcomes.

4.4.1 Location-scale Family Marginal Model

Location-scale family are assumed for marginal distributions, which are given

by fj(yj|θj), j = 1, · · · , d, where θ = (θ1, · · · , θd)′ and θj = (µj, σj), j = 1, · · · , d,

with µj as the marginal location parameter and σj as the sacel parameter. Note

that the marginal parameters are associated with the marginal density function,

fj(yj|θj), j = 1, · · · , d. Denote the marginal cumulative distribution function by

uj = Fj(yj|θj).

4.4.2 Gaussian Copula

As discussed in Section 2.3.2, Y is assumed to follows the d-dimensional distribu-

tion generated by a Gaussian copula (Song (2007)), whose density function is given

by

(4.2) f(Y |θ,Γ) = c(u|Γ)
d∏
j=1

fj(yj|θj), u = (u1, u2, · · · , ud)′ ∈ [0, 1]d,
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and the joint density of a Gaussian copula function c(·|Γ) takes the form:

(4.3) c(u|Γ) = |Γ|−
1
2 exp

{
1

2
Q(u)T (I− Γ−1)Q(u)

}
, u ∈ [0, 1]d ,

where Γ = [γj1j2 ]d×d is the Pearson correlation matrix of Q(u) = (q1(u1), · · · , qd(ud))′,

and qj = qj(uj) = Φ−1(uj), j = 1, · · · , d is the jth marginal normal quantile, where

Φ is CDF of the standard normal distribution.

The Gaussian copula model may be extended to embrace multilevel correlation

via Kronecker product of multiple correlation matrices. Suppose there are L types

of correlation matrices in the multilevel correlated data, denoted by Γ1, · · · ,ΓL,

respectively, with the corresponding dimensions d1, · · · , dL, and d1d2 · · · dL = d is

the total dimension. Then, the correlation matrix of the d-dimensional vector of

outcomes Y may be modeled by Γ = Γ1 ⊗ · · · ⊗ ΓL with dimension d, where a

Kronecker product of two matrix A = (aj1j2)d1×d1 and B = (bj1j2)d2×d2 is

(4.4) A⊗B =


a11B · · · a1d1B

...
. . .

...

ad11B · · · ad1d1B

 ,
and the Kronecker product is associative that for three matrix A,B,C, A⊗B⊗C =

(A⊗B)⊗ C = A⊗ (B ⊗ C).

Consequently, the determinant of Γ is

|Γ| =
L∏
l=1

|Γl|d/dl ,

and the inverse of Γ (or the precision matrix) is

Γ−1 = Γ−1
1 ⊗ · · · ⊗ Γ−1

L .

In this chapter, we only consider parametric margins. We present two examples to

illustrate our proposed approach. In an example of skewed marginal distributions, a
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gamma distribution is used. In another example of a discrete marginal distributions,

a multiple logistic regression model is considered for ordinal data.

4.4.3 Example of Marginal Model: Gamma Margin

In this chapter, we only consider parametric margins. In an example of skewed

marginal distributions, a gamma distribution is used. To include covariates in the

mean marginal model, let Xi = (1, xTi )T , i = 1, · · · , n. For the jth gamma distributed

margin, the log-linear model is imposed on the mean parameter, µij = E(yij|Xi) =

exp(XT
i βj), j = 1, · · · , d, where βj = (βj0, βj1, · · · , βjp)T is a (p + 1)-element un-

known regression vector. Moreover, for the jth gamma distributed margin, the shape

parameter is
1

σ2
j

, and the rate parameter is
1

σ2
j exp(XT

i βj)
. The CDF of marginal

distribution model is uij = Fj(yj|θj), j = 1, · · · , d.

4.5 Maximum Likelihood Estimation

Our goal is to obtain the maximum likelihood estimation for the model parameter

(θ,Γ) with data of multilevel correlation. To deal with a large number of parameters

in the estimation, we invoke the peeling procedure developed in Chapter II, which

has been shown as an effective numerical optimization engine to obtain the MLE in

the multi-dimensional copula regression model. Steps of this optimization procedure

are discussed in detail and some illustrative examples are provided in the subsequent

subsections.

