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CHAPTER I 

Introduction 

 

Missing data are a common problem in many empirical studies. In surveys, 

sampled units may be difficult to reach, or may refuse to respond to some or all of the 

survey questions, leading to unit or item nonresponse. In many cases we can obtain fully 

observed auxiliary variables, which may be used to predict the missing values. Useful 

auxiliary variables are predictive of the missing variables as well as the probability of 

observing these variables. 

In this dissertation we consider the problem of estimating the mean of an 

outcome variable subject to nonresponse, under a setting in which we have one or more 

fully observed covariates. Some commonly used methods to address the issue of 

nonresponse include complete case analysis, which estimates the mean using only 

observed values of the outcome, and multiple imputation, which models the outcome 

parametrically on the observed covariates. In these methods, we make assumptions 

regarding the relationship between the outcome and the predictors as well as the 

missing data mechanism. Violation of these assumptions, i.e. model misspecification, 

will lead to biased estimates of the mean. In the following chapters, we attempt to 
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address this issue by proposing methods for estimating the mean that are more robust 

to model misspecification. 

In the second chapter, we consider data in which the outcome is missing at 

random (MAR), where missingness depends only on the observed covariates. We 

explore a variety of doubly robust estimators (DR), which specify both a model for the 

mean and a model for the propensity to respond. While DR estimators are consistent if 

either the mean or propensity model is correctly specified, it is not clear which will 

perform best under different settings. We attempt to answer this question through 

simulations under a variety of scenarios, and compare the performances of each DR 

estimator with respect to its root mean squared error (RMSE), confidence interval width 

(CIW), and coverage rate. Finally, we apply the methods to an asthma study conducted 

at the University of Michigan. 

In many situations, the outcome may be missing not at random (MNAR), in 

which traditional MAR-based methods are biased. Chapter III proposes a modification of 

the pattern mixture model in Little (1994) for assessing nonresponse bias under MNAR. 

We assume a continuous outcome variable Y and a fully observed covariate X. The 

method adopts a Bayesian approach, and utilizes a robust spline model to estimate the 

mean of the outcome assuming that missingness depends on the value of X + λY for 

some λ. Estimates under different values of λ are presented to assess for sensitivity and 

potential for bias from MNAR. We then extend this analysis to a set of covariates Z. For 

simplicity, we reduce the set of Z into a single proxy X that is the best predictor of Y, 

obtained by regressing Y on Z for the respondents, and apply the method to the proxy X 
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and Y. We explore the properties of the proposed method and the original pattern 

mixture model in simulations and data from the asthma study conducted at the 

University of Michigan. 

In some cases we may be interested in estimating the mean of a binary variable. 

In the fourth chapter, we extend the analysis discussed in Chapter III to binary outcomes 

using a latent variable approach. Performances of the proposed extension are illustrated 

through simulations. 
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CHAPTER II 

A Comparison of Doubly Robust Estimators of the Mean with Missing Data 

 

2.1. Introduction 

In this chapter we consider the situation where we have a continuous survey 

outcome Y with r observations ({yi}, i = 1, …, r) and n - r nonresponses and a set of p 

covariates X1, …, Xp that are fully observed ({xi1, …, xip}, i = 1, …, n). Suppose R is an 

indicator variable that takes a value of 1 if Y is observed and 0 if Y is missing. We assume 

that Y is missing at random (MAR), so that the missingness of Y depends only on X1, …, 

Xp. The goal is to estimate μ, the mean of Y. 

A simple and common approach is to estimate μ using only the complete cases. 

The complete-case mean is inefficient if X is predictive of Y, because information from 

incomplete cases is lost, and biased if missingness of Y depends on the observed 

covariates X. An alternative to CC analysis is weighted complete case analysis (WCC), 

which estimates the mean by 𝜇̂ = ∑ 𝑤𝑖𝑦𝑖/𝑛𝑟
𝑖=1 , where 𝑤𝑖 is a weight calculated as the 

inverse of the estimated probability that R = 1 given a fully observed set of covariates X. 

WCC is consistent under MAR, but is less efficient than CC analysis if X is not associated 

with Y, particularly if X is highly associated with R (Little and Vartivarian, 2005). 
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Parametric imputation models for the distribution of Y given X can also be applied to 

impute or multiply impute the missing values of Y. While imputation can increase 

precision by exploiting information on the covariates, it is vulnerable to misspecification 

of the regression model, which may lead to bias. 

Doubly-robust (DR) estimators have been developed to protect against the 

effects of model misspecification and improve the robustness of estimates. An 

estimator of μ is DR if it is consistent when either the regression model for the mean 

function or the propensity to respond (the “propensity model”) is correctly specified.  In 

this chapter we consider the following DR estimators of the mean: 

1. Penalized spline of propensity prediction (PSPP), an approach that regresses Y on 

the estimated response propensity score flexibly via a penalized spline. 

2. Calibration (CAL) methods, with estimates of the form  

𝜇̂ = n-1(∑ 𝑦̂𝑖
𝑛
𝑖=1 ) + n-1[∑ 𝑤𝑖(𝑦𝑖 − 𝑦̂𝑖

𝑟
𝑖=1 )], 

a function of the predicted mean of the respondents and nonrespondents and a 

weighted average of the residuals. 

3. Modified calibration methods (MCAL), where the division of n in the weighted 

sum of residuals is replaced by (∑ 𝑤𝑖
𝑟
𝑖=1 ). 

In CAL and MCAL methods, 𝑦̂i may be estimated using either ordinary (OLS) or weighted 

least squares (WLS). In addition, Cao, et al. (2009) proposed a DR calibration estimator 

that has the smallest asymptotic variance among all calibration methods if the 

propensity score is correctly specified. 
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While these DR estimators are asymptotically consistent and efficient when 

either the model for the propensity or the mean function is well specified, it is not clear 

how to choose between them in applied problems, and in particular, their properties for 

finite sample sizes are of interest. Zhang and Little (2011) compared in a simulation 

study performances of PSPP, CAL, WCC, and a linear in weight prediction method (LWP), 

where Y is regressed linearly on the weights, under various scenarios of correct and 

incorrectly specified mean and propensity models. Results showed that PSPP yielded 

better estimates of μ in terms of root mean square error and confidence interval 

coverage than both LWP and CAL, with all three DR methods having large gains over 

WCC when the estimated propensity is incorrect. Although CAL and LWP generally 

yielded similar estimates of μ, CAL had superior precision at small sample sizes. In many 

applications it is advantageous to substitute the sum of response weights, ∑ 𝑤𝑖
𝑟
𝑖=1 , for n 

as in MCAL, since  ∑ 𝑤𝑖
𝑟
𝑖=1  provides some protection against large weights caused by 

small propensities. Moreover, using WLS in the regression of yi may offer improvements 

over OLS in CAL when the regression is not linear, where WLS helps to reduce bias in the 

mean. Furthermore, under a correct propensity model the alternative calibration 

method proposed in Cao, et al. (2009) promises superior asymptotic variance than both 

CAL and MCAL. Thus, it is of interest to further explore the properties of the various 

forms of calibration under different scenarios and how they compare with PSPP. In this 

chapter we expand the comparisons of CAL and PSPP in Zhang and Little (2011) to 

include other simulation scenarios, and the alternatives to CAL described above. 

Specifically, through simulations we will attempt to answer the following questions: 
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1. How do the bias and root mean squared error of the estimates of μ compare 

under different forms of model misspecification, as sample sizes vary from small 

to large? In particular: 

(a) How do the performances of DR estimates that multiply the weighted 

residuals by (∑ 𝑤𝑖
𝑛
𝑖=1 )-1 compare with analogous estimates that multiply the 

weighted estimates by n-1? 

(b) How does robustness and efficiency of the calibration methods compare 

when the calibration means are predicted by OLS vs. WLS, for various choices 

of regression weights (as discussed below)?  

(c) How do these calibration methods compare with the PSPP, which uses 

predictions from a robust model rather than calibration to achieve 

robustness? 

2. How wide and how close to the nominal coverage are the associated confidence 

intervals for the various methods? Additionally, what are the repeated sampling 

properties of the posterior distribution of μ based on a Bayesian implementation 

of PSPP, with reference prior distributions, and how do they compare with the 

PSPP method using a bootstrap estimate of the variance? 

In section 2.2, we present the various alternative methods in more detail. In 

section 2.3.1-2.3.5, we describe simulation studies designed to compare the methods 

under correctly and incorrectly specified regressions for the mean and propensity to 

respond, and evaluate the results based on root mean square error (RMSE) of estimates 

and width and coverage of confidence intervals under repeated sampling. In section 2.4 
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we apply the methods to data from an asthma intervention study. Concluding remarks 

and discussion are provided in section 2.5.  

 

2.2. Doubly Robust Estimators 
 
 All methods assume that Y is MAR, that is, Y and R are independent given X1, …, 

Xp, and are based on two regressions: (a) a regression model for Y on X1, …, Xp, 

estimated from the subsample of respondents, and (b) a regression for the propensity 

to respond, Pr(R = 1|X1, …, Xp), estimated from a logistic regression of R on X1, …, Xp  

using all the data. The DR property refers to consistent estimation of the mean of Y 

provided one of these two regressions is correctly specified. 

 

2.2.1. Calibration prediction by OLS – dividing by n 

Robins, et al. (1994) proposed a class of augmented inverse probability weighted 

estimators for the mean that calibrates predictions from a linear regression model with 

a weighted average of the residuals from observed outcomes. This method combines 

information from complete and incomplete cases by modeling both the outcome and 

propensity using a set of fully observed covariates X. The calibration estimator takes the 

form: 

                                       𝜇̂ = n-1(∑ 𝑦̂𝑛
𝑖=1 𝑖

𝑜𝑙𝑠
) + n-1[∑ 𝑤𝑖(𝑦𝑖 − 𝑦̂𝑟

𝑖=1 𝑖

𝑜𝑙𝑠
)]                                     (2.1)  

where 𝑦̂i
ols = E(yi|X1, …, Xp) is the predicted mean from the linear regression of Y on X, 

fitted by OLS, and 𝑤𝑖 = 1/𝑃𝑟̂(Ri = 1|X1, …, Xp) is the estimated inverse of the probability 

of response for the ith subject. The estimator is DR as it yields consistent estimates if 
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either the model for the prediction or propensity is correctly specified. Setting the 

predicted means to 0 results in the WCC estimate 𝜇̂ = ∑ 𝑤𝑖𝑦𝑖/𝑛𝑟
𝑖=1 . 

 

2.2.2. Calibration prediction by OLS – dividing by sum of weights 

An alternative form of the calibration estimator is to replace n-1 in the second 

part of (2.1) by (∑ 𝑤𝑖
𝑟
𝑖=1 )-1, the inverse of the sum of the estimated respondent weights, 

yielding: 

                              𝜇̂ = n-1(∑ 𝑦̂𝑛
𝑖=1 𝑖

𝑜𝑙𝑠
) + (∑ 𝑤𝑖

𝑟
𝑖=1 )-1[∑ 𝑤𝑖(𝑦𝑖 − 𝑦̂𝑟

𝑖=1 𝑖

𝑜𝑙𝑠
)]                                (2.2) 

In most cases ∑ 𝑤𝑖
𝑟
𝑖=1  will be approximately equal to n. However, (2.2) tends to reduce 

the effects of extreme weights caused by small propensity scores for some subjects, 

since in (2.2) these weights are propagated in the dominator of the second term. 

 

2.2.3. Calibration prediction by WLS 

 A third variation in the calibration estimator is to predict the outcome using WLS: 

                            𝜇̂ = n-1(∑ 𝑦̂𝑛
𝑖=1 𝑖

𝑤𝑙𝑠
) + (∑ 𝑤𝑖

𝑟
𝑖=1 )-1[∑ 𝑤𝑖(𝑦𝑖 − 𝑦̂𝑟

𝑖=1 𝑖

𝑤𝑙𝑠
)]                                 (2.3) 

where 𝑦̂i
wls is the predicted value of Y for the ith individual obtained by WLS with 

weights 𝑤𝑖. The property of WLS for a linear regression with an intercept implies 

∑ 𝑤𝑖(𝑦𝑖 − 𝑦̂𝑟
𝑖=1 𝑖

𝑤𝑙𝑠
) = 0, thus (2.3) reduces to 𝜇̂  = n-1(∑ 𝑦̂𝑛

𝑖=1 𝑖

𝑤𝑙𝑠
), the mean of the 

weighted predictions for the entire sample. WLS regression helps to reduce bias in the 

mean when the regression is not linear, and hence may be more effective than 

calibrating OLS estimates by the average of the weighted residuals. 
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2.2.4. Calibration prediction by Cao, et al. 

 In Robins, et al. (1994) and Tsiatis and Davidian (2007), all consistent and 

asymptotically normal estimators of μ when the propensity score model is correct are 

asymptotically equivalent to the estimator  

                                              𝜇̂ = n-1∑ [
𝑅𝑖𝑌𝑖

𝜋(𝑋𝑖,𝛾̂)
−

𝑅𝑖−𝜋(𝑋𝑖,𝛾̂)

𝜋(𝑋𝑖,𝛾̂)
ℎ(𝑋𝑖)] 𝑛

𝑖=1                                        (2.4) 

where π(Xi, 𝛾) = 𝑃𝑟̂(Ri = 1|X), estimated by logistic regression via maximum likelihood. 

This is equal to the estimator in (2.1) when ℎ(𝑋𝑖) = 𝑦𝑖̂ = 𝑚(𝑋𝑖, 𝛽𝑜𝑙𝑠), where 𝑚(𝑋𝑖, 𝛽𝑜𝑙𝑠) 

is the mean regression model with 𝛽̂ols estimated by ordinary least squares. This 

estimator has the smallest asymptotic variance among those in class (2.4) when the 

mean regression model is correct, but not when the mean regression model is 

misspecified, even if the propensity model is correct. Cao et al. (2009) propose an 

estimator of the form (2.4) with ℎ(𝑋𝑖) = 𝑦𝑖̂ = 𝑚(𝑋𝑖, 𝛽𝑜𝑝𝑡) that is DR and has the smallest 

asymptotic variance if either the propensity or mean regression model is correctly 

specified. To achieve this, 𝛽̂opt for the outcome regression model is estimated by solving 

jointly for (𝛽, c):  

∑ [
𝑅𝑖

𝜋(𝑋𝑖,𝛾̂) 

1−𝜋(𝑋𝑖,𝛾̂)

𝜋(𝑋𝑖,𝛾̂)
 {

𝑚′(𝑋𝑖 , 𝛽)
𝜋′(𝑋𝑖,𝛾̂)

1− 𝜋(𝑋𝑖,𝛾̂)

} {𝑌𝑖 − 𝑚(𝑋𝑖, 𝛽) − 𝑐𝑇 𝜋′(𝑋𝑖,𝛾̂)

1− 𝜋(𝑋𝑖,𝛾̂)
}]𝑛

𝑖=1  = 0 

where 𝑚′(𝑋𝑖, 𝛽) = d/d𝛽 [𝑚(𝑋𝑖, 𝛽)] and 𝜋′(𝑋𝑖, 𝛾) = d/dγ [ 𝜋(𝑋𝑖, 𝛾)]. 

If the mean regression model is misspecified, this estimator will still have smaller 

asymptotic variance than any estimator of the form (2.4), as long as the propensity 

model is correct. 
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2.2.5. Penalized spline of propensity prediction(PSPP) 

The PSPP method predicts the missing values of Y from the following mixed-

effects model: 

                                        Y = s(𝑃∗) + g(X2, …, Xp) + ε, ε ~ N(0, σ2)                                           (2.5) 

Where 𝑃∗ = logit[Pr(R = 1|X1, …, Xp)], and s(𝑃∗) is a penalized spline of the form 

                                        s(𝑃∗) = 𝛽0 + 𝛽1𝑃∗ + ∑ 𝛾𝑘(𝑃∗ − 𝜅𝑘)+ 𝐾
𝑘=1                                          (2.6) 

where a+ = a if a > 0 and a+ = 0 otherwise, and κ1 < … < κK are K equally spaced, fixed 

knots. γk are assumed normal with mean 0 and variance τ2. One of X1, …, Xp, here X1, is 

omitted in g() to avoid collinearity. In practice 𝑃∗ is unknown and estimated from the 

logistic regression of R on X1, …, Xp . 

The PSPP model may be fitted as a linear mixed model treating the splines as 

random effects. In our simulation, we adopt a Bayesian version of the PSPP model, 

where we assign a uniform prior for 𝛽 and inverse gamma priors with parameters (10-5, 

10-5) and (10-5, 10-5) for σ2 and τ2, respectively. We choose small values for these prior 

parameters in order to result in non-informative but proper priors. Inferences are based 

on the posterior predictive distribution of the mean of Y, computed using the Gibbs 

sampler (see Appendix for details of the algorithm). 

Since a property of propensity scores is that missingness of Y is independent of Y 

given 𝑃∗, to limit bias it is sufficient to model the relationship between Y and 𝑃∗ 

correctly.  As a result, predictions from the PSPP model have a DR property. That is, 

predictions of Y are consistent if either: 

a. E(Y|𝑃∗, X1 , …, Xp) = 𝛽0 + 𝛽1𝑃∗ + g(X2, …, Xp), or 
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b. E(Y|𝑃∗, X1 , …, Xp) = s(𝑃∗) and 𝑃∗ is correctly specified. 

The spline allows flexible modeling of the mean as a function of the propensity score.  

The parametric component g() is designed to increase precision, and the mean is 

consistently estimated even if the function g() is not correctly specified, if the propensity 

model is correctly specified. The PSPP model may be extended to non-normal outcomes 

using generalized linear models and appropriate link functions. 

 

2.3. Simulation studies 

 We study the performance of the estimators by comparing root mean square 

error (RMSE), and confidence interval width and coverage rate, under eight scenarios. 

We simulate 1000 data sets with sample sizes of 50, 100, 200, 400, and 800. The first 

four scenarios are adapted from Zhang and Little (2011), where either the regression of 

Y on X or the propensity model is misspecified. For each of these scenarios, we vary 

degrees of misspecification of both propensity and mean functions. The last four 

scenarios are taken from Kang and Schafer (2007), which were further studied by Cao et 

al. (2009). To address some limitations in the choices of misspecified models in Kang and 

Schafer (2007), we study four different combinations of correct and misspecified mean 

and propensity functions. 

We compare the performance of the estimators by their RMSE relative to the 

RMSE of the (infeasible) before deletion (BD) analysis, which estimates the average of all 

the values of Y with none of the values deleted. We define relative RMSE of an 

estimator as 
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RRMSEest = 100 x 
𝑅𝑀𝑆𝐸𝑒𝑠𝑡−𝑅𝑀𝑆𝐸𝐵𝐷

𝑅𝑀𝑆𝐸𝐵𝐷
 

where RMSE is the square root of the average mean square error over the 1000 samples.  

 We estimate the variances of the marginal means of Y for the methods via the 

bootstrap. For each replicate simulation, we apply the methods to 200 bootstrap 

samples, and variance is estimated as 

Varboot(𝜇̂) = 
1

199
∑ (𝜇̂(𝑏) − 200

𝑏=1 𝜇̅𝑏𝑜𝑜𝑡)2 

where 𝜇̂(b) is the estimated marginal mean of Y for the bth bootstrap sample and 𝜇̅boot is 

the average of estimated marginal means of Y over all bootstrap samples.  

For the Bayesian method of PSPP, we impute the missing values of Y by taking 

draws from the posterior predictive distribution of Y given X. This is implemented by 

drawing Y(d)|X, 𝛽 (d),γ(d) ~ N(s(𝑃∗) + g(X2, …, Xp), σ2(d)), where superscript (d) denotes the 

conditional draw of the parameter in the dth iteration of the Gibbs sampling algorithm. 

Applying the algorithm over a total of 10000 iterations and deleting the first 1000 for 

burn-in, we obtain D=9000 imputed data sets, and the variance of the marginal mean is 

estimated as 

Var(𝜇̂𝑃𝑆𝑃𝑃) = 
1

𝐷
∑ 𝑊𝑑

𝐷
𝑑=1  + 

𝐷+1

𝐷(𝐷−1)
∑ (𝜇̂𝑑 − 𝐷

𝑑=1 𝜇̅𝐷)2        

where Wd is the marginal variance in the dth imputed data set, 𝜇̂𝑑 is the estimated 

marginal mean in the dth imputed data set, and 𝜇̅𝐷 = 
1

𝐷
∑ 𝜇̂𝑑

𝐷
𝑑=1 .  

 We construct 95% confidence intervals (CI) for each of the 1000 samples and 

estimate the coverage rate as the proportion of the 1000 confidence intervals that cover 

the true value, where CI = (𝜇̂ – tn-1,0.975√𝑉𝑎𝑟(𝜇̂), 𝜇̂ + tn-1,0.975√𝑉𝑎𝑟(𝜇̂)), and tn-1,0.975 is the 
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97.5th percentile of the t distribution with n-1 degrees of freedom. Confidence interval 

widths, computed as CIW = 2*tn-1,0.975√𝑉𝑎𝑟(𝜇̂), are averaged over the 1000 samples. As 

with RMSE, we compare the interval width of the estimators relative to those of the BD 

analysis. The relative confidence interval width (RCIW) is defined as  

RCIWest = 100 x 
𝐶𝐼𝑊𝑒𝑠𝑡−𝐶𝐼𝑊𝐵𝐷

𝐶𝐼𝑊𝐵𝐷
 

 

2.3.1. Simulation 1: misspecified quadratic mean function and correct propensity model 

 In this scenario we generate missing values of Y under the following propensity 

model: 

                                                        logit[Pr(R = 1|X1, X2)] = α1X1                                              (2.7) 

and the true mean structure:                                                  

                                                         Y|X1 ~ N(1 + X1 + α2X1
2, 1)                                                (2.8) 

where X1 is a fully observed covariate with a standard normal distribution. For 

simulations 2.1-2.4, we vary the degree of dependence of R on X, setting α1=0.1 for low 

dependence and α1=0.5 for high dependence. In both cases the expected overall 

response probability is 0.5. We estimate the propensity (2.7) using a correctly specified 

logistic regression model, logit[Pr(R = 1|X1)] = 𝛼̂0 + 𝛼̂1X1. The mean function for Y in (2.8) 

in the calibration methods is misspecified as a linear rather than quadratic function of X1. 

We set α2=0.8 and α2=4 in (2.8) to simulate respectively low and high degrees of 

misspecification of the mean function. Figure A2.1 of the Appendix displays relationship 

between Y and X1 for respondents by levels of dependence of mean and propensity 

models, which shows clear misspecification of the mean model when X1
2 is not included 
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as a predictor, particularly at α2=4. The marginal mean is then estimated by the 

following methods: 

1. Calibration method (CAL) described in (2.1). 

2. The modified version of calibration (MCAL) described in (2.2). 

3. Calibration method (WCAL) where 𝑦̂i is now the prediction for the ith subject 

using a WLS regression of Y on X1, with weights being the inverse of the 

estimated response probability. 

4. The robust form of calibration (RCAL) proposed by Cao, et al. (2009). 

5. The PSPP method from (2.5) and (2.6) with a null g function. We choose the 

number of fixed, equally spaced knots for the penalized spline to be equal to 5, 

10, and 15 for sample sizes 50, 100, and 200 or more, respectively. We adopt 

both a Bayesian and maximum likelihood approach to this model. We note that 

this simulation set-up (unlike later ones) tends to favor PSPP over the other 

methods, since the spline on the propensity allows the true curvilinear 

relationship between Y and X1 to be approximated.  

Figure 2.1 displays the RRMSE for low (L) and high (H) degrees of dependence of 

the propensity model on X1, and low and high degrees of misspecification of the mean 

function. Thus, LH represents low dependence in the propensity model and high 

misspecification in the mean model. For comparison purposes we include inferences 

under two regression models without propensity adjustments: the correctly specified 

model (CORR) where the quadratic term is included in the regression for Y, and the 
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incorrectly specified regression model where the quadratic term is omitted (MISS). Due 

to similarity between CAL and MCAL, results for MCAL are not displayed in our figures.  

In all scenarios and sample sizes, PSPP yields the smallest RRMSE compared to 

the other methods, with the exception of the correctly specified model CORR. There was 

very little difference in RRMSE between Bayes and maximum likelihood versions of PSPP 

(see Appendix). The advantages of PSPP are most apparent when the mean of Y is 

strongly associated with X1
2 (LH and HH), as the splines help mimic the true quadratic 

relationship, as seen by RRMSEs close to those of the correctly specified regression 

model CORR. Among the calibration methods, RRMSEs for RCAL are consistently lower 

than those of CAL, MCAL, and WCAL, and approaches the RRMSE of PSPP and the 

correct model when the sample size and strength of association between R and X1 is 

high. Fitting the regression model using weighted least squares in WCAL results in 

similar RRMSE as MISS in LL and LH (where WCAL lines overlap with those of MISS in 

Figure 2.1), as weighting has minimal effect in correcting bias due to a weak 

dependence of propensity on X1. However, WCAL shows slight but consistent 

improvements in RRMSE over both CAL and MCAL, with higher gains when the 

propensity is strongly dependent on X1. MCAL has minimal gains over CAL in RMSE, as 

the sum of respondent weights is approximately equal to the sample size in this scenario. 

Relative width of 95% confidence intervals and coverage rates are shown in 

figures 2.2 and 2.3, respectively. Relative performances of the methods with respect to 

confidence interval widths are similar to RRMSE. PSPP has the smallest confidence 

interval in all scenarios, other than inferences under the correctly-specified model CORR. 
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RCAL has the smallest confidence interval width among all calibration methods except 

when sample size is 50 in LL and HL, which reflects its property of having the least 

asymptotic variance of its class when either the propensity or mean model is correctly 

specified. Both WCAL and MCAL perform similarly to MISS in LL and LH and show 

reductions in confidence interval widths over CAL, particularly at smaller sample sizes 

where response weights may be more variable. In such cases WLS estimation and 

summing the respondent weights may help to stabilize estimates of μ. 

All methods have coverage rates close to the nominal 95% in LL and HL and in LH 

and HH when sample sizes are 400 or more. Under-coverage is most apparent in smaller 

sample sizes when the degree of misspecification of the mean model is high (LH and HH). 

Both PSPP and RCAL tend to have coverage rates closer to the nominal 95% than CAL, 

MCAL, and WCAL. 

 

2.3.2. Simulation 2: misspecified mean function with interaction and correct propensity 

model 

 For this scenario, the missing values of Y are generated under the model: 

logit[Pr(R = 1|X1, X2)] = 0.25X1 - α1X2 

where α1 takes a value of 0.1 and 0.5 for respectively low and high degree of 

dependence of R on the covariates. As in scenario 1, we estimate the propensity by a 

correctly specified linear additive logistic regression model of R on X1 and X2. The 

regression of Y on the covariates is misspecified by including an interaction term in the 
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true distribution of Y given X1 and X2 that is included in correct model (CORR) but 

excluded in the other fitted models: 

Y|X1, X2 ~ N(1 + X1 + X2 + α2X1X2, 1) 

The strength of dependency of Y on the interaction between X1 and X2, is varied from 

low (α2 = 0.8) to high (α2 = 4) levels (see Figure A2.2 of Appendix for plots of Y on X1 and 

X2 for respondents). For the calibration methods, we predict 𝑦̂  using a linear regression 

of Y on X1 and X2. For PSPP we include only the linear term in X2 in the g() function, 

omitting X1  to avoid collinearity. Unlike the first simulation, the regression of Y is not 

well approximated in the PSPP model since the interaction term is omitted.  

 Figures 2.4-2.6 displays the RRMSE, relative confidence interval width, and 

coverage rates. As in the previous simulation, results for correctly specified (CORR) and 

misspecified (MISS) regressions are included for comparison, and MCAL is omitted since 

its results are similar to those of CAL.  

Figure 2.4 indicates that CORR has superior RRMSE to the other methods, so 

there is some penalty for misspecification regardless of method. In LL, where the 

propensity is weakly associated with X and the mean function is only slightly 

misspecified, all methods other than CORR achieved similar RRMSE except RCAL, which 

was inferior at smaller sample sizes. In other scenarios, RCAL has the lowest RRMSE at 

sample sizes of 200 to 800, while having the highest RRMSE when sample size is 50. 

