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ABSTRACT

Modeling and simulation of carbon nanotube growth

by

Brittan Alan Farmer

Co-Chair: Professor Selim Esedoḡlu

Co-Chair: Associate Professor A. John Hart

Carbon nanotubes (CNTs) have exceptional mechanical, electronic, and thermal prop-

erties, which make them ideal for a variety of applications. Forests of CNTs have

additional applications beyond individual CNTs, such as thermal interface layers and

filtration membranes. In this dissertation, we present mathematical models that allow

for greater understanding and control of the CNT synthesis process.

We first describe an atomistic model of CNT growth, which focuses on carbon-

carbon interactions and approximates the interaction of carbon atoms with the sub-

strate and catalyst. We also describe a simplified one-dimensional atomistic model

that preserves some features of the full model of CNT growth. This simple model

has one global energy minimum and many competing local minima. We simulate this

system and compare the non-equilibrium probability distributions with the equilib-

rium distribution. We calculate transition rates between the basins of different local

minima, and use these in a master equation to calculate non-equilibrium distribu-

tions. To allow for further analysis, we approximate the rate matrix by a matrix with

two parameters – a slow rate and a fast rate. We present the equilibrium distribu-

xii



tion, hitting times, and eigenvalues of this matrix and describe how they depend on

the rate parameters and the number of atoms in the chain. Finally, we describe the

insights this simplified model provides regarding CNT growth.

We also present a mathematical model for collective chemical effects in arrays of

CNT pillars, which lead to non-uniformities in pillar height. This model involves

coupling a kinetic model of CNT growth with a diffusion equation for the transport

of a gaseous active species. We assume this species is produced during decomposition

of the feedstock gas on the catalyst and enhances the CNT growth rate by lowering

the activation energy of feedstock decomposition. We simulate the effect of catalyst

spacing on pillar heights and compare with experiments. We introduce a threshold on

active species concentration for pillar liftoff, with which the model is able to reproduce

the absence of pillars seen in widely spaced arrays in experiments. We also present

strategies for creating patterns that yield more uniform pillars.
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CHAPTER I

Introduction and background

In this dissertation, we develop models for the synthesis (or growth) of individual

carbon nanotubes (CNTs) and arrays of carbon nanotube pillars. We use two different

approaches to study these phenomena. The growth of individual carbon nanotubes is

described by atomistic modeling. Such models can be used as a framework to study

various aspects of growth, including dependence of the growth rate on mechanical

forces. We describe two atomistic models: one for CNT growth by catalytic chemical

vapor deposition and one for a simple system which preserves some features of CNT

growth but is more conducive to analysis. To model the synthesis of CNT pillar

arrays, we use a kinetic model of CNT growth coupled to a gas transport model.

In particular, this model is able to describe the spatial variations of CNT pillar

height observed in experiments by including the effect of a spatially varying chemical

environment across the array.

The main contribution of this dissertation regarding individual CNT growth is to

provide a simplified model which is analogous to CNT growth, yet is amenable to

analysis. In particular, all minima, saddle points, probabilities, and transition rates

can be identified. The time-dependent probability of different configurations can be

studied via a master equation, and the dependence on temperature, addition rate,

and chain length can be determined.
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The main contribution regarding CNT pillar growth is to define a mathematical

model that describes spatially varying pillar height via a spatially varying concen-

tration of active species. This model is capable of describing the dependence of

uniformity on the spacing of the catalyst patches. With a threshold chemical concen-

tration for pillar lift-off, it is also in agreement with the absence of pillar growth at

the edge of the arrays. This shows that production and transport of active species

is a reasonable hypothesis for the source of non-uniformities in pillar heights. The

model can also be used as a predictive tool. For instance, it can be used to design

catalyst patterns that produce pillar arrays with more uniform heights.

1.1 Outline

The outline of this dissertation is as follows. In Chapter I, we summarize the

dissertation, give some background on carbon nanotubes, and describe the literature

on the simulation and analysis of atomistic and kinetic models of CNT growth.

In Chapter II, we describe a model of CNT growth based on empirical potentials.

This is similar to other models in the literature, except that it models the catalyst as

a continuum rather than as individual atoms, similar to the approach in the article

by Schebarchov et al. [72]. We discuss the difficulties in simulating and analyzing this

model. Then, we describe a simple one-dimensional model, which maintains some

features of the three-dimensional model but allows for a deeper analysis. Molecular

dynamics (MD) simulations of this model are presented, both for a fixed number

of atoms and for a non-equilibrium system in which atoms are added at the left

end of the chain. Transition rates are calculated and used with a master equation

approach to determine the non-equilibrium probability distribution of the system. We

then perform an analysis of the master equation, both for the rate matrix calculated

directly from the energy landscape, and for a two-parameter approximation of this

matrix. In particular, the equilibrium distribution, hitting times, and eigenvalues and

2



eigenvectors are calculated, and the initial value problem is solved for several initial

conditions. The growth efficiency is defined, and its dependence on temperature,

addition rate, and chain length is described.

In Chapter III, the growth of arrays of CNT pillars and the observed non-uniform-

ities in height are described. This research was done in collaboration with Mostafa

Bedewy. A mathematical model of chemical coupling is given. Simulations of this

model are performed and compared to experimental results. The spatially varying

active species concentration, the resulting spatially varying CNT growth kinetics, and

inclusion of a threshold for pillar liftoff are all discussed. The model is also used to

create catalyst patterns that should give more uniform pillar growth.

In Chapter IV, we present the conclusions of the dissertation and outline future

research.

1.2 Review of carbon nanotube structure and synthesis

Carbon nanotubes are carbon molecules with the structure of a honeycomb lat-

tice rolled into a cylinder, typically with hemispherical caps at each end [30]. See

Figure 1.1. The angle between the zigzag line in this lattice and the circumference

of the nanotube is called the chiral angle. Non-hexagonal rings in the lattice, such

as pentagons or heptagons, represent defects. If the structure consists of a single

cylinder, it is called a single-walled nanotube (SWNT); if it consists of several coax-

ial cylinders, it is called a multi-walled nanotube (MWNT). Nanotubes can also be

synthesized in close proximity so that the van der Waals force causes them to align

and grow upward into a “forest” of CNTs. Related to carbon nanotubes is graphene,

which is a single flat sheet of carbon atoms, arranged in a honeycomb lattice.

Carbon nanotubes can be synthesized by high temperature methods (≥ 3000◦C),

such as arc discharge or laser ablation, as well as medium temperature methods

(≤ 1000◦C), such as chemical vapor deposition (CVD) [30]. All three methods pro-
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Figure 1.1: Ball and stick model of a single-walled carbon nanotube, with the zigzag
line highlighted in yellow.

duce similar structures, so they probably involve similar atomic growth mechanisms.

In arc discharge, carbon atoms are evaporated by a plasma of helium gas formed by

a high current passing between carbon anodes and cathodes. This technique pro-

duces MWNTs, but if metal catalyst is present in the carbon anode, it can produce

SWNTs. In laser ablation, an intense laser pulse is used to ablate, i.e. evaporate, a

carbon target containing small amounts of Ni and Co. The carbon target is in a tube

furnace, and an inert gas is used to collect the nanotubes. Both of these methods

involve evaporation of carbon, which requires temperatures in excess of 3000◦C.

CVD methods do not require such high temperatures, and are therefore more

scaleable and hold the greatest promise for mass production of CNTs. In CVD, hydro-

carbon feedstock gases flow through a furnace containing metal catalyst nanoparticles,

which may be supported on a substrate or floating in the gas. Typical feedstock gases

are ethylene or acetylene (or methane for SWNTs), the catalyst is usually transition-

metal (Fe, Ni, Co) nanoparticles on alumina support, and growth temperatures vary

between 550◦C and 750◦C (850◦C–1000◦C for SWNTs). The gas decomposes and

dissolves on the catalyst particles. These dissolved carbon atoms bond together,

eventually forming a graphenic network on the catalyst surface. This structure lifts
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off from the catalyst to form a cap, but remains bonded to the catalyst along the

edge. If a substrate is present, the nanotube may alternatively undergo tip growth.

In this growth mode, no cap is formed. The catalyst detaches from the substrate and

remains at the tip of the growing nanotube. In either case, carbon atoms continue to

incorporate into the structure at the catalyst-nanotube interface, and the nanotube

grows longer. This technique involves many process parameters: feedstock compo-

sition, catalyst composition, choice of substrate, the presence of impurities such as

water, pressure, and temperature. The resulting CNTs can be characterized by their

diameter, chiral angle, length, and quality (high quality nanotubes have low defect

concentrations). A major goal of current research is to design growth conditions that

produce CNTs with specific chiralities.

In addition to individual CNTs, it is also possible to manufacture vertically-aligned

arrays (or “forests”) of CNTs. A film of catalyst material is deposited onto a growth

substrate. It is annealed to create many individual catalyst nanoparticles. When these

nanoparticles are exposed to the feedstock gas in the furnace tube, CNTs nucleate

and grow from many of the catalyst nanoparticles. If the density of the CNTs is high

enough, the van der Waals forces between different nanotubes cause them to align

and grow upward into a forest of CNTs [14]. The CNTs within the forest will come

in contact with other nanotubes at several points, but there is separation between

the CNTs along most of their length. If the catalyst film is deposited in a pattern,

such as a grid of squares, an array of CNT forest pillars will grow. These CNT pillars

have desirable mechanical and thermal properties for use in thermal interfaces or dry

adhesives.

1.3 Review of early models of CNT growth

Two early hypotheses about the CNT growth mechanism were the “scooter” model

and the vapor-liquid-solid (VLS) model [30, 44]. In the scooter model [78, 47], a
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single metal catalyst atom attaches to the open end of the carbon nanotube and

prevents pentagonal defects from forming as carbon atoms incorporate to the edge.

This is more relevant to arc discharge and laser ablation methods, since the catalyst

in CVD is a metal nanoparticle consisting of tens or hundreds of atoms. In this

case, the VLS model is more relevant. In this model, originally devised for silicon

whiskers [83] and carbon fibers [79, 9], the carbon-containing vapor decomposes on

the catalyst particles, the carbon dissolves into the super-saturated liquid catalyst,

and then precipitates into the solid carbon nanotube. This model is still thought to

be generally correct, although much work has been done to understand the atomic

mechanisms. The growth conditions may also be such that the catalyst particle is

solid, so that a vapor-solid-solid model should be considered.

1.4 Review of CNT growth simulations via atomistic model-

ing

Many atomistic models of CNT growth exist in the literature, using different de-

scriptions of interatomic interactions via empirical, semi-empirical, and first principles

formulations. Moving from empirical to semi-empirical to first principles methods,

the accuracy increases, but so do the computational demands. As such, first princi-

ples simulations are limited to small systems of atoms over short time scales, whereas

semi-empirical and empirical methods are able to simulate larger systems over longer

periods of time. The dynamics of such models can be studied by MD, Monte Carlo

(MC) methods, or hybrids of these two. For reviews of atomistic models of CNT

growth, see [42, 31]. In the following, we summarize the work of several influential re-

search groups utilizing different approaches to model the interatomic interactions. We

begin with empirical methods, then describe semi-empirical methods, and finally we

treat first principles methods. Although first principles methods use more accurate
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interatomic interactions, the limitations imposed by their computational demands

require addition rates much faster than for empirical methods, which are already un-

realistically short compared to those in experiments. Therefore, the results of first

principles simulations are not necessarily more realistic than those of empirical sim-

ulations.

1.4.1 Empirical potentials

1.4.1.1 Shibuta and Maruyama

Carbon nanotube growth. In [73], Shibuta and Maruyama study carbon nan-

otube growth using classical molecular dynamics. Their simulation setup corresponds

to the catalytic chemical vapor deposition technique. They consider different sized

catalyst clusters – Ni32, Ni108, and Ni256, with diameters 0.8, 1.3, and 1.6 nm, respec-

tively – in a periodic box with 500 carbon source atoms. They model carbon-carbon

interactions with a simplified Brenner potential [20, 87], and the carbon-metal and

metal-metal interaction with a potential used in earlier work by one of the authors

[88]. Carbon-source molecules repel each other with a Lennard-Jones potential un-

til they come in contact with the metal catalyst and transform into carbon atoms.

The growth temperature is 2500 K. For the Ni108 cluster, they observe the following

growth mechanisms:

1. Carbon atoms attached to the cluster absorb into the cluster.

2. After about 2 ns, the cluster saturates with carbon, and hexagonal carbon

networks form inside the cluster.

3. After about 4 ns, the carbon networks separate from the surface of the particle

and some cap structures appear.

4. Carbon incorporation continues, and a graphitic protrusion forms.
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5. The carbon shell surrounding the catalyst eventually lifts off the surface to form

a cap structure with a stem.

They observe that if the density of carbon-source molecules is too high, the catalyst

surface becomes coated with carbon atoms. They also note that for the smaller

catalyst cluster (Ni32), the catalyst surface is covered with a graphitic structure,

and growth terminates due to lack of carbon supply. For the larger catalyst cluster

(Ni256), the cap structure conforms to the metal humps on the catalyst surface rather

than the entire metal-carbon cluster. Their simulations suggest a strong interaction

between the hexagonal carbon network and the structure of the catalyst, wherein the

carbon atoms occupy the hollow sites of the catalyst lattice. Their simulations also

demonstrate the formation of hexagonal networks of carbon atoms inside the catalyst

cluster, which is not seen in the work of other groups.

The melting point of nickel and nickel-carbide clusters and the effect of

substrate-catalyst interaction. In [74], Shibuta and Maruyama incorporate the

effect of the substrate into their molecular dynamics simulations. Carbon-carbon,

carbon-metal, and metal-metal interactions are described with the same potentials as

in [73]. Metal-substrate interactions are described with a one-dimensional averaged

Lennard-Jones potential. The authors study the melting point of nickel clusters and

nickel-carbide clusters with substrate-metal interaction strengths ranging from 0.5

eV to 1.25 eV. The nickel clusters demonstrate a transition from crystal structure

to disorder as the temperature increases past the melting point. For example, the

melting point of the Ni256 cluster with a binding energy of 0.25 eV is calculated

to be 2571 K.1 Below the melting temperature (at 2000 K), the clusters maintain

their crystal structure and have a faceted structure. Increasing the catalyst-substrate

interaction causes the structure to form layers. At 3000 K, the nickel clusters have

1This demonstrates that their potential is not quantitatively accurate, as the melting point of
nickel in bulk is 1726 K. Nickel nanoparticles will have an even lower melting point because of the
high surface-area-to-volume ratio, but the adhesion to the substrate could mitigate this effect. The
qualitative predictions of the model, however, are still valid.
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changed to liquid droplets, and the clusters wet to the substrate more strongly with

increasing catalyst-substrate interaction. The nickel-carbide clusters, on the other

hand, show no transition from order to disorder and do not have a crystal structure

at 2000 K. At 3000 K, the nickel-carbide clusters wet to the substrate more strongly

with increasing catalyst-substrate interaction.

CNT nucleation was studied for substrate-metal binding energies of 0.25 eV, 0.5

eV, and 1.0 eV, with the growth temperature set to 2500 K. When the binding energy

is large, the catalyst cluster has a layered structure, and graphene forms parallel to

this layer. There is a geometrical match between the Ni atoms and the graphene.

The number of hexagonal rings in the carbon structure grows quickly; however, this

arrangement makes it difficult for the graphitic islands to lift off from the catalyst.

For a weaker catalyst-substrate binding, graphene separates from the cluster in a

direction independent of the direction of the substrate.

1.4.1.2 Ding, Bolton, and Rosén

MD simulations of CNT growth including temperature dependence. In

[27], Ding, Bolton, and Rosén perform molecular dynamics simulations to study the

nucleation and growth of single-walled carbon nanotubes. The carbon atoms are

divided into dissolved and precipitated carbon atoms based on the number of neigh-

boring Fe atoms. The interaction of dissolved carbon atoms with other dissolved car-

bon atoms and with precipitated carbon atoms is given by Lennard-Jones potentials,

while their interaction with iron atoms is given by a Johnson potential. Precipitated

carbon atoms interact with other precipitated carbon atoms via a Brenner potential

and with iron atoms via a Johnson potential with a well depth that depends on the

carbon bond saturation. Metal atoms interact with other metal atoms via a Born-

Mayer potential. Carbon atoms are inserted at the center of a catalyst particle at

fixed time intervals. Growth proceeds in the following steps: C dissolves into the cat-
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alyst particle; after supersaturation, C precipitates on the surface, eventually forming

polygons and graphitic islands; as carbon continues to incorporate, a graphene sheet,

SWNT, or soot-like structure is grown, depending on temperature. If growth occurs

between 800 K and 1400 K, the authors observe that a graphitic island containing

about 5 to 7 polygons lifts off from the catalyst surface, forming a cap. The cap

diameter increases until it is the same as the catalyst diameter. At 600 K, a graphene

layer encapsulates the catalyst cluster, and at 1600 K, a soot-like structure encap-

sulates the cluster. Encapsulation can also occur at growth temperatures of 800 K

if the carbon addition rate is increased, say from 1 atom per 40 ps to 1 atom per 2

ps. The authors observe that all SWNTs contain defects; in general, new C atoms

do not append to the SWNT to form hexagons. However, they find that slower C

atom addition yields fewer defects. Although the rate of carbon addition is orders of

magnitude faster than in experiments, this is necessary to achieve CNT growth in a

reasonable simulation time.

Effect of nanotube-catalyst interaction strength. In [29], Ding et al. con-

sider different SWNT fragments attached to catalyst clusters composed of Fe, Co, Ni,

Cu, Pd, or Au. Using static density functional theory (DFT) calculations, the authors

find that the SWNT-catalyst adhesion energies span from about 1 to 3 eV/bond. The

commonly used catalysts (Fe, Ni, and Co) interact more strongly with the SWNT

open end than the less efficient catalysts (Pd, Cu, and Au). The authors conclude

that adhesion between SWNTs and catalyst particles needs to be strong to support

nanotube growth. They also consider the enthalpies for the SWNT to detach from

the catalyst and close into a cap at the growing end. Fe, Co, Ni have large positive

reaction enthalpies, which means cap formation is very unlikely. The enthalpies for

Au and Cu are negative, so cap formation is almost certain. The enthalpy for Pd is

weakly positive, making cap formation unlikely, but possible. Finally, they perform

MD simulations of CNT nucleation and growth using the same model as in their
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previous work [27], except that here the nanotube-metal interaction strength is var-

ied. If the carbon-metal bond strength is 2.5-3.0 eV, adding one carbon atom to a

SWNT cap will cause the SWNT to grow longer, maintaining the same diameter. If

the carbon-metal bond strength is decreased to 1.5-2.0 eV, adding carbon atoms to

a SWNT atoms to the cap causes the diameter of the SWNT to decrease, beginning

to close off.

1.4.1.3 Balbuena et al.

Growth mechanisms in MD simulations and the effect of temperature

and substrate-catalyst interaction. In [93], Zhao, Martinez-Limia and Balbuena

simulate the growth of carbon nanotubes using classical molecular dynamics with

a reactive force field. For carbon-carbon interactions, they use a second-generation

reactive empirical bond order (REBO) potential developed by Brenner et al. [21].

A weighting factor has been added to describe weaker C-C interactions inside the

metal cluster. This factor varies with the number of Ni atoms bonded to the C

atoms. Carbon-metal interactions are given by a many-body Morse-type potential,

including dependence on the coordination number of C and Ni atoms. For the metal-

metal interactions, a Morse-type potential is also used. Carbon atoms are added by

including gaseous precursor atoms in the simulation. Once they reach the proximity

of the catalyst surface, they are instantaneously transformed into carbon atoms, and

a new precursor atom is added randomly. The authors observe that growth proceeds

as follows: carbon atoms dissolve in the metal cluster, precipitate on the surface, form

carbon structures (first chains, then graphene-like structures), and form a cap, which

becomes a nanotube. They observe that the carbon solubility of the catalyst particle

increases as temperature increases and decreases as the strength of the substrate-

catalyst interaction increases. Once the carbon atoms on the surface have formed

sp2-bonded structures, they interact weakly with the catalyst and lift off the surface.
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The authors observe that the caps are not very stable; they form, break, and re-form.

More stable caps are observed at higher temperatures (1150-1200K). When the cap

diameter matches the diameter of the catalyst nanoparticle, there is less stress on the

cap.

Effect of substrate-catalyst interactions. In [10], Balbuena et al. specifi-

cally study the role of the catalyst in CNT growth. They perform MD simulations

using the same potentials as in [93]. They simulate the Langevin equations rather

than Newton’s equations, which include random fluctuations and a friction force to

sample the canonical ensemble. This supplies the energy needed to cross activation

barriers and improve the sampling of configurations. A substrate is included in the

simulations via a honeycomb lattice of atoms which interact with the metal and car-

bon atoms via a Lennard-Jones potential. These simulations show the same growth

mechanisms as in [93]. Additionally, it is observed that a strong substrate-catalyst

interaction constrains the cluster surface, increasing the cluster melting point and re-

ducing the C solubility. This is similar to the effect of substrate-catalyst interactions

in [74]. Separate molecular dynamics simulation are used to determine the melting

point of small clusters of Pt atoms using a Sutton-Chen potential. The simulations

show that the melting temperature of metal nanoclusters decreases as the cluster

size decreases, with small dependencies on the cluster shape for larger clusters. The

melting temperatures are in the range 850 K to 1125 K.