In the presence of missing data, EM algorithm will be applied; refer to the details

in Section 2.4.1, where the M-step is based on the peeling algorithm. When the data

is fully observed with no missing values, the log likelihood function can be greatly

simplified, and the peeling algorithm works effectively to obtain parameter estimates.
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4.5.1 Log Likelihood Function

The log likelihood function given by

(4.5) λ(θ,Γ) =
n∑
i=1

λi(θ,Γ),

where the log likelihood of the ith subject is given as follows. Consider the case where

the data are fully observed, so the E-step is not required. For the ease of exposition,

the subscription of the ith subject, i = 1, · · · , n is omitted.

λi(θ,Γ) = ln {c(u|Γ)}+
d∑
j=1

fj(yj|θj)

= −1

2
ln|Γ| − 1

2
Q(u)T (Γ−1 − I)Q(u) +

d∑
j=1

fj(yj|θj)

= −d
2

L∑
l=1

1

dl
ln|Γl| −

1

2
vec(Γ−1

1 ⊗ · · · ⊗ Γ−1
L − I)Tvec

{
Q(u)TQ(u)

}
+

d∑
j=1

fj(yj|θj)(4.6)

= −d
2

L∑
l=1

1

dl
ln|Γl|+

1

2

d∑
j=1

(1− Ajj)q2
j −

1

2

d∑
j2 6=j1

Aj1j2qj1qj2 +
d∑
j=1

fj(yj|θj)(4.7)

where A = [Aj1j2 ]d×d is the inverse matrix of Γ, and A = Γ−1
1 ⊗ · · · ⊗ Γ−1

L = A1 ⊗

· · · ⊗ AL. The peeling algorithm for optimization is used to obtain MLE (θ̂, Γ̂) =

arg max(θ,Γ) λ(θ,Γ). The vec is a function that forces to transform matrix into a

vector column by column.

4.5.2 Peeling Algorithm

The peeling algorithm allows us to iteratively solve the score equation,
n∑
i=1

∇θ,Γλi(θ,Γ) =

0, in which it updates parameter values by maximizing equation (4.5) sequentially

with respect to individual parameters components of θ and Γ. By updating low di-

mensional parameters in each iteration, a kind of “profile” log likelihood function is

used with much simpler expressions..
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Step P-1: Updating Marginal Parameters

For a specific marginal parameter θj, j = 1, · · · , d, we rewrite the parts involved

with the jth margin in equation (4.7) as a “profile” log likelihood function, at the

(t+ 1)th iteration,

λij

(
θ

(t+1)
1 , · · · , θ(t+1)

j−1 , θj, θ
(t)
j+1, · · · , θ

(t)
d ,Γ

(t)
)

=
1

2
(1− A(t)

jj )q2
ij −

{
A[j,−j](t)q(t)

i,−j

}
qij + fj(yij|θj),(4.8)

where q
(t)
i,−j = (q

(t+1)
i1 , · · · , q(t+1)

i,j−1 , q
(t)
i,j+1, · · · , q

(t)
id )T is a subvector of q

(t)
i with the first

j elements already updated at the (t + 1)th iteration. Then, the update of θj is

obtained by maximizing the following profile log likelihood function:

θ
(t+1)
j = arg max

θj

n∑
i=1

λij

(
θ

(t+1)
1 , · · · , θ(t+1)

j−1 , θj, θ
(t)
j+1, · · · , θ

(t)
d ,Γ

(t)
)
,

This optimization is carried out numerically by a quasi-Newton optimization rou-

tine available in R function nlm, and this step is computationally fast as the opti-

mization involves only a set of low-dimensional parameters θj at one time. Con-

sequently, we obtain updates of the other quantiles: u
(t+1)
ij = Fj(yij|θ(t+1)

j ) and

q
(t+1)
ij = Φ−1(u

(t+1)
ij ), for j = 1, · · · , d, and i = 1, · · · , n.