PSPP yields similar or lower RRMSE than the CAL, MCAL and WCAL calibration methods, 

with larger gains in RRMSE in the HH situation. WCAL, while performing similarly to MISS 
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in LL and LH as shown by their overlapping lines in Figure 2.4, consistently outperforms 

CAL and MCAL particularly in the HH scenario. 

 Figure 2.5 shows results for confidence interval widths. Aside from the (correctly 

specified) CORR, PSPP yielded the narrowest confidence intervals, except for sample size 

800 in the HH scenario, where RCAL yielded narrower intervals. The asymptotic 

properties of RCAL are again illustrated in this simulation, where RCAL was the best of 

the calibration methods at large sample sizes but yielded much wider confidence 

intervals than the other methods at small samples, particularly sample size 50. MCAL 

shows reduction in interval widths over CAL when n = 50 in all four scenarios, but 

differences are minimal as sample size becomes large. As seen in RRMSE, WCAL results 

in large improvements in precision over CAL in HH. In LL, MISS yields lower confidence 

interval widths at small samples than the DR methods. This is perhaps due to the low 

dependence of Y on the interaction of X1 and X2, which MISS omits, resulting in only a 

slight departure from the correct model. In terms of coverages (Figure 2.6), RCAL tended 

to be conservative at small sample sizes. The other methods tended to have close to 

nominal or slightly anti-conservative coverage, with differences between PSPP, CAL, 

MCAL, and WCAL in coverage generally being minor. Improvements in coverage over the 

misspecified model (MISS) are evident at large sample sizes in the HH scenario, 

illustrating gains in the robust modeling methods.  

 

2.3.3. Simulation 3: misspecified discontinuous mean function and correct propensity 

model 
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 For this scenario, the missing values of Y are generated from the model logit[Pr(R 

= 1|X1,X2)] = α1X1 as in Simulation 1 and the distribution of Y given X1 and X2 is: 

Y|X1, X2 ~ N(5 + X1 + X1
2, 1) if X1<0, and 

Y|X1, X2 ~ N(-5 + 2X1, 1) if X1≥0 

when the degree of misspecification is low and: 

Y|X1, X2 ~ N(5 + X1 + X1
2 + X2 + 5X1X2, 1) if X1<0, and 

Y|X1, X2 ~ N(-5 + 2X1 + X2 + 5X1X2, 1) if X1≥0 

when the degree of misspecification is high (see Figure A2.3 of Appendix for plots of Y 

on X1 and X2 for respondents). Here, we introduce a discontinuity in the mean function 

of Y at X1 = 0. We estimate the propensity by a correctly specified logistic regression and 

the marginal mean of Y by the same methods as in Simulation 2. 

RRMSE, relative width of confidence interval, and coverage rates are shown in 

figures 2.7-2.9. In LL and HL cases, where Y is dependent only on X1, the penalized spline 

resembles the true mean function and consequently PSPP yields lower RRMSE than all 

methods other than CORR. However, in LH and HH when Y depends on both X2 and its 

interaction with X1, the two DR conditions of PSPP no longer hold, so the spline fails to 

model the true mean function correctly leading to RRMSE similar or worse than RCAL, 

WCAL, and CAL. Similar to previous scenarios, when the propensity is highly correlated 

with X, RCAL yields large RRMSEs in small sample sizes and decreases as sample size 

becomes larger. Overall, there is no distinguishable difference in RRMSE between the 

calibration estimators except in HH, where CAL and MCAL (omitted from figures due to 

similarity with CAL) have slightly higher RRMSEs than WCAL and RCAL. Moreover, as 
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seen in every scenario, there is little difference between MISS and WCAL estimates 

when the propensity is weakly correlated with X. 

Due to overfitting a discontinuous mean function, the correct regression model 

yields extreme confidence interval widths at sample size of 50. Similar to previous 

scenarios, we notice a sharp decrease in confidence interval width of RCAL as sample 

size increases. PSPP yields smaller confidence intervals than the calibration methods in 

LL, LH, and HL. In HH, however, all methods except CAL and MCAL yield similar interval 

widths at sample sizes greater than 100, again demonstrating gains in using WLS when 

both mean and propensity are highly correlated with X. In all cases, the methods cover 

the true value at a rate close to the nominal 95%, though we notice slight under-

coverage for PSPP in HH. 

 

2.3.4. Simulation 4: correctly specified mean function and misspecified propensity 

model 

 Unlike the previous simulations, in which we estimate the propensity under the 

correct model but use a wrongly specified prediction model, we now examine the 

performance of the estimators when the model for propensity is incorrectly specified 

but the mean function is correct. Y and R are generated under the same models as in 

Simulation 2. We then estimate the marginal means by regressing R on X1, Y on X1, X2, 

and X1X2, and applying the DR estimators. For PSPP, we include only X2 and X1X2 in the g() 

function, as s(𝑃∗) is linear on X1. 



 
 

22 
 

Results of RRMSE, relative confidence interval width, and coverage rate are 

displayed in figures 2.10-2.12. Under all sample sizes and situations, all methods yield 

similar RRMSE close to those of the correct model, though RCAL tends to have slightly 

higher RRMSE when sample size is 50. This simulation illustrates that when the mean 

model is correctly specified, there are negligible differences among the calibration 

methods as 𝑦̂ has no or negligible bias. Confidence interval widths are comparable for 

all methods at sample sizes greater than 50. As noted before, RCAL experiences a 

greater variation of estimates when the number of subjects is small, but precision 

increases drastically once sample size reaches 100. All methods yield coverage rates 

close to 95%.  

 

2.3.5. Simulations 5-8: scenarios from Kang and Schafer (2007) 

 We adopted scenarios from Kang and Schafer (2007) where we have a set of 

standard normal covariates Z1, …, Z4 and an outcome variable Y|Z1, …, Z4 ~ N(210 + 

27.4Z1 + 13.7Z2 + 13.7Z3 + 13.7Z4, 1). The true propensity model is logit[Pr(R = 1| Z1, …, 

Z4)] = -Z1 + 0.5Z2 – 0.25Z3 – 0.1Z4, and an additional set of covariates X1, …, X4 are defined 

as X1 = exp(Z1/2), X2 = Z2/(1+exp(Z1)) + 10, X3 = (Z1Z3/25 + 0.6)3, and X4 = (Z2 + Z4 + 20)2. 

Correctly specified mean and propensity models are fitted using a linear and logistic 

regression on Z, respectively, while incorrectly specified models are regressed on X. The 

scenario is designed such that a misspecified model is still nearly correct. We will apply 

the methods (CAL, MCAL, WCAL, RCAL, PSPP) to each of the four combinations of 

correctly and incorrectly specified mean and propensity models. 
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In these scenarios, we indicate a correctly specified model by C and a 

misspecified model by M. Thus, CM indicates a correctly specified propensity model but 

an incorrect mean function. Figure 2.13 displays the RRMSE of methods under the four 

combinations of correctly and incorrectly specified propensity and mean models. In CC 

and MC where the mean function is correctly specified but the propensity model may or 

may not be, all methods yield similar RRMSE close to those of the correct model, 

resulting in overlapping lines in Figure 2.13, and perform significantly better than the 

misspecified model. In CM, RCAL yields the lowest RRMSE at sample size of 100 and 

converges to those of the correct model as sample size increases. PSPP also outperforms 

both WCAL and CAL regardless of sample size. When both the propensity and mean 

models are misspecified, the DR methods yield large RRMSEs that are worse than those 

of the misspecified model, although RCAL tends to perform better at larger sample sizes. 

In both CM and MM, WCAL shows significant gains in RRMSE over its OLS counterparts 

CAL and MCAL (see Appendix). MCAL also yields noticeable improvements in RRMSE 

over CAL at sample size of 50 in CM, but differences become small afterwards. 

Results for relative width of confidence intervals are shown in Figure 2.14. 

Comparable to RRMSE, there is little difference in interval width between PSPP, RCAL, 

and WCAL when the mean model is correctly specified.  When the mean mode is 

incorrect, however, both RCAL and PSPP tend to yield lower interval widths at large 

sample sizes, with WCAL significantly outperforming both CAL and MCAL. All methods 

cover the true parameter at approximately the nominal 95% rate when either the 

propensity or mean model is correctly specified (Figure 2.15). When both models are 
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wrong, all methods exhibit bias that result in significant under-coverage, particularly at 

larger sample sizes. 

 

2.4. Example: asthma intervention study 

 We apply the methods to an asthma study conducted by the University of 

Michigan Schools of Public Health and Medicine, funded by the National Heart, Lung, 

and Blood Institute. The data consists of asthmatic children from Detroit elementary 

and middle schools randomized to the intervention or control group. The study aims to 

evaluate the effectiveness of the intervention, an education program, in reducing 

asthma symptoms within one year. However, since it is a well-known fact that asthma 

symptoms in children naturally decline as age increases, the focus of our analysis is to 

estimate the one-year change in asthma symptoms in the control group. Two primary 

measures were collected at baseline and one-year follow-up: the average number of 

days per month the subject experiences severe asthma symptoms, and the average 

number of nights per month the subject is waken up from asthma symptoms. Our goal is 

to estimate the mean change in days and nights with symptoms per month from 

baseline to one-year follow-up in the control group. 

 Baseline control data were collected from 696 children ages 6 to 14, out of which 

437 participated in the follow-up measurements. We assume the data are MAR. Only 

age at baseline was found to be significantly associated with response, as subjects who 

remained in the study were older than those who dropped out (9.9 vs. 9.4; P<0.001). 

Moreover, baseline age is significantly associated with the outcomes given the 



 
 

25 
 

respective baseline measurements, which are negatively associated with the outcomes. 

We first estimate the propensity by a logistic regression model on baseline age. Next, 

we apply the calibration estimators to estimate the mean one-year change in days and 

nights of symptoms per month separately using age and the respective baseline 

measurement as predictors. For PSPP, we model mean change via a spline on the 

estimated propensity and the baseline measurement in the g function. We then 

compare the DR estimates with those obtained from CC analysis 

 Table 2.1 displays the results for each estimator. For complete-case analysis and 

calibration methods, we construct 95% confidence intervals based on standard errors 

estimated from 200 bootstrap samples. For PSPP, we obtain the 95% credibility interval 

from the posterior distribution of the mean. Based on CC analysis, subjects on average 

experienced a decrease in both days and nights of symptoms per month from baseline 

to year one, with a larger decrease in days per month (-0.87 days per month vs. -0.44 

nights per month). Moreover, only decrease in days of symptoms per month is 

significantly different from 0, as 95% confidence intervals for nights per month cover 0 

for all methods. In general the estimated decrease in symptoms is smaller among DR 

methods than CC analysis, which is expected as older children tend to experience a 

greater decline in asthma symptoms and, in our sample, are more likely to remain in the 

study. The DR methods yield similar estimates of change in days and nights per month 

and there are only minor differences among CAL, MCAL, and WCAL. RCAL yields 

estimates closer to those of CC analysis while PSPP tends to fall in between RCAL and 

CAL.  
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 The similarity of the DR estimates can be explained by the fact that the key to 

effective propensity weighting, an element in all DR methods in this study, is modelling 

variables that are associated with both outcome and response. In our example, 

differences between respondents and non-respondents can be well-explained by the 

subjects’ age as age is the only variable highly associated with both response and 

decrease in symptoms.  

  

2.5. Discussion 

 DR estimators should yield consistent estimates of the mean as long as either the 

propensity or mean model is correct. In our simulations we compared five DR estimators 

for estimating the mean with missing data. Performances of these estimators are 

evaluated based on their root mean square errors, 95% confidence interval widths, and 

their associated rate of covering the true parameter. Overall, the DR methods tended to 

yield better inference than the incorrect model when either the propensity or mean 

models are correctly specified, as promised by the DR property. However, the DR 

methods were less successful for sample size n = 50, where the asymptotic DR property 

is less consequential. Also, if neither the propensity nor mean models are correct, the 

DR methods can yield estimates of the mean that are worse than those of an incorrect 

regression model. 

When the mean function is correctly specified, we see little difference in 

prediction and precision between the DR methods. In other settings, PSPP and RCAL 

tended to outperform the other DR methods, both in terms of RMSE and confidence 
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coverage.  When only the propensity model is correct, PSPP consistently yields better 

RMSE and precision than CAL, MCAL, and WCAL and outperforms RCAL when sample 

size is small or when the mean function has a smooth relationship with the propensity, 

such as in simulation 1 and in LL and HL of simulation 3. On the other hand, RCAL 

showed some gains in RMSE over PSPP for larger sample sizes in simulations 2 and 3. 

PSPP tended to have narrower confidence intervals, with coverage that was slightly anti-

conservative for small sample sizes; RCAL tended to have wider confidence intervals 

that were conservative in terms of confidence coverage. Among the calibration methods, 

RCAL yields lower RMSE and interval widths than CAL, MCAL, and WCAL, perhaps a 

reflection of its asymptotic property of having the least variance of its class. However, 

RCAL was noisier and tended to have wide confidence intervals for sample size n = 50. 

MCAL shows small but consistent gains in prediction and precision over CAL. This is 

especially true at smaller sample sizes, suggesting that dividing the weighted residuals 

by sum of the weights provides some protection against large weights caused by small 

propensities. The gains over CAL are even higher in WCAL when we estimate the 

regression coefficients by weighted least squares, suggesting that correcting bias in the 

regression coefficients via WLS is more effective than calibrating estimates by the 

weighted average of the residuals. However, when the correlation between propensity 

and X is low, WLS regression based on response weighting has little impact on bias of 

the regression coefficients, as witnessed by the similarity between MISS and WCAL in 

these situations. 



 
 

28 
 

 We estimated the variance of RCAL estimates using both bootstrap and 

sandwich methods. In small samples, we see a dramatic difference between bootstrap 

and sandwich estimates, as bootstrap typically yields larger estimates of variance. 

Consequently, we notice over- and under- coverage for bootstrap and sandwich 

methods, respectively. The difference becomes minimal in large samples. Lastly, 

Bayesian and likelihood-based inference for PSPP yielded similar estimates in this study, 

with the Bayesian method achieving better precision particularly at small sample sizes. 

 Although we designed our simulations to cover a wide range of possibilities 

involving the degree of misspecification of propensity and mean modes, conclusions of 

this study should not be extrapolated to conditions outside of our study. In our 

simulations we focused on normally distributed outcomes with a constant variance. 

Alternative variance structures and missing data mechanisms may be explored. The 

underlining assumption behind the DR methods is that the data are missing at random, 

and all the methods are subject to bias when the missing data mechanism is not MAR. 

 We have confined attention here to estimates of the overall mean. Extensions to 

inferences about other parameters, such as subclass means or regression coefficients, 

are also of interest. Weighting methods apply straightforwardly to inference about 

subclass means, whereas PSPP requires incorporating the subclass mean indicators in 

the robust model (Zhang and Little, 2008).  
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Figure 2.1. % increase in RMSE by method and sample size for simulation 2.1. 

 
 
Figure 2.2. % increase in confidence interval width for simulation 2.1. 
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Figure 2.3. Coverage rates for simulation 2.1. 

 
 

Figure 2.4. % increase in RMSE by method and sample size for simulation 2.2. 
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Figure 2.5. % increase in confidence interval width for simulation 2.2. 

 
 
Figure 2.6. Coverage rates for simulation 2.2. 
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Figure 2.7. % increase in RMSE by method and sample size for simulation 2.3. 

 
 
Figure 2.8. % increase in confidence interval width for simulation 2.3. 
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Figure 2.9. Coverage rates for simulation 2.3. 

 
 
Figure 2.10. % increase in RMSE by method and sample size for simulation 2.4. 
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Figure 2.11. % increase in confidence interval width for simulation 2.4. 

 
 
Figure 2.12. Coverage rates for simulation 2.4. 
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Figure 2.13. % increase in RMSE by method and sample size for simulation 2.5-8. 

 
 
Figure 2.14. % increase in confidence interval width for simulation 2.5-8. 
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Figure 2.15. Coverage rates for simulation 2.5-8. 

 
 
 
 
 
 
Table 2.1. One-year change in days and nights of symptoms per month 

 

Method 

Days per month Nights per month 

Mean 95% CI Mean 95% CI 

CC -0.87 (-1.70, -0.05) -0.44 (-1.09, 0.21) 

PSPP -0.79 (-1.52, -0.06) -0.41 (-1.04, 0.23) 

CAL -0.77 (-1.45, -0.10) -0.37 (-0.93, 0.18) 

MCAL -0.77 (-1.45, -0.10) -0.37 (-0.93, 0.18) 

WCAL -0.77 (-1.45, -0.10) -0.37 (-0.93, 0.18) 

RCAL -0.81 (-1.50, -0.13) -0.43 (-0.99, 0.12) 
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CHAPTER III 
 

Spline Pattern Mixture Models for Missing Data 
 
 
3.1. Introduction 

 In this chapter we consider data where our goal is to estimate the mean of a 

variable Y with n0 observed values ({Yi}, i = 1, …, n0), n1 missing values ({Yi}, i = n0+1,…, 

n0+ n1), when there is a set of p auxiliary variables Z1, …, Zp that are fully observed 

({Zi1, …, Zip}, i = 1, …, n, n = n0 + n1). Define the response indicator R taking values 1 if Y is 

observed and 0 if Y is missing. It is common to use methods that assume Y is missing at 

random (MAR) in the sense that R is independent of Y given the observed covariates 

Z1, …, Zp. Such methods include weighting class adjustments and imputation. Our 

methods build on a robust MAR imputation method called penalized spline of 

propensity prediction (PSPP, Zhang and Little, 2009). This method (a) estimates the 

propensity that R = 1 given Z1, …, Zp based on a logistic regression of R on Z1, …, Zp , using 

all the data, and (b) imputes Y based on the regression of Y on a penalized spline of the 

estimated propensity, with other covariates being included parametrically if they 

improve the predictions.  

MAR-based methods are generally biased in cases where the missingness is 

missing not at random (MNAR), meaning that missingness of Y depends not only on
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covariates Z but also on the value of Y itself. Schouten (2007) proposes a selection 

strategy for weighting variables that relaxes the MAR assumption. The method uses a 

generalized regression estimator to estimate the mean with auxiliary variables selected 

to minimize the maximal absolute bias under MNAR.  The selection strategy, however, is 

based on parameters estimated under the MAR assumption and thus may be invalid if 

the missing data mechanism deviates heavily from MAR. Pfeffermann and Sikov (2011) 

propose a method for estimating the mean under MNAR by specifying models for the 

outcome and propensity, which is allowed depend on both the outcome and auxiliary 

variables. The method assumes known population totals for some or all of the auxiliary 

variables in the two models and estimates the model parameters in a way that takes 

into account the known population totals.  

 The bivariate normal pattern-mixture model (BNPM) of Little (1994) assumes a 

bivariate normal distribution for a single observed covariate X and an outcome Y within 

strata defined by respondents and nonrespondents, with a different mean and 

covariance matrix in each stratum. Parameters of BNPM are identified by assumptions 

about the missing data mechanism. For instance, under MAR, where missingness is 

assumed to depend on X but not Y, the parameters of the regression of Y on X are the 

same for respondents and nonrespondents; as a result, the maximum likelihood (ML) 

estimate for the mean of Y is the regression estimate  µ̂𝑌 = 𝑌̅(1) + 
𝑠𝑋𝑌

𝑠𝑋𝑋
(𝑋̅  −  𝑋̅(1)), where 

𝑋̅ is the sample mean of X, 𝑋̅(1) is the respondent mean of X, 𝑌̅(1) is the respondent 

mean of Y, sXY is the respondent covariance of X and Y, and sXX is the respondent 

variance of X. When missingness is MNAR and is assumed to depend on Y but not X, the 
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parameters of the regression of X on Y are the same for respondents and 

nonrespondents; Little (1994) shows that the resulting ML estimate of the mean of Y  µ̂𝑌 

= 𝑌̅(1) + 
𝑠𝑌𝑌

𝑠𝑋𝑌
(𝑋̅  − 𝑋̅(1)), where sYY  is the respondent variance of Y. The approach is 

easily extended to allow missingness of Y to depend on Y* = X + λY for known λ, a 

parameter that can then be varied in a sensitivity analysis. ML, Bayesian and multiple 

imputation (MI) approaches to inference for this BNPM model are described in Little 

(1994). 

 An advantage of the BNPM model is that it does not need to specify an explicit 

functional form for the missing data mechanism, the mechanism entering in the form of 

restrictions on the model parameters. The modification of MAR regression estimation to 

MNAR models is straightforward, as seen in the estimate of the mean of Y above. 

However, validity of the estimates depends on bivariate normality of X and Y, which is a 

strong assumption. For example, if  X is normal and Y given X is normal with conditional 

mean a quadratic function of X, then the regression of X on Y is no longer linear, and ML 

estimates under the BNPM model are biased. In this chapter we study the impact of 

such forms of misspecification on inferences for the mean of Y.  

We also propose a modification of the BNPM model, spline-BPNM (S-BPNM), 

which replaces a parametric linear regression by a penalized spline, extending the PSPP 

method (which assumes MAR) to MNAR situations; in the case where missingness 

depends on Y, we model the regression of X on Y using a flexible penalized spline, rather 

than assuming a linear relationship. The resulting estimate of the mean of Y is shown in 

simulations to be more robust than BNPM to the distributional relationship between X 
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and Y. The approach can also be generalized to the case where missingness depends on 

Y* = X + λY for some known value of λ.  

We also consider cases with more than one covariate. In that context, proxy 

pattern-mixture model analysis (Andridge and Little, 2011) extends the BNPM model to 

data with an outcome Y and a set of p observed covariates Z1, …, Zp . The PPMA method 

replaces the set of covariates by a proxy X, the single best predictor of Y given the 

covariates, estimated by regressing Y on Z1, …, Zp for the respondents. The method then 

fits the pattern-mixture model in Little (1994) to Y and X. Bayesian forms of PPMA take 

into account the estimation of the coefficients of Z in the proxy variable X. This analysis 

relies on the bivariate normality assumption between the proxy X and Y, which is 

violated when some or all of the covariates Z1, …, Zp used to estimate X are not normally 

distributed. We propose a more flexible version of PPMA, which we call spline-PPMA (S-

PPMA), which relaxes the bivariate normality assumption between the proxy and Y by 

replacing the linear regression of of X on Y* implied by the bivariate normality with a 

penalized spline, allowing for a non-linear relationship between the variables.  

We conduct simulations to examine the performance of the new S-PPMA model, 

and in particular to address the following questions: 

1. How do inferences under S-BNPM and S-PPMA models compare with the original 

BNPM and PPMA methods in terms of bias, root mean squared error (RMSE) and 

coverage, for data sets generated under a variety of distributional assumptions? 

2. How sensitive are S-BPNM and S-PPMA models to alternative assumptions about 

the missing data mechanism? 
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In the next section, we present the S-BNPM and S-PPMA models in detail. We 

then assess their performance in simulation studies under a variety of distributional 

assumptions for the auxiliary variables and missing data mechanisms.  

 

3.2 Pattern-mixture model analysis 

 We consider first bivariate data on X and Y, with X observed for the entire 

sample and Y subject to missing data, and let R = 1 if Y is observed and R = 0 if Y is 

missing. Little (1994) assumes the BNPM model   

                                       (Y, X|ф(r), R = r) ~ 𝑁2 (
µ𝑌

(𝑟)

µ𝑥
(𝑟) ,   [

𝜎𝑌𝑌
(𝑟)

𝜎𝑋𝑌
(𝑟)

𝜎𝑋𝑌
(𝑟)

𝜎𝑋𝑋
(𝑟)

]) (3.1) 

R ~ Bernoulli(π) 

 where 2 ( , )N    denotes the bivariate normal distribution with mean  and covariance 

matrix  . Since we have no data on Y for the nonrespondents (R = 0), we cannot 

estimate all of the parameters in (4.1) for R = 0 without further assumptions. If assume 

that the missingness of Y depends only on X, we can factor the joint distribution of (X, Y, 

R) into  

p(X, Y, R|ф, π) = p(Y|X, R, ф)p(X|R, ф)p(R|π) 

Under the bivariate normality assumption and the property that the distribution of Y 

given X is independent of R, the parameters of the regression of Y on X are the same for 

R = 1 and R = 0, leading to a just-identified model. Little (1994) derives the ML estimates; 

in particular the ML estimate for µ̂𝑌, the mean of Y averaging over R, is  

                                                     µ̂𝑌 = 𝑌̅(1)  + 
𝑠𝑋𝑌

𝑠𝑋𝑋
(𝑋̅  −  𝑋̅(1)) (3.2) 
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Suppose now that missingness of Y depends on Y but not X. This implies that the 

parameters of the regression of X on Y are the same for R = 1 and R = 0, again leading to 

a just-identified model. The resulting ML for µ̂𝑌 averaging over R is 

                                                     µ̂𝑌 = 𝑌̅(1)  + 
𝑠𝑌𝑌

𝑠𝑋𝑌
(𝑋̅  −  𝑋̅(1)) (3.3) 

(Little, 1994), where sYY is the respondent variance of Y.  

More generally, suppose that missingness of Y depends on the value of Y* = X + 

λY for a given λ. Little (1994) shows that the ML estimate for µ̂𝑌 averaging over R is then 

                                                µ̂𝑌 = 𝑌̅(1)  + 
𝜆𝑠𝑌𝑌+𝑠𝑋𝑌

𝜆𝑠𝑋𝑌+𝑠𝑋𝑋
(𝑋̅  − 𝑋̅(1)) (3.4) 

It is easy to see that (3.4) reduces to (3.2) when the data is MAR (λ = 0), and to (3.3) 

when missingness depends only on Y (λ = ∞).  In practice, the data often provide no 

information about the value of λ. Little (1994) suggests a sensitivity analysis to capture 

the uncertainty about λ by estimating  µ̂𝑌 over a range of λ. Large differences in µ̂𝑌 over 

λ suggest that inferences on µ̂𝑌 are sensitive to assumptions about the missing data 

mechanism. Alternatively, we can specify a prior distribution that reflects the 

uncertainty about the choice of λ. 

 

3.2.1 Spline pattern-mixture model 

The BNPM model estimates rely heavily on the bivariate normality assumption 

between X and Y. For example, (X, Y) is not bivariate normal if (a) the conditional 

distribution of Y|X is normal with E(Y|X) = 10 + X and the marginal distribution of X is 

gamma, or (b) X is normal but the regression of Y on X is quadratic in X; in such cases the 

estimates from the BNPM model are potentially biased even under the correct value of 
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λ. We propose a penalized spline regression (S-BNPM) model for X and Y that relaxes the 

bivariate normality assumption. 

Suppose that missingness depends on the value of Y* = X + λY for some known λ > 

0. The conditional distribution of X|Y* is then the same for respondents and 

nonrespondents, The S-BNPM method creates multiple imputations of the missing 

values of Y* (and hence Y = (Y* - X) / λ) so that the regression of X of Y* for respondents 

(where Y* is observed) and nonrespondents (where Y* is imputed) follows the same 

spline regression model: 

                                           X = 𝛽0 + 𝛽1𝑌∗ + ∑ 𝛾𝑘(𝑌∗ − 𝜅𝑘)+ 𝐾
𝑘=1 + ε (3.5) 

ε ~ N(0, σ2) 

γk ~ N(0, τ2) 

where a+ = a if a>0 and a+=0 otherwise, and κ1 < … < κK are K equally spaced knots. The 

model may be fitted to the respondent data using a linear mixed model, treating the 

splines as random effects. Here, we adopt a Bayesian approach by assigning a uniform 

prior for 𝛽 and inverse gamma (10-5, 10-5) priors for σ2 and τ2, and obtain draws from 

their posterior distributions using a Gibbs sampler (See Appendix for details of the 

algorithm). 

