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Abstract 

The cancer stem-like cell (CSC) model proposes that a small subset of stem-like cells are 

necessary to sustain cancer growth. CSC are resistant to traditional therapy and capable of division 

to give rise to a heterogeneous population to recapitulate tumors. Therapeutics which target CSC 

have shown potential to drastically improve patient survival. However, CSC are difficult to study 

as they are rare, transient, and difficult to culture. Additionally, conventional bulk assays, such as 

drug screens that measure success through reduction of total cell number, average out the behavior 

of rare but important sub-populations like CSC. There is a clear need to provide single cell tools 

to expedite the characterization of CSC and the development of CSC based therapies. As such, we 

have focused on the development and use of robust, user-friendly high throughput single cell 

microfluidic assays for the study of CSC. In adherent single cell assays of ovarian cancer, we have 

examined CSC behavior and biological factors controlling division and differentiation. It was seen 

that ovarian CSC exist in distinct hierarchies with possible rare de-differentiation events. In 

separate experiments, it was shown that bone morphogenetic protein 2 and epidermal growth 

factor-like protein 6 modulate self-renewal and asymmetric division, respectively. With the same 

approach, we screened novel therapeutics for their CSC targeting potential. Through the 

development and integration of novel surface coatings, we have also developed suspension based 

single cell derived sphere devices for marker free identification and characterization of CSC in 

breast cancer. We have demonstrated the use of this on-chip mammosphere assay for CSC 

identification, genetic analysis, stromal interactions through the use of conditioned media, and 

finally marker-free drug screening. 
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Chapter 1: Introduction 
 

In 2014, it was expected that 585,720 Americans and more than 7 million people 

worldwide would die of cancer [1]. 1 in 4 Americans and ~15% of all human deaths on earth will 

be attributable to cancer and cancer metastases. If Michigan’s cancer related diagnoses were 

concentrated to here in Ann Arbor, almost exactly half of the city would be stricken this year alone 

(Figure 1) [1].  Cancer is certainly omnipresent in modern life, and with our increased longevity 

comes increased susceptibility. Sobering statistics indeed. But illness is personal, not just statistics. 

With certainty, you who will read this will have had personal experience with this disease, but 

despite this prevalence, cancer is still a mystery the scientific community is trying to unravel.   

Figure 1: Number of new cancer cases by state (ACS, 2014). 

 



2 

 

Though referred to in monolith, cancer is a collection of diseases characterized by 

uncontrolled and abnormal cell growth [1]. Though there are said to be many external (smoking, 

viral infections, chemicals, radiation) and internal (heritable factors, hormones, autoimmune 

disease) “causes” of cancer, the true source is more fundamental, rooted in the ideas of evolution 

and growth itself. In the normal cells that make up our body, genetic material in the form of DNA 

carries information that controls the processes of life, including cell growth and division [2]. 

Normal growth requires a balance between genes that promote cell proliferation and those that 

suppress it. When a cell divides, it must make copies of this genetic material so that each cell will 

have an instruction set of their own. But over time, genes accumulate mutations, changes in the 

genetic material, through the previously described external and internal sources that are passed on 

to daughter cells. The process of copying the genetic material itself can even result in mutations 

(Figure 2).  In fact, it has been estimated that an individual cell suffers up to one million DNA 

changes per day [3].  Though mechanisms exist to correct these changes in the form of 

Figure 2: Normal cells acquire mutations from many sources, resulting in uncontrolled cell proliferation 

(Jeanne Kelly, NCI). 
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“proofreading enzymes,” lasting genetic changes are expected to occur at rates of .0001 to .000001 

per cell for a given gene [4]. With nearly 40 trillion cells for the average person, it is guaranteed 

that we are all filled with mutations. So called “tumor suppressor genes” exist to cause death in 

those cells that receive too many mutations, but these instruction sets themselves can themselves 

be mutated and overwhelmed.  

According to research findings from the Cancer Genome Project, most cancer cells possess 

60 or more mutations [2]. The process is piecemeal, with these mutations accumulating over time 

as a result of independent events. Mutations will begin affecting genes that promote or suppress 

cell proliferation, conferring growth advantages on these aberrant cells. Daughters of these cells 

will outcompete healthy neighbors due to these changes and further mutations will occur giving 

even greater advantage. This process is in fact natural selection, the driver behind the evolution of 

all organisms [2]. Thus it seems, if we are lucky to live so long, cancer is unavoidable due to the 

processes that facilitated the development of life.  

Scientific views of cancer have changed considerably throughout history, and for most of 

the modern era, there has been little progress in cancer treatment. In fact for many, the belief that 

cancer is incurable has persisted into the 21st century. Yet more and more each day, oncologists 

and cancer biologists add to our understanding of the origins and behavior of cancer, advancing 

hope for patients with new treatments. In particular, the discovery of rare tumor cells referred to 

as cancer stem-like cells (CSC) may provide an exciting new direction for cancer treatment. These 

cells provide resistance to traditional chemotherapy and other treatments and have the ability to 

divide and differentiate to recapitulate whole tumors [5]. Understanding the source of CSC and 

how to target their behavior in the clinic may provide solutions for how to manage, if not cure, 

cancer when it arises [6]. Conventional cell assay tools do not provide the resolution or abilities 
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needed to properly assess CSC behavior due to their rarity and complexity. The combined efforts 

of oncologists, cancer biologists, and engineers working on novel micro- tools and assays are 

needed to advance cancer treatment into the next millennia.   

 

1.1 Evolving Views of Cancer 

Though viewed as a modern disease, possibly due to lifespan requirements, cancer has 

likely existed as long as multicellular life itself. It is first described in the written record nearly 

4,600 years ago, in a scroll called the Edwin Smith papyrus written by the Egyptian polymath 

Imhotep [7, 8].  Imhotep was an influential engineer, architect, and physician (and to reward him 

for his foundational contributions to these fields, we remember him most for his depiction as a 

vengeful undead in 1932’s and 1999’s The Mummy). The medical descriptions held within were 

remarkable for containing no magical ideas, only anatomical observations.  48 cases were 

described within including 27 head injuries, 8 injuries to the sternum, 6 neck injuries, 3 arm 

injuries, 1 abscess, 2 collarbone injuries, 1 spinal injury, 1 to the shoulder, and finally, 1 description 

of a breast tumor. Though offering treatments for the other cases, when speaking of treatment for 

the breast tumor, the scroll only states that, “[t]here is none.”  

In approximately 400 BC, the disease received the name we know, “cancer.” The Greek 

physician Hippocrates used the terms carcinos and carcinoma, meaning crab to describe the 

tumors and finger-like spreading projections from it. With no understanding of cells, nor tools to 

observe and study the disease with precision, ancient Greek and Roman physicians had to view 

and treat the disease on a macroscale via surgical removal. The Greek historian Herodotus tells of 

a Persian Queen, Atossa, who had an inflammatory tumor removed from her breast, saving her life 

at least temporarily [8]. Roman physician Galen would surgically remove tumors, and this 
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remained the approach to cancer management for centuries. But Galen, like Imhotep, knew this 

was ineffective describing, “[a]fter excision, even when a scar has formed, none the less the disease 

has returned.”  

Following early Greek thought, Galen proposed that the human body was composed for 4 

primary fluids: blood, phlegm, yellow bile, and black bile. The Greeks knew hydraulics, so of 

course, the human body also happened to be a hydraulic system. In healthy individuals, these fluids 

were kept in balance, but when this balance was lost, illness occurred (heart disease was caused 

by too much blood, for instance). Cancer was linked to the overabundance of black bile. In Galenic 

medicine though tumors could be removed, there was still a systemic issues of black bile 

regulation. Black bile was thought to seep back into the wound and regrow the removed tumor.    

Surgical approaches remained the primary approach for cancer treatment well into modern 

times and increased in popularity with the advent of widespread anesthesia in 1846. The true source 

of cancers was not discovered until the 19th century invention of the microscope. When examining 

tumors with these newly developed tools instead of black bile, scientists saw cell upon cell, 

dividing and invading into other tissues. It has taken over a century to develop our understanding 

of the genetic regulation at play that causes this uncontrolled proliferation, but at the time with the 

tools available, only more radical surgical removal was possible. Surgeries to remove the entire 

tumor along with any region where the cells had seemed to spread were developed. In breast 

cancers, surgeons such as William Steward Halsted at Johns Hopkins performed radical 

mastectomies, removing the breast, chest muscles, and lymph nodes [8]. Such procedures were 

common up until even the 1970s.  

With the advent of X-rays in the early 1900s, radiation therapies were also developed. X-

rays, capable of disrupting DNA, selectively target rapidly dividing cells, making them effective 
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for targeting cancers [9]. Like surgery, radiation is effective at treating locally confined tumors, 

however, once the tumor has spread, no increase in radiation dose results in better treatment [9]. 

Increased radiation doses had far worse effect, in fact causing cancers by inducing DNA damage.  

 Non-solid tumors, such a leukemia, were not observed until the late 1800s by German 

doctor Rudolph Virchow. Especially prevalent in childhood, acute leukemia was effectively a 

death sentence as no previously developed treatments were effective. These cancers of blood cells 

had no means of surgical removal and radiation could not be systemically applied. A different way 

of thinking about cancer treatment was necessary. Could chemical drugs, systemically applied, 

selectively target cancer cells? The key to the development of such drugs would be the ability to 

understand the differences between cancer and normal cells. American pathologist Sidney Farber 

was the first to identify such a difference that could be harnessed for systemic cancer treatment 

[10]. Using available tools, he found that folic acid stimulated leukaemic cell growth and enhanced 

disease progression. As such, he hypothesized that folic acid antagonists would disrupt the 

proliferation of cancer cells. In 1948 with chemicals synthesized by Yellapragada Subbarow, 

Farber showed for the first time that drug-induced disease remission was possible using 

aminopterin. These observations led to the development of other drugs for cancer treatment; a 

systemic cure for a systemic disease was possible.  

These chemotherapeutic approaches, however, suffer their own drawbacks. The same 

genetic mechanisms that provide cancer cells with increased proliferative potential also facilitate 

the ability to evolve over time. Each new cancer cell contains additional mutations that can increase 

its fitness. Chemotherapeutic agents apply a selective pressure, and though this may kill most cells, 

it selects for drug resistance. Like antibiotics create resistant bacteria, drugs may produce resistant 

cancer cells, explaining the prevalence of cancer remission even with systemic treatment. 
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Strangely, cancer relapse is not a certainty, nor is its timing and therapeutic resistance consistent. 

In fact, there is a deeper explanation for cancer persistence and resistance. Recent advances in 

cancer biology have shown significant cell heterogeneity among tumor cells that were previously 

treated as a single population of cells [11, 12, 13, 6, 14, 15], and treatments with the ability to 

target particularly important subpopulations will provide the next advancement in patient care. 

 

1.2 Cancer Stem-Like Cells (CSC) 

In a landmark 1994 paper, Professor John Dick and his team at the University of Toronto 

experimentally demonstrated differential cancer initiation potential among leukemia tumors cell 

subpopulations [16]. This was a controversial finding, because in traditional stocastic models of 

cancer, any cell is expected to reform the entirety of a tumor (Figure 3), though not necessarily 

with high probability. Trained as a stem cell biologist, Professor Dick was very familiar with the 

hierarchical organization of blood, and believed there might be evidence for such a hierarchy in 

hematological cancer as well [17]. All blood cells (white, red, platelets, etc.) arise from a 

population of blood stem cells [18]. Stems cells are defined by two key behaviors: 1) the ability to 

self-renew nearly indefinitely (normal cells have limited replication potential) and 2) the ability to 

Figure 3: Stochastic and cancer stem cell models for tumor initiation and drug response in cancer. Cancer stem 

cells resist conventional therapy and must be targeted to cause cancer regression.  
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differentiate into other cells. This creates a hierarchy of potency with stem cells at the top, 

generating all other cell types and renewing itself, and progenitor cells serving as intermediate 

proliferation amplifiers for the final differentiated cells (red blood cells, B-cells, T-cells, etc.) 

(Figure 4) [19].  If a large number of blood cells are depleted, say by chemotherapeutic drugs, stem 

cells proliferate and produce replacement cells while self-renewing their own population. Due to 

the long term self-renewal potential of the stem cells, this process can occur any number of times. 

If the pool of hematological stem cells is depleted, the system gradually collapses.  

If such a hierarchical model is applied to cancer, it would still explain key pathological 

features such as overactive proliferation, invasion, and mutation, but it would also help explain 

contradictions involved in relapse and therapy [17]. To investigate this possibility, Dick et al. 

implanted leukemia cells in varying concentration in severe combined immune deficient (SCID) 

mice and observed the rate at which tumors formed [16]. Implantation of nearly one million cells 

was needed to be sure that at least one cell could generate a new leukemia. When examining this 

one-in-a-million cell, it was found that it expressed surface markers similar to those found on 

healthy blood stem cells. When cells were sorted for these markers and then used for serial 

Figure 4: Stem cell hierarchies consisting of stem cells, progenitors, and fully differentiated cells (Blanpain and 

Beck, 2013). 
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leukemia initiation, the numbers required for leukemias to form were orders of magnitude less than 

bulk, implying potential for indefinite self-renewal and the ability to recreate the whole cancer 

population (Figure 3). Noting the parallels, these cells were termed cancer stem cells (CSCs or 

cancer stem-like cells).  

This finding generated considerable interest in cancer biology. In 2003, researchers here at 

the University of Michigan (Morrison, Clake, Wicha) identified CSCs in solid tumors (breast) as 

well [20]. To date, potential CSC populations have been identified in brain [21], colon [22], breast 

[20], ovarian [23], pancreatic [24], prostate [25], melanoma [26] and myeloma cancers [27], but 

the CSC model need to be applicable to all cancer types in order to be clinically impactful. Most 

traditional chemotherapies act against rapidly diving cells, thus having a slight specificity for 

cancer cells over healthy cells. CSCs, on the other hand, have shown radiation and chemotherapy 

resistance and have overall lower division rates, allowing them to survive therapy [5, 6, 28, 29] 

and eventually cause relapse. Targeted therapeutics that destroy the CSC pool sustaining a cancer 

have the potential to cause cancer regression.   

Finding agents capable of targeting CSCs, though, is no simple task. Screening large 

chemical libraries against CSCs or identifying chemical or behavioral targets exclusive to CSCs 

are both complicated by the nature of the cells themselves. First, CSCs are rare, representing 

typically <5% of cells in cell lines and <1% of cells in tumors. Second, CSCs are a “moving target,” 

undergoing symmetric and asymmetric division, such that pure CSC populations are transient and 

difficult to study over time. Finally, primary human CSCs are surprisingly difficult to grow in vitro 

and in vivo.  Large scale screens for therapeutics capable of specifically targeting CSCs are 

challenging since traditional methods typically focus on reduction of overall tumor cell numbers 

to evaluate success of cancer treatment. Thus, therapies eliminating the rare, but critical, CSCs 
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would be missed in traditional screen. Likewise, conventional assays that study cell characteristics 

require large numbers of cells. In these cases, the behaviors of CSC would be averaged out or 

overwhelmed. Experiments using macroscale methods to handle these rare microscopic cells have 

led to incorrect or at least imprecise and harder to replicate results. Attempts to tease out rare cell 

behavior are labor intensive, low-throughput, often impure, less physiologically accurate, and 

difficult to integrate with other assays. To identify possible anti-CSC drugs, we should not only 

develop new chemicals, but also need to develop new assays and culture technologies to study 

CSC characteristics in a more in-depth way. 

 

1.3 Advances in Cell Culture Methodology 

 Conventional culture petri dishes and plates have a long history, starting with their 

invention in 1877 by German physician Julius Richard Petri for applications with bacterial culture. 

Despite their simplicity, they have remained the standard for tissue and cell culture since the advent 

of cell lines. Culture dishes, in essence, are nothing more that shallow cylindrical glass or plastic 

lidded containers; no active functionality is present. Cells are simply loaded with growth media 

and/or chemicals and the resulting behavior is observed.  These traditional culture tools create data 

that are averages over large numbers of cells, with an assumption of similar cell behavior, where 

in actuality cells may be a mixture of different cell subtypes, such as with bulk tumor and CSC. In 

many biological labs, brute force adaptation of conventional protocols is widespread. Serial 

dilution methods, where samples are diluted in multiple steps to a concentration where only a few 

cells exist in a hundreds of microliters for loading in multiwell plates, are commonly employed for 

single cell analysis. Though researchers have shown it is possible to study single cells and their 
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heterogeneity with these macroscopic methods, it is labor intensive, low-throughput, often impure, 

less physiologically accurate and difficult to integrate with other assays [30].  

Fluorescent Activated Cell Sorting (FACS) has offered an alternative way to look at single 

cell behavior. This method is capable of sorting heterogeneous mixtures of cells into separate 

containers, one cell at a time.  For FACS-based sorting (Figure 5) [31], cells are fluorescently 

labelled with targets of interest and loaded into the machine as a suspension. The cells are 

concentrated into a thin stream and passed through a vibrating nozzle to produce droplets with 

individual cells. As each droplet passes through a detector, FACS hardware measures the 

fluorescent properties. If the proper fluorescent markers are seen, the droplet is given an electrical 

charge. The droplets then pass through charged plates and are directed to various collection tubes 

based on the sorting markers. The FACS process, though, has a number of drawbacks and 

Figure 5: A schematic of fluorescence-activated cell sorting where single cell fluorescent states are measured 

and charge plates deploy single cells into separate containers (Willis, 2004). 
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limitations: 1) FACS machines are expensive, 2) the process can actually be damaging to the cells, 

lowering overall cell viability after sort, and 3) FACS is known to have a small but significant 

contamination rate of unwanted cells. This contamination rate may in fact contribute to the current 

contentious nature of the CSC model [32]. FACS machines have been used to facilitate single cell 

seeding into multiwall plates, but anywhere between 1-20 cells can actually be loaded. On its own, 

FACS can only provide relative population distributions and is regularly used with conventional 

culture systems to perform phenotypic assays, though rarely (and unreliably) with single cell 

resolution.  

 Microfluidic technology offers the opportunity to create tools that overcome the limitations 

of culture plates and FACS machines. Microfluidics refers to fabricated microsystems capable of 

manipulating small fluid volumes (µL, nL, pL). In the 1960’s, development of photolithography 

enabled the miniaturization and microfabrication of electronics and integration of thousands of 

transistors on semiconductor wafers. The use of microfabrication expanded over the following 

decade, and new material etching and deposition processes were developed. This facilitated the 

creation of devices containing movable micro-elements in addition to the electronics. These 

devices, called micro-electro-mechanical-systems (MEMS), saw widespread adoption as 

integrated sensors. As more MEMS based systems were applied in biology, chemistry and 

biomedical fields, fluidic channels and control were necessary. With integrated fluidic control, 

these novel microfluidic MEMS devices were used for integrated on-chip laboratories and clinical 

operations. To reduce cost and fabrication times, polydimethylsiloxane (PDMS) based soft 

lithographic methods were developed enabling a large number of laboratories to conduct 

researches in microfluidics [33]. 
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 Microfluidic technologies use small quantities of samples and reagents, are low in cost, 

and are simple to fabricate. These devices also occupy a small three dimensional space, making 

them ideal for applications as analytical devices for both basic cell biological studies and clinical 

use. Laminar fluidic control, additionally, facilitates the development of novel processes not 

possible on a macro-scale [34]. More recently, cell-based microfluidic devices have created new 

opportunities for the control of cell growth and stimulation through microfluidic channels that 

regulate the transport of fluids and soluble factors. To date, microfluidic cell-culture assays have 

been applied for a variety of cells including bacteria, human carcinoma cells, and stem cells for 

example [35, 36, 37, 38, 39]. 

More recently microfluidics has become an important tool in enabling analysis of single 

cells [39]. Breakthrough single cell systems, such as those presented by Lecault et al in Nature 

Methods [39], offer huge advantages over traditional methodologies in capture, culture, and 

analysis of single cells. In this case, researchers were able to systematically track hemopoetic stem 

cell division. Applied to the study of CSC behavior, such platforms would facilitate direct 

observation of the rare population. This and other single cell microfluidic systems provide unique 

opportunities, but several disadvantages hinder their use [40, 41, 42] (Figure 6 and Table 1). In the 

device from Lecault [39], the probabilistic capture mechanism results in low capture efficiency 

Figure 6: State-of-the-art single cell resolution microfluidic devices for (A) viability and Ca+ measurements [41],   

(B) hematopoietic single cell division tracking [39], and (C) high throughput drug screening and readout [42]. 

(A) (B) (C) 
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(~10-30%).  Droplet based approaches, such as those used by Brouzes et al [42], have high capture 

efficiency and extremely high throughput, but require external pumps and connections, multiple 

fluidic ports, and can only perform short term assays. Flow based methods allow moderate to high 

throughput, but offer no ability to actually culture cells. Extremely high capture efficiency was 

demonstrated by Wheeler et al [41], but again, external equipment was required and assay 

capability was limited to non-culture applications. Several devices that actively manipulate cells, 

through electrically [43, 44, 45] or optically [46] driven dielectrophoresis, provide selective cell 

capture and more precise control. These approaches require special conductive media and complex 

external equipment for operation, however, limiting their overall utility in biological laboratories.  

As such, these tools remain used only in the labs that develop them, due to required external 

systems, expertise in operation, and complications with translating them into current laboratory 

practices. More importantly, these systems cannot work with small initial suspension (10-100 

cells) such as those received from primary CSC samples. Alternative passive hydrodynamic 

capture schemes are more attractive due to their simple operation and user-independent cell capture 

[48, 49, 50]. A passive capture structures with improved efficiency has been reported [47], but it 

is unable to culture cells for a long enough period of time. More recently, A. C. Rowat et al. 

demonstrated a microfluidic chip capable of tracking lineages of single cells [48]. While their line-

Table 1: Advantages and disadvantages of single cell microfluidic systems 

[42] 

[40] 

[41] 

[39] 
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shaped microchamber is appropriate for non-adherent cell expansion, it poses spatial constraints 

that may restrict growth and introduce phenotypic changes in adherent cells. But high efficiency 

capture, the capability for long term culture, and simple integration are all required to study CSC. 

As one can see, researchers are devoting considerable effort to the development of single 

cell based biological assays and approaches, but as these tools seldom leave the labs in which they 

were developed, brute force adaptation of conventional bulk protocols for single cells is 

widespread in biological labs. Serial dilution methods, where samples are diluted in multiple steps 

to a concentration where only a few cells exist in hundreds of microliters for loading in multiwell 

plates, are commonly employed for single cell analysis. These methods, however, are labor 

intensive, have low throughput, and are often difficult to repeat, leading to poor reproducibility in 

the generated data. Fortunately, a single cell hydrodynamic capture scheme and microwell design 

previously developed by Dr. Jaehoon Chung in the lab of Professor Euisik Yoon [49] provides 

ideal characteristics for the creation of assay technology for widespread use to advance our 

understanding of cancer and CSCs in particular.  