Step P-2: Updating Correlation Parameters

For the correlation parameters in Γ, we rewrite the part involving the correlation

matrix in equation (4.6) as follows,

λi,Γ(θ(t+1),Γ) = −d
2

L∑
l=1

1

dl
ln|Γl|

−1

2
vec(Γ−1

1 ⊗ · · · ⊗ Γ−1
L − I)Tvec

{
Q

(t+1)
i (u)TQ

(t+1)
i (u)

}
,(4.9)

where Q
(t+1)
i (u) = (q

(t+1)
i1 , · · · , q(t+1)

id )T . Then, the update of Γ is obtained by sequen-

tially maximizing the profile log likelihood function of the form
n∑
i=1

λi(θ
(t+1),Γ).
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This optimization can be done numerically by applying R function optim (Nelder

& Mead, 1965). For correlation matrix Γl, l = 1, · · · , L, when it is the exchangeable

or the first-order auto-regressive correlation, its determinant and inverse matrix have

closed-form expressions in that only one correlation parameter is involved in opti-

mization. The case of Matérn correlation matrix contains two parameters. For an

unstructured correlation matrix, there are
1

2
dl× (dl− 1) parameters involved. In the

latter two cases, updating the correlation matrix Γl is done on the basis of the entire

matrix, so the related optimization depends largely on the dimension of a correlation

matrix. With the R function optim, the computing works reasonably fast.

Initialization

For marginal parameters, the initial values are obtained by running marginal

regression under the independence working correlation. To generate initial values

of correlation parameters, Step P-2 is applied with the given initial estimates of

marginal parameters.

4.5.3 Statistical Inference

For the proposed multilevel copula regression model, Fisher information can be

calculated to provide the asymptotic variance and covariance for the MLE. In the

presence of missing data, the Louis’ Formula discussed in Chapter II Section 2.4.3

is applied to calculate the asymptotic variance and covariance of the MLE. In the

framework of maximum likelihood estimation, the MLE given for the proposed mod-

els follows the classical large-sample properties under some regularity conditions.

4.6 Simulation Study

We conduct simulation experiments to evaluate the performance of the peeling

algorithm. In the first, third and fourth experiments, we consider 2-level correlation
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models with 2-dimensional correlation at level-1 and 3-dimensional correlation at

level 2. In the second simulation we consider a 4-level correlation model. Different

types of correlation matrices Γ at each level may take various correlation structures,

including first-order autoregressive correlation (AR-1), exchangeable, unstructured,

Matérn, and wave correlations.

Point estimates and empirical standard errors obtained from the peeling algorithm

are provided, together with empirical 95% confidence intervals. In each simulation

experiment, the sample size is fixed at 200, while 1000 replicates are run to draw

summary statistics.

4.6.1 Multilevel Model with Normal Margins I

First we examine the multilevel model for normally distributed margins with two

levels of correlation. The first level is the wave correlation with dimension d1 = 3,

and the second level is the AR(1) correlation with dimension d2 = 2. The total

dimension is d = d1 × d2 = 6. The wave correlation is a spatial correlation function

with parameter φ > 0 of the form ρ(h) =
φ

h
sin

(
h

φ

)
, where h is the distance between

two locations. This wave correlation function allows both positive and negative

correlations.

The simulation setup is given as follows. We include p = 2 covariates X1 ∼

Bin(0, 1)−0.5, andX2 ∼ Γ(2, 1)−2 in the marginal linear model with µk = XTβk, k =

1, · · · , d = 6. The wave correlation function at the first level is specified with φ = 0.5,

and the AR-1 correlation at the second level is specified by the parameter γ = 0.5.

To generate marginal outcomes, errors are assumed follow to a 6-variate normal

N6(0,Γ) with the standard normal marginN(0, 1) and correlation matrix Γ = Γ1⊗Γ2,

where Γ1 is a 3-dimensional wave correlation matrix, and Γ2 is a 2-dimensional AR-1

correlation matrix.
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We compare the results obtained from the multilevel Gaussian copula regression

model with those obtained from the univariate analysis that ignores correlations.

Two types of standard errors are reported: the first type is the empirical standard

error in the two methods, and the other type is the average of 1000 model-based

standard errors calculated from Fisher Information.

As shown in Table 4.4, the estimates of the marginal estimates and correlation

parameters obtained from both two methods are close to their true values. This is

because both models are assumed to be correctly specified, so these two methods pro-

vide consistent estimates. The standard errors from the multilevel Gaussian copula

regression model are, with no surprise, smaller, when the correlation is used in the

estimation, especially for the variance parameters and the correlation parameters.