 We then adopt a hot deck procedure (Andridge and Little, 2010) to impute the 

missing values of Y*, where the missing value of Y* is imputed with the observed value 

of a matched donor with X and Y* observed. The method involves the following steps: 

1. Draw B values of 𝑌∗ for each nonrespondent from the distribution of 𝑌∗|𝑋, 𝑅 = 0, 

estimated under the BNPM model. This results in a pool of n1*B values of 𝑌∗ 
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({𝑌𝑝
∗}, p = 1, …, n1*B). In the simulations in Section 3.3 a value of B = 100 is 

sufficient. 

2. Given each 𝑌𝑝
∗  in the pool, draw a value 𝑋𝑝  from the posterior predictive 

distribution of 𝑋|𝑌∗ in (3.5), with parameters estimated from respondents. This 

results in a set of pairs of ({𝑋𝑝, 𝑌𝑝
∗}, p = 1, …, n1*B) that form our donor pool. 

3. For each nonrespondent j, choose a pair (𝑋𝑘, 𝑌𝑘
∗) from the donor pool ({𝑋𝑝, 𝑌𝑝

∗}, 

p = 1, …, n1*B) with the closest value 𝑋𝑘 to 𝑋𝑗, and impute 𝑌𝑗
∗ = 𝑌𝑘

∗ (hence 𝑌𝑗 = 

(𝑌𝑘
∗ - 𝑋𝑗) / λ) from that pair. 

4. Repeat steps 2-3 above for 2000 iterations, deleting the first 1000 as burn-in and 

using every other 10 iterations to create D = 100 multiply-imputed data sets with 

values of 𝑌 imputed.  

Using multiple imputation combining rules (Rubin, 1987) we obtain µ̂𝑌 and its 

variance 

                                                                µ̂𝑌 = µ̂𝐷 = 
1

𝐷
∑ µ̂𝑑

𝐷
𝑑=1  (3.6) 

                                     𝑉𝑎𝑟(µ̂𝑌) = 
1

𝐷
∑ 𝑊𝑑

𝐷
𝑑=1  + 

𝐷+1

𝐷(𝐷−1)
∑ (𝜇̂𝑑 − 𝐷

𝑑=1 𝜇̅𝐷)2 (3.7) 

where 𝜇̂𝑑 and Wd are the estimated marginal mean and variance in the dth imputed data 

set, respectively.  For the MAR assumption of λ = 0, we apply a Bayesian form of the 

PSPP method (Zhang and Little, 2009). Specifically, we regress Y on a spline of X using 

the complete cases and impute Y by drawing directly from its predictive posterior 

distribution in (3.5) given the observed X(1) for each iteration of the Gibbs algorithm.   



 
 

45 
 

 The underlying rationale of the procedures is as follows. Since the unobserved Y* 

is a covariate in our spline model (3.5), we cannot impute Y* by drawing directly from a 

model. Thus we first create a donor pool of values ({𝑌𝑖𝑏
∗ }, b = 1, …, B, i = n0 + 1, …, n0 + n1)  

as draws from the BNPM model. For each donor in the pool, we create a corresponding 

value of X as a prediction from the spline model (3.5). We then match each incomplete 

case to a member of the donor pool with a similar value of X, and impute for that case 

the corresponding value of Y* from the donor. When the data are normal, the “hot-deck” 

matching step has little effect on the final imputations of Y*. However, when data 

deviates from normality, the pairs (X, Y*) resulting from the hot-deck respect the spline 

model (3.5) and hence should improve on the imputations from the BNPM model, which 

incorrectly assume a linear relationship between X and Y*. In practice, we create 

multiple initial draws of Y* for each nonrespondent, as a large value of B allows 

flexibility in the nonlinearity adjustment by S-BNPM and ensures a close match with the 

donors for every observed X. In the following examples we find a value of B = 100 to be 

sufficient to ensure a near-identical match in X. 

As in the original BNPM model, the S-BNPM model utilizes the fact that, 

conditional on the variables contributing to missingness, the regression model 

parameters are the same for both respondents and nonrespondents. However, the 

penalized spline improves robustness of the pattern mixture model by allowing us to 

model nonlinearity in the relationship between X and Y. As suggested in Little (1994), 

inferences for µ̂𝑌 should be displayed for a range of potential values of λ to account for 



 
 

46 
 

uncertainty about the true value of λ and to assess sensitivity of inferences to the choice 

of λ. 

 

3.2.2 More than one covariate: extensions of proxy pattern-mixture model analysis 

 There may be multiple observed covariates Z1, …, Zp that are predictive of µ̂𝑌. 

Andridge and Little (2011) proposed an extension of the pattern-mixture model analysis 

by taking X as a proxy obtained by regressing Y on the set of Z1, …, Zp and replacing the 

set of covariates by X, the estimated best predictor of Y given Z1, …, Zp. Proxy pattern-

mixture model analysis (PPMA) then estimates µ̂𝑌  by applying the pattern-mixture 

model in Little (1994) to X and Y. The advantage of reducing Z1, …, Zp to X is simplicity: 

modelling departures from MAR under one sensitivity parameter λ is much simpler than 

specifying a model with p sensitivity parameters for each of Z1, …, Zp. Moreover, should 

missingness depend on some other combination of Z (e.g. W = αZ), estimates for the 

mean of Y are still approximately unbiased since Y is independent of W given X. 

 Andridge and Little (2011) showed that the uncertainty of the estimates of µ̂𝑌 

depends largely on the degree of correlation between the proxy X and Y as well as the 

degree of similarity between respondents and nonrespondents with respect to the value 

of X. When X and Y are highly correlated and the values of X are similar for respondents 

and nonrespondents, information on missing values of Y and evidence on the lack of 

response bias are both strong, resulting in estimates of µ̂𝑌 with high precision. However, 

if X and Y are weakly correlated and the values of X are much different for respondents 
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and nonrespondents, we have strong evidence for response bias with little information 

on the missing values of Y, resulting in estimates of µ̂𝑌 with high uncertainty.  

 

3.2.3 Spline-proxy pattern-mixture model 

 As in the bivariate case, validity of the proxy pattern-mixture model proposed by 

Andridge and Little (2001) when data are MNAR relies on the assumption of bivariate 

normality between the proxy X and Y, which is  violated when some or all of the Z1, …, Zp 

used to obtain X are not normally distributed. Suppose, for example, Z is a fully 

observed standard normal variable and Y given Z is normal with mean Z + Z2. Let X be a 

proxy from the regression of Y on Z and Z2. When the data is MAR, X is an unbiased 

predictor of Y, hence estimates from the pattern-mixture model under λ = 0 are 

unbiased. However, when missingness depends on Y, the resulting proxy X is no longer 

an unbiased predictor of Y since the regression coefficients in the regression of Y on Z 

and Z2 based on the respondents are biased for the nonrespondents. Since X is some 

function of Z and Z2 which is not normally distributed, the assumption of bivariate 

normality, hence linearity, with Y fails, resulting in biased estimates for all values of λ. 

 We propose a modification of the proxy pattern-mixture model that relaxes the 

assumption of bivariate normality between X and Y. Suppose, as before, X is the 

predicted value of Y based on regression of Y on Z1, …, Zp for the complete cases, and 

that missingness depends on the value of Y*. The conditional distribution of X given Y* is 

independent of R and the regression coefficients of X on Y* are the same for both 

respondents and nonrespondents. The model proposed in Andridge and Little (2011) 
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assumes linearity between X and Y, and hence Y*, which as discussed may not be 

appropriate when X and Y are not bivariate normal. Thus, we propose a spline-proxy 

pattern mixture model analysis (S-PPMA) to describe the relationship between X and Y. 

Under S-PPMA, we first estimate the proxy based on a complete-case regression of Y on 

Z1, …, Zp as in Andridge and Little (2011), and set X as the predicted value of Y from this 

regression. Then, we apply a penalized spline model to X and Y and estimate µ̂𝑌 as 

discussed in section 2.1. As in the bivariate model, we believe S-PPMA will further 

enhance the robustness of PPMA by relaxing the bivariate normality assumption. 

 In the next section, we describe simulation studies to assess the performance of 

S-PPMA under various distributions of Z1, …, Zp, Y, and missing data mechanisms. For 

comparison we include estimates from the proxy pattern-mixture model proposed in 

Andridge and Little (2011). 

 

3.3. Simulation studies 

 We assess the performance of S-PPMA for inferences about the mean of Y with 

respect to average bias, root mean square error, 95% confidence interval width, and 

rate of confidence interval non-coverage over 1000 replications and six scenarios. For 

each replication, we construct 95% confidence intervals and estimate the non-coverage 

rate as the proportion of the 1000 confidence intervals that do not cover the true value, 

where 95% CI = (µ̂𝑌 – tn-1,0.975√𝑉𝑎𝑟(µ̂𝑌), µ̂𝑌 + tn-1,0.975√𝑉𝑎𝑟(µ̂𝑌)), tn-1,0.975 is the 97.5th 

percentile of the t-distribution with n-1 degrees of freedom, and 𝑉𝑎𝑟(µ̂𝑌) is the 

estimated variance of the mean from (3.7). Confidence interval widths (CIW) are 
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computed as CIW = 2*tn-1,0.975√𝑉𝑎𝑟(µ̂𝑌). For all simulations, we set sample sizes of n = 

100 and n = 400. 

For the first scenario, we assume bivariate normal data of X and Y and compare 

estimates of the mean of Y under BNPM and S-BNPM models. For scenarios 2-5, we 

assume a set of fully observed covariates Z1, …, Zp. Here, we first obtain the proxy X 

from a correctly specified regression of Y on Z1, …, Zp using the respondent sample. Then, 

we estimate the mean of Y using three methods 

1. We estimate apply the S-PPMA model to X and Y using a penalized spline in (3.5). 

(S-PPMA) 

2. We assume bivariate normality between X and Y and estimate µ̂𝑌 via maximum 

likelihood in (3.4) as originally proposed in Andridge and Little (2011). Variance is 

estimated using 200 bootstrap samples. (PPMA-ML). 

3. We assume bivariate normality between X and Y and draw µ̂𝑌 from its posterior 

distribution as described in Little (1994). 95% credibility intervals and coverage 

are based on draws from the posterior distribution. (PPMA-BAYES) 

Let λT be the true, unobservable value of λ generating missing data, and let λA be 

the assumed value of λ in our models. For each scenario, we simulate nonresponse 

using λT = 0, 1 and ∞. To assess sensitivity of inferences to λA, we produce estimates 

under λA = 0, 1 and ∞ for each value of λT, one of which corresponds to the true 

underlying value of λT. While inferences under additional values of λA may be explored, 
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we chose these three values to capture a range of potential missing data mechanisms. 

In the following section, only results for which λA = λT are shown (for rest, see Appendix). 

 

3.3.1. Scenario 1: bivariate normal data 

We assume a fully observed covariate X and a Y that is bivariate normal with X 

and subject to missingness. The data is generated under the following pattern-mixture 

model with a sample size of n = 400: 

R ~ Bernoulli(0.5) 

X, Y|R = 1 ~ 𝑁2 (
0
0

, [
1 0.5

0.5 1
]) 

X|R = 0 ~ N(1, 1) 

In this and all subsequent scenarios, nonresponse rates are approximately 50%. 

For simplicity we only display results at n = 400, as results for n = 100 are generally 

similar. Figure 3.1 displays performances of each estimator in terms of average bias, 

root mean squared error (RMSE), 95% confidence interval width (CIW), and its 

corresponding non-coverage rate out of 1000 replications when λA = λT. In the figure, 

the true missingness of Y depends on X + λTY for λT = 0, 1, and ∞. Results show little 

differences between the methods in bias, RMSE, and CIW regardless of λA in all values of 

λT (results for λA ≠ λT in Appendix). As expected, when λA = λT, all estimates are 

approximately unbiased and non-coverages are near the nominal 5%, as BNPM is the 

correct model for the data. Moreover, CIW increases as λT increases, reflecting a rise in 

uncertainty as a result of nonresponse due to Y. We notice that the CIW for S-BNPM at 

λA = ∞ is narrower than that for BNPM under both ML and Bayes for all values of λT. This 
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may be due to a small correlation of 0.5 between X and Y, which may lead to a large 

value of 
𝑠𝑌𝑌

𝑠𝑋𝑌
 in (3.3) and consequently an extreme µ̂𝑌 . In S-BNPM, the process of 

generating multiple initial draws of the missing Y and matching on the donor pool based 

on predictions from the spline model helps to alleviate this problem as draws of X from 

extreme values of Y are less likely to be matched to observed values of X, leading to less 

extreme imputations in this particular scenario. 

 

3.3.2. Scenario 2: bivariate non-normal data 

Suppose X is a fully observed, gamma-distributed covariate and Y is normal 

conditional on X and is subject to missingness. We generate the data under a selection 

model with a sample size of n = 400: 

X ~ Gamma(1, 1/4) 

Y|X ~ N(10 + X, 1) 

We generate missing value of Y under the following models to reflect both MAR and 

MNAR scenarios, assuming an unobserved latent variable U 

A. U|X, Y ~ N(-1.5 + 0.5X, 1)   (λT = 0) 

B. U|X, Y ~ N(-2.5 + 0.15(X + Y), 1)  (λT = 1) 

C. U|X, Y ~ N(-3.5 + 0.25Y, 1)   (λT = ∞) 

where Y is missing if U > 0 and observed otherwise. 

 In this scenario we include estimates from the true model, which models Y* on U 

and X for λ > 0, since Y* and U are bivariate normal conditional on X. Since U is 
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unobserved, we estimate U and produce posterior draws of the missing Y* iteratively by 

the following steps, where 𝑌̂∗(𝑅=0,𝑖=1)
 are imputations of Y* at the ith iteration and 

𝑌̂∗(𝑖=1)
 are the observed and imputed values for the whole sample: 

1. Initialize values of 𝑌̂∗(𝑅=0,𝑖=1)
 and 𝑈̂(𝑖=1)  by setting 𝑌̂∗(𝑅=0,𝑖=1)

 as predictions 

from the regression of 𝑌̂∗(𝑅=1)
|X(R=1), and draw 𝑈̂(𝑖=1) from a normal distribution 

with variance 1 and mean 𝑍𝜋̂ - 𝑌̅∗(𝑖=1)
 + 𝑌̂∗(𝑖=1)

, where 𝜋̂ is the nonresponse rate, 

𝑍𝛼 is the αth percentile of the standard normal distribution, and 𝑌̅∗(𝑖=1)
 is the 

mean combining the observed 𝑌∗(𝑅=1)  and the initialized 𝑌̂∗(𝑅=0,𝑖=1)
. For 

respondents, positive values of 𝑈̂(𝑖=1) are discarded and redrawn until all values 

are negative. Likewise for nonrespondents, we discard and redraw negative 

values of 𝑈̂(𝑖=1). 

2. At the ith iteration, draw 𝑌̂∗(𝑅=0,   𝑖)
| 𝑈̂(𝑅=0,   𝑖−1) , X(R=0) from the posterior 

predictive distribution based on a linear regression of 𝑌̂∗(𝑖−1)
|𝑈̂(𝑖−1), X on the 

entire imputed sample with values 𝑌̂∗(𝑅=0,   𝑖−1)
 and 𝑈̂(𝑖−1)  drawn from the 

previous iteration. 

3. Obtain posterior predictive draws of 𝑈̂(𝑖)|𝑌̂∗(𝑖)
 based on a linear regression 

model of 𝑈̂(𝑖−1)|𝑌̂∗(𝑖)
 for the entire sample. We again discard and redraw all 

positive values of 𝑈̂(𝑖) for respondents and negative values of 𝑈̂(𝑖) for 

nonrespondents. 
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4. Repeat steps 2 and 3 over 1000 iterations, discarding the first 100 as burn in. We 

then apply (3.6) and (3.7) over the 900 imputed sets of 𝑌̂∗ to estimate the mean 

and variance. 

For λ = 0, we impute the missing Y based on posterior predictive draws from the 

regression of Y on X on the complete cases. 

 Figure 3.2 displays results under λA = λT for λT = 0, 1, and ∞. When λT = 0, all 

methods are unbiased, with S-BNPM having slightly higher RMSE and more conservative 

95% confidence intervals. Since data is MAR and Y|X is normal with a mean that is linear 

on X, the BNPM model is correctly specified and thus it is not surprising that its 

estimates are unbiased and have better precision than S-BNPM. However, when λT = 1, 

linearity assumptions for X|Y* are violated, and consequently we see bias and under-

coverage by BNPM. Here, S-BNPM shows reductions in bias and to a lesser extent RMSE, 

and achieves near nominal 5% non-coverage with a minor penalty in RMSE and 

precision compared to the true model. The heavier the data deviates from MAR, the 

higher the gains in bias and RMSE from S-BNPM, as evident in the results under λT = ∞. 

S-BNPM shows a noticeable improvement in RMSE over BNPM and still yields close to 

nominal non-coverage. Robustness to normality, however, comes at the price of 

precision, as S-BNPM tends to yield wider intervals than both BNPM and the true model. 

 

3.3.3. Scenario 3: set of normal Z’s 

In this scenario, we assume a set of covariates that are normally distributed. Let 

Z1, Z2, Z3 be fully observed covariates with distributions 
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Z1 ~ N(0, 1) 

Z2 ~ N(0, 1) 

Z3 ~ N(0, 1) 

Y|Z1, Z2, Z3 ~ N(15 + Z1 + 2Z2 + Z3, 1) 

Let Y be missing under the following logistic models 

A. Logit[Pr(R = 0)] = 0.5(Z1 + 2Z2 + Z3)     (λT = 0) 

B. Logit[Pr(R = 0)] = -3.5 + 0.25(0.98Z1 + 1.95Z2 + 0.98Z3 + Y)  (λT = 1) 

C. Logit[Pr(R = 0)] = -7.5 + 0.5Y      (λT = ∞) 

D. Logit[Pr(R = 0)] = 2Z2 

E. Logit[Pr(R = 0)] = -7.5 + 0.5(2Z2 + Y) 

For each missing data mechanism, we obtain the proxy X by regressing Y on Z1, Z2, 

and Z3 apply the estimators to X and Y. Figure 3.3 shows results for λA = λT, with λT = 0, 1, 

and ∞ (see Appendix for rest of results). In addition there are two nonresponse 

mechanisms, D and E, that do not correspond to any λT. When λT = 0, Y is MAR, λA = 0 is 

the correct assumption about nonresponse and as a result all estimators are 

approximately unbiased and yield similar RMSE, confidence interval widths, and near-

nominal non-coverage of 5%. For values of λA = 1 and ∞ when λT = 0, all three methods 

exhibit bias, with negligible differences in RMSE, CIW, and non-coverage. Similarly when 

λT = 1 and ∞, values of λA such that λA = λT result in negligible bias and near nominal 

non-coverage for all estimators. For values of λA such that λA ≠ λT, all methods are biased 

with higher than nominal non-coverage, as expected given that the assumptions about 
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nonresponse are wrong. Results for mechanism D (see Appendix) are generally similar to 

those of A, where λT = 0. Here, all methods have negligible bias and nominal non-

coverage at λA = 0 and yield similar RMSE and CIW at all values of λA. In mechanism E, all 

methods have minor bias at λA = 1 and cover the true mean at a rate close to 95%, with 

minor differences in RMSE and CIW regardless of λA. In this scenario, nonresponse 

mechanisms D and E do not deviate much from mechanisms A and B, which explains the 

similarity of results. 

This scenario assumes that all auxiliary variables are normally distributed, 

resulting in a proxy X that is normal and linear with Y regardless of the nonresponse 

mechanism. As such the methods in Andridge and Little (2011) produce valid estimates 

under the correct value of λA. We again notice that S-PPMA tends to yield slightly more 

conservative confidence intervals than PPMA, which suggests there is some penalty in 

precision from fitting a more robust model when normality assumptions are met. 

 

3.3.4. Scenario 4: varying distributions of Z 

 Let Z1, Z2, Z3 be fully observed covariates with the following distributions 

Z1 ~ N(0, 1) 

Z2 ~ GAMMA(1, 1) 

Z3 ~ BERNOULLI(0.5) 

Y|Z1, Z2, Z3 ~ N(10 + Z1 + 4Z2 + Z3, 1) 

Let Y be missing under the following logistic models simulating different response 

mechanisms 
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A. Logit[Pr(R = 0)] = -2 + 0.5(Z1 + 4Z2 + Z3)    (λT = 0) 

B. Logit[Pr(R = 0)] = -4.5 + 0.25(0.98Z1 + 3.9Z2 + 0.98Z3 + Y)  (λT = 1) 

C. Logit[Pr(R = 0)] = -7 + 0.5Y      (λT = ∞) 

D. Logit[Pr(R = 0)] = -1 + Z2 

E. Logit[Pr(R = 0)] = -4 + 0.25(2Z2 + Y) 

We obtain the proxy by regressing Y on Z1, Z2, and Z3 using respondent data and 

apply the estimators under λA = 0, 1 and ∞. Results for which λA = λT are shown in Figure 

3.4 (see Appendix for rest of results). Mechanisms D and E do not correspond to any 

value of λT. In this scenario we vary the distributions of the auxiliary variables and the 

conditional mean of Y given Z1, Z2, and Z3 is dominated by a gamma distributed Z2. For λT 

= 0 where Y is MAR, all three methods yield approximately unbiased means with close to 

nominal non-coverage when the correct value of λA = 0 is used. Under the incorrect 

values of λA = 1 and ∞, however, the S-PPMA has lower bias, lower RMSE, and lower 

non-coverage rate than the linear models albeit with more conservative confidence 

intervals. 

 For λT = 1 and ∞, the PPMA estimates exhibit small bias even when λA = λT, most 

likely as a result of lack of linearity between X and Y due to MNAR and some of the 

auxiliary variables being non-normal. The S-PPMA estimates at the correct λA show low 

bias and non-coverages close to 5%, which may be explained by the spline’s ability to 

model nonlinearity between X and Y. It is worth noting, however, that despite the bias 

PPMA still achieves good coverage at λA = λT = 1. In terms of RMSE, S-PPMA has no 

noticeable gains over PPMA under λA = λT = 1, and larger gains when λA = λT = ∞. This 
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suggests that as dependence of nonresponse on Y increases, the degree of nonlinearity 

adjustment by the penalized spline increases. Robustness to λT comes at the expense of 

precision, as the penalized spline yields wider intervals under all values of λA for any λT. 

However, it is important to note that values of Y tend to be much lower for respondents 

than nonrespondents as a result of the nonresponse mechanism, which leads to sparse 

data and extrapolation at higher values of Y. Thus, wider interval widths by the spline 

may be a reflection of uncertainty in imputing the missing values by extrapolating a 

nonlinear model. For mechanism D (see Appendix), there are no significant differences 

in RMSE and CIW regardless of λA, with negligible bias at λA = 0 and close to nominal 

coverage at both λA = 0 and 1 for all methods. In mechanism E, both S-BNPM and BNPM 

yield similar estimates with nominal non-coverage at λA = 1. 

 

3.3.5. Scenario 5: quadratic term in mean of Y  

 Let Z1 and Z2 be fully observed covariates with the following distributions 

Z1 ~ N(0, 1) 

Z2 ~ N(0, 1) 

Y|Z1, Z2  ~ N(10 + Z1 + Z2 + 2Z2
2, 1) 

Let Y be missing under the following mechanisms 

A. Logit[Pr(R = 0)] = -1 + 0.5(Z1 + Z2 + 2Z2
2)    (λT = 0) 

B. Logit[Pr(R = 0)] = -3 + 0.25(0.97Z1 + 0.97Z2 + 1.95Z2
2 + Y)  (λT = 1) 

C. Logit[Pr(R = 0)] = -6 + 0.5Y      (λT = ∞) 

D. Logit[Pr(R = 0)] = 4Z2 
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E. Logit[Pr(R = 0)] = -5.5 + 0.5(4Z2 + Y) 

We estimate the proxy X by regressing Y on Z1, Z2, and Z2
2 using the complete 

cases and apply the estimators under the different values of λA. Here we introduce a 

quadratic term in the conditional mean of Y. For λT = 0, when data is MAR, the estimated 

proxies are unbiased estimates of Y since they are based on a correctly specified 

regression model. As a result all methods are unbiased with close to nominal 5% non-

coverage when we assume the correct value of λA = 0, with the spline having slightly 

wider interval widths (Figure 3.5). For other values of λA, the S-PPMA shows smaller bias, 

lower RMSE, and much higher coverage rate than their linear counterparts, and still 

achieves near nominal non-coverage under the incorrect assumption of λA = 1 (see 

Appendix). 

For λA = λT = 1, where missingness depends equally on both Y and the auxiliary 

variables, estimates under λA = 0 (see Appendix) are similarly biased and intervals 

undercover the true value for all methods, which is not surprising since the assumption 

of λT is incorrect. However, S-PPMA has minor bias under λA = 1, which is the correct 

assumption in this case shown in Figure 3.5, and near nominal non-coverage rates under 

both assumptions of λA = 1 and λA = ∞, where the PPMA estimates are biased and 

undercover the true value. With respect to RMSE, S-PPMA shows increasing gains over 

PPMA as λA increases.  

When λT = ∞, where missingness depends only on Y, the penalized spline is again 

approximately unbiased with nominal non-coverage under the correct assumption of λA 

= ∞, while the linear models are heavily biased. This is due to nonlinearity between X 
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and Y caused by the quadratic Z2
2 term in the mean of Y, violating the bivariate 

normality assumption required in PPMA. Although the spline yields more conservative 

intervals, possibly from extrapolating nonlinearity, its ability to model nonlinearity 

results in estimates that are unbiased and have good coverage rates. This is especially 

important when the missing data mechanism is MNAR, where the proxy X is no longer 

unbiased and has a nonlinear relationship with Y. It is interesting to note, however, that 

in this and the previous scenario, PPMA shows slightly lower RMSE at the wrong 

assumption of λA = 1 when the true value is λT = ∞ (see Appendix). 

In mechanism D, the methods show low bias and similar RMSE at all values of λA, 

with the ML estimate of BNPM having significantly wider intervals than S-BNPM and the 

Bayesian estimate of BNPM, resulting in better coverage. In mechanism E, all methods 

are generally biased and fail to achieve nominal non-coverage regardless of λA, with 

small differences in RMSE. Again the ML estimate of BNPM tends to yield much wider 

intervals that result in better coverage. 

 

3.3.6. Scenario 6: interaction term in mean of Y  

 Let Z1 and Z2 be fully observed covariates with the following distributions 

Z1 ~ N(0, 1) 

Z2 ~ N(0, 1) 

Y|Z1, Z2 ~ N(20 + Z1 + Z2 + 2Z1Z2, 1) 

Let Y be missing under the following mechanisms 

A. Logit[Pr(R = 0)] = Z1 + Z2 + 2Z1Z2     (λT = 0) 
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B. Logit[Pr(R = 0)] = -20 + 0.98Z1 + 0.98Z2 + 1.96Z1Z2 + Y  (λT = 1) 

C. Logit[Pr(R = 0)] = -20 + Y     (λT = ∞) 

D. Logit[Pr(R = 0)] = 5Z2. 

E. Logit[Pr(R = 0)] = -10 + 0.5(5Z2 + Y). 

In this last scenario, we let the conditional mean of Y be a function of two 

normally distributed variables and their interaction. We then model Y using a correctly 

specified regression on Z1, Z2, and Z1*Z2 for the respondents, and obtain the predicted 

values of Y as our proxy X. As in all scenarios, Figure 3.6 shows that when missingness is 

at random, all methods are unbiased, yield similar RMSE, and achieve nominal non-

coverage under λA = 0 since the proxy X itself is unbiased for Y. However, under the 

incorrect values of λA = 1 and λA = ∞, the S-PPMA shows significantly larger bias, RMSE, 

and CIW than PPMA (see Appendix). 

