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CHAPTER 1 

 

                                                         INTRODUCTION 

 

In the early 1980s mammalian homologues of oncogenic viral, Harvey and Kirsten RAS genes 

were identified in normal rat cells. These genes termed the Ha-RAS and Ki-RAS respectively, 

demonstrated the potential to transform normal mammalian cells. In 1983, an additional 

homolog, N-RAS was identified from neuroblastoma and leukemic cells. By 1984, oncogenic 

mutations in the RAS genes were discovered in many human cancer cells, establishing RAS as a 

pre-eminent family of oncogenes. Over the years there has been a concerted effort to understand 

RAS biology and its role in the oncogenic process.  

 

The RAS-GTPase cycle 

RAS genes encode a family of small GTPases 
1
 that transduce extracellular growth signals by 

cycling between a GTP-bound activated state and a GDP-bound basal state 
2,3

. The cycling of 

RAS proteins between inactive and active states constitutes a molecular switch through which a 

number of cellular signaling pathways are regulated. Extracellular growth factor mediated 

membrane receptor activation (for example upon mitogenic stimulation) tethers RAS to the 

plasma membrane where proteins termed as Guanine nucleotide Exchange Factor (GEFs) like 

SOS (Son of Seveless), can activate RAS proteins by exchanging RAS bound GDP with GTP, 

thereby activating RAS (Figure 1.1). Activated RAS is then brought back to ground state 

through hydrolysis of GTP to GDP by intrinsic GTPase activity of RAS proteins, greatly 
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enhanced through interaction with GTPase activating proteins (GAPs) like Neurofibromatosis 1 

(NF1).  

 

RAS mutations in cancer  

Approximately 30% of all human cancers harbor oncogenic mutations in RAS. Although H/N/K-

RAS genes are highly homologous, the frequency and types of mutations observed in different 

human cancers is varied with KRAS being the most frequently mutated RAS gene, followed by 

NRAS and HRAS
4
. KRAS mutations are most frequently observed in pancreatic (90%), lung 

(30%) and colon cancers (50%); mutations in NRAS are frequently observed in the cancers of 

skin (30%) and hematopoietic and lymphoid malignancies (12%). HRAS mutations are more 

prevalent in bladder (15%) and head and neck cancers (8%)
4
. Mutations in RAS genes 

predominantly involve one of three highly conserved amino acid residues- G12, G13 or Q61 

(Figure 1.2). A preference for one of the three amino acid substitutions is specific for each RAS 

family member and is also dependent on the cancer type (for example NRAS Q61 mutations are 

frequently observed in melanoma while NRAS G12/NRAS G13 mutations are more prevalent in 

leukemia). Further, the range of mutations in KRAS at a single amino acid have varied prognosis 

in lung and colon cancers. Together this suggests that the three RAS proteins have different 

etiologies in the development of cancer which is dependent on the position and type of alteration 

observed in a specific cell of origin
5,6

.  

 Multiple studies have shown that mutations in the RAS genes increase cell proliferation 

rates and can initiate neoplastic transformation
7-9

. In addition, it has been shown in multiple 

cancer models using genetically engineered mice, that RAS mutations are also required for tumor 

maintenance, such that ablation of the defective RAS gene leads to tumor regression in these 



  

3 

 

models
10-12

. This establishes the “oncogenic driver” status of the mutated RAS genes and makes 

it one of the most highly validated targets for therapeutic intervention in cancers. 

 

RAS mutations in developmental disorders and RASopathies 

Besides somatic RAS mutations in cancer, germline mutations in the RAS genes or RAS 

regulators are known to be responsible for certain developmental disorders collectively referred 

as RASopathies 
13,14

. These include Neurofibromatosis type I, Noonan Costello, and Cardio 

Facio Cutaneous syndromes amongst others. Aberrant RAS signaling due to RAS mutation or 

activation of RAS through loss of RAS regulation (like NF1/SOS1 mutations) or increased 

downstream signaling (for example, through BRAF mutations) have been shown to be 

responsible for several of these developmental abnormalities. Since all these aberrations 

ultimately result in increased RAS-GTP levels, these diseases are collectively referred to as 

RASopathies. A discussion of the various RASopathies allows understanding of RAS regulators 

in the developmental context which may have a bearing on some of the observations made in this 

thesis. 