4.6.2 Multilevel Model with Normal Margins II

In the second simulation experiment, we examine the multilevel Gaussian copula

regression model with a four level correlation. The first level correlation matrix

Γ1 is set as a 6 (d1)-dimensional Matérn class correlation with spatial correlation

parameter α = 1 and shape parameter ν = 1. The second level correlation matrix

Γ2 is set as a 3 (d2)-dimensional exchangeable correlation with parameter γ2 = 0.5.

The third level correlation matrix Γ3 is set as a 2 (d3)-dimensional AR-1 correlation

with parameter γ3 = 0.5. The fourth level correlation matrix Γ4 is set as a 3 (d4)-

dimensional unstructured correlation with parameters (0.6, 0.5, 0.4). The resulting

total dimension is d =
∏4

l=1 dl = 108, and the resulting correlation matrix is Γ =

Γ1 ⊗ · · · ⊗ Γ4.

We also include p = 2 covariates X1 ∼ Bin(0, 1) − 0.5, and X2 ∼ Γ(2, 1) − 2

in the marginal linear models with µk = XTβk, k = 1, · · · , d = 108. To generate

correlated outcomes, errors are generated from a 108-variate normal N108(0,Γ) with
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the standard normal marginal N(0, 1) and a 108×108-dimensional correlation matrix

Γ.

We compare the results obtained from the multilevel Gaussian copula regression

model with those obtained from the univariate analysis that ignores the correlation.

The empirical standard error in the two methods are provided.

Table 4.5: Summary of simulation results in four-level correlated normally distributed margins with
Matérn correlation, exchangeable correlation, AR-1 correlation, and unstructured corre-
lation obtained from the multilevel Gaussian copula regression model, including average
point estimates and empirical standard errors (ESE).

Multilevel Model
Parameter True Value Estimate ESE

α 1 0.9937 0.0159
γR 0.5 0.5031 0.0101
γT 0.5 0.5027 0.0108
γM,12 0.6 0.6028 0.0109
γM,13 0.5 0.5034 0.0125
γM,23 0.4 0.4025 0.0149

The simulation results for the correlation parameters are summarized in Table

4.5. There are some findings during the estimation worth mentioning. We have 438

parameters in total to estimate in this simulation, but it only takes a few minutes for

the algorithm to converge. However, since the multilevel Gaussian copula regression

model is a unified framework, the model-based standard errors of parameters are

calculated in one Hessian matrix, whose dimension is 438 as well in this simulation.

This is the time-consuming part in this estimation procedure, which needs further

research.

4.7 Analysis of EEG Data

We now present the analysis of the EEG data introduced in Section 4.3 using

the proposed multilevel Gaussian copula regression model and compare the results

with those obtained from the univariate analysis that ignores the correlation. The
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40-dimensional vector of LSW measures are collected from 91 infants, and associated

with three levels of correlations. The first level of correlation is modeled by a 2× 2

correlation matrix of mother’s and stranger’s pictorial stimuli. The second level of

correlation is modeled by a 4 × 4 spatial correlation matrix generated by two 2 × 2

correlation matrices by the Kronecker product, of two matrices corresponding to two

paired subregions of left / right hemispheres and anterior / posterior, respectively.

The third level of correlation is modeled by a 5 × 5 within-cluster exchangeable

correlation matrix corresponding to 5 electrodes within each subregion.

Covariates included in the marginal regression model are iron sufficiency (1 for

iron sufficiency, and 0 for iron deficiency), mother’s age at birth delivery, gestation

age in weeks, cord blood Pb levels in ug/dL, whether first born (1 for yes, and 0

for no), baby gender (1 for boy, and 0 for girl), and delivery type (1 for vaginal,

and 0 for C section). The fact that the estimates for marginal regression parameters

are close the multilevel Gaussian copula regression model and univariate analysis

suggested that the correlation structure had little impact on the point estimation.

Similar numerical evidence was also reported in the GEE model and the random

effect model. However, the estimated standard errors from the multilevel Gaussian

copula regression model are smaller due to the multivariate analysis approach.