 

1.4 Hydrodynamic Single Cell Capture  

To address the shortcomings in many current approaches, Dr. Jaehoon Chung in the Yoon 

lab developed a passive microfluidic scheme for efficient cell capturing using hydrodynamic 

guiding structures [49]. The simple microwell structure utilizes changes in hydrodynamic 

resistance to facilitate cell capture from simple gravity flow (3-5 µL/hour). No external 

components or equipment (save a micropipette) are needed to operate the device. A schematic 

representation of the original microwell design and method of operation is show in Figure 7 [49].  
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 In each unit well, a hydrodynamic guiding structure is present to divide the injected flow 

into two streams: path A through the center and path B along the border of the microwell (path B 

consists of two symmetric paths on either side). Path A has a shorter length than path B, and thus, 

a smaller flow resistance. Due to the flow resistance difference, most of the incoming flow and 

cells in the suspension will take path A rather than path B. This facilitates capture as path A has a 

width that is smaller than the cell diameter, creating a steric capture site. Once capture occurs, the 

resistance of the flow path greatly increase, diverting cells towards path B and other capture sites 

that have been array in serial and parallel. This hydrodynamic passive capture scheme significantly 

increases the cell capturing efficiency and accurately positions cells at the capture sites [49].   

 The capture efficiency of the scheme can be predicted by assuming a well uniformly 

dispersed cell solution and calculating the flow volume balance ratio between the two paths. The 

flow volume that passes through path A represents captured cells, while the flow volume though 

path B represents lost cells. The volumetric flow ratio between path A and path B can be simply 

Figure 7: (A) In the passive hydrodynamic capture scheme, Path A has a low hydrodynamic resistance but small 

size compared to bypass Path B.  (B) Single cells are sterically captured in the Path A, increasing its 

hydrodynamic resistance. (C) This diverters following cells to downstream microwells [49].  

 

(A) (B) (C) 
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modeled based on the geometric parameters of the microwell that define the hydrodynamic 

resistance, given by: 
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where Q is a volumetric flow rate, L is the channel length, W is the channel width, and H is the 

channel height. The capture probability can then be calculated as the ratio of the volumetric flow 

stream passing through path A to the total injected flow, which is given by: 
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From these equations, (
𝐿𝑏

𝐿𝑎
) and  (

𝑊𝑏

𝑊𝑎
) can be identified as important design parameters dictating 

well geometry and cell capture efficiency. Using these factors to guide his design, Dr. Chung 

modeled, fabricated, and testing various geometries of this capture scheme (Figure 8) in 8 by 8 

arrays [49]. Fabrication was performed using standard soft lithographic techniques with one layer 

of polydimethylsiloxane. The 25 µm-thick mold was patterned on a bare silicon substrate using 

epoxy-based negative photoresist, SU8-10 (Microchem, MA). Liquid PDMS was cast on it and 

solidified at 90 °C on a hotplate for 3 h. Then, the cured PDMS was cut into pieces and detached, 

and holes for the inlet and outlet were punched. Channels were bonded to a glass slide with oxygen 

plasma. Fabricated microwells were 400µm in diamters with flow channels of 150µm width and 
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25µm height. Simulations performed using Comsol Multiphysics support improved capture with 

increased path B to path A hydrodynamic resistance ratios. The computation results also match 

very well with observed experimental results. For quantitative analysis, the devices were first 

tested using microbeads (15 μm in diameter, micromer-M, Micromod, Germany). Capture 

efficiency values were obtained by counting all microbeads that passed through one column of 

microwells until all capture sites were occupied. Multiple design architectures were tested when 

modifying the path parameters to minimize well size. This helps maintain maximum well packing 

density, while improving single cell capture.  

Capture experiments were also performed with PC3 prostate cancer cells, and matched well 

with microbead data (Figure 8). PC3 cells were loaded into the device (~5x104 cells/ml) by 

pipetting a cell suspension into the inlet well. After only a few minutes, over 80% of wells have 

captured single PC3 cells. On chip culture was performed for 3 days in RPMI media +10% fetal 

bovine serum (FBS), and good cell viability and proliferation were observed, confirming that the 

hydrodynamic guiding structure does not affect cell viability. This single cell capture scheme 

developed by Dr. Chung can be easily expanded to a larger array size for high throughput single 

cell assays and drug screening application [50]. Devices operating on this approach meet biological 

Figure 8: (A) Simulations of microwell flow rates and (B) simulations/experimental performance of high 

efficiency single cell capture schemes, Type I through Type IV [49]. 

(A) (B) 
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user needs for single cell approaches: high single cell capture rates and efficiency and simple, 

equipment free operation that allow these devices to be deployed in a variety of lab settings. This 

scheme serves as the fundamental design approach for all assays and devices presented herein.  

While Type IV devices (Figure 8), showed the highest capture efficiency in the smaller 

array sizes used in this study, this does not take into account performance as array size is increased. 

The high overall fluidic resistance of Type IV can affect device performance. When arrayed into 

hundreds and thousands of wells, Type IV architectures experience diminished capture due to 

lower flow rates. For this reason, Type III- based microwells were used for increasing array sizes 

and throughout our experimentation in this dissertation. In this work, we have applied the capture 

scheme to investigate CSC division, differentiation, and drug response, and to create robust single 

cell mammosphere assays for marker-free CSC characterization.



20 

 

Chapter 2: Adherent Assays of Single CSC Behavior 

In order to study important cancer cell subpopulations such as CSC, we must develop single 

cell approaches capable of capturing and culture heterogeneous populations for long term analysis. 

Two key characteristics of CSC are their reported resistance to traditional chemotherapy and 

treatment and their ability to divide and differentiation to recapitulate whole tumor heterogeneity. 

In this chapter we will examine the development of a high efficiency highly scalable single cell 

capture scheme and how it has been applied in applications that investigate these key CSC 

characteristics, namely 1) drug screening in heterogeneous and target cell populations and 2) 

monitoring of CSC division and factors that control this process. The assays will be performed in 

high throughput, user friendly single cell adherent culture devices.  

 

2.1 Drug Screening in Heterogeneous Cancer Cell Populations 

 Cancer heterogeneity has received considerable attention for its role in tumor initiation and 

progression, and its implication for diagnostics and therapeutics in the clinic. Even within purified 

cancer cell lines, recent studies have shown that cells are not identical but heterogeneous in 

metabolic, proliferative, and differentiation potentials, and in response to drug treatment [51, 52, 

53, 13, 54]. For example, PC3 prostate carcinoma cells, used to characterize device performance 

in Chapter 2.1, give rise to a mixture of three clonal phenotypes: holoclones, meroclones, and 

paraclones [53, 13, 54]. The cellular differences are often identifiable through changes in progeny, 

differentiation potential, subtle but repeatable differences in proliferation, and morphology or 

physiological response to various treatments. As conventional approaches were used in these 
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studies, special care had to be taken to observe these subtle differences in bulk culture.  As such, 

confirming these results and performing heterogenous drug screening on-chip was an ideal first 

application for Dr. Chung’s scheme. The single cell capture array was optimized to promote clonal 

proliferation, and he designed a selective surface patterning (hydrophobic SU8 coated with 

pluronic) to prevent cell migration out of the well to ensure clonal uniformity within the microwell. 

This thereby enables traceable lineage expansion and subsequent on-chip characterization of clonal 

phenotype and drug response. As with previous iterations, the devices used here were designed to 

operate utilizing no external power or equipment (save a pipette) by employing gravity-driven 

flow. To investigate the potential of the system, we captured and cultured single PC3 prostate 

cancer cells in microwells, identified the three different sub-phenotypes in the cancer model, 

performed chemotherapeutic treatment, and correlated their clonal drug responsiveness to cell 

phenotype.  

Figure 9: Schematic representation of final microwell design with improved capture site for single cell 

characterization [50].  
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Figure 9 shows the schematic view for a unit microwell of the array chip, illustrating the 

hydrodynamic guiding structure including a capture site and the developed migration blocking 

structure. For optimal capture, the capture site was modified to have a smaller channel height (hb) 

as compared to the rest of the features (ha). This reduced height ensure that captured cells 

completely block path A, diverting any following cells through path B.  The other dimensions were 

chosen to increase the resistance difference while maintaining unobstructed cell flow (width, 

length, and height as 10 μm, 10 μm, and 20 μm for path A, and 20 μm, 800 μm, and 40 μm for 

path B, respectively).  

The fabrication procedure uses a single PDMS layer and a glass substrate (Figure 10).  A 

mold for the microchannels and microwells was made on a silicon wafer using negative 

photoresists, SU8-10 and SU8-25 (Microchem). To generate two different heights (20 µm and 40 

µm), we performed photolithography twice to produce different thicknesses. The first layer was 

patterned with SU8-10 (20 µm) to generate the gap in the single cell capture sites and the second 

layer was done with SU8-25 (40 µm) to define all microchannels and microwells. After fabricating 

Figure 10: Fabrication of (A) single cell capture array and (B) substrate for migration blocking structures [50]. 

(A) 

(B) 
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the mold, PDMS (Dow Corning) was cast and cured to replicate it. Subsequently, two reservoirs 

were generated by punching through the PDMS using a 5mm diameter biopsy punch (Miltex).  

To control growth and migration inside each microwell, Dr. Chung embedded migration-

blocking patterns around the microwells; these patterns restrict cell movement in the microwells 

during proliferation. Without the blocking pattern some cells can migrate to adjacent microwells 

during long term culture. There are several reported techniques for blocking cellular migration, 

namely physical trenches/walls and chemical surface modification [55, 56, 57, 58, 59]. Using PC3 

cells it was found that surface modification with pluronic copolymer (F108), a coating material 

with known anti-fouling properties to repel cells and other proteins [60, 61, 62], was most 

effective. F108 was selectively deposited by patterning a hydrophobic surface with 5 µm thick 

photoresist (SU8-5, Microchem) on a hydrophilic glass substrate. Inner surfaces were coated by 

flowing F108 and collagen successively conferring antifouling to only the SU8-coated-area. After 

glass slides were patterned, the PDMS replica was aligned and bonded to the separately prepared 

glass substrate. 

Figure 11: Fabricated example single cell capture arrays containing 64 and 1,024 microwells with inserts 

showing magnification of individual microwell structures.  
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We fabricated and tested chips featuring arrays of 64, 256, 320, and 1024 of these 

microwells (Figure 11) in order to demonstrate the scalability of this approach; however as 

previously discussed when array size increases, fluidic resistance changes may affect capture rates. 

As flow is generated through a passive gravity mechanism, increasing array size can decrease flow 

rates. The passive flow mechanism acts as a pressure source as gravity pushes the fluid down in 

the inlet, thus as the channel resistance increases, flow rates will decrease. In the design of the 

1,024 well devices, two factors were modified to optimize the capture. First, the size of the culture 

area was reduced to a width of 115 µm. If the microwell is large, the flow velocity in this area may 

slow (reduced fluidic resistance leads to slower flow with constant pressure), reducing overall 

capture rates and efficiency. The second geometry optimized was the capture gap size. Capture 

gap size, must remain small to facilitate cell capture, but this has a negative effect of increasing 

the hydrodynamic resistance. As the capture site length does not contribute to cell capture, we 

minimized it to reduce the central path resistance without affecting cell capture. The final geometry 

in 1,024 of the central path is 5.6 µm by 15 µm, with a length of 6.2µm. The fabricated 1,024 well 

devices was fabricated using the same process as used for smaller arrays and has shown similar 

capture rates (80%) for all tested cell types. These larger arrays can facilitate considerably higher 

throughput data collection, which is especially important for rare cell subtypes such as cancer 

stem-like cells. In the course of this experiment, however, we completed testing with 64-well 

designs for both ease of data collection and analysis and because throughput was not an issue.  

To validate his devices, testing was performed with fluorescent prostate carcinoma (PC3) 

cells. Cell loading was performed by simply adding cell suspension to the inlet reservoir. Gravity 

flow (3-5 µL/hour) and the hydrodynamic guiding structures automatically and efficiently load 

single cells into the microwell array. Then, the captured cells were cultured in the microwell array 
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over several days, with a continuous supply of culture medium in a 37˚C incubator. During culture 

the average doubling time was 1.7 days in the microfluidic chip which was comparable to the 1.5 

days from conventional Petri-dish culture, demonstrating minimal effect on viability. For a proof 

of concept study of cellular heterogeneity, Dr. Chung replicated the experiment of Zhang et al. 

using the platform to show our capability to perform these experiments in a simple and repeatable 

manner.  

After 4 days of culture on-chip, three different sub-phenotypic clones, namely holo, mero, 

and paraclones, could be identified and sorted from the heterogeneous parental PC3 cell line 

(Figure 12) based on their morphology and proliferation rates. Cells in the holoclones were 

relatively small and proliferated fast. Much like a cancer stem-like cell population, these cells 

should have considerable self-renewal potential and have been shown to be capable of 

recapitulating each of the three observed phenotypes given significant time [53]. Cells in the 

paraclones were large, proliferated much slower, and have a short replicative life-span. Cells in 

the merclones showed medium size and growth rate. As expected, holoclones are observed much 

Figure 12: Heterogeneous clones (holoclones, meroclones, and paraclones) identified within the microfluidic 

platform [50]. 



26 

 

less frequently than either paraclones or meroclones. These results match well those obtained with 

the conventional dilution assay. 

After validating culture functionality, Dr Chung used the the clonal culture chips to 

investigate the effectiveness of chemotherapeutic agents on different clones with the PC3 

population. The ability to screen targeted or agents that are selective to cell subtypes is a key 

feature we desire for tools for the study of heterogeneous single cell populations. As before, PC3 

cells were captured as single cells into the microwell array and cultured to identify subclones. 

Chemotherapeutic agents were introduced to all cells and drug effectiveness was verified by 

calculating percentage of cell death in each sub-phenotype. Well-defined cell and colony location 

facilitates easy identification, tracking, and analysis of drug effectiveness in the heterogeneous 

PC3 population (Figure 13). 1 day after introducing 40 nM/mL of Docetaxel, a clinically relevant 

Figure 13: PC3 holoclone, meroclone, and paraclone response to 40nM/mL Docetaxel treatment on-chip after 5 

days of culture and 1 day of drug treatment [50]. 
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anti-mitotic chemotherapeutic agent for prostate cancer, it was observed that the drug killed most 

of the progeny cells from the highly proliferative holoclones (>80%). In contrast, Docetaxel was 

less effective in eradicating paraclones and meroclones, with less than 30% and 50% cell death 

respectively (Figure 14). With Etoposide, a topoisomerase inhibitor, similar results were observed 

(Figure 14). These results can be attributed to both Docetaxel and Etoposide’s mode of action: 

Docetaxel disrupts microtubule function while Etoposide disrupt DNA ligation. Both mechanisms 

are critically important during cell division and proliferation, and thus these agents have selective 

high potency against actively dividing cells. In a traditional assay, the subtle differences in the PC3 

heterogeneous response would not have been as easily observed or quantified. In rarer populations, 

such as holoclones or CSCs, single cell methods must be used. This microfluidic approach sorts 

single cells into individual microwells in a parallel, high-throughput, and user independent manner 

utilizing only a pipette, facilitating their use in any laboratory or testing environment. As such, 

these experiments demonstrate the potential applications of the microfluidic clonal chip for on-

chip characterization of clonal phenotype and in vitro drug screening assays. The presented results 

are proof that we can utilize our microfluidic single cell platform to study how heterogeneity 

manifests for future use with CSC drug response. 

Figure 14: Quantification of PC3 subpopulation viability after treatment with either (A) Docetaxel or (B) 

Etoposide chemotherapy [50]. 

(A)           (B) 
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2.2 Targeted Drug Screening of CSCs 

 After validation of Dr. Chung’s approach for use with heterogeneous populations and drug 

screening in general, we applied the device for CSC targeted therapeutic screens and assays using 

an ovarian cancer cell lines. Once CSCs and tumor initiating cells, which exist at the top of the 

differentiation hierarchy have been identified within a cell type or cancer of interest, we can 

perform targeted drug screening on single CSC rather than bulk heterogeneous populations (as was 

done with PC3 cell lines). CSCs are resistant to many traditional chemotherapeutic agents [28, 13, 

63], so single cell drug screening is needed in order to observe their response independent of 

overall population cytotoxicity. In ovarian cancers for both primary human patient samples and 

lines, it has been recently demonstrated that aldehyde dehydrogenase (ALDH) is an excellent 

marker of CSCs [64, 63]. ALDH expression is typically present in <5% of ovarian cancer cells, so 

our high efficiency capture is ideal for this application. Ovarian CSCs are moving targets, often 

rapidly dividing and diluting sorted populations, so another advantage of the microfluidic culture 

device is our ability to perform live cell staining and imaging on-chip to confirm cellular identity 

prior to drug screening. Using the previously developed approach, we confirmed cisplatin 

resistance of ALDH+ SKOV3 cells and identified several compounds that specifically target 

ALDH+ versus ALDH- cells on-chip. 

First, we evaluated our ability to culture ovarian cancer cell lines in our device, namely 

SKOV3 and A2780 (Figure 15). The SKOV3 cell line is an ascetic derived ovarian tumor line that 

is resistant to both tumor necrosis factor and several cytotoxic drugs, including cisplatin and 

Adriamycin. A2780 cells were establishes from tumor tissue, and both lines contain populations 
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of CSC [64]. As such while either line could serve as a useful model for performing drug screening, 

SKOV3 were select for our initial screening.  

Prior to cell loading, chips required preparation for cell culture. As the first step, chips were 

sterilized by treating them with UV light for 5 min in a biobench. The chips were placed in a 

desiccator for 30 min to depressurize and remove the air trapped in the PDMS channels. 

Immediately after desiccation, we added 100 µl of 1 wt. % F108 (Pluronic copolymer for migration 

blocking) in deionized water to the inlet. Due to the depressurization in the device, the solution 

can easily fill the microchannels without forming air bubbles and flow from gravity pressure. After 

allowing the F108 solution to flow through the device for 10 minutes, devices were washed by 

flowing deionized water for 5 min. The bottom glass surface in microchannels was coated with 

0.01% collagen to promote cell adhesion by adding 100 µl of a collagen solution into the inlet. 

Collagen can selectively coat only the glass substrate due to the antifouling properties of F108 that 

has already been used to coat the PDMS. After coating the collagen in a 37ºC incubator, it was 

washed out and replaced with cell culture media (RPMI+10% FBS) and placed the chip in the 

same incubator overnight, allowing the cell culture media to condition the devices. 

Prior to loading, cells were culture in standard tissue culture plates in RPMI + 10% FBS. 

For loading, cell are trypsinized (with 0.05% Trypsin/EDTA) to release them from the surface and 

form cell suspensions. The cell concentration from the suspension was checked using a 

Figure 15: Successful culture of SKOV3 and A2780 ovarian cancer lines at a single cell level.  
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hemocytometer and was adjusted to around 5x104 cells/mL via diluting the culture media volume. 

For loading, this cell suspension is pipetted into the inlet and the gravity flow and hydrodynamic 

capture scheme does the rest. After capture, inlets are emptied and refilled with fresh culture media 

so as to prohibit additional cells from flowing as well as provide nutrients and remove waste 

continuously. 

We loaded FACS isolated ALDH+ and ALDH-  SKOV3 ovarian cells within the 

microfluidic device and then, after allowing cells to recover overnight, repeated our assessment of 

ALDH activity. The ALDH activity of the cells was assess by performing an ALDEFLUOR assay 

(StemCell Technologies) in situ and visualizing enzyme expression via fluorescent imaging. 

Aldefluor assays access the enzymatic activity of aldehyde dehydrogenase within the cell, rather 

than through a cell surface marker phenotype and can detect stem and progenitor cells in multiple 

cell types including ematopoietic, mammary, mesenchymal, endothelial, and neural in addition to 

ovarian lines [65, 66].  Using this assay we could clearly confirm the loading of ALDH+ and 

ALDH- cells.  After 48 hours, cells were re-evaluated with the ALDEFLUOR assay. Consistent 

with their potential as stem cells, ALDH+ cells were observed to yield both ALDH+ and ALDH- 

daughter cells.  In contrast ALDH- cell only produced ALDH- cells.    

To further investigate the ALDH subpopulation, approximately multiple device (with a 

subset of loaded cells shown in Figure 17) were quickly and efficiently loaded with bulk SKOV3 

cells using gravity flow in our device. Of the 896 wells loaded, 24 wells contained single ALDH+ 

CSC. This ~2.6% ALDH+ population is consistent with values reported in the literature [64, 67, 

68] and demonstrates our ability to work with bulk populations in high throughput to obtain 

statistically significant samples of rare cells.   
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In order to increase the percentage of ALDH+ cells for use with targeted drug screening 

without first FACS isolating, we pre-treated SKOV3 cells with the chemotherapeutic Cisplatin at 

1 µg/mL for 3 days followed by a 24 washout period. This allows the selection of chemoresistant 

cells.  Viable chemoresistant cells were then loaded within the microfluidic device and then stained 

with ALDEFLUOR.  ALDH+ cells now represented over 50% of the captured cells. After 1 day 

Figure 17: Single cell microwell subset with capture SKOV3 single cells. 

Figure 16: Loading and evaluation of single SKOV3 cell drug response on-chip. 
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cells were then treated with either (1) cisplatin at 0.25 µg/mL, (2) the ALDH inhibitor disulfuram 

at 50 µM, or (3) one of two novel ALDH inhibitors at 25µM. After 3 days cells were re-stained 

with Aldefluor and evaluated by microscopy (Figure 16). Consistent with our expectation, we 

observed that cisplatin killed more than 80% of the ALDH- tumor cells, however as expected, 

~80% of the ALDH+ population were resistant to cisplatin therapy (Figure 18). In contrast, 

disulfiram and the two novel targeting compounds were essentially non-toxic to ALDH- cells but 

were 2-3 fold more effective at targeting ALDH+ cells (p<0.01) (Figure 18).  

Due to the well-defined single cell isolation within our device, we were able to continue 

the culture of the treated cells for 6 additional days after initial evaluation. Due to the more limited 

proliferation and migration of these lines, migration blocking structures were not needed for this 

experiment. 10 total days after initial loading, ALDH+ populations of SKOV3 treated with 

cisplatin and disulfiram (controls) had increased in viability and total cell numbers (Figure 20). In 

contrast, ALDH+ cells treated with a single dose of the two novel ALDH inhibitors continued to 

show a decline in ALDH+ cell viability. Treated ALDH- populations showed little re-growth.  

Figure 18: Cytotoxic efficacy of targeted and non-targeted agents versus ALDH+ and ALDH- SKOV single cells 

(* is p<0.01). 