Neurofibromatosis type I is a familial cancer syndrome, caused due to dominantly 

transmitted loss of function mutations in the NF1 gene. As alluded to earlier, NF1 is a tumor 

suppressor GTPase activating protein (GAP), that when mutated prevents the cycling of the 

RAS-GTP to inactive GDP bound form.  Patients harboring germline mutations of NF1 gene are 

predisposed to a variety of cancers like neurofibromas, astrocytomas and juvenile 

myelomonocytic leukemia (JMML) 
15,16

. Mutations in PTPN11/SHP-2 phosphatases account for 

about 50% of Noonan syndrome cases
17

, an autososmal dominant developmental disorder 

characterized by facial anomalies, heart and skeletal defects and hematological disorders. 
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PTPN11 is a non-receptor type 2 phosphatase that activates the RAS/MAPK signaling pathway 

downstream of several receptor tyrosine kinases. Study of the missense germline mutations of 

PTPN11 suggests the residues that maintain the structurally inactive conformation are frequently 

mutated keeping PTPN11 in an active conformation, resulting in the neurological disease 
18,19

. 

Somatic mutations in PTPN11, relatively less well characterized at present, have been reported 

in leukemia that are distinct from the germline mutations and show more pronounced RAS 

signaling through effector activation
20-22

.  

Germline KRAS mutations in residues other than frequently observed in cancers (namely, 

Val
14

, Thr
58

, Val
152

 and Asp
153

) also account for 2% of cases with Noonan syndrome. HRAS 

mutations restricted to Gly
12 

and Gly
13

, which are less frequent in cancers, account for the 

majority of cases with Costello syndrome
23

, a disease of mental retardation, distinctive facial 

appearance and cardiovascular abnormalities. Distinct mutations in the RAS/RAF pathway genes 

(Table 1) in developmental disorders and their somatic counterparts in cancers point to a 

widespread requirement for cell/tissue and/or developmental specific roles for the different RAS 

genes in these distinct diseases.   

 

RAS structure 

The RAS family of proteins belong to a class of small GTPases, encompassing 39 different 

proteins characterized by a phosphate binding motif (P-loop) and multiple G domains (GTP 

binding domains), as shown in Figure 1.3. These proteins also share nucleotide sensitive Switch 

I and Switch II domains which interact with various effectors depending on the GDP/GTP bound 

state of the molecule. The small GTPases are known to play a key role in multiple cellular 
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processes, including growth, cytoskeletal rearrangements, motility, adhesion and cellular 

differentiation. 

Sequence alignment of the three RAS proteins shows that the N-terminal 80 amino acids 

which encompass the P-loop, the Switch I and II domains are identical, between H/N and KRAS 

proteins. A high degree of homology exists until amino acids 166, after which the C-terminal 25 

amino acids constitute the hypervariable regions of different RAS proteins effecting differential 

post translational modifications and membrane anchoring properties. 

Crystallographic structures of HRAS 
24

 bound to GDP/GTP homologs 
25

 were determined 

in 1990,. RAS was described as a heart shaped structure with a hydrophobic core of six beta 

strands and five alpha helices interconnected by loops. GTP hydrolysis was found to be 

determined largely by five loops on one side of the protein with Q61 being the most critical 

residue for the GTPase catalytic activity 
26

. In its GTP bound state, only small structural changes 

in the Switch I (amino acids 32-40) and Switch II (amino acids 62-70) are observed when 

compared to the GDP bound state.  Oncogenic mutations at G12/G13 positions (with their large 

side groups) interfere directly with the GTPase ‘active conformation’ of the protein and also 

interfere with the nucleophilic attack of the gamma phosphate of GTP preventing GTP 

hydrolysis. These small structural aberrations resulting from the substitution of critical amino 

acids suffice to keep RAS locked in its GTP bound state and have proved to be challenging for 

therapeutic targeting. 