1.4.1.4 Maiti et al.

Energetics of catalyst-free, high-temperature growth of open CNTs. In

[55], Maiti, Brabec, Roland, and Bernholc simulate the growth of CNTs by arc dis-

charge, which involve high-temperature, catalyst-free conditions. They show that the

electric field alone cannot stabilize the growth of open metallic tubes. To consider

other reasons for the stability of an open edge, the authors study the addition of car-

12



bon atoms, dimers, and trimers to the open end of an achiral tube, i.e. one with a kink

edge. The energy is described by a Brenner potential [20]. For monomer deposits, the

only low-energy structure is an isolated pentagon at a step edge. For dimer deposits,

there are two low-energy structures: a hexagon and a 5-5 pair at a step edge. The 5-5

pair is energetically favored for narrow, highly curved tubes, whereas the hexagon is

favored for less curved, large diameter tubes. For trimer deposits, the lowest energy

structures are: 5-5-5, 5-6, and 6-5. The 5-5-5 structure is the most stable energetically

for very narrow tubes, but becomes unfavorable for larger tube diameters, where 5-6

and 6-5 structures are preferred. The 5-5 and 5-5-5 structures lead to highly curved

tips that result in tube closure after more carbon atoms incorporate. Thus the nar-

row tubes, which energetically prefer these structures, will eventually close. Kinetic

effects are studied by performing MD simulations at 3000 K. Annealing produces the

low-energy structures identified above. MD simulations for carbon insertion in closed

tubes result in disordered structures, showing that closed tubes are not able to grow.

Kinetics of catalyst-free, high-temperature growth of open CNTs. In

[19], Brabec, Maiti, Roland, and Bernholc study the growth of carbon nanotubes using

a classical MD method. They describe carbon-carbon interactions with a Brenner

potential [20]. They initialize their simulations with open, all-hexagon nanotubes

with various diameters and helicities. The bottom two atomic layers are held at 0

K, the tip is at 3000 K, and there is a constant temperature gradient between the

two. They add single carbon atoms at random positions on the tip at a rate of 1

atom per 0.3 ns per unit nanometer length of the tube edge. This is much faster

than experimental rates of one atom per 103 − 104 ns, but such fast rates are needed

to perform simulations in a reasonable amount of computer time. However, these

rates still allow enough time for the system to anneal. The simulations reveal specific

mechanisms of adatom addition and motion. Defect structures anneal on timescales

of 10 to 100 ps. Heptagonal and pentagonal rings migrate along the edge via bond

13



switches and anneal into hexagonal rings by one of several mechanisms. Deposition

on a wide 6 nm diameter tube maintains an all-hexagon structure. For a narrow

1.5 nm diameter tube, hexagons at step edges degenerate into pentagon pairs upon

annealing. This introduces curvature at the tip, and the tubes close as more atoms

are deposited.

1.4.1.5 Neyts et al.

Coupled MD-MC technique. In [62], Neyts, Shibuta, van Duin, and Bogaerts

use a ReaxFF potential with a coupled Monte Carlo-MD method. The ReaxFF

force field uses a similar bond order/bond distance relationship as the one used by

the Brenner potential [20]. The energy also includes contributions from lone pairs,

undercoordination, overcoordination, valence and torsion angles, conjugation, and

hydrogen bonding, as well as van der Waals and Coulomb interactions. The authors’

coupled Monte Carlo-MD method alternates between an MD stage and a uniform-

acceptance force-biased Monte Carlo (UFMC) stage. The simulation temperature is

1200 K. The simulations are initialized with a prethermalized Ni32 cluster. One C

atom is added at a random location in the simulation box every 2 ps. A repulsive

Lennard-Jones potential prevents this atom from bonding with the CNT until the

atom has been “catalyzed” by coming into contact with the Ni cluster. The Monte

Carlo stage allows for defects to relax, and a CNT with definable chirality is obtained.

The diameter is 11.45 Å and the chiral angle is 14 degrees, i.e. a (12,4) CNT. The

authors observe growth occur in an 8-stage process:

1. Alloying. Carbon atoms adsorb on the cluster surface and dissolve, occupying

subsurface sites. Carbon atoms do not bond together.

2. Saturation and supersaturation. As more carbon dissolves, carbon atoms

begin to form dimers, and then trimers, which exist both on the surface and in

the subsurface.
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3. Initial ring formation. As carbon continues to absorb, rings begin to form

after rearrangement of single chains, to which additional atoms may be added.

4. Second generation ring formation. Longer chains form, and eventually join

to form rings. The fraction of single carbon atoms drops to about 5%.

5. Graphitic island formation. The addition of monomers, dimers, and trimers

to rings form surface tails which later become rings.

6. Coalescence of graphitic islands. Graphitic islands are connected by chains.

Addition of new atoms leads to bond rearrangement, causing the graphitic is-

lands to coalesce. The graphitic islands conform to the shape of the catalyst.

Some Ni atoms are separated from the larger Ni cluster.

7. Cap and tube formation by root growth. Graphitic islands grow from

their edges, and eventually lift off from the surface. Initially, the cap is not

spherical, but becomes more so as additional carbon atoms are incorporated.

8. Tube formation by tip growth. The lone Ni atoms may catalyze gas phase

carbon to incorporate into the CNT. This results in the formation of a (defec-

tive) curved graphene sheet, which eventually curves into a tube. The metal

atoms remain near the tip.

The authors also observe apparently metal-mediated defect healing mechanisms which

transform pentagons and heptagons of carbon atoms into hexagons.

1.4.2 Semi-empirical potentials

1.4.2.1 Irle, Morokuma et al.

Dependence on catalyst composition, catalyst size, reaction tempera-

ture, and C addition rate. In [64], Page, Ohta, Irle, and Morokuma describe a
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variety of previous work related to modeling CNT growth using quantum mechan-

ical molecular dynamics. In particular, they use a self-consistent charge density-

functional tight-binding methodology. They study Fe38-catalyzed SWNT nucleation,

Fe38-catalyzed “cap-to-tube” transformation, and Fe38-catalyzed continued SWNT

growth. They also study the dependence on catalyst composition, catalyst size, re-

action temperature, and C addition rate. All simulations except those exploring

temperature dependence are performed at 1500 K.

In their study of SWNT nucleation, they observe that C2 units bind to the Fe

catalyst particle, diffuse, and fuse to form polyyne chains, i.e. chains of carbon atoms

with alternating single and triple bonds. This process takes more than 100 ps. Then,

polyyne chains condense into rings, beginning with a 5-membered ring. Carbon clus-

ters retain branched polyyne chains throughout the simulation. The role of the cata-

lyst is to localize the carbon precursor species, impede polyyne diffusion, and prevent

the one end of the structure from closing. In particular, growth occurs even though a

transition-metal carbide particle did not form, suggesting that such a particle is not

a prerequisite for growth.

In the study of “cap-to-tube” transformation, they observe that when carbon

atoms are added to the system, this causes the addition of 5-, 6-, and 7-membered

rings at the cap-catalyst boundary, demonstrating nanotube sidewall construction.

In their study of continued SWNT growth, they observe that new carbon atoms

insert into an existing C-Fe bond to form a C-C-Fe bridging structure. These bridging

structures interact to form 5-, 6-, or other-membered rings. They find that catalyst

composition affects the growth. Using Ni instead of Fe increases the growth rate, and

longer chains (three or more) of carbon connecting the cap to the catalyst particle are

observed compared with Fe. An increase in catalyst size corresponds to a decrease

in SWNT growth rate, since the C atom is able to diffuse for a longer time before

incorporating into the SWNT. The growth rate at 1500 K is greater than at 1000 K
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or 2000 K. Adjustments to the carbon supply rate show that slower carbon supply

rates (1 C every 10 or 20 ps) yield structures with fewer defects (5- and 7-membered

rings) compared with faster rates (1 C every 0.5 ps). Other simulations show that

adatoms, monovacancy, and 5-/7- membered ring defects heal on time scales of 1 –

25 ps.

Low-temperature, catalyst-free growth from nanoring precursors. In

[49], Li, Page, Irle, and Morokuma perform quantum mechanical MD simulations

of low-temperature catalyst-free SWNT growth from various chiral carbon nanoring

precursors. These simulations use the same self-consistent charge density-functional

tight-binding method used in [64]. Ethynyl radical (C2H) is added to various nanoring

precursors which serve as templates for (4,3), (6,5), (6,1), (10,1), and (8,0) SWNTs.

There is no catalyst present, and the temperature is low (500 K). Armchair edge

carbon atoms in the precursor serve as docking points for incoming radicals. This

is also where new hexagon formation occurs. Near-zigzag precursors have only one

such bonding site, and growth proceeds by sequential hexagon addition. Armchair

and near-armchair precursors exhibit random hexagon formation. Zigzag SWNTs do

not have these armchair docking locations, so their growth proceeds differently. As

radicals are added, a 6-3 ring structure (benzocyclopropene) forms at the edge of

the precursor. Hexagons add repeatedly to this armchair structure. However, the

6-3 ring structure prevents a complete row of hexagons from forming. A 6-3 to 6-6

ring isomerization does not occur in the 325 ps period simulated. DFT shows this

isomerization to have a barrier of 12.1 kcal/mol (0.525 eV/atom) and to be exothermic

by 33.1 kcal/mol (1.43 eV/atom). Thus there is a barrier to ring completion, in

contrast with a barrier to ring initiation, which was identified in an article by Ding

et al. [28]. Overall, Li et al. find that hexagon formation is more favored during the

growth of near-armchair SWNTs compared to near-zigzag SWNTs, since growth rate

is proportional to the number of armchair sites. This agrees with the findings in [28]
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regarding the chirality dependence of catalytic CNT growth. The authors find that

for C2H addition, SWNT growth rate is independent of diameter. On the other hand,

the barrier height for C2H2 addition decreases as diameter increases, so the growth

rate would depend on diameter in this case. Although the barrier for C2H2 addition

is about one order of magnitude greater than for C2H addition, C2H2 addition may

play a role in CNT growth since this molecule is much more plentiful in the growth

atmosphere.

1.4.2.2 Andriotis et al.

The catalytic effect of a single Ni atom. In [6], Andriotis, Menon, and

Froudakis apply a self-consistent tight-binding molecular-dynamics method [5] to the

study of the catalytic effect of Ni atoms on carbon nanotubes, also employing static

DFT calculations. They consider a graphene fragment and two armchair SWNT

fragments of different sizes. They consider the substitution of a carbon atom in these

structures with a single Ni atom, as may happen for a defective structure in the

presence of a catalyst. For a substitutional Ni atom in a graphene sheet, the Ni atom

moves slightly out-of-plane with minimal distortion to the graphene lattice. When

there is an additional C atom present, the C atom and the Ni atom exchange places.

For a substitutional Ni atom in a SWNT, the Ni atom moves into the interior of the

nanotube, stabilizing the C vacancy. When Ni atom is added near the tube end, it

prefers to remain in the tube end. If an additional C atom is present, the C atom

replaces the Ni atom, and the Ni atom breaks free of the nanotube. Thus, the authors

propose a two step growth process:

1. A Ni atom first creates and stabilizes defects in nanotubes.

2. Then, newly added carbon anneals these defects and the Ni atom is free to

continue the process.
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This is contrasted with the scooter mechanism proposed in [78], in which a single Ni

atom diffuses around the open end of the CNT and heals defects as carbon atoms are

added.

1.4.2.3 Amara et al.

Carbon nanostructures on a Ni slab, including the effect of carbon

chemical potential and temperature. In [2], Amara, Bichara and Ducastelle sim-

ulate the formation of carbon nanostructures using tight-binding potentials. These

potentials include a band structure term and an empirical repulsive term. A Monte

Carlo scheme is used to simulate the dynamics. Carbon atoms are added and removed

from the system by calculating acceptance probabilities consistent with a grand canon-

ical ensemble, and they are only inserted on the top half of the catalyst. The system

is initialized with a Ni slab with 6 atomic layers and a (111) surface. The chemical

potential µC varies from −6.5 to −4.5 eV/atom, and the temperatures 500 K, 1000

K, and 1500 K are considered. In the simulations, the authors observe that carbon

atoms are deposited on the surface or in interstitial sites. As more atoms are added,

chains of carbon form on the surface and eventually demonstrate sp2 hybridization.

Once a graphene-like structure forms, it shows very weak bonding with the substrate.

The authors observe that for large values of µC , a 3-D amorphous C phase forms. At

1500 K, a disordered carbide phase forms.

Tight-binding simulations of CNT growth on catalyst nanoparticles,

including effect of catalyst size and carbon chemical potential. In [3], Amara,

Bichara and Ducastelle use the same interaction potentials and dynamics as in [2] to

simulate the catalytic growth of carbon nanotubes. Nickel catalyst clusters with

various structure and size are used in the simulations. Some are crystalline, with an

fcc (face-centered cubic) equilibrium Wulff shape, and others are disordered. Carbon

atoms are inserted in a region between 3 Å below and 3 Å above the Ni surface. The
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presence of a substrate is mimicked by making only the top 40% to 60% of the cluster

active. Simulations are carried out with the carbon chemical potential of −6.00,

−5.25, or −4.50 eV/atom and temperatures of 1000 K. For small chemical potential,

carbide formation dominates as atoms are added, although crystalline catalyst clusters

are not able to dissolve as much carbon as disordered clusters. For intermediate

chemical potential, carbon atoms deposit on the surface, first forming chains, and

then graphene-like structures. These graphene-like structures bond weakly with the

catalyst and eventually dissociate. This is essentially the same mechanism observed

by Zhao, Martinez-Limia, and Balbuena in their simulations using classical potentials

[93]. For large chemical potentials, the carbon encapsulates the catalyst with a soot-

like structure. The cap diameter is determined by the catalyst shape at the time of

formation. The nanotubes exhibit a large number of defects.

Effect of catalyst structure. In [4], Amara, Bichara and Ducastelle use the

same interaction potentials, dynamics, and addition scheme as in [3]. They consider

crystalline and disordered nickel catalyst particles. The carbon chemical potential

varies from −8.5 eV/atom to −5.25 eV/atom, and the temperature is 1000 K. They

study how carbon solubility changes as the chemical potential is increased. When

µC is above −6.50 or −6.00 eV/atom, the surface and bulk carbon atoms reach

equilibrium values. The disordered catalyst accommodates more bulk C atoms than

the crystalline catalyst. Once µC exceeds a threshold value µ∗C , carbon atoms on

the surface begin to bond together to form chains and graphene-like clusters. µ∗C is

between −6.50 and −6.00 eV/atom for the crystalline cluster and −6.00 and −5.75

eV/atom for the disordered one. When the chemical potential µC exceeds about

−5.00 eV/atom, the catalyst cluster becomes encapsulated by carbon atoms. The

authors suggest that one role of the metal catalyst is to confine C atoms near the

surface until a critical concentration is reached.

Effect of carbon chemical potential and temperature, as well as catalyst
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size and structure. In [26], Diarra, Amara, Ducastelle, and Bichara use the same

potentials and dynamics as in [3]. Carbon atoms are added in the active zone between

2.5 Å below and 2.5 Å above the surface of the Ni cluster. The carbon chemical

potential varies between −8.80 and −5.40 eV/atom. They consider temperatures

between 800 K and 1400 K. Icosahedral and Wulff (fcc) Ni clusters of varying sizes

are used as the catalyst. The authors observe that at high temperatures or at high

chemical potential, the Ni clusters are molten. At low temperatures, carbon absorbs

on the fcc cluster at a lower µC value than on the icosahedral cluster. Increasing

µC causes a larger number of C atoms to absorb into the catalyst, until the carbon

solubility limit of about 25% is reached. The catalyst cluster size also has an effect

on carbon solubility. For fixed µC , the carbon solubility is larger for smaller clusters.

The threshold µC value for carbon incorporation is temperature dependent for the

smaller nanoparticles, but not for the largest one. The largest particle (805 Ni atoms)

has a solid core/molten shell structure. The carbon is dissolved near the surface of

the catalyst cluster. Temperature also affects the carbon solubility. At a given µC ,

higher temperatures display larger carbon content. The threshold pressure for carbon

absorption increases with temperature. At low temperatures (800 K), the catalyst

particle is encapsulated by carbon, but at higher temperatures (1000 K or 1200 K),

a carbon cap forms on the catalyst particle.

1.4.3 First principles methods

1.4.3.1 Charlier et al.

Catalyst-free growth of open CNTs. In [24], Charlier, De Vita, Blase, and

Car use ab initio molecular dynamics to study the growth mechanisms in carbon

nanotubes. They use DFT in the local density approximation (LDA). They con-

sider a zigzag nanotube, an armchair nanotube, and a zigzag double-walled nanotube

(DWNT), all open at one end and H-terminated at the other end. No catalyst is
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present. They consider growth temperatures of 3000 K to 3500 K to simulate arc

discharge conditions. The authors observe that the open end of SWNTs close spon-

taneously into a graphitic dome. The open end of the zigzag nanotube closes into

a structure with no two-coordinated atoms, which is about 18 eV more stable than

the initial structure and 4.6 eV less stable than the C60-hemisphere cap. The open

end of the armchair SWNT closes into a hemi-C60, with about 15 eV less energy

than the initial configuration. Tip closure reduces the localized density of electronic

states (LDOS), indicating reduced chemical activity. New C atoms are not able to

incorporate into the closed tip. The situation is different for DWNTs. “Lip-lip”

interactions in DWNTs prevent dome closure, but maintain high chemical activity,

allowing for further carbon incorporation. The open end is trapped in a metastable

energy minimum by the formation of bridging bonds between the adjacent tubes. The

energy lowering due to these bridging bonds is about 1 eV per initial two-coordinated

C atom. These edge structures display a large LDOS at the Fermi level, i.e. they

have high chemical reactivity. If C atoms or dimers are projected toward the SWNT

edge, they incorporate into the structure. These results agree with experiments that

suggest that transition metal catalysts are necessary to produce SWNTs, but not

MWNTs [30].2

Root-growth mechanism. In [33], Gavillet et al. perform ab initio molecular

dynamics simulations to study the root-growth mechanism of SWNT growth. The

first simulation considers a mixed Co-C cluster, with two-thirds carbon atoms, ini-

tially in an hcp (hexagonal close-packed) arrangement. The cluster is cooled from

2000 K to 1500 K. During cooling, about 80% of the C atoms segregate to the surface

of the cluster, and Co atoms migrate to the center. The C atoms on the surface form

2Recent work by Chongwu Zhou and his colleagues [51, 50] has shown the possibility of catalyst-
free growth of SWNTs by a vapor-phase epitaxy method. SWNT fragments undergo air annealing
and water annealing to activate their open ends. When methane or ethanol are used as a feedstock,
the SWNT fragments grow. The growth mechanism in these conditions is not completely understood,
but it is hypothesized to be Diels-Alder addition.
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linear chains and some aromatic rings, including a hexagon next to two pentagons.

In a second simulation, the authors consider a C60 hemisphere on a double layer of

hcp Co. An additional 20 C atoms are on the surface of the metal particle. The

growth temperature is 1500 K. After 15 ps, 5 C atoms migrate to the tube base and

incorporate into the nanotube. They identify the role of the catalyst as being to

stabilize the forming tube and to provide fluctuating Co-C bonds, which allow for the

incorporation of C atoms.

1.4.3.2 Raty, Gygi, and Galli

Root-growth mechanism, including effect of catalyst-carbon binding

strength. In [71], Raty, Gygi, and Galli perform ab initio MD simulations of the

growth of carbon nanotubes on metal nanoparticles. They use DFT in the gener-

alized gradient approximation (GGA). Two different types of catalyst particles are

considered – a 1 nm Fe catalyst in an fcc arrangement and a 1 nm Au catalyst. These

catalysts have different binding strengths with carbon. The effect of a substrate is

approximated by passivating the bottom half of the catalyst surface with hydrogen

atoms. The system is initialized with some carbon atoms arranged on the catalyst

surface. Additionally, C atoms are deposited near a random surface Fe atom that

is not bonded to C or H at a rate of one atom every 0.3 ps. This addition rate is

very high, but it is necessary to achieve reasonable simulation times. The growth

temperature is 1200 K. C atoms do not move to subsurface locations, indicating that

carbide formation is not necessary for growth. The C atoms on the surface of the

Fe catalyst join to form dimers, chains, and eventually a sp2-bonded graphene sheet.

The threefold-coordinated carbon is loosely bound to the catalyst, and a cap lifts off

the catalyst surface at its center. On the Au catalyst, however, C dimers and chains

detach from the surface. The authors explain this in terms of the catalyst-carbon

binding energy. The binding energy for a single C atom to a metal cluster is larger
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for Fe than for Au (7.41 eV vs. 2.91 eV). Also, the binding energy for graphene is

larger on Fe than Au. Thus, the graphitic structure is able to stick to the Fe surface,

especially at the edges, but C atoms do not stick to the Au catalyst long enough to

form a graphitic structure.