* * 
* 
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Due to the success of the two novel targeted compounds, they were further investigated by 

our collaborators and screened against additional cell lines including those like A2780 who’s CSC 

populations are defined by multiple markers (ALDH and CD133) [64, 67]. Interestingly, #673 

treatment with A2780 caused a reduction in the ALDH+ CD133+ populations without any 

evidence of apoptosis.  It was hypothesized that #673 might be acting as a differentiation therapy, 

forcing asymmetric division or differentiation in the double positive CSC population, so we 

repeated the experiment with our single cell assay in order to directly observe single CSC behavior. 

Figure 20: Long term post-treatment evaluation of CSC targeting and recovery in SKOV3  

Figure 19: Viability effects of #673 on A2780 ALDH+ CD133+ and ALDH- CD133+ CSC populations (* is 

p<0.01). 

* 

* 
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A2780 ovarian cancer cells were trypsinized, loaded into the device, had their ALDH and CD133 

activity assessed, and cultured with RPMI +10% FBS. After 1 day of recovery on-chip, #673 was 

added at at 25µM and cells were cultured for 3 days. At day 4, CD133 and ALDH activity, as well 

as, viability were accessed. A significant loss in ALDH+ CD133+ and ALDH- CD133+ cell 

viability was observed in the treated group compared to the control (Figure 19). When the 

population distribution (ALDH+/-CD133+/-) of the cells that remained viable was examine after 

3 days of treatment at 25µM, there was no significant differentiation observed (Figure 21). This 

combined with the overall loss of viability rules out the possibility that #673 is acting via 

differentiation effects. However, direct microscopic observation of single cell morphology led us 

to believe that cells were undergoing karyorrhexis as a result of necrosis (Figure 22). This finding 

is very interesting and consistent with bulk screening results not seeing evidence of apoptosis. In 

contrast to programmed cell death in apoptosis, necrosis is caused by factors that are external to 

the cell such as trauma and results in unregulated digestion of cell components. While apoptosis 

Figure 21: Effects of #673 treatment on CD133+ALDH+ and CD133+ALDH- CSC differentiation. 
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can have beneficial effects, necrosis is normally detrimental, as such, #673 may not be an ideal 

targeted therapy. Further investigation will be required.  

The presented data shows that our platform is capable of long and short term drug studies 

for evaluating the drug response of specific cancer cell subpopulations. In the future, the simple 

microfluidic architecture and fabrication makes the addition of parallel inlets (for multidrug 

screening) or chemo-mixers (for dose response analysis) as easy as changing one 

photolithographic mask. From the long term CSC drug studies performed, we clearly demonstrated 

that assessing the possible effects of the drug even after many cell divisions and cycles will be 

critical for understanding treatment consequences. This platform is, thus, ideal for this application 

in its ability to capture, geometrically confine, and culture single cells in the long term. These same 

characteristics facilitate observation of symmetric and asymmetric division of differentiating CSC 

populations as preliminarily observed while confirmed the effects of agent #673 on CD133+ CSC 

populations (Chapters 2.5 and 2.6).  

 

Figure 22: Karyorrhexis and necrosis in #673 treated A2780 ovarian cancer cells. 
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2.2 Alternative Materials for Microfluidic Fabrication 

Though well founded [69, 70], whether human cancer cells follow a hierarchical or 

stochastic model of differentiation is controversial, so facilitating direct observation is quite 

impactful. For these studies to be truly impactful, however, we will need to use both cell lines and 

primary patient samples. Few microfluidic platforms report the use of primary cells, due to 

sensitive viability, so confirming our ability to culture primary cells on-chip is an important step.  

PDMS has become the go-to material for microfluidic fabrication for many applications in 

cell biology and chemistry. PDMS is cheap, and numerous devices can be fabricated from a single 

patterned master in a matter of hours. It also facilitates simple closed channel fabrication as it can 

be covalently bonded to glass and other PDMS surfaces via oxygen plasma treatment. Importantly, 

PDMS is also gas permeable, allowing adequate oxygen and circulation for cell culture 

applications [71, 72]. These advantages cause many to overlook the numerous drawbacks that are 

also associated with PDMS based microfluidic devices.  A major issue in cell culture applications 

is that PDMS absorbs small hydrophobic molecules (e.g. biomolecules, media components, drugs) 

[73]. As a result, PDMS devices can bias the results of experiments examining cell signaling or 

drug dose responses. Hydrophobic growth factors or lipid energy sources from the culture media 

also adsorb into the PDMS, affecting cell behavior. Even more problematic are the PDMS effects 

on cell viability in long term culture. Complete crosslinking of PDMS polymers is difficult to 

guarantee, and uncrosslinked low molecular weight monomers can leech from the PDMS into the 

cell culture media. Here, they may interact and disrupt the hydrophobic cell membrane affecting 

viability and growth. In cases where media is not provided by continuous perfusion, the same 

permeability that facilitates oxygen circulation also facilitates water vapor evaporation. This effect 

can lead to device drying or changes in media osmolarity. Overall when comparing results in 
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PDMS devices and traditional in vitro cultures, there are significant differences in proliferation, 

metabolism, gene expression, and mitosis [73]. Although thorough PDMS device cleaning (solvent 

and thermal aging processes) can be performed in order to minimize viability effects, it is also 

important to investigate alternative microfluidic device fabrication methods and materials. 

To this end, we have investigated solid UV cross-linked Poly(ethylene)-glycol-diacrylate 

(PEGDA) as a material for microfluidic device fabrication for biological applications. We have 

evaluated biocompatibility of PEGDA through two separate means: 1) by examining cell viability 

and attachment on cross-linked PEGDA surfaces for cell culture applications, and 2) by 

determining if cross-linked PEGDA inhibits the polymerase chain reaction (PCR) processes for 

on-chip PCR. Through these studies a correlation has been found between degree of curing and 

cell viability, attachment, as well as on PCR outcome. 

Poly(ethylene)-glycol-diacrylate (PEGDA) is a liquid polymer that can be cross-linked into 

a solid form by exposure to UV light in the presence of a photoinitiator. Recently, solid UV cross-

linked PEGDA has been reported as a material for microfluidic fabrication [74, 75, 76, 77]. It 

offers advantages over traditional polydimethylsiloxane (PDMS) techniques, including greater 

stiffness, permability control, and importantly, lower nonspecific adsorption of bio-molecules 

[74]. The method of fabrication (UV crosslinking) also facilitates the high aspect ratio structure 

fabrication [78] and lithographic patterning [76]. In previous work, our collaborators in the Fould’s 

lab at Kaust (now at Simon Fraser University in Canada) have demonstrated a fabrication process 

capable of producing an enclosed microfluidic channel and high aspect ratio structures using 

PDMS soft molds [77]. As UV cross-linked PEGDA has a lower non-specific adsorption than 

PDMS, it is a promising material for fabrication of microfluidic devices for biological applications. 
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One of the more common uses of PEGDA is in the form of hydrogels as biocompatible 

tissue engineering scaffolds because of their similarity in structure to natural tissue [79, 80]. A 

PEGDA hydrogel is obtained when the liquid polymer is dispersed in an aqueous medium prior to 

cross-linking. Its use as a tissue scaffold material implies high biocompatibility, and studies of cell 

viability encapsulated in PEGDA hydrogels with different photoinitiators have been previously 

reported [81, 82]. However, the differences between PEGDA as a hydrogel and as a solid material, 

in both fabrication methodology and application require further characterization, which cannot be 

inferred directly from hydrogel studies alone. For example cell encapsulation in hydrogel involves 

the radiation of UV light on both cells and polymer simultaneously, limiting the total exposure 

dose that can be acceptable to avoid cell damage. Another difference is the effect of oxygen as an 

inhibitor of the cross-linking reaction of PEGDA [83], which is less significant in the case of 

hydrogels since the reaction naturally occurs in a low oxygen environment, and more significant 

in the case of solid UV cross-linked PEGDA. The importance of having minimal amounts of 

prepolymer to ensure good biocompatibility has been previously reported for solid UV cross-

linked PEGDA; however, results have been only qualitative [75]. As such, we investigated, 

quantitatively, the biocompatibility of solid PEGDA in microfluidic devices applications. 

Figure 23: (A) Microscope and (B) photographic image of single cell devices fabricated in UV-cross-linked 

PEGDA instead of PDMS. 

(A) (B) 
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Test samples were fabricated following a process previously published by the Foulds’ 

group [77]. This process enables the fabrication of microfluidic devices for biological applications, 

such as our single cell capture platform [49] (Figure 23), using solid UV cross-linked PEGDA. 

The fabrication process is relatively simple. Liquid 258 PEGDA, mixed with a photoinitiator, is 

poured into a polydimethylsiloxane (PDMS) soft mold of the device. The mold is covered with 

glass slides, compressed between two clamps and cured using a UV light box (7mW/cm2). 

Samples are then demolded by peeling off the PDMS soft mold and rinsed with isopropyl alcohol 

(IPA) and DI water. A variety of photoinitiators and fabrication parameters were tested to examine 

various conditions. Samples of 1 inch x 3 inch size were fabricated under different fabrication 

conditions shown in Table 2. 

Table 2: List of tested polyPEGDA samples. 
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When performing initial cell viability testing with the fabricated polyPEGDA, a correlation 

between curing time and cell viability was clearly observed. As oxygen inhibits the cross-linking 

of PEGDA [83], curing the samples in an air atmosphere showed adverse effects on 

biocompatibility. This effect can be easily visualized in looking at the 3-day cell viability (Figure 

24). SUM159 cells were cultured on two different types of PEGDA surfaces: 1) those cast from 

PDMS molds and 2) those cast off flat glass surfaces. 

During fabrication, the top surface of the PEGDA sample is in contact with a glass slide, 

while the bottom surface is in contact with the PDMS mold. As PDMS is more gas permeable than 

glass, the adjacent liquid PEGDA is exposed to a greater oxygen concentration, which results in a 

lower curing intensity and therefore reduced cell viability. With the same curing intensity 

(quantified as curing agent concentration multiplied by curing time), surfaces from the glass 

surface showed significantly higher viability. As such, we included in our testing samples 

fabricated in “low” oxygen environments (Table 2). 

Figure 24: 3-day cell viability cell vs. curing intensity of in air UV-cured PEGDA samples.  
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Curing in an oxygen free atmosphere, for example carbon dioxide or nitrogen [83], has in 

fact previously been shown to minimize the effects of oxygen inhibition, so its inclusion here to 

improve cell viability is important. An additional 30 minute vacuum step was added before 

covering the mold with a glass slide, to minimize the oxygen present in the liquid PEGDA and 

PDMS mold. Additionally, a nitrogen chamber that could fit on top of the samples during UV 

exposure was fabricated. Prior to exposure, the chamber was filled with nitrogen and run for 30 

minutes to ensure all oxygen was displaced. Flow of nitrogen was maintained throughout the entire 

procedure. 

To assess cross-linked PEGDA as a cell culture material, cells (SUM159 breast cancer 

cells) were seeded onto the sample surfaces and evaluated for their surface attachment and 

viability. Prior to loading, cells were cultured on tissue culture treated petri dishes in DMEM + 

10% FBS (Invitrogen) culture media. Cells were trypsinized and re-suspended at 5x106 cells/mL 

for loading onto samples. PEGDA surfaces were fabricated with the various parameters described 

Figure 25: Increased normalized cell attachment on polyPEGDA with plasma and ECM surfaces treatments as 

compared to PDMS surfaces.   
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above. PEGDA surfaces were then left untreated, treated with oxygen plasma (80W for 60 sec), or 

treated with plasma and submerged in D-PBS or .1% collagen solution (to create an ECM coating). 

The resulting cell attachment and viability was observed and compared to untreated PEGDA 

surfaces as well as to polystyrene (PS) and PDMS surfaces. 

Cell surface attachment percentage was analyzed by assessing cellular morphology, 4 

hours after initial loading. Figure 25 shows the marked increased in cell attachment after surface 

treatment with both plasma and ECM coatings as expected (cell attachment normalized to 

attachment rates on polystyrene plate at same seeding density in graph). Increased PEGDA curing 

time also lead to more effective cell attachment. PEGDA, slightly but significantly, outperformed 

PDMS surfaces in enabling cell attachment when subjected to increased curing, plasma treatment, 

Figure 26: SUM159 breast cancer cells attaching to PEGDA surfaces with different exposure times and surface 

treatments. 
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and coated with ECM. However, without increased curing times, plasma treatment, or ECM 

coating, PEGDA significantly underperforms when compared to PDMS samples. Example cell 

images can be seen in Figure 26, and they show the very different cell morphologies obtained 

depending on curing time and surface treatment. The rounded morphology shown in the top left 

images is indicative on an un-attached cell. However, as the cells adhere, their morphology 

becomes more elongated and spread as seen in the bottom right. 

Stable cell viability must be maintained over long time periods for reliable cell assays, and 

is precisely where PDMS devices can be problematic for cell culture applications. As such, cellular 

viability was assessed over an 8 day time period. Traditional cell Live/Dead stains (Invitrogen) 

were used to visualize cellular viability, and PEGDA surfaces were compared to PDMS and PS, 

as a control. The resulting 8 day viability (Figure 27) was shown to be lower than that presented 

in PS but comparable to PDMS when cured for at least 24 hours. Again, we observe a clear 

correlation between curing degree and cell health. While PEGDA surfaces still underperform PS, 

Figure 27: 8-day cell viability vs. curing time of nitrogen atmosphere UV-cured PEGDA samples as compared to 

baseline viability in polystyrene and PDMS. 
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we believe further steps can be taken to improve long term viability, including further optimization 

of curing time and better selection of a biocompatible photoinitiator. 

Another major drawback of PDMS is its adsorption of biomolecules. This causes 

interference with many biological assays including PCR. In order to quantitatively assess improved 

polyPEGDA performance, PCR was performed with PMDS, with PEGDA, or without either in 

conventional PCR assay wells. The PCR compatibility was performed following a previously 

developed methodology [84]. A PCR master mix was prepared, using male saliva genomic DNA 

as a template. The primers were used to amplify a gene fragment from the Sex-determining region 

Y (SRY), with an expected amplification product size of 93 base pairs. Presence of amplified 

product indicates male saliva; no amplification indicates saliva of female origin. 

The material samples to be investigated were cut with a blade into pieces of approximately 

1.4 mm x 1.4 mm x 1 mm and introduced into individual PCR microteter plate wells. This was 

done to be able to have comparable results among the different tubes, given the fact that the 

inhibitory effect on PCR is surface area related. 30 µl of the master mix was pipetted into each of 

the wells containing material samples, and additionally two positive controls that did not contain 

Figure 28: Gel-like Bioanalizer image of PCR performed with different materials. 



45 

 

any material were included. The tubes were incubated in ice for 30 minutes prior to the 

thermocycling process. The PCR outcome was quantified using an Agilent 2100 Bioanalyzer, 

running DNA 1000 assays, which can produce a gel-like image for quick result assessment, as 

shown in Figure 28. Quantitative concentration results for the band of interest were also calculated 

and presented in Figure 29. A more successful PCR reaction produces a greater quantity of DNA, 

and the intensity of the fluorescent band on the gel-like image will stronger. Because of the length 

(measured in base pairs) of the DNA being amplified in this experiment, the presence of band at 

100 base pairs (bp) range indicates successful DNA amplification and higher concentration. We 

observed that sufficient curing of PEGDA shows improved performance over PDMS. 

When measuring and quantifying the values of concentration at the 100 bp band, virtually 

no signal (<0.01 ng/µl) was detected for the PEGDA samples cured for less than 30 minutes. 

Increased exposure times and the addition of the nitrogen atmosphere during fabrication show a 

decrease in PCR inhibition as compared to thus without. Cured PEGDA shows comparable 

inhibitory effects to PDMS at 6 hours curing time, but better performance for 12 hours. It is 

Figure 29: Concentration of amplified DNA at 100 bp band for different materials tested. 
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important to note, however, that all conditions with PDMS and PEGDA performed at least 2x 

worse than controls.  

The testing presented here assess cell viability in PEGDA device with conditions that 

closely resemble microfluidic culture conditions. From this testing, we have established a 

quantitative correlation between degree of curing and cell viability, cell attachment and PCR 

inhibition. Solid UV cross-linked PEGDA shows improved performance over PDMS as long as 

exposure time and surface chemistry are adequately controlled. Interestingly in the 

cytocompatibility study for cells encapsulated in PEGDA hydrogels reported by Bryant et al. [81], 

it was reported that DMPA photoinitiator at 0.1% concentration is one of the least cytocompatible. 

Despite of this, our work, which uses DMPA at 0.1%, has demonstrated good 8-day cell viability. 

We expect to be able to greatly improve performance if DMPA is replaced with a more 

cytocompatible photoinitiator.  

For high exposure times, PEGDA shows a statistically significant, but slight, improvement 

over PDMS for cell attachment when both are treated with oxygen plasma and 0.1% collagen 

solution. Cell viability is found to be equivalent to PDMS for high curing times. Inhibition on PCR 

outcome is reduced with higher exposure times, outperforming PDMS when cured for times longer 

than 12 hours. Disappointingly compared to polystyrene control, PDMS and polyPEGDA both 

underperform in producing cell culture and PCR outcomes. Although thoroughly cured PEGDA 

has slightly improved absorptive and long term culture characteristics as compared to PDMS, its 

native surface chemistry, like PDMS, is not conducive to cell adhesion and survival. With no 

extracellular binding domains, cells cannot adhere to unmodified PEGDA surfaces. While the UV 

fabrication procedure may enable unique device architectures and structures, it seems the slight 
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biological improvements alone are not enough to justify adapting our microfluidic procedures from 

PDMS to polyPEGDA devices.  

 

2.3 Primary Cell Culture in PDMS Devices 

Thus, our PDMS devices must be conditioned for use with sensitive patient samples. First, 

we added a thorough PDMS cleaning procedure to our fabrication protocol to remove any unbound 

and uncured monomer chains from the material that can affect cell viability. Any PDMS samples 

are cured for an additional 24 hours period at 80ºC after removing from SU8 molds to thermally 

age the sample. The samples are then soaked in 1% tween solutions for 24 hours, washed, and then 

soaked in 100% ethanol for another 24 hour period. After autoclaving (1-3 times), the samples are 

dried at 65ºC overnight. These processes help to eliminate low molecular weight chains that might 

diffuse out from the material during long term culture [85]. Second, laminin (Corning, 1mg) is 

added to the ECM coatings used on the device glass surface to improve cell adhesion, growth, and 

differentiation. Patient primary sample viability was then assess in our microfluidic device. 

Informed consent was obtained from all patients before tissue procurement. All studies 

were performed with the approval of the Institutional Review Board of the University of Michigan. 

Tumors were stage III or IV epithelial ovarian or primary peritoneal cancer. For these studies cells 

were harvested in the laboratory of our collaborator, Dr. Ronald Buckanovich, from ascites. Cell 

pellets were collected by centrifugation, and red cells were lysed using ACK buffer (Lonza), 

washed, passed through a 40-μm filter, and then passed 4 times through a Standard Hub Pipetting 

needle to isolate single cells.  
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Primary samples were then loaded into our platform as previously described. Primary cells 

were then culture on chip in supplemented MEBM media. At 5 days, total viability leveled off to 

~80% and significant proliferation was observed (Figure 31). Compared to cell lines however, 

primary samples had a large pool of quiescent cells. In order to evaluate quiescence, these non-

dividing cells were stained with LIVE/DEAD (Life Technologies) at 12 days and found to be still 

viable on chip (Figure 30). Only these quiescent cells survive to this 12 day time point, with 

Figure 30: Long term tracking of quiescent primary cell viability on chip assessed with Live/Dead staining. 

Figure 31: On-chip viability of primary ovarian tumor cells FACS sorted from acities. 

 

Days 
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proliferating primary cell viability dropping sharply after 7-10 days (~20%). Thus, we have 

successful demonstrated our ability to culture primary ovarian cancer cells on chip for a time 

period (5 days) appropriate for assessing possible CSC behavior (differentiation, division, drug 

response, etc.) in future studies. 

 

2.4 BMP2 and CSC Self-Renewal 

 Our ability to track single cells accurately over a long time period, as demonstrated by our 

in situ drug screening, is useful in investigating contentious claims related to CSC division 

behavior. As we can capture and confined single cells, stain them on chip to confirm their identity, 

and follow them over days and weeks to monitor division, we can directly assess CSC 

differentiation potential. Furthermore as the factors which regulate CSC self-renewal vs. 

asymmetric division are largely unknown, we can introduce biological factors of interest and 

monitor their effect.  

 In addition to ALDH activity, stem cell marker CD133 has been identified by our 

collaborators as a marker stemness in cancer [64, 67]. Together, ALDH and CD133 can define a 

heterogeneous population of ovarian cancer cells. The presence of ALDH+CD133+ cells in 

primary tumors is associated with poor outcomes for patients. Only ALDH, CD133, and CD44 are 

enriched after chemotherapy, implying drug resistance in these populations. Additionally, ALDH 

and CD133 can be identified in normal ovarian stem cells. When performing tumor initiating 

studies, the gold standard for identification of CSCs, only ALDH+CD133+ and ALDH+CD133- 

tumor cells initiated new tumors in mice. ALDH+CD133+ cells, however, showed greater 

initiation potential and generated aggressive, poorly differentiated tumors [64]. ALDH+CD133- 

tumors required longer growth periods. Based on this data, it was hypothesized that ALDH and 

CD133 can be used to define a hierarchy of Ovarian CSC differentiation; highly tumorigenic 
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ALDH+CD133+ CSCs give rise to somewhat less tumorigenic ALDH+CD133- CSCs/progenitors 

which in turn give rise to differentiated ALDH-CD133- cells. Using our device, we can directly 

examine this hierarchy and observe possible “de-differentiation” as well, if there are any.  

 Our collaborators had also previously reported that cancer-associated mesenchymal stem 

cells promote tumor growth and ‘stemness’ via the production of BMP proteins [86], but the role 

of BMP proteins in cancer remains controversial as several studies have suggested BMP proteins 

are tumor suppressors as well [87]. With direct interrogation by our microfluidic device, we 

observed that BMP2 promotes self-renewal of the ALDH+CD133+ CSC and inhibits the 

proliferation of progenitors.  

 We sought to test the differentiation capacity of each of the four ALDH+/-CD133+/- 

(ALDH+CD133+, ALDH-CD133+, ALDH+CD133- and ALDH-CD133-) cell populations in 

ovarian cell lines and primary samples. The four ALDH+/-CD133+/- cell populations from three 

primary patient specimens and 3 cell lines (PEO1, A2780, and OVCAR8) were FACS isolated and 

loaded as single cells into separate devices. Once loaded, the identity of each cell was confirmed 

using in situ ALDEFLUOR and CD133 immunofluorescent microscopy within the microfluidics 

Figure 32: Example cell divisions from A2780 ovarian cancer cell lines with Aldefluor activity in green and 

CD133+ surface markers in red. 
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chamber. Cell divisions were then tracked over 2-5 days, depending on cell proliferation rates for 

each sample. Endpoint staining was then performed to assess cell division state (Figure 32). 