 

RAS signaling 

RAS in its active conformation is now known to activate a number of cellular pathways but it 

wasn’t until 1993 that yeast two-hybrid and in vitro interaction analyses helped demonstrate a 
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direct interaction between RAF1 and activated RAS
13,27

. Subsequently, RAF1 was extensively 

characterized, and shown to activate the extracellular signal-regulated kinase (ERK) or the 

mitogen-activated protein kinase (MAPK) pathway which in turn phosphorylates and activates 

nuclear factors like the E26 transformation-specific (ETS transcription factors)
28

 which associate 

with different nuclear factors to initiate transcription for cell proliferation/differentiation. This 

signaling from the GTP-bound RAS at the plasma membrane to the nucleus has been 

demonstrated to be sufficient and necessary for RAS induced transformation
29,30

. Detailed 

mapping of the RAS-RAF1 interaction that initiates the MAPK cascade
17

 showed that the HRAS 

effector domain within the Switch I domain (amino acids 32-40) associates with RAS binding 

domains within the N terminal of RAF1/BRAF and are critical for RAS transformation. 

Although the crystal structure of full length RAF bound to RAS has not yet been determined, the 

critical role of RAS Switch I binding to RAF1 was demonstrated in a study involving the RAS 

related protein RAP1A and RAS binding domain (RBD) of RAF1
31

. Furthermore, the structure 

of HRAS Q61L mutant bound to RAF1-RBD
32

, recently revealed that the switch II domain of 

Q61L is rigid compared to wild type RAS and acquires an anti-catalytic conformation, 

suggesting that at least for this mutant, RAF binding has allosteric effects on the Switch II 

domain.   

 The next class of RAS effectors were identified through experiments to delineate whether 

the Class I phosphoinositide 3-Kinase  (PI3K) activity that co-immunoprecipitates with RAS
33

 is 

a RAS regulator or effector of diverse RAS signaling
34

. The p110 catalytic unit of PI3K was 

found to associate with RAS only in its active GTP-bound form, qualifying it as an effector, 

however like the GTPase activating protein NF-1, PI3K binding required both the RAS Switch I 

and II domains. Specifically, the RAS-PI3K interface makes contact with the Switch I effector 
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domain (amino acid residues 32-40) as well as extensive contacts with the Switch II domain with 

Y64 being the critical residue
35

. Like RAF, PI3K binding to RAS-GTP activates PI3K activity 

and was required for NIH3T3 cellular transformation
26

.  In a highly conserved signaling 

pathway, RAS activation of PI3K results in the conversion of phosphatidylinositol (3,4)-

bisphosphate (PIP2) lipids to phosphatidylinositol (3,4,5)-trisphosphate (PIP3). At the plasma 

membrane PKB/Akt binds PIP3, where Akt phosphorylation activates the mammalian Target of 

Rapamycin C1 (mTORC1) and mTOR pathways which in turn phosphorylate the eukaryotic 

translation initiation factor 4E binding protein (4EBP1) and protein S6 (S6K1), directly 

promoting protein synthesis and cell proliferation. The prevalence of mutations in the RAF and 

PI3K genes in cancer further underscores the critical roles of these pathways in oncogenesis. 

 Additionally, the Ral-GDS effector pathway also plays a distinct role in regulating cell 

proliferation and apoptosis through the RalA and RalB GTPases 
36

. As can be seen in Figure 1.4 

several RAS effectors that regulate diverse cellular functions have been described. Phospholipase 

Cε was identified as an effector that binds the Switch I domain of HRAS
35

, its activation leading 

to hydrolysis of phosphatidylinositol 4,5-bisphosphate in a GTP-dependent manner 
37

. With a 

guanine exchange factor (GEF) domain, PLCε also serves as a bifunctional phospholipase that 

activates the MAP kinase pathway
38

. The T-cell lymphoma invasion and metastasis-1 (TIAM1) 

is a Rac GTPase GEF that binds HRAS in a GTP dependent manner to mediate Rac activation by 

RAS 
39

. TIAM1 was also shown to be required for RAS transformation in a mouse model of skin 

carcinogenesis
40

. The lesser characterized RAS effectors like the AF-6 
41

 also bound HRAS in its 

GTP bound state. 