1.4.4 Comparison of CNT growth simulations

The works described here demonstrate a wide range of approaches to simulating

CNT growth. Various empirical potentials are used, although carbon-carbon inter-

actions are typically described by the first- or second-generation Brenner potential.

Metal-metal and metal-carbon interactions are described by Morse, Johnson, and

ReaxFF potentials, among others. Metal-substrate interactions are usually described

by a Lennard-Jones potential. These potentials may have different weighting terms

that depend on atomic coordination or on bond angles. The semi-empirical methods

share the same tight-binding framework, although different research groups use dif-

ferent approximations. The first principles are all based on DFT, but this includes

different approximations (LDA or GGA), as well as different pseudopotentials.

In terms of the dynamics, molecular dynamics is used in almost all simulations,

except the work of Neyts et al., which includes a Monte Carlo stage, and of Amara

et al., which uses a grand canonical Monte Carlo method. In most of the research

discussed, carbon atoms are inserted at regular time intervals. The more realistic

technique is to use a chemical potential, as done by Amara et al. The rate of carbon

atom addition varies by several orders of magnitude, from one every 10−1 ps to one

every 101 or 102 ps. This is largely dictated by the computational demands of the force

calculations. In any case, these rates are much faster than the experimental rates of

one every 106 or 107 ps. As a result, the system does not have enough time to relax to

thermal equilibrium. Most of the work assumes that the carbon-containing precursor

catalyzes instantaneously on the catalyst surface to form carbon atoms. The work
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of Li, Page, Irle, and Morokuma [49] is noteworthy in that it considers the addition

of ethynyl radicals instead of carbon atoms. This is a more chemically accurate

description of the feedstock for CNT synthesis because carbon atoms are added two

at a time, and the effect of hydrogen on the electronic structure is considered. Most

of the simulations describe catalytic CVD growth of CNTs, and include a catalyst

particle, although simulations of arc discharge or laser ablation methods may have

a single catalyst particle, or no catalyst at all. The temperatures considered vary

between 500 K for the growth of nanorings [49] to 3500 K for arc discharge conditions

[24]. Common temperatures for CVD conditions is about 1500 K. Many of these

studies focus on the nucleation of CNTs rather than the continued growth. Those

interested in continued growth look at the incorporation of carbon atoms into a pre-

existing carbon cap, nanotube fragment, or nanoring.

Despite the wide variety of atomistic models used, simulations of these models

display quite similar growth mechanisms. These follow the general VLS framework.

Carbon deposited on the catalyst surface by feedstock decomposition will diffuse

either through the bulk or on the surface of the catalyst. As the concentration of

carbon atoms on the surface increases, the carbon atoms will bond into chains and

then graphene islands. As these islands grow, they coalesce to form a nanotube

cap which lifts off the catalyst surface at its center. At this point, the nanotube

has nucleated. The nanotube diameter is the same as or slightly smaller than the

diameter of the catalyst particle. Additional carbon atoms will incorporate at the

edge of the tube. The number of defects is usually quite high. This is quantified in

terms of the number of hexagons vs. pentagons, heptagons, and other rings. In the

simulation by Neyts et al. [62], the number of defects is low enough that the chirality

of the nanotube is identifiable.

There is also good agreement regarding the dependence of the growth process on

the variables. The simulations suggest that for a fixed model, slowing the addition
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rate allows for defects to heal, leading to fewer defects. If the deposition rate is

too high, the catalyst may become encapsulated by amorphous carbon. This can also

occur if the temperature is too high or too low. The substrate composition plays a role

in the growth, since increasing substrate-catalyst binding strength creates a layered

catalyst structure, which produces hexagonal carbon structures on the surface, but

prevents cap liftoff. The catalyst composition is also important, as decreasing the

catalyst-carbon binding strength causes the carbon structures to detach from the

catalyst particle before creating a cap.

There is disagreement about how much carbon dissolves into the catalyst and

whether any dissolution is necessary for growth. There is also disagreement about

the type and extent of carbon-carbon bonding in the subsurface. The simulations of

Shibuta and Maruyama [73, 74] show hexagonal rings of carbon in the subsurface,

whereas subsurface carbon atoms in other simulations are bonded to at most two

other carbon atoms.

The greatest drawback of the simulation of these atomistic models is their high

defect concentration. Nanotubes grown in experiments typically have less defective

lattice structure on their sidewalls. The simulations described here indicate that

slowing the addition rate decreases the number of defects, but none of the simulation

methods are able to access the time scales necessary to produce high quality, let

alone perfect, tubes. In order to understand the mechanisms of defect-free carbon

incorporation, other approaches are necessary.

1.5 Review of energetic studies of CNT and graphene growth

Alternative approaches by Yakobson and his colleagues provide further insight

into the CNT and graphene growth mechanisms. These studies are based on energy

calculations via DFT. Combined with statistical mechanics and transition state the-

ory, these energy calculations can yield the probabilities of defect-free and various
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defected configurations and the transition rates between them. This requires identi-

fying the local minima and saddle points of the energy surface, e.g. by using a nudged

elastic band method.

1.5.1 Chirality-controlled growth

In [28], Ding, Harutyunyan, and Yakobson propose that the CNT growth rate is

correlated with chiral angle. An (n,m) CNT has m kinks at the end rim, which serve

as preferred locations for carbon atoms to incorporate. Achiral edges (armchair and

zigzag) do not have kinks, and must nucleate a new row after one row is complete.

This nucleation involves a significant energy barrier G∗. The authors calculate this

energy barrier via DFT calculations for a CNT edge docked to a step edge in the

catalyst surface. The energy barrier for an armchair edge on catalysts Fe, Co, and Ni

is G∗AC = 0.06, 0.12, and 0.04 eV, respectively. For a zigzag edge on catalysts Fe, Co,

and Ni, G∗Z is 1.41, 1.12, and 1.54 eV, respectively. Since a temperature of 1200 K

corresponds to 0.1 eV, the re-initiation barrier for armchair tubes is negligible, but the

barrier for zigzag tubes is significant. The ratio of the growth rates can be estimated

as exp[−(G∗ZZ − G∗AC)/kT ] ∼ 10−6 – 10−4 at T ≈ 1200 K. A chiral nanotube with

diameter d should gain atoms at the m kinks at some rate k0, for a carbon deposition

rate of K = k0m. We have m ∼ d sin(θ) for the chiral angle θ. The growth rate is

thus

(1.1) Kl ∼ K/d ∼ k0 sin(θ) ∝ θ

This equation predicts greater abundance of nearly armchair compared to nearly

zigzag. The distribution of chiral angles predicted by the theory agrees well with

those in the experimental literature for a variety of common growth methods. A

basic assumption of this model is that the attachment of carbon to the tube edge is
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rate-limiting.

1.5.2 Energetic barrier to carbon atom incorporation

As has already been discussed, CNT growth consists of several steps:

1. transport of the precursor to the catalyst particle;

2. decomposition of the precursor on the catalyst;

3. diffusion of the carbon to the CNT-catalyst interface, either on the catalyst

surface or in the catalyst bulk; and

4. incorporation of the C atoms into the nanotube.

Each of these steps has a rate, usually controlled by an activation barrier. In [90],

Yuan, Hu, and Ding point out that if the growth rate correlates strongly with the

chiral angle, then the rate-limiting step must be step 4, the carbon incorporation.

They use DFT to calculate the activation energy for carbon incorporation, for both the

first and second atoms added at the edge to form a six-member ring, for several choices

of catalyst. The climbing-image nudged elastic band (cNEB) method is used to find

transition states. Their calculations demonstrate that the barriers of incorporating

two C atoms into the CNT are 1.85, 2.28, and 2.27 eV for catalysts Fe, Co, and Ni,

respectively. The threshold barrier on Fe is the lowest of the three, suggesting it has

the highest catalytic activity for CNT growth. For comparison, C diffusion on metal

surfaces has a barrier less than 1.0 eV, and C feedstock decomposition on metal has

a barrier less than 1.5 eV. Thus, C incorporation is the rate-limiting step.

Their calculations illuminate the process of carbon incorporation. On Ni, the first

C incorporation proceeds as follows. The C atom is initially located at the center

of four Ni atoms. It then diffuses through the subsurface to form a metal-stabilized

hexagon structure. This process is exothermic with an activation barrier of 1.02 eV
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and an energy decrease of 0.9 eV. The second C atom incorporation involves the

removal of the Ni atom that stabilizes the hexagon structure. There is a small barrier

to form a C-C bond between the second and first C atom. There is an activation

barrier of 1.20 eV barrier to rotate the bond to form a hexagon and move the Ni

atom away. The overall barrier of the two-atom incorporation reaction is 2.27 eV.

This neglects the barriers of C feedstock decomposition, as well as C and Ni atom

diffusion on the Ni(111) surface.

In experiments, C feedstock with energy higher than a CNT is used, i.e. there is

a chemical potential difference ∆µ. This provides the driving force for CNT growth.

Using the calculated energy barriers, the authors calculate a formula for an upper

bound on the CNT growth rate. This formula indicates that growth of 0.1-1 m long

CNTs in 1 h is theoretically possible.

1.5.3 Efficient defect healing

In [91], Yuan, Xu, Yakobson, and Ding study the energetics of topological defects

in CNTs and their kinetic healing. A non-six-membered ring constitutes a topological

defect in the CNT wall. An isolated pentagon (p) turns an otherwise defect-free

SWNT into a cone; an isolated heptagon (h) turns it into a horn. A 5-7 pair and

other defect clusters maintain the SWNT structure, but change the chiral index. Of

these, the 5-7 defect has the lowest formation energy. In experiments, nanotubes of

length 18 cm have been grown with the same chiral indices throughout. Thus, the

defect concentration for such nanotubes must be less than 10−10. In thermodynamic

equilibrium, the number of defects is

(1.2) Nd = Ns exp

(
− Ef
kBT

)
.
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Ns is the number of lattice sites, kB is the Boltzmann constant, Ef is the formation

energy, and T is the temperature. For the defect concentration to be less than 10−10

at 800 – 1000◦C, then the energy of formation must be greater than about 2.0 eV.

Using DFT calculations, the authors calculate the energy barriers E∗ to defect

healing on the outermost edge of a SWNT for three different catalysts:

Fe Co Ni

p 0.55 eV 0.96 eV 0.91 eV

h 1.12 eV 1.36 eV 1.40 eV

5-7 1.61 eV 1.88 eV 2.00 eV

Based on the activation barriers for defect healing, p and h defects can be healed in a

time period of 10−8 to 10−7 s. If a p or h survives in a CNT, and the CNT continues

to grow, then they must combine to form a 5-7 pair. There is high defect healing

efficiency on the outermost edge of a CNT. For the healing of a 5-7 defect, the barrier

becomes higher and higher and the reactive energy becomes lower and lower when

the 5-7 pair moves away from the CNT-catalyst interface. The authors calculate

the defect concentration over a temperature range of 400 K to 1600 K with several

different C addition rates ranging from 0.01 µm/s to 100 µm/s. For a given growth

rate, the defect concentration is locally minimized at two different temperatures. For

example, a growth rate of 1 µm/s results in a minimal defect concentration of about

10−11 at a temperature of about 700 K and a slightly greater locally minimal defect

concentration at 1000 K. The defect concentration of a fast growing CNT is always

higher than that of a slow growing one. MD simulations involve very fast growth

rates, which explains the highly defective CNTs obtained in these simulations.

1.5.4 Equilibrium and non-equilibrium growth of graphene

In [7], Artyukhov, Liu, and Yakobson propose a “nanoreactor” mechanism which

uses ideas of step-flow crystal growth augmented by detailed first-principles calcula-
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tions. This analysis is for graphene, not CNTs. The edge energy of graphene as a

function of chiral angle is γ(χ) = 2γA sin(χ) + 2γZ cos(30◦ − χ). γA and γZ are the

edge energies for armchair and zigzag edges, respectively. The authors calculate the

energy of armchair (A) and zigzag (Z) edges on different catalysts using DFT. They

consider a reconstructed form of the armchair edge, denoted A5′, which has lower

energy than the pure armchair edge. They find that γA5′ < γZ on Fe and Co, and the

two are almost equal on Ni. On Cu, the zigzag edge has the lowest energy density.

Using the Wulff construction, one can find the equilibrium island shape on different

catalysts. On Ni, graphene will form a many-sided island with a combination of Z

and A5′ edges. On Fe and Co, the A5′ edge dominates, producing hexagonal islands.

On Cu, the Z edge dominates, again producing hexagonal islands.

For small islands or slow growth, the islands will be able to attain their equilibrium

shape. Further from equilibrium, the growth rate is determined by the process of

atom attachment. The authors add atoms to A5′ and Z Ni edges with non-growing

edges docked to a metal step. They use DFT to calculate the energy for multiple

metastable configurations, both the lowest energy state and possible defects. They

observe that the catalyst substrate serves as a planar template for graphene growth. It

also prevents the formation of defects at the growth front by biasing the energy toward

hexagonal structures, which are sometimes less energetically favorable in vacuum.

The energy of the armchair and zigzag edges follow an up-down pattern as atoms

are added at the kinks to produce additional hexagons. The growth of zigzag edges

proceeds by 2 stages: (1) nucleation of a new atomic row, and (2) addition of atoms

at kink sites (kink flow). Thus, for zigzag edges, the first atom addition is strongly

endoergic, but subsequent zigzag additions lie below the high-energy states for arm-

chair edges. For chiral orientations intermediate between zigzag and armchair, the

concentration of kinks determines the growth rate. Let E represent the free energy

barrier for carbon incorporation and N∗ represent the critical Z nucleus size. Let sK ,
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sA, and sZ denote the concentration of active sites at kink, armchair, and zigzag edge

segments, respectively. The direction-dependent growth velocity is:

(1.3) v(χ) ∝ 2sK(χ)e−EK/kT + 2sA(χ)e−EA/kT +N∗sZ(χ)e−EZ/kT

This growth velocity is smallest for zigzag edges. The authors find that a growing

island is a hexagon with only zigzag edges, since the shape is limited by the lagging

zigzag edge. For nanotubes, the situation is different. The fixed chirality prescribes

the edge orientation, and therefore the growth rate.

1.5.5 CNT growth on a solid metal catalyst

In [8], Artyukhov, Penev, and Yakobson combine CNT-catalyst interface ther-

modynamics with kinetic growth theory to show preference for near-armchair tubes.

Let Nχ,d and Rχ,d represent the nucleation probability and growth rate, respectively,

of a CNT with chiral angle χ and diameter d. The relative abundance of CNTs

of different types is Aχ,d = Nχ,dRχ,d. The authors consider a low-temperature pro-

cess with a solid catalyst, which affects the energy of the CNT nucleus and the

insertion of new C atoms. The kinks at the edge of the CNT cause gaps between

the catalyst and the CNT. Achiral edges (armchair and zigzag) form tight low-

energy contacts. The interface energy increases roughly proportional to the num-

ber of kinks, which increases linearly with the deviation from the achiral direction.

Let x denote the angular deviation from the achiral direction (either A or Z), and

γ + γ′x be the linearized edge energy in the neighborhood of the A and Z chiral-

ities. Using a continuum model, the authors calculate the nucleation probability

N(χ, d) ∝ exp[−πd(γ + γ′x)/(kBT )]. The nucleation probability is actually some-

what higher for single-kink tubes, since they are able to tilt off axis to decrease the

edge energy. Let C denote the bending rigidity of graphene and E the energy barrier
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for the initiation of a new atomic row on an achiral edge. The growth rate is then

R(χ, d) ∝ πd exp
(
− 2C
d2kBT

)
(x+ exp(−E/(kBT ))). For a given diameter, this gives a

dependence of the function form A(x) = N(x)R(x) ∼ xe−x. The authors then use

DFT to perform atomistic calculations of the energy. For the CNT-catalyst energy,

zigzag and armchair form local energy minima, with armchair tubes having lower en-

ergy than zigzag edges. Atomistic calculations for growth kinetics build on an earlier

approach for graphene [7]. Energy changes and activation barriers for dimer addi-

tion are calculated using classical MD and the ReaxFF force field with a DFT-based

correction scheme. The constantly changing tilt angle makes the situation different

than for graphene. Armchair and zizgag edges have energy maxima for the first dimer

addition and one of the later dimer additions in the ring. The energy barriers are:

∆GA ≈ 1.67−1.86 eV and ∆GZ > 3 eV. Thus, under realistic conditions, the growth

rate of achiral CNTs is negligible. This explains the predominance of near-armchair

CNTs. This agrees with experiments in catalytic CNT growth, which show a strong

preference towards near-armchair tubes of type (n, n− 1).

1.5.6 Summary

The work of Yakobson et al. gives an energetics-based description for carbon ad-

dition to carbon nanotubes and graphene on solid and liquid catalysts, as well as the

energetics of defect healing on a liquid catalyst. In [28], Ding et al. show the prefer-

ence of C to incorporate at kink sites and calculate the energy of row nucleation at

a metal step edge. In [90], Yuan et al. show the mechanism of the first and second C

incorporation at a step edge in order to form a new hexagon. In [91], Yuan et al. show

the energetics and kinetics of healing pentagonal, heptagonal, and 5-7 pair defects at

or near a step edge. In [7], Artyukhov et al. calculate the edge energy and the activa-

tion energy of C incorporation on graphene edges with different chiral angles. In [8],

Artyukhov et al. show the mechanism of carbon incorporation at armchair and zigzag
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edge of a CNT on a solid catalyst (no step edge). These studies have precedents

in the work of Maiti et al. [55] and Brabec et al. [19], which describe the energetics

and kinetics of C incorporation on an open CNT edge and show that hexagons are

preferred in wider tubes, whereas pentagonal defects are preferred in narrower tubes.

These energetic calculations provide a path to transition rate calculations, which can

be incorporated into models based on chemical kinetics.

1.6 Review of a kinetic model of CNT growth

Kinetic models of CNT growth are based on the rate constants of different chemical

reactions. In [69], Puretzky et al. describe in situ measurements of CNT growth and

a corresponding kinetic model. They perform experiments in which vertically aligned

nanotube arrays are grown on Al/Fe/Mo multilayered catalysts on Si substrates,

using acetylene (C2H2) feedstock at various concentrations at temperatures ranging

from 535◦C to 900◦C (808 K to 1173 K). They measure forest height as a function

of time. As temperature increases from 575◦C (848 K) to 700◦C (973 K), the growth

rate and maximum achievable length increase. Increases in temperature above 700◦C

lead to a decrease in growth rate and terminal length. The maximum growth rate of

about 0.2 µm/s occurs at 700◦C. Changing the feedstock concentration does not have

much effect on the maximum growth rate, but the terminal length can be increased

by decreasing the feedstock concentration (from 19 sccm to 2 sccm).

For their kinetic model, they adopt the general VLS framework. They assume

the following mechanisms. A fraction of the feedstock particles colliding with the

catalyst surface decompose. Other studies show that the decomposition of acetylene

on Fe leads to the formation of two CH radicals or C2H and H radicals, which further

decompose into carbon atoms and hydrogen atoms. Carbon atoms on the surface

dissolve into the “molten” layer with rate ksb. Carbon atoms diffuse much faster

through the liquid layer than through the solid layer. They incorporate into the

34



nanotube with rate kt. A fraction of the carbon atoms on the catalyst surface form a

carbonaceous layer, which restricts the source flux. This occurs with rate constant kcl.

Another mechanism is needed to describe the growth at high temperatures – such as

gas-phase pyrolysis products adding to the carbonaceous layer, or oxidation/reduction

creating an effective inactive catalyst layer. The carbonaceous layer may dissolve and

the inactive catalyst may reactivate. Activation barriers and pre-exponential factors

are chosen such that at T = 575◦C, kcl = 3×10−3 s−1, ksb = 17 s−1, and kt = 491 s−1.

Thus we see that the formation of the carbonaceous layer is significantly slower than

the other processes.

This model yields a set of differential equations (see Chapter III). The authors

determine an explicit solution of these equations in a simplified case where the gas-

phase pyrolysis of the feedstock, the catalyst deactivation step, and the dissolution of

the carbonaceous layer are all neglected. This should be a good approximation at low

temperatures. In this case, they find the termination length depends exponentially

on 1/T . Considering different versions of the full model and comparing with their

experimental results, they deduce that poisoning of the catalyst nanoparticles by gas-

phase pyrolysis products is not dominant at higher growth temperatures. Catalyst

deactivation provides a better fit to the measured growth rates.

1.7 Connections between atomistic models and kinetic mod-

els

Atomistic models and kinetic models differ in important ways. In atomistic mod-

els, the initial atomic structure of the system, the atom addition scheme, and the

interatomic interactions are specified, and then Newton’s equations or the Langevin

equations for the system are solved. Mechanisms can be deduced from the time-

dependent behavior of the system. For kinetic models, the mechanisms are specified
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based on experimental observations or theoretical considerations. The activation en-

ergy and rate of each of these mechanisms can be determined from other experiments

or from atomistic modeling. The activation energies, specified in a kinetic model and

intrinsic to an atomistic model, introduce temperature dependence into the growth

process.