Table 4.6 summarized the effect of iron status on LSW measurements collected

from each node and each stimulus, including estimates, model-based standard er-

rors, and z-statistics (i.e., parameter estimate divided by the model-based standard

errors). Figure 4.8 shows the z-statistics of iron status across both mother’s and

stranger’s pictorial stimuli. From Figure 4.8, we can see that iron deficiency signifi-

cantly affects the LSW within the left anterior subregion when infants saw stranger’s

picture. Infants with iron deficiency had lower LSW than those with iron sufficiency
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Table 4.6: Summary of iron status effect on LSW measurements collected from each node and each
stimulus, including estimate, model-based standard errors, and z-statistics.

Level-1 Level2-1 Level2-2 Level 3 Estimate Std.Err z-statistic

Mother

Left

Posterior

Node 34 2.7243 1.7187 1.5851
Node 35 1.3733 1.2828 1.0706
Node 39 -0.6972 1.8685 -0.3731
Node 40 2.0734 1.4304 1.4495
Node 41 0.6665 1.3351 0.4992

Anterior

Node 51 0.2540 1.7351 0.1464
Node 58 -0.3897 1.7472 -0.2230
Node 59 1.7669 1.9977 0.8845
Node 64 -1.0353 2.4419 -0.4240
Node 65 0.3563 2.3176 0.1537

Right

Posterior

Node 103 1.3820 1.5178 0.9105
Node 109 0.9564 1.6768 0.5704
Node 110 1.1341 1.4421 0.7864
Node 115 2.3445 2.3447 0.9999
Node 116 2.8214 1.7432 1.6185

Anterior

Node 90 -2.7382 1.9958 -1.3720
Node 91 -0.2981 1.7567 -0.1697
Node 95 -0.4620 2.0373 -0.2268
Node 96 -2.2881 1.8876 -1.2122
Node 97 1.4454 1.2902 1.1202

Stranger

Left

Posterior

Node 34 -0.7327 1.6211 -0.4520
Node 35 -1.3869 1.6082 -0.8624
Node 39 -3.5700 1.7909 -1.9934
Node 40 0.5667 1.5324 0.3698
Node 41 -1.4991 1.4743 -1.0168

Anterior

Node 51 3.4765 1.6861 2.0619
Node 58 6.0610 2.0404 2.9705
Node 59 5.4746 1.8125 3.0205
Node 64 2.1499 2.5233 0.8520
Node 65 5.8331 2.3060 2.5295

Right

Posterior

Node 103 0.9051 1.8425 0.4912
Node 109 2.8546 1.6340 1.7470
Node 110 1.3625 1.7832 0.7641
Node 115 0.8898 2.0579 0.4324
Node 116 -0.9979 1.9939 -0.5005

Anterior

Node 90 0.5283 2.0553 0.2570
Node 91 -1.0468 2.0419 -0.5127
Node 95 2.1114 2.4072 0.8771
Node 96 -2.2506 1.8455 -1.2195
Node 97 1.6682 1.5559 1.0722

at the stimulus of strangers picture. Moreover, we tested the significance of iron

sufficiency’s effect on LSW measurement in Subregion 3, and the corresponding null

hypothesis test is H0 : β3,1,IS = β3,2,IS = β3,3,IS = β3,4,IS = β3,5,IS = 0. The statistic
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of Wald test is equal to 15.0848, which follows a chi-square distribution with degree

of freedom equal to 5 under null hypothesis, and the p value is 0.01. Thus, we re-

ject the null hypothesis, and we believe iron sufficiency has signifiant effect on LSW

measurement in Subregion 3.

Table 4.7 shows a summary of analysis results for the correlation parameters. Our

findings include that: (i) LSW measurements between the left and right hemisphere

are not significantly correlated; (ii) LSW measurements on the electrodes between

the anterior and posterior regions are significantly negatively correlated.

Table 4.7: Summary of estimation results for the correlation parameters.

Correlation Parameter Estimate Std.Err
Level 1 0.2764 0.0219

Level 2-1 -0.0120 0.0237
Level 2-2 -0.0776 0.0241
Level 1 0.5155 0.0175

Though it only took a few minutes for the peeling algorithm to converge for the

point estimation, it was very time-consuming for the estimation of standard errors.