 Among the RAS regulators the RIN1 protein was shown to interact directly with HRAS-

GTP and unlike RAF, interferes with RAS function in the yeast model
42

. RIN1 is a GEF for the 
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Rab 5 GTPase that was shown to stimulate the endocytosis of receptor tyrosine kinases upon its 

association with activated HRAS
43

.  

A non-catalytic adaptor protein, RASSF5 (Ras association (RalGDS/AF-6 domain family 

member 1) was identified as an effector that binds the Switch I domain of HRAS in a GTP 

dependent manner
44

. A more recent study showed that mutant KRAS engaged RASSF5/MST1 

(mammalian sterile-20-like-protein kinase-1complex) to initiate apoptosis of HEK293 cells
45

. 

RASSF2, a member of the same family was shown to have preferential binding to KRAS-GTP 

compared to HRAS-GTP
46

 and like RASSF1 was characterized as a tumor suppressor 
47

. HRAS-

GTP was more recently shown to bind an E3 ubiquitin ligase IMP (Impedes Mitogenic signal 

Propagation) and negatively regulate MAP kinase activity by limiting the engagement of RAF-

MEK complex in the presence of activated RAS
48

. Lesser characterized effectors like Grb7
49

, 

RAPH1 or PDZ-GEF
50

, have been reported but their role in mammalian RAS signaling remains 

to be investigated.  

As may be noted, most of the studies cited above have used mutant HRAS as a bait for 

the search of effectors and to demonstrate the role of these effectors in RAS signaling. With an 

increasing appreciation of distinct differences in oncogenic potential across the RAS family 

members, a search for mutant KRAS specific interactions using mass spectrometric approach, 

uncovered a novel RNA binding protein effector, HNRNPA2B1 which associates with mutant 

KRAS in a phosphorylation and GTP dependent manner and potentiates AKT/mTOR pathway 

signaling to promote pancreatic tumor growth in cell line and mouse models
51

. The search for 

new regulators and effectors through which the different RAS proteins, especially KRAS, exert 

their effects on signaling cascades in cancer is the core component of this thesis. 
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RAS regulation 

Temporal regulation of RAS expression 

Of the four RAS genes (HRAS, NRAS and the two KRAS splice variants, KRAS4A and KRAS4B) 

only KRAS4B is known to be essential for embryogenesis
52

 with partial functional overlap with 

NRAS. In genetic ablation studies, knockout of HRAS or NRAS had no significant effects on 

mouse development and only KRAS was reported as essential and sufficient for normal growth 

and development
53

. However, expression of HRAS from the KRAS locus (to replace KRAS 

expression) led to normal development
54

, suggesting that other RAS proteins can compensate for 

KRAS functions but distinct spatial/temporal expression program may define their role in 

embryogenesis (Figure 1.5).  

 

Post Transcriptional Gene Regulation of RAS transcripts 

Apart from temporal and context dependent regulation, RAS expression is also controlled post 

transcriptionally (Figure 1.5). MicroRNAs are small 21-22 nucleotide RNA molecules that bind 

target transcripts (in their 3’untranslated regions (UTR) or coding regions) and lead to repression 

or degradation by the RNA silencing machinery
55

. In 2005, conserved let-7 microRNA binding 

sites were identified in the 3’UTR of RAS transcripts which were shown to regulate RAS protein 

levels. Although this study focused on the role of let-7 in vulval development in C. elegans, let-

7a regulation of NRAS and KRAS transcripts were clearly demonstrated using luciferase reporter 

assays 
56

. Multiple studies have since shown that let-7 family represents tumor suppressor 

microRNAS and their levels are reduced in lung cancers
57

 
56

. 