The mechanisms included in the Puretzky kinetic model are feedstock decomposi-

tion, carbon dissolution, carbon diffusion, carbon incorporation, and catalyst encap-

sulation. The Puretzky model does not include nanotube nucleation. We compare

how these mechanisms are treated in kinetic models and atomistic models:

• Feedstock decomposition. Atomistic models typically do not capture de-

composition of the feedstock in a detailed way, probably because the atomic

mechanisms of this process are not well understood. In most simulations, car-

bon atoms are inserted near the surface of the catalyst particle at a specified

rate, although some other mechanisms are considered. This corresponds to

an instantaneous, barrier-free feedstock decomposition. In reality, this process

would have an activation energy, which would slow the decomposition rate, and

thereby the growth rate. This activation energy is included in the Puretzky

kinetic model.

• Carbon dissolution, carbon diffusion and carbon incorporation. Atom-

istic models do capture carbon diffusion and carbon precipitation into the nan-

otube, mechanisms which are also included in the Puretzky kinetic model. Var-

ious atomistic models differ on whether carbon dissolution is a prerequisite for

carbon diffusion, i.e. whether surface diffusion or bulk diffusion predominates.3

The Puretzky model presupposes that the carbon atoms first dissolve into an

outer liquid layer of the catalyst before diffusing to the nanotube edge. The

3This ambiguity is also present in experimental work, see e.g. the discussion in [86]. The activation
energy for CNT growth may be more similar to the activation energy for bulk diffusion or surface
diffusion, depending on the growth conditions.
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Puretzky kinetic model does not include details of the nanotube structure or

carbon incorporation. Atomistic modeling, however, is able to predict chirality

dependence of the growth rate [28], as well as the kinetics of defect forma-

tion/healing [91], for the steady growth of CNTs.

• CNT nucleation. The process of CNT nucleation is described by atomistic

models. A certain amount of carbon atoms must be deposited before they

bond together and form a nanotube cap. However, the Puretzky kinetic model

includes no delay between the initial decomposition of carbon on the catalyst

surface and the growth of the nanotube.

• Catalyst encapsulation and growth termination. Atomistic models do

demonstrate catalyst encapsulation for certain growth conditions, such as very

low or very high temperature, high carbon addition rate, or high catalyst-carbon

adhesion. In these cases, however, encapsulation by amorphous carbon affects

the entire catalyst particle and no nanotube forms. In the Puretzky kinetic

model, catalyst encapsulation is a gradual process that occurs simultaneously

with nanotube growth, until the entire catalyst particle is encapsulated and

growth terminates.

The choice between an atomistic model and a kinetic model for a process like CNT

synthesis requires considering what aspects of the process one wishes to describe. If

a description of atomic structure is desired, then an atomistic model is necessary.

However, if this level of detail is not needed, but rather large-scale quantities such

as the number of carbon atoms in the nanotube tube, then a kinetic model may be

sufficient. It has the advantage of allowing for much longer time scales to be studied.

The Puretzky kinetic model in particular also includes a mechanism for growth ter-

mination. Thus, this model is very helpful for describing CNT growth over the time

scales of an actual CNT growth experiment. In this dissertation, we use atomistic
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models when we wish to study the atomic mechanism of CNT growth, especially the

formation and healing of defects (see Chapter II). We use a kinetic model when we

wish to describe the growth of CNT forests to termination (see Chapter III).
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CHAPTER II

Atomistic modeling of carbon nanotube growth

In this chapter, we describe an atomistic model of the growth of individual CNTs,

as well as a simplified atomistic model that can be considered an analogue of CNT

growth. Atomistic models can be used to explore many aspects of growth and their

dependence on different growth conditions. One aspect of particular interest to our

group is the effect of mechanical forces. CNTs within a pillar growing from nearby

catalyst particles come in contact as they grow, i.e. they come near enough that there

are van der Waals interactions between them. If these CNTs are growing at different

rates, they exert forces on each other, which is hypothesized to lead to tortuous

nanotubes with many defects [13]. Not only do applied forces occur naturally within

the growth of CNT pillars, but they could be exerted on a pillar via an external

mechanism. Recent experiments by Bedewy et al. [11] have explored the effect of

applied forces on growth rate and forest height.

Our goal is to develop an atomistic model of CNT growth that includes a de-

scription of the growth rate and defect density of the CNT. In the future, external

mechanical forces could be included in this model, and their effect on the growth

could be studied. Even our relatively simple model of CNT growth is difficult to sim-

ulate over the long time scales needed for high quality growth, and its complicated

potentials make it difficult to analyze mathematically. As a result, we give particu-
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lar attention to the development and analysis of a one-dimensional analogue of this

model. This one-dimensional model has a potential energy with a global minimum

and multiple local minima, similar to the full CNT growth model. It does not in-

clude any topological defects, but the higher-energy local minima can be considered

as defective states. Our analysis of this model gives some insights into CNT growth.

2.1 Full three-dimensional model

As discussed in Chapter I, various atomistic models have been developed for molec-

ular simulation of CNT growth, using empirical, semi-empirical, and first principles

methods. Typical empirical potentials used are the Brenner potential [20] for carbon-

carbon interactions and the Morse potential for catalyst-carbon and substrate-carbon

interactions. We use these potentials to model the continued growth of a CNT that

has already nucleated. These potentials are based on a pair potential involving both

a repulsive and an attractive part. The range of the potential is limited by a cutoff

function f :

(2.1) f(r) =


1 if r < R1

1
2

(1 + cos(π(r −R1)/(R2 −R1))) if R1 < r < R2

0 if R2 < r.

The variable r represents the distance between atoms, and the parameters R1 and R2

define the interval where the function decreases from 1 to 0. The function is plotted

in Figure 2.1 with R1 = 1.7 Å and R2 = 2.0 Å.
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Figure 2.1: Plot of the cutoff function f(r).

The repulsive and attractive potentials1 are

VR(r) = f(r)
D

S − 1
exp

(
−
√

2Sβ(r −Re)
)
, and(2.2)

VA(r) = f(r)
DS

S − 1
exp

(
−
√

2/Sβ(r −Re)
)
.(2.3)

Re is the equilibrium bond length and D, S, and β are parameters that control the

shape of the potential.

In a full model, one would need to include all the catalyst and substrate atoms. We

assume that during continued growth of the CNT, the catalyst and substrate atoms

are approximately static, and we do not simulate their motion. We further assume

that we can replace the individual catalyst and substrate atoms with continua. This

is similar to the approach of Schebarchov et al. in [72]. We take the catalyst to be

a sphere with center at the origin and radius Rcat. The parameter values used for

(metal) catalyst-carbon interactions are DMC = 1.0 eV, SMC = 1.3, βMC = 1.5 Å-1,

1Here β appears as a parameter in the potential. Later in this chapter, we will use β for the
inverse temperature.
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Re,MC = 1.0 Å, R1,MC = 2.0 Å, R2,MC = 3.0 Å. The potential for the catalyst-carbon

interaction is:

(2.4) VMC =
∑
i

VR(ri −Rcat)− VA(ri −Rcat),

where ri is the distance from the origin to the i-th carbon atom.

The substrate is modeled as a plane at z = −Re,SC . It has a very weak interaction

with the carbon atoms, so that the carbon atoms do not wet the substrate. The

parameter values used for substrate-carbon interactions are DSC = 0.1 eV, SSC = 1.3,

βSC = 1.5 Å-1, Re,SC = 1.0 Å, R1,SC = 2.0 Å, R2,SC = 3.0 Å. The potential for the

substrate-carbon interaction is:

(2.5) VSC =
∑
i

VR(zi +Re,SC)− VA(zi +Re,SC),

where zi is the z-coordinate of the i-th carbon atom.

All of the carbon atoms are modeled, so we must sum over all pairs of carbon

atoms to calculate the potential for the carbon-carbon interaction. In addition, the

Brenner potential involves the bond order B̄, which involves triples of carbon atoms.

The bond order involves the parameters δ, a0, c0, and d0. The parameter values

used for carbon-carbon interactions are DC = 6.325 eV, SC = 1.29, βC = 1.5 Å-1,

Re,C = 1.315 Å, R1,C = 1.7 Å, R2,C = 2.0 Å, δ = 0.80469, a0 = 0.011304, c0 = 19.0,

and d0 = 2.5. The potential for the carbon-carbon interaction is

(2.6) VC =
∑
i

∑
j>i

VR(rij)− B̄ijVA(rij),

where rij is the distance between the i-th and j-th carbon atoms. In Figure 2.2, this

potential is plotted with and without cutoffs for several values of B̄ij, based on values

arising in a lattice structure, where the bond order is the same for every bond.
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Figure 2.2: Plot of the pair potential VR(r)− BVA(r). (left) With cutoff and (right)
without cutoff. The values for B correspond to the bond orders in the specified lattice.

The bond order B̄ij = 1
2
(Bij +Bji), where

(2.7) Bij =

1 +
∑
k/∈{i,j}

G(θijk)f(rik)

−δ .
Note that θijk is the angle between the vector connecting the i-th and j-th carbon

atoms and the vector connecting the i-th and k-th carbon atoms.

The angular function G is defined as

(2.8) G(θ) = a0

(
1 +

c2
0

d2
0

− c2
0

d2
0 + (1 + cos θ)2

)
.

G(θ) takes its minimum value when θ = π, which in turn gives a greater value for Bij

and a lesser value for VC . The function G and the corresponding bond order Bij are

plotted in Figure 2.3.

The overall potential energy for the system is

(2.9) V = VC + VMC + VSC .
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Figure 2.3: (left) Plot of the angular function G(θ). (right) Plot of the bond order
Bij when atom i is bonded to atoms j and k with angle θ.

We perform MD simulations of this model in three dimensions. We initialize the

MD simulations with a defect-free armchair nanotube consisting of 90 atoms. Its

radius is Rtube = Rcat + Re,MC . We have considered both overdamped Langevin

dynamics and Langevin dynamics with a time step of 0.5 fs.

The configuration of the system is given by q ∈ R3N , consisting of the x-, y-,

and z-coordinates of all N atoms. The evolution equation for overdamped Langevin

dynamics [48] is

(2.10) dqt = −∇V (qt)dt+

√
2

β
dWt,

where β = (kT )−1 is the inverse temperature and t 7→ Wt is a standard 3N -

dimensional Wiener process. For the time discretization, we use the Euler-Maruyama

scheme:

(2.11) qn+1 = qn −∆t∇V (qn) +

√
2∆t

β
Gn,

where (Gn)n≥0 are i.i.d. centered Gaussian random vectors in R3N with identity co-
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variance matrix:

(2.12) E(Gn ⊗Gn) = Id3N .

In our simulations, we approximate the Gaussian distributed random vectors by a

sum of 12 uniformly distributed random vectors, i.e. Gn ≈
(∑12

i=1 µi
)
− 6(1, 1, 1)T ,

where µi are independent random vectors with components uniformly distributed on

the interval (0, 1). As can be seen in Figure 2.4, the probability distributions for each

of the components is in close agreement with the standard normal distribution.
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Figure 2.4: Plot of the standard normal, i.e. Gaussian, distribution and the approxi-
mation by a sum of uniformly distributed numbers.

The Langevin dynamics includes the momenta p ∈ R3N and is based on the

Hamiltonian

(2.13) H(q, p) =
1

2
pTM−1p+ V (q),

where M is the mass matrix. The evolution equations are

(2.14)


dqt = M−1ptdt

dpt = −∇V (qt)dt− γ(qt)M
−1ptdt+ σ(qt)dWt
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Again, t 7→ Wt is a standard 3N -dimensional Wiener process. The coefficients γ

and σ are 3N × 3N real matrices, which we take to be proportional to the identity

matrix. The parameter γ controls the strength of the frictional force and σ controls

the strength of the random force. They are related through the fluctuation-dissipation

relation:

(2.15) σσT =
2γ

β
.

This process samples the canonical measure

(2.16) µ(dq dp) = Z−1
µ exp(−βH(q, p))dq dp,

where β is the inverse temperature and Zµ is a normalization constant. The function

Z−1
µ exp(−βH(q, p)) is called the Boltzmann-Gibbs distribution.

The numerical scheme uses a splitting procedure for the Hamiltonian part and the

thermostat part. We use the Brünger-Brooks-Karplus (BBK) integrator [23], which

has an Explicit Euler–Verlet–Implict Euler splitting:

(2.17)

pn+1/2 = pn − ∆t

2
∇V (qn)− ∆t

2
γ(qn)M−1pn +

√
∆t

2
σ(qn)Gn,

qn+1 = qn + ∆tM−1pn+1/2,

pn+1 = pn+1/2 − ∆t

2
∇V (qn+1)− ∆t

2
γ(qn+1)M−1pn+1 +

√
∆t

2
σ(qn+1)Gn+1/2.

(G0, G1/2, G1, G3/2, . . .) denote a sequence of i.i.d. Gaussian random vectors with zero

mean and covariance Id.

We add one or more atoms to the system at regular time intervals at prescribed

locations on the substrate surface in the proximity of the catalyst. Early on in the

simulation, the addition locations line up well with vacancies in the bottom edge of the

nanotube, and the new atoms incorporate into the hexagonal lattice of the sidewalls,
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eventually pushing the tube upward. Later on, the new atoms do not line up well with

the vacancies, and the new carbon atoms do not always incorporate into the hexagonal

lattice of the sidewalls. See Figures 2.5 and 2.6 for snapshots from MD simulations

at two different temperatures. We discover that there are many local minima of the

potential corresponding to different bond arrangements. As a result, annealing is

required for the tube to grow upward. This requires very long simulations to see even

a small amount of CNT growth. The presence of many local minima makes it difficult

to analyze the system by transition state theory, as this requires identification of all

local minima and saddle points in the energy landscape. The complicated form of the

potential, which involves many parameters, also makes analysis difficult. To allow

more experimentation and analysis, we investigate a much simplified one-dimensional

model that preserves some aspects of the full three-dimensional model.

Figure 2.5: Results from MD simulations of the 3-D model at a low tempera-
ture. Carbon-carbon bonds are shown in red and a level set of the effective cata-
lyst/substrate potential is shown in green. Initially, there are 90 atoms in the nan-
otube structure, and two new atoms are added after every 0.1 nanosecond. (left)
After 0.1 nanosecond. (center) After 1 nanosecond. (right) After 2 nanoseconds.
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Figure 2.6: Results from MD simulations of the 3-D model at a high temperature.
(left) After 0.1 nanosecond. (center) After 1 nanosecond. (right) After 2 nanoseconds.

2.2 Simplified one-dimensional model

In our one-dimensional model, a chain of atoms is connected by Hooke’s law

springs with spring constant k and equilibrium length r. There is also an external

potential consisting of a barrier and a well, the height and width of which is controlled

by the parameters a and b, respectively (see Figure 2.7). The configuration of the

system is given by the coordinates {qi}Ni=1, which we assume to be ordered q1 < q2 <

. . . < qN−1 < qN . The energy of the system is

V (q1, . . . , qN) =
N∑
i=1

−2ab sech2(bqi) tanh(bqi) +
N∑
i=2

1

2
k(qi − qi−1 − r)2.(2.18)

If the external potential is not present (i.e. a = 0), then the system has a single

energy minimum with translation invariance: a chain of atoms with all bonds at the

equilibrium length r. The interaction between the external potential and bonds within

the chain creates energy minima, including one with much lower energy than the

others. These energy minima are separated by saddle points in the energy landscape.

We use this system to represent a growing carbon nanotube. The atoms left of

the barrier represent carbon atoms that are on the substrate, the atom in the well
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Figure 2.7: (left) Schematic of a chain of atoms connected by springs, interacting with
an external potential. (right) External potential with a = 0.5 and b = 1.7627.

represents a carbon atom that is attached to the catalyst, and the atoms right of the

well represent carbon atoms that have detached from the catalyst to form a carbon

nanotube. Thus, there is a correspondence between fully extended chains in the one-

dimensional model and defect-free configurations in the CNT growth model where all

carbon atoms have incorporated into the sidewall of the nanotube. Likewise, there

is a correspondence between configurations in the one-dimensional model that are

not fully extended and configurations in the CNT growth model where some carbon

atoms are on the substrate. See Figure 2.8.

The barrier in the external potential corresponds to the energetic cost for carbon

atoms to rearrange their bonds and incorporate into the nanotube. This is similar

to the barrier for carbon incorporation described in [90]. The well in the external

potential is analogous to the bond between the carbon atom and the catalyst. An

interesting question is whether a local change in energy from the barrier to the well can

drive the growth of a large structure, since the entire structure needs to be perturbed

to accommodate the newly incorporated atom. This can be studied by analysis and
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Figure 2.8: Schematic showing the analogy between the CNT growth model and
the one-dimensional model. The arrows represent the growth of a defect-free (fully
extended) configuration to either another defect-free (fully extended) configuration
or a defected (not fully extended) configuration.

simulation of the one-dimensional model.

2.2.1 Fixed numbers of atoms

2.2.1.1 Energy landscape and thermodynamics

First we consider a chain with a fixed number of atoms. If we further suppose

that all bonds in the chain have a fixed length, then the system only has one degree of

freedom, which we can take to be q1, the coordinate of the leftmost atom in the chain.

We can think of this constraint as being enforced when k →∞ in (2.18). For a chain

with three atoms, the potential and corresponding Boltzmann-Gibbs distribution2 at

β = 10 are shown in Figure 2.9. We see that there are three local minima, one of

which has much lower energy than the other two. The probability of a system being

in the lowest energy state is much larger than the probability of being in the other

two minima. As the temperature is decreased, this lowest energy state becomes more

and more probable.

For a chain of N atoms with a finite spring constant k, the energy depends on N

2A confining potential is necessary to make the Boltzmann-Gibbs distribution integrable. For
instance, one can consider a quadratic increase in the potential outside of a large box around the
origin.
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Figure 2.9: (left) Effective potential for a chain of three atoms with fixed bond lengths.
(right) The Boltzmann-Gibbs distribution corresponding to this potential energy for
β = 8.

variables. We can still plot these energies for chains with 2 or 3 atoms. In Figure 2.10,

we plot isocontours of the energy for a two-atom chain with k = 5. We see that there

are two local minima. Starting with the local minima and maxima of the k = ∞

energy, we can locate the local minima and saddle points of the k = 5 energy by

numerically solving ∇V = 0. In Figure 2.11, we plot the V = −0.15 isosurface of the

energy for a chain of three atoms. We see that this surface consists of three connected

components, which lie within three different basins of attraction. If we perform MD

simulations of a system of length 3, we can see that the trajectories are usually in

one of the potential basins, with some transitions between the basins. See the right

of Figure 2.11. The configurations of the chain at the three local minima, which we

call “states,” are shown in Figure 2.12.

2.2.1.2 Transition rates

We can calculate the transition rates between the basins of attraction using tran-

sition state theory (TST). A good reference is [37]; a more mathematical perspective

can be found in [80, 76]. In this theory, the transition between two locally stable

51



−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

q
1

q
2

Contour plot of potential energy with N=2 and k=5

 

 

Minimima/saddles for stiff springs

Minimima/saddles with k=5

Figure 2.10: Potential for a chain with two atoms.

Figure 2.11: (left) Isosurfaces of the potential for a chain with three atoms. (right)
Trajectories of several MD simulations of chains of three atoms.
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Figure 2.12: Chains corresponding to the local minima of the energy.

states, called the reactant state and the product state, is described by a reaction co-

ordinate. The reaction coordinate x(q) is defined in such a way that it is positive in

the basin of attraction corresponding to the reactant state and negative in the basin

corresponding to the product state. x = 0 defines the dividing surface between the

reactant state and the product state. Points on the dividing surface correspond to

transition states. TST is based on two assumptions:

1. Thermodynamic equilibrium holds for all degrees of freedom in the system.

2. Any orbit crossing the dividing surface will not recross it. This is valid when the

energy of thermal fluctuations is much less than the the energy barrier height

of transition events.

We define the function θ(x) to be 1 for x > 0 and 0 for x < 0. The TST rate is then

[37]:

(2.19) k+
TST =

〈δ[x(0)]ẋ(0)θ[ẋ(0)]〉
〈θ(x)〉

.
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This is the equilibrium average of the one-way flux at the transition state, normalized

by the equilibrium population of the reactant state.

First, we calculate rates for a chain with inextensible springs. The other param-

eters are selected as a = 0.5, b = 1.7627, r = 1, and β = 10, 12, or 14. We locate

the local maxima and minima for the potential, which depends on only a single vari-

able. The local maxima divide R into intervals of attraction. We consider the three

states pictured in Figure 2.11, and calculate the transition rates between them. The

momentum part of (2.19) is (2πβ)−1/2, which comes from the integral of the Maxwell-

Boltzmann distribution. The configuration part of the numerator is exp(−βV (qs)),

where qs is the position of the saddle point. The configuration part of the denomi-

nator is
∫ q2
q1

exp(−βV (q)) dq, where q1 and q2 are the left and right endpoints of the

interval, respectively. We can ignore the normalizing factor of the probability density

since it cancels in (2.19). Thus, we have

(2.20) k+
TST = (2πβ)−1/2 exp(−βV (qs))∫ q2

q1
exp(−βV (q)) dq

.