This is because the dimension of Hessian matrix with is as high as 364.

4.8 Conclusions & Discussion

This chapter presents a Gaussian copula framework for multilevel rank-based cor-

relations that may be estimated by the proposed approach. The peeling algorithm

is developed and implemented to estimate both marginal parameters and correla-

tion parameters. The proposed methodology allows to adjust for covariates via the

marginal regression models. The proposed peeling procedure to facilitate the com-

putation of MLE.

All numerical examples have shown that the Gaussian copula multilevel model

performed well. On one hand, this proposed approach can be used to analyze longitu-
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Figure 4.8: Z-statistics of Iron Status Effect on Mother’s and Stranger’s Pictorial Stimuli
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dinal, or spatial, or spatio-temporal data; on the other hand, it provides a framework

that to organizes correlated data by multiple hierarchical layers, each it including a

low dimensional dependence structure. Consequently, the resulting correlation pa-

rameters are more interpretable and more easily to be to estimated via the proposed

peeling algorithm.

One limitation worth mentioning is the computation burden on the estimation of

standard errors. Because all the model parameters in the proposed multilevel Gaus-

sian copula regression model is related within a unified framework, the asymptotic

covariance matrix is generally not a block diagonal matrix. Then the required com-

putation is carried out with a large dimension. As proposed model being a class of

parametric models, model diagnosis is the most critical component in the application

of the proposed model. Residual analysis is useful to detect any potential violation

of model assumptions such as Gaussian copula, marginal location-scale family, and

correlation structures.

In data exploration analysis, we found some outliers, which may lead to some

confusing results. We plan to communicate with our collaborators to decide the

criteria of including data. Moreover, we noticed some heavy tails of densities of LSW

measurements in Figure 4.3, we plan to consider empirical location-scale family to

improve the analysis.



CHAPTER V

Discussions and Future Works

In this dissertation, we developed two methods to deal with missing data problems.

In particular misaligned missing data pattern has been treated systematically in

Chapters II and III. In addition, a multilevel copula regression model is proposed to

deal with complex correlation data in Chapter IV. Here we have some discussions

on future work.

One of the big challenges we met in our work concerns computational burden.

In Chapter II, although both EM algorithm and Gaussian copula have been well

studied in the existing literature, our work improved the estimation procedure by

simplifying the multiple integrals into many one-dimension integrals. Therefore, the

related computation was fast. However, in Chapter III, the complete-case composite

likelihood was computationally challenging. This is because in our application of the

peeling algorithm for parameters estimation, at each iteration, the inverse of each

subject-specific correlation matrix based on observed data requires computational

effort. Thus, when dimension of data is large, the related calculation procedure may

be time consuming. In addition, for the estimation of the asymptotic covariance,

calculating both sensitivity matrix and variability matrix are necessary. The compu-

tational efficiency on this calculation depends on the dimension of the parameters.

100
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Consequently, a large dimensional vector of parameters requires substantially more

computational power.

The same computational challenge remains in Chapter IV, where estimation of

the Hessian matrix is also required for the estimation of asymptotic covariances. To

speed up the peeling algorithm for parameter estimation, more computing memory

is necessary to store some matrices essential for the estimation procedure, whose

dimensions are proportional to both sample size and dimension of parameters under

estimation. Hence, improving computation speed of the peeling further effort of

algorithm needs further effort. Furthermore, with more time, we will consider using

C++ instead of R for implementation, which we believe will be much faster.

Future work for multilevel Gaussian copula regression model: one is to deal with

missing data. Despite the approaches developed in Chapters II and III for data

analysis with missing data, we need to address the computational challenge related

to large dimensional data.
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APPENDIX A

The Likelihood Orthogonal for Complete-Case Composite
Likelihood

A.1 Theorem III.2: Unbiasedness

Proof. For a subject, the expectation of the complete-case composite score function

is,

Eη0
Ψ(y,R;η) =

∫
Ψ(y,R;η)f(y; ξ0)dy

=

∫ ∑
s∈S

ws
∂

∂η
ln fs(ys|ξs)f(y; ξ0)dy

=
∑
s∈S

ws

∫
∂

∂η
ln fs(ys|ξs)fs(ys|ξ0,s)dys

=
∑
s∈S

ws

∫
ḟs(ys|ξs)
fs(ys|ξs)

fs(ys|ξ0,s)dys.