Genetic evidence for KRAS/let-7 regulation was established when a single nucleotide 

polymorphism (SNP) in the let-7 binding sites in the 3’UTR of KRAS (termed KRAS-LCS6) was 
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shown to elevate KRAS levels and was associated with increased risk for lung cancer 
58

 
59

. 

KRAS-LCS6 also increased risk for triple negative breast cancers 
60

 and shown to have prognostic 

value in colon cancers
61

.  

Recently, a simple, elegant analysis of the coding sequences of the RAS genes has 

revealed an intriguing level of RAS regulation at the level of translation. Despite the similarity of 

the RAS proteins at the protein level, the nucleotide sequence coding for the proteins are highly 

divergent such that rare codons present in the KRAS transcript limit protein expression and 

reduce its oncogenic potential in a carcinogenic mouse model, known to be resistant to oncogene 

induced stress
62

. Paradoxically, the KRAS alleles encoding synonymous codons that optimize 

expression failed to generate tumors in a de novo lung carcinogenesis model
63

, suggesting that 

codon bias determines protein expression levels, consequently affecting its oncogenic potential 

only in a context dependent manner.  

Although the post transcriptional gene silencing of RAS transcripts through microRNA 

regulation is the least studied the recently discovered rare codons inherent to KRAS transcript is 

an emerging field.  

This thesis provides insights into a novel mechanism by which mutant KRAS may 

control the expression of its transcript levels through direct interactions with a key component of 

the RNA silencing machinery.  

 

Trafficking of RAS family of proteins 

Nascent RAS proteins undergo differential post translation modifications for attachment to the 

plasma membrane 
64

. The hypervariable region of RAS proteins consisting of 25/26 amino acids 

with the C-terminal CAAX motif (Figure 1.2) are critical for its association with the inner 
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membrane
65

. Both the C-terminal polylysine stretch and farnesylation of the KRAS4B protein 

are sufficient for membrane association, whereupon it undergoes proteolytic cleavage of the 

AAX sequence, catalyzed by RAS- converting enzyme (RCE1). The terminal cysteine residue is 

then subject to carboxymethylation by isoprenylcysteine carboxymethyltransferase-1 (ICMT). 

The HRAS, NRAS and KRAS4A proteins all lack the polylysine stretch and therefore require 

palmitoylation besides prenylation for efficient membrane association.  Unlike KRAS4B, 

prenylated HRAS and NRAS proteins traffic to the Golgi compartment, but require additional 

modification prior to plasma membrane anchoring
66

. For HRAS, monopalmitoylation at residue 

181 and 184 is sufficient while NRAS requires a second targeting sequence for its movement 

from the Golgi endomembrane to the plasm membrane
67

. More recent studies have identified 

PDEδ, a guanine nucleotide dissociation inhibitor-like (GDI like) solubilization factor that binds 

endomembrane associated farnesylated KRAS or depalmitoylated HRAS/NRAS in a nucleotide 

independent manner, solubilizes them and redirects these proteins to the plasma membrane
68

. 

 EGFR mediated clathrin dependent localization of KRAS (but not HRAS/NRAS) to early 

and late endosomes has been reported
69

, where it engages different effectors for signaling. A 

PKC dependent phosphorylation event targeting Serine 181 of KRAS leads to its translocation to 

the mitochondria, where it was shown to associate with Bcl-XL to induce apoptosis
70

.  

Ubiquitination of about 2% of plasma membrane bound HRAS/NRAS, but not KRAS 

proteins leads to increased targeting to the endosomal membranes where it limits ERK activation 

71
. More recently mono-ubiquitination of KRAS

72
 was shown to increase the stability of the 

proteins and activate signaling through its effector pathways. Recently, we
73

 have also 

demonstrated that the SMURF2:UBCH5 complex, components of the ubiquitination pathway, 

may regulate the stability of KRAS
73

.  
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Together these studies portray a picture of a highly complex interplay of 

compartmentalized signaling modules regulated by RAS family proteins’ expression, post 

translational modifications, trafficking through different intracellular membranes, and turnover, 

with NRAS, HRAS and KRAS (isoform 4A, and 4B), playing distinct as well as shared roles.  