When λT = 1, all methods have negligible bias under the correct value of λA = 1 as 

shown in Figure 6, and achieve close to 5% non-coverage. There are generally minor 

differences in RMSE between the methods regardless of the assumption in λA, though S-

PPMA tends to be slightly more conservative in terms of interval widths. For λT = ∞, all 

methods yield low bias with similar RMSE at λA = ∞ and nominal non-coverage. All 

methods have similar bias, RMSE, CIW, and coverage at all other values of λA. Although 

the mean of Y in this scenario depends on the interaction of Z1 and Z2, which is not 

normally distributed, the model assuming linearity between X and Y still yields good 

estimates of the mean under MNAR when λA = λT. This may be because the distribution 
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of Z1*Z2 does not result in a drastic departure from normality in the proxy X, so the 

bivariate normality assumption between X and Y still approximately hold.  

In the results for mechanism D (see Appendix), which does not correspond to 

any value of λT, estimates at λA = 0 are generally unbiased with minor differences in 

RMSE, and achieve close to nominal non-coverage with the exception of the Bayesian 

BNPM. In mechanism E, all methods show some bias at all values of λA with S-BNPM 

yielding higher RMSE than BNPM at λA = ∞. 

 

3.4. Example: child asthma study 

 We apply S-PPMA and PPMA to an asthma study conducted by the University of 

Michigan Schools of Public Health and Medicine. The study consists of children with 

asthma from Detroit elementary and middle schools, whose aim is to evaluate the 

effectiveness of an educational intervention in reducing asthma symptoms. The main 

outcome of interest is the average number of nights the child experiences asthma 

symptoms per month, collected at baseline and one-year follow-up. Our goal is to 

estimate the mean change in nights of symptoms per month from baseline to follow-up, 

which is subject to dropout. However, since it is well documented that asthma severity 

naturally declines as the child ages, we restrict our attention to only those in the control 

group with symptoms at baseline. 

 Out of 133 children ages 6-14 with asthma symptoms at baseline in the control 

group, 41 (31%) dropped out before follow-up information was obtained. Since dropout 

may be attributed to asthma severity, we apply the S-PPMA and PPMA models to 
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estimate the mean change in nights of symptoms per month.  Only age and 

measurement at baseline are significantly associated with the outcome, with baseline 

age also being significantly associated with response. We first obtain our proxy by 

regressing change in nights per month on its baseline value and age using the 

respondent sample. We then apply the S-PPMA and PPMA models to estimate the mean 

change in nights of symptoms per month for the sample.  

 Figure 3.7 shows the distributions of baseline age and nights per month in our 

data. Both variables show deviations from normality, particularly nights of symptoms 

per month. Figure 3.8 displays scatter plots for the relationship between X and Y along 

with the average regression lines for PPMA and S-PPMA. For the regression of Y on X 

under the assumption of λ = 0, both PPMA and S-PPMA yield near identical regression 

lines. However, differences can be seen for the regression of X on Y under the 

assumption of λ = ∞, where S-PPMA seems to provide a minor improvement in fit. As 

such, we expect some differences between estimates from S-PPMA and PPMA, 

particularly at λ = ∞. Figure 3.9 shows estimates of the mean change under each 

method. Each line represents the mean and its 95% confidence interval for S-PPMA (PS) 

and PPMA, which is estimated using both maximum likelihood bootstrap (ML) and 

posterior draws (PD). To assess sensitivity to our assumption about λ, we display 

estimates under λ = 0, 0.5, 1, 4, and ∞. Results show that the mean change in symptoms 

per month generally decreases as we place more weight on our outcome to response, 

which suggests that children with higher decrease in symptoms may be less likely to 

participate in the follow-up survey. As expected from Figure 3.8, estimates for PPMA 
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and S-PPMA at λ = 0 are similar, with differences between the methods being most 

pronounced at λ = ∞. There are minor differences between the PPMA estimates, with 

the posterior draws generally producing more conservative intervals than maximum 

likelihood. As in the simulations, interval lengths tend to widen slightly as λ increases 

due to increasing uncertainty when missingness depends on the outcome. S-PPMA is to 

a small degree less sensitive to assumptions about λ than PPMA, as estimates of mean 

change are within 0.1 nights of each other for values of λ > 0, whereas estimates from 

PPMA are generally within 0.4 nights as λ varies from 1/2 to ∞. In terms of precision, S-

PPMA tends to be more conservative than ML but has slightly narrower interval widths 

than PD.  

In practice, one might choose some intermediate value of λ (e.g. λ=1) since it 

represents a more conservative assumption about the missing data mechanism. 

However, lack of sensitivity to λ allows for more robustness of estimates to the 

assumptions about missingness, which is important since any belief regarding λ cannot 

be tested. 

 

3.5. Discussion 

Most nonresponse adjustment methods assume MAR, which can be a strong and 

untestable assumption. An advantage of the PPMA model is it allows us to make 

inferences about the mean of an outcome variable without assuming MAR. Moreover, 

the model does not require us to specify a propensity model, since it assumes that 

missingness depends only on the value of X + λY. The method simplifies nonresponse 
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adjustment by combining a set of auxiliary variables into a single measure X and models 

departures from MAR using a single sensitivity parameter λ. In our proposed extension 

to the PPMA model, we model the relationship between X and Y through a spline. An 

advantage of this approach is that it does not require X and Y to be bivariate normal, 

which is assumed in PPMA, since splines allow us to model nonlinearity between the 

variables. As a result, we do not require the auxiliary variables to be normally 

distributed, as the model is robust to non-normal distributions of the auxiliary variables. 

It is important to note, however, that we do not specify a joint distribution between X 

and Y. Thus S-PPMA is more appropriately a method than a true model. 

While S-PPMA utilizes initial values of Y generated from the potentially incorrect 

PPMA model, the additional steps of spline modelling and hot deck imputation helps to 

adjust for this nonlinearity. Our simulations show that the proposed S-PPMA model with 

penalized spline consistently yields approximately unbiased estimates with near 

nominal non-coverage regardless of the distributions of the auxiliary variables when the 

correct value of λ is used. Compared to the original PPMA proposed in Andridge and 

Little (2011), S-PPMA has shown to yield estimates that are more robust to covariate 

distributions, though with a slight penalty in precision when the PPMA model is correct. 

The gains in bias and RMSE are particularly noticeable the more the auxiliary variables 

deviate from normality. Results for a smaller sample size of n = 100 (see Appendix) show 

similar trend, where S-PPMA provide some gains in bias and RMSE when covariates are 

not normal and missingness is not at random, though differences in bias and RMSE tend 

to be less pronounced than in larger sample sizes. Moreover, the bootstrap variance 
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estimates of PPMA tend to be more conservative than their Bayesian counterpart, 

leading to better coverages. 

It may be tempting to estimate the value of λ by specifying a prior distribution. 

However, any inference about λ would be driven entirely by the prior since the data 

contains no information about λ. Thus we recommend conducting a sensitivity analysis 

by applying the S-PPMA model over a range of λ. The sensitivity analysis reflects our 

uncertainty about the nonresponse mechanism by displaying estimates of the mean 

over different values of λ, ranging from MAR (λ = 0) to the more extreme MNAR that 

assumes missingness depends only on the outcome itself (λ = ∞). Comparing estimates 

over a range of λ helps provide us an idea of how sensitive our inferences are to the 

missing data mechanism.  

Our examples assume that the variables used to predict the outcome are fully 

observed, which may not be the case since often both outcome and covariates are 

missing at the same time, as is the case in unit nonresponse. Extension to the S-PPMA 

model incorporating additional assumptions about missingness of the covariates may be 

explored. In our simulations, S-PPMA tends to yield wider confidence intervals than the 

bivariate normal model particularly for λ > 0. This may be attributed to the fact that 

when the data is MNAR, values of the outcome for the nonrespondents may be 

drastically different than the respondents, leading to extrapolation. Estimation becomes 

particularly tricky when the relationship between Y and X is nonlinear. Thus, the lack of 

precision by the penalized spline at high values of λ may be a reflection of our 

uncertainty in extrapolating a nonlinear model. 
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The S-PPMA and PPMA models assume that missingness depends only on the 

value of X + λY, where X is a function of the covariates Z1, …, Zp. In reality, there are 

infinite ways in which data is missing. For example, missingness of Y may depend only 

on some subset of Z1, …, Zp, which would not be reflected by X + λY for any λ. While we 

may place additional sensitivity parameters on the auxiliary variables, it will reduce 

simplicity of the model. Finally, we assume that our outcome variable, Y, is continuous 

and limit our inferences to the mean. Extensions to the PPM model are needed to 

model non-continuous outcome variables, and to estimate parameters of the regression 

of Y on the covariates under MNAR. 
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Figure 3.1. Results for scenario 1 where λA = λT. 
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Figure 3.2. Results for scenario 2 where λA = λT. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

69 
 

Figure 3.3. Results for scenario 3 where λA = λT. 
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Figure 3.4. Results for scenario 4 where λA = λT. 
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Figure 3.5. Results for scenario 5 where λA = λT. 
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Figure 3.6. Results for scenario 6 where λA = λT. 
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Figure 3.7. Distributions of baseline covariates. 

 
 

Figure 3.8. Relationship between X and Y. 
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Figure 3.9. Estimates for mean change in nights of symptoms per month. 
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CHAPTER IV 
 

Spline Pattern-Mixture Models for Missing Categorical Variables 
 
 

4.1. Introduction 

 We consider the goal of estimating the mean of a categorical outcome Y with n0 

observed ({Yi}, i = 1, …, n0) and n1 missing values ({Yi}, i = n0+1,…, n0+ n1). Suppose we 

fully observe a set of p auxiliary variables Z1, …, Zp ({Zi1, …, Zip}, i = 1, …, n, n = n0 + n1), 

and let R be a response indicator such that R = 1 if Y is observed and R = 1 if Y is missing. 

If Y is missing at random (MAR, Rubin 1976) in that missingness does not depend on Y 

conditional on the observed variables Z1, …, Zp, methods such as regression imputation 

and weighting yield unbiased estimates of the mean. For example, with binary Y, one 

may specify a logistic regression model of Y on Z1, …, Zp using the complete cases, and 

impute the missing values of Y from this model. Alternatively, one may estimate a 

regression model for R on Z1, …, Zp and weight complete cases by the inverse of the 

estimated response propensity. 

When Y is missing not at random (MNAR), in that missingness of Y depends on 

the value of Y, MAR-based methods are generally biased. Fay (1986) develops methods 

for estimating the mean of categorical variables subject to nonresponse in incomplete 

contingency tables. The method estimates expected frequencies via the EM algorithm 
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and log-linear models for a set of causal models allowing for MNAR nonresponse. 

Nordheim (1984) proposed a method for estimating the mean of a binary outcome as a 

function of the ratio of nonresponse probabilities in each category. The ratio is assumed 

to be known and its value is varied in a sensitivity analysis. Baker and Laird (1988) 

further developed log-linear models for categorical responses subject to nonignorable 

nonresponse. All of these methods are for contingency table data with categorical 

response and predictors. Here we focus on estimating a binary outcome when 

information on continuous covariates is available. Extensions to Y with more than two 

categories are also outlined. 

The starting point for our method is the bivariate normal pattern mixture model 

(BNPM) of Little (1994) for a continuous variable Y and a single observed covariate X. 

The BNPM model assumes a bivariate normal distribution for X and Y, with a different 

mean and covariance matrix for respondents and nonrespondents of Y, and identifies 

the parameters of the model by assumptions about the missing data mechanism. 

Andridge and Little (2011) extend this idea to multiple observed covariates Z1, …, Zp 

using a proxy pattern mixture model (PPMA), which reduces Z into a single proxy 

variable X obtained by regressing Y on Z for the respondents and setting X as predictions 

of Y for the sample. The method then applies the BNPM model to X and Y.  

Both BNPM and PPMA assume a bivariate normal relationship between X and Y, 

and estimate the mean via a linear regression model with the independent variable 

determined by assumptions about the missing data mechanism. Estimates may be 

biased when the normality assumption, and hence linearity between X and Y, fails. Yang 
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and Little (2014) propose a modification of the BNPM, S-BNPM, which replaces the 

parametric linear regression between X and Y by a penalized spline. S-BNPM builds on a 

robust MAR imputation method called penalized spline of propensity prediction (PSPP, 

Zhang and Little, 2009), which estimates the propensity that R = 1 given Z1, …, Zp based 

on a logistic regression of R on Z1, …, Zp using the sample, and imputes Y based on the 

regression of Y on a penalized spline of the estimated propensity. S-BNPM allows us to 

model nonlinear relationships between X and Y for a given assumption about the 

nonresponse mechanism. Simulations show that S-BNPM is more robust to normality 

assumptions than BNPM, at the expense of some precision. The idea is easily extended 

to data with more than one covariate (S-PPMA). 

These methods are suitable for continuous outcomes. Andridge and Little (2009) 

extend PPMA to binary responses by a latent variable approach, where the value of a 

binary outcome Y is determined by a continuous, unobservable U such that Y = 1 when 

U > 0 and Y = 0 otherwise. This approach, which we label bin-PPMA, obtains a proxy X 

via a probit regression of Y on Z over the respondents, setting X as predicted values from 

the probit model for the whole sample. Respondent values of U are then drawn from a 

normal distribution with mean X and variance 1, from which X is recreated by regressing 

U on Z. Values of X and U are drawn iteratively and BNPM is applied to X and U at each 

iteration to estimate nonrespondent values of U given an assumption about the 

nonresponse mechanism, imputing Y such that Y = 1 if U > 0 and Y = 0 otherwise.  

This latent variable model is sensitive to the normality assumptions for X and U. 

For example, if the covariates Z used to estimate X are non-normal, then the resulting 
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proxy X is non-normal and the bivariate normality assumption between X and U fails, 

resulting in biased estimates. Thus we propose a  S-PPMA method for binary Y  (binS-

PPMA), where we replace the linear regression model in bin-PPMA by a penalized spline, 

which we use to impute nonrespondent values of U given an assumption about the 

missing data mechanism. Imputations for U can then be translated directly to Y. More 

specifics on the method are given in the next section. 

We study the performance of binS-PPMA by simulation, for data generated 

under various distributions of Z and missing data mechanisms. Specifically, we attempt 

to answer the following questions: 

a. How does binS-PPMA compare with bin-PPMA with respect to bias, root mean 

squared error (RMSE), and coverage? 

b. How robust is binS-PPMA to distributional assumptions and nonresponse 

mechanisms compared to bin-PPMA? 

We now provide more details on BNPM, PPMA, S-PPMA, and their extensions to 

a binary responses.  

 

4.2. Pattern mixture models for continuous outcomes 

4.2.1 Review of bivariate normal pattern mixture model 

 Suppose X and Y are continuous variables, where X is a fully observed covariate 

and Y is the outcome for which we want to estimate the mean, but which may be 

missing not at random. Let R be an indicator of response. Little (1994) assumes a 

bivariate normal relationship between X and Y, specifically 
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                                          (Y, X|ф(r), R = r) ~ 𝑁2 (
µ𝑌

(𝑟)

µ𝑥
(𝑟) ,   [

𝜎𝑌𝑌
(𝑟)

𝜎𝑋𝑌
(𝑟)

𝜎𝑋𝑌
(𝑟)

𝜎𝑋𝑋
(𝑟)

]) (4.1) 

R ~ Bernoulli(π) 

where 
2 ( , )N    denotes a bivariate normal distribution with mean  and covariance 

matrix  . BNPM assumes that missingness depends on the value of Y* = X + λY for a 

given λ. Little (1994) shows that under this assumption the model is just-identified and 

the ML estimate for µ𝑌 is 

                                                    µ̂𝑌 = 𝑌̅(1)  +  
𝜆𝑠𝑌𝑌+𝑠𝑋𝑌

𝜆𝑠𝑋𝑌+𝑠𝑋𝑋
(𝑋̅ – 𝑋̅(1)) (4.2) 

It is easy to see that a value of λ = 0 corresponds to an assumption of MAR, and µ̂𝑌 is 

derived from a linear regression of Y on X. On the other end of the extreme, λ = ∞ 

implies missingness depends solely on Y, resulting in an estimate derived from the 

regression of X on Y. The advantage of the BNPM model is that we do not need to 

specify a model for the propensity, and departures from MAR can be represented by a 

single sensitivity parameter λ. Since we do not know the true value of λ, it is advisable to 

conduct a sensitivity analysis by displaying estimates over a range of potential values of 

λ to capture its uncertainties. 

 

4.2.2 Extension of PPMA to more than one covariate for a continuous outcome 

 In many studies we have information on multiple observed covariates Z1, …, Zp 

that can be predictive of Y. Andridge and Little (2011) extends the idea of BNPM by 

reducing Z1, …, Zp into a single best predictor, or proxy,  X of Y (PPMA). The method 
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estimates X by regressing Y on Z1, …, Zp using the respondents and setting X to be 

predictions of Y for the sample. With a fully observed set of X, we can then apply BNPM 

to estimate µ𝑌for a given assumption of λ. Both BNPM and PPMA are dependent on the 

bivariate normality assumption of X and Y, which can be violated when some or all of 

the Z1, …, Zp used to estimate X are non-normal. In the next section, we extend PPMA to 

categorical outcomes, and propose a penalized spline method that relaxes the normality 

assumptions.  

 

4.3. Extensions to categorical outcomes 

 Thus far we have discussed methods for assessing nonresponse bias for 

continuous outcomes. We can extend the ideas of PPMA to categorical outcomes using 

a latent variable approach (Andridge and Little 2009). Here we consider the case of a 

binary Y, though methods presented can be generalized to an ordinal Y with multiple 

categories. Suppose Y is a binary response with n0 observed ({Yi}, I = 1, …, n0) and n1 

missing values ({Yi}, I = n0+1,…, n0+ n1), and Z1, …, Zp ({Zi1, …, Zip}, I = 1, …, n, n = n0 + n1) 

are p fully observed covariates. In addition, suppose there exists a continuous, latent U 

such that  

a. U|Z ~ N(αZ, 1) (4.3) 

b. Y = {
0 if 𝑈 < 0
 1 if 𝑈 ≥ 0

 

The latent variable approach allows for a straightforward application of PPMA to assess 

for nonresponse bias. Borrowing from the idea in PPMA, we can obtain a proxy X that is 
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the single best predictor of U, estimated by a linear regression of U on Z for the 

respondents and setting X to be the predicted values from the regression model for the 

whole sample. 

 Since we do not observe the values of U, we must estimate both U and X 

simultaneously through data augmentation. In this chapter we use Gibbs sampling to 

iteratively draw U and X from their respective distributions (Albert and Chib, 1993). We 

summarize the procedure as follows: 

1. Obtain an initial estimate of X via a probit regression of Y on Z for the 

respondents, letting X be the predicted values from the model for the sample. 

Specifically, we fit the model via maximum likelihood: 

𝑃𝑟̂(Y = 1|Z, R = 1) = ф(𝛼̂Z) 

and initialize X = 𝛼̂Z for both respondents and nonrespondents given their 

information on Z. 

2. At the dth iteration, draw respondent values for U under a truncated distribution 

(U(d)|Y, X(d-1), R = 1) ~ N(X(d-1), 1) 

where drawn values of U < 0 for which Y = 1 or U > 0 for which Y = 0 are 

discarded and redrawn. 

3. Draw (𝛼̂(𝑑)|Y, U(d), R = 1) ~ N((ZTZ)-1ZTU(d), (ZTZ)-1) and set X(d) = 𝛼̂(𝑑)Z for the 

sample. 

4. Repeat 2 – 3 over 1000 iterations to create 1000 sets of fully observed X and 

partially observed (for respondents) U. 
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Since X are predicted values of U, X is unbiased for U for the respondents, hence 

(U|Y, X, R = 1) ~ N(X, 1). We then recreate X at the end of each iteration to account for 

uncertainties associated in estimating X. For each set of (X, U), Andridge and Little (2009) 

applies PPMA to obtain imputations of the missing values of U, and derive imputations 

of Y based on imputed values of U.  

 

4.3.1 Spline bivariate proxy pattern mixture model for binary Y 

 One of the limitations of the BNPM and PPMA models is sensitivity to the 

assumption of bivariate normality, which is the foundation of the methods. For example, 

when Y is continuous, (X, Y) is not bivariate normal when the marginal distribution of X 

is gamma, or when X is normal but the mean of Y given X is quadratic on X. In such cases 

X and Y may not follow a linear relationship, leading to biased estimates from BNPM 

even with the correct assumption of λ. Similarly when Y is categorical, the relationship 

between X and U may not be linear when the variables are non-normal. Since Y is 

imputed based on the value of U, bias in the imputations of U leads to bias in the 

imputations of Y. 

To account for potential nonlinearity, we propose a penalized spline regression 

to model U and Y (binS-PPMA). The binS-PPMA utilizes the same principle that when 

missingness depends on the value of U* = X + λU, for some known λ, the regression of X 

on U* is the same over patterns of response. Specifically, binS-PPMA assumes the 

following model for this regression:  

                                                X = 𝛽0 + 𝛽1𝑈∗ + ∑ 𝛾𝑘(𝑈∗ − 𝜅𝑘)+ 𝐾
𝑘=1 + ε (4.4) 
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ε ~ N(0, σ2) 

γk ~ N(0, τ2) 

where a+ = a if a > 0 and a+ = 0 otherwise, and κ1 < … < κK are K equally spaced knots. We 

estimate the parameters using a Bayesian approach, assigning a uniform prior for 𝛽 and 

inverse gamma (10-5, 10-5) priors for σ2 and τ2, and draw from their posterior distribution 

via a Gibbs sampler. 

 Imputations of missing values of U*, however, are not as straightforward, since 

U* appears as a covariate in the model. Thus, as in Yang and Little (2015), we apply a 

hotdeck procedure where we generate a donor pool and impute U* with the observed 

value of a matched donor with X and U* observed. The procedure for values of λ > 0 is 

summarized as follows: 

1. For the dth set of draws ( 𝑋(𝑑) , 𝑈∗(𝑑) ), draw B values of 𝑈∗(𝑑)  for each 

nonrespondent from the distribution of 𝑈∗(𝑑)|𝑋(𝑑), 𝑅 = 0, estimated under the 

BNPM model. This results in a pool of n1*B values of 𝑈∗(𝑑) ({𝑈𝑝
∗(d)

}, p = 1, …, 

n1*B). In the simulations in Section 4.4 a value of B = 3 is sufficient. 

2. Given each 𝑈𝑝
∗(𝑑)

 in the pool, draw a value 𝑋𝑝
(𝑑)

 from the posterior predictive 

distribution of 𝑋(𝑑)|𝑈∗(𝑑) in (4.4), with parameters estimated from respondents.  

This results in a set of pairs of ({𝑋𝑝
(𝑑)

, 𝑈𝑝
∗(𝑑)

}, p = 1, …, n1*B) that form our donor 

pool. 
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3. For each nonrespondent j, choose a pair (𝑋𝑘
(𝑑)

, 𝑈𝑘
∗(𝑑)

) from the donor pool 

({𝑋𝑝
(𝑑)

, 𝑈𝑝
∗(𝑑)

}, p = 1, …, n1*B) with the closest value 𝑋𝑘
(𝑑)

 to 𝑋𝑗
(𝑑)

, and impute 

𝑈𝑗
∗(𝑑)

 = 𝑈𝑘
∗(𝑑)

 (hence 𝑈𝑗
(𝑑)

 = (𝑈𝑘
∗(𝑑)

 - 𝑋𝑗
(𝑑)

) / λ and 𝑌𝑗 = I{𝑈𝑗
(𝑑)

 > 0}) from that pair. 

4. Repeat steps 1-3 over d = 10, 20, 30, …, 1000 to create D = 100 multiply-imputed 

data sets with values of Y imputed.  

We then obtain µ̂𝑌 and its variance via multiple imputation combining rules 

(Rubin, 1987) 

                                                               µ̂𝑌 = µ̂𝐷 = 
1

𝐷
∑ µ̂𝑑

𝐷
𝑑=1  (4.5) 

                                   𝑉𝑎𝑟(µ̂𝑌) = 
1

𝐷
∑ 𝑊𝑑

𝐷
𝑑=1  + 

𝐷+1

𝐷(𝐷−1)
∑ (𝜇̂𝑑 − 𝐷

𝑑=1 𝜇̅𝐷)2 (4.6) 

where 𝜇̂𝑑 and Wd are the estimated marginal mean and variance in the dth imputed data 

set, respectively.  For the assumption of λ = 0, we reverse the regression in (4.4) to 

model U(d) on X, drawing imputations of U(d) (and hence Y = I{U(d) > 0}) directly from its 

posterior predictive distribution given observed values of X. 

 When the regression of X on U* is linear, the initial draws from BNPM are 

unbiased estimates of U*, and the hotdeck procedure has little impact on the 

imputation of U*. However, when the relationship is nonlinear, thereby violating the 

linearity assumption in BNPM, the spline mimics the true regression line of X given U*, 

resulting in improvements in the imputations of U*. Hence the hotdeck procedure 

serves as an adjustment for nonlinearity between X and U*. A value of B is chosen to 

ensure that there exists a close match for X in the donor pool for every nonrespondent. 

Since (X, U) are estimated iteratively, the procedure requires us to draw a single set of 
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parameters from the spline regression model (𝛽̂, 𝛾, 𝜎̂2, 𝜏̂2) of X on U* separately for 

each set of (X(d), U(d)). To reduce autocorrelation we use every other 10 sets of drawn 

(X(d), U(d)).  

The binS-PPMA method allows us to model nonlinearity in the regressions 

between X and U*, improving robustness to bivariate normality. Unbiased estimates of 

U are particularly important near the threshold of U = 0, where the value of Y is 

determined. Misspecification of the pattern mixture model near the threshold will result 

in biased estimates of µ̂𝑌. As in all pattern mixture model analyses for continuous and 

binary outcomes, we should display estimates over a range of λ to capture our 

uncertainties about its true value. In the following section, we conduct simulation 

studies to compare performances of binS-PPMA and bin-PPMA in their extensions to 

binary outcomes.  

 

4.4. Simulation studies 

 We now conduct simulations to assess the performance of binS-PPMA for binary 

outcomes over a range of distributional assumptions and missing data mechanisms. For 

comparison we include two estimates from bin-PPMA: a Bayesian approach (BA) and 

multiple imputation (MI). 

 In bin-PPMA (BA), we apply BNPM to (X(d), U(d)) for d = 10, 20, 30, …, 1000 to 

obtain posterior draws for the parameters in (4.1), assuming (X(d), U(d)) are bivariate 

normal. We then obtain the posterior distribution of µ𝑌by computing 

µ̂𝑌 = 𝑃𝑟̂(Y = 1) = 𝑃𝑟̂ (U(d) > 0) = π̂ф(µ̂
𝑈(𝑑)

(1)
 / √σ̂

𝑈(𝑑)𝑈(𝑑)

(1)
) + (1 – π̂)ф(µ̂

𝑈(𝑑)

(0)
 / √σ̂

𝑈(𝑑)𝑈(𝑑)

(0)
) 
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where µ̂
𝑈(𝑑)

(1)
and σ̂

𝑈(𝑑)𝑈(𝑑)

(1)
 are posterior draws for the mean and variance of U(d) for 

respondents, and µ̂
𝑈(𝑑)

(0)
and σ̂

𝑈(𝑑)𝑈(𝑑)

(0)
 are posterior draws for the mean and variance of 

U(d) for nonrespondents, respectively. Finally, we obtain the median and its 95% 

credibility interval for µ𝑌. 

 In bin-PPMA (MI), we impute the nonrespondent values of U(d) from 

U(d)|X(d), R = 0 ~ N(µ̂
𝑈(𝑑)

(0)
 + 

σ̂
𝑈(𝑑)𝑋(𝑑)
(0)

σ̂
𝑋(𝑑)𝑋(𝑑)
(0)  (X(d) - µ̂

𝑋(𝑑)

(0)
), σ̂

𝑈(𝑑)𝑈(𝑑)

(0)
 - 

σ̂
𝑈(𝑑)𝑋(𝑑)
(0) 2

σ̂
𝑋(𝑑)𝑋(𝑑)
(0) ) 

with parameters estimated by BNPM assuming bivariate normality of (X(d), U(d)). We 

repeat for d = 10, 20, 30, …, 1000 to obtain 100 imputed data sets. This approach is less 

sensitive to violations of normality than bin-PPMA (BA) since the normality assumption 

is confined to the imputations of the missing values. 