The TST rates for chains with inextensible bonds are shown in the k =∞ column of

Table 2.1 for β = 10, Table 2.2 for β = 12, and Table 2.3 for β = 14. Note that as β

increases (i.e. temperature decreases) the transition rates decrease.

We can calculate transition rates when the spring constant is finite as well. We

locate the minima and saddle points by numerically solving ∇V = 0 using the

locations of the minima and maxima from the k = ∞ case as an initial guess.

We locate the basins of attraction by finding the connected components of the set

{q ∈ RN : V (q) < −0.15}. These are not the full basins of attraction, but the proba-

bility density function exp(−βV (q)) will be relatively small outside these regions. We

then integrate exp(−βV (q)) over each of these regions to determine the equilibrium

population of each basin. We approximate the dividing surfaces between basins as
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Rate
k =∞,
theory

k = 5,
theory

k = 5,
simulation

Ratio, simulation
to theory

r12 2.88× 10−3 3.10× 10−3 1.90± 0.05× 10−3 0.61± 0.02
r21 1.08× 10−3 9.16× 10−4 6.2± 0.2× 10−4 0.68± 0.02
r23 2.77× 10−3 3.25× 10−3 2.37± 0.03× 10−3 0.729± 0.009
r32 3.22× 10−5 6.85× 10−5 5.48± 0.07× 10−5 0.80± 0.01

Table 2.1: Transition rates for a chain of three atoms, with inverse temperature
β = 10.

Rate
k =∞,
theory

k = 5,
theory

k = 5,
simulation

Ratio, simulation
to theory

r12 1.03× 10−3 1.07× 10−3 7.4± 0.5× 10−4 0.69± 0.05
r21 3.18× 10−4 2.72× 10−4 1.9± 0.1× 10−4 0.71± 0.04
r23 9.88× 10−4 1.19× 10−3 9.3± 0.3× 10−4 0.78± 0.02
r32 4.92× 10−6 1.30× 10−5 1.05± 0.05× 10−5 0.81± 0.04

Table 2.2: Transition rates for a chain of three atoms, with inverse temperature
β = 12.

planes that pass through the saddle point. These planes are chosen to be normal to

the eigenvector of the Hessian of the energy at the saddle point that corresponds to

the negative eigenvalue. We numerically calculate the integral over a portion of this

plane corresponding to the largest probability. If S denotes the dividing surface and

Ω denotes the basin, then the rate is

(2.21) k+
TST = (2πβ)−1/2

∫
S

exp(−βV (q)) dA∫
Ω

exp(−βV (q)) dq
.

The rates calculated in this way for k = 5 are shown in Tables 2.1, 2.2, and 2.3. These

tables also show transition rates calculated from an MD simulation with Langevin

dynamics using the same parameter values. The ratios between the simulation values

and the theoretical values are shown as well. Considering that transition state theory

gives an upper bound on the transition rates, there is good agreement between the

theory and the numerical simulations.
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Rate
k =∞,
theory

k = 5,
theory

k = 5,
simulation

Ratio, simulation
to theory

r12 3.64× 10−4 3.77× 10−4 3.2± 0.9× 10−4 0.8± 0.2
r21 9.36× 10−5 8.24× 10−5 7± 2× 10−5 0.8± 0.2
r23 3.51× 10−4 4.41× 10−4 3.5± 0.4× 10−4 0.80± 0.08
r32 7.45× 10−7 2.45× 10−6 2.0± 0.1× 10−6 0.81± 0.06

Table 2.3: Transition rates for a chain of three atoms, with inverse temperature
β = 14.

For chains with more atoms, we can still locate the local minima and the sad-

dle points. However, it becomes difficult to resolve the basins of attraction on a

discretized grid. We can instead make a harmonic approximation of the potentials

around the local minima and saddle points. With this approximation, the probability

density function becomes a Gaussian function, which we integrate over N -dimensional

space for the basins of attraction and (N − 1)-dimensional space for the dividing sur-

faces. This requires calculating the eigenvalues and eigenvectors of the Hessian of the

potential at these points. The eigenvalues at the saddle point qs are denoted {λsi}

with λsN negative, all other eigenvalues positive. The eigenvalues at the minimum q0

are denoted {λ0
i }. The formula for the TST rate in this case is:

k+
TST ≈ (2πβ)−1/2 exp(−βV (qs))(2π/β)(N−1)/2

∏N−1
i=1 (λsi )

−1/2

exp(−βV (q0))(2π/β)N/2
∏N

i=1(λ0
i )
−1/2

(2.22)

= (2π)−1 exp(−β(V (qs)− V (q0)))

∏N
i=1(λ0

i )
1/2∏N−1

i=1 (λsi )
1/2

(2.23)

The accuracy of this approximation improves at lower temperatures (greater β).

This form for the rate also makes it clear that the transition rates depend on the

inverse temperature β and the local properties of the potential at the minimum and

the saddle point (i.e. the potential value and the eigenvalues of its Hessian). Using

this approximation for chains with k = 5, β = 10, and 4 ≤ N ≤ 18, we find

that the transition rates do not depend on the length of the chain. This occurs
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because the potential and its Hessian is the same at the corresponding minima and

the corresponding saddle points, regardless of N . The forward rates are

r12 = 0.3772 exp(−0.5013β),(2.24)

ri,i+1 ≈ 0.3238 exp(−0.5556β) for 2 ≤ i ≤ N − 2, and(2.25)

rN−1,N = 0.4086 exp(−0.4896β).(2.26)

The backward rates are

r21 = 0.3241 exp(−0.5839β),(2.27)

ri+1,i ≈ 0.3238 exp(−0.5556β) for 2 ≤ i ≤ N − 2, and(2.28)

rN,N−1 = 0.3192 exp(−0.8368β).(2.29)

For β = 10, these values are r12 = 2.5×10−3, ri,i+1 ≈ 1.3×10−3 for 2 ≤ i ≤ N−2,

and rN−1,N = 3.1×10−3 for the forward rates, and r21 = 9.4×10−4, ri+1,i ≈ 1.3×10−3

for 2 ≤ i ≤ N − 2, and rN,N−1 = 7.4× 10−5 for the backward rates.

2.2.2 Growing chains

We perform non-equilibrium MD simulations of this model, in which new atoms

are added one bond length away from the left end of an existing chain at a specified

rate. We initialize with chains of 10 atoms, 9 of which are right of the barrier. Thus,

one atom must move to the right of the barrier before the system is in its lowest energy

state. This represents a CNT where one carbon atom has not yet incorporated into

the nanotube sidewall.

To determine which state the system is in, we can calculate how many atoms in

the chain are right of the barrier. In Figure 2.13, this quantity is plotted against time

for 10 different MD simulations with overdamped Langevin dynamics. Normalized
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histograms for 1000 MD simulations are shown in Figure 2.14. These give the em-

pirical probability of different states at different times. We observe that, initially, it

is very likely for the system to shift to the right to its lowest energy state, where all

N atoms are right of the barrier. As more atoms are added, it becomes less and less

likely for the system to be in its lowest energy, fully extended state. The decay in

this probability is faster for fast addition rates and slower for slower addition rates,

as can be seen in Figure 2.14.
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Number of atoms right of the varrier vs. time for 10 runs. tAdd = 6000.

Figure 2.13: The number of atoms right of the barrier for 10 different MD simulations.
The parameters are a = 0.5, b = 1.7627, r = 1, k = 5, and β = 10. New atoms are
added every 6000 time units.

We can analyze these results using statistical mechanics and transition state the-

ory. Between additions, the system behaves like a chain with a fixed number of atoms.

Thus, we can use our analysis above to determine the different local energy minima

of the system, the probability distribution of these states, and the transition rates

between them. The transition rates can be used to create a continuous-time Markov

chain model for our system. For a reference on Markov chains, see [63]. The state

space for the system is I = {1, . . . , N}. The generator matrix Q for the Markov chain
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Figure 2.14: Normalized histograms of chain extension from 1000 MD simulations
at different times, shown as a number of atom additions. The bright diagonal line
corresponds to a peak in the probability at the lowest energy state. (left) Atom added
every 600 time units. (right) Atom added every 6000 time units.

is constructed as follows. For j 6= i, the rate of going from state i to state j is

(2.30) qij = rij.

This defines the off-diagonal elements of Q. The rate of leaving state i is

(2.31) qi :=
∑
j 6=i

qij.

The diagonal elements of Q are defined as qii = −qi.

The transition matrix P (t) is the solution of the forward equation:

(2.32)
d

dt
P (t) = P (t)Q, P (0) = I.

The entries pij(t) give the probability of transition from state i to state j in time t.

Now, define the vector-valued function x(t) such that xi(t) is the probability that

the system is in state i at time t. The initial probability distribution is x(0) = x0.
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The probability distribution x can be written in terms of the transition matrix as

(2.33) x(t)T = xT0 P (t).

We have

(2.34)
d

dt
x(t)T = xT0

d

dt
P (t) = xT0 P (t)Q = x(t)TQ,

or

(2.35)
d

dt
x(t) = QTx(t).

Defining A := QT , we rewrite this equation, called the master equation, as

(2.36)
d

dt
x(t) = Ax(t), x(0) = x0.

We can calculate the matrix A using the TST transition rates. For a chain of

length N with k = 5 and β = 10, the matrix A is the N ×N matrix

(2.37) AN = (1.3× 10−3)×



−1.9 0.72

1.9 −1.7 1

1 −2 1

. . . . . . . . .

1 −2 1

1 −3.4 0.057

2.4 −0.057



.

If we begin with a system of N0 atoms and add one atom at the end of each time

interval of length tAdd, up to a total of Nmax atoms, then we have a sequence of Markov

60



chain models. This is illustrated for N0 = 1 and Nmax = 3 in Figure 2.15. This

sequence of models can be represented by a time-dependent system matrix A(t) =

AN0+bt/tAddc, which is constant on time intervals of length tAdd. To model the system

over a time interval [0, NmaxtAdd], a Nmax×Nmax matrix can be used, which is padded

with zeros for transition rates to and from the inaccessible states.

State index = number of atoms right of the barrier

1 2 3

N = 1

N = 2

N = 3

Figure 2.15: Illustration of a sequence of Markov models representing a growing
chain. The system is initialized with a single atom and two atom additions are
shown. The green circles represent the states, and the small diagrams represent the
corresponding configurations. The vertical arrows represent atom additions, and the
horizontal arrows represent transitions between states.

To compare with the empirical probabilities calculated from the simulations, we

choose N0 = 10, xi(0) = δi,9. We also multiply the matrix AN above by a transmission

coefficient of 0.7, chosen based on the ratio of the transition rates in the simulation

to the theoretical transition rates for β = 10 in Table 2.1. We numerically calculate

the solution of the master equation using the forward Euler method. The solutions

are in good qualitative agreement with the growth simulations. Compare the solution

of the master equation in Figure 2.16 to the empirical probability from the growth

simulations in Figure 2.14.
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Figure 2.16: Probabilities of different chain lengths calculated with the master equa-
tion. The bright diagonal line corresponds to a peak in the probability at the lowest
energy state. (left) Atom added every 600 time units. (right) Atom added every 6000
time units.

2.3 Analysis of the master equation

Let A = SΛS−1 be a diagonalization of the matrix A in the master equation

(2.36). Then the solution of the master equation is

(2.38) x(t) = exp(tA)x0 =
N∑
j=1

[S−1x0]je
λjtsj.

This solution can be used to determine the time required to evolve from a given

initial condition to within a small tolerance of equilibrium. We sort the eigenvalues

in decreasing order. There is always a single zero eigenvalue and the other eigenvalues

are negative, so λ1 = 0 and λ2 is the negative eigenvalue with the smallest magnitude.

Thus, we can write the solution as

(2.39) x(t) = exp(tA)x0 = [S−1x0]1s1 + [S−1x0]2e
λ2ts2 +

N∑
j=3

[S−1x0]je
λjtsj.
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The first term is the equilibrium solution. As t → ∞, we have x(t) → [S−1x0]1s1.

The deviation of the probabilities from their asymptotic value is then:

(2.40) x(t)− [S−1x0]1s1 = [S−1x0]2e
λ2ts2 +

N∑
j=3

[S−1x0]je
λjtsj.

The first term will dominate the sum for large values of t. Thus, the eigenvalue λ2 and

the coefficient [S−1x0]2 will determine when the solution is within a small tolerance

of the equilibrium distribution.

The rate matrix can be made symmetric by a similarity transformation. If D =

diag(x
1/2
∞ ), then B = D−1AD is symmetric. It may sometimes be helpful to consider

this form of the rate matrix, since the eigenvectors are then orthogonal.

2.3.1 Rate matrix calculated from the energy landscape

Using the master equation, we can calculate the probability that a growing chain

is in its lowest energy state, both as a function of the addition rate and the number

of additions, for different values of β. We initialize the master equation with 10-atom

chains with all 10 atoms right of the barrier. For fast addition rates, the probability

drops to zero very quickly as more atoms are added. For slow addition rates, the

probability reaches its equilibrium value, which also decreases as more atoms are

added, but much more slowly. See Figure 2.17. The different lines in each figure

correspond to different numbers of additions. The greater the number of additions, the

lower the probability of the lowest energy state, because the equilibrium probability

of the lowest energy state decreases as the length of the chain increases. There is a

region of addition rates where a transition occurs between these two behaviors. For

high temperature (low β), this transition occurs for relatively fast addition rates (e.g.

radd = 1×10−3 when β = 5). For low temperatures (high β), this transition occurs at

very slow addition rates (e.g. radd = 1×10−7 when β = 20). This is because changing
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the temperature decreases the fast transition rates in the system and also decreases

the ratio of the slow transition rate to the fast transition rates.

At higher temperatures for the first few atom additions, there is a “sweet spot”

for the addition rate where the probability of full rightward extension has a local

maximum. This is caused by initializing with 10-atom chains, all having all 10 atoms

right of the barrier. This initially biases the probability distribution toward states

with most atoms right of the barrier. Initializing from the equilibrium distribution

or from a very short chain would cause the probability of the lowest energy state to

decrease monotonically with the addition rate.

The probability distribution of the states after 40 atom additions will depend on

the addition rate. The distributions for four different rates at β = 15 are shown in

Figure 2.18. For slow addition rates, the probability distribution is the equilibrium

distribution, with the probability concentrated in state 41, the lowest energy state.

For fast addition rates, the probability is concentrated in state 1, where there is only

one atom right of the barrier. For intermediate rates, the probability is largest for

state 2, but then decreases down to 0 for state 41.

These probability distributions can be used as initial conditions for the time evo-

lution of the distribution after addition of a new atom. To get a lower bound for the

transitional addition rate, the initial probability distribution xi(0), i = 1, . . . , N − 1

is set to the equilibrium distribution for a chain of N − 1 atoms and xN(0) = 0.

The time required for xN(t) to reach 99.9% of its equilibrium value for the N -atom

chain is then measured. The inverse of these times give the transitional addition

rate. These are the circles plotted in the upper left of Figure 2.19. To get an upper

bound on the transitional addition rate, the probability distribution is initialized to

be x1(0) = 0, xi(0) = c(N − 1 − i) for 2 ≤ i ≤ N − 1, and xN(0) = 0, where c is

a normalization constant. Thus, there is a linear decrease in the probability from

state 2 to state N − 1. This seems to be a decent approximation of the probability
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Figure 2.17: Probability of the lowest energy state for different addition rates, tem-
peratures, and number of additions. Different curves correspond to different numbers
of additions. Different figures are for different temperatures: (from left to right, top
to bottom) β = 5, β = 10, β = 15, β = 20. Note that the x-axis (addition rate) has a
logarithmic scaling.
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rAdd = 1.0e−08

rAdd = 9.1e−05

rAdd = 9.5e−03

rAdd = 1.0e+00

Figure 2.18: Probability distribution after 40 additions at different addition rates:
radd = 1.0× 10−8, radd = 9.1× 10−5, radd = 9.5× 10−3, and radd = 1.0.

distribution for the addition rates at the upper bound of the transition region. From

this initialization, the time required for PN(t) to reach 0.1% of its equilibrium value

is calculated. This seems to give a good upper bound on the addition rates in the

transition region. These are the circles plotted in the lower right of the figure.

2.3.2 Approximate rate matrix with two parameters

Assume that there are only two different transition rates in the system. The

transition rate from state N to state N − 1 is rs, and all other transition rates are

rf � rs. This is a good approximation for the rate matrix calculated from the

energy landscape. For k = 5 and general β, we select rs = 0.3192 exp(−0.8368β) and

rf = 0.3238 exp(−0.5556β). For β = 10, this is rs = 7.4× 10−5 and rf = 1.3× 10−3.
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Figure 2.19: Probability of the lowest energy state for different addition rates and
number of additions at β = 15. The blue circles are approximate bounds for the
transition region.

The approximation of the N ×N matrix AN is

(2.41) AN ≈ (1.3× 10−3)×



−1 1

1 −2 1

1 −2 1

. . . . . . . . .

1 −2 1

1 −2 0.057

1 −0.057



.

Without loss of generality, we will consider rf = 1 in our analysis. (If rf 6= 1,

rescale time.) Then, the approximate rate matrix can be written as
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(2.42) A =



−1 1

1 −2 1

1 −2 1

. . . . . . . . .

1 −2 1

1 −2 rs

1 −rs


2.3.2.1 Equilibrium distribution

The normalized equilibrium distribution for this matrix is

(2.43) [x∞]i =


rs

1+rs(N−1)
for i = 1, . . . , N − 1

1
1+rs(N−1)

for i = N.

This is also the eigenvector corresponding to the zero eigenvalue. Note that the

ground state is r−1
s times more likely than any other state. However, the probability

of any state decays to zero like N−1 as N →∞.

2.3.2.2 Hitting times

We can calculate expected hitting times for this model using Markov chain theory.

In general, if Q is the generator matrix for the Markov chain, then the expected hitting

times kAi for the state A are the minimal non-negative solution to the system of linear

equations [63]

(2.44)


kAi = 0 for i ∈ A

−
∑

j∈I qijk
A
j = 1 for i /∈ A.
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For the two-parameter rate matrix, the expected time it takes to reach state N from

state j is [(N2 −N)/2− (j2 − j)/2], which is independent of rs and has a maximum

of (N2 −N)/2, attained for state j = 1. The expected time it takes to reach state j

from state N is ((N − j)2− (N − j))/2 + (N − j)r−1
s . If rs is small, this is dominated

by the (N − j)r−1
s term.

2.3.2.3 Eigenvalues and eigenvectors

The matrix A can be considered as a perturbation of a matrix A0 that is very

similar to the discrete Laplacian:

(2.45) A =



−1 1

1 −2 1

1 −2 1

. . . . . . . . .

1 −2 1

1 −2 0

1 0



+ rs

 0 1

0 −1


One can use perturbation theory to approximate the eigenvalues of the system ma-

trix. For a reference on the perturbation theory of unsymmetric eigenvalue problems,

see [35, section 7.2]. Besides the zero eigenvalue, this matrix has the unperturbed

eigenvalues, for 1 ≤ i ≤ N − 1,

(2.46) λ0
i = 2

[
cos

(
π

(
i− 1

2

)
/

(
N − 1

2

))
− 1

]
.
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The unperturbed eigenvectors, for 1 ≤ i ≤ N − 1, are

(2.47)

[x0
i ]j =


(
N
2
− 1

4

)−1/2
cos
[
π
(
j − 1

2

) (
i− 1

2

)
/
(
N − 1

2

)]
for 1 ≤ j ≤ N − 1(

N
2
− 1

4

)−1/2
(λ0

i )
−1 cos

[
π
(
N − 3

2

) (
i− 1

2

)
/
(
N − 1

2

)]
for j = N

The perturbed eigenvalues are, for 1 ≤ i ≤ N − 1:

(2.48) λi = λ0
i +

cos2[π(N − 3
2
)(i− 1

2
)/(N − 1

2
)](

N
2
− 1

4

)
λ0
i

rs +O(r2
s).

The perturbed eigenvectors are, for 1 ≤ i ≤ N − 1:

xi = x0
i +

N−1∑
j=1
j 6=i

cos[π(N − 3
2
)(i− 1

2
)/(N − 1

2
)] cos[π(N − 3

2
)(j − 1

2
)/(N − 1

2
)](

N
2
− 1

4

)
λ0
i (λ

0
i − λ0

j)
rsx

0
j

+O(r2
s).

(2.49)

The unperturbed and linearized perturbed eigenvalues are shown in Figure 2.20

with N = 20 and rs = 1. A large value of rs is used only to show the trend for the

perturbed eigenvalues; the linearization is only accurate for small values of rs.

For a plot of the non-zero eigenvalue with the smallest magnitude, see Figure 2.21.

The approximate expression above is plotted as a surface and the actual eigenvalues

are plotted as blue circles. There are plots with linear scales and with logarithmic

scales. When rs is small, the approximation is quite good. When rs is not too small,

the actual eigenvalues have magnitude smaller than the approximations.