 

Biochemical regulation of RAS activity 

As discussed extensively in earlier sections, apart from intrinsic nucleotide binding and 

hydrolysis, RAS activation through SOS-GEFs and inactivation through GAPs further control 

the dynamic equilibrium of GDP/GTP bound states of RAS
2
. Modulation of the RAS GTPase 

cycle at the plasma membrane is probably the most studied aspect of RAS regulation (Figure 

1.1). 

  Yet, while RAS activation through oncogenic mutations have been known to increase cell 

proliferation in many models, activated RAS also induces cell cycle arrest and senescence unless 

accompanied with collateral mutations in tumor suppressor genes in a cell context dependent 

manner
74

. This oncogene induced senescence is thought to be due to Reactive Oxygen Species 

(ROS) activation of p38 MAPK pathway which ultimately results in the repression of E2F target 

genes
75

.   

 In this thesis, intersections of KRAS with novel pathways were identified at three 

different levels.  

  At the chromosomal level, using an integrative genomics approach called Amplification 

Breakpoint Ranking and Assembly (ABRA) analysis, we nominated KRAS as a gene fusion with 

the ubiquitin-conjugating enzyme UBE2L3 (CHAPTER 2). Although the UBE2L3-KRAS gene 

fusion was identified only in one prostate cancer cell line, DU145, and shown to promote cellular 
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transformation, in a larger context, it could represent genetic evidence for the close proximity of 

KRAS with the proteasome, which is a recurrent theme in various synthetic lethal screens of 

KRAS
73,76-78

.  

 At the level of gene expression, we identified frequent ‘outlier kinases’, like MET, 

MST1R, AKT2, EPHA2, AXL, and PLK2 in pancreatic cancer cell lines, which impart cell line 

specific dependency in both in vitro and in vivo models. Particularly, a subset of KRAS-

dependent pancreatic cancer cell lines display outlier expression of polo-like kinases (PLKs) 

(CHAPTER 3) and show increased sensitivity to PLK inhibition using BI6727 in combination 

with KRAS knockdown. PLK1, a serine/threonine kinase is a key player in mitosis
79

 and forms 

an integral part of both the anaphase-promoting complex (APC) and, incidentally, the 

proteasome pathway was identified as a synthetic lethal partner of KRAS
78

. 

 At the level of the protein, an unbiased mass spectrometric analysis identified Argonaute 

2 (AGO2) as a RAS interacting protein, which we characterized (CHAPTER 4). Further, we 

provide evidence for the phenotypic consequence of the RAS-AGO2 interaction in cellular 

transformation, and delve into the mechanistic aspects of this interaction (CHAPTER 5), that 

portends a bearing on RAS biology in normal cell physiology as well. This most surprising 

intersection of the signaling networks of KRAS with the RNA silencing machinery through its 

interaction with its core component protein, AGO2, offers new insights into RAS biology. 
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Figure 1.1 The RAS-GTPase cycle.  RAS proteins cycle between an inactive GDP or active GTP bound 

form. In its activated state, RAS-GTP triggers various effector pathways that trigger cell proliferation.  
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Figure 1.2 Frequency of mutations at amino acid 12, 13 and 61in different RAS 

proteins in human cancers (COSMIC analysis, 2015) 
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Table 1. Germline mutations of RAS/MAPK pathway in developmental disorders  
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Figure 1.3 Structural motifs of the RAS-GTPase 
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Figure 1.4 RAS signaling. Mitogenic signals translocate RAS to the plasma membrane and activate 

various signaling pathways. Adapted from Dragging Ras Back in the Ring. Cancer Cell 25, March 17, 

2014 
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Figure 1.5 Regulation of RAS. RAS undergoes transcriptional, post transcriptional and post translational 

regulation. Post translational modification further traffic RAS to various cellular compartments for 

differential signaling outputs. 
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CHAPTER 2 

 

CHARACTERIZATION OF KRAS REARRANGEMENTS IN METASTATIC 
PROSTATE CANCER 

 
 
 
 
SUMMARY 
 
Using an integrative genomics approach called Amplification Breakpoint Ranking and 