 We compare performance of binS-PPMA, bin-PPMA (BA), and bin-PPMA (MI) 

with respect to average bias, root mean square error, 95% confidence interval width, 

and rate of confidence interval non-coverage over 1000 replications. For each 

replication we construct 95% confidence intervals as  

95% CI = (µ̂𝑌 – tn-1,0.975√𝑉𝑎𝑟(µ̂𝑌), µ̂𝑌 + tn-1,0.975√𝑉𝑎𝑟(µ̂𝑌)) 

where tn-1,0.975 is the 97.5th percentile of the t-distribution with n-1 degrees of freedom, 

and 𝑉𝑎𝑟(µ̂𝑌) is the estimated variance of the mean. The corresponding confidence 

interval width is then  

CIW = 2*tn-1,0.975√𝑉𝑎𝑟(µ̂𝑌) 

Finally, we estimate the non-coverage rate as the proportion of the 1000 confidence 

intervals that do not cover the true value. In the first scenario, we simulate the situation 



 
 

87 
 

where X and U are bivariate normal and compare estimates from bin-PPMA and binS-

PPMA. In the second and third scenarios, we simulate data with non-normal 

distributions for X and U. Finally, in the last scenario we explore data from a 2x2 

contingency table where both the predictor and outcome are binary. For each scenario, 

we estimate the proxy based on a correctly specified regression of U on Z using the 

respondent sample.  

Let λT be the true, unobservable value of λ for the missing data mechanism, and 

let λA be our assumption value of λ in our estimates. For each scenario, we vary the true 

value λT from 0, 1, and ∞ to simulate situations where missingness depends on X, Y, or a 

combination of the two. At each λT we conduct a sensitivity analysis under λA = 0, 1, and 

∞ to account for our uncertainty about λ, with one of our assumptions λA being the true 

value. We choose values of λA = 0, 1, and ∞ as they capture a wide range of potential 

nonresponse mechanisms, though other values may be explored in practice. The 

following results display estimates for which λA = λT, since our focus is to compare 

performances of the methods when the assumption about the nonresponse mechanism 

is correct. Results at other values of λA are discussed, with results shown in 

supplementary materials. 

 

4.4.1 Scenario 1: bivariate normal sample 

 Suppose Z is a fully observed, normally distributed covariate and Y is a binary 

outcome whose value is determined by a latent U that is normal conditional on Z: 

Z ~ N(0, 1) 



 
 

88 
 

U|Z ~ N(0.5 + Z, 1) 

Y = {
0 if 𝑈 < 0
 1 if 𝑈 ≥ 0

 

We generate missing value of Y under the following logistic models, which simulate MAR 

and MNAR 

A. Logit[Pr(R = 0)] = Z     (λT = 0) 

B. Logit[Pr(R = 0)] = -0.1 + 0.25(0.98Z + U)  (λT = 1) 

C. Logit[Pr(R = 0)] = -0.25 + 0.5U   (λT = ∞) 

D. Logit[Pr(R = 0)] = -0.8 + Z2    (λT = 0) 

E. Logit[Pr(R = 0)] = -0.8 + 0.25(0.74Z + U)2  (λT = 1) 

F. Logit[Pr(R = 0)] = -1 + 0.5U2    (λT = ∞) 

For all scenarios we generate data for n = 100 and n = 400 and a response rate of 

approximately 50%. Due to similarity of results only those under n = 400 are displayed 

(see supplemental materials for results with n = 100). For comparison we include 

estimates from complete cases analysis (CC) and a Bayesian logistic regression of Y on Z 

assuming MAR (LOGREG). Figures 4.1a-b displays average bias, RMSE, CIW, and non-

coverage rates out of 1000 replications when λA = λT for λT = 0, 1, and ∞. As expected, as 

assumption of bivariate normality holds in this scenario, both bin-PPMA and binS-PPMA 

are approximately unbiased and achieve a near 5% nominal non-coverage rate 

regardless of the nonresponse mechanism when the correct assumption about λ is 

made. Results show minor differences in RMSE and CIW regardless of λA and λT (results 

for λA ≠ λT in Appendix). CC is highly biased under all nonresponse mechanisms, while 
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LOGREG yields valid estimates when λT = 0, but biased under MNAR. The effect of MNAR 

on LOGREG is less consequential when missingness depends on U*2, perhaps due to the 

symmetrical nature of nonresponse as subjects with highly positive or highly negative 

values of U* are equally likely to be missing. 

 

4.4.2 Scenario 2: gamma distributed Z 

 Suppose now Z is a fully observed, gamma-distributed covariate and U is normal 

conditional on Z, we generate the data as follows: 

Z ~ Gamma(1, 1) 

U|Z ~ N(-2.25 + Z, 1) 

Y = {
0 if 𝑈 < 0
 1 if 𝑈 ≥ 0

 

We delete Y under the following models: 

A. Logit[Pr(R = 0)] = -0.5 + 0.5Z    (λT = 0) 

B. Logit[Pr(R = 0)] = 0.1 + 0.25(0.98Z + U) (λT = 1) 

C. Logit[Pr(R = 0)] = 0.6 + 0.5U    (λT = ∞) 

D. Logit[Pr(R = 0)] = -0.6 + 0.5Z2    (λT = 0) 

E. Logit[Pr(R = 0)] = -1.5 + 0.5(0.6Z + U)2  (λT = 1) 

F. Logit[Pr(R = 0)] = -2.5 + U2    (λT = ∞) 

 Results for which λA = λT under nonresponse mechanisms A-F are summarized in 

Figures 4.2a-b. At λA = λT = 0, all methods are unbiased, yield similar RMSE and CIW, and 

achieve nominal 5% non-coverage rate with the exception of CC and bin-PPMA (BA). 
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Since the marginal distribution of X, and hence U, is non-normal, estimates from bin-

PPMA (BA) based on the normal density function for U are biased. Consequently it 

results in higher RMSE, CIW, and non-coverage rates compared to other methods at all 

λT. When λT = 0, the data is MAR and the regression of U on X over the complete cases is 

unbiased for the nonrespondents. Thus PPMA-MI provides valid imputations for Y when 

the correct assumption of λA = 0 is made. When λT > 0, the regression of X on U* is no 

longer linear due to lack of normality, resulting in biased estimates of U* and Y under 

bin-PPMA even when the correct assumption of λ is made. LOGREG, which assumes 

MAR, also becomes biased and lack nominal non-coverage when λT > 0. As expected bin-

PPMA (MI) is more robust to deviations from normality than bin-PPMA (BA), as it yields 

better RMSE and non-coverage than its Bayesian counterpart. BinS-PPMA, which is able 

to model nonlinearity, shows noticeable improvements in bias and RMSE compared to 

both bin-PPMA methods at all values of λA when λT > 0, and achieves approximately 

nominal non-coverage when λA = λT.  

 

4.4.3 Scenario 3: nonlinear on Z 

 Suppose Z is normal but U is quadratic on Z, we generate the data as follows: 

Z ~ N(0, 1) 

U|Z ~ N(-1.75 + Z2, 1) 

Y = {
0 if 𝑈 < 0
 1 if 𝑈 ≥ 0

 

Let Y be missing under the following models: 
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A. V|Z, U ~ N(-0.5 + 0.5Z2, 1)   (λT = 0) 

B. V|Z, U ~ N(0.25(0.94Z2 + U), 1)  (λT = 1) 

C. V|Z, U ~ N(0.5 + 0.5U, 1)   (λT = ∞) 

D. V|Z, U ~ N(-0.5 + 0.5Z4, 1)   (λT = 0) 

E. V|Z, U ~ N(-0.7 + 0.2(0.68Z + U)2, 1)  (λT = 1) 

F. V|Z, U ~ N(-0.7 + 0.25U2, 1)   (λT = ∞) 

where Y is observed when V < 0 and missing otherwise. 

In addition to the pattern mixture models, in the last two scenarios we include 

estimates from a latent variable analysis that estimates V given information about (X(d), 

U(d)) for each set d. Steps are summarized as follows for λ > 0, where 𝑈̂∗(𝑑,𝑅=0, 𝑖=1)
 are 

the imputed values of U*(d) at the ith iteration of the dth set and 𝑈̂∗(𝑑, 𝑖=1)
 are the 

observed and imputed values for the whole sample: 

1. At the dth set of (X(d), U(d)), initialize 𝑈̂∗(𝑑,𝑅=0, 𝑖=1)
 by setting 𝑈̂∗(𝑑,𝑅=0, 𝑖=1)

 for 

nonrespondents to be predictions from the regression of 𝑈∗(𝑑,   𝑅=1)|X(d, R=1) 

using the complete cases, then draw  

𝑉̂(𝑖=1)|𝑈̂∗(𝑑, 𝑖=1)
 ~ N(𝑍𝜋̂ - 𝑈̅∗(𝑑, 𝑖=1)

 + 𝑈̂∗(𝑑, 𝑖=1)
, 1) 

for the sample, where 𝜋̂ is the nonresponse rate, 𝑍𝛼 is the αth percentile of the 

standard normal distribution, and 𝑈̅∗(𝑑, 𝑖=1)
 is the mean of 𝑈̂∗(𝑑, 𝑖=1)

 for the 

sample. For respondents, positive values of 𝑉̂(𝑖=1) are discarded and redrawn 
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until all values are negative. Likewise for nonrespondents, we discard and 

redraw negative values of 𝑉̂(𝑖=1). 

2. At the ith iteration, obtain posterior predictive draws of 𝑈̂∗(𝑑, 𝑅=0,𝑖)
|𝑉̂(𝑅=0,𝑖−1), 

X(d,R=0) for nonrespondents under a linear regression model with parameters 

estimated from 𝑈̂∗(𝑑, 𝑖−1)
|𝑉̂(𝑖−1), X(d) using the entire imputed sample, with 

values of 𝑈̂∗(𝑑,   𝑅=0, 𝑖−1)
 and 𝑉̂(𝑖−1)

 drawn from the previous iteration. 

3. Obtain posterior predictive draws of 𝑉̂(𝑖)|𝑈̂∗(𝑑, 𝑖)
, X(d) for the sample based on a 

linear regression model of 𝑉̂(𝑖−1)|𝑈̂∗(𝑑, 𝑖)
, X(d) using the entire imputed sample. 

We again discard and redraw all positive values of 𝑉̂(𝑖) for respondents and 

negative values of 𝑉̂(𝑖) for nonrespondents. 

4. Repeat 2 – 3 over i = 1, 2, …, 200. Then, draw a value k from i = 101, …, 200 and 

obtain a posterior draw for µ𝑌 as 

µ̂𝑌
(𝑑)

 = ∑ 𝐼{𝑛
𝑗=1 𝑈̂𝑗

∗(𝑑,𝑖=𝑘)
> 0} / n 

redrawing respondent values of 𝑈̂∗(𝑑, 𝑖=𝑘)
 based on drawn regression parameters at the 

kth iteration. We repeat steps 1 – 4 for d = 10, 20, 30, …, 1000 to obtain posterior draws 

and its associated median and 95% credibility intervals for µ𝑌. For λ = 0, we produce 

posterior draws for µ𝑌 based on a linear regression model of U(d) on X(d). Since V and U* 

are bivariate normal conditional on X, and the distribution of U* given V and X is the 

same for respondents and nonrespondents (since response is determined by V), the 

procedure produces unbiased estimates for U*.   
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Here we estimate the proxy X based on the regression of U on Z2, with U and X 

estimated iteratively. For LOGREG, we impute from the regression of Y on Z2 for the 

respondents. Results from the various methods under the correct λA are shown in Figure 

4.3a-b. As in the previous scenarios, for λA = λT = 0 all methods except CC bin-PPMA (BA) 

are unbiased and achieve nominal non-coverage, while yielding similar RMSE and CIW. 

Since the marginal distribution of U is non-normal, bin-PPMA (BA) is biased even when 

data is MAR. For other values of λA when λT = 0, binS-PPMA yields lower RMSE than both 

bin-PPMA estimates. When λT > 0, linearity assumptions between X and U fail, leading to 

biased estimates from bin-PPMA. Not surprisingly, binS-PPMA shows gains in both bias 

and RMSE at the correct λA, while achieving nominal coverage. When λT > 0 but λA ≠ λT, 

binS-PPMA demonstrates consistent improvements in RMSE compared to bin-PPMA 

when λA > 0, while having a minor penalty under λA = 0. The latent variable model yields 

higher RMSE and CIW compared to binS-PPMA when missingness depends linearly on 

U*, possibly due to a low correlation between U and V further attenuated by the 

iterative samplings required to estimate both latent variables. When the nonresponse 

mechanism is quadratic on U*, the latent variable model produces biased estimates at 

λT > 0, as the model is misspecified in assuming V is linear on U*. Bias is particularly 

apparent at λT = ∞, where non-coverage is high. As expected LOGREG produces biased 

estimates with low coverage under MNAR, particularly when missingness depends 

linearly on U*. 

 

4.4.4 Scenario 4: binary Z  
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 In this scenario we simulate data in a 2x2 contingency table where both the 

predictor, Z, and the outcome, Y, are binary. We again generate Y through a latent 

variable U: 

Z ~ Bernoulli(0.5) 

U|Z ~ N(-0.75 + 1.5Z, 1) 

Y = {
0 if 𝑈 < 0
 1 if 𝑈 ≥ 0

 

Let the response of Y be determined by the following models: 

A. V|Z, U ~ N(-0. 5 + Z, 1)    (λT = 0) 

B. V|Z, U ~ N(-0.25 + 0.5I{1.7Z + U > 0}, 1)  (λT = 1) 

C. V|Z, U ~ N(-0.25 + 0.5I{U > 0}, 1)   (λT = ∞) 

where Y is observed if V < 0 and missing otherwise. 

 We again iteratively estimate U and X based on a regression of U on Z for the 

respondents and apply the methods. Figure 4.4 displays average bias, RMSE, CIW, and 

non-coverage for each method where λA = λT. Estimates from CC are severely biased at 

all nonresponse mechanisms, while LOGREG is valid only under MAR. When λA = λT = 0, 

there are little differences between the methods in terms of bias, RMSE, CIW, and non-

coverage, except for bin-PPMA (BA) which sees a small increase in RMSE due to 

deviation from normality. When λT > 0, performances of bin-PPMA (MI), binS-PPMA, and 

the latent variable model are similar in terms of RMSE and CIW. Non-coverages under 

the correct assumption of λ are also near the nominal 5% for all methods (except CC and 

LOGREG) when λT = 0 or 1. However both bin-PPMA and binS-PPMA undercover when λA 
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= λT = ∞, with binS-PPMA to a larger extent due to a more anti-conservative coverage. 

At other values of λA that do not correspond to the true λT, bin-PPMA (MI) and binS-

PPMA produce similar RMSE and CIW.  

 

4.5. Example: asthma symptoms study 

 We consider data from a child asthma study conducted at the University of 

Michigan. The aim of the study is to evaluate the effectiveness of an educational 

intervention in reducing asthma symptoms for children. Data is collected from children 

in Detroit elementary and middle schools. The primary outcome is the average number 

of nights the child experiences asthma symptoms per month, collected at baseline and 

one-year follow-up. For this exercise, we are interested in estimating the proportion of 

children in the control group that experienced a decrease in monthly symptoms from 

baseline to follow-up. However, since response may be influenced by the health of the 

child, we apply S-PPMA and PPMA to assess for nonresponse bias. 

 In our analysis we limit our sample to children who have experienced 1 to 15 

nights of symptoms per month at baseline, since children with no symptoms at baseline 

will not observe any improvement in outcome. Out of 472 children at baseline in our 

analysis sample, 167 (35%) were lost to follow-up. Improvement of symptoms is highly 

associated with both age at baseline (p = 0.01) and baseline nights of symptoms per 

month (p=0.04). Moreover, age is highly predictive of response status (p<0.01). Thus, we 

use age and baseline monthly symptoms as predictors to obtain our proxy X, and apply 
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binS-PPMA and bin-PPMA over λ = 0, 1, 4, and ∞ via the data augmentation approach to 

estimate proportion with improvement. 

 Figure 4.5 shows estimates from binS-PPMA (PS) and bin-PPMA of proportion of 

children who experienced a decrease in monthly asthma symptoms at follow-up. We 

apply bin-PPMA under both Bayes (BA) and multiple imputation (MI). Each line 

represents the estimated mean and 95% confidence interval. We can see that estimates 

of the proportion with improvement in monthly symptoms increase as we place more 

weight on the outcome with respect to nonresponse, suggesting that healthier children 

were less likely to remain in the study. Differences between binS-PPMA and bin-PPMA 

are small in general, with binS-PPMA being slightly less sensitive to assumptions about λ, 

as its range of estimates over λ are smaller than those of bin-PPMA. At λ = 0, binS-PPMA 

and bin-PPMA are similar to complete case analysis. Estimates at λ > 0 are noticeably 

higher than those at λ = 0, which is an indication that inferences are sensitive to 

assumptions of MAR. However, results show little differences from λ = 1 to λ = ∞. 

 Since healthier children may have less of an incentive to participate in an asthma 

study, it is reasonable to assume MNAR in our data. Based on the results, one may 

choose an intermediate value of λ = 1 as it represents a middle ground between MAR 

and MNAR. However, even at λ = ∞, the most extreme case of MNAR, estimates tend to 

be similar.  

 

4.6. Discussion 
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 In this chapter we extend S-PPMA to binary outcomes through data 

augmentation. MAR assumptions are often not reasonable, in which case potential 

nonresponse bias due to MNAR should be explored. Bin-PPMA and binS-PPMA allow us 

to assess for nonresponse bias without requiring MAR.  Unfortunately, the data provides 

no information about the true value of λ, thus we must rely on a sensitivity analysis over 

a range of λ to reflect our uncertainty about λ. Moreover, a sensitivity analysis captures 

potential bias and uncertainty about the missing data mechanism without the need to 

specify a propensity model. Although negative values of λ may be included in the 

analysis, since X is a prediction of U it is reasonable to assume that λ is positive. As with 

bin-PPMA, binS-PPMA summarizes information in Z1, …, Zp by reducing them into a 

single variable X that is predictive of our outcome, which facilitates nonresponse 

assessment. However, unlike bin-PPMA, binS-PPMA does not assume bivariate 

normality of X and U, making it more robust to deviations from normality. Simulations 

have shown binS-PPMA produces gains in bias and RMSE compared to bin-PPMA when 

data is non-normal, and performs similarly under normality. 

 Our sensitivity analysis considers mechanisms where missingness depends on 

the value of X + λU. Since X is a function of the covariates Z1, …, Zp, the model implicitly 

weighs the importance of each Zp on response based on their estimated coefficients 

from the regression of U on Z1, …, Zp. In reality missingness may depend on some other 

combinations or a subset of Z, which can have an effect on the estimates. Additional 

sensitivity parameters can be used to address this issue, at the expense of reducing 

model simplicity. 
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 Performance gains of binS-PPMA over bin-PPMA depends highly on the degree 

of model misspecification at the threshold (i.e. U = 0), since Y is imputed based on the 

sign of the estimated U. Thus, when nonlinearity is present near the threshold, we 

expect gains from binS-PPMA. However, if nonlinearity is only apparent at values of U 

far away from 0, we would not see much gains from the spline. The simulations in this 

study are set up to accentuate the differences between binS-PPMA and bin-PPMA. 

When both the predictor and outcome are binary, binS-PPMA still produces gains in 

RMSE over other methods in our simulation. In terms of confidence interval estimation 

and coverage, however, the proposed hotdeck procedure of imputation is less 

successful as it fails to achieve nominal coverages. Further adjustments to this 

procedure for categorical predictors are needed. 

 In our examples we assume that the regression models used to estimate the 

proxy are correctly specified, which may not always be the case. An incorrectly specified 

model may introduce bias. Thus robustness to model misspecification should be further 

explored. Furthermore, the mechanism that generates Y may not be the result of a 

latent variable. For example, Y may be generated under a logistic model given Z. Validity 

of the methods depends on whether there exists a set of α such that (8) approximates 

the true mechanism. 
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Figure 4.1a. Results for scenario 1 when missingness depends on U* = X + λTU and λA = λT. 
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Figure 4.1b. Results for scenario 1 when missingness depends on U*
2
 = (X + λTU)

2
 and λA = λT. 
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Figure 4.2a. Results for scenario 2 when missingness depends on U* = X + λTU and λA = λT. 
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Figure 4.2b. Results for scenario 2 when missingness depends on U*
2
 = (X + λTU)

2
 and λA = λT. 
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Figure 4.3a. Results for scenario 3 when missingness depends on U* = X + λTU and λA = λT. 
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Figure 4.3b. Results for scenario 3 when missingness depends on U*
2
 = (X + λTU)

2
 and λA = λT. 
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Figure 4.4. Results for scenario 4 when missingness depends on U* = X + λTU and λA = λT. 
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Figure 4.5. Estimates for proportion with reduced asthma symptoms at follow-up. 
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CHAPTER V 

Summary and Future Work 

 

This dissertation focuses on developing and comparing robust estimators of the 

mean of a single variable subject to missing data, in the presence of information from 

observed covariates. In the second chapter, we assume data that are MAR. Many 

methods of estimating the mean are available, such as complete case analysis, 

imputation, and weighting methods. However, concerns about model misspecification 

have led to the development of DR estimators. An estimator is DR is it is consistent 

when either the model for the response propensity or the model for the mean is 

correctly specified. Here we compare performances of five DR estimators with respect 

to RMSE, CIW, and coverage. The results show that when the propensity model is 

correctly specified but the mean model is not, DR outperforms the incorrect regression 

model, as promised by their DR property. Overall, PSPP and the robust calibration 

method of Cao, et al (2009) yield the lowest RMSE and CIW. The calibration mean 

regression by weighted least squares calibration produces gains over the ordinary least 

squares counterpart, while the division of the weighted residuals by the sum of the 

weights also yields minor but consistent gains over its division by n. When the mean 
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function is correctly specified, we find no distinguishable differences between 

the DR methods.  

DR estimators are biased when missingness is not a random. The third chapter 

considers data that are potentially MNAR.  We propose a spline pattern mixture model 

to the relationship between a continuous response variable Y and a fully observed 

covariate X for a given assumption about the missing data mechanism. In the case of 

multiple observed covariates, X is taken to be predicted value of X for the sample 

obtained by regression of Y on X over the respondents. The spline modelling approach is 

a modification of the pattern mixture models proposed in Little (1994) and Andridge and 

Little (2011), which replaces the linear regression between X and Y via a spline model, 

allowing for a non-linear relationship between X and Y and hence relaxes the bivariate 

normal assumption. Simulations show that the spline pattern mixture approach 

provides improved robustness to normality assumptions, while trading off some 

precision when normality holds compared to the linear models in Little (1994) and 

Andridge and Little (2011). As in all pattern mixture models we recommend a sensitivity 

analysis to reflect our uncertainty about the nonresponse mechanism. 

The fourth chapter extends the idea of the spline pattern mixture model to 

categorical outcomes. We assumed a continuous latent variable which determines the 

value of the categorical outcome.  We then apply the spline pattern mixture model to 

the observed X and the iteratively estimated latent variable to obtain our estimates of 

the mean, where X is the predicted value of the latent variable for the sample. 

Simulation results show that, similar to results for continuous outcomes, the spline 
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pattern mixture model provides robustness to bivariate normality assumptions between 

the latent variable and X. When X is continuous, the spline model yields approximately 

unbiased estimates of the mean with close to nominal coverage. The method, however, 

is less successful when X is categorical, where the model undercovers the true mean.  

Although Chapter IV restricts attention to binary outcomes, the ideas presented 

can be generalized to categorical variables of more two categories. In the case of ordinal 

outcomes with k > 2 levels, we may specify k -1 threshold points for the latent U, and 

impute Y from the proxy pattern mixture model based on the imputed value of U with 

respect to the thresholds. For nominal outcomes, we may apply the binary pattern 

mixture models over k – 1 steps, where at each step j we model the probability that Y 

belongs in group j given Y does not belong in group j -1. For example, suppose Y is 

nominal taking values of 1, 2, or 3. We may apply the proposed methods to first model 

the probability that Y = 1, then re-apply the methods over subjects for which Y ≠ 1 to 

model the probability that Y = 2 | Y ≠ 1. This approach, however, assumes k – 1 latent 

variables and hence requires k – 1 sensitivity parameters, which increases complexity of 

the model. This can be troublesome when the value of k is large. 

Methods discussed in this dissertation concern data with a single missing 

outcome and a set of fully observed auxiliary variables. We may incorporate S-PPMA 

into chained equations where more than one variable is missing. Suppose Z1, …, Zk are 

fully observed, Y1, .., Yj are partially missing, and Rj is the response indicator for Yj. At 

each iteration d, we create imputations for Y1, .., Yj sequentially: 
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1. Estimate proxy 𝑋1
(𝑑)

 from 𝑌1|𝑌2
(𝑑−1)

, …, 𝑌𝑗
(𝑑−1)

, 𝑍1, …, 𝑍𝑘, 𝑅1 = 1, where 𝑌𝑗
(𝑑)

 is 𝑌𝑗 

with missing values imputed at the dth iteration and 𝑋1
(𝑑)

 is the prediction of 𝑌1 

for the whole sample. Apply S-PPMA to 𝑋1
(𝑑)

 and 𝑌1 for a given λ1 to obtain 𝑌1
(𝑑)

. 

2. Estimate proxy 𝑋2
(𝑑)

 from 𝑌2|𝑌1
(𝑑)

, 𝑌3
(𝑑−1)

, …, 𝑌𝑗
(𝑑−1)

, 𝑍1, …, 𝑍𝑘, 𝑅2 = 1. Apply S-

PPMA to 𝑋2
(𝑑)

 and 𝑌2 for a given λ2 to obtain 𝑌2
(𝑑)

. 

. 

. 

. 

j. Estimate proxy 𝑋𝑗
(𝑑)

 from 𝑌𝑗|𝑌1
(𝑑)

, …, 𝑌𝑗−1
(𝑑)

, 𝑍1, …, 𝑍𝑘, 𝑅𝑗 = 1. Apply S-PPMA to 

𝑋𝑗
(𝑑)

 and 𝑌𝑗 for a given λj to obtain 𝑌𝑗
(𝑑)

. 

 This approach does not assume a particular missing data pattern, thus may be 

used to for a variety of multivariate missing data. For a categorical Yj, we replace S-

PPMA with binS-PPMA. The equations make untestable assumptions about the 

nonresponse mechanism for each missing Yi, and any sensitivity analysis can become 

cumbersome, particularly with a large number of missing variables. Not all variables may 

be predictive of each other, though this can be modified to include only those that are 

predictive of Yi in its regression. Lastly, convergence properties would need to be 

assessed. 

 Finally, we have only discussed methods for estimating the marginal mean of a 

variable. Models for estimating subgroup means need to be further explored. Moreover, 

there is considerable interest in estimating regression coefficients under data that is 
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MNAR. Methods incorporating a sensitivity analysis to assess nonresponse bias in 

regression coefficients, similar to the idea in pattern mixture models, may be developed. 
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Appendix 

 

A.1. Gibbs sampling procedure for Bayesian penalized spline model 

In this dissertation we consider a Bayesian penalized spline with homoscedastic 

errors. Suppose we model Y on a penalized spline of P, where 

Y ~ N(X𝛽 + Zγ, σ2) 

X = (
1 𝑃1

⋮ ⋮
1 𝑃𝑟

) 

Z = (
(𝑃1 − 𝜅1)+ ⋯ (𝑃𝑟 − 𝜅𝑘)+

⋮ ⋱ ⋮
(𝑃𝑟 − 𝜅1)+ ⋯ (𝑃𝑟 − 𝜅𝑘)+

) 

(𝑃𝑖 − 𝜅𝑘)+ = {
(𝑃𝑖 − 𝜅𝑘) 𝑖𝑓 (𝑃𝑟 − 𝜅𝑘) > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

and r is the number of respondents. Here, we have K knots in the model represented by 

Z. We assign the following non-informative priors: 

𝛽 ~ 1 

γ ~ N(0, τ2I) 

σ2 ~ InvGamma(10-5, 10-5) 

τ2 ~ InvGamma(10-5, 10-5) 
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Estimates of the joint posterior distributions of the parameters, along with the 

posterior predictive distribution of the missing values of Y are obtained via the Gibbs 

sampling algorithm. The procedure at the dth iteration is summarized as follows: 

1. Draw [𝛽(d), γ(d)]|X, Z, σ2(d-1), τ2(d-1) ~ N((C’C + 
𝜎2(𝑑−1)

𝜏2(𝑑−1)D)-1C’Y, σ2(d-1)(C’C + 
𝜎2(𝑑−1)

𝜏2(𝑑−1)D)-1), 

C = [X Z], D = (
02𝑥2 02𝑥𝐾

0𝐾𝑥2 1𝐾𝑥𝐾
). 