Overall, primary cells had lower viability (~60%) and proliferation rates with a large number of 

non-dividing cells.  

 For most divisions, only ALDH+CD133+ cells were capable of giving rise to all four 

ALDH+/-CD133+/- cell populations: ALDH+CD133+ cells demonstrated symmetric divisions 

resulting in two ALDH+CD133+ cells, an asymmetric division resulting in an ALDH+CD133+ 

cell and an ALDH+CD133- cell, or an asymmetric division resulting in an ALDH+CD133+ cell 

and an ALDH-CD133+ (Figure 33). ALDH-CD133- cell progenitors were observed in wells 

initially seeded by ALDH+CD133+ cells, however, we never observed a direct division of an 

ALDH+CD133+ cell into a ALDH-CD133- cell, suggesting these cells were the result of an 

asymmetric division of either ALDH+CD133- or ALDH-CD133+ progenitor cells. Isolated 

ALDH-CD133+ cells could symmetrically divide or asymmetrically divide to produce ALDH-

CD133+ and ALDH-CD133- cells. We never observed the ability of an ALDH-CD133+ cell to 

produce ALDH+ cells. Similarly, ALDH+CD133- cells generally underwent symmetric division 

or asymmetric division to produce ALDH+CD133- cells and ALDH-CD133- cells. Finally, 

Figure 33: Differentiation potential of ALDH+/-CD133+/- ovarian CSC. 
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ALDH-CD133- cells were only observed to divide symmetrically. Quantification of aggregated 

data can be seen in Figure 35 and Figure 34 (patient and lines, respectively). Non-dividing cells 

are excluded from this quantification. From a single primary sample however, we observed one 

ALDH+CD133- cell which produced an ALDH+CD133+ cell and an ALDH+CD133- cell (small 

yellow A+C+ population in Figure 34), suggesting the potential for dedifferentiation (Figure 36).  

Figure 35: Differentiation potential of ALDH+/- CD133+/- cells ovarian cancer cell lines (A2780, PEO1, and 

OVCAR8). 

Figure 34: Differentiation potential of ALDH+/- CD133+/- cells in ovarian cancer patient ascites samples. 
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 To further assess the potential for de-differentiation, our collaborators FACS analyzed 

xenograft tumors initiated from 1000-5000 ALDH+CD133- primary cells from 4 patients. While 

all initial xenografts were CD133-, upon subsequent passaging, one of the four patients developed 

a population of CD133+ cells (Figure 37) suggesting a rare de-differentiation event. Together with 

or single cell data, this indicates an ovarian CSC differentiation hierarchy with ALDH+CD133+ 

cells at the top and with potential rare dedifferentiation events. Alternatively, there may be rare 

Figure 36: De-differentiation even in ALDH+CD133- patient sample. 

Figure 37:  One patient sample in four (Patient #1 vs. Patient #2-4) shows potential for de-differentiation as over 

multiple passages a CD133+ population emerges from originally FACS sorted ALHD+CD133- sample. 

CD133+ Cells 
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ALDH+CD133- cells that are distinct from the bulk of the ALDH+CD133- cells and differentiate 

into ALDH+CD133+ cells.  

 With the hierarchy established, we next investigated the effects of BMP2 on CSC division 

and differentiation in order to clarify BMP2’s clinical relevance. BMP2, or bone morphogenetic 

protein 2, is in the TGFβ super family of proteins and has been shown to play a role in bone 

development, EMT, and differentiation. In fact, BMP2 has been shown to be expressed in both 

ovarian cancer cells and mesenchymal cells [86, 88].  As a first step to investigate exactly how 

BMP2 impacts stemness, we acquired FACS-isolated ALDH+CD133+, ALDH+CD133-, ALDH-

CD133+ and ALDH-CD133- cells from cell lines (A2780, PEO1) and 2 patient samples (Pt179, 

Figure 38: BMP2 is more highly expressed in bulk CD133-ALDH- and ALDH- populations than ALDH+ and 

CD133+ CSC populations across cell lines (i) A2780, PEO1, (iii) HEY1 and SKOV3 and patient samples (ii) 

Pt179, Pt224. 
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Pt224) in the Buanovich lab and performed qRTPCR to characterize BMP2 mRNA expression in 

the different populations of ovarian cancer cells. BMP2 mRNA was undetectable or expressed at 

low levels in the ALDH+CD133+ cells and more highly expressed in ALDH+CD133-, ALDH-

C133+ and ALDH-CD133- cells (Figure 38). Differential expression of BMP2 was also observed 

between ALDH- and ALDH+ cells from cell lines (HEY1 and SKOV3) in which CD133 

expression is not detectable. Together this data suggest BMP2 is differentially expressed in the 

distinct populations of ovarian cancer cells with low expression in CSCs and increased expression 

in progenitor cells. Co-immunofluorescence with ALDH or CD133 in primary tumor biopsies 

demonstrated BMP2 protein was generally expressed in ALDH- and CD133- tumor cells in human 

tumor samples (Figure 39). This can be seen as there is minimal overlap of the green (CD133 or 

ALDH) and red (BMP2) areas in the histology.  

Collaborators in Dr. Buckanovich’s lab also evaluated the expression of BMP receptors/co-

receptors in these same cellular populations. qRT-PCR confirmed the expression of several 

Figure 39: Co-immunofluorescence of ALDH, CD133, and BMP2 in primary tumor biopsies, showing minimal 

overlap in areas expressing ALDH/CD133 (green) and BMP2 (red). 

 

 demonstrating BMP2 expression primarily in ALDH- and CD133- cancer cells 
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members of the BMP/Activin Receptor family (Figure 40). Most receptor mRNAs were broadly 

expressed in all ALDH+/-CD133+/- sub-populations. In A2780 cells and in 2 of 4 patient samples 

BMPRII was preferentially expressed in ALDH+CD133+ and ALDH-CD133+ cells (Figure 40) 

suggesting that BMP2 acts on these populations. In non CD133 expressing samples (SKOV3 lines 

and Pt118), receptors were preferentially expressed in ALDH+ cells versus ALDH-.  

Given the differential expression of BMP2 in the different ovarian cancer cell populations, 

bulk primary patient cells, A2780 cells and SKOV3 cells were treated with BMP2 or Noggin 

(BMP2/4 inhibitor). Surprisingly, both BMP2 and Noggin treatment restricted proliferation 

Figure 40: qRT-PCR demonstrating the expression of BMP and Activin receptors in (A) A2780 ALDH+/-

CD133+/- cell line populations, (B) Pt224 ALDH+/-CD133+/- patient sample populations, and (C) ALDH+/- cells 

from cell line (SKOV3) and patient sample (Pt118). 

(A) 

(B) 

(C) 
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(Figure 41a) in both A2780 cell lines and Pt125 patient samples. However, BMP2 treatment of 

primary cells in a tumor sphere assay was associated with a 2-3 fold increase in the numbers of 

ALDH+CD133+ cells (Figure 41b) in three separate patient samples. When A2780 cell samples 

were FACS sorted and culture in bulk with BMP2 and compared to cultures without BMP2, the 

proliferation rate of ALDH+ CD133+ cells was increased by 25%, while the growth of 

ALDH+CD133-, ALDH-CD133+ and ALDH-CD133- cells decreased 2.2, 4.4, and 6.9 fold, 

respectively (Figure 41c).  

Overall this data presents a confusing picture of BMP2 activity. As such, we then evaluated 

the impact of BMP2 on isolated single cells from the four ALDH+/-CD133+/- cell populations 

from 3 primary patient samples and 3 cell lines (PEO1, A2780, and OVCAR8) using our single 

Figure 41: Bulk effects of BMP2. (A) Both BMP2 and BMP2 inhibitor, Noggin, suppress overall cell 

proliferation in cell line (A2780) and primary sample (Pt125). (B) BMP2 treatment in tumor sphere assay results 

in great number of CSC in 3 patient samples. (C) In A2780, BMP2 treatment increases ALDH+CD133+ 

proliferation but suppresses all other ALDH+/-CD133+/- populations.  

(A) 

(B) (C) 
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cell microfluidic platform. In primary patient cells and cell lines, BMP2 treatment of 

ALDH+CD133+ cells led to a statistically significant increase in the number cells undergoing 

symmetric division (Figure 42, Figure 43, and Table 3). BMP2 was also associated with a 

suppression in the proliferation of ALDH-CD133-. ALDH+CD133-, ALDH-CD133+ cells (Table 

Figure 42: Differentiation potential of ALDH+/- CD133+/- cells in ovarian cancer cell lines (A2780, PEO1, 

OVCAR8) with and without BMP2 treatment. 

Figure 43: Differentiation potential of ALDH+/- CD133+/- cells in 3 ovarian cancer patient ascites samples with 

and without BMP2 treatment. 
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3), but effects were most significant in ALDH-CD133- populations. This data demonstrates that 

collectively BMP2 promotes CSC self-renewal/proliferation while suppressing the proliferation of 

bulk tumor cells, helping to harmonize the previously conflicting data. Individual cell lines and 

patient sample effects are shown in Figure 44-49. Taken together, this data suggests that BMP2 

secreted from ALDH-CD133- cells inhibit their own proliferation and increase the symmetric 

renewal in ALDH+CD133- populations. 

 

 

 

Table 3: Aggregated data of effects of BMP2 on ALDH+/- CD133+/- cell lines and primary patient division  
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Figure 45: Differentiation potential of PEO1 cell line ALDH+/- CD133+/- with and without BMP2 treatment. 

Figure 44: Differentiation potential of A2780 cell line ALDH+/- CD133+/- with and without BMP2 treatment. 
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Figure 46: Differentiation potential of OVCAR8 cell line ALDH+/- CD133+/- with and without BMP2 treatment. 

Figure 47: Differentiation potential of Patient Sample 1 ALDH+/- CD133+/- with and without BMP2 treatment. 
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Figure 48: Differentiation potential of Patient Sample 2 ALDH+/- CD133+/- with and without BMP2 treatment. 

Figure 49: Differentiation potential of Patient Sample 3 ALDH+/- CD133+/- with and without BMP2 treatment. 
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To confirm the biologic impact of increased CSC self-renewal and suppression of 

progenitors, our collaborator (Dr. Buckanovich) performed limiting dilution tumor initiation 

assays. 10 or 100 controls cells or BMP2 treated cells were injected into bilateral flanks of NOD-

SCID mice. Both A2780 and SKOV3 BMP2 treated cells showed greater tumor initiation capacity 

than controls (Table 4). The impact of BMP2 or the BMP2/4 inhibitor Noggin, on SKOV3 and 

A2780 cell growth in tumors formed in NODSCID Mice was also assessed. Treatment with BMP2 

in vivo demonstrated a significant increase in tumor growth for both A2780 and SKOV3 tumors, 

while BMP2 inhibition with Noggin led to a statistically significant reduction in tumor growth 

(Figure 50). Similarly, when we repeated the above experiment using FACS isolated 

Table 4: Tumor Initiation rates in A2780 and SKOV3 with BMP2 Treatment 

Figure 50: Tumor weights from (A) A2780, (B) SKOV3, and (C) FACS sorted ALDH+CD133+ A2780 cell-

derived tumors with or without BMP2 or Noggin treatment (n=10 per group).  

(A) (B) (C) 
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ALDH+CD133+ CSC from A2780 cells, BMP2 increased tumor growth while Noggin therapy 

decreased tumor growth (Figure 50, n=10 per group). This conforms with the data of the 

differential effects previously observed with in vivo versus in vitro treatment, and suggests BMP2 

inhibition may indeed be clinically relevant.  

Consistent with this, in vivo treatment with BMP2 results in increased tumor growth and 

chemotherapy resistance. Inhibition of BMP2 signaling with Noggin or BMP2 knockdown is 

associated with a reduction in tumor growth and a decrease in cellular proliferation. Additionally, 

to specifically assess the contribution of tumor cell BMP2 production, our collaborators used 

shRNA to knockdown BMP2 production in A2780 cells. qRT-PCR evaluation of mRNA levels, 

and western blot analysis of protein levels confirmed 4-5fold knockdown of BMP2 (Figure 51a & 

b, n=16 controls and n=8 for BMP2 knockdown). When grown in vivo, BMP2 knockdown tumors 

demonstrated significantly slower growth (Figure 51c). 

 As BMP2 influences ovarian CSC proliferation/differentiation it could potentially have a 

dramatic impact on chemo-sensitivity; by increasing the number of CSCs, BMP2 could increase 

chemoresistance or, alternatively, by forcing quiescent CSCs into cell cycle, BMP2 could enhance 

chemosensitivity. Our collaborator, Dr. Buckanovich, observed that, for both A2780 and SKOV3, 

Figure 51: (A) qRT-PCR and (B) western blot demonstrating knockdown of BMP2 in A2780 cells, and (C) tumor 

weights from cancers initiated from A2780 control and two independent BMP2-shRNA expressing A2780 cells . 

(A)                                        (B)                                            (C) 
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combined treatment with cisplatin and BMP2 demonstrated a significant reduction in cell numbers 

(Figure 52). Combined treatment with Noggin and cisplatin also lead to a modest reduction in 

cellular recovery compared to cisplatin treatment alone. 

 As CSCs are rare but chemoresistant, it is possible the change in total cell numbers does 

not accurately reflect the number of CSCs. Our collaborators therefore evaluated the absolute 

number of viable CSCs in A2780 and SKOV3 cells treated with cisplatin with or without BMP2 

Figure 52: Average cell growth curves of aggregate data from A2780 and SKOV3 cells treated with cisplatin with 

or without BMP2 or Noggin. 

Figure 53: Average absolute CSC number from data aggregated from A2780 and SKOV3 cells six days after 

cisplatin treatment with or without BMP2 or Noggin. 
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or Noggin. Despite the significant reduction in total cell numbers, compared to cisplatin treatment 

alone, treatment with BMP2 and cisplatin was associated with an increase in the absolute number 

of ALDH+CD133+ CSCs. In contrast, treatment with Noggin and Cisplatin was associated with a 

decrease in absolute CSC number Figure 53. 

Based on these results, it is hypothesized that BMP2 would increase chemoresistance in 

vivo due to the increase in absolute number of ALDH+CD133+ CSCs. To test this hypothesis, 

research in Dr. Bucknovich’s lab treated A2780 derived mouse xenografts with cisplatin alone or 

together with BMP2. Tumors treated with BMP2 and cisplatin were significantly larger than tumor 

treated with cisplatin only (Figure 54). Histological analysis of tumors showed no clear differences 

in tumor host cells. Combined, this data suggests that BMP2, by promoting CSC self-renewal, also 

promotes chemotherapy resistance.  

Our data demonstrate a general hierarchical model of ovarian cancer cell differentiation 

with BMP2 acting as a regulator of CSC division behavior (Figure 55). BMP2 produced by ALDH-

CD133- cells promotes ALDH+CD133+ cell self-renewal while inhibiting the proliferation of 

Figure 54: Tumor weights of A2780 tumors treated with (A) cisplatin with or without BMP2 or (B) cisplatin with 

or without Noggin, a BMP2 inhibitor (n=10 animals/group). 

(A)   (B)   
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progenitor and bulk cells. However, we have also seen that rare de-differentiation events are 

possible. While most ALDH+CD133- were not able to give rise to CD133+ cells, we observed 

one potential de-differentiation event where an ALDH+CD133- cells was able to give rise to an 

ALDH+CD133+ cell. We also observed the ability of ALDH+CD133- cells to generate CD133+ 

cells with serial passage of primary cells in vitro. This is consistent with a murine study indicating 

that in the context of the right combination of oncogenic changes, tumor can be initiated from 

differentiated epithelial colon cells [89]. Our data is also in line with studies indicating 

differentiated normal epithelial cells can assume a stem cell phenotype; however, the more 

differentiated a cell, the less likely it was to de-differentiate. Alternatively, it is possible that there 

are rare ALDH+CD133- cells that express a third as yet undefined CSC marker that have the 

potential to differentiate into ALDH+CD133+ cells. Strongly supporting a pro-tumorigenic role 

of BMP2 in human cancer, use of BMP2 therapy to enhance bone growth has been associated with 

Figure 55: Branched pathway of ovarian cancer cell differentiation hierarchy and BMP2 regulation. 
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a significantly increased incidence of cancer [90]. In an unexpected finding, 20 of 239 patients 

treated with BMP2, compared to 5 of 224 patients in the control group, developed cancer within 

three years of treatment. Three patients in the BMP2 group had multiple cancers, compared to 

none in the controls. One patient developed ovarian cancer and rapidly died of her disease. Given 

the relatively short latency of tumors after BMP2 therapy, it has been speculated that BMP2 

therapy stimulates the growth of pre-existing dormant tumors. These observations are consistent 

with our results demonstrating that BMP2 promotes ovarian CSC self-renewal. Our data clearly 

adds to this growing literature indicating a pro-tumorigenic role of BMP2: in vivo treatment with 

BMP2 promoted tumor growth, and BMP2 knockdown, or inhibition with Noggin, delayed tumor 

growth. Increase in tumorigenesis could be related to actions on both the tumor cells and the host 

cells.  

BMP2 reduces cancer cell growth and increases chemosensitivity in vitro, yet promotes 

tumor growth and chemo-resistance in vivo. This reflects the complexity of BMP2 in regulating 

the distinct ovarian CSC populations; increasing CSC self-renewal while suppressing the 

production and growth of transient amplifying progenitor cells. Thus, BMP2 treatment in vitro is 

associated with a decrease in absolute cancer cell numbers due to a reduced proliferation of the 

bulk ALDH-CD1333- cells. However, BMP2 increases the absolute number of ovarian CSCs. It 

is likely this increase in absolute number of ovarian CSCs leads to the chemoresistance observed 

in vivo. This data points out the critical need to evaluate novel therapies impact on CSCs rather 

than total cell numbers when screening for anti-cancer activity. This highlights the utility of our 

single cell platform to directly assess CSC division behavior. The microfluidics device allows 

confirmation of cellular identity by direct observation prior to evaluating differentiation and simple 

long term tracking in cell lines and patient samples.  
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2.5 Angiocrine EGFL6 and CSC Differentiation 

 Like normal stem cells, CSCs also have an important relationship with the vasculature [91]. 

In most tumors, CSCs reside in a perivascular location tightly associated with tumor endothelial 

cells [92]. CSCs are highly angiogenic, enhancing their vascular niche. Tumor vessels, which are 

known to be morphologically, functionally, and molecularly different from normal vessels, 

provide an abnormal vascular niche and secrete ‘angiocrine’ factors [93] that promote aberrant 

stem cell proliferation. Thus, the vascular/CSC niche has been proposed as a therapeutic target 

[92]. Recent studies identified EGFL6 mRNA as upregulated in tumor vascular cells of epithelial 

ovarian cancer [94]. Critical in cellular proliferation and differentiation, EGFL6 is primarily 

expressed in development, with little expression in normal adult tissues [94]. How EGLF6 might 

regulate CSC regulation, division, and differentiation is currently unknown. 

 To start the investigation, our collaborators (Buckanovich Lab) first analyzed EGFL6 

mRNA expression in the ONCOMINE cancer database [95]. EGFL6 mRNA levels are 

significantly elevated in all ovarian tumor histologies.  With tumor microarray staining with 

EGLF6 antibodies, EGFL6 protein expression in tumor endothelial cells in the vascular, adipose 

tissue, and cancer cells themselves was observed. In order to explore the potential function of 

EGFL6, RNAseq data from 261 TCGA serous ovarian carcinomas were screened and the 

correlation of expression of EGFL6 to all other genes in the genome was investigated. Spearman 

correlation was performed comparing expression of EGFL6 to the expression of all other genes in 

the Ensmbl genome database (55,840 genes). A p-value cutoff of 1x10-8 was applied to generate a 

list of the 538 most correlated genes. Interestingly, numerous tumor vascular specific markers 

(including MXRA, TDO2, TNFAIP6, SEMA3D, and Coll11A1) and EGF like genes (including 

EGFLAM and MEGF10) were also highly correlated with EGFL6 expression. Gene set 
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enrichment analysis (GSEA) demonstrated the EGFL6 correlated genes were strongly correlated 

with invasive ovarian cancer and embryonic stem cell core genes.   

EGFL6 was expressed in HEK293 cells, NIH3T3 cells, and SKOV3 ovarian cancer cells. 

Western blot analysis confirmed secretion of EGLF6 in transfectants from all three cell lines, and 

EGFL6 protein was purified to >95% purity from the supernatant. Our collaborators treated 

ovarian cancer cells with either purified EGFL6, supernatant from EGFL6-expressing HEK293 

cells, or supernatant from control transfected HEK293 cells, to assess its effects on ovarian cell 

proliferation. Purified fusion protein and supernatant from EGFL6 transfected cells were observed 

to have similar effects. EGFL6 treatment of SKOV3 (Figure 56), OVCAR3 (data not shown), 

OVCAR8 (data not shown), and primary ovarian tumor cells (Figure 56) was associated with a 30-

40% increase in total cell number.  

Given GSEA analysis demonstrates a strong correlation of EGFL6 with core stem cell 

factors, collaborators next assessed the impact of EGFL6 on ovarian CSCs. As previously 

discussed, ALDH (or ALDH & CD133) is an excellent marker of ovarian CSCs in SKOV3 cells 

and primary patient samples [64]. In order to assess effects on CSCs, we looked at ALDH+ cell 

Figure 56: Total cell number for EGFL6 treated SKOV3 cells and primary tumor cells, compared with control. 
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behaviors. Treatment of SKOV3 ovarian cancer cells with increasing concentrations of EGFL6 

was associated with increasing total cell numbers, but decreasing percentages of ALDH+ CSCs 

(Figure 57). However, given the increase in total cell numbers, the absolute ALDH+ CSC number 

remained unchanged (Figure 57).  

Figure 57: Effect of EGFL6 treatment on SKOV3 ovarian CSC on (A) total cell numbers, (B) percentage of 

ALDH+ cells, and (C) absolute ALDH+ cell number. 