Assembly (ABRA) analysis, we nominated KRAS as a gene fusion with the ubiquitin-

conjugating enzyme UBE2L3 in the DU145 cell line- which was originally derived from 

a metastatic prostate cancer to the brain. Interestingly, analysis of tissues revealed that 2 

out of 62 metastatic prostate cancers harbored aberrations at the KRAS locus. In DU145 

cells, UBE2L3-KRAS produces a fusion protein and specific knock-down of the fusion 

attenuates cell invasion and xenograft growth. Ectopic expression of the UBE2L3-KRAS 

fusion protein exhibits transforming activity in NIH 3T3 fibroblasts and RWPE prostate 

epithelial cells in vitro and in vivo. In NIH 3T3 cells, UBE2L3-KRAS attenuates the 

MEK/ERK pathway, which is commonly engaged by oncogenic mutant KRAS, and 

instead diverts signaling to the AKT and p38 MAPK pathways. This is the first report of 

a gene fusion involving Ras family genes and suggests that this aberration may drive 

metastatic progression in a subset of prostate cancers. 
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INTRODUCTION   

To date, oncogenic alterations in the RAS oncogenes have been restricted to activating point 

mutations including the most commonly observed substitutions in codon 12, 13 and 61 of the 

different RAS isoforms 1-3.  Gene fusions involving RAS genes have thus far not been described 

as a class of cancer-related aberrations.  

Consolidating the characteristic features of driving gene fusions in cancer, previously we 

carried out a large-scale integrative analysis of cancer genomic datasets matched with gene 

rearrangement data 4. As part of this analysis, we observed that in many instances, a small subset 

of tumors or cancer cell lines harboring an oncogenic gene fusion, often display characteristic 

amplification at the site of genomic rearrangements 5-9 . High level copy number changes that 

result in the marked over-expression of oncogenes usually encompass the target genes at the 

center of overlapping amplifications across a panel of tumor samples. In contrast,  amplification 

loci usually include only a portion of fusion genes, and are considered secondary genetic lesions 

associated with disease progression, drug resistance, and/or poor prognosis5,7-11. Thus, a 

“partially” amplified cancer gene may be indicative that this gene participates in a genomic 

fusion event important in cancer progression. This is the result of several independent genetic 

accidents including the formation of the gene fusion and subsequent amplification, suggesting 

possible selective pressure in cancer cells for this aberration. To systematically analyze this 

aspect, we developed an integrative genomic approach called amplification breakpoint ranking 

and assembly (ABRA) to discover causal gene fusions from cancer genomic datasets. 

To uncover driving gene fusions contributing to prostate cancer progression, we applied 

ABRA analysis to genomic data from ten prostate cancer cell lines. Most interestingly, this led to 

the identification of a KRAS gene fusion in a rare subset of metastatic prostate cancer. This is the 
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first description of a mutant chimeric version of KRAS and may represent a new class of RAS 

aberrations. 

 

RESULTS 

According to the fusion breakpoint principle previously described 4, amplifications associated 

with gene fusions usually involve the 5’ region of 5’ partners, and 3’ region of 3’ partners. 

Further, the amplification levels of 5’ and 3’ fusion genes will be similar due to their co-

amplification as a single fusion gene. This rationale was used to assemble putative gene fusions 

associated with amplification breakpoints by matching the amplification levels of candidate 5’ 

and 3’ partners. We initially focused this analysis on cancer cell lines, as breakpoint analyses are 

more reliable in uniform cellular populations as opposed to tumors, which are often admixed 

with non malignant cells, diluting genomic aberration profiles. 

The ABRA approach was tested using a high resolution single nucleotide polymorphism 

microarray (aSNP) dataset 5 generated from 36 leukemia cell lines including the K-562 chronic 

myeloid leukemia cell line known to harbor the amplified BCR-ABL1 fusion 14. We inferred the 

relative DNA copy number data and identified all 5’ and 3’ amplified genes from the 36 cell 

lines (≥2 copies). In this dataset, ABL1 was the top ranking gene with a 3’ copy number increase. 