2. Draw τ2(d)|X, Z, σ2(d-1), 𝛽(d), γ(d) ~ InvGamma(10-5 + 
𝐾

2
, 10-5 + 

1

2
‖𝛾‖2) 

3. Draw σ2(d)|X, Z, τ2(d), 𝛽(d), γ(d) ~ InvGamma(10-5 + 
𝑟

2
, 10-5 + 

1

2
(Y – X𝛽(d) – Zγ(d))’ (Y – 

X𝛽(d) – Zγ(d))) 

4. Impute Ymis|X, Z, σ2(d), τ2(d), 𝛽(d), γ(d) ~ N(X𝛽(d) + Zγ(d), σ2(d)) 

5. Repeat steps 1-4 for total 10000 iterations, discarding the first 1000 as burn-in. 

The following tables display complete results for simulations in Chapters II-IV. 
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Figure A2.1. Y vs. X1 for respondents of n = 800 from Chapter II simulation 1 
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Figure A2.2. Y vs. X1 and X2 for respondents of n = 800 from Chapter II simulation 2 
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Figure A2.3. Y vs. X1 and X2 for respondents of n = 800 from Chapter II simulation 3 
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Table A2.1b. Results from Chapter II simulation 1 (LH) 

          
N BD CORR MISS CAL MCAL WCAL RCAL PSPPREML PSPPBAYES 

Bias x 1000 
50 -44 -46 -157 -18 -19 -28 -75 -136 -132 

100 -13 -10 -161 -70 -71 -72 -75 -57 -55 
200 -21 -20 -62 -5 -5 -7 -24 -37 -37 
400 0 -4 -61 -22 -22 -22 -18 -13 -13 
800 -1 -2 -23 7 7 7 -5 -6 -6 

% increase in RMSE over BD 
50 0 2 43 48 47 43 36 3 3 

100 0 2 51 53 53 50 39 3 3 
200 0 2 46 48 48 46 35 2 2 
400 0 2 43 43 43 42 27 2 2 
800 0 2 42 42 42 42 26 2 2 

% increase in CIW over BD 
50 0 3 41 54 50 42 35 4 0 

100 0 2 38 44 43 39 33 2 1 
200 0 2 40 43 42 40 33 1 1 
400 0 1 40 42 42 41 31 1 2 
800 0 2 41 42 42 41 28 1 2 

Coverage out of 1000 
50 930 930 898 910 910 905 922 918 911 

100 936 938 898 904 905 903 931 932 931 
200 923 918 908 922 922 921 933 920 922 
400 946 945 922 929 929 927 955 944 945 
800 949 944 932 937 937 937 952 938 945 

 
Table A2.1a. Results from Chapter II simulation 1 (LL) 
          

N BD CORR MISS CAL MCAL WCAL RCAL PSPPREML PSPPBAYES 
Bias x 1000 

50 10 6 -29 -1 -1 -3 -8 -19 -26 
100 -6 -2 -19 -1 -1 -1 -8 -8 -12 
200 -1 2 -12 -1 -1 -1 -4 -1 -3 
400 -1 -2 -11 -3 -3 -3 -4 -4 -4 
800 3 2 -2 3 3 3 3 1 1 

% increase in RMSE over BD 
50 0 17 36 40 39 37 35 22 22 

100 0 15 31 32 32 31 25 16 16 
200 0 15 30 31 31 30 26 16 15 
400 0 15 28 28 28 28 23 16 15 
800 0 12 29 29 29 29 21 13 12 

% increase in CIW over BD 
50 0 24 32 38 36 32 45 27 22 

100 0 16 31 34 34 31 30 21 18 
200 0 15 31 32 32 31 27 18 17 
400 0 14 31 32 32 31 27 15 16 
800 0 15 31 32 32 31 26 15 15 

Coverage out of 1000 
50 946 971 950 952 952 949 970 962 962 

100 925 935 932 938 938 936 945 937 934 
200 936 940 942 949 949 949 941 946 949 
400 947 948 952 954 954 953 951 948 952 
800 955 965 965 964 964 964 973 966 968 
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Table A2.1c. Results from Chapter II simulation 1 (HL) 
          

N BD CORR MISS CAL MCAL WCAL RCAL PSPPREML PSPPBAYES 
Bias x 1000 

50 5 4 -119 -30 -31 -35 -25 -35 -56 
100 -1 -3 -103 -16 -17 -20 -11 -19 -28 
200 -4 -2 -97 -5 -5 -8 -4 -9 -12 
400 1 1 -93 -4 -4 -5 -1 -3 -5 
800 5 4 -89 2 1 1 3 1 1 

% increase in RMSE over BD 
50 0 14 41 45 43 37 37 18 21 

100 0 16 48 51 50 41 24 21 18 
200 0 18 59 50 49 42 20 22 20 
400 0 14 68 42 41 36 14 15 15 
800 0 15 87 42 42 37 15 16 15 

% increase in CIW over BD 
50 0 32 36 58 45 36 86 36 29 

100 0 19 35 48 45 36 36 29 23 
200 0 17 36 48 47 39 22 23 20 
400 0 17 35 45 45 38 18 19 18 
800 0 16 35 46 45 39 17 17 17 

Coverage out of 1000 
50 930 967 923 940 939 934 974 957 951 

100 943 953 921 946 945 944 960 959 953 
200 949 947 898 950 949 946 952 951 951 
400 939 955 878 950 950 949 956 956 951 
800 941 942 805 940 940 940 947 947 944 

 
Table A2.1d. Results from Chapter II simulation 1 (HH) 

          
N BD CORR MISS CAL MCAL WCAL RCAL PSPPREML PSPPBAYES 

Bias x 1000 
50 -35 -37 -585 -86 -105 -154 -135 -193 -189 

100 -16 -13 -494 -4 -10 -47 -55 -79 -78 
200 0 2 -491 -32 -33 -39 -15 -30 -32 
400 15 17 -450 8 7 2 7 -1 -1 
800 4 5 -470 -25 -25 -25 -1 -3 -4 

% increase in RMSE over BD 
50 0 3 65 90 80 57 21 5 5 

100 0 1 73 96 91 62 6 2 2 
200 0 2 90 69 68 56 3 2 3 
400 0 2 115 71 70 58 2 3 2 
800 0 1 166 69 68 57 1 1 1 

% increase in CIW over BD 
50 0 4 44 91 64 45 33 5 -1 

100 0 2 45 77 67 47 17 3 1 
200 0 2 44 65 63 49 6 2 1 
400 0 2 45 67 65 52 2 2 1 
800 0 2 46 67 66 54 1 1 2 

Coverage out of 1000 
50 912 921 832 887 880 881 935 902 891 

100 941 935 837 916 914 904 951 929 926 
200 942 950 806 912 913 913 948 939 938 
400 951 948 777 928 928 928 947 947 951 
800 936 942 624 927 927 927 942 940 941 
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Table A2.2a. Results from Chapter II simulation 2 (LL) 
          

N BD CORR MISS CAL MCAL WCAL RCAL PSPPREML PSPPBAYES 
Bias x 1000 

50 12 16 22 15 15 15 18 13 18 
100 -3 5 9 2 2 3 5 5 7 
200 0 3 8 -1 -1 -1 -3 -1 2 
400 -3 -2 10 1 1 1 -1 2 3 
800 -3 -3 6 -3 -3 -3 -5 -3 -3 

% increase in RMSE over BD 
50 0 17 27 28 28 27 46 28 27 

100 0 14 21 22 22 21 29 29 22 
200 0 12 19 20 20 20 20 20 18 
400 0 16 26 26 26 25 24 25 23 
800 0 17 25 25 25 25 22 23 22 

% increase in CIW over BD 
50 0 21 25 31 28 25 105 53 30 

100 0 16 23 25 25 23 35 41 25 
200 0 14 21 23 23 22 24 31 22 
400 0 14 22 23 23 22 22 26 22 
800 0 13 21 22 22 22 20 23 22 

Coverage out of 1000 
50 944 943 942 949 946 940 978 964 946 

100 945 948 951 950 950 948 963 965 956 
200 948 948 940 942 942 942 950 956 947 
400 960 943 938 946 946 945 944 954 943 
800 950 930 935 940 940 940 939 942 941 

 
Table A2.2b. Results from Chapter II simulation 2 (LH) 

          
N BD CORR MISS CAL MCAL WCAL RCAL PSPPREML PSPPBAYES 

Bias x 1000 
50 -26 -25 12 -22 -22 -23 -6 -20 -11 

100 14 17 62 26 26 26 9 27 29 
200 7 5 58 13 13 13 -1 17 16 
400 7 7 47 1 1 1 -5 2 6 
800 4 5 51 6 6 6 0 7 8 

% increase in RMSE over BD 
50 0 3 40 48 47 42 64 49 41 

100 0 3 45 57 56 48 48 58 45 
200 0 4 40 41 41 39 37 48 38 
400 0 3 41 42 42 41 34 41 35 
800 0 3 46 46 46 44 32 38 36 

% increase in CIW over BD 
50 0 5 43 63 52 42 101 93 41 

100 0 3 39 51 48 40 52 87 36 
200 0 3 40 44 44 41 42 73 34 
400 0 3 39 43 43 41 37 55 33 
800 0 3 39 42 42 40 34 45 33 

Coverage out of 1000 
50 939 948 952 963 958 953 979 984 949 

100 964 966 948 959 957 952 965 986 946 
200 954 952 948 949 949 949 959 981 948 
400 944 947 935 946 946 944 951 970 942 
800 929 933 923 935 935 935 942 947 932 
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Table A2.2c. Results from Chapter II simulation 2 (HL) 
          

N BD CORR MISS CAL MCAL WCAL RCAL PSPPREML PSPPBAYES 
Bias x 1000 

50 -14 -14 35 4 5 6 -10 -2 15 
100 0 1 41 4 4 7 -4 6 19 
200 0 3 46 5 6 7 0 9 16 
400 0 0 43 2 2 2 -4 4 8 
800 -3 -2 41 -2 -2 -2 -4 2 2 

% increase in RMSE over BD 
50 0 19 29 32 31 29 70 35 29 

100 0 16 28 32 32 28 34 36 28 
200 0 17 28 27 27 25 26 32 25 
400 0 16 33 31 31 28 22 28 24 
800 0 19 41 31 30 28 22 27 26 

% increase in CIW over BD 
50 0 26 28 42 32 28 168 67 32 

100 0 18 24 32 29 25 55 52 24 
200 0 16 23 28 27 24 30 41 21 
400 0 15 24 28 28 25 23 32 20 
800 0 15 23 28 27 25 20 27 18 

Coverage out of 1000 
50 941 954 940 945 936 933 996 964 954 

100 947 942 946 950 949 944 970 966 936 
200 944 936 936 945 945 944 953 959 935 
400 952 945 924 936 935 936 940 942 938 
800 947 934 911 944 944 941 942 948 937 

 
Table A2.2d. Results from Chapter II simulation 2 (HH) 

          
N BD CORR MISS CAL MCAL WCAL RCAL PSPPREML PSPPBAYES 

Bias x 1000 
50 -2 -5 227 88 91 88 45 76 120 

100 -1 1 218 38 40 46 -14 66 82 
200 18 19 234 48 49 51 -2 44 64 
400 10 11 225 16 16 19 -3 24 29 
800 -4 -5 217 5 5 6 -6 5 6 

% increase in RMSE over BD 
50 0 4 51 66 63 51 81 58 52 

100 0 4 51 59 58 49 47 72 53 
200 0 3 60 59 58 50 34 53 43 
400 0 3 75 60 59 50 25 50 42 
800 0 4 98 56 56 48 18 45 37 

% increase in CIW over BD 
50 0 5 42 76 55 41 138 102 41 

100 0 4 41 59 54 42 64 104 36 
200 0 3 42 57 56 46 44 99 33 
400 0 3 43 57 56 47 31 69 30 
800 0 3 43 57 56 49 23 55 30 

Coverage out of 1000 
50 951 955 937 952 943 937 985 983 946 

100 944 940 926 938 936 931 961 977 926 
200 955 957 912 947 947 944 960 980 929 
400 946 951 893 944 944 942 959 963 929 
800 942 941 826 956 956 954 956 967 947 
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Table A2.3a. Results from Chapter II simulation 3 (LL) 
          

N BD CORR MISS CAL MCAL WCAL RCAL PSPPREML PSPPBAYES 
Bias x 1000 

50 9 -2 -50 -21 -21 -21 -35 -29 -24 
100 -4 -4 12 30 30 29 18 1 6 
200 -17 -22 -33 -23 -23 -23 -26 -25 -24 
400 -1 -5 -10 -2 -2 -2 -3 -7 -6 
800 -12 -12 -15 -10 -10 -10 -11 -12 -12 

% increase in RMSE over BD 
50 0 7 28 26 26 25 26 14 14 

100 0 3 23 22 22 22 23 7 8 
200 0 3 23 22 22 22 22 6 7 
400 0 2 20 20 20 20 20 6 6 
800 0 3 21 21 21 21 21 5 6 

% increase in CIW over BD 
50 0 1846 29 29 27 27 52 35 22 

100 0 10 24 22 22 22 25 11 12 
200 0 3 22 22 22 22 22 7 9 
400 0 2 22 21 21 21 21 6 8 
800 0 2 21 20 20 20 20 6 7 

Coverage out of 1000 
50 940 989 943 949 948 945 959 963 950 

100 934 946 950 950 950 951 953 948 949 
200 942 941 942 943 943 943 938 946 951 
400 953 951 957 954 954 955 955 956 953 
800 948 951 938 939 939 940 941 936 939 

 
Table A2.3b. Results from Chapter II simulation 3 (LH) 

          
N BD CORR MISS CAL MCAL WCAL RCAL PSPPREML PSPPBAYES 

Bias x 1000 
50 -89 1055 -75 -47 -47 -46 -55 -51 -58 

100 18 20 -9 10 10 9 1 9 6 
200 -12 -14 -25 -15 -15 -14 -12 -30 -27 
400 5 3 -19 -12 -12 -12 -10 -14 -17 
800 4 1 -4 1 1 1 1 6 6 

% increase in RMSE over BD 
50 0 3680 42 45 45 42 42 45 42 

100 0 2 35 36 36 35 35 44 39 
200 0 2 32 32 32 32 31 36 31 
400 0 2 30 31 31 30 30 31 28 
800 0 1 30 31 31 30 31 27 26 

% increase in CIW over BD 
50 0 8539 38 43 42 37 56 67 38 

100 0 31 33 36 36 33 37 60 31 
200 0 2 32 34 34 32 33 55 29 
400 0 1 33 33 33 33 33 42 28 
800 0 1 32 33 33 32 32 35 28 

Coverage out of 1000 
50 950 989 940 942 940 935 958 966 934 

100 948 960 948 951 951 947 954 968 940 
200 939 935 934 935 935 930 935 950 928 
400 942 938 948 949 949 948 952 960 948 
800 945 939 945 944 944 944 944 956 955 
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Table A2.3c. Results from Chapter II simulation 3 (HL) 
          

N BD CORR MISS CAL MCAL WCAL RCAL PSPPREML PSPPBAYES 
Bias x 1000 

50 5 -2 -76 50 48 56 -86 14 22 
100 -3 -2 -113 -7 -7 -4 -101 -20 -18 
200 7 7 -96 5 5 6 -44 -3 -1 
400 -9 -7 -99 -2 -2 -2 -32 -9 -7 
800 2 3 -88 6 6 7 -9 2 3 

% increase in RMSE over BD 
50 0 34 33 28 26 26 61 28 24 

100 0 6 28 20 20 21 30 8 9 
200 0 2 28 19 19 19 19 4 5 
400 0 4 36 23 23 23 22 8 9 
800 0 3 38 22 22 22 19 7 7 

% increase in CIW over BD 
50 0 3484 35 34 29 28 106 57 27 

100 0 49 28 23 22 22 39 16 16 
200 0 5 26 21 21 20 26 8 12 
400 0 3 24 19 19 19 20 7 9 
800 0 3 24 19 19 19 18 7 8 

Coverage out of 1000 
50 948 987 957 957 955 954 980 973 967 

100 948 962 942 945 943 943 957 949 953 
200 943 950 939 940 940 934 948 952 951 
400 949 947 924 946 946 947 937 947 951 
800 947 947 919 944 944 947 949 945 950 

 
Table A2.3d. Results from Chapter II simulation 3 (HH) 

          
N BD CORR MISS CAL MCAL WCAL RCAL PSPPREML PSPPBAYES 

Bias x 1000 
50 -12 57 -122 12 10 7 -60 23 12 

100 -5 8 -74 31 31 29 -60 12 22 
200 1 4 -91 15 15 16 -40 14 4 
400 1 -3 -99 3 3 0 -39 -22 -18 
800 -9 -7 -94 3 3 2 -16 3 0 

% increase in RMSE over BD 
50 0 798 42 55 54 44 66 65 53 

100 0 9 39 50 50 41 48 69 55 
200 0 2 38 49 49 39 36 67 53 
400 0 2 44 51 51 44 43 59 54 
800 0 0 41 45 45 39 38 53 49 

% increase in CIW over BD 
50 0 2079 44 55 50 42 107 101 46 

100 0 68 38 48 46 38 53 91 40 
200 0 3 36 45 45 37 40 93 37 
400 0 2 37 46 46 38 38 74 34 
800 0 1 36 45 45 38 34 59 33 

Coverage out of 1000 
50 954 974 955 952 948 949 979 971 947 

100 939 955 938 941 939 938 953 958 928 
200 951 953 944 947 946 950 949 967 926 
400 958 956 945 947 947 948 951 964 920 
800 951 961 952 965 965 966 953 959 937 
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Table A2.4a. Results from Chapter II simulation 4 (LL) 
          

N BD CORR MISS CAL MCAL WCAL RCAL PSPPREML PSPPBAYES 
Bias x 1000 

50 7 1 9 1 1 1 2 1 1 
100 7 11 22 11 11 11 9 10 11 
200 2 2 12 2 2 1 2 2 2 
400 1 0 12 0 0 0 0 0 0 
800 2 3 12 3 3 3 3 3 3 

% increase in RMSE over BD 
50 0 15 23 15 15 16 20 18 16 

100 0 10 18 10 10 10 11 10 10 
200 0 15 23 15 15 15 16 15 15 
400 0 12 21 12 12 12 12 12 12 
800 0 13 25 13 13 13 13 14 13 

% increase in CIW over BD 
50 0 22 26 22 22 22 66 58 24 

100 0 15 23 15 15 15 23 24 18 
200 0 14 22 14 14 14 16 17 16 
400 0 14 22 14 14 14 14 15 15 
800 0 13 21 14 14 13 14 14 14 

Coverage out of 1000 
50 938 947 942 949 949 948 971 964 951 

100 940 948 943 949 949 949 955 959 954 
200 945 931 925 932 932 934 930 937 939 
400 948 958 948 958 958 957 955 959 962 
800 951 950 943 950 950 951 951 950 950 

 
Table A2.4b. Results from Chapter II simulation 4 (LH) 

          
N BD CORR MISS CAL MCAL WCAL RCAL PSPPREML PSPPBAYES 

Bias x 1000 
50 1 0 58 0 0 0 0 -2 1 

100 2 6 56 6 6 6 5 7 6 
200 15 15 66 15 15 15 15 15 14 
400 4 3 47 3 3 3 3 4 3 
800 4 5 54 5 5 5 5 5 5 

% increase in RMSE over BD 
50 0 3 45 3 3 3 5 5 3 

100 0 4 49 4 4 4 5 5 5 
200 0 3 43 3 3 3 3 3 3 
400 0 3 44 3 3 3 3 3 3 
800 0 4 44 4 4 4 4 4 4 

% increase in CIW over BD 
50 0 5 41 5 5 5 17 15 6 

100 0 3 40 3 3 3 5 5 5 
200 0 3 40 3 3 3 3 4 3 
400 0 3 39 3 3 3 3 3 3 
800 0 3 39 3 3 3 3 3 3 

Coverage out of 1000 
50 959 950 933 949 949 948 965 959 956 

100 947 940 942 940 940 941 944 949 947 
200 953 950 939 950 950 949 949 952 953 
400 950 950 946 950 950 950 949 952 953 
800 954 945 937 945 945 944 947 948 951 
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Table A2.4c. Results from Chapter II simulation 4 (HL) 
          

N BD CORR MISS CAL MCAL WCAL RCAL PSPPREML PSPPBAYES 
Bias x 1000 

50 -11 -8 27 -8 -8 -8 -2 -5 -7 
100 -7 -5 41 -5 -5 -5 -4 -5 -5 
200 2 5 48 5 5 5 5 4 5 
400 -1 -1 42 -1 -1 -1 -1 -1 -1 
800 -1 2 43 2 2 1 2 2 2 

% increase in RMSE over BD 
50 0 19 27 19 19 20 27 22 20 

100 0 15 26 15 15 15 18 17 15 
200 0 15 27 15 15 15 15 15 15 
400 0 15 31 15 15 15 15 15 15 
800 0 11 36 11 11 11 11 11 11 

% increase in CIW over BD 
50 0 25 27 25 25 25 68 59 26 

100 0 17 24 17 17 17 25 26 19 
200 0 15 23 15 15 15 17 18 17 
400 0 15 24 15 15 15 16 16 16 
800 0 15 23 15 15 15 15 16 15 

Coverage out of 1000 
50 934 941 939 941 941 940 962 962 949 

100 948 948 948 948 948 948 968 972 960 
200 945 947 944 947 947 947 949 947 950 
400 942 950 932 948 948 947 951 949 954 
800 951 951 929 951 951 951 951 951 953 

 
Table A2.4d. Results from Chapter II simulation 4 (HH) 

          
N BD CORR MISS CAL MCAL WCAL RCAL PSPPREML PSPPBAYES 

Bias x 1000 
50 27 36 299 36 36 34 32 37 36 

100 11 9 233 9 9 9 8 8 9 
200 2 2 226 2 2 2 3 2 2 
400 2 2 213 2 2 2 2 2 2 
800 -4 -6 213 -6 -6 -6 -6 -6 -6 

% increase in RMSE over BD 
50 0 6 61 6 6 6 8 7 6 

100 0 3 58 3 3 3 3 3 3 
200 0 4 67 4 4 4 4 4 4 
400 0 2 66 2 2 2 2 2 2 
800 0 3 99 3 3 3 2 2 3 

% increase in CIW over BD 
50 0 6 45 6 6 6 19 16 7 

100 0 4 43 4 4 4 5 6 5 
200 0 3 42 3 3 3 4 4 4 
400 0 3 43 3 3 3 3 3 4 
800 0 3 43 3 3 3 3 3 4 

Coverage out of 1000 
50 957 944 928 944 944 944 964 959 955 

100 952 956 932 955 955 955 954 956 951 
200 949 948 927 948 948 948 948 948 959 
400 939 940 908 939 939 939 940 938 937 
800 951 951 830 952 952 952 951 950 948 
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Table A2.5. Results from Chapter II simulation 5 (CC) 
          

N BD CORR MISS CAL MCAL WCAL RCAL PSPPREML PSPPBAYES 
Bias x 1000 

50 -169 -168 -215 -177 -172 -170 -119 -160 -166 
100 -24 -27 -141 -28 -27 -27 -32 -29 -26 
200 54 59 -459 58 58 58 62 61 59 
400 27 28 -762 28 28 28 28 28 28 
800 -19 -16 -821 -14 -14 -15 -15 -14 -15 

% increase in RMSE over BD 
50 0 0 35 0 0 0 2 0 0 

100 0 0 30 0 0 0 1 0 0 
200 0 0 32 0 0 0 1 0 0 
400 0 0 33 0 0 0 0 0 0 
800 0 0 40 0 0 0 0 0 0 

% increase in CIW over BD 
50 0 0 37 0 0 0 7 1 1 

100 0 0 31 0 0 0 1 0 1 
200 0 0 29 0 0 0 0 0 1 
400 0 0 28 0 0 0 0 0 1 
800 0 0 29 0 0 0 0 0 0 

Coverage out of 1000 
50 942 939 937 939 938 938 947 941 946 

100 937 934 937 936 936 936 936 936 943 
200 955 953 946 955 955 955 954 953 954 
400 944 945 926 945 945 945 945 945 948 
800 940 938 920 939 939 939 941 940 941 

 
Table A2.6. Results from Chapter II simulation 5 (MC) 

          
N BD CORR MISS CAL MCAL WCAL RCAL PSPPREML PSPPBAYES 

Bias x 1000 
50 -301 -305 -222 -308 -308 -307 -315 -318 -315 

100 54 53 -313 46 51 52 50 56 51 
200 -100 -101 -671 -98 -103 -103 -105 -104 -102 
400 -35 -37 -733 -38 -39 -36 -37 -37 -36 
800 10 10 -786 22 12 9 9 9 9 

% increase in RMSE over BD 
50 0 0 32 0 0 0 1 1 0 

100 0 0 30 0 0 0 0 0 0 
200 0 0 31 0 0 0 0 0 0 
400 0 0 40 4 0 0 0 0 0 
800 0 0 45 11 0 0 0 0 0 

% increase in CIW over BD 
50 0 0 35 1 0 0 1 2 2 

100 0 0 31 3 0 0 0 1 1 
200 0 0 29 9 0 0 0 0 1 
400 0 0 29 5 0 0 0 0 1 
800 0 0 29 10 0 0 0 0 0 

Coverage out of 1000 
50 953 954 954 956 954 953 952 955 958 

100 939 939 946 939 939 939 938 941 944 
200 950 949 952 950 949 949 949 951 960 
400 959 960 937 959 959 959 961 960 965 
800 952 950 921 952 947 949 950 949 951 
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Table A2.7. Results from Chapter II simulation 7 (CM) 
          

N BD CORR MISS CAL MCAL WCAL RCAL PSPPREML PSPPBAYES 
Bias x 1000 

50 -32 -28 -61 712 802 849 -658 278 703 
100 -128 -126 -310 487 535 617 -568 120 266 
200 -49 -52 -531 296 317 466 -279 48 124 
400 46 46 -572 273 289 415 -5 82 177 
800 -6 -6 -804 90 97 203 17 -3 24 

% increase in RMSE over BD 
50 0 0 32 41 33 28 28 37 26 

100 0 0 38 45 41 28 18 40 21 
200 0 0 31 42 39 20 6 24 9 
400 0 0 38 50 47 20 2 18 10 
800 0 0 48 53 51 20 1 16 8 

% increase in CIW over BD 
50 0 0 36 73 37 33 71 99 18 

100 0 0 31 56 35 25 35 84 12 
200 0 0 30 40 34 20 10 64 6 
400 0 0 29 37 34 17 4 36 4 
800 0 0 29 36 35 17 2 22 2 

Coverage out of 1000 
50 952 952 954 977 968 964 989 991 955 

100 957 959 936 963 957 956 977 989 941 
200 944 944 945 948 942 944 954 983 939 
400 949 949 923 949 945 943 951 967 932 
800 958 955 926 950 949 950 960 956 941 

 
Table A2.8. Results from Chapter II simulation 8 (MM) 