When η = η0, the above equation above may be rewritten as,

Eη0
Ψ(y,R;η)|η0

=
∑
s∈S

ws

∫
∂

∂η
fs(ys|ξ0,s)dys

=
∑
s∈S

ws
∂

∂η

∫
fs(ys|ξ0,s)dys

= 0.

For the entire sample, Eη0
Ψ(Y,R;η)|η0

=
n∑
i=1

Eη0
Ψ(yi,Ri;η)|η0
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A.2 Theorem III.5: Composite Barlett Identity

Proof. For a subject, the variability matrix is given by,

J(η) = var(Ψ(y,R;η))

= var

(
∂

∂η

∑
s∈S

ws ln fs(ys|ξs)

)
.

Because w2
s = ws for all s ∈ S, and ws1ws2 = 0, when s1 6= s2 ∈ S,

J(η) =
∑
s∈S

wsvar

(
∂

∂η
ln fs(ys|ξs)

)
,

=
∑
s∈S

wsE

{(
∂

∂η
ln fs(ys|ξs)

)(
∂

∂η
ln fs(ys|ξs)

)T}
,

which is because of the unbiasedness.

For a subject, the sensitivity matrix may be rewritten by,

H(η) = −
∑
s∈S

wsE

{
∂2

∂η∂ηT
ln fs(ys|ξs)

}
= −

∑
s∈S

wsE

{
∂

∂η

(
1

fs(ys|ξs)
∂

∂ηT
ln fs(ys|ξs)

)}

=
∑
s∈S

wsE

{(
∂

∂η
ln fs(ys|ξs)

)(
∂

∂η
ln fs(ys|ξs)

)T}
,

−
∑
s∈S

wsE

{
1

fs(ys|ξs)
∂2

∂η∂ηT
fs(ys|ξs)

}
,

To prove H(η) = J(η), we prove
∑
s∈S

wsE

{
1

fs(ys|ξs)
∂2

∂η∂ηT
fs(ys|ξs)

}
= 0 as
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follows,

∑
s∈S

wsE

{
1

fs(ys|ξs)
∂2

∂η∂ηT
fs(ys|ξs)

}
=

∑
s∈S

ws

∫
1

fs(ys|ξs)

{
∂2

∂η∂ηT
fs(ys|ξs)

}
f(y|ξ)dy

=
∑
s∈S

ws

∫
1

fs(ys|ξs)

{
∂2

∂η∂ηT
fs(ys|ξs)

}
fs(ys|ξs)dys

=
∑
s∈S

ws
∂2

∂η∂ηT

∫
fs(ys|ξs)dys

=
∑
s∈S

ws
∂2

∂η∂ηT
1.

= 0.

Therefore, H(η) = J(η).

A.3 Corollary III.6: Uniqueness

Proof. From equation (3.17), for a subject,

Ψ(y,R;η) =
∂

∂(θ,A)
lnLc(η|y,R) =

∂

∂(θ,A)

∑
s∈S

ws ln fs(ys|ξs)

=
∑
s∈S

ws
∂

∂(θ, Ãs)
ln fs(ys|ξs).
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In the equation above, we denote As = Γ−1
s , and Ãs is a d × d matrix, where if

k1, k2 ∈ s, and Γs,j1j2 = Γk1k2 , then Ãs,k1k2 = (Γ−1
s )j1j2 , else Ãs,k1k2 = 0. Therefore,

Eη0
Ψ(y,R;η)

=

∫
Ψ(y,R;η)f(y; ξ0)dy

=

∫ ∑
s∈S

ws
∂

∂(θ, Ãs)
ln fs(ys|ξs)f(y; ξ0)dy

=
∑
s∈S

ws

∫
∂

∂(θ, Ãs)
ln fs(ys|ξs)fs(ys|ξ0,s)dys

=
∑
s∈S

ws

∫
∂

∂(θ, Ãs)