2.3.2.4 Initial value problem for the probabilities

Starting with initial conditions that are delta distributions for different states,

we look at the evolution of the probability distribution as well as its first moment
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Figure 2.20: The unperturbed (blue) and linearized perturbed (red) eigenvalues with
N = 20 and rs = 1.

Figure 2.21: The non-zero eigenvalue with the smallest magnitude, plotted against
system size and the value of rs. (left) With linear axis scaling. (right) With logarith-
mic axis scaling.
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(the average extension of the chain). These examples are for a chain of length 40,

which has 40 states. The parameter values are rs = 1.0× 10−6 and rf = 1.0× 10−4.

There are plots for initial conditions concentrated in states 1 (most atoms left of the

barrier), 20 (half of the atoms on the left, half on the right), and 39 and 40 (most

atoms right of the barrier).

The plots in Figure 2.22 show the probability of different states. The three circles

on each plot show the last times that the probability of the lowest energy state

reaches a probability 0.1%, 50%, and 99.9% between the initial value and the final

value (or 100.1% if the probability overshoots the equilibrium value and then returns

to it). These are meant to show a fast time scale, intermediate time scale, and slow

time scale for the evolution of the distribution. The plots in Figure 2.23 show the

average extension. The three circles are calculated in the same way using the average

extension values. These time scales are plotted for all initial states in Figure 2.25.

Notice that on this logarithmically-scaled plot, the slow time scales are relatively

flat in both cases. The correlation of the initial conditions with the eigenmodes of

the symmetrized system matrix are plotted in Figure 2.24. These determine the

coefficients of the different eigenmodes in the evolution of the probability.

2.3.2.5 Growth efficiency

We define the growth efficiency as the ratio of the average rightward shift to

the number of atoms added. These are plotted as functions of addition rate in Fig-

ure 2.26. Different curves on the same plot show the efficiency after different numbers

of additions. For a fixed addition rate, as atoms are added, growth becomes less and

less efficient. I have used the simplified rate matrix, where all transition rates are

rf = 1 × 10−4, except for the transition rate from state N to state N − 1, which

has rate rs. I show plots for different values of rs. This parameter affects the maxi-

mum growth efficiency. It does not seem to have a large effect on the time scales of
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Figure 2.22: Evolution of the probability distribution starting from a single state.
(from left to right, top to bottom) State 1, state 20, state 39, state 40.
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Figure 2.23: Evolution of the average extension starting from a single state. (from
left to right, top to bottom) State 1, state 20, state 39, state 40.

74



5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

Eigenmode (from fastest to slowest)

C
o

rr
e

la
ti
o

n

Correlation of initial condition with eigenmodes. Initial state: 1

5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

Eigenmode (from fastest to slowest)

C
o

rr
e

la
ti
o

n

Correlation of initial condition with eigenmodes. Initial state: 20

5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

Eigenmode (from fastest to slowest)

C
o

rr
e

la
ti
o

n

Correlation of initial condition with eigenmodes. Initial state: 39

5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

Eigenmode (from fastest to slowest)

C
o

rr
e

la
ti
o

n

Correlation of initial condition with eigenmodes. Initial state: 40

Figure 2.24: Correlation of the initial condition with the eigenmodes of the sym-
metrized system matrix. The eigenmodes are sorted from fastest (most negative) to
slowest (least negative). (from left to right, top to bottom) State 1, state 20, state 39,
state 40.
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Figure 2.25: Time scales for (left) the probability of the lowest energy state and
(right) the average chain extension, beginning from different states.

the problem, i.e. there is no addition rate at which the growth efficiency jumps up,

regardless of the value of rs.

2.3.2.6 Summary

If atoms are added slowly enough, the distribution of extensions for an ensemble

of growing chains will become very close to the equilibrium distribution between ad-

ditions. Suppose one wanted to grow fully extended 40-atom chains with at least 90%

yield. Then there exists a maximum temperature for which the yield (i.e. equilibrium

probability) exceeds this threshold. If one specifies a temperature at or below the

maximum, there exists a maximum addition rate (i.e. a minimum growth time) for

which the specified yield is achieved. The maximum addition rate to achieve this

yield would be related to λ2, the non-zero eigenvalue with the least magnitude, as

this controls the rate of convergence to the equilibrium at large times. If one wanted

longer chains with the same yield, the maximum allowable temperature would de-

crease, as would the maximum allowable addition rate. This is related to the decay

in the equilibrium probability and the eigenvalue λ2 as N increases.
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Figure 2.26: Growth efficiency when rf = 1 × 10−4 and rs has the following values:
(from left to right, top to bottom) rs = 1.0 × 10−5, rs = 1.0 × 10−6, rs = 1.0 × 10−7,
and rs = 1.0× 10−8.

77



2.4 Conclusions

In this chapter, we have described an atomistic model for the catalytic growth of

an individual nanotube. The substrate and catalyst are treated as static continua, and

the carbon atoms are mobile. We used this model to simulate the continued growth of

a nanotube structure, but found that the system gets stuck in local minima as atoms

continue to be added. Instead of incorporating into the sidewall of the nanotube

and pushing it up, the newly added atoms remain bonded to the substrate. To

better understand the limitations of this model, we analyzed a simple one-dimensional

model of a chain structure acted on by an external potential. The chain structure

with internal bonding and no external potential has a single energy minimum with

translation invariance. The interaction between the external potential (representing

the catalyst) and bonds within the chain (representing the CNT) creates energy

minima, including one with much lower energy than the others. These energy minima

are separated by saddle points in the energy landscape.

The ground state has much higher equilibrium probability than the other states,

although this probability decreases as the number of atoms increases. This occurs

because we consider a system where the energy of the ground state differs from the

energy of all other states by a constant. The situation might be different for a funneled

landscape, where the non-optimal states have increasing energies as one moves away

from the ground state in configuration space.

The probability of full extension will decrease as atoms are added at a fixed rate.

For slow addition rates, this probability initially decays with the equilibrium proba-

bility distribution, but it will eventually decay much faster as the system size grows.

Although the slow and fast transition rates within the system do not change signif-

icantly as the number of atoms increases, the spectrum of the matrix in the master

equation does change, slowing the rate of convergence to the equilibrium distribution

as the size of the system increases. As a result, the probability distribution will move
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further and further from the equilibrium distribution, with the ground state having

a relatively low probability.

Fully extended chains in the one-dimensional model correspond to defect-free nan-

otubes in the full atomistic model of CNT growth. These are the ground states of

their respective systems.3 The probability of the ground state represents the growth

quality for the given system. The requirement of a slow addition rate for high quality

growth in the one-dimensional model highlights the difficulty in the MD simulations

of our model of CNT growth. In order to simulate in a reasonable amount of com-

puter time, one must use a fast addition rate. Such an addition rate does not provide

time for the system to sample the equilibrium distribution. As a result, as atoms are

added, the system will have a low probability of being in the ground state, even if the

system is initially in the ground state. Thus, there is a higher probability of carbon

nanotubes with defected sidewalls than of nanotubes with defect-free sidewalls.

This analysis suggests that in order to grow CNTs with the highest probability

of being defect-free, one should use a lower temperature and a slower carbon addi-

tion rate. However, for actual growth, there may be a lower bound for the growth

temperature, as one must consider factors such as the decomposition of the feedstock

and the phase of the catalyst particle. Also, there may be a practical lower bound on

the addition rate as well, as one would like to grow nanotubes of length 100 µm or

more in about 1 hour or less. Further work should be done to find growth conditions

which optimize the growth quality of CNTs.

3This is known for the one-dimensional model and conjectured for the the full CNT growth model.
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CHAPTER III

Modeling the chemically coupled growth of carbon

nanotube microstructures1

3.1 Introduction

Beyond the properties of individual CNTs and the applications of bulk CNT pow-

ders [25], a new frontier of applications is potentially accessible by harnessing the

properties of large numbers of CNTs in organized assemblies. In academic research,

vertically aligned CNT “forests” have been incorporated into different material sys-

tems including thin films, interface layers, and structured 3D geometries such as

micropillars or coatings on woven fibers. The individual CNT properties as well as

the hierarchical morphology of CNT forests gives rise to novel and widely tunable me-

chanical behavior [41, 56], as well as electrical transport [84, 77] and thermal transport

properties that can be related to the CNT alignment and contact behavior [17, 89].

Nevertheless, uniformity in the geometry, density, and diameter of the CNTs within

the forest is needed to effectively engineer functional properties.

In several published reports as well as in our own previous work, it is appar-

ent that typical CVD growth conditions for CNT forests create significant spatial

1Significant portions of this chapter are reproduced from [12] M. Bedewy∗, B. Farmer∗, and
A. J. Hart. Synergetic chemical coupling controls the uniformity of carbon nanotube microstructure
growth. ACS Nano, 8(6):5799–5812, 2014. ∗M. Bedewy and B. Farmer contributed equally.
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non-uniformities. These include geometric non-uniformities (i.e., sloped heights) of

macroscopic CNT forests [38, 36], as well as microscopic CNT pillars [81, 82, 43].

A typical CNT micropillar array from our work exemplifies these variations. Mi-

cropillars grown to high aspect ratios (30 minutes growth time, Figure 3.1a) strikingly

curve outward along the periphery of the array. Micropillars with much lower aspect

ratio (3 minutes growth time, Figure 3.1b, c, d) are shorter toward the edges and

corner of the array, and the corner catalyst pattern feature does not yield a CNT

forest. In addition, the micropillars near the corner of the array do not completely

cover the catalyst pattern, and have crowned top surfaces. Moreover, we frequently

observe that the growth of smaller diameter micropillars can be enhanced (i.e., made

taller and more uniform) by the presence of larger diameter micropillars or adjacent

non-patterned catalyst substrates placed in the CVD furnace to enhance growth.

These results imply that growth of CNTs is influenced by proximity effects of

nearby CNTs and/or catalytically active surfaces that can influence the CVD envi-

ronment. Recently, Parker et al. showed that placement of thin catalyst micropat-

terns adjacent to larger patterns influenced the smaller patterns to produce horizon-

tally oriented CNT structures that bent away from the larger patterns [66]. Ear-

lier, Borgstrom et al. demonstrated synergetic effects in Gallium Phosphide (GaP)

nanowire growth, owing to both gas-phase and surface diffusion interactions influ-

enced by the proximity and diameter of the individual nanowires [18].

For CNT growth by CVD, Bronikowski suggested that growth-promoting byprod-

ucts are generated during decomposition of the feedstock gas in areas of high catalyst

concentration [22]. Jeong et al. proposed that the variation of local partial pressures

of carbon-containing active gaseous precursors causes such catalyst proximity effects

that lead to spatial variations in CNT forest height [43]. In addition, the curvature of

the top surface of CNT micropillars has been attributed to the mechanical constraint

of the tangled “crust” of the forest, coupled with spatial and temporal evolution of the
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Figure 3.1: Non-uniformities in the geometry and dimensions of cylindrical CNT for-
est micropillars (100 µm diameter, 100 µm spacing in a square lattice). (a) Outward
bending of peripheral micropillars in a large array, after growth time of 30 minutes.
(b, c, d) Variations of height, diameter, and top surface geometry among CNT mi-
cropillars grown for only 3 minutes, under the same conditions as (a). Also note in
(c) that the corner catalyst microfeature does not produce a CNT forest. This area
has tangled CNTs which fail to “lift off” into a forest. The same is observed around
the perimeters of the micropillars along the edge of the array.
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CNT growth rate [36]. Nevertheless, there is not a quantitative understanding of how

and why catalyst proximity influences CNT growth. Reaching such an understand-

ing is difficult due to the multi-component nature of the CNT growth atmosphere,

and the existence of multiple chemical species having varying potency for promoting

and/or deactivating the growth process.

During a typical CVD process for CNT growth, the hydrocarbon feedstock gas

and byproducts of its gas-phase reactions [57, 67, 68] catalytically decomposes at

the surface of the catalyst nanoparticles producing active species that promote the

CNT growth process. Literature abounds with studies aiming at determining the

activity of different carbon-containing species [45]. For instance, acetylene [32], or

alkynes in general [68], and polycyclic aromatic hydrocarbons (PAHs) [61] have all

been identified as key active molecules in the CVD growth of CNTs. The efficiency

of different hydrocarbon precursors is likely dependent on temperature, pressure,

humidity, or the cooperative effects among multiple hydrocarbon precursors. It has

also been proposed that polyaromatic intermediate fragments first form on the surface

of the support layer in the vicinity of the catalyst before getting incorporated into the

growing CNT [54]. These complex mechanisms are not fully understood, but they

strongly suggest that chemical coupling is a fundamental aspect of CNT growth, and

the cooperation of multiple chemical species with one another, the substrate, and the

catalyst, influence the growth rate and perfection of CNTs.

Therefore, to enable the manufacturing of uniform CNT forests and microstruc-

tures, we believe that a mathematical model is needed to describe the chemical process

that involves local reactions at the nanoscale catalyst sites, and their diffusion-induced

coupling among the growing patterned structures at the microscale. Process unifor-

mity is also a paramount issue in semiconductor manufacturing, and further analogies

can be drawn for example to thickness variations in chemical-mechanical polishing

[75], or the local variations of plasma etch rates [1]. In these cases, mathematical
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models of the coupling phenomenon have facilitated design of patterns and process

conditions to improve uniformity.

We present a hierarchical framework for modeling chemically coupled CNT growth,

wherein a growth model for an individual CNT is modified to account for diffusion-

induced spatial variations of growth behavior among arrays of CNT micropillars in

proximity. We first model the spatial distribution of active species, which are gen-

erated at catalyst sites and diffuse to the surroundings. Owing to the autocatalytic

nature of growth [46, 16], the activation energy of CNT growth is inversely related

to the concentration of these active species, leading to a spatial correlation between

concentration of active species and the modulation of CNT growth rates. Through

simulations and experiments, we predict spatial variations according to pattern size

and spacing, and we use these results to elucidate the successive stages of CNT mi-

cropillar lift-off in arrays. We demonstrate that this model can be used to design the

CNT micropillar spacing and/or size in an array in order to enhance uniformity, in

spite of collective chemical effects.

3.2 Methodologies

3.2.1 Mathematical modeling

We developed a mathematical model of the synergetic growth of CNTs on a pla-

nar substrate. This model calculates the spatial distribution of active species that

are locally produced at the catalyst surface, and then diffuse to the surroundings

(Figure 3.2a). Our approach is justified based on the knowledge that thermal and

catalytic reactions involving the feedstock gas ethylene (C2H4) mixed with H2 and

He, produce a variety of hydrocarbon species [57], many of which contribute to the

CNT growth process. It is most likely that a combination of gases, in addition to

short-lived radicals, contribute to CNT growth. The reaction kinetics certainly de-
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pend on the temperature and pressure, and the catalyst nanoparticle composition,

size, and shape.

To maintain generality, we collectively identify this combination of CNT growth

precursors as “active species”, without specifying a specific hydrocarbon molecule

or radical. The spatially varying concentration of these active species is utilized as

a quantitative measure of chemical coupling, as it modulates the CNT growth rate

by shifting the apparent activation energy of CNT growth. The diffusion of these

active species over the CNT growth substrate results in a time-varying spatial distri-

bution of concentration (Figure 3.2b), which supplements the nominal concentration

of feedstock provided by the CVD system. The net concentration of active species,

in combination with the other growth conditions, determines the CNT growth rate

locally at each time step, enabling time-resolved simulations of the height evolution

of the patterned CNT forest.

To model the chemical coupling between growing CNT micropillars we combine a

model of gas diffusion to a widely accepted model of CNT growth from a catalyst par-

ticle, which was developed by Puretzky et al. [69]. Moreover, our synergetic growth

framework (Figure 3.2c) is, in principle, compatible with any model of CNT growth

that has a quantitative formulation of activation energy. Puretzky et al. model CNT

growth as a sequence of physical and chemical steps: the chemisorption and cat-

alytic decomposition of feedstock gas, the dissolution and diffusion of carbon on the

nanoparticle surface, and finally, the precipitation of carbon atoms into a growing

CNT at the CNT-catalyst interface (Figure 3.2a). We model the spread of the chem-

ical byproducts using a gas diffusion equation, and hence calculate the time-evolving

spatial distribution of their concentration. Each micron-scale catalyst area acts as a

time-varying source of these active species, the kinetics of which is coupled to growth

deactivation kinetics.

Recent research on CNT growth, especially for single-walled CNTs, has revealed
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Figure 3.2: Model of synergetic CNT growth from the nanoscale to the microscale:
(a) Schematic of the physical and chemical steps that lead to individual CNT growth
from a catalyst nanoparticle on a substrate (adapted from Puretzky et al. [69]). (b)
Schematic showing the diffusion-driven profile of active species, which is generated
from the byproducts of the CNT growth reaction at the catalyst. (c) Block diagram
of the chemically coupled synergetic CNT growth model, with feedback between the
nominal CNT growth process and the diffusion of catalyst-generated active species.
(d) Time evolution of height for a 10 nm diameter CNT with different activation
energies Ea1, without chemical coupling. (e) Kinetics of the source term and the
ensuing concentration increase on the catalyst region, according to Equations (3.9)-
(3.12). The spatial step size is ∆x = 0.004 mm and the time step is ∆t = 7.5 s. (f)
The dependence of activation energy (Ea1) on the concentration of active species (u).
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more detailed mechanisms including the dynamic restructuring of nanoparticles dur-

ing growth [58], and correlating the nucleation of CNT walls to both the phase [85]

and lattice steps on the catalyst nanoparticle surface [40]. Moreover, the influence of

chirality on both screw-dislocation-driven rotation of CNTs [28] and growth rate [70]

was recently studied. Nevertheless, the Puretzky model is still generally applicable

to growth of multi-walled CNTs by carbon diffusion and precipitation, and reflects a

general chemical process that is applicable to CNT growth without regard to diameter

or chirality.

In our framework, the Puretzky model is first used to calculate the growth rate of

an individual CNT. In this model, growth occurs from a metal catalyst nanoparticle

(Figure 3.2a), which is surrounded by carbon-containing gas feedstock as well as the

products of thermal decomposition of the feedstock. These hydrocarbons catalyt-

ically decompose on the catalyst surface to atomic carbon and/or bonded carbon.

The surface carbon then dissolves into a molten/disordered layer of the catalyst and

precipitates, forming the growing CNT. In addition, some products of gas pyrolysis

directly contribute to the formation of a carbonaceous platelet layer on the catalyst

surface. Eventually, this platelet completely covers the catalyst nanoparticle caus-

ing complete cessation of growth. The surface carbon can also incorporate into the

carbonaceous layer, and the carbonaceous layer can dissolve into the molten layer.

The number of carbon atoms on the surface of the catalyst is denoted NC ; the

number of carbon atoms in a poisoned layer (NL2) or carbonaceous layer (NL1) is

collectively denoted as NL; the number of carbon atoms in a disordered layer of the

catalyst is denoted as NB; and the number of carbon atoms in a growing nanotube

is denoted as NT . In the model used here, Puretzky et al. neglect the catalyst de-

activation by poisoning, described as NL2 [69], and we also choose to consider that

the only growth deactivation mechanism is catalyst overcoating with a carbonaceous

layer NL1 (denoted here as NL).
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The carbon kinetics is given by a system of ordinary differential equations (ODEs):

dNC

dt
= F̃c1n

(
1− NL

αS0nm

)
− (ksb + kcl)NC(3.1)

dNL

dt
= F̃c2np

(
1− NL

αS0nm

)
+ kclNC − kd1NL(3.2)

dNB

dt
= ksbNC − ktNB + kd1NL1(3.3)

dNT

dt
= ktNB(3.4)

NC(0) = NL(0) = NB(0) = NT (0) = 0(3.5)

Here, n is the concentration of feedstock molecules,

np is the concentration of gas phase pyrolysis products,

α is the number of monolayers coating the catalyst,

nm is the surface density of a monolayer of carbon atoms,

S0 is the surface area of the catalyst,

ksb is the rate constant of dissolution of carbon atoms,

kcl is the rate constant of formation of the carbonaceous layer,

kd1 is the dissolution rate constant of the poisoning carbonaceous layer, and

kt is the rate constant of precipitation of carbon atoms into the nanotube.

The fluxes in Equation (3.1) and Equation (3.2) are given by:

F̃c1 =
Fc1
n

F̃c2 =
Fc2
np

(3.6)

Fc1 = Fb1p1 exp

(
− Ea1

kBT

)
Fc2 = Fb2p2 exp

(
− Ea2

kBT

)
(3.7)

Fb1 =
1

4
S0n

(
kBT

2πm

)1/2

Fb2 =
1

4
S0n

(
kBT

2πM

)1/2

(3.8)

Here, p1 and p2 are pre-exponential factors. kB is Boltzmann’s constant and T is the

gas temperature. Ea1 and Ea2 are the activation barriers for catalytic decomposition

and dissolution of the feedstock hydrocarbon, respectively. The masses of the feed-
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stock molecule and the main pyrolysis product are denoted m and M , respectively.

Values for n, np, S0, T , m, and M were set to match the growth parameters of our

experiments. The values selected for the other constants have been previously shown

to agree with our experimental results [69, 34]. This system of ODEs is solved using

Matlab’s ode23s function.