(A) 

(B) 

(C) 
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With only a single marker defining CSC populations, dividing CSCs can theoretically 

undergo at least three distinct types of cell division related to the expression of ALDH: 1) 

symmetric division (self-renewal) yielding 2 ALDH+ cells, 2) differentiation yielding 2 ALDH(-) 

cells, or 3) asymmetric division yielding an ALDH+ cell (self-maintenance) and an ALDH(-) cell 

(Figure 58, ↑=increase, ↓= decrease, ↔ = no change). The finding that EGFL6 increases total 

cancer cell number and decreases the percentage of ALDH+ cells, while not impacting the absolute 

number of ALDH+ cells, suggests that it would be consistent with EGFL6 stimulation of ALDH+ 

CSC asymmetric division. Alternatively, EGFL6 could preferentially promote proliferation of 

ALDH(-) cells. In order to determine if EGFL6 is promoting asymmetric division, we used our 

single cell microfluidic device to investigate the division of ALDH+ cells. The same benefits that 

were present when investigating the effects of BMP2 manifest in this application as well. Cellular 

Figure 58: Potential cell divisions of an ALDH+ (green border) cells and the expected changes in CSC number 

and percentage.  
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division and the phenotype of progeny can be easily tracked within the device over time. We 

FACS-sorted ALDH+ and ALDH- SKOV3 cells and loaded them into separate microfluidic 

devices as previously described. After loading, we confirmed ALDH expression with fluorescent 

microscopy (Figure 58). Cells were then mock-treated or treated with EGFL6. After 48 hours, live 

cells were stained using ALDEFLUOR and re-imaged using our fluorescent microscope.  

Approximately 35% of untreated ALDH- SKOV3 cells demonstrated no cell division (Figure 59), 

while 65% underwent symmetric division to produce two ALDH- cells. Production of ALDH+ 

daughter cells from ALDH- cells was not observed as is consistent with our BMP2 data. EGFL6 

treatment of ALDH- SKOV3 cells had no significant impact on the number or type of cell 

divisions. Consistent with a stem cell phenotype and unlike ALDH- cells, ALDH+ cells 

demonstrated the ability to undergo both symmetric division, yielding two ALDH+ cells, and 

asymmetric division, yielding one ALDH+ cell and one ALDH- cell. EGFL6 treatment of ALDH+ 

SKOV3 cells resulted in a 2-fold increase in the percentage of ALDH+ cells undergoing 

Figure 59: Percentage of observed division events with EGFL6-treatment vs. control conditions for SKOV3 cells 

(3 days of growth) and primary patient samples (5 days of growth). 
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asymmetric division (Figure 59). This was associated with a statistically significant increase in 

total cell numbers. With EGFL6 treatment, there were on average 6.5 cells/well versus 3.7 

cells/well in controls. A total of 325 cells were produced per 50 ALDH+ cells captured with 

EGFL6 treatment compared to 185 total cells/50 captured cells in the controls. EGFL6 treatment 

of ALDH- SKOV3 cells had no significant impact on proliferation rates. 

These results were confirmed with two separate primary ovarian cancer samples. Primary 

cells divided more slowly than cancer cell lines, thus division was assessed 5 days after initial 

loading. For primary cells, we observed that over 50% of untreated ALDH- cells underwent no 

division over 5 days, while remaining cells underwent symmetric division. EGFL6 treatment of 

ALDH- cells was associated with a non-statistically significant increase in symmetric divisions. 

20% of ALDH+ cells underwent no division. As observed with cell lines, EGFL6 treatment of 

primary ALDH+ cells was associated with a 1.9-fold increase in the number of ALDH+ cells 

undergoing asymmetric division (Figure 59). EGFL6 treatment was associated with an increase in 

total cell numbers (90 EGFL6 treated cells yielded 585 total cells while 82 mock-treated cells 

yielded 451 cells). However, likely due to the slower growth of primary cells, this did not reach 

statistical significance. 

By identifying the source of EGLF6 effects in cancer cells, our microfluidic approach 

significantly shrunk the experimental space that needed to be examined. EGLF6 effects were 

determined to be dependent on the RGD domain using an RGD to RGE mutation assay. RGD 

signaling was seen to be acting through integrin β3, as EGFL6 effects could be abrogated with 

integrin inhibitor Echistatin and only β3 was expressed in the ovarian population. Finally, western 

blot analysis showed that ELG6 affected ALDH+ cell through increasing levels of phospho-SPH2 

and phosphor-ERK.  
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After determining method and mechanism of action, effects of EGLF6 on in vivo tumor 

growth were assessed by our collaborators. While some EGFL6 expression was observed in tumor 

cells, EGFL6 is predominantly expressed in tumor vasculature. As such, our collaborators created 

a new tumor model with EGFL6 expressing human tumor vascular cells. EGFL6 was expressed in 

human infantile hemangioma stem cells (HemSC). HemSC have been shown to proliferate and 

generate blood filled human vessels in vivo [96]. When SKOV3 and HemSC-EGFL6 cells were 

co-injected in vivo, robust human CD31+ tumor vessels which expressed EGFL6 were observed. 

SKOV3 cells grown with control HemSC-EGFL6 cells demonstrated increased growth compared 

to SKOV3 cells grown with HemSC controls (Figure 60, n=10/group in two independent 

experiments). To confirm our findings were not specific to cell lines, primary cells were co-

injected from three different primary patient samples (n=2 each) with HemSC-EGFL6 cells or 

controls HemSC. Similar to that seen with cell lines, EGFL6 expression by Hem-SC cells was 

associated with more rapid tumor growth (Figure 61). 

Together, this data suggests that EGFL6 plays an important role in promoting ovarian 

cancer cell proliferation, and thus may be a therapeutic target. Following this lead, EGLF6 

Figure 60: Tumor growth curves of SKOV3- HemSC-EGFL6 tumors vs. SKOV3 HemSC-control tumors.  
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targeting antibodies have been developed and tested for eventual clinical use. Several successful 

antibodies show the ability to block EGFL6-mediated reductions in ALDH+ cell percentages, 

reduce in cellular proliferation rates in cells which endogenously express EGFL6, and block the 

increased phosphorylation of SHP2 and p-ERK associated with ELGF6 treatment. When looking 

at effects in vivo, twice weekly intraperitoneal treatment with anti-EGFL6 treatment of SKOV3 

flank tumors resulted in a ~2-fold reduction in tumor volume and tumor weight and a reduction in 

numbers and sizes of nodules. Finally, anti-EGFL6 treatment of SKOV3-HemSC-EGFL6 tumors 

(to assess the impact of these treatment of the growth promoting effects of vascular EGFL6) was 

associated with a significant reduction in tumor growth. These results are encouraging to show 

how data generated from our platform directly led to development of relevant clinical data and 

directed generation of therapeutic agents.  

 Though we restricted our focus to applications in cancer and CSC in particular, the 

microfluidic single cell capture scheme developed by Dr. Chung has the potential to be used for a 

wide variety of single cell based assays. The user-friendly platform is driven by simple passive 

Figure 61: Tumor growth curves of freshly isolated primary patient cells co-injected with HemSC-EGFL6 or 

HemSC-control. 
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gravity flow, and input-free hydrodynamic capture isolates single cells. It is thus easily deployable 

in traditional biological or other non-microfluidic laboratories. Many cell types (including primary 

samples) show robust capture and high viability within the platform. As a result, we were able to 

make important and clinically relevant discoveries in applications of heterogeneous drug 

screening, targeted CSC therapy, autocrine BMP2 stimulation of CSC self-renewal, and angiocrine 

EGLF6 regulation of CSC asymmetric division.  
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Chapter 3: Surface Patterning for On-Chip Suspension Culture 

The utility of microfluidic platforms can often be improved not only by optimizing current 

performance, but also by expanding their versatility. Robust, user-friendly approaches that can be 

easily deployed in a variety of laboratory settings and also modified to perform different biological 

assays can have significant impact. The previous chapter has examined how our single cell capture 

platform can be used for adherent culture, studying clonal drug response, screening of targeted 

agents, and CSC division and differentiation behaviors. In this chapter, we will examine surface 

modification approaches that can be utilized to adapt our platform for suspension culture assays as 

well.  

 

3.1 Adherent vs. Suspension 

 At a fundamental level, there are two basic approaches for growing cells in culture: 

adherent to a substrate and free-floating in the culture media (in suspension). Three dimensional 

culture is possible in both adherent (matrigel, organotypic) and suspension (spheroid) forms. 

Adherent culture, as demonstrated in Chapter 2, is common for mammalian cells. For most 

mammalian cells, adhesion to the extracellular matrix (ECM) is essential to maintain cellular 

homeostasis, and disruption of cell attachment leads to anoikis, a form of programmed cell death 

[97]. A handful of mamalian cell types, such as hematopoietic-derived cells (i.e. blood), survive 

in suspension naturally, while others have been modified to survive suspension culture to facilitate 

higher density cell growth. In contrast, most insect cell lines grow well in adherent culture or 

suspension.  
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 There are numerous direct methodological differences between adherent- and suspension- 

based culture approaches when propagating cells in bulk (Table 5). As discussed, adherent culture 

is more widely applicable than suspension methods; however, adherent culture also requires 

frequent passaging into replacement culture vessels via enzymatic or mechanical dissociation that 

disrupts cell behavior. Though no dissociation is required, bulk suspension cultures must be 

rigorously monitored to track cell-to-media ratios to ensure continued cell growth and viability. 

Many of these prominent methodological differences diminish though when culture is miniaturized 

for microfluidic assays. Passaging is, more often than not, unnecessary over the course of a single 

experiment, and in our approach in particular, continuous media perfusion refreshes nutrients and 

removes waste products to maintain cell health in either culture condition. These advantages allow 

us to focus on the biological needs of the assay when designing culture conditions within our 

platform, rather than the methodological restrictions.  

In particular, using suspension culture on chip will provide us two major biological 

advantages over adherent culture. First, suspension sphere culture better recapitulates primary 

tumor behavior [98, 99]. When plastics and solid substrates are used for adherent culture, primary 

cells transform, losing important characteristics that they express in vivo. Modifying our single 

cell capture device substrate for suspension culture will facilitate more physiologically relevant 

study of heterogeneous single cell behavior from primary patient cells that are capable of 

Table 5: Differences between adherent and suspension cell culture 



80 

 

propagation in suspension culture. Second and more importantly, three-dimensional suspension 

culture in the form of spheres provides a methodology to identify and characterize stem/progenitor 

cancer cells from multiple cell types [21, 100, 101]. When disassociated into single cell 

suspension, the vast majority of the cells undergo anoikis, a form of programmed cell death, but 

CSCs are capable of survival, and proliferate through the formation of spheroids [100]. The 

integration of suspension culture surfaces within our single cell device would allow their growth 

from single cells into spheroids, allowing characterization of CSC/progenitor cell sub-populations. 

We have investigated the two approaches to facilitate single cell suspension culture on chip: 

topographically patterned superhydrophobic surfaces and polyHEMA patterned suspension 

culture surfaces 

 

3.2 Topographically Patterned Superhydrophobic Surfaces 

Hydrophobic surfaces are already a common part of daily life. From Teflon-coated non-

stick pans to stain resistant pants, many surfaces are hydrophobically patterned. From the Greek 

hydrophobe, meaning “having a horror of water,” hydrophobic surfaces seemingly repel water and 

exhibit high contact angles when drops of water are placed on their surfaces. In some cases, such 

as with naturally occurring lotus leaves, these surfaces often achieve a superhydrophobic state. 

These surfaces are those with water droplet contact angles that exceed 150º and a roll-off angle 

that is less than 10 º [102]. Interestingly, these superhydrophobic effects are a result of physical 

shapes and interfacial tensions, rather than a chemical interaction. Microscale topographical 

patterning can increase the contact angle of a naturally hydrophobic material to create a 

superhydrophobic state [103]. In this state, the fluid is suspended on top of the micro-patterned 

structures, rather than touching the surface.  
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In recent years, these superhydrophobic surfaces have become popular for anti-biofouling 

applications (preventing bacteria adhesion) as well [104, 105, 106]. The same characteristics that 

make these surfaces useful for preventing bacterial adhesion, such as the small surface to culture 

media contact area, are also attractive for non-adherent mammalian cell culture. As such, non-

adherent mammalian cell culture using hydrophobic surfaces is a natural progression in this 

respect. By minimizing the surface area in contact with the media, we minimize the area where 

cells may interact with the surface via focal adhesions. Focal adhesions form on a micrometer scale 

and mediate cell adhesion [107]. Without the area and binding domains to form focal adhesions, 

cells cannot adhere to the hydrophobic surfaces. Fortunately, polydimethylsiloxane (PDMS), the 

material used in the fabrication of our microfluidic channels, is hydrophobic, and thus by 

introducing micropatterns in PDMS, we can form PDMS-based superhydrophobic surfaces. A 

PDMS superhydrophobic suspension culture surface can be integrated with our single cell capture 

channels by oxygen plasma bonding to create robust suspension culture single cell microfluidic 

devices. A topographical approach to non-adherent culture is also attractive due to its long term 

stability (patterns do not degrade over time) and physical mode of action (rather than through 

chemical modifications), as introduced chemicals may alter cell behavior. 

Figure 62: Soft lithographic fabrication of PDMS hydrophobic surfaces. 
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Hydrophobic PDMS surfaces were fabricated using standard soft lithography techniques 

as shown in Figure 62. Silicon wafers were coated with photoresist and patterned with 

photolithography to form various hollow pillars such as circular, triangular, square, and 

honeycombs [108]. We investigated multiple topographies to find the optimal micropattern. The 

silicon was then etched with deep reactive ion etching (DRIE) to a depth of 15μm. PDMS was 

poured onto the wafer, cured, and detached from the silicon mold. SEM images of the etched 

silicon pattern and confocal laser images of the fabricated PDMS honeycomb surface were taken 

to observe feature structure and verify fidelity (Figure 63). 

Of particular interest is the relationship between the micropatterns and the resulting contact 

angle to observe the hydrophobicity of the fabricated PDMS surfaces. The ratio of the total surface 

area compared to the area of the contacting surface (the microstructures) should be a key factor in 

determining hydrophobicity.  Contact angles were measured by pipetting a 10 μL droplet of 

deionized (DI) water onto the various PDMS patterns. The contact angle of the surfaces varied 

from ~110° to 150° depending on their geometries, as shown in Figure 64. In total, 13 separate 

Figure 63: (A) SEM image of DRIE etched negative honeycomb pattern in silicon and (B) confocal laser 

microscopy image of the fabricated PDMS honeycombs. 
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hydrophobic patterns were tested, including four different designs (circular, triangle, square, and 

honeycomb) in two different structural sizes of 7.5 and 10 μm with a pitch variation from 10 μm 

to 50 μm. As expected, increasing pitch between micro-pillars reduces the contact surface area and 

therefore increases the resulting contact angle. Decreasing the pillar size likewise causes an 

increase in contact angle (Figure 66). Superhydrophobicity (>150⁰ contact angle) was achieved 

using 7.5 μm pillars with a pitch of 50 μm. 

Figure 64: Optical images of 10μL droplets on hydrophobic surfaces with droplet contact angles and the 

corresponding patterns (A-D) of masks used in fabrication. 
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As discussed in Chapter 2, in long term culture, PDMS surfaces exhibit mild cell toxicity; 

however, cleaning the surface prior to culture removes any residual uncured PDMS and reduces 

this toxicity significantly. Unfortunately, these cleaning treatments can affect surface 

characteristics.  The standard cleaning procedure thermally ages the PDMS surface, to ensure 

minimal adsorption and thorough curing, and submerges it is a variety of cleaning solvents (EtOH, 

Figure 66: Changes in hydrophobicity on pillar surfaces with varying pattern feature size and pitch.  

Figure 65: The effects of cleaning protocols on hydrophobicity of 10μm pitch 10μm feature size PDMS 

honeycomb surface. 
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Tween, etc). In order to monitor the effects of cleaning on surface hydrophobicity, the contact 

angle of a 10μm-pitch-10μm feature size honeycomb surface was measured after these steps. 

Standard solvent cleaning procedures resulted in an undesirable reduction in contact angle (Figure 

65). As an alternative cleaning method, brief treatment with supercritical carbon dioxide, a 

supercritical fluid, was performed.  Supercritical carbon dioxide has low toxicity and negligible 

environmental impact, and more importantly, carbon dioxide cleaned surfaces show similar long 

term viability to those treated with liquid solvents without a reduction in contact angle (Figure 65). 

As expected, post cleaning plasma treatment for bonding reduces contact angle to comparable 

levels (60º) in all cases. This plasma effect fades within 24 hours after bonding is complete, 

returning surface hydrophobicity to post clean values. Supercritical carbon dioxide treatment 

provides a methodology to clean PDMS surfaces for improved cell viability without affecting long-

term hydrophobicity. 

In order to validate successful suspension culture on the various patterned PDMS surfaces, 

we formed microwells by bonding an additional open circular PDMS layer, created using a biopsy 

punch, to the patterned PDMS hydrophobic surface. We cultured three different types of cells 

(C2C12 myoblasts, 10T1/2 fibroblasts, and SUM159 breast cancer cell lines) in bulk to assess the 

Figure 67: (A) C2C12 myoblast culture on hydrophobic PDMS patterns with attachment on hydrophobic pillar 

surface and (B) anoikis on honeycomb patterns. 
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culture conditions. These cell lines were chosen as they have particular surface requirements: 

C2C12 myoblasts readily undergo anoikis in non-adherent culture only, 10T1/2 fibroblasts require 

adhesion but also readily aggregate when culture in high concentration, and SUM159 cancer cells 

contain a large pool of progenitor/CSC that are capable of anchorage independent growth and 

proliferation. Prior to loading into the makeshift hydrophobic wells, all the three types of cells 

were cultured in Dulbecco's Modified Eagle Medium (DMEM) with 10% fetal bovine serum. For 

loading, cells were trypsinized (trypsin with .05% ethylenediaminetetraacetic acid) and suspended. 

After loading into the non-adherent wells, we cultured the cells with mammary epithelial cell basal 

medium supplemented with B27, insulin, lipid concentrate, hydrocortisone, cholesterol, and 

epidermal growth factor.  

Figure 67 and Figure 68 show the morphology of cells (C2C12 and 10T1/2, respectively) 

grown on example hydrophobic surfaces. When cultured on the hollow pillars, both C2C12 and 

10T1/2 cells attached to the bottom surface despite high hydrophobicity (high contact angle). Fluid 

clearly penetrated the microstructures as the cells adhered to the bottom substrate. Low contact 

angle honeycomb structures, on the other hand, actually prevented C2C12 cells from attaching to 

the bottom surface (causing cell death), and fibroblasts (10T1/2 cells) were forced into aggregates. 

Figure 68: (A) 10T1/2 fibroblast culture on hydrophobic PDMS patterns with attachment observed on 

hydrophobic pillar surface and (B) forced aggregation on honeycomb surface 
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This is interesting as the honeycomb surface showed the lowest measured contact angle, defying 

expectations of the relationship between suspension culture performance and hydrophobicity.  

When we investigate the underlying physics, however, the picture becomes clear. The high-

pitch, small-feature structures are highly susceptible to Cassie-Baxter to Wenzel State transitions 

[109], and underwent such transitions during culture. A Cassie-Baxter state, where the fluid is 

suspended on top of the microstructures, is needed to minimize cell-surface contact and prevent 

cell adhesion. In order to maintain a Cassie-Baxter state, contact line forces must overcome body 

forces of the fluid weight and the microstructures must be tall enough to prevent the liquid that 

bridges the structures from touching the substrate [110]. In the case of the high-pitch, small-feature 

structures, the body forces of the fluid greatly exceeded the capillary surface forces at the interface 

due to the large volume of fluid used for cell culture and the humid culture environment. This 

results in the fluid touching the substrate, wetting it, and causing a transition to a Wenzel state, 

where the liquid covers the entire surface. The honeycomb surface is better able to resist these 

Cassie–Baxter to Wenzel transitions (Figure 69). Another benefit of these honeycomb structures 

is their “non-communicating” nature [111]. Within the honeycomb micropatterns, the columns of 

trapped air are isolated from one another. Wenzel state transitions or wetting in one patterned area 

does not “communicate” or affect another. “Communicating” or open pillar structures readily 

Figure 69: Cassie-Baxter to Wenzel state transitions result in a decrease in hydrophobicity and an increase in the 

volume of fluid interacting with the surface as fluid displaces air-pockets in the micropatterned features. 
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transfer collapse of the superhydrophobic state once wetting occurs in a single location. In the end, 

measured hydrophobicity mattered less for successful non-adherent culture than robust 

maintenance of Cassie-Baxter states in cell culture conditions.  

 After identifying the ideal topographic pattern, SUM159 breast cancer cells were cultured 

and monitored on the surfaces in macro-scale wells (formed from flat surfaces of PDMS punched 

with 6 gauge biopsy punches and bonded to the topographically patterned PDMS) over 6 days to 

monitor for sphere formation (Figure 70). Surface hydrophobicity was maintained (no observable 

Cassie–Baxter to Wenzel transition) and SUM159 cells were unable to attach to the bottom 

surface. Only a subset of SUM159 cells, the progenitor/CSC population, were capable of resisting 

anoikis, proliferating (Day 1), and forming small single cell derived spheres (Day 6). In this bulk 

trial, ~42% of single SUM159 cells were capable of forming spheres. 

Next, the non-adherent topographically-patterned surface was integrated with the single 

cell capture scheme to facilitate robust and user-friendly single cell suspension culture. The 

microfluidic component of the integrated device was fabricated with standard soft lithography 

using a silicon wafer, patterned with SU-8 to create a mold [49]. PDMS was poured over this mold 

and cured to form a hardened negative cast. The cast was peeled from the silicon surface, and this 

fluidic layer was then bonded over the patterned hydrophobic surface using an oxygen plasma 

Figure 70: Growth of a SUM159 sphere on honeycomb surface over the course of 6 days of culture. 
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treatment. As both surfaces are fabricated from PDMS, this provides a strong fluidic seal for the 

channels. Figure 71 shows the single cell channels prior to surface integration and after. When 

SUM159 suspensions were loaded into the device as previously describe in Chapter 2, we achieved 

a capture rate of >90%. The micropatterned surface had no effect of device performance or capture 

(Figure 71 c-d). With continuous media perfusion provided by gravity flow, the cells can be 

cultured for over 2 weeks, which is more than adequate time for sphere formation from single 

cells. 

The integrated microfluidic platform automates single cell placement and permits easy 

tracking of single cells because the cells are geometrically confined in each microwell inside the 

Figure 71: Overview of 64-microwells high-throughput single-cell capture device (A) before and (C) after surface 

integration with magnified view of the single microwell for single cell capture (B) with and (D) without pattern 

and cell capture (cells stained with Cell Tracker Green).  
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microfluidic device. In traditional culture plates, tracking single cells within the large area is very 

time consuming, extremely slow and laborious. Additionally, microfluidic integration allows for 

continuous perfusion of culture media to the growing sphere. In the standard 96-well plate 

technique, media may be only changed by exposing the culture environment and replacing the 

media that has been lost through evaporation. This process causes imbalances in pH and solute 

concentrations, both of which are critical parameters for successful sphere formation. Within the 

integrated microfluidic platform, media can be continuously perfused through the microwells by 

gravity driven flow. More importantly, this platform provides a method for robust and high 

throughput single cell-derived spheroid formation. To the best of our knowledge, this is the first 

demonstration of both 1) using hydrophobic surfaces within microfluidics for sphere formation 

and 2) robust single cell-derived sphere formation on-chip. 