          
N BD CORR MISS CAL MCAL WCAL RCAL PSPPREML PSPPBAYES 

Bias 
50 -215 -230 -23 -1624 -1236 -996 -1716 -2198 -1073 

100 -14 -14 -356 -3613 -2740 -1696 -1391 -2828 -1859 
200 -2 -4 -679 -5334 -4166 -2293 -1312 -2763 -2223 
400 51 52 -659 -43887 -6085 -2528 -1263 -2268 -2160 
800 -71 -73 -835 -27360 -7661 -2962 -1503 -2427 -2409 

% increase in RMSE over BD 
50 0 0 33 104 45 35 62 72 40 

100 0 0 33 242 97 39 47 149 62 
200 0 0 36 432 202 59 31 141 59 
400 0 0 36 55744 554 90 32 103 73 
800 0 0 44 34324 930 158 58 132 119 

% increase in CIW over BD 
50 0 0 36 93 44 38 112 160 37 

100 0 0 31 322 57 30 66 190 32 
200 0 0 29 470 84 26 40 183 23 
400 0 0 28 10638 147 25 21 118 17 
800 0 0 29 4107 241 26 14 91 14 

Coverage out of 1000 
50 950 955 948 962 947 941 978 978 935 

100 950 949 950 973 951 933 960 974 928 
200 948 946 931 949 907 863 949 978 857 
400 946 945 934 911 844 785 915 936 797 
800 944 945 906 756 657 541 824 830 605 
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Table A3.1a. Results from Chapter III scenario 1 under λT = 0. 
n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -250 290 397 645 

       
 0 S-BNPM 1 161 625 61 
  BNPM-ML 2 159 595 70 
  BNPM-BAYES 0 159 607 64 
       
 1 S-BNPM 269 334 678 323 

 BNPM-ML 262 324 712 267 
 BNPM-BAYES 260 322 722 335 

       
 ∞ S-BNPM 808 905 1706 691 
  BNPM-ML 852 995 42061 265 
  BNPM-BAYES 835 938 3390 863 
       

400  CC -249 259 196 984 
       
 0 S-BNPM -1 73 299 45 
  BNPM-ML 0 72 289 52 
  BNPM-BAYES 0 72 290 53 
       
 1 S-BNPM 251 266 326 862 
  BNPM-ML 248 262 337 853 
  BNPM-BAYES 248 261 336 871 
       
 ∞ S-BNPM 750 769 620 1000 
  BNPM-ML 755 773 707 1000 
  BNPM-BAYES 755 773 701 1000 

 
Table A3.1b. Results from Chapter III scenario 1 under λT = 1. 

n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -500 519 395 982 

       
 0 S-BNPM -250 291 628 356 
  BNPM-ML -250 290 596 400 
  BNPM-BAYES -252 292 607 370 
       
 1 S-BNPM 20 183 682 54 

 BNPM-ML 15 178 721 43 
 BNPM-BAYES 13 178 728 52 

       
 ∞ S-BNPM 568 692 1671 238 
  BNPM-ML 643 1401 46654 30 
  BNPM-BAYES 592 723 3391 493 
       

400  CC -501 506 196 1000 
       
 0 S-BNPM -250 262 301 885 
  BNPM-ML -250 261 291 897 
  BNPM-BAYES -250 262 293 892 
       
 1 S-BNPM 5 93 329 66 
  BNPM-ML 3 91 339 51 
  BNPM-BAYES 3 91 340 55 
       
 ∞ S-BNPM 513 545 634 946 
  BNPM-ML 521 552 728 930 
  BNPM-BAYES 521 552 720 977 
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Table A3.1c. Results from Chapter III scenario 1 under λT = ∞. 
n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -1001 1011 394 1000 

       
 0 S-BNPM -746 762 619 991 
  BNPM-ML -747 763 592 996 
  BNPM-BAYES -749 765 600 995 
       
 1 S-BNPM -486 519 671 771 

 BNPM-ML -494 524 705 753 
 BNPM-BAYES -496 526 712 691 

       
 ∞ S-BNPM 55 405 1623 70 
  BNPM-ML 81 444 25807 35 
  BNPM-BAYES 74 415 3014 34 
       

400  CC -996 998 197 1000 
       
 0 S-BNPM -745 748 301 1000 
  BNPM-ML -745 748 292 1000 
  BNPM-BAYES -745 749 292 1000 
       
 1 S-BNPM -492 500 328 998 
  BNPM-ML -494 502 339 999 
  BNPM-BAYES -495 502 339 998 
       
 ∞ S-BNPM 6 174 621 76 
  BNPM-ML 12 174 710 45 
  BNPM-BAYES 12 174 702 59 

 
Table A3.2a. Results from Chapter III scenario 2 under λT = 0. 

n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -2401 2412 932 1000 

  True -37 503 2028 56 
       
 0 S-BNPM -35 553 2372 46 
  BNPM-ML -37 503 2006 65 
  BNPM-BAYES -63 504 2015 51 
       
 1 S-BNPM 368 761 2572 39 

 BNPM-ML 716 963 2546 121 
 BNPM-BAYES 693 943 2497 197 

       
 ∞ S-BNPM 986 1370 3262 89 
  BNPM-ML 1490 1744 3805 243 
  BNPM-BAYES 1476 1730 3360 527 
       

400  CC -2399 2402 463 1000 
  True -1 245 989 47 
       
 0 S-BNPM 1 276 1384 12 
  BNPM-ML -1 245 985 48 
  BNPM-BAYES -8 245 984 49 
       
 1 S-BNPM 503 809 2446 8 
  BNPM-ML 719 782 1206 640 
  BNPM-BAYES 714 777 1202 695 
       
 ∞ S-BNPM 864 1066 2704 52 
  BNPM-ML 1443 1499 1586 986 
  BNPM-BAYES 1440 1496 1525 993 
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Table A3.2b. Results from Chapter III scenario 2 under λT = 1. 
n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -2082 2101 1107 1000 

  True 27 472 2216 23 
       
 0 S-BNPM -123 499 1927 81 
  BNPM-ML -122 475 1788 91 
  BNPM-BAYES -141 478 1798 73 
       
 1 S-BNPM 72 537 1994 61 

 BNPM-ML 241 569 2031 47 
 BNPM-BAYES 225 559 2035 62 

       
 ∞ S-BNPM 304 677 2196 53 
  BNPM-ML 618 869 2498 78 
  BNPM-BAYES 607 859 2389 151 
       

400  CC -2107 2112 545 1000 
  True 3 236 1061 28 
       
 0 S-BNPM -147 279 985 101 
  BNPM-ML -142 269 876 123 
  BNPM-BAYES -147 272 878 120 
       
 1 S-BNPM 52 292 1140 40 
  BNPM-ML 206 328 977 115 
  BNPM-BAYES 202 326 988 130 
       
 ∞ S-BNPM 183 367 1184 44 
  BNPM-ML 564 637 1146 458 
  BNPM-BAYES 561 634 1133 520 

 
Table A3.2c. Results from Chapter III scenario 2 under λT = ∞. 

n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -1917 1940 1155 999 

  True 40 463 2051 31 
       
 0 S-BNPM -181 488 1792 99 
  BNPM-ML -179 478 1702 107 
  BNPM-BAYES -194 481 1725 95 
       
 1 S-BNPM -47 477 1826 80 

 BNPM-ML 71 487 1859 56 
 BNPM-BAYES 59 482 1898 54 

       
 ∞ S-BNPM 94 527 1945 61 
  BNPM-ML 332 641 2149 48 
  BNPM-BAYES 321 632 2129 74 
       

400  CC -1911 1917 573 1000 
  True 10 220 984 25 
       
 0 S-BNPM -201 296 899 153 
  BNPM-ML -195 288 837 173 
  BNPM-BAYES -198 291 837 165 
       
 1 S-BNPM -73 265 1013 80 
  BNPM-ML 38 229 901 50 
  BNPM-BAYES 34 229 916 45 
       
 ∞ S-BNPM 55 304 1124 44 
  BNPM-ML 280 375 1002 150 
  BNPM-BAYES 278 374 1012 171 
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Table A3.3a. Results from Chapter III scenario 3 under λT = 0. 
n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -1146 1191 939 981 

       
 0 S-BNPM 5 291 1185 50 
  BNPM-ML 6 288 1165 53 
  BNPM-BAYES 2 288 1171 53 
       
 1 S-BNPM 131 326 1200 63 

 BNPM-ML 126 320 1203 60 
 BNPM-BAYES 123 319 1201 63 

       
 ∞ S-BNPM 253 401 1245 104 
  BNPM-ML 246 394 1250 97 
  BNPM-BAYES 246 393 1255 117 
       

400  CC -1157 1168 467 1000 
       
 0 S-BNPM 3 148 584 54 
  BNPM-ML 3 147 576 52 
  BNPM-BAYES 2 146 574 51 
       
 1 S-BNPM 131 202 599 132 
  BNPM-ML 126 196 593 124 
  BNPM-BAYES 126 196 588 131 
       
 ∞ S-BNPM 256 300 617 345 
  BNPM-ML 250 295 614 326 
  BNPM-BAYES 250 295 612 345 

 
Table A3.3b. Results from Chapter III scenario 3 under λT = 1. 

n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -1349 1393 914 995 

       
 0 S-BNPM -117 319 1197 65 
  BNPM-ML -116 317 1180 70 
  BNPM-BAYES -122 319 1178 70 
       
 1 S-BNPM 26 309 1216 42 

 BNPM-ML 18 303 1225 46 
 BNPM-BAYES 14 302 1210 47 

       
 ∞ S-BNPM 163 366 1267 64 
  BNPM-ML 151 353 1280 57 
  BNPM-BAYES 151 353 1276 72 
       

400  CC -1351 1361 458 1000 
       
 0 S-BNPM -139 198 587 140 
  BNPM-ML -138 197 576 152 
  BNPM-BAYES -140 198 576 145 
       
 1 S-BNPM -2 147 601 41 
  BNPM-ML -5 145 594 42 
  BNPM-BAYES -5 145 590 46 
       
 ∞ S-BNPM 133 204 619 113 
  BNPM-ML 129 201 617 116 
  BNPM-BAYES 129 201 617 120 
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Table A3.3c. Results from Chapter III scenario 3 under λT = ∞. 
n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -1314 1357 914 995 

       
 0 S-BNPM -233 372 1139 133 
  BNPM-ML -231 370 1125 136 
  BNPM-BAYES -235 373 1129 132 
       
 1 S-BNPM -115 319 1148 87 

 BNPM-ML -118 316 1160 78 
 BNPM-BAYES -119 316 1156 81 

       
 ∞ S-BNPM 0 307 1193 51 
  BNPM-ML -5 304 1204 50 
  BNPM-BAYES -5 304 1207 48 
       

400  CC -1312 1322 452 1000 
       
 0 S-BNPM -240 277 560 387 
  BNPM-ML -238 275 552 392 
  BNPM-BAYES -239 276 553 395 
       
 1 S-BNPM -118 185 572 133 
  BNPM-ML -119 185 568 135 
  BNPM-BAYES -120 185 567 129 
       
 ∞ S-BNPM 1 149 590 47 
  BNPM-ML -1 148 589 44 
  BNPM-BAYES -1 147 588 42 

 
Table A3.3d. Results from Chapter III scenario 3 when nonresponse depends on Z2. 

n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -1221 1265 930 988 

       
 0 S-BNPM 7 309 1201 58 
  BNPM-ML 6 307 1219 55 
  BNPM-BAYES 3 306 1178 65 
       
 1 S-BNPM 145 354 1220 68 

 BNPM-ML 137 344 1269 53 
 BNPM-BAYES 134 343 1214 68 

       
 ∞ S-BNPM 277 436 1267 123 
  BNPM-ML 267 425 1327 89 
  BNPM-BAYES 267 425 1273 134 
       

400  CC -1204 1216 461 1000 
       
 0 S-BNPM 9 150 589 48 
  BNPM-ML 8 149 597 44 
  BNPM-BAYES 8 149 577 49 
       
 1 S-BNPM 148 214 607 159 
  BNPM-ML 141 208 619 137 
  BNPM-BAYES 141 208 593 167 
       
 ∞ S-BNPM 280 325 626 408 
  BNPM-ML 274 318 646 364 
  BNPM-BAYES 274 318 617 421 
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Table A3.3e. Results from Chapter III scenario 3 when nonresponse depends on 2Z2 + Y. 
n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -1581 1610 840 1000 

       
 0 S-BNPM -239 375 1196 127 
  BNPM-ML -230 365 1160 127 
  BNPM-BAYES -235 368 1153 126 
       
 1 S-BNPM -41 318 1238 54 

 BNPM-ML -48 304 1231 55 
 BNPM-BAYES -51 303 1206 60 

       
 ∞ S-BNPM 149 375 1315 60 
  BNPM-ML 134 355 1315 55 
  BNPM-BAYES 134 355 1300 68 
       

400  CC -1576 1583 417 1000 
       
 0 S-BNPM -235 277 592 342 
  BNPM-ML -226 267 566 355 
  BNPM-BAYES -227 268 565 353 
       
 1 S-BNPM -40 161 625 56 
  BNPM-ML -42 155 598 57 
  BNPM-BAYES -42 155 589 54 
       
 ∞ S-BNPM 152 226 658 137 
  BNPM-ML 142 214 636 133 
  BNPM-BAYES 141 214 631 148 

 
Table A3.4a. Results from Chapter III scenario 4 under λT = 0. 

n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -2146 2169 891 1000 

       
 0 S-BNPM 5 479 1968 45 
  BNPM-ML 2 467 1872 55 
  BNPM-BAYES -14 465 1845 53 
       
 1 S-BNPM 220 556 2089 43 

 BNPM-ML 271 568 2052 51 
 BNPM-BAYES 256 559 2009 58 

       
 ∞ S-BNPM 445 720 2289 53 
  BNPM-ML 540 775 2240 92 
  BNPM-BAYES 528 765 2223 134 
       

400  CC -2155 2161 442 1000 
       
 0 S-BNPM 3 231 999 36 
  BNPM-ML 1 227 916 51 
  BNPM-BAYES -3 227 907 54 
       
 1 S-BNPM 186 318 1123 51 
  BNPM-ML 265 358 1000 146 
  BNPM-BAYES 261 356 988 167 
       
 ∞ S-BNPM 358 463 1233 137 
  BNPM-ML 528 592 1087 458 
  BNPM-BAYES 526 589 1079 503 
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Table A3.4b. Results from Chapter III scenario 4 under λT = 1. 
n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -2208 2229 883 1000 

       
 0 S-BNPM -98 503 1938 62 
  BNPM-ML -93 494 1847 66 
  BNPM-BAYES -110 495 1823 67 
       
 1 S-BNPM 116 546 2051 37 

 BNPM-ML 166 548 2022 47 
 BNPM-BAYES 153 542 1974 66 

       
 ∞ S-BNPM 334 679 2236 50 
  BNPM-ML 426 717 2204 70 
  BNPM-BAYES 415 709 2181 119 
       

400  CC -2201 2206 437 1000 
       
 0 S-BNPM -136 270 967 96 
  BNPM-ML -137 263 888 116 
  BNPM-BAYES -141 265 882 111 
       
 1 S-BNPM 38 264 1079 37 
  BNPM-ML 121 271 971 55 
  BNPM-BAYES 117 269 959 69 
       
 ∞ S-BNPM 198 352 1185 61 
  BNPM-ML 379 466 1057 267 
  BNPM-BAYES 376 463 1050 309 

 
Table A3.4c. Results from Chapter III scenario 4 under λT = ∞. 

n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -2279 2301 868 1000 

       
 0 S-BNPM -281 537 1869 115 
  BNPM-ML -275 524 1780 125 
  BNPM-BAYES -291 532 1760 106 
       
 1 S-BNPM -79 503 1983 60 

 BNPM-ML -24 481 1950 55 
 BNPM-BAYES -38 478 1913 55 

       
 ∞ S-BNPM 136 576 2181 51 
  BNPM-ML 226 584 2127 47 
  BNPM-BAYES 215 579 2115 66 
       

400  CC -2280 2285 431 1000 
       
 0 S-BNPM -255 336 950 186 
  BNPM-ML -257 333 875 221 
  BNPM-BAYES -261 336 868 204 
       
 1 S-BNPM -85 253 1058 59 
  BNPM-ML -5 226 955 45 
  BNPM-BAYES -9 226 942 42 
       
 ∞ S-BNPM 76 280 1167 32 
  BNPM-ML 247 351 1039 109 
  BNPM-BAYES 244 349 1031 132 
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Table A3.4d. Results from Chapter III scenario 4 when nonresponse depends on Z2. 
n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -1392 1453 1124 950 

       
 0 S-BNPM 11 462 1788 59 
  BNPM-ML 11 460 1771 60 
  BNPM-BAYES 2 458 1777 57 
       
 1 S-BNPM 98 485 1823 53 

 BNPM-ML 115 486 1846 52 
 BNPM-BAYES 107 483 1848 54 

       
 ∞ S-BNPM 174 523 1893 50 
  BNPM-ML 219 537 1926 52 
  BNPM-BAYES 211 532 1934 59 
       

400  CC -1406 1420 559 1000 
       
 0 S-BNPM -3 229 887 52 
  BNPM-ML -2 228 876 58 
  BNPM-BAYES -4 228 873 55 
       
 1 S-BNPM 65 240 907 51 
  BNPM-ML 98 253 911 61 
  BNPM-BAYES 96 251 907 68 
       
 ∞ S-BNPM 120 266 934 67 
  BNPM-ML 198 311 949 105 
  BNPM-BAYES 197 310 945 117 

 
Table A3.4e. Results from Chapter III scenario 4 when nonresponse depends on 2Z2 + Y. 

n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -1712 1748 1041 997 

       
 0 S-BNPM -123 455 1770 72 
  BNPM-ML -122 451 1731 73 
  BNPM-BAYES -131 452 1746 66 
       
 1 S-BNPM -18 451 1810 57 

 BNPM-ML 13 450 1824 51 
 BNPM-BAYES 4 448 1838 43 

       
 ∞ S-BNPM 83 478 1893 41 
  BNPM-ML 148 496 1921 39 
  BNPM-BAYES 142 493 1939 48 
       

400  CC -1714 1723 519 1000 
       
 0 S-BNPM -113 244 884 87 
  BNPM-ML -114 243 865 89 
  BNPM-BAYES -116 244 862 89 
       
 1 S-BNPM -23 224 918 46 
  BNPM-ML 19 222 910 46 
  BNPM-BAYES 17 222 905 48 
       
 ∞ S-BNPM 51 240 957 43 
  BNPM-ML 151 276 957 69 
  BNPM-BAYES 149 275 952 79 
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Table A3.5a. Results from Chapter III scenario 5 under λT = 0. 
n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -1304 1327 730 998 

       
 0 S-BNPM -13 374 1519 57 
  BNPM-ML -15 368 1502 50 
  BNPM-BAYES -28 367 1441 54 
       
 1 S-BNPM 184 440 1645 39 

 BNPM-ML 255 480 1742 22 
 BNPM-BAYES 245 473 1646 61 

       
 ∞ S-BNPM 388 614 1886 42 
  BNPM-ML 525 709 1996 86 
  BNPM-BAYES 516 701 1913 186 
       

400  CC -1287 1294 368 1000 
       
 0 S-BNPM -2 188 763 46 
  BNPM-ML -1 185 718 47 
  BNPM-BAYES -4 185 712 52 
       
 1 S-BNPM 153 259 864 58 
  BNPM-ML 255 328 821 191 
  BNPM-BAYES 252 326 805 231 
       
 ∞ S-BNPM 274 364 953 125 
  BNPM-ML 511 565 930 597 
  BNPM-BAYES 509 564 920 630 

 
Table A3.5b. Results from Chapter III scenario 5 under λT = 1. 

n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -1521 1543 701 1000 

       
 0 S-BNPM -143 427 1616 101 
  BNPM-ML -149 416 1639 89 
  BNPM-BAYES -164 419 1492 105 
       
 1 S-BNPM 106 460 1800 45 

 BNPM-ML 166 469 1950 27 
 BNPM-BAYES 154 461 1716 57 

       
 ∞ S-BNPM 361 652 2143 31 
  BNPM-ML 481 721 2279 35 
  BNPM-BAYES 473 714 2065 116 
       

400  CC -1510 1516 350 1000 
       
 0 S-BNPM -145 245 805 130 
  BNPM-ML -145 241 745 155 
  BNPM-BAYES -149 244 725 154 
       
 1 S-BNPM 53 232 953 32 
  BNPM-ML 163 274 869 85 
  BNPM-BAYES 160 271 832 120 
       
 ∞ S-BNPM 216 342 1072 64 
  BNPM-ML 472 543 1004 427 
  BNPM-BAYES 470 541 976 492 
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Table A3.5c. Results from Chapter III scenario 5 under λT = ∞. 
n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -1444 1465 713 1000 

       
 0 S-BNPM -226 426 1470 129 
  BNPM-ML -226 417 1451 118 
  BNPM-BAYES -238 422 1398 121 
       
 1 S-BNPM -34 398 1603 60 

 BNPM-ML 29 390 1683 38 
 BNPM-BAYES 19 387 1594 42 

       
 ∞ S-BNPM 154 493 1833 29 
  BNPM-ML 285 541 1930 24 
  BNPM-BAYES 277 536 1858 71 
       

400  CC -1443 1449 356 1000 
       
 0 S-BNPM -233 295 731 261 
  BNPM-ML -233 292 688 277 
  BNPM-BAYES -236 295 679 277 
       
 1 S-BNPM -82 212 833 75 
  BNPM-ML 17 194 789 50 
  BNPM-BAYES 15 194 771 49 
       
 ∞ S-BNPM 43 229 929 32 
  BNPM-ML 268 350 897 163 
  BNPM-BAYES 265 348 885 215 

 
Table A3.5d. Results from Chapter III scenario 5 when nonresponse depends on Z2. 

n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -728 822 1033 691 

       
 0 S-BNPM 8 529 1413 196 
  BNPM-ML 8 528 2141 54 
  BNPM-BAYES 3 526 1409 194 
       
 1 S-BNPM 74 555 1426 195 

 BNPM-ML 83 561 2307 42 
 BNPM-BAYES 78 558 1469 197 

       
 ∞ S-BNPM 118 582 1464 196 
  BNPM-ML 158 610 2479 41 
  BNPM-BAYES 154 606 1539 202 
       

400  CC -731 756 520 980 
       
 0 S-BNPM 1 237 690 147 
  BNPM-ML 1 237 938 53 
  BNPM-BAYES 0 236 688 154 
       
 1 S-BNPM 63 252 698 161 
  BNPM-ML 65 256 994 42 
  BNPM-BAYES 65 256 709 165 
       
 ∞ S-BNPM 93 269 701 181 
  BNPM-ML 129 291 1052 49 
  BNPM-BAYES 129 291 736 199 
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Table A3.5e. Results from Chapter III scenario 5 when nonresponse depends on 4Z2 + Y. 
n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -1217 1261 887 971 

       
 0 S-BNPM -279 518 1357 233 
  BNPM-ML -279 517 1728 138 
  BNPM-BAYES -287 519 1347 231 
       
 1 S-BNPM -174 482 1389 188 

 BNPM-ML -156 485 1901 82 
 BNPM-BAYES -161 484 1436 167 

       
 ∞ S-BNPM -99 484 1451 158 
  BNPM-ML -32 500 2081 59 
  BNPM-BAYES -36 499 1551 126 
       

400  CC -1207 1217 442 1000 
       
 0 S-BNPM -283 349 661 439 
  BNPM-ML -283 350 789 322 
  BNPM-BAYES -284 351 654 434 
       
 1 S-BNPM -193 285 676 282 
  BNPM-ML -172 277 852 142 
  BNPM-BAYES -174 278 692 235 
       
 ∞ S-BNPM -143 261 690 214 
  BNPM-ML -62 243 920 69 
  BNPM-BAYES -63 243 737 146 

 
Table A3.6a. Results from Chapter III scenario 6 under λT = 0. 

n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -1220 1250 790 999 

       
 0 S-BNPM 2 311 1251 54 
  BNPM-ML 2 306 1209 58 
  BNPM-BAYES -4 304 1185 62 
       
 1 S-BNPM 358 547 1517 72 

 BNPM-ML 210 405 1328 65 
 BNPM-BAYES 206 401 1281 97 

       
 ∞ S-BNPM 688 871 1923 164 
  BNPM-ML 418 584 1460 160 
  BNPM-BAYES 416 581 1437 241 
       

400  CC -1217 1225 395 1000 
       
 0 S-BNPM 5 155 644 34 
  BNPM-ML 4 150 593 45 
  BNPM-BAYES 2 150 584 54 
       
 1 S-BNPM 330 394 855 279 
  BNPM-ML 207 268 644 238 
  BNPM-BAYES 206 268 627 278 
       
 ∞ S-BNPM 671 742 1226 610 
  BNPM-ML 409 456 701 602 
  BNPM-BAYES 409 455 690 634 
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Table A3.6b. Results from Chapter III scenario 6 under λT = 1. 
n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -1056 1096 844 989 

       
 0 S-BNPM -137 310 1150 86 
  BNPM-ML -134 307 1133 85 
  BNPM-BAYES -139 308 1136 77 
       
 1 S-BNPM 20 303 1217 41 

 BNPM-ML -6 298 1200 47 
 BNPM-BAYES -9 297 1192 43 

       
 ∞ S-BNPM 179 397 1375 42 
  BNPM-ML 121 350 1278 49 
  BNPM-BAYES 120 349 1279 70 
       

400  CC -1048 1059 423 1000 
       
 0 S-BNPM -128 191 574 154 
  BNPM-ML -127 189 560 151 
  BNPM-BAYES -128 189 559 154 
       
 1 S-BNPM 7 156 613 46 
  BNPM-ML -2 153 588 53 
  BNPM-BAYES -3 153 584 61 
       
 ∞ S-BNPM 131 223 683 82 
  BNPM-ML 124 210 622 123 
  BNPM-BAYES 123 209 621 135 

 
Table A3.6c. Results from Chapter III scenario 6 under λT = ∞. 

n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -1118 1156 835 992 

       
 0 S-BNPM -219 356 1140 145 
  BNPM-ML -215 353 1121 150 
  BNPM-BAYES -220 354 1124 139 
       
 1 S-BNPM -65 315 1202 69 

 BNPM-ML -90 314 1188 77 
 BNPM-BAYES -93 314 1182 78 

       
 ∞ S-BNPM 95 378 1369 44 
  BNPM-ML 35 335 1268 54 
  BNPM-BAYES 33 334 1270 56 
       

400  CC -1134 1145 418 1000 
       
 0 S-BNPM -238 279 565 404 
  BNPM-ML -235 276 551 423 
  BNPM-BAYES -237 277 550 407 
       
 1 S-BNPM -109 188 600 125 
  BNPM-ML -115 192 579 147 
  BNPM-BAYES -116 192 575 146 
       
 ∞ S-BNPM 8 171 658 49 
  BNPM-ML 6 167 612 55 
  BNPM-BAYES 5 167 610 56 
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Table A3.6d. Results from Chapter III scenario 6 when nonresponse depends on Z2. 
n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -745 789 726 937 

       
 0 S-BNPM -11 332 1219 61 
  BNPM-ML -12 328 1352 40 
  BNPM-BAYES -19 327 1173 81 
       
 1 S-BNPM 221 484 1444 81 

 BNPM-ML 149 408 1566 45 
 BNPM-BAYES 144 405 1320 112 

       
 ∞ S-BNPM 452 713 1812 135 
  BNPM-ML 310 545 1799 86 
  BNPM-BAYES 306 542 1516 181 
       

400  CC -746 758 362 1000 
       
 0 S-BNPM 3 164 604 77 
  BNPM-ML 2 161 644 59 
  BNPM-BAYES 0 161 571 91 
       
 1 S-BNPM 153 254 708 131 
  BNPM-ML 162 247 733 120 
  BNPM-BAYES 160 246 635 195 
       
 ∞ S-BNPM 310 410 841 265 
  BNPM-ML 321 389 832 305 
  BNPM-BAYES 320 388 715 448 

 
Table A3.6e. Results from Chapter III scenario 6 when nonresponse depends on 5Z2 + Y. 