As an example output of the uncoupled CNT growth model, the time evolution

of CNT height and growth rate for a 10 nm diameter CNT grown at 1000 K from

acetylene (C2H2) is shown in Figure 3.2d. The predicted growth rate (CNT height

kinetics) reaches its maximum value very quickly, after a brief incubation period, and

then gradually decays to zero. Lower activation energy leads to faster growth rate

and greater terminal height (CNT length) as shown in Figure 3.3.

Now, to compute the rate of production of active species (source term kinetics

shown in Figure 3.2b) on the catalyst surface, we couple it to the kinetics of surface

carbon (NC), which changes with time owing to the evolution of the overcoating layer

(NL). We model the source term f as being proportional to F̃c1n
(

1− NL

αS0nm

)
, i.e. the

positive term of the rate of change in surface carbon dNC

dt
in (3.1). This source term is

now dependent on the available exposed catalytic surface area (i.e. it represents the

activity of the catalyst nanoparticle), which describes the kinetics of the generation

of active species at the catalyst.

Therefore, the rate of active species generation is calculated for each CNT mi-

cropillar separately depending on position on the substrate (x, y) and time t by

(3.9) f(x, y, t) =
∑
i

k2Fc1,i(t)

(
1− NL,i(t)

αS0nm

)
χi(x, y)

Here, χi represents the indicator function of the i-th catalyst region, i.e. a function

with the value one for coordinates in this catalyst region and zero elsewhere. The

index i in Fc1,i and NL,i specifies that these quantities are associated with the i-th
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Figure 3.3: (a) The time evolution of growth rate of a 10 nm diameter CNT growing
at different activation energies (Ea1). (b) Effect of both the CNT diameter and the
activation energy (Ea1) on the maximum CNT height at self-termination. (c) Effect
of activation energy on the maximum CNT height and the maximum growth rate.
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catalyst region. The constant k2 is a scaling factor that is determined empirically by

comparing simulations to experimental results. The time-dependent evolution of the

source is shown in Figure 3.2e, where the source kinetics at a single micropillar in a

catalyst pattern decays to zero at growth termination. This source term is nonzero

only at the catalyst regions and is zero elsewhere on the substrate.

Two more important assumptions are made. First, we assume that the distribution

of the generated species over each microscale catalyst region is uniform, neglecting

the synergetic growth effects among nanoscale catalyst particles within each region.

Second, we assume that that the concentration of the active species equals zero at

the edge of the simulation space. In reality, the concentration on the boundary is

non-zero due to the bulk concentration of precursor in the CVD system. In order to

minimize the effect of this boundary condition on our simulation results, we use a

domain size of 1 × 1 mm that is 10-fold larger than the maximum spacing between

micro-scale catalyst features in our study (100 µm).

After the active species is produced at a catalyst region, it diffuses through the

surrounding area. The concentration of the active species u is given by the diffusion

equation, which is a partial differential equation that involves the source term f and

the diffusion coefficient D,

∂

∂t
u(x, t) = D∇2u(x, t) + f(x, t)(3.10)

u(x, 0) = 0(3.11)

u(x, t) = 0 on the boundary.(3.12)

We solve the diffusion equation numerically by discretizing the spatial domain into a

regular square lattice with step size ∆x, and discretizing time into equal time steps

∆t. The function u is approximated by the grid function Un
ij ≈ u(i∆x, j∆x, n∆t).

The Laplacian is discretized with a five-point stencil ∇2
∆x, and the equation is evolved
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using a semi-implicit scheme:

Un+1
ij = Un

ij + (∆t)(D∇2
∆xU

n+1
ij + fnij), or(3.13)

(I − (∆t)D∇2
∆x)U

n+1
ij = Un

ij + (∆t)fnij.(3.14)

The system is solved with the conjugate gradient method. At each time step, the

source term f is calculated from the concentration NL, which is found by solving

(3.1)-(3.5) on the time interval [t, t+ ∆t] with Matlab’s ode23s solver. The step size

∆x is chosen small enough that each catalyst region is several grid points wide. We

select a time step that balances accuracy and computation time. Moreover, there are

no hard constraints on the time step ∆t, because the implicit time-stepping scheme

is unconditionally stable and the concentration u does not involve any fast dynamics.

The kinetics of the active species concentration is shown to closely follow the

source kinetics for the same CNT micropillar (Figure 3.2e). This occurs because

the diffusion of the gas is relatively fast in comparison to the time-scale of CNT

micropillar growth.

A final important detail of our model is the coupling of active species concentration

to the activation energy, which modulates the CNT growth kinetics according to

the local concentration of active species. As the concentration of the active species

increases, the growth rate of the CNTs also increases, i.e. the activation energy Ea1

in the Puretzky model decreases. Hence, our model is based on modulating this

activation energy Ea1 by mathematically coupling it to the average concentration ū

of active gaseous species on each catalyst region:

ūi(t) =

∫
u(x, t)χi(x) dx∫

χi(x) dx
(3.15)

Ea1,i(t) = Emin − (Emax − Emin) exp(k1ūi(t)).(3.16)
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Here, χi represents the indicator function of the i-th catalyst region. When the active

species concentration is zero, Ea1 = Emax; when the concentration is large, Ea1 ap-

proaches the asymptote Emin. The constants Emin, Emax are chosen based on values

from the work by Puretzky et al. [69, 34], while the constant k1 is chosen as the

value for which the relative heights of CNTs in the simulations are consistent with

those obtained in our experiments. Figure 3.2f shows a plot of the dependence of

Ea1 on u when Emax = 0.8, Emin = 0.6, and k = 0.05. Equation (3.16) captures

the three main features of such dependence. The first feature is the inverse relation

between concentration and activation energy. The second feature is having a maxi-

mum for activation energy at zero concentration, i.e. in the absence of catalytically

produced active species diffusing from the surroundings. In this case, this value of

maximum activation energy results from only the active species produced by thermal

decomposition of the hydrocarbon feedstock and those that are locally generated at

the catalyst location (with no contribution from surroundings). These are dependent

on CVD conditions including the precursor chemistry, temperature, and residence

time, and are independent on the catalyst microscale pattern. The third feature is

the presence of a minimum bound for the activation energy that cannot be surpassed

no matter how high the concentration of the active species gets. This is mathemati-

cally described as an asymptote of the exponential function. This phenomenological

relationship is also consistent with the experimental observations obtained for the

dependence of growth rate of nanowires on the spacing, in which experimental results

of growth rates exhibited a maximum at small spacing and decayed to an asymptotic

minimum [18].

Last, note that the height of the CNT forest is adopted as a quantitative measure

of the efficiency of the CVD process. We assume that all CNTs within a forest

(micropillar) are identical and are mechanically coupled, and therefore collectively

grow at the same rate [13]. As a result, the model only predicts the straight vertical
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growth of each micropillar. The spatial variations of CNT growth rate within each

micropillar and the resulting deformation during growth (e.g. Figure 3.1a) are topics

of ongoing research in our group, and modeling coupled mechanochemical effects is

beyond the scope of the present work.

3.2.2 Experimental

Catalyst patterning: Micron-scale patterning of the catalyst film was achieved

by photolithography on a (100) silicon wafer with a 300 nm thermally grown SiO2

layer. After spin-coating the photoresist (SPR220), a patterned mask was used during

contact exposure of UV light (Karl Suss MA/BA-6) at 30 mJ/s for 6 seconds. After

development of the patterned photoresist, the supported catalyst (1 nm Fe on 10

nm Al2O3) was deposited by sputtering (Lab 18 by Kurt J. Lesker). The wafer was

diced manually by a diamond-tip scribe. The remaining photoresist was then lifted

off the wafer by placing samples in an ultrasonic bath of acetone, before loading the

catalyst-coated Si chips into the tube furnace.

CNT growth and characterization: CNTs were grown in a custom-built hot-

wall tube furnace, with a rapid sample insertion mechanism. First, the substrate was

annealed to induce catalyst film dewetting and nanoparticle formation in a reducing

atmosphere of hydrogen and helium (400 sccm H2 / 100 sccm He) at 775 ◦C (10

minutes ramp time and 10 minutes temperature hold). After the annealing step,

the substrate was retracted from the reactor and held in an adjacent cold chamber,

while introducing the feedstock gas, ethylene (C2H4), changing the gas mixture to

the growth atmosphere (100 sccm C2H4 / 400 sccm He / 100 sccm H2) at the same

temperature. After 7 minutes, during which the gases and the humidity inside the

tube furnace stabilize, the substrate was returned to inside the reactor. CNTs were

characterized by scanning electron microscopy (SEM), using a Philips XL30FEG.
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3.3 Results

The comprehensive growth model described above provides a framework to simu-

late the influence of chemical coupling on CNT growth, and can be correlated with ex-

perimental results, which in turn inform the model and enable validation of improved

growth conditions. In the subsections that follow, we show that the chemically cou-

pled model predicts spatial non-uniformities in CNT growth rate among micropillar

arrays (Figure 3.5 and Figure 3.6). We also show that the “digital” change in CNT

growth from tangled horizontal mat to vertically aligned forest can be explained based

on a threshold concentration of active species (Figure 3.6 and Figure 3.7). Moreover,

we exploit the insights gained by our simulation and experimental results to design

more uniform individual CNT micropillars (Figure 3.8), as well as more uniform mi-

cropillar arrays (Figure 3.9).

3.3.1 Diffusion-driven concentration profiles

First, we use the model to visualize and understand how the diffusion of the

active species (gas) depends on the CVD conditions and the pattern design. The

diffusion coefficient (D) in Equation 10 depends on temperature, pressure and the

gases according to an empirical relation [39]:

D = (2.6280× 10−3)

√
T 3(M1+M2)

2M1M2

pσ2
12

(3.17)

σ12 =
1

2
(σ1 + σ2),(3.18)

where Mi is the molecular weight of species i in grams per mole, T is the temperature

in Kelvin, p is the pressure in atmospheres, and σi is the molecular diameter of species

i in Å. For example, the diffusion coefficient of C2H4 in He at 1 atm was calculated

to be 1 cm2/s at 600 K and 2 cm2/s at 1000 K. We first show the effect of process
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temperature on gas diffusion and the resulting spatial distribution of active species

concentration. Concentration profiles are plotted in Figure 3.4 after 750 seconds

of growth at two different temperatures of 600 and 1000 K, which correspond to

the values of diffusion coefficient of 1 and 2 cm2/s, respectively. As shown in this

figure, the maximum concentration occurs at the center micropillar in a hexagonal

array, because at this location the maximum number of micropillars contributes to

the overall concentration of active species. Higher pressures and lower temperatures

significantly reduce gas diffusion to the surroundings, resulting in a much higher

local concentration of active species. Also, for patterns with larger spacing (δ), the

local maxima in the concentration profile are sharper, in contrast to the smooth

concentration profiles observed for closely packed catalyst microfeatures.

3.3.2 Predicting spatially varying CNT growth kinetics

Now, we show that the spatial distribution of active species governs the growth

kinetics of CNT micropillars in arrays, predicting the observed dependence of CNT

growth rate and terminal height. A 3D plot of the normalized terminal height of an

exemplary CNT micropillar array (Figure 3.5a) shows that the array has a domed

shape with taller micropillars toward the center and shorter micropillars at the edges.

Without chemical coupling, all pillars in the array would be predicted to grow to the

same height. In Figure 3.5b the height kinetics of the central micropillar and the

corner micropillar are shown, revealing that the final height of the corner micropillar

is about 60% of the final height of the central micropillar. This height difference is

present because the spatial variation of active species modulates the activation energy

(Figure 3.5c) for the CNT growth process, by the formulation discussed previously.

The kinetics of the active species generation at the central micropillar are shown in

Figure 3.5d, and the kinetics of active species concentration are shown in Figure 3.5e.

After a rapid increase, the production rate decreases almost linearly and then decays
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Figure 3.4: Influence of model parameters on the spatial distribution of active species
generated within and around a CNT growth pattern. (a,b) 3D surface plot of concen-
tration profile of active species generated at micron-scale catalyst patches (d = 30 µm)
that are arranged in a hexagonal array with different spacing (δ) of 100 µm and 33 µm,
respectively (diffusion coefficient D = 100 mm2/s). (c,d) The 2D spatial distribution
of active species concentration (u) for the same two catalyst arrays, plotted after 750
s of growth for two different temperatures of 600 and 1000 K, which correspond to
diffusion coefficients of 100 mm2/s and 200 mm2/s, respectively. The spatial step size
is ∆x = 0.004 mm and the time step is ∆t = 7.5 s.
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Figure 3.5: Simulation results for a hexagonal array of CNT micropillars d = 100 µm
and δ = 200 µm center-to-center spacing. The spatial step size is ∆x = 0.012
mm and the time step is ∆t = 7.5 s. (a) 3D plot of the spatial distribution of
normalized micropillar heights. (b) Height kinetics for the central micropillar and
a corner micropillar. (c) Time evolution of activation energy (Ea1). (d, e) Time
evolution of the active species generation (source term) and the ensuing concentration
for the same central micropillar. (f, g) Spatial distribution of the active species
generation term (source term) and the concentration distribution after 750 seconds
of growth (at y = 1.5 mm).
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exponentially to zero. The spatial profiles of the active species generation and the

ensuing concentration at t = 750 s are shown in Figure 3.5f, g. The growth rate

is typically lower at the edge of the pattern because the higher activation energy

there causes carbon to decompose at a lower rate and therefore the active species are

produced at a lower rate (Figure 3.5g). Shallow peaks in active species concentration

are observed at the catalyst site locations, where the gas is consumed by CNT growth.

The maximum concentration occurs at the center of the array, and the concentration

decays to zero at the endpoints, representing the boundary of the simulation space.

We now compare simulations to experiments to understand the synergetic growth

effects within an array of CNT micropillars. SEM images (Figure 3.6a-c) show that the

height and uniformity of 30 µm diameter CNT micropillars decreases as the spacing

between the catalyst microfeatures increases. Specifically, for small spacing (center-

to-center distance of 33 µm), all CNT micropillars in the array grow vertically upward.

In the case of large spacing (100 µm), none of the catalyst features produce a sufficient

density of CNTs to lift off and grow vertically. For the array with medium spacing (60

µm), only the CNT micropillars towards the center of the array grow vertically, while

features towards the edges/corners of the array do not grow vertically. This consistent

observation can be explained by the spatial variation of concentration-modulated

growth that gives rise to the height variation shown in Figure 3.5. However, to this

point, the model does not explain the abrupt transition between features that do not

grow vertically, and those that produce vertical CNT forests.

3.3.3 Predicting a chemical threshold for CNT forest growth

The catalyst microfeatures that do not grow vertically aligned CNTs exhibit a

lower density of tangled CNTs (inset in Figure 3.6c). Previous work, using X-ray

scattering to profile the density of CNTs within a forest grown to termination, showed

that a threshold CNT density is needed to create and maintain the vertically aligned
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Figure 3.6: Effect of micropillar spacing in arrays on lift-off and growth. SEM images
of CNT micropillar arrays having center-to-center pillar spacing of 33 µm, 60 µm,
and 100 µm are shown in (a, b, c), respectively. The inset to (c) shows a tangled
mat of CNTs in cases when the micropillars do not lift off into a forest. Simulation
results showing relative heights for these different CNT spacings are plotted in (d,
e, f). The spatial step size is ∆x = 0.004 mm and the time step is ∆t = 1.0 s.
Time evolution of the spatial distribution of active species concentration for different
spacings is plotted in (g, h, i), identifying the threshold for lift-off. A plot of the
initial CNT forest height kinetics for each spacing is plotted in (j, k, l), showing the
delayed onset of lift-off for outer micropillars compared to central micropillar. The
position of the threshold relative to the active species concentration indicates whether
or not the CNT micropillar has lifted off into a forest; specifically, the model of the
array in (a) predicts accurately that all the CNT pillars lift off, and the model of (c)
predicts that the active species never crosses the threshold due to the larger spacing
and reduced chemical coupling.
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forest structure [16, 15]. This threshold density was also predicted by finite element

modeling of the CNT crowding mechanics [14]. Therefore, we hypothesize that the

time varying (increasing) concentration of active species that results from diffusion

across the substrate drives the kinetics of CNT density increase and eventual forest

lift-off. We explain the transition between tangled and vertical CNTs (Figure 3.6d-

f) by a threshold concentration of active species (Figure 3.6g-i) that is necessary to

cause the CNT density to surpass the threshold for self-organization into the vertically

aligned forest morphology. Although some CNTs can start growing into a randomly

oriented mat as soon as the hydrocarbon feedstock is introduced into the reactor

(see inset in Figure 3.6i), vertical growth of the forest is delayed until the threshold

concentration is reached, as shown in Figure 3.6j-l. The value of this threshold was

chosen to match the experimentally obtained micropillar height distribution, and it

would in principle depend on the overall area of the catalyst microfeatures and CVD

conditions.

Close-up electron micrographs of the CNT micropillar array with medium spacing

(Figure 3.7a) shows that the geometry of each micropillar is non-uniform as well, i.e.

the top surface of the micropillar can be curved and the pillar has a varying cross-

sectional area from top to bottom. This non-uniformity, which is a typical indication

of low-density CNT micropillars, can be attributed to density profiles across the

height of each micropillar [16, 14, 65]. Although these density variations are not

captured by our mathematical model, the introduction of the chemical threshold,

shown in Figure 3.6g, h, i, adequately predicts the transition from horizontal randomly

oriented growth of CNT mats to the vertical self-supported aligned growth of CNT

forest morphology.

We can also infer the successive stages of vertical micropillar growth by exam-

ining micropillars at varying stages of growth based on their spatial position in the

array. Figure 3.7b shows a schematic of the successive stages that are needed for
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Figure 3.7: Analysis of the CNT growth gradient at the edge of a micropillar array,
and identification of successive stages of micropillar lift-off due to collective chemical
and mechanical effects. (a) SEM of the medium spacing array (with 60 µm spacing),
showing that micropillars are at different stages of lift-off depending on their posi-
tion in the array. (b) Schematic showing the progression of stages leading to CNT
micropillar lift-off.

CNT micropillar lift-off. First, CNT nucleation starts as soon as the hydrocarbon

gas feedstock is introduced to the reactor, yet at this stage CNTs grow in random

orientations, forming a tangled 2D mat. This crowding stage proceeds until the den-

sity of growing CNTs reaches a threshold value, which has been previously identified

to be about 109 CNTs/cm2 for CNTs grown by the same CVD recipe [16, 14]. This

threshold density represents the density at which the total upward force overcomes

the van der Waals attraction forces pulling the CNTs to the substrate.

Although our mathematical model considers that the rate of active species gen-

eration is constant across each micron-sized catalyst area (Figure 3.2b), there are

likely local rate variations due to the chemical coupling between individual catalyst

nanoparticles within the catalyst area. Hence, we expect that the CNT activation

kinetics is fastest towards the middle of the catalyst area for each micropillar. As a

result, the threshold density is reached in the middle of the micropillar area first, and

lift-off starts to develop from the center of the micropillar, until eventually, the whole

micropillar lifts off. This delay between the lift-off of the middle portion of the mi-
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cropillar and the lift-off of the whole micropillar results in a dome-shaped top surface.

For instance, a more curved top is an indication of slow kinetics of CNT activation as

the active species propagates through the micropillar. Our model does not describe

the curvature of the top-surface of the pillar, because the height kinetics is assumed

to be similar for all CNTs within each micropillar. Nevertheless, the explanation

above, which can be mathematically modeled in the future, provides insights into the

kinetics of CNT self-organization that are necessary to establish vertical growth.

3.3.4 Design of uniform CNT micropillars

The capability to predict CNT growth patterns can also enable engineering of

process conditions and pattern geometries to achieve improved uniformity. One way to

achieve geometric uniformity for individual catalyst microfeatures that typically don’t

grow into tall, straight micropillars, is to add a border of CNTs around the feature.

Figure 3.8 shows the effect of having a surrounding border of CNTs around a 30× 30

µm square micropillar. For a small spacing of 100 µm between the central micropillar

and the border, the resulting central micropillar is straighter than in the case of the

larger spacing (300 µm). Also, geometry of the top surface of the micropillar is more

uniform and square in the case of the smaller spacing, compared to a more curved

top in the case of the larger spacing. This is attributed to the faster kinetics of CNT

activation that result from the higher concentration of active species in the case of

smaller spacing (Figure 3.8b), owing to the external supply (from the border) of active

species to the otherwise isolated micropillar. This finding is consistent with a recent

study, in which an outer surrounding border was shown to improve the straightness

and alignment of CNT microstructures grown for microelectromechanical systems

(MEMS) applications [59].