 

3.3 PolyHEMA Patterned Suspension Culture Surfaces 

 While the integration of topographically-patterned PDMS hydrophobic patterns into our 

single cell capture platform facilitates successful long-term chemical-free single cell-derived 

sphere formation, it has several disadvantages that were not anticipated during the development. 

First, the fabrication of the hydrophobic pattern master requires expensive deep reactive ion 

etching, greatly increasing the cost of what would otherwise be an inexpensive device. In addition, 

as can be observed in Figure 71d, the micropatterned structures interfere with traditional optical 

microscopy, resulting in poor resolution for imaging the cells and spheres of interest. As an 

alternative to the topographical approach, we have developed a poly(2-hydroxyethyl methacrylate) 

(polyHEMA) based surface modification for single cell suspension culture.  
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 To achieve suspension culture in our single cell platform, we used poly(2-hydroxyethyl 

methacrylate) (polyHEMA) as a non-adherent coating material [112].  PolyHEMA, originally 

invented for use in contact lens, is a water absorbing polymer, capable of forming a flexible 

hydrogel in aqueous environments. It has demonstrated good bio-compatibility, and many 

polyHEMA co-polymers have seen widespread use since as early as the 1960’s [113]. Despite its 

versatility and biocompatibility, polyHEMA structures or coatings have been of limited use in cell 

culture applications, specifically only for bulk surface modification [114, 115]. When exposed to 

water (50% by weight), polyHEMA methyl groups turn outwards facilitating swelling and 

sterically block cell adhesion to the substrate (Figure 72). As the 2-hydroxyethyl methacrylate 

chains have no cell binding sites and streically block the surface, cells are unable to adhere, 

creating environments for suspension culture. In these culture applications, PolyHEMA is 

traditionally deposited by simple bulk evaporation into tissue culture dishes. PolyHEMA is first 

dissolved in ethanol, and then the solution is added to a cell-culture dish. After spontaneous 

evaporation of ethanol from the solution due to its volatility, polyHEMA is left and forms a thin 

Figure 72: Mechanism of action for PolyHEMA non-adherent culture. 
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film on the dish [116].   This method facilitates high throughput production of polyHEMA 

coatings, but it is unable to provide control for thickness or shape. As our single cell capture 

devices are composed of a patterned PDMS layer bonded to bottom glass substrate, we wish to 

coat and bond the glass substrate to facilitate non-adherent culture.  Although polyHEMA has been 

used for suspension culture in bulk for more than 30 years, it has not been previously integrated 

with microfluidic technology due to two major challenges that arise with the conventional process. 

First, large surface roughness, resulting from the uncontrolled nature of the ethanol evaporation, 

will lead leads to poor bonding with the PDMS and induces severe leakage (Figure 73a). Second, 

due to the non-uniformity of film thickness, thicker polyHEMA coatings (~ 30 mm) are needed to 

prevent pinholes or openings in the coating where cells may adhere. These thick coatings are 

problematic as polyHEMA can absorb 50% water (w/w) and expand [117]. The expanded 

polyHEMA hydrogel can block the fluidic channel and degrade device performance and yield.  

 In order to overcome these issues, my colleague, Dr. Yu-Chih Chen, developed an 

alternative two-step process involving: spin coating and reflow. In our alternative process, 

polyHEMA (Sigma-aldrich, MO, USA) was dissolved at 60 mg/mL in 95% ethanol at 65°C 

overnight. 50 µL/cm2 was pipetted onto a glass substrate and coated using a 2 step spin process 

(Solitec spinner): (1) 500 rpm for 10 second (spread), and (2) 1000 rpm for 60 second (spinning). 

Figure 73: LEXT 3D surface profile of polyHEMA coated substrate fabricated by (A) conventional evaporation 

process or (B) spin coating and reflow process. 

(A) (B) 
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The thickness of polyHEMA layer can be precisely controlled by the spin speed. The spin-coating 

process was repeated twice to avoid any pinholes on the surface. Although the rapid spinning speed 

may result in quicker evaporation of ethanol, leaving possible hills and valleys along the radial 

direction, these issues can be alleviated by reflowing the polyHEMA film at an elevated 

temperature after spin coating (Figure 73b). As the glass transition temperature of polyHEMA is 

around 100°C, the polyHEMA film was reflowed at 150°C, below the burning temperature of 

polyHEMA (200°C) (Figure 74). The surface-roughness root-mean-square (RMS) of the 

conventional coating process is greater than 3 µm, while that of the spin-coated films is less than 

0.2 µm. Compared to the conventional evaporation process, which generates high peaks and deep 

valleys, the thin and uniform polyHEMA films, created through the spin coating and reflow 

process, should reliably bond with the PDMS after oxygen plasma activation, creating a robust 

non-adherent culture environment within the microfluidic platform.  

After characterizing coating quality, suspension cell culture was then performed on 

polyHEMA coated surfaces (polystyrene cell culture dishes) to test coating performance. MDA-

MB-231 breast cancer cells cultured for 24 hours on substrates without polyHEMA coating 

exhibited spreading morphology under brightfield microscopy (Figure 75). In contrast, MDA-MB-

Figure 74: PolyHEMA spin-coated surface (A) with and (B) without reflow process. 

(A) (B) 
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231 cells cultured on the polyHEMA-coated surfaces did not seem to spread and cells maintained 

a rounded morphology under the same examination. In order to obtain a more objective measure 

of cell attachment, fluorescent staining of cellular focal adhesions was performed.  Focal adhesions 

serve as the link between internal cytoskeletal networks and the ECM; thus, their absence may be 

a good indicator whether a cell is truly cultured in a suspension environment [118]. MDA-MB-

231 cells were cultured to 50-60% confluence, trypsinized, seeded into 60 mm petri-dishes 

(polyHEMA coated and non-coated), and cultured for 24 hours. Millipore’s Actin Cytoskeleton 

and Focal Adhesion Staining Kit (#FAK100) was used to stain actin (TRITC-conjugated 

Phalloidin), nucleus (DAPI), and anti-vinculin. For staining, cells were fixed with 4% 

paraformaldehyde in PBS for 15-20 minutes at room temperature. After washing, cells were 

permeabilized with 0.1% Triton X-100 in PBS for 5 minutes at room temperature, washed, and 

Figure 75: (A) Phase contrast and (B) fluorescent microscopy images of MDA-MB-231 cells that were cultured 

on non-coated or polyHEMA coated substrates to assess cell adhesion via morphology and focal adhesion 

staining. 

(A) (B) 



95 

 

then blocked with 3% BSA for 30 minutes. Cells were stained with anti-vinculin antibody at room 

temperature for 1 hour, washed in PBS, and simultaneously incubated with TRITC-conjugated 

phallodin and FITC conjugated secondary antibody. After washing, nuclei were stained with DAPI 

for 1-5 minutes at room temperature.  Cells cultured on a normal tissue-culture plastic expressed 

distinct vinculin focal adhesion clusters, while cells cultured on polyHEMA-coated surfaces did 

not (Figure 75). No adherent cells or cells with distinct extracellular vinculin clusters were 

observed in the polyHEMA-coated dishes, confirming a robust non-adherent environment for 

sphere formation 

 This data together demonstrates our ability to fabricate uniform polyHEMA coatings that 

are suitable for microfluidic integration and robust suspension cell culture. However, another 

problem remains: PDMS cannot be bonded to polyHEMA through traditional microfabrication 

methodologies. In its pre-swelled state, compact polyHEMA coatings can be weakly bonded to 

PDMS via plasma oxygenation, but once water is introduced and a hydrogel is formed, all bond 

integrity is lost. Tape liftoff (placing tape to pattern the substrate prior to spinning polyHEMA) 

can provid an imprecise was to exclud polyHEMA coatings in certain areas, but resolution and 

margins are poor (~1 cm). A more precise methodology for polyHEMA patterning is required for 

successful patterning within microwells.  

 To this end, we developed a novel method for patterning PolyHEMA utilizing a variation 

of standard polydimethylsiloxane (PDMS) soft lithographic stamping. With this process, we have 

demonstrated precise micron-scale patterning of polyHEMA on both glass and polystyrene 

substrates, facilitating fabrication of large scale polyHEMA patterns for device integration. Using 

this process, we can also create cell culture arrays made from polyHEMA itself. These large-scale 

microwell arrays were used to capture and culture single SUM159 breast cancer cells in both 
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adherent and non-adherent environments. The unique chemical composition of polyHEMA allows 

its use in migration blocking, suspension culture, and even, if so desired, as a master for subsequent 

lithographic processing.  

PDMS patterns were fabricated for soft lithographic [33] stamping of polyHEMA using a 

SU8 master, as shown in Figure 76a. Silicon wafers were Piranha cleaned and spun with SU8 

(MicroChem) negative photoresist before they were patterned by UV-exposure and development. 

PDMS (10 to 1 ratio with curing agent) was poured over the mold, cured, and demolded to create 

the final PDMS lithographic stamp. 100µL of the polyHEMA (Sigma Aldrich) solution (60 mg/mL 

in 95% ethanol) was pipetted onto the secondary substrate (glass or polystyrene) and the PDMS 

stamp was pressed onto the droplet. This process excludes the excess polyHEMA, as the PDMS 

forms a tight seal with the secondary substrate due to the hydrophobicity of the PDMS stamp. This 

exclusion is especially important to achieve well-defined, highly-precise polyHEMA features (µm 

in resolution). As PDMS is gas permeable, it allows for evaporation of ethanol through the stamp, 

and thus deposition of solid cross-linked polyHEMA on to the substrate after stamping.  

(A) (B) 

Figure 76: (A) Soft lithographic patterning process for polyHEMA structures and (B) example large- and small-

feature fabrication.  
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As shown in Figure 76b, PolyHEMA pattern sizes ranging from 2µm to 500µm have been 

successfully demonstrated with this process. Inset illustrates accurate small feature reproduction. 

Many factors affect the resulting PolyHEMA patterns. The shape of polyHEMA patterns will be 

solely determined by the PDMS stamp pattern itself. However, there are three factors (stamp 

channel height, stamping temperature, and stamping duration) that will affect the vertical aspects 

of the pattern. Stamp channel height alone does not dictate the resulting pattern height as a large 

portion of the volume in the channel (95%) is ethanol that will evaporate. In order to pattern 3µm 

thick polyHEMA, patterns of 30-40µm are required. By elevating the stamping temperature, we 

modulate the concavity of the deposited polyHEMA features. In order to deposit flat rectangular 

polyHEMA patterns, stamping temperatures must be kept below 50ºC and stamping time (to allow 

thorough ethanol evaporation) is increased.  

When patterned, polyHEMA can also be used as a cell migration blocking structure. 

Fabricating polyHEMA cell migration blocking structures is quicker, cheaper, and easier 

compared to other methods such as etched trenches or tall-patterned photoresist walls. As a proof 

of concept, multiple polyHEMA structures were shown to prevent the migration of GFP-

expressing MDA-MB-231 cells (Figure 77) despite proliferation and crowding. To test the 

migration blocks in microfluidic devices, we incorporated 3 µm-tall polyHEMA migration blocks 

into single cell capture microfluidic devices to prevent well-to-well migration. These migration 

blocks will allow us to maintain pure clonal colonies over long culture periods by restricting cell 

movement. These features were able to constrain cell growth without significantly disrupting 

gravity-driven flow in channels.  
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As our stamping process also provides us the ability to modulate feature concavity, we can 

create curved micropattern-features in a single stamping step by changing only stamping 

temperature. Arrays of concave polyHEMA microwells have been created by depositing 

polyHEMA at elevated temperatures (>50⁰C), as shown in Figure 78. The thickness progressively 

increases from the center of the microwell toward edges due to wall-fluid interactions. Elevated 

temperatures increase ethanol evaporation rates, so that only thin layers are deposited in the center 

Figure 78: (A) LEXT laser interferometer image of concave polyHEMA microwell structures and (B) phase 

contrast microscope image of large scale (~2,000) polyHEMA microwell arrays.  

Figure 77: PolyHEMA structures preventing GFP-expressing MDA-MB-231 cells from in (A) linear blocking 

strcutures or (B) Michigan “M” patterns. 

(A) (B) 
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of the stamp feature and the rest of the polyHEMA is pulled towards the walls of the PMDS stamp.  

This effect is even more pronounced at increased temperatures (>80⁰C), resulting in complete 

depletion of polyHEMA at the center of the fabricated wells. By stamping at two temperatures 

with the same pattern, we created arrays (Figure 78, Figure 79) of >2,000 adherent (exposed glass) 

or non-adherent (concave polyHEMA) microwells. Single SUM159 cancer cells were seeded into 

the microwells through gravity settling (Figure 79a) and suspension concentration control, where 

they grew into adherent colonies (Figure 79b) or spheroids (Figure 79c), depending on the 

microwell architecture. This settling procedure is probabilistic, but with enough wells (>2,000 in 

our case) sufficient numbers of single cells are captured in individual microwells80. Residual cells 

can be easily removed through gentle washing. These high-throughput arrays are extremely simple 

and inexpensive to fabricate and thus useful in a variety of cell culture assays (e.g. single cell 

phenotyping, clonal analysis, spheroid drug assays). However, in our application, their utility is 

limited due to the probabilistic loading procedure. In both our adherent and suspension culture 

applications, cell numbers are limited due to availability of primary patient samples and the rarity 

Figure 79: (A) Loading of single SUM159 cells into polyHEMA microwells. Schematic representations of two 

microwell designs and example clonal culture in each: (B) adherent and (C) suspension polyHEMA microwells . 
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of certain subtypes of interest (such as CSC). As a result in the long term, an active capture scheme 

with greater single cell capture efficiency and rates is more desirable.  

In aqueous environments, polyHEMA absorbs water and a hydroxyethyl side turns 

outward, facilitating flexibility, swelling of the polymer chains, and becomes a non-adherent 

surface. However prior to wetting, a non-polar methyl group is turned outward, making the 

deposited polyHEMA hard and compact. Due to the unique geometries that we can achieve via 

temperature controlled stamping, polyHEMA also has utility in its non-polar dry state. Dry 

polyHEMA can serve as a reusable master for further PDMS lithography (Figure 80). This 

approach has several distinct advantages. First, the chemical properties of dry polyHEMA 

facilitate de-molding of small PDMS features without any silanization. This is important for 

culture applications with sensitive cells (such as single cell culture or primary cells directly from 

patients), where the residual silane decreases viability. As discussed, by controlling stamping 

temperature, we can create concave features in the deposited polyHEMA. These can be used to 

Figure 80: (A) Fabrication of novel PDMS structures from a polyHEMA master with (B) bright-field image of 

polyHEMA-cast PDMS and (C) LEXT laser interferometer image of PDMS molded from polyHEMA master. 



101 

 

fabricate a variety of novel concave and convex features in the secondary PDMS molds. These 

types of features, useful in microfluidic valves, pumps, and even microlenses, are often difficult 

to create with standard microfabrication technologies, but here they can be created in a single step.  

PolyHEMA is a versatile polymer and hydrogel, and we have demonstrated methodologies 

to create robust spin-coated surfaces and unique micropatterned features. Combined with our 

topographically-patterned PDMS surfaces, we have created several surface patterning methods for 

on-chip suspension culture, each with their own advantages. Hydrophobic topographically-

patterned PDMS surfaces provide a long term, chemical-free approach for suspension culture, but 

are expensive to fabricate and obscure optical imaging. Spin-coated or stamped polyHEMA 

patterns are inexpensive to fabricate, but introduce chemical surface modifications and require 

more precise control of fabrication parameters to achieve robust suspension culture. These various 

characteristics can be leveraged when required by the biological needs of the target assays. Initial 

single cell-derived sphere formation testing was performed with patterned PDMS surfaces. But 

once it was determined that the results from polyHEMA patterns matched well with those observed 

from PDMS (no apparent chemical disruption), the rest of the work for suspension culture in the 

following chapter was performed with polyHEMA coated devices.  
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Chapter 4: Single Cell-Derived Sphere Formation for CSC Analysis 

 Targeted therapy looks to be a promising addition to the currently standing cancer 

treatment triumvirate (surgery, chemotherapy, and radiation) due to the growing body of literature 

showing the importance of cancer cell heterogeneity and rare cell subpopulations [11, 119, 13] 

Targeting specific cell subtypes, CSC in particular, has great potential for therapeutics [13, 28, 

29]. By eliminating CSC or other initiating cells through targeted therapy, we may cause natural 

cancer regression through loss of growth potential. Without targeted therapy, cancer relapse will 

occur through CSC division and proliferation [6]. Sadly, this presents a problem as this 

heterogeneity is still poorly understood and identification of CSC is no easy task. These cells are 

often identified using cell surface markers (CD133, CD44, CD24, etc.) and assays for enzymatic 

activity (Aldeflour). However in many cancers, there is considerable evidence that several 

subpopulations of stem like cells may exist within one tumor, and that their identification would 

require the use of many cell markers in combination with other identifying characteristics [120, 

121]. Certain characteristics markers that denote “stemness” in one type of cell may be absent in 

another [122]. There is a great need for marker-free, simple, user-friendly methods to screen 

heterogeneous CSC behavior in a large number of cells. 

 

4.1 Mammosphere Assays and CSC Identification 

First utilized for the identification of neurostem cells, in vitro sphere formation assays have 

also been suggested as a marker-free methodology for culture and identification of mammary 

cancer stem-like cells [21, 100, 101]. At their most basic level, these are anoikis (a Greek
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neologism meaning “the state of being without a home”) based assays. For normal cells, adhesion 

to the extracellular matrix (ECM) is essential to maintain cellular homeostasis, and disruption of 

cell attachment leads to anoikis, a form of programmed cell death [97]. While there are numerous 

mechanisms that can be involved in resistance to anoikis (Figure 81) [123], it has been shown that 

when breast cancer cells are cultured in suspension, bulk non-stem cells undergo anoikis, while 

only stem-like cells survive and proliferate to form spheres. Stem-like cells are anoikis resistant 

and capable differentiation. As such, the formation of these mammospheres can be used to identify 

cells with these stem-like characteristics, and serial sphere formation can be used to enrich for 

CSC within a population (Figure 82).  

Figure 81: When bulk tumor cells detach from the matrix, signals encourage anoikis, but CSCs have many 

strategies (such as EMT, integrin switching, hyperactive growth, or quiescence) to compensate for or circumvent 

anoikis signals (Guadamillas, 2011). 
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In practice, there are a number of issues hindering the utility of these assays [124]. For 

proper selection, cell aggregation must be prevented, so that anchorage dependent cells cannot 

adhere together to survive and proliferate. In conventional culture methods, such as dishes or 

plates, cell seeding density must be expertly controlled. Many laboratories utilize fluorescent 

activated cell sorting tools to assist in single cell deployment and density control, but cellular stains 

are required with a priori knowledge of markers. This process also greatly affects cell viability and 

has a high seed rate error. In many cases, density control does not even solve the problem. Even 

with proper methodology it has been reported that many mammospheres are not single cell derived, 

but in fact, aggregation of the seeded cells [125, 126]. Although anti-aggregation additives (e.g. 

Heparin) can be used to mitigate this, cell behavior can be significantly affected [127]. In 

conventional culture platforms, reliable media exchange can also be a problem. Cells can be easily 

lost or disrupted when replacing the media; as a result, the duration of the assay is limited by 

nutrient depletion and waste buildup. Finally, studies performed in neurospheres (the neuronal 

mammosphere analog) suggest intermediate progenitor cells may also form spheres, but with 

Figure 82: Single cell-derived mammospheres approach for CSC identification and enrichment. 
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different proliferation rates. Only looking at sphere formation rates alone may result in 

overestimated CSC frequency [128, 129]. Robust single cell-derived sphere formation, tracking, 

and downstream sphere analysis are needed to identify and study potential CSC in mammosphere 

assays, and a microfluidic approach is ideal to address these needs. 

There are a number of microfluidic approaches for performing sphere assays on-chip, 

including hanging droplet methods [130, 131, 132] that have greatly increased assay throughput 

and micro-rotation flow [133]. But these platforms accomplished sphere formation mostly through 

cell aggregation, rather than single cell growth as required for mammosphere-based CSC 

identification (Figure 83). While droplet-based and two-phase systems can isolate single cells in 

suspension, it is difficult to continuously provide fresh media to each droplet, preventing long term 

culture [134]. Methods for on-chip mammosphere formation must provide reliable and scalable 

single cell capture, robust long-term (>2 weeks) culture, and continuous media perfusion in order 

to facilitate successful single cell derived sphere formation. The robust single cell capture platform 

Figure 83: Example microfluidic platforms for on-chip sphere formation using (A) micro-rotational flow to 

aggregate cells of multiple types via intersecting flow paths [133] and (B) droplet aggregation in a high 

throughput microfluidic hanging drop approach [130]. 

(A) (B) 
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demonstrated and validated in Chapter 2 is capable of addressing each of these requirements, when 

integrated with the novel surface modification techniques for on-chip suspension culture from 

Chapter 3. These devices will help dimish the issues surrounding reliable mammosphere formation 

and help more widespread adoption of this assay for CSC identification. 

 

4.2 Single Cell-Derived Spheres 

 In our initial implementation, topographically patterned PDMS hydrophobic honeycomb 

surfaces were integrated in our 64-well single cell capture device. A critical step in our surface 

fabrication is actually the demolding of the PDMS patterns from the DRIE patterned silicon 

master. As a result of the small feature size and thermal expansion that occurs during PDMS 

curing, it is not trivial to pull the PDMS microstructures from the mold without tearing the surface. 

If the surface is torn, it cannot be properly bonded to the channel layer due to non-uniformities, 

and suspension culture will not be achieved where patterns have been damaged. If the 

topographical patterns are formed on a thick layer of PDMS, these problems are exacerbated as 

there is not enough flexibility in the thicker PDMS to facilitate pulling the patterns from the mold 

without breaking the silicon. As such when integrating honeycomb patterns, DRIE patterned 

masters were spin-coated with PDMS rather than having PDMS poured directly onto the mold. 

PDMS was mixed in a 10:1 ratio with the curing agent (Slygard, Dow Corning) and degassed. 

Wafers were ramped to 500 rpm within 15 seconds to spread the PDMS and then spun at 1000 

rpm for 60 seconds, resulting in ~150µm PDMS layers. Thin layers were more easily peeled from 

the substrate, releasing intact micropatterns though care still needed to be taken to not rip the thin 

PDMS. These thin patterns could not be directly integrated with the channel layers due to their 

obvious fragility, so they were cut and placed on a glass microscope slide as support. Non-covalent 
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forces were enough to robustly adhere the thin PDMS to the glass slide, so oxygen plasma 

treatment was not performed. This conveniently allowed repositioning of the pattern if it was 

initially wrongly positioned. Afterwards, the patterned PDMS on a glass slide support layer was 

treated with oxygen plasma and bonded to the single cell capture channel layer.  