n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -1043 1075 750 996 

       
 0 S-BNPM -220 379 1178 157 
  BNPM-ML -211 371 1240 119 
  BNPM-BAYES -217 372 1138 148 
       
 1 S-BNPM 41 424 1396 70 

 BNPM-ML -43 361 1406 64 
 BNPM-BAYES -48 359 1253 86 

       
 ∞ S-BNPM 313 632 1773 57 
  BNPM-ML 125 446 1591 51 
  BNPM-BAYES 121 443 1422 104 
       

400  CC -1040 1048 377 1000 
       
 0 S-BNPM -220 266 583 345 
  BNPM-ML -210 257 595 303 
  BNPM-BAYES -212 258 555 334 
       
 1 S-BNPM -49 184 672 78 
  BNPM-ML -59 177 658 73 
  BNPM-BAYES -60 178 600 101 
       
 ∞ S-BNPM 127 280 806 68 
  BNPM-ML 92 213 729 79 
  BNPM-BAYES 91 213 663 120 
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Table A4.1a. Results from Chapter IV scenario 1 when missingness depends on X. 
n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -108 129 281 323 

  LOGREG -7 62 253 55 
       
 0 Bin-PPMA (BA) 1 61 233 65 
  Bin-PPMA (MI) 0 62 243 63 
  BinS-PPMA 0 62 244 62 
       
 1 Bin-PPMA (BA) 53 77 214 158 

 Bin-PPMA (MI) 54 78 222 177 
 BinS-PPMA 54 79 220 180 

       
 ∞ Bin-PPMA (BA) 80 96 208 281 
  Bin-PPMA (MI) 81 96 217 325 
  BinS-PPMA 82 97 206 371 
       

400  CC -111 117 139 879 
  LOGREG -2 31 124 67 
       
 0 Bin-PPMA (BA) 0 31 119 64 
  Bin-PPMA (MI) 0 31 121 60 
  BinS-PPMA 0 31 121 60 
       
 1 Bin-PPMA (BA) 51 58 108 430 
  Bin-PPMA (MI) 52 59 110 456 
  BinS-PPMA 52 59 110 452 
       
 ∞ Bin-PPMA (BA) 85 89 107 854 
  Bin-PPMA (MI) 86 90 109 871 
  BinS-PPMA 86 90 103 896 

 
Table A4.1b. Results from Chapter IV scenario 1 when missingness depends on (X + Y). 

n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -90 115 282 228 

  LOGREG -35 71 256 68 
       
 0 Bin-PPMA (BA) -30 69 237 84 
  Bin-PPMA (MI) -30 69 248 75 
  BinS-PPMA -30 70 249 77 
       
 1 Bin-PPMA (BA) 3 61 239 55 

 Bin-PPMA (MI) 5 62 249 59 
 BinS-PPMA 5 63 244 61 

       
 ∞ Bin-PPMA (BA) 29 69 251 67 
  Bin-PPMA (MI) 30 69 262 94 
  BinS-PPMA 31 70 240 128 
       

400  CC -95 102 139 759 
  LOGREG -34 47 126 181 
       
 0 Bin-PPMA (BA) -32 45 121 196 
  Bin-PPMA (MI) -32 45 124 176 
  BinS-PPMA -32 46 124 174 
       
 1 Bin-PPMA (BA) 0 31 120 55 
  Bin-PPMA (MI) 0 31 122 52 
  BinS-PPMA 0 32 122 53 
       
 ∞ Bin-PPMA (BA) 29 44 134 140 
  Bin-PPMA (MI) 31 45 135 146 
  BinS-PPMA 31 46 122 197 
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Table A4.1c. Results from Chapter IV scenario 1 when missingness depends on Y. 
n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -121 140 282 391 

  LOGREG -65 92 257 169 
       
 0 Bin-PPMA (BA) -62 88 239 179 
  Bin-PPMA (MI) -61 89 251 146 
  BinS-PPMA -61 89 251 148 
       
 1 Bin-PPMA (BA) -29 70 243 74 

 Bin-PPMA (MI) -28 70 253 73 
 BinS-PPMA -28 71 254 74 

       
 ∞ Bin-PPMA (BA) -3 66 260 53 
  Bin-PPMA (MI) -1 67 271 55 
  BinS-PPMA -1 67 256 65 
       

400  CC -122 127 139 939 
  LOGREG -61 69 127 465 
       
 0 Bin-PPMA (BA) -60 67 123 487 
  Bin-PPMA (MI) -60 67 125 468 
  BinS-PPMA -60 68 125 460 
       
 1 Bin-PPMA (BA) -28 41 122 133 
  Bin-PPMA (MI) -27 41 124 118 
  BinS-PPMA -27 41 127 113 
       
 ∞ Bin-PPMA (BA) 3 34 137 49 
  Bin-PPMA (MI) 4 34 138 47 
  BinS-PPMA 4 34 130 62 

 
Table A4.1d. Results from Chapter IV scenario 1 when missingness depends on X

2
. 

n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC 22 70 267 71 

  LOGREG -3 58 243 36 
       
 0 Bin-PPMA (BA) 2 58 228 42 
  Bin-PPMA (MI) 0 58 237 47 
  BinS-PPMA 0 58 241 42 
       
 1 Bin-PPMA (BA) -19 57 212 61 

 Bin-PPMA (MI) -23 58 225 50 
 BinS-PPMA -25 60 230 48 

       
 ∞ Bin-PPMA (BA) -29 60 205 89 
  Bin-PPMA (MI) -32 61 226 58 
  BinS-PPMA -33 62 239 47 
       

400  CC 22 39 132 108 
  LOGREG -1 29 119 42 
       
 0 Bin-PPMA (BA) 3 29 116 41 
  Bin-PPMA (MI) 0 29 118 38 
  BinS-PPMA 0 29 120 36 
       
 1 Bin-PPMA (BA) -19 32 107 91 
  Bin-PPMA (MI) -23 35 111 99 
  BinS-PPMA -27 38 112 124 
       
 ∞ Bin-PPMA (BA) -30 39 102 200 
  Bin-PPMA (MI) -34 42 110 187 
  BinS-PPMA -36 44 118 172 
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Table A4.1e. Results from Chapter IV scenario 1 when missingness depends on (X + Y)
2
. 

n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -16 71 276 52 

  LOGREG -5 62 252 52 
       
 0 Bin-PPMA (BA) -3 62 238 52 
  Bin-PPMA (MI) -1 62 246 55 
  BinS-PPMA -1 63 249 52 
       
 1 Bin-PPMA (BA) -2 58 230 49 

 Bin-PPMA (MI) -1 58 242 41 
 BinS-PPMA 0 58 243 51 

       
 ∞ Bin-PPMA (BA) -6 57 233 46 
  Bin-PPMA (MI) -4 57 252 32 
  BinS-PPMA -2 58 253 38 
       

400  CC -16 40 137 80 
  LOGREG -1 33 124 66 
       
 0 Bin-PPMA (BA) 1 33 122 70 
  Bin-PPMA (MI) 1 33 122 75 
  BinS-PPMA 1 33 124 73 
       
 1 Bin-PPMA (BA) 0 31 113 70 
  Bin-PPMA (MI) 1 31 116 61 
  BinS-PPMA 2 31 117 65 
       
 ∞ Bin-PPMA (BA) -5 30 110 80 
  Bin-PPMA (MI) -3 30 117 58 
  BinS-PPMA -2 30 123 48 

 
Table A4.1f. Results from Chapter IV scenario 1 when missingness depends on Y

2
. 

n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -42 81 271 86 

  LOGREG -21 65 247 64 
       
 0 Bin-PPMA (BA) -19 64 232 67 
  Bin-PPMA (MI) -17 63 241 54 
  BinS-PPMA -17 64 242 57 
       
 1 Bin-PPMA (BA) -7 59 228 56 

 Bin-PPMA (MI) -4 59 239 50 
 BinS-PPMA -3 59 242 49 

       
 ∞ Bin-PPMA (BA) -3 59 236 49 
  Bin-PPMA (MI) 0 59 251 40 
  BinS-PPMA 1 59 248 43 
       

400  CC -39 52 134 205 
  LOGREG -14 35 121 74 
       
 0 Bin-PPMA (BA) -14 34 118 81 
  Bin-PPMA (MI) -12 34 119 63 
  BinS-PPMA -13 34 120 67 
       
 1 Bin-PPMA (BA) -4 31 114 58 
  Bin-PPMA (MI) -2 30 116 52 
  BinS-PPMA -1 30 119 48 
       
 ∞ Bin-PPMA (BA) -2 30 114 55 
  Bin-PPMA (MI) 0 30 120 51 
  BinS-PPMA 2 30 120 53 
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Table A4.2a. Results from Chapter IV scenario 2 when missingness depends on X. 
n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -50 66 178 259 

  LOGREG 9 51 210 34 
       
 0 Bin-PPMA (BA) 24 70 217 108 
  Bin-PPMA (MI) 1 51 196 64 
  BinS-PPMA 0 51 197 63 
       
 1 Bin-PPMA (BA) 81 105 233 344 

 Bin-PPMA (MI) 49 74 230 113 
 BinS-PPMA 33 63 218 78 

       
 ∞ Bin-PPMA (BA) 110 131 242 499 
  Bin-PPMA (MI) 77 99 253 206 
  BinS-PPMA 56 80 231 125 
       

400  CC -49 54 89 574 
  LOGREG 3 26 103 56 
       
 0 Bin-PPMA (BA) 20 39 117 121 
  Bin-PPMA (MI) 1 26 100 46 
  BinS-PPMA 1 26 100 49 
       
 1 Bin-PPMA (BA) 81 87 115 787 
  Bin-PPMA (MI) 48 56 110 396 
  BinS-PPMA 28 40 105 181 
       
 ∞ Bin-PPMA (BA) 120 124 116 968 
  Bin-PPMA (MI) 84 90 124 770 
  BinS-PPMA 51 58 111 413 

 
Table A4.2b. Results from Chapter IV scenario 2 when missingness depends on (X + Y). 

n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -69 81 165 423 

  LOGREG -13 51 203 79 
       
 0 Bin-PPMA (BA) -4 66 204 116 
  Bin-PPMA (MI) -21 55 186 138 
  BinS-PPMA -22 55 186 137 
       
 1 Bin-PPMA (BA) 53 89 229 236 

 Bin-PPMA (MI) 26 64 227 91 
 BinS-PPMA 10 56 212 83 

       
 ∞ Bin-PPMA (BA) 83 114 240 393 
  Bin-PPMA (MI) 54 86 252 150 
  BinS-PPMA 33 69 226 112 
       

400  CC -68 71 83 831 
  LOGREG -18 31 98 131 
       
 0 Bin-PPMA (BA) -7 33 112 84 
  Bin-PPMA (MI) -21 32 96 161 
  BinS-PPMA -21 33 96 158 
       
 1 Bin-PPMA (BA) 57 66 116 527 
  Bin-PPMA (MI) 28 39 109 145 
  BinS-PPMA 6 27 102 56 
       
 ∞ Bin-PPMA (BA) 99 105 121 867 
  Bin-PPMA (MI) 66 73 126 536 
  BinS-PPMA 31 41 111 155 
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Table A4.2c. Results from Chapter IV scenario 2 when missingness depends on Y. 
n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -81 91 153 554 

  LOGREG -29 54 194 122 
       
 0 Bin-PPMA (BA) -27 67 189 140 
  Bin-PPMA (MI) -38 61 175 210 
  BinS-PPMA -39 61 175 219 
       
 1 Bin-PPMA (BA) 27 75 224 159 

 Bin-PPMA (MI) 7 56 222 71 
 BinS-PPMA -9 52 205 93 

       
 ∞ Bin-PPMA (BA) 57 97 238 263 
  Bin-PPMA (MI) 34 73 248 96 
  BinS-PPMA 13 59 219 77 
       

400  CC -81 84 77 952 
  LOGREG -37 44 93 381 
       
 0 Bin-PPMA (BA) -29 43 105 216 
  Bin-PPMA (MI) -39 46 90 418 
  BinS-PPMA -40 46 90 421 
       
 1 Bin-PPMA (BA) 32 47 114 267 
  Bin-PPMA (MI) 7 28 105 64 
  BinS-PPMA -15 30 97 127 
       
 ∞ Bin-PPMA (BA) 74 83 121 689 
  Bin-PPMA (MI) 44 55 124 274 
  BinS-PPMA 10 30 106 60 

 
Table A4.2d. Results from Chapter IV scenario 2 when missingness depends on X

2
. 

n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -91 98 147 649 

  LOGREG 10 58 248 63 
       
 0 Bin-PPMA (BA) 18 75 243 102 
  Bin-PPMA (MI) 0 62 232 92 
  BinS-PPMA -2 62 235 92 
       
 1 Bin-PPMA (BA) 132 151 266 499 

 Bin-PPMA (MI) 100 120 287 315 
 BinS-PPMA 77 99 278 188 

       
 ∞ Bin-PPMA (BA) 162 179 272 567 
  Bin-PPMA (MI) 131 148 301 472 
  BinS-PPMA 109 128 293 331 
       

400  CC -93 95 73 989 
  LOGREG 4 34 129 70 
       
 0 Bin-PPMA (BA) 13 43 145 88 
  Bin-PPMA (MI) -2 34 128 64 
  BinS-PPMA -4 34 136 52 
       
 1 Bin-PPMA (BA) 156 159 122 988 
  Bin-PPMA (MI) 123 127 131 985 
  BinS-PPMA 84 90 135 694 
       
 ∞ Bin-PPMA (BA) 195 197 114 982 
  Bin-PPMA (MI) 165 168 134 996 
  BinS-PPMA 131 135 156 977 
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Table A4.2e. Results from Chapter IV scenario 2 when missingness depends on (X + Y)
2
. 

n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -49 66 177 263 

  LOGREG -20 48 192 81 
       
 0 Bin-PPMA (BA) -20 55 188 75 
  Bin-PPMA (MI) -28 53 179 130 
  BinS-PPMA -29 53 182 135 
       
 1 Bin-PPMA (BA) 57 83 224 223 

 Bin-PPMA (MI) 31 59 230 46 
 BinS-PPMA 13 48 225 29 

       
 ∞ Bin-PPMA (BA) 82 102 222 389 
  Bin-PPMA (MI) 52 73 241 95 
  BinS-PPMA 30 58 244 22 
       

400  CC -49 54 88 572 
  LOGREG -27 36 93 245 
       
 0 Bin-PPMA (BA) -26 37 98 185 
  Bin-PPMA (MI) -31 39 90 294 
  BinS-PPMA -32 40 94 297 
       
 1 Bin-PPMA (BA) 64 72 114 613 
  Bin-PPMA (MI) 29 40 108 167 
  BinS-PPMA 4 24 102 35 
       
 ∞ Bin-PPMA (BA) 97 102 108 922 
  Bin-PPMA (MI) 55 62 115 455 
  BinS-PPMA 26 37 125 44 

 
Table A4.2f. Results from Chapter IV scenario 2 when missingness depends on Y

2
. 

n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC 74 97 243 183 

  LOGREG 48 70 213 89 
       
 0 Bin-PPMA (BA) 61 85 208 247 
  Bin-PPMA (MI) 40 64 201 70 
  BinS-PPMA 39 64 202 70 
       
 1 Bin-PPMA (BA) 50 83 207 225 

 Bin-PPMA (MI) 25 57 199 69 
 BinS-PPMA 14 48 185 50 

       
 ∞ Bin-PPMA (BA) 49 86 214 244 
  Bin-PPMA (MI) 23 59 212 68 
  BinS-PPMA 12 49 188 50 
       

400  CC 73 79 120 673 
  LOGREG 38 45 102 262 
       
 0 Bin-PPMA (BA) 53 60 106 546 
  Bin-PPMA (MI) 34 42 99 230 
  BinS-PPMA 34 42 100 225 
       
 1 Bin-PPMA (BA) 41 54 103 402 
  Bin-PPMA (MI) 19 32 93 132 
  BinS-PPMA 7 23 85 49 
       
 ∞ Bin-PPMA (BA) 37 57 109 378 
  Bin-PPMA (MI) 15 34 97 157 
  BinS-PPMA 3 24 86 74 
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Table A4.3a. Results from Chapter IV scenario 3 when missingness depends on X. 
n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -108 119 191 585 

  LOGREG 0 57 237 52 
  LATENT 1 63 222 88 
       
 0 Bin-PPMA (BA) 44 87 258 130 
  Bin-PPMA (MI) -2 62 232 68 
  BinS-PPMA -5 62 236 65 
       
 1 Bin-PPMA (BA) 117 129 218 574 

 Bin-PPMA (MI) 64 85 234 171 
 BinS-PPMA 45 74 237 110 

       
 ∞ Bin-PPMA (BA) 136 146 215 711 
  Bin-PPMA (MI) 89 105 243 284 
  BinS-PPMA 63 85 249 136 
       

400  CC -109 112 95 983 
  LOGREG -1 29 114 58 
  LATENT -2 29 112 61 
       
 0 Bin-PPMA (BA) 43 55 133 251 
  Bin-PPMA (MI) -2 29 114 54 
  BinS-PPMA -4 30 117 50 
       
 1 Bin-PPMA (BA) 113 116 102 995 
  Bin-PPMA (MI) 61 67 110 610 
  BinS-PPMA 39 48 112 260 
       
 ∞ Bin-PPMA (BA) 135 137 97 999 
  Bin-PPMA (MI) 91 95 114 900 
  BinS-PPMA 53 59 121 370 

 
Table A4.3b. Results from Chapter IV scenario 3 when missingness depends on (X + Y). 

n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -140 146 174 823 

  LOGREG -41 68 232 116 
  LATENT 4 70 261 77 
       
 0 Bin-PPMA (BA) -3 75 253 88 
  Bin-PPMA (MI) -45 75 222 159 
  BinS-PPMA -47 76 225 160 
       
 1 Bin-PPMA (BA) 80 101 225 322 

 Bin-PPMA (MI) 27 64 241 57 
 BinS-PPMA 3 58 240 54 

       
 ∞ Bin-PPMA (BA) 103 120 224 485 
  Bin-PPMA (MI) 54 81 253 114 
  BinS-PPMA 25 63 252 50 
       

400  CC -140 142 87 1000 
  LOGREG -40 49 113 290 
  LATENT 4 30 128 51 
       
 0 Bin-PPMA (BA) 1 38 136 72 
  Bin-PPMA (MI) -41 51 112 320 
  BinS-PPMA -43 52 115 314 
       
 1 Bin-PPMA (BA) 87 90 104 926 
  Bin-PPMA (MI) 31 41 112 177 
  BinS-PPMA 1 29 112 55 
       
 ∞ Bin-PPMA (BA) 114 116 99 994 
  Bin-PPMA (MI) 66 72 118 608 
  BinS-PPMA 22 35 123 58 
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Table A4.3c. Results from Chapter IV scenario 3 when missingness depends on Y. 
n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -169 174 154 939 

  LOGREG -70 88 228 241 
  LATENT -11 80 282 120 
       
 0 Bin-PPMA (BA) -38 85 245 146 
  Bin-PPMA (MI) -78 97 212 334 
  BinS-PPMA -80 99 216 335 
       
 1 Bin-PPMA (BA) 48 85 233 184 

 Bin-PPMA (MI) -7 65 244 95 
 BinS-PPMA -33 70 237 134 

       
 ∞ Bin-PPMA (BA) 74 103 232 305 
  Bin-PPMA (MI) 21 72 258 90 
  BinS-PPMA -8 65 250 89 
       

400  CC -171 172 77 1000 
  LOGREG -75 80 110 731 
  LATENT -1 36 153 47 
       
 0 Bin-PPMA (BA) -40 55 138 219 
  Bin-PPMA (MI) -78 83 109 775 
  BinS-PPMA -79 84 113 771 
       
 1 Bin-PPMA (BA) 60 66 109 614 
  Bin-PPMA (MI) 0 29 114 54 
  BinS-PPMA -37 47 112 267 
       
 ∞ Bin-PPMA (BA) 94 98 104 934 
  Bin-PPMA (MI) 40 50 124 230 
  BinS-PPMA -9 29 123 62 

 
Table A4.3d. Results from Chapter IV scenario 3 when missingness depends on X

2
. 

n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -150 156 167 880 

  LOGREG -12 65 288 38 
  LATENT -17 85 264 101 
       
 0 Bin-PPMA (BA) 14 90 295 94 
  Bin-PPMA (MI) -21 81 283 107 
  BinS-PPMA -26 81 300 93 
       
 1 Bin-PPMA (BA) 121 144 272 463 

 Bin-PPMA (MI) 84 112 309 287 
 BinS-PPMA 61 94 310 156 

       
 ∞ Bin-PPMA (BA) 134 155 282 443 
  Bin-PPMA (MI) 102 126 324 360 
  BinS-PPMA 82 110 334 207 
       

400  CC -150 151 84 1000 
  LOGREG -4 38 148 54 
  LATENT -7 41 150 68 
       
 0 Bin-PPMA (BA) 26 54 173 127 
  Bin-PPMA (MI) -10 42 152 57 
  BinS-PPMA -16 44 184 35 
       
 1 Bin-PPMA (BA) 147 149 107 963 
  Bin-PPMA (MI) 115 119 124 971 
  BinS-PPMA 80 85 147 613 
       
 ∞ Bin-PPMA (BA) 162 164 108 941 
  Bin-PPMA (MI) 139 142 128 973 
  BinS-PPMA 109 113 183 759 
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Table A4.3e. Results from Chapter IV scenario 3 when missingness depends on (X + Y)
2
. 

n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -89 103 203 417 

  LOGREG -25 61 225 89 
  LATENT 18 70 307 40 
       
 0 Bin-PPMA (BA) 2 71 244 79 
  Bin-PPMA (MI) -30 65 220 105 
  BinS-PPMA -34 66 228 104 
       
 1 Bin-PPMA (BA) 95 110 223 391 

 Bin-PPMA (MI) 36 62 229 52 
 BinS-PPMA 9 50 236 27 

       
 ∞ Bin-PPMA (BA) 113 124 222 484 
  Bin-PPMA (MI) 55 74 236 89 
  BinS-PPMA 26 56 263 20 
       

400  CC -88 91 101 903 
  LOGREG -24 37 111 152 
  LATENT 18 36 150 48 
       
 0 Bin-PPMA (BA) 3 36 130 64 
  Bin-PPMA (MI) -26 39 110 167 
  BinS-PPMA -30 42 122 158 
       
 1 Bin-PPMA (BA) 101 104 102 970 
  Bin-PPMA (MI) 38 46 109 242 
  BinS-PPMA 3 25 110 29 
       
 ∞ Bin-PPMA (BA) 122 124 97 993 
  Bin-PPMA (MI) 62 67 113 592 
  BinS-PPMA 24 35 139 23 

 
Table A4.3f. Results from Chapter IV scenario 3 when missingness depends on Y

2
. 

n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC 10 62 244 53 

  LOGREG 24 60 221 57 
  LATENT 45 81 294 92 
       
 0 Bin-PPMA (BA) 81 106 231 293 
  Bin-PPMA (MI) 21 59 213 59 
  BinS-PPMA 20 59 215 59 
       
 1 Bin-PPMA (BA) 107 124 215 536 

 Bin-PPMA (MI) 32 63 214 70 
 BinS-PPMA 12 53 210 48 

       
 ∞ Bin-PPMA (BA) 119 134 209 652 
  Bin-PPMA (MI) 43 70 223 86 
  BinS-PPMA 15 54 220 44 
       

400  CC 12 33 121 55 
  LOGREG 23 36 108 123 
  LATENT 38 49 143 189 
       
 0 Bin-PPMA (BA) 80 87 120 730 
  Bin-PPMA (MI) 22 35 106 117 
  BinS-PPMA 21 35 107 107 
       
 1 Bin-PPMA (BA) 108 112 108 954 
  Bin-PPMA (MI) 31 41 105 196 
  BinS-PPMA 9 27 104 53 
       
 ∞ Bin-PPMA (BA) 123 126 103 984 
  Bin-PPMA (MI) 45 51 110 352 
  BinS-PPMA 9 26 107 40 
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Table A4.4a. Results from Chapter IV scenario 4 when missingness depends on X. 
n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -105 126 276 328 

  LOGREG -6 69 281 50 
  LATENT 0 71 280 68 
       
 0 Bin-PPMA (BA) 6 85 273 79 
  Bin-PPMA (MI) -3 71 271 68 
  BinS-PPMA -3 71 271 68 
       
 1 Bin-PPMA (BA) 94 119 264 256 

 Bin-PPMA (MI) 80 102 267 227 
 BinS-PPMA 81 102 233 305 

       
 ∞ Bin-PPMA (BA) 138 153 260 509 
  Bin-PPMA (MI) 121 136 274 437 
  BinS-PPMA 114 130 236 491 
       

400  CC -104 110 136 848 
  LOGREG -1 34 139 48 
  LATENT 0 33 145 34 
       
 0 Bin-PPMA (BA) 0 35 140 47 
  Bin-PPMA (MI) -1 33 136 43 
  BinS-PPMA -1 33 137 46 
       
 1 Bin-PPMA (BA) 88 94 131 728 
  Bin-PPMA (MI) 81 87 128 704 
  BinS-PPMA 87 92 113 849 
       
 ∞ Bin-PPMA (BA) 147 151 135 982 
  Bin-PPMA (MI) 137 142 140 968 
  BinS-PPMA 129 134 121 971 

 
Table A4.4b. Results from Chapter IV scenario 4 when missingness depends on (X + Y). 

n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -84 108 284 202 

  LOGREG -37 73 263 78 
  LATENT -6 66 313 30 
       
 0 Bin-PPMA (BA) -38 82 261 98 
  Bin-PPMA (MI) -37 74 259 84 
  BinS-PPMA -37 74 259 84 
       
 1 Bin-PPMA (BA) -8 76 277 56 

 Bin-PPMA (MI) -9 66 274 46 
 BinS-PPMA -2 61 235 52 

       
 ∞ Bin-PPMA (BA) 18 84 318 68 
  Bin-PPMA (MI) 16 75 313 46 
  BinS-PPMA 15 72 256 80 
       

400  CC -81 88 140 623 
  LOGREG -33 46 132 153 
  LATENT -6 33 158 30 
       
 0 Bin-PPMA (BA) -36 49 133 168 
  Bin-PPMA (MI) -33 46 129 151 
  BinS-PPMA -33 46 130 149 
       
 1 Bin-PPMA (BA) -7 35 138 59 
  Bin-PPMA (MI) -7 33 133 50 
  BinS-PPMA 5 30 116 60 
       
 ∞ Bin-PPMA (BA) 21 44 159 91 
  Bin-PPMA (MI) 20 42 153 65 
  BinS-PPMA 21 41 127 123 
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Table A4.4c. Results from Chapter IV scenario 4 when missingness depends on Y. 
n λA Model Bias (x1000) RMSE (x1000) CIW (x1000) Non-Coverage 

       
100  CC -98 120 276 274 

  LOGREG -66 93 261 173 
  LATENT -18 84 389 27 
       
 0 Bin-PPMA (BA) -73 102 255 195 
  Bin-PPMA (MI) -68 95 258 188 
  BinS-PPMA -68 95 258 186 
       
 1 Bin-PPMA (BA) -49 91 282 104 

 Bin-PPMA (MI) -44 84 283 92 
 BinS-PPMA -36 77 245 112 

       
 ∞ Bin-PPMA (BA) -27 90 333 74 
  Bin-PPMA (MI) -24 84 332 62 
  BinS-PPMA -23 82 274 98 
       

400  CC -97 103 136 792 
  LOGREG -68 76 131 541 
  LATENT -22 45 203 34 
       
 0 Bin-PPMA (BA) -73 80 130 594 
  Bin-PPMA (MI) -69 76 129 561 
  BinS-PPMA -69 76 129 560 
       
 1 Bin-PPMA (BA) -49 60 139 276 
  Bin-PPMA (MI) -46 57 137 254 
  BinS-PPMA -34 46 120 209 
       
 ∞ Bin-PPMA (BA) -25 48 171 89 
  Bin-PPMA (MI) -23 46 167 82 
  BinS-PPMA -21 45 137 138 
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