{∑
k∈s

ln fk(yk|θk) + ln c(us|Γs)

}
f(ys; ξ0,s)dys

=
∑
s∈S

ws
∑
k∈s

∫
∂

∂(θ, Ãs)
ln fk(yk|θk)fk(yk|θ0,k)dyk

+
∑
s∈S

ws

∫
∂

∂(θ, Ãs)

{
−1

2
ln |Γs|+

1

2
qTs (I− Γ−1

s )qs

}
ϕ(qs|Γ0,s)dqs

=
∑
s∈S

ws
∑
k∈s

∫
∂

∂(θ, Ãs)
ln fk(yk|θk)fk(yk|θ0,k)dyk

−1

2

∑
s∈S

ws
∂

∂(θ, Ãs)
ln |Γs|

+
∑
s∈S

ws

∫
∂

∂(θ, Ãs)

{
1

2

∑
k∈s

(1− Ãs,kk)q
2
k −

∑
k1<k2∈s

Ãs,k1k2qk1qk2

}
ϕ(qs|Γ0,s)dqs

=
∑
s∈S

ws
∑
k∈s

∫
∂

∂(θ, Ãs)
ln fk(yk|θk)fk(yk|θ0,k)dyk

−1

2

∑
s∈S

ws
∂

∂(θ, Ãs)
ln |Γs|+

1

2

∑
s∈S

ws
∑
k∈s

∫
∂

∂(θ, Ãs)
(1− Ãs,kk)q

2
kϕ(qk)dqk

−
∑
s∈S

ws
∑

k1<k2∈s

∫
∂

∂(θ, Ãs)
Ãs,k1k2qk1qk2ϕ(qk1 , qk2|Γ0,k1k2)dqk1dqk2

=
∑
s∈S

ws
∑
k∈s

∫
∂

∂(θ, Ãs)
ln fk(yk|θk)fk(yk|θ0,k)dyk

+
∑
s∈S

ws
∂

∂(θ, Ãs)

{
−1

2
ln |Γs|+

1

2

∑
k∈s

(1− Ãs,kk)−
∑

k1<k2∈s

Γ0,k1k2Ãs,k1k2

}
.

There are two terms in equation above, the former of which is a linear combination

of the score functions of marginal models with no correlation parameters involved,
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and the latter is partial derivatives of a function of Γ. Thus, it suffices to prove that

the second term has a unique zero at Γ0. Since for unstructured correlation matrix,

∂

∂Ãs,k1k2

{
−1

2
ln |Γs|+

1

2

∑
k∈s

(1− Ãs,kk)−
∑

k1<k2∈s

Γ0,k1k2Ãs,k1k2

}
= Γk1k2 − Γ0,k1k2 ,

which has a unique zero at Γ0,k1k2 , and

∂

∂Ãs,kk

{
−1

2
ln |Γs|+

1

2

∑
k∈s

(1− Ãs,kk)−
∑

k1<k2∈s

Γ0,k1k2Ãs,k1k2

}
= 0.

For an exchangeable correlation matrix with parameter γ, for ds = dim(s) ≥ 2,

∂

∂γ

{
−1

2
ln |Γs|+

1

2

∑
k∈s

(1− Ãs,kk)−
∑

k1<k2∈s

Γ0,k1k2Ãs,k1k2

}
=

(ds − 1)ds(1 + (ds − 1)γ2)

2(1− γ)2(1 + (ds − 1)γ)2
(−γ+γ0),

which has a unique 0 at γ0,

For an AR-1 correlation matrix with parameter γ, for ds = dim(s) ≥ 2,

∂

∂γ

{
−1

2
ln |Γs|+

1

2

∑
k∈s

(1− Ãs,kk)−
∑

k1<k2∈s

Γ0,k1k2Ãs,k1k2

}
=

(ds − 1)(γ2 + 1)

(1− γ2)2
(−γ+γ0),

which has a unique 0 at γ0. Therefore, we know the second term has a unique zero

at Γ0 for unstructured, exchangeable, and AR-1 correlation matrices.
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rendus de l’Académie des sciences. Série 1, Mathématique, 320(6):723–726, 1995.
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