Additionally, applying the insights from our simulations and experiments, CNT

micropillar uniformity can be engineered by designing the array patterns. Tailoring
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Figure 3.8: Realization of isolated straight CNT micropillars (30 × 30 µm) using a
border feature to augment the active species concentration. (a) Schematic of design.
Note that D denotes the spacing between the pillar and border, not the diffusion
coefficient. (b) Concentration profile of active species showing two cases with different
spacing D (100 and 300 µm). The spatial step size is ∆x = 0.012 mm and the time
step is ∆t = 7.5 s. SEM images at different magnifications for the 100 µm spacing
(c-e) and the 300 µm spacing (f-h).
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the spacing between micropillars and/or the size of individual micropillars results in a

more uniform distribution of active species concentration, which in turn improves the

uniformity of CNT micropillar height. Figure 3.9 shows strategies that can greatly

enhance the height uniformity. The first strategy (Figure 3.9b, e) features a spatially

varying spacing, where the distance between micropillars is largest in the middle of

the array and smallest at the periphery of the array. This strategy is helpful for those

applications that require similar diameter micropillars without the requirement that

the positions of micropillars are equally spaced. The second strategy (Figure 3.9c, f)

relies on changing the cross-sectional dimensions (area) of the micropillars across the

array, wherein pillars towards the center of the pattern are smallest and micropillars

towards the periphery of the pattern are largest. This strategy is suitable for applica-

tions in which the position, or the center-line, of each micropillar is pre-specified by

the device design, such as in the case of growing CNT micropillars to connect circuits

having multiple layers. In both strategies, the concentration profile becomes more

uniform, as compared to the case of a uniformly spaced same-sized micropillar array.

For the second strategy the total catalyst area is increased, which results in an

increase in the magnitude of the produced active species and is, therefore, likely

to be accompanied by an increase in CNT activation rate and density. Simulation

results show that the ratio between the shortest (outermost) micropillar and the tallest

(central) micropillar has increased from 86% in the case of uniformly spaced same-

sized micropillars to 92% by applying the first strategy (varying the spacing only) and

to 93% by applying the second strategy (varying the micropillar size only). Hence,

employing a combination of similar strategies in pattern design will both homogenize

the typically nonuniform concentration profile of active species, and boost the density

activation kinetics of CNT micropillars.
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Figure 3.9: Predicted design of CNT micropillar arrays to achieve increased height
uniformity in the presence of chemical coupling. Evolution of the spatial distribution
of active species concentration is shown for (a) uniformly spaced (60 µm spacing)
micropillars having the same width (30 µm), (b) non-uniformly spaced micropillars
having the same width (30 µm), and (c) uniformly spaced micropillars having varying
widths. Relative height distribution for only right-side half of the micropillar array
for (a), (b), and (c) are shown in (d), (e), and (f) respectively. The spatial step size
is ∆x = 0.004 mm and the time step is ∆t = 7.5 s.
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3.4 Discussion

Prior work in the literature has shown that CNT growth can be limited by gas dif-

fusion of precursor [94, 95]. Our framework considers the dynamics of gas diffusion of

hydrocarbon species generated at the catalyst sites, which results in a time-evolving

concentration profile. Although we consider that the rate-limiting process in CNT

growth is gas diffusion, we formulate the effect of the ensuing concentration pro-

file on the catalytic decomposition of hydrocarbons at the catalyst. Our modeling

framework consolidates into a single metric the various gaseous species that modulate

the reaction activation energy of hydrocarbon dissociation on the surface of catalyst

nanoparticles (Ea1). Previous work has shown that CNT growth could be limited

by the diffusion of carbon atoms into/on the catalyst nanoparticle [86], which would

require coupling the activation energy for dissolution (part of the equation for the

rate ksb) to concentration, but this effect is ignored in the present work.

The concentration of an individual hydrocarbon precursor should not change the

activation energy for chemical decomposition on the catalyst surface (Ea1). However,

there is a preponderance of evidence that a family of hydrocarbon gases and radi-

cals contribute to CNT growth by thermal CVD, and these have varying potency in

promoting CNT growth. As the concentration and distribution of these precursors

change due to thermal and catalytic decomposition of the input feedstock, the col-

lective activation barrier for chemical decomposition is shifted in the vicinity of the

catalyst surface. Our model collectively approximates this effect by modulating the

value of Ea1 based on the concentration of generated active species (u).

Further research is required to enable a mathematical description of the relative

proportions of each of these species, and designed experiments are needed to inves-

tigate their isolated, as well as cooperative, effects on modulating growth, as well as

on activating CNT growth during the nucleation stage. In addition, the effects of

other additives such as oxygen [92], hydrogen [92], water vapor [38], and carbon diox-
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ide [53, 60] on mediating CVD growth of CNTs, should be taken into consideration.

Other gaseous species have an opposite effect on growth, and some species might

play either an activating or deactivating role depending on their partial pressure, to-

tal pressure, temperature, and/or gas composition in the reactor. These “harmful”

effects on growth should also be modeled, in order to describe the growth process

more accurately. This activation/deactivation competition is not solely controlled by

the byproducts of local catalytic reaction or even gas-phase reaction in the vicinity of

the catalyst particle, but are also affected by the desorption of various species from

the reactor wall [52].

Despite such complexities and the assumptions of this study, we can make impor-

tant quantitative insights regarding the influence of process parameters, such as tem-

perature and pressure, on synergetic CNT growth. For instance, CNT growth at lower

temperature and higher pressure increases the influence of chemical coupling, because

sharper chemical gradients result from lower diffusion coefficients (Figure 3.4). On

the other hand, high temperature growth in low-pressure conditions should reduce

synergetic growth effects due to the high diffusion coefficient and mean free path.

Temperature variation would also affect the reaction kinetics, and that pressure vari-

ation would also influence the gas residence time, which is known to influence CNT

growth independently of synergetic effects. Therefore, the mathematical framework

for modeling chemical feedback on CNT growth will enable exploration of improved

uniformity in future work.

3.5 Conclusions

We enable prediction and control of non-uniformities in as-grown CNT micropil-

lars by developing a holistic mathematical model that couples isolated CNT growth

with diffusion of reactive species across the substrate. This model replicates ex-

perimental findings where the overall height and uniformity of CNT micropillars is
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influenced only by the spacing between catalyst microfeatures on the substrate. Com-

bining experiments and simulations reveals that a threshold concentration of active

species is needed for lift-off of CNT micropillars and corroborates analysis of the suc-

cessive stages of CNT micropillar growth. Our findings also enable the design and

fabrication of uniform micropillar arrays, which are essential for the scaled manu-

facturing of commercial CNT-based devices with enhanced electrical, thermal, and

mass transport properties. An example of utility is presented via designs predicting

a more uniform distribution of micropillar heights, or designed height gradients. In

the future, this approach could also serve as a basis for optimization algorithms for

pattern design considering both chemical reaction models and synergetic coupling

effects, with relevance to CNTs as well as other nanostructures by CVD reactions.

109



CHAPTER IV

Conclusion

4.1 Summary of findings

In this dissertation, we defined an atomistic model for the growth of individual

CNTs. We found that simulations of the model exhibit partial growth of a CNT, but

the system gets stuck in local energy minima that made it difficult for the nanotube

to grow upward. Long annealing times should allow for the system to reach a global

energy minimum and continue growing, but this is very computationally demanding.

Instead, we considered an atomistic model of a simpler system that could provide

some insights into CNT growth. In this system, which has a global energy minima

and many local energy minima with identical higher energy, the probability of the

globally minimal configuration is increased by lowering the temperature. In non-

equilibrium, the probability of this state can be increased by slowing the addition

rate. This suggests higher quality CNTs can be grown at lower temperatures and

slower addition rates. Since MD simulations of CNT growth require fast addition

rates in order to complete in a reasonable amount of time, this also explains why

these simulations get stuck in local minima that are not the ground state.

We also coupled a kinetic model of CNT growth with a model of active species

concentration to describe the growth of arrays of CNT pillars. This incorporates spa-

tial effects into the growth model, whereas the kinetic model only includes temporal
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effects. The active species concentration is greater where the density of the catalyst

patches is higher at the center of the pattern, which leads to faster growth rates for

the pillars in the center of the array. A threshold on the active species concentration is

used to determine when pillars lift off from the substrate. Simulations of this model

show qualitative agreement with experiments. The model could inform the design

of catalyst patterns which yield pillars with uniform heights. The catalyst patches

would be spaced more widely at the center of the array, and more closely together

at the edge of the array. Alternatively, a uniform spacing could be used with smaller

patches at the center and larger patches at the edge.

4.2 Future research

The development, simulation, and analysis of the models described in this disser-

tation open up many directions for future research.

4.2.1 Atomistic modeling

For the 1-dimensional model, one could simulate the dynamics by a Monte Carlo

method and compare its efficiency with molecular dynamics. This could inform the

simulation method for the 3-dimensional model. Reconsidering the 3-dimensional

model (or a 2-dimensional analogue) would be interesting because the formation and

healing of defects could be studied. It would be very interesting to characterize the

transition rates for these processes and study them in a non-equilibrium system, as

was done for the 1-dimensional model.

Applied mechanical forces could be included in an atomistic model of CNT growth,

in any dimension. This can be accomplished by selecting a collection of atoms at the

tip of the atomic chain or nanotube on which the force is exerted and addding a linear

term to the potential for these atoms. This term should be chosen so that the negative

gradient points in the direction of the applied force. The magnitude and direction of
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this force can be varied and the resulting growth studied. If the local energy minima

and saddle points can be located, then one can calculate the transition rates and

evolve the probabilities of the different configurations. If this is not possible, one can

simulate multiple trajectories by molecular dynamics and calculate the probabilities

empirically. In particular, it would be interesting to study the effect of the magnitude

and direction of the applied force on the probability of the ground state and the rate

of convergence to the equilibrium probability distribution.

4.2.2 Chemical coupling

The chemical coupling model could include gas transport in 3 dimensions, includ-

ing advection and the effect of the CNT pillars on diffusion. Multiple chemical species

and coupled reactions could be included, which could accelerate or decelerate CNT

growth. The chemical coupling model could be extended to describe the mechanical

and chemical coupling within the pillar, which would lead to pillar bending. The

chemical coupling model could be used to optimize uniformity of the heights in the

pillars. This could be done with optimization techniques rather than trial and error.

For instance, one could devise an objective function which achieves a minimum for

uniform pillar heights. The variation of the energy could be calculated with respect

to perturbations in the characteristic function of the catalyst pattern. This variation

could be employed in a gradient descent technique for the energy.

It would be beneficial to identify the active species. This could be done by compar-

ing experiments to simulations of multiple models corresponding to the hypothesized

active species, and determining which active species provide the best fit for the data.

Based on the chemistry, once could then relate the rate of production of the active

species relative to the feedstock decomposition, which we treated as a free parameter.

Atomistic modeling could provide insights into the chemical coupling model. For

example, the chirality-dependent growth rate could be incorporated into the kinetic
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equations. Also, the relationship between the active species concentration and the

activation energy for feedstock decomposition could be studied via an atomistic model

instead of an ad hoc way as in our model.
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[23] A. Brünger, C. L. Brooks III, and M. Karplus. Stochastic boundary conditions
for molecular dynamics simulations of ST2 water. Chemical Physics Letters,
105(5):495 – 500, 1984.

[24] J.-C. Charlier, A. De Vita, X. Blase, and R. Car. Microscopic growth mechanisms
for carbon nanotubes. Science, 275(5300):647–649, 1997.

[25] M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart. Carbon
nanotubes: Present and future commercial applications. Science, 339(6119):535–
539, 2013.

116



[26] M. Diarra, H. Amara, F. Ducastelle, and C. Bichara. Carbon solubility in nickel
nanoparticles: A grand canonical Monte Carlo study. Physica Status Solidi (b),
249(12):2629–2634, 2012.

[27] F. Ding, K. Bolton, and A. Rosén. Nucleation and growth of single-walled carbon
nanotubes: A molecular dynamics study. The Journal of Physical Chemistry B,
108(45):17369–17377, 2004.

[28] F. Ding, A. R. Harutyunyan, and B. I. Yakobson. Dislocation theory of chirality-
controlled nanotube growth. Proceedings of the National Academy of Sciences,
106(8):2506–2509, 2009.

[29] F. Ding, P. Larsson, J. A. Larsson, R. Ahuja, H. Duan, A. Rosén, and K. Bolton.
The importance of strong carbon-metal adhesion for catalytic nucleation of
single-walled carbon nanotubes. Nano Letters, 8(2):463–468, 2008.

[30] M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris. Carbon Nanotubes: Synthe-
sis, Structure, Properties, and Applications. Topics in applied physics. Springer,
2001.

[31] J. A. Elliott, Y. Shibuta, H. Amara, C. Bichara, and E. C. Neyts. Atomistic
modelling of CVD synthesis of carbon nanotubes and graphene. Nanoscale,
5:6662–6676, 2013.

[32] G. Eres, A. A. Kinkhabwala, H. Cui, D. B. Geohegan, A. A. Puretzky, and
D. H. Lowndes. Molecular beam-controlled nucleation and growth of vertically
aligned single-wall carbon nanotube arrays. The Journal of Physical Chemistry
B, 109(35):16684–16694, 2005.

[33] J. Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, and J.-C. Char-
lier. Root-growth mechanism for single-wall carbon nanotubes. Phys. Rev. Lett.,
87:275504, Dec 2001.

[34] D. B. Geohegan, A. A. Puretzky, J. J. Jackson, C. M. Rouleau, G. Eres, and
K. L. More. Flux-dependent growth kinetics and diameter selectivity in single-
wall carbon nanotube arrays. ACS Nano, 5(10):8311–8321, 2011.

[35] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins Studies
in the Mathematical Sciences. Johns Hopkins University Press, 2012.

[36] J.-H. Han, R. A. Graff, B. Welch, C. P. Marsh, R. Franks, and M. S. Strano.
A mechanochemical model of growth termination in vertical carbon nanotube
forests. ACS Nano, 2(1):53–60, 2008.

[37] P. Hänggi, P. Talkner, and M. Borkovec. Reaction-rate theory: fifty years after
Kramers. Rev. Mod. Phys., 62:251–341, Apr 1990.

117



[38] K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima.
Water-assisted highly efficient synthesis of impurity-free single-walled carbon
nanotubes. Science, 306(5700):1362–1364, 2004.

[39] J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird. Molecular theory of gases and
liquids. Structure of matter series. Wiley, 1964.

[40] S. Hofmann, R. Sharma, C. Ducati, G. Du, C. Mattevi, C. Cepek, M. Cantoro,
S. Pisana, A. Parvez, F. Cervantes-Sodi, A. C. Ferrari, R. Dunin-Borkowski,
S. Lizzit, L. Petaccia, A. Goldoni, and J. Robertson. In situ observations of cat-
alyst dynamics during surface-bound carbon nanotube nucleation. Nano Letters,
7(3):602–608, 2007.

[41] S. B. Hutchens, L. J. Hall, and J. R. Greer. In situ mechanical testing reveals pe-
riodic buckle nucleation and propagation in carbon nanotube bundles. Advanced
Functional Materials, 20(14):2338–2346, 2010.

[42] S. Irle, Y. Ohta, Y. Okamoto, A. J. Page, Y. Wang, and K. Morokuma. Mile-
stones in molecular dynamics simulations of single-walled carbon nanotube for-
mation: A brief critical review. Nano Research, 2(10):755–767, 2009.

[43] G.-H. Jeong, N. Olofsson, L. K. L. Falk, and E. E. B. Campbell. Effect of
catalyst pattern geometry on the growth of vertically aligned carbon nanotube
arrays. Carbon, 47(3):696–704, 2009.

[44] K. Jiang, C. Feng, K. Liu, and S. Fan. A vapor-liquid-solid model for chemi-
cal vapor deposition growth of carbon nanotubes. Journal of Nanoscience and
Nanotechnology, 7(4-1):1494–1504, 2007-04-01T00:00:00.

[45] H. Kimura, J. Goto, S. Yasuda, S. Sakurai, M. Yumura, D. N. Futaba, and
K. Hata. Unexpectedly high yield carbon nanotube synthesis from low-activity
carbon feedstocks at high concentrations. ACS Nano, 7(4):3150–3157, 2013.

[46] N. Latorre, E. Romeo, F. Cazaña, T. Ubieto, C. Royo, J. I. Villacampa, and
A. Monzón. Carbon nanotube growth by catalytic chemical vapor deposi-
tion: A phenomenological kinetic model. The Journal of Physical Chemistry
C, 114(11):4773–4782, 2010.
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Dynamic catalyst restructuring during carbon nanotube growth. ACS Nano,
4(12):7587–7595, 2010.

[59] K. Moulton, N. B. Morrill, A. M. Konneker, B. D. Jensen, R. R. Vanfleet, D. D.
Allred, and R. C. Davis. Effect of iron catalyst thickness on vertically aligned
carbon nanotube forest straightness for CNT-MEMS. Journal of Micromechanics
and Microengineering, 22(5):055004, 2012.

[60] A. G. Nasibulin, D. P. Brown, P. Queipo, D. Gonzalez, H. Jiang, and E. I. Kaup-
pinen. An essential role of CO2 and H2O during single-walled CNT synthesis
from carbon monoxide. Chemical Physics Letters, 417(1–3):179–184, 2006.

[61] G. D. Nessim, M. Seita, D. L. Plata, K. P. O’Brien, A. J. Hart, E. R. Meshot,
C. M. Reddy, P. M. Gschwend, and C. V. Thompson. Precursor gas chemistry

119



determines the crystallinity of carbon nanotubes synthesized at low temperature.
Carbon, 49(3):804–810, 2011.

[62] E. C. Neyts, Y. Shibuta, A. C. T. van Duin, and A. Bogaerts. Catalyzed growth
of carbon nanotube with definable chirality by hybrid molecular dynamics–force
biased Monte Carlo simulations. ACS Nano, 4(11):6665–6672, 2010.

[63] J. R. Norris. Markov chains. Cambridge series in statistical and probabilistic
mathematics. Cambridge University Press, 1997.

[64] A. J. Page, Y. Ohta, S. Irle, and K. Morokuma. Mechanisms of single-walled
carbon nanotube nucleation, growth, and healing determined using QM/MD
methods. Accounts of Chemical Research, 43(10):1375–1385, 2010.

[65] S. J. Park, A. J. Schmidt, M. Bedewy, and A. J. Hart. Measurement of carbon
nanotube microstructure relative density by optical attenuation and observation
of size-dependent variations. Phys. Chem. Chem. Phys., 15:11511–11519, 2013.

[66] J. M. Parker and H.-S. P. Wong. Synergetic carbon nanotube growth. Carbon,
62:61–68, 2013.

[67] D. L. Plata, A. J. Hart, C. M. Reddy, and P. M. Gschwend. Early evaluation of
potential environmental impacts of carbon nanotube synthesis by chemical vapor
deposition. Environmental Science & Technology, 43(21):8367–8373, 2009.

[68] D. L. Plata, E. R. Meshot, C. M. Reddy, A. J. Hart, and P. M. Gschwend. Multi-
ple alkynes react with ethylene to enhance carbon nanotube synthesis, suggesting
a polymerization-like formation mechanism. ACS Nano, 4(12):7185–7192, 2010.

[69] A. A. Puretzky, D. B. Geohegan, S. Jesse, I. N. Ivanov, and G. Eres. In situ
measurements and modeling of carbon nanotube array growth kinetics during
chemical vapor deposition. Applied Physics A: Materials Science & Processing,
81:223–240, 2005.

[70] R. Rao, D. Liptak, T. Cherukuri, B. I. Yakobson, and B. Maruyama. In situ
evidence for chirality-dependent growth rates of individual carbon nanotubes.
Nature Materials, 11:213–216, 2012.

[71] J.-Y. Raty, F. Gygi, and G. Galli. Growth of carbon nanotubes on metal nanopar-
ticles: A microscopic mechanism from ab initio molecular dynamics simulations.
Phys. Rev. Lett., 95:096103, Aug 2005.

[72] D. Schebarchov, S. C. Hendy, E. Ertekin, and J. C. Grossman. Interplay of
wetting and elasticity in the nucleation of carbon nanotubes. Phys. Rev. Lett.,
107:185503, Oct 2011.

[73] Y. Shibuta and S. Maruyama. Molecular dynamics simulation of formation pro-
cess of single-walled carbon nanotubes by CCVD method. Chemical Physics
Letters, 382(3–4):381–386, 2003.

120



[74] Y. Shibuta and S. Maruyama. A molecular dynamics study of the effect of a
substrate on catalytic metal clusters in nucleation process of single-walled carbon
nanotubes. Chemical Physics Letters, 437(4–6):218–223, 2007.

[75] B. E. Stine, D. O. Ouma, R. R. Divecha, D. S. Boning, J. E. Chung, D. L. Het-
herington, C. R. Harwoo, O. S. Nakagawa, and S.-Y. Oh. Rapid characterization
and modeling of pattern-dependent variation in chemical-mechanical polishing.
Semiconductor Manufacturing, IEEE Transactions on, 11(1):129–140, Feb 1998.

[76] F. A. Tal and E. Vanden-Eijnden. Transition state theory and dynamical cor-
rections in ergodic systems. Nonlinearity, 19(2):501, 2006.

[77] S. Tawfick, K. O’Brien, and A. J. Hart. Flexible high-conductivity carbon-
nanotube interconnects made by rolling and printing. Small, 5(21):2467–2473,
2009.

[78] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G.
Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer,
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