 After integration, suspensions of SUM159 breast cancer cells were loaded into the device 

using the methods previously described. Briefly, cells were harvested from a petri-dish with 0.05% 

Trypsin/EDTA and centrifuged. Cells were then re-suspended at 0.5x106cells/mL in culture media, 

and 100 µL of the cell solution was injected into the inlet of device. Within 5 minutes, the cells 

were hydrodynamically captured, and the cell solution was replaced with cell-free culture media.  

Due to the robust hydrodynamic capture mechanism, single cell capture was not disrupted by the 

surface patterns and greater than 90% of the 64 microwells captured single cells (Figure 84). 

SUM159 cells were then cultured for 10 days in serum-free MEBM (Lonza, Allendale, NJ) 

Figure 84: Single cell capture and sphere formation after 10 days from SUM159 (Cell Tracker Green) breast 

cancer cells in the microfluidic platform with the patterned PDMS on the bottom surface. 
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supplemented with B27, 20 ng/ml bFGF, 20 ng/ml EGF, 5 ug/mL insulin, 1 mM lipid concentrate 

(Invitrogen), 1 ug/mL hydrocortisone, 100uM mercaptoethanol, 10uM cholesterol, and 1% 

penicillin/streptomycin, and sphere formation was observed (Figure 84 inserts). To our knowledge, 

this is the first microfluidic chip that has shown successful clonal (single cell derived) sphere 

formation. It is also the first demonstration of sphere culture with topographically patterned PDMS 

substrates. Sphere rates obtained utilizing our platform for SUM159 breast cancer cells were quite 

comparable to those obtain with a serial dilution method (~54%) (Table 6). Claudin-low SUM159 

cells are known to have a large progenitor cell pool, resulting in higher sphere formation than 

average. So while mammosphere assays with SUM159 cells may overestimate the stem-cell pool 

and be less biologically relevant, SUM159 cells are useful for device characterization and 

debugging due to their high sphere rates.  

 For further characterization, one Luminal A and another Claudin-low basal cancer line 

were selected (MCF-7 and MDA-MB-231, respectively). After loading and culture in the same 

conditions, mammosphere formation rates for these lines were calculated (Table 6). These values 

match more accurately with the cancer stem-like cell pool expected.  

 Due to the low sphere formation rates expected (a few percent), we wish to increase the 

throughput of our mammosphere assays, so that more spheres could be observed and statistically 

Table 6: Single cell-derived sphere formation rates of breast cancer cell lines on topographically patterned 

PDMS. 
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significant observations could be made. With our topographically patterned PDMS surfaces, 

however, this is problematic. Cell Tracker dyes were used for cell and sphere visualization as the 

patterns obstruct or obscure brightfield images of the microwells, but it is not ideal to require stains 

for visualization. Complicated assay and staining protocols may affect cell behavior and sphere 

formation. So in order to better visualize and image spheres, simplify assay protocols, and reduce 

cost, we moved to our alternative polyHEMA patterning method developed by Dr. Yu-Chih Chen, 

presented in Chapter 3.3. Glass microscope slides were patterned with polyHEMA via the methods 

previously described and bonded to form 1,024 high throughput single cell capture devices (Figure 

Figure 85: High throughput single cell device integrated with polyHEMA coating with captured T47D single 

cells. 
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85). With these devices, we can overcome many of the current issues with single cell derived 

mammosphere assays by improving single cell seeding and control and throughput (needed due to 

the rarity of CSC and low sphere formation rates).  

First, Dr. Chen and I wished to confirm similar performance as our topographically 

patterned approach, as different sphere formation rates in SUM159, MCF-7, and MDA-MB-231 

may indicate issues with our assay. After loading and culture on-chip, successful sphere formation 

was observed and sphere formation rates were recorded (Table 7). Sphere formation rates in 

SUM159 (55.4% polyHEMA vs. 54.7% patterned), MCF-7 (3.1% polyHEMA vs. 3.45% 

patterned), and MDA-MB-231 (1.4% polyHEMA vs. 1.28% patterned) were comparable between 

the two approaches. The polyHEMA approach, however, afforded increased throughput (16 

times), allowing us to see statistically significant variations from the spheres as well. Differences 

in the sphere formations between the two approaches fall with    

 Additional cell lines were tested with our high throughput platform including T47D 

(Luminal A breast cancer line), SUM149 (inflammatory breast cancer line), and HCC38 (Claudin 

low basal cancer line).  Compared to SUM159 cells, other lines have lower-sphere-forming 

Table 7: Single cell-derived sphere formation rates of breast cancer cell lines and breast cancer derived PDX 

samples using polyHEMA coated single cell platform 
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potential (Table 7) and result in overall smaller spheres. Images of example spheres in the 

polyHEMA coated high throughput microfluidic device for SUM159, T47D, MCF7, and MDA-

MB-231 cells are shown in Figure 86.  

In addition to cell lines, single cells from breast cancer patient derived xenografts (PDX) 

were tested in the platform. While not still not as clinically relevant as a true primary tumor biopsy, 

PDXs conserve original tumor heterogeneity, molecular signals, and phenotypes, making them 

ideal for our application [135]. PDXs were prepared and sorted by our collaborator, Dr. Sean 

McDermott, in the laboratory of Dr. Max S. Wicha with the protocol as follows. Female 

NOD/SCID mice, 4-8 weeks old, were prepared for surgery the day before injection by using Nair 

exfoliant to remove hair around the incision site. Mice were anesthetized using isoflurane 

inhalation with a vaporizer. The incision site was disinfected with betadine and a midline incision 

was made between the fourth and fifth nipples and then angled toward the nipples. The skin was 

loosened from the body wall. Patient-derived xenograft (PDX) breast cancer cells (VB, 2147, 

VARI-068) were suspended in 50μL of 1:1 DMEM:Matrigel (BD Biosciences) and injected into 

the inguinal fat pad using a syringe with 18 gauge needle. The skin was secured with 9mm wound 

clips and clips removed after 7-10 days. 

Figure 86: Example sphere formation from four separate breast cancer cell lines (SUM159, T47D, MCF-7, and 

MDA-MB-231).  



112 

 

After time for tumor growth, PDX-bearing mice with ~1cm diameter tumors were 

euthanized by CO2 asphyxiation. Tumors in the inguinal mammary fat pad were excised, weighed, 

and <1g tumor in 60mm dish was minced with a razor blade to <2mm pieces. Minced tumor was 

transferred to a C-tube (Miltenyi Biotec, Auburn, CA) and digested with the Human Tumor 

Dissociation Kit (Miltenyi Biotec) following the manufacturer instructions. Briefly, each C-tube 

contained 4.7mL RPMI-1640 media, 200μL reagent H, 100μL reagent R, and 25μL reagent A. 

Tumors were digested on the gentleMACS Octo Dissociator with heating elements for 1hr using 

the medium tumor setting. Following digestion, 10mL of RPMI-1640 was added to each C-tube, 

filtered through a 70μm strainer (Corning) into a 50mL conical, and the C-tube rinsed with 10mL 

RPMI-1640. Samples were centrifuged at 337g for 10min at 4C. Pellets were suspended in 10mL 

RPMI-1640, filtered through a 40μm strainer (Corning), and combined with 10mL rinse of 50mL 

tube. Samples were counted on Luna FL (Logos Biosystems, Annandale, VA) using AO/PI and 

manufacturer instructions. Samples were depleted of mouse cells using the Mouse Cell Depletion 

Kit (Miltenyi Biotec). Briefly, 1x106 cells were suspended in PBS/0.5% BSA, centrifuged at 337g 

for 5min at 4C, and suspended in 80μL PBS/0.5% BSA. 20μL of the mouse cell depletion cocktail 

was added and incubated 15min in the refrigerator. While incubating, a LS column (Miltenyi 

Biotec) was equilibrated on a MultiMACS Cell24 Separator Plus (Miltenyi Biotec) with 3x1000μL 

PBS/0.5% BSA. Following 15min incubation, 400μL PBS/0.5% BSA was added to each sample. 

The 500μL sample was applied to the LS column and the flow through collected in 5mL FACS 

tube (Corning). LS columns were washed 3 times with 1000μL PBS/0.5% BSA and collected into 

same 5mL FACS tube. Samples were centrifuged at 337g for 5min at 4C, suspended in 5-10mL 

PBS/0.5% BSA, and counted on Luna FL using AO/PI. These methods produced healthier mouse 

cell free PDX samples 
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After the final sorting step, PDX samples were loaded on chip and cultured in 

supplemented MEBM media. Two separate PDXs successfully formed spheres on chip (Figure 

87), showing a slightly lower sphere formation rate as compared to the tested cell lines (Table 7). 

Though slower growing, PDXs were easy to culture for a longer period in our device to observe 

sphere formation. With definite single sphere spatial confinement and continuous media perfusion 

supplied by the gravity flow, the PDXs were continuously monitored over 28 days (Figure 87).  

For good measure, 3 additional non-breast cancer cell lines (A549 human alveolar 

adenocarcinomic, SKOV3 human ovary adenocarcinoma, and C6 rat glioma) were assayed on chip 

to assess their sphere formation potential (Table 8). These experiments demonstrated our capacity 

to perform high-throughput and robust single cell sphere formation assays with a wide variety of 

cell types and even models of primary breast cancer cells 

 

Table 8: Single cell-derived sphere formation rates of non-breast cancer cell lines 

Figure 87: 4 week sphere formation from single patient derived xenograft cells. 
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4.3 Heterogeneity of Single Cell Sphere Formation 

 A major advantage of our single cell mammosphere assays is the ability to enumerate CSCs 

independent of cell surface markers. Marker-based identification of CSCs is challenging, as certain 

characteristics markers, that denote “stemness” in one type of cell, may be absent in another [122]. 

There is also considerable evidence that several subpopulations of stem-like cells may exist within 

one tumor that may each express different cell surface markers. Their identification and separation 

would require the use of many cell markers in combination with other identifying characteristics 

[120, 121]. More recently, Liu et al [136] reported two important distinct CSC populations in 

breast cancer, where plasticity existed to allow transitions between the populations. CSC were 

reported to transition between epithelial and mesenchymal states, reflective of their normal stem 

cell counterparts. Mesenchymal-like (epithelial-mesenchymal transition [EMT]) CSC are 

identified as CD24- CD44+. They are primarily quiescent and localized at the tumor invasive front. 

Epithelial-like (mesenchymal-epithelial transition [MET]) CSC, on the other hand, express 

ALDH, are proliferative, and are located more centrally within tumors. As such, it will be 

interesting to examine the single cell sphere formation potential of these independent CSC states 

to observe whether mammosphere assays select for particular types of CSC. T47D breast cancer 

cells were stained and FACS sorted into 3 separate populations: ALDH+, CD44+/CD24-, and bulk 

tumor. Each population was loaded into devices, and their resulting sphere formation rates were 

observed (Figure 88). ALDH+ T47D cells exhibit significantly higher sphere formation potential 

as compared to CD44+/CD24- or bulk T47D. This is not unexpected, because ALDH+ CSCs are 

associated with extensive proliferation. ALDH+ were also shown to have greater potential for self-

renewal and multilineage differentiation capacity [136], so successful sphere formation is 

expected. What is unexpected, however, is greater sphere formation in the bulk population as 
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compared to CD44+/24- CSCs. It may be possible that there is a contaminating CD44+/24- or 

ALDH+ population in the FACS sort. Post loading staining was not performed to verify state (as 

was done in the case of investigating ovarian CSCs) prior to sphere formation, as staining directly 

after loading was shown to negatively impact cell viability. To overcome this or prevent this in the 

future, double FACS sorting may be needed.  

Alternatively, this may be a result of the CD44+/24- cell’s supposed quiescence, but our 

collaborators have reported that in adherent culture, CD44+/CD24- form robust colonies. In order 

to ensure that culture conditions or cell viability issues were not the source, adherent and 

suspension culture were performed on the same device for CD44+/CD24- cells.  Patterning of 

polyHEMA facilitates precise spatial localization of suspension culture environments. A subset of 

microwells on the glass slide were patterned for suspension culture while others remained uncoated 

and were utilized for adherent culture, facilitating easy side by side comparison in the same chip 

and removing issues of device-device variation. It was observed that adherent culture greatly 

resuscitated CD44+/24- growth potential. 14% of seeded adherent CD44+/24- cells grew into 

colonies, while only 3% showed sphere formation potential with the same device, indicating that 

Figure 88: Sphere formation rates of ALDH+ and 44+/24- breast cancer stem-like cells from T47D cell lines. 
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the observed results accurately represent sphere formation potentials in ALDH+ and CD44+/24- 

populations. However, the biological reason for these results is still not clear. To further investigate 

the relationship between conventional ‘stemness’ markers and sphere formation potential, we also 

examined Notch, which has been suggested to identify yet another population of cancer cells with 

stem cell activity [137]. 

 There are considerable similarities between healthy stem cells and cancer stem-like cells. 

In particular, canonical stem cell pathways such as Wnt and Notch have been shown to be critical 

for the regulation CSC behaviors (e.g. survival and self-renewal) [138]. In fact, high Notch 

expressing cells have been shown to possess higher tumor initiating potential [139, 140]. 

Correlating Notch expression with mammosphere formation in our microfluidic assay could 

provide more insight into the overall assay utility and Notch signaling in CSC. To monitor Notch 

pathway activation, our collaborators in the lab of Dr. Max Wicha transduced T47D cells with a 

lentiviral (pGreenFire1) Notch reporter. This reporter contaied multiple Notch response elements 

upstream of a minimal CMV promoter, regulating destabilized GFP. Lentiviruses were prepared 

using 3rd generation helper plasmids to generate VSVG pseudotyped particles (roughly 1x107 

units/mL) by the University of Michigan Vector Core. 500,000 T47D breast cancer cells/well 

(50,000/cm2) were plated in a 6-well plate, transduced the following day at a MOI of 10 for 24hr. 

Transduction efficiency was ~90% at 1 week post transduction based on FACS analysis of eGFP 

from cells transduced with pGreenFire-CMV. GFP+ cells were collected by flow cytometry sorting 

using a MoFlo Astrios cytometer to insure all cells contain the lentiviral vector. Following cell 

culture, GFP- (Notch-) cells were generated from GFP+ (Notch+) cells after reaching equilibrium. 

To measure single cell sphere formation from Notch+ and Notch- T47D cells, we loaded 

unsorted cells into suspension microfluidic chips and cultured them in serum-free media as 
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previously reported. Despite the heterogeneous population with only two populations of interest, 

no pre-sorting is necessary due to the robust single cell capture and large throughput of the platform 

Figure 89).   After culture for 14 days, both Notch+ and Notch- T47D cells formed spheres (Figure 

90), but the average size of Notch+ cell spheres was significantly higher. The sphere formation 

rate of Notch+ cells was also significantly higher (Figure 90). Additionally, spheres formed from 

Notch- cells contained no Notch+ cells, while spheres formed from Notch+ cells contained both. 

Much like as was observed with higher bulk sphere formation with CD44+/CD24-, the ability of 

Notch- cells to form spheres is surprising, as the absence of Notch suggests that the source cell is 

likely not stem-like. However, Notch- cells forming smaller and less frequent spheres may confirm 

a previously mentioned complication for mammosphere CSC asssays: progeneitor cell sphere 

formation. This highlights the needs for our assay (and mammosphere assays in general) to 

facilitate continuous cell tracking and further downstream analysis as well. Genetic expression 

analysis of the spheres will provide a way to differentiate progenitor derived spheres and true stem-

like cell derived spheres.  

Figure 89: Capture of heterogeneous T47D Notch (Notch+, GFP Green) cells in integrated high throughput 

platform. 
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Fortunately, polyHEMA fabrication facilitates simple sphere retrieval after assays are 

performed. Though spin coating and reflow of polyHEMA coatings improves the bonding between 

the substrate and the top patterned PDMS layer, the bond strength between polyHEMA and PDMS 

is still weaker as compared to PDMS-PDMS or PDMS-glass bonding. Consequently, to retrieve 

the spheres, the top layer can be peeled off over a culture substrate, releasing the spheres inside. 

For Notch+ and Notch- sphere comparisons, single cell-derived spheres were formed on-chip and 

cultured as normal. The spheres were retrieved and placed in a polyHEMA coated non-adherent 

384-well plate (Figure 91). At the time of sphere retrieval, there is no risk of non-sphere forming 

cells contaminating the retrieved sample, as the non-adherent environment has induced anoikis 

and death. After anoikis, non-sphere forming cells remnants can be washed out of the arrays by 

the gentle perfusion flow. The microwell dimensions limit the size that the spheres can grow to on 

chip, and a larger pool of cells is needed for use with the Fluidigm C1 and Biomark HD for 

Figure 90: Differential cancer sphere formation from Notch+ and Notch- T47D cells was observed after 14 days 

with Notch+ cells forming spheres with (A) larger average size and (B) more spheres compared with Notch- cells.  

(A) 

(B) 
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multiplexed single cell genetic expression analysis. So, the single cell-derived sphere were kept 

and grown in the non-adherent well for an additional 2 weeks, providing sufficient cell numbers 

for single cell gene expression analysis. 

Two spheres of interest (one Notch+ derived and one Notch- derived) were dissociated into 

single cells via trypsinization and mechanical force (pipetting) and loaded into the Fluidigm 

C1/Biomark HD for multiplexed gene expression analysis of a 96-gene CSC signature. Our 

collaborators in the Wicha lab used microarray and RNA-sequence gene expression analyses of 

isolated CSC populations from breast cancer cell lines and PDX samples to the panel used in these 

screens. This 96 genes is capable of clustering and differentiating CSCs from non-stem cells. As 

the Fluidigm C1 does not capture every single cell that is loaded, the data generated is not for each 

individual cell, but instead a statistically representative subset of the single cells. All the chambers 

of C1 chip were examined under the IX83 fluorescent microscope to record the status of captured 

cells in each chamber. Single cells underwent lysis, RNA release, reverse transcription, and finally 

cDNA pre-amplification for 96 target gene transcripts in the C1 chip. The pre-amplified cDNAs 

from each single cell were analyzed by BioMark HD instrument that generates nearly 10,000 qPCR 

data-points in a single run using a 96 x 96 chip and TaqMan assays. Gene expression data were 

Figure 91: Notch+ T47D sphere (A) in device and (B) after retrieval from device for downstream analysis. 

(A) (B) 
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analyzed using SINGuLAR and R script to generate PCA, HeatMap and Violin plots based on the 

Log2Expression value for each gene per single cell. 

Single cell expression data of the genes that are statistically different between the two 

(Notch+ and Notch-) spheres is shown as a heatmap and violin plot (Figure 92). As hypothesized, 

cells within the Notch+ derived spheres are enriched for more stem-related genes as compared to 

the Notch- sphere. Though dissociated from a clonal sphere, we see heterogeneity in the form of a 

small population of ALDH1a3 high expressing cells within the Notch+ derived sphere cells. When 

analyzed separately, these cells show markedly different expression of genes such as βCatenin, 

CXCR1/4, and p53 to name a few (Figure 93). These cells represent a rare sub-population that 

would have been ignored in non-single cell based approaches. When separating based on 

ALDH1a3 expression, only a single Notch- derived cell was also scored as ALDH high, indicating 

a relatively less possible stem-ness in the population as compared to the Notch+ derived spheres. 

Figure 92: Single cell expression data in both (A) heat map and (B) violin plot form showing differences between 

Notch+ and Notch- derived spheres in statistically significant genes: stem related genes are significantly 

upregulated in Notch+ spheres. 

(A)           (B) 
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Downstream single cell genetic analysis provides a wealth of information, not available through 

culture assays alone.  

 In performance of mammosphere assays as shown here, our microfluidic device improves 

on the conventional approach on several fronts. First, the integrated hydrodynamic capture scheme 

simplifies single cell seeding. Each single cell is captured in its own microchamber, preventing 

any possible aggregation from skewing sphere formation readout. In conventional approaches, 

pipetting fresh media or removing waste can disrupt/remove cells, complicating or outright 

preventing media exchange over the long culture period. In contrast, the presented platform 

provides a continuous perfusion of media from gravity flow for long-term culture. 96- or 384- non 

adherent culture plates (10cm by 8cm) are often the culture platform of choice for conventional 

mammosphere assays; our microfluidic approach contains 1,024 chambers for single cell sphere 

formation in an order of magnitude smaller area (1 cm by 3 cm). With this device, we successfully 

Figure 93: Single cell expression data in both (A) heat map and (B) violin plot form showing differences between 

ALDH1a3 high Notch+ derived and ALDH1a3 low Notch+ derived cells: ALDH high cells show further 

upregulation of stem related genes and demonstrate significant heterogeneity in a clonal population. 

 

(A)           (B) 
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performed single cell-derived sphere assays for A549, C6, HCC38, MCF-7 MDA-MB-231, 

SKOV3, SUM149, and SUM159 cell lines and 2 patient derived xenograft samples.  

 In the same study, we also examined the relationship between Notch expression and single 

cell sphere formation. The throughput and reliability facilitated the use of unsorted Notch reporting 

cells. In this experiment, we observed Notch+ and Notch- cells both forming spheres, though at 

significantly different rates, suggesting that there could be non-stem progenitor cells forming a 

portion of the resulting spheres. Subsequent genetic analysis allowed us to identify numerous 

genes of interest that were different between the two clonal spheres. HES1 and DLL1 are both 

upstream controllers of Notch signaling through PTEN, so their upregultaion here in the Notch+ 

derived population is consistent with previous literature [139]. Other genes that are upregulated, 

such as YAP1, TM4SF1, TSPAN6, ITGA6, and IL6R, have been correlated with increases in 

stemness and tumorigenic potential, suggesting a true stem-like cell source or at least higher stem-

like potential in Notch+ derived spheres compared to Notch- [140, 141, 142, 143]. Upregulation 

in CXCR1 is particularly convincing on this front, as it has been shown to be almost exclusively 

expressed in the cancer stem-like cell population as compared to bulk tumor cells [144]. The 

overall decrease in CD44 and EpCAM, though, is unexpected. Overexpression of Notch-1 has 

been shown to contribute to the CSC self-renewal capacity and an acquisition of an EMT-like 

(epithelial to mesenchymal transition) state. These changes were facilitated by activation of both 

CD44 and EpCAM46, which contradicts the results seen here. It is possible that our sphere culture 

skews the CSCs within the sphere into a more MET-like (mesenchymal to epithelial transition) 

state. Media choices (serum versus serum free) and culture conditions (2D adherent versus spheres 

in suspension) greatly affect single cell expression, but further experimentation will be needed to 

validate this hypothesis. 
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 Due to the single cell resolution of our data, we are also able see a small population of cells 

expressing aldehyde dehydrogenase (ALDH) isoform 1a3 within the Notch+ derived sphere cells. 

Enhanced ALDH activity is a hallmark of cancer stem-like cells, and ALDH1a3 activity, in 

particular, significantly contributes to aldefluor positive expression in mouse hematopoietic stem 

cells and human breast cancer CSC [145]. Within these cells, CXCR1, CXCR4, and p53, all CSC 

related genes, are all significantly upregulated as compared to other Notch+ derived cells. It is 

possible that these cells are progeneitor/stem cells (or early descendants) that asymmetrically 

divided to give rise to the other cells and the heterogeneity observed in the sphere; significant 

insight into initial tumorogenesis could be gleaned from further study. In addition to the 4 

identified ALDH1a3 high Notch+ derived cells, 1 cell was identified to have increased ALDH1a3 

expression in the Notch- derived sphere. Though we could not perform ANOVA to determine what 

genes were significantly different as compared to the other cells in the clone as there was only one 

cell identified, the ALDH activity hints at greater stem potential, even though it was derived from 

a Notch- source. Analysis of such rare cells might provide previously unobtainable insight into 

clonal heterogeneity or possible de-differentiation events.  

This highlights the potentially exciting applications for our methodlogy in the investigation 

of inter- and intra- clonal heterogeneity. Intra-clonal heterogeneity, in particular, is a major 

challenge in the cancer therapy due to the difficulty of study this phenomena. Spheres formed from 

our device are clonal in nature, thus allowing us to 1) identify potential CSC through our high 

throughput mammosphere assay and then 2) dissociate and analyze the resulting sphere to study 

the clonal progeny of the CSC source.  

Additionally by introducing biological agents of interest or stromal cell conditioned media, 

we can see how various factors influence clonal evolution, epigenetic regulation in the progeny, 
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or, more generally, CSC sphere formation. Initial steps have been taken to investigate our platform 

with conditioned media, biological agents, and drugs of interest.  

  

4.3 Microenvironmental Effects on Sphere Formation 

 As seen in Chapter 2, the microenvironment heavily regulates CSC behavior, even in breast 

cancer [146, 147]. In metastasis, it is believed that particular microenvironments are needed to 

stimulate secondary tumor formation [147], driving CSC transition and proliferation. Therefore 

factors secreted by the microenvironment should have significant effects on tumor sphere 

formation. While we currently lack the ability for co-culture on chip, we can investigate 

microenvironemental effects on sphere formation through the use of conditioned media. 

“Conditioned” media is media harvested from other cultured cells containing metabolites, growth 

factors, and extracellular matrix proteins secreted into the medium by the cultured cells. When 

placed in conditioned media for growth, the new cell population is influenced by the secreted 

factors of the cells used to condition the media. Often used as an alternative to serum media, 

conditioned media can also be used to study possible signaling between cell types, but only in one 

directional manner from the conditioned cells to those cultured in the conditioned media. As 

microenvironments are believed to secrete signals that cause proliferation and tumor growth in 

metastasizing CSCs, this unidirectional communication may be appropriate for preliminary tests. 

Whether or not conditioned media from different sources can affect sphere formation will provide 

valuable information about CSC and how they might be regulated by their microenvironment.  

 In particular, we are interested in how conditioned media from endothelial cells and 

fibroblasts may affect the CSC subtypes. In previous work performed in the Wicha lab, it was seen 

that breast cancer CSCs existed in different transition states (EMT vs MET) [136] and that these 
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states can be characterized by different CSC markers (CD44/24 and ALDH). More basal cell lines 

(SUM149, SUM159, MDA-MB-231) have a greater percentage of CD44+/CD24- CSCs compared 

to ALDH+ CSCs and are thus more EMT-like. It was hypothesized by our collaborator in the 

Wicha lab, Dr. Michael Brooks, that different types of microenvironmetal signals would be 

required to activate these different CSC states. Endothelial or vascular niches may have a great 

effect on EMT like cells, while fibroblasts stromal cells may have little effect. If so, the opposite 

should be true for luminal lines (T47D, MCF-7), which are higher in ALDH expression and more 

MET-like. In these experiments, the effects of the possible different microenvironments were 

simulated using conditioned media from endothelial and fibroblast cells. 

As a preliminary test SUM149 breast cancer cells were trypsinized and plated in non-

adherent 96 multiwell plates through limiting dilution in order to assess the effects of conditioned 

media using conventional methods. On average, 3 cells were deployed per well with a distribution 

from 1-10. Cells were cultured for 3 weeks for mammosphere formation in supplemental MEBM 

media, human fibroblast cell conditioned MEBM media, or human endothelial cell conditioned 

MEBM media. Due to the limitation of dilution deployment, cell aggregation most likely occurred 

Figure 94: SUM149 sphere formation in limiting dilution culture under the influence of conditioned media. 
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within the microwells, causing significantly higher sphere formation rates (Figure 94). However, 

a significant change was observed with conditioned media culture. Both endothelial and fibroblast 

conditioned media caused an increase in sphere formation. Sphere formation increased from 40% 

in supplemented MEBM to 95% in endothelial conditioned media (P-value 2.52x10-11) and to 85% 

in fibroblast conditioned media (P-value 4.45x10-7). While endothelial media did in fact have a 

greater effect, the overall difference was slight compared to comparing control media versus any 

form of conditioned media.  

To test this hypothesis with true single cell derived spheres, SUM149 cells were loaded 

into our single cell sphere formation assay and cultured for 2 weeks with different media conditions 

(control supplemented MEBM, endothelial conditioned media, and fibroblast conditioned media). 

In the single cell assay, sphere formation rates were more comparable to the expected CSC rates 

and matched well with previously obtained values (1-2%) (Figure 95). Endothelial conditioned 

media in this case, did not result in a significant increase in sphere formation and fibroblast 

Figure 95: SUM149 sphere formation in single cell microfluidic assay under the influence of conditioned media 

from endothelial and fibroblast cells.  
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conditioned media reduced overall sphere formation. This is unexpected based on the results 

observed in bulk. While endothelial conditioned media resulted in greater sphere formation than 

fibroblast conditioned media in both experiments as expected, whether it outperformed control 

MEBM media was not consistent. Interestingly when both experiments were repeated with another 

breast cancer cell line, HCC38, that has a greater ALDH+ population, no changes in sphere 

formation rates were observed in any conditions. It is clear that CSC percentages and composition 

can greatly alter cancer responses to microenvironmental and stromal signaling. 

Due to the large various and ambiguous effects between the bulk and single cell sphere 

derived culture, we do not have sufficient information to confirm or reject our current hypothesis. 

It is possible that reciprocal signaling is required to observe these interaction as it has been 

suggested that feedback loops are required [148]. Integrated simultaneous adherent-suspension co-

culture on chip would be required to study such phenomena and may provide an interesting next 

direction for our mammosphere assays.   

 

4.4 High Throughput Spheroid Drug Screening 

Importantly, we have begun assessing sphere formation as a drug screening readout. To 

develop CSC targeted therapies, assays that are capable of assessing single cell behavior and 

differentiating bulk cells from stem cells are critically important. In more conventional assays for 

screening agents targeted for CSCs, cells are FACS sorted using a cell surface marker and deployed 

in multiwall plates in bulk.  However as mentioned, there are a large number of potential markers 

that could be used, confounding results and screening [120, 121]. Instead, actual cell behavior and 

phenotype via our single cell sphere formation assay can be used to assess the population 

composition for drug screening. Drugs of varying types and doses that reduce sphere formation 

rates without changing bulk viability can be identified as possible CSC or progenitor targeting 
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agents. Chemicals of interested can be used to pre-treat the bulk population prior to device loading 

or introduced on chip during cell growth by simply pipetting the solution into the inlet, making 

our assay compatible with existing chemical library systems. 

 One chemical of particular interest for its effects on breast cancer CSCs is the antibacterial 

ionophore Salinomycin. Salinomycin was a part of a small subset of drugs discovered in a screen 

of nearly 16,000 agents to show CSC targeting ability. It was shown to target CSCs in mice at least 

2 orders of magnitude more effectively than conventional chemotherapeutic paclitaxel [149, 150]. 

It will be an important evaluation of our assay to see if salinomycin treatment will disrupt sphere 

formation. For this assay, T47D were treated in bulk with 10µM salinomycin or given only 

supplemental MEBM culture media 1 day prior to loading. T47D cells were trysinized, loaded into 

the devices, and cultured for 14 days to observe single cell derived sphere formation (Figure 96).  

Untreated T47D cells formed spheres at a rate similar and within the standard deviation of the 

Figure 96: Treatment with 10µM salinomycin resulted in a 2-fold decrease in T47D single cell sphere formation. 

Spheres formed under treatment were also reduced in size.  
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previously observed rates (~3-4%). Salinomycin treatment resulted in a 2 fold decrease in sphere 

formation. Cells that did form spheres had significantly reduced final spheres size (2x).  

In adherent culture, no statistically significant difference in viability between the two 

populations was observed. More tests need to be screened to confirm the reliability of the assay as 

a drug screening tool, but these result demonstrate the ability of our approach to detect CSC 

targeting agents without a priori knowledge of CSC markers. With an approximate 100 by 200 µm 

area, each microwell occupies little space. This packing density will facilitate even higher 

throughput, and for inlet architecture to be designed to match the automated pipette layout. In this 

way our approach can be used for screening of chemical libraries. Microfluidic gradient generators 

are ubiquitous [151] and could be easily integrated to facilitate simultaneous dosage and chemical 

screening. This will be integrated screening platform could be an important long term goal for this 

assay.  
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Chapter 5: Conclusions 

5.1 Summary 

 The goal of this research was to develop and deploy microfluidic assays capable of probing 

single cell behavior. Single cell technologies have been revealed to be increasingly important, as 

cell populations that were previously considered homogeneous are seen to be heterogeneous. As 

such, considerable effort is being put to forward to develop single cell tools across many biological 

fields. In cancer in particular, single cell tools will be critical for the investigation of cancer stem-

like cells. Here, we have presented adherent and suspension based microfluidic assays with the 

ability to probe the behavior of these cancer stem-like cells.  

 A microfluidic single cell capture scheme developed by Dr. Jaehoon Chung in our lab 

provides the foundation for my single cell assay research. Dr. Chung performed clonal drug 

screening on populations of PC3 prostate cancer cells with integrated migration control. To 

demonstrate its more widespread applicability, I extended its application to perform on-chip 

targeted drug screening of ovarian cancer CSCs and increased the throughput of assays while 

maintaining device performance. Through drug screening, two novel targeted agents were 

identified to outperform conventional chemotherapy and the currently accepted targeted therapy, 

disulfiram, in their ability to disrupt CSCs. Additionally, I showed that through proper preparation 

and modification primary patient ovarian cancer cells could be cultured on chip, something very 

few microfluidic platforms have successfully demonstrated. This optimized single cell assay was 

then utilized to investigate CSC hierarchies in ovarian cancer and how different biological factors 

regulate differentiation within these hierarchies.  



131 

 

 Through the development of topographically patterned hydrophobic PDMS surfaces, I also 

demonstrated successful non-adherent culture. Parameters were optimized to maintain non-

adherent conditions despite cell culture environments. To create cheaper alternative non-adherent 

culture surfaces, processes to deposit and pattern polyHEMA coatings were developed and 

optimized. Both types of non-adherent coating were successfully integrated with our single cell 

capture scheme without degradation in device performance. 

 With these integrated non-adherent single cell devices, I could successfully perform 

mammosphere assays on chip. Such assays provide the ability to select and enrich CSCs without 

the use of FACS or cell surface markers, while conventional assays suffer from low throughput 

and poor single cell control. Our microfluidic assay improves single cell-derived mammosphere 

throughput by an order of magnitude (100s in plates to 1000s on-chip) and ensures single cell-

derived sphere formation for proper CSC enrichment. With this approach, I investigated the 

relationship between traditional CSC markers and sphere formation, genetic heterogeneity, and the 

effects of conditioned media on sphere formation. Most interestingly, using our sphere formation 

assays as a drug screening tool can provide significant impact for the development of CSC targeted 

drugs.  

 These presented results demonstrate the ability of microfluidic approaches to improve on 

traditional biological assays without increasing complexity. Novel findings that were not possible 

with conventional bulk methods were presented, showing the unique applications of single cell 

based approaches, especially in regards to cancer stem-like cell behavior. The developed new 

technologies to probe rare CSC behaviors such as differentiation, genetic expression, and sphere 

formation may be applied to advance patient care and evolve our current understanding on cancer 

and its treatment in the future.  
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5.2 Contributions 

 This research contributes both to the technology of single cell and microfluidic assays in 

general and to the knowledge of cancer stem-like cells in their division, differentiation, drug 

response, and sphere formation behavior. 

 In regards to the contributions to the microfluidic assays:  

 Single cell capture platforms were optimized for higher throughput and for culture of 

patient derived xenographs and other primary samples. Device cleaning protocols and 

extracellular matrix compositions were optimized to improve cell viability. Without the 

ability to culture primary samples, microfluidic impact is limited.  

 Superhydrophobic topographic PDMS patterns were developed and characterized for 

integration with microfluidic single cell culture, and the relationship between surface 

characteristics and suspension culture performance was studied. 

 Alternative polyHEMA-based coating techniques were developed for on-chip single 

cell suspension culture. Spin coating and soft lithographic polyHEMA patterning 

methods allow the fabrication of unique microstructures and simplify the fabrication of 

high-throughput single cell-derived sphere formation devices.  

 Suspension culture surfaces (PDMS and polyHEMA) were integrated with the high-

efficiency single cell capture scheme, creating a robust and highthroughput on-chip 

mammosphere assay. The developed microfluidic devices have shown the ability to 

form single cell-derived mammosphere in a reliable and high-throughput manner.  

 In regards to cancer stem-like cells biology: 
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 Differentiation hierarchies of ovarian cancer stem-like cells defined by ALDH and 

CD133 were directly observed and characterized. Hierarchical behavior and the 

possibility for de-differentiation events were observed synthesizing previous 

observations about CSCs. 

 BMP2 was identified as a major controller of CSC differentiation behavior. Previous 

research suggested conflicting roles for BMP2 in its effect on cancer, but through direct 

microfluidic observation, evidence was generated that clarified the effects while 

supporting both claims. BMP2, produced from ALDH-CD133- negative cancer cells, 

drives ALDH+CD133+ cell to self-renew while suppressing bulk cell proliferation. In 

this way it can both suppress proliferation when treated in dish while also having a 

negative clinical effect in vivo by increasing the CSC population. 

 EGFL6 was seen to play a major role in CSC division behavior. The tumor vascular 

niche is known regulate CSC fate, and it was seen that EGLF is expressed in ovarian 

tumor vasculature and isolated cancer cells. Single cell microfluidic culture 

demonstrated that EGFL6 promotes cancer cell proliferation by stimulating ALDH+ 

CSCs to undergo asymmetric division. As a direct result, EGFL6-blocking antibodies 

were found to represent a potential therapeutic. 

 After identification of cells at the top of CSC hierarchies, single cell drug screening 

was performed on-chip. By culturing single CSCs we can observed the effects of 

targeted agents directly on the target population. Through this methodology, two novel 

ALDH targeting agents were identified that outperform currently available anti-CSC 

drug and general chemotherapeutic approaches.  
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 With our single cell derived sphere assay, we showed a direct correlation between 

traditional CSC markers and single cell-derived sphere formation. Using this same 

approach, drugs of interest and microenvironemental factors were screened for their 

effects on CSCs in a marker-independent manner. The demonstrated sphere assay is 

compatible and easily modified for use with chemical library screening, facilitating 

cheaper and faster identification of CSC-targeting agents.   

 Integrating our sphere assay with Fluidigm single cell genetic expression analysis, we 

directly observed clonal heterogeneity within spheres and how different expression 

patterns could be observed between progenitor-derived and true CSC-derived single 

cell mammospheres.  

 

5.3 Future Work 

The immediate goal for our adherent single cell microfluidic assay would be to translate 

the devices and assays into the labs of biological collaborators. Heterogeneity and single cell 

behaviors are important in many fields apart from cancer including immunology [152], cardiology 

[153], and hematology [154], to name a few, and its clinical impact is growing. Tools are needed 

to facilitate single cell characterization for widespread use at a low cost with compatibility with 

current biological laboratory practices.  We have demonstrated a robust single cell capture scheme 

and user-friendly high throughput devices using this scheme. Devices have small analytical 

footprints and are cheap to manufacture. Assays with our approach can be performed with no 

external equipment, save a pipette, and single cell capture is performed without any user input, 

lowering expertise requirements. These factors together make our approach ideal for deployment 

in a variety of lab settings.  
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In fact, several collaborators have already begun using these assays in their lab. The lab of 

Dr. Ronald Buckanovich has begun investigating the effects of vascular endothelial growth factor 

(VEGF) on ovarian CSC and our single cell assays will provide the capability to monitor single 

CSC response.  Additionally, they are interested in understanding CSC quiescence. In many cases, 

CSC can adopt a slow cycling phenotype. This quiescent potential of CSCs represents an inherent 

mechanism that at least partially explains chemotherapy resistance and recurrence in post-therapy 

cancer patients [155]. It is likely that understanding mechanisms that control quiescence and 

encourage CSC to enter cycling will be key components of future therapies that target CSC and 

have the potential to eradicate tumors. Quiescence in CSC is particularly hard to study due to CSC 

rarity and the ease by which quiescent cells are often ‘overgrown’ by their cycling kin. Our devices 

are uniquely well suited to monitor quiescent cells due to robust single cell capture and definite 

spatial confinement. We have even already observed viable quiescent primary ovarian cells on 

chip for over 12 days (Chapter 2.3), and further data has been generated with cell lines. Devices 

have already been used to examine head-and-neck cancer stem-like cells here in the School of 

Dentistry, in the lab of Dr. Jacques Nor.  

Preliminary device sharing, however, has had mixed success. While useful data has been 

generated, non-microfluidic technicians and personnel have had difficulty controlling single cell 

loading. Cell concentration control and device preparation seem to be able to greatly affect device 

capture. High cell concentrations can result in significant clogging and non-specific capture. While 

low cells numbers should theoretically have no effect on capture, low capture efficiency (and rate) 

is clearly observed with low cell number.  Further device and (possibly more important) protocol 

optimization is required for devices to be broadly useful for end users. Reducing capture sensitivity 
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to cell concentration will likely be the most important step, and members in our lab have already 

begun investigating measures to improve capture efficiency with low cell numbers.  

 In regards to our single cell derived sphere assays, it is our immediate goal to validate our 

mammosphere assays through in vivo validation. Seminal work in cancer stem-like cells suggests 

that single cell derived sphere formation identifies and enriches for breast cancer stem-like cells 

[100, 101]. Implantation of aggregate mammospheres in NOD SCID mice results in great tumor 

initiation (the gold standard assays for CSCs) than implantation of a similar number of bulk 

aggregates or cells, implying greater stemness. However, due to the low throughput of 

conventional techniques for single cell-derived sphere formation, there is little information 

regarding how true single cell-derived spheres compare to aggregates in tumor initiation potential. 

Aggregates spheres will be formed in conventional multi-well plates and implanted in one side of 

a mouse mammary fat pad. In the other side, we can inject a single cell derived sphere of a 

comparable size. Using 15-20 mice, we can directly compare tumor initiating potential between 

the two approaches with greater initiation indicating greater enrichment of CSC populations. We 

expect higher tumor initiation potential in our single cell-derived spheres; this data would 

providing extremely convincing evidence for oncologists and cancer biologists of the utility and 

improvements of our microfluidic approach over conventional dish-based methods. 

 In the long term, we expect that our high-efficiency single cell capture scheme can be 

optimized for a variety of approaches through changing architectures (e.g. valve integration for 

chemical sensing assays) or through other surface patterning approaches. Here we demonstrated 

how integration of hydrophobic surfaces or polyHEMA coatings could be used to facilitate 

mammosphere assays and other sphere screening approaches with the single cell capture scheme 

as the foundation. But due to the robustness of the scheme, a variety of other modifications are 
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possible without disrupting device performance and advantages. For example, sensing structures 

or chemicals can be patterned into our microwells to monitor single cell behavior. Professor 

Jinsang Kim here at the University of Michigan has developed a versatile polydiacetylene-

liposome based microsensor that exhibits a shift in color and fluorescence when stressed [156, 

157], and some initial testing was performed for integrating such sensors. One application of 

interest is single cell adhesion force measurement, which could provide useful information about 

morphogenesis and viability [158, 159]. Mechanosensors can be created from surface bound 

liposomes, chemically modified to contain RGD cell binding domains (Figure 97).  APTES-based 

glass surface chemistry facilitates simple integration into glass bond PDMS device. PDA-

liposomes can also be created that do not facilitate cell-adhesion (Epoxy or inactive RGE 

domains), and these can be used control spatial localization of cell adhesion. When a surface is 

completely covered with the sensing chains, cells are sterically blocked from the surface and can 

only adhere through interaction with RGD domains on the sensor. As the cells adhere and exhibit 

traction forces, the PDA liposome connecting the active domain to the glass surface experiences 

Figure 97: Schematic of PDA liposome -based mechanosensing surface modifications with control, active, and 

inactive cell RGD binding domains.  
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stress and fluoresces. This fluorescence is directly proportional to the stress and reversible, 

providing a way to accurately and dynamically monitor cell adhesion.  Preliminary testing was 

performed in bulk culture (Figure 98), but initial sensor designs created considerable surface debris 

causing the approach to be too insensitive and nonspecific. However, we believe sensor 

optimization is possible, and this is only one example of potential sensing methodologies that could 

be easily integrated with our microfluidic capture scheme. 

 Finally, our single cell derived mammosphere assay has great potential for use as a high 

throughput screening tool.  Sphere formation as a readout allows us to directly assess drugs effect 

on the stem and progenitor population without the need to FACS sorting or use of stem-related 

surface markers. This type of readout also allows us to observe targeting effects independent of 

any cytotoxic effects in the cells. The single cell capture scheme is simple to array into high 

throughput assays due to the hydrodynamic capture and small microwell footprint. Device inlets 

can be easily photopatterned to match the structure of 96-well plates to even facilitate use of our 

device with chemical screening libraries. In this way, our assay could greatly speed the 

Figure 98: PDA-Liposome modified glass surface for direct sensing of cell adhesion, where red fluorescence 

indicates where cell adhesion is stressing PDA-based liposome sensors.  



139 

 

identification of CSC targeting drugs. Identifying ways to target CSC and their effects is critical 

for the development of solutions to manage, if not cure, cancer when it arises providing hope for 

millions worldwide.  
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