The amplification levels of all 5’ amplified genes in K-562 were then matched with ABL1 to 

nominate potential 5’ partners. In total, six 5’ amplified genes were found in K-562 and five 

matched the level of ABL1 3’ amplification. After curation of the amplification breakpoints, BCR 

and NUP214 were nominated as ABL1 fusion partner candidates. This demonstrated the 

feasibility of this method in nominating driver gene fusions from genomic datasets. 
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To nominate novel gene fusions in advanced prostate cancer cells, we applied this method to 

an array comparative genomic hybridization (aCGH) dataset of 10 prostate cancer cell lines. 

Interestingly, the top candidate nominated in the ETS gene fusion-negative prostate cancer cell 

line, DU145, was the KRAS locus exhibiting a clear breakpoint accompanied by a 3’ 

amplification of KRAS (Figure 2.1a, left panel,).  This result was particularly intriguing 

considering that activating point mutations of KRAS are rarely seen in prostate cancer 13. 

Interestingly, the activation of downstream signaling intermediaries of the RAS-MAPK pathway 

have been observed in prostate cancer by a number of studies 15-17. To assemble amplification 

breakpoints in the KRAS gene with more confidence, we carried out replicate array CGH 

hybridizations for DU145. Matching the amplification level of KRAS with the 5’ amplified genes 

from DU145 cells we identified 10 potential 5’ partner candidates that were suggested by either 

of the two array CGH hybridizations. After curation, C14orf166, SOX5 and UBE2L3 were 

shortlisted as the top 5’ partner candidates for KRAS (Figure 2.1a, right panel)  

To experimentally assess the predicted fusions of C14orf166-KRAS, SOX5-KRAS and 

UBE2L3-KRAS, we designed primer pairs from the first exons of candidate 5’ partners and last 

exon of KRAS, as well as the exons across the breakpoints. Reverse transcription polymerase 

chain reaction (RT-PCR) analysis of DU145 cells identified a specific fusion band for UBE2L3-

KRAS but not for the other candidates. Sequencing of the RT-PCR product confirmed the fusion 

of the UBE2L3 exon 3 to the KRAS exon 2, schematically depicted in Figure 2.1b. To assess the 

expression level of the UBE2L3-KRAS fusion transcripts, we analyzed a panel of prostate cell 

lines by SYBR green quantitative PCR (QPCR) (Figure 2.1c) and RNase protection assay. 

UBE2L3-KRAS was highly expressed in DU145 cells but not in the other prostate cancer cell 

lines; this was further confirmed by paired-end transcriptome sequencing of DU145 cells. 



28 
 

Importantly, RNAseq also confirmed that the fusion allele of KRAS from DU145 cells did not 

harbor canonical activating mutations, suggesting that the fusion may represent the oncogenic 

aberration in this sample. 

 To characterize the chromosomal rearrangements involving UBE2L3 and KRAS loci in 

DU145, we carried out fluorescence in situ hybridization (FISH) analysis.  Using KRAS split 

probe and UBE2L3-KRAS fusion probe, DU145 cells clearly showed a rearrangement at the 

KRAS genomic locus and fusion with UBE2L3 (Figure 2.1d).  In addition, we also observed low 

level amplification (3 copies) of the UBE2L3-KRAS fusion consistent with its nomination by the 

ABRA approach. To extend our studies to prostate cancer tissues we carried out a combination 

of KRAS split probe FISH (n= 103 total cases) and array CGH breakpoint analysis (n=218 total 

cases) of 259 clinically localized prostate cancers, and 62 metastatic prostate cancers from the 

University of Michigan and Memorial Sloan Kettering Cancer Center (MSKCC).  Interestingly, 

while clinically localized cases did not show aberrations at the KRAS locus, we identified 2 out 

of 62 metastatic prostate cancers that harbored a rearrangement at the KRAS locus (Figure 

2.1d).  One of the index cases, PCA0216, which was a soft tissue metastasis, was validated by 

both array CGH and FISH; while the other index PCA0211 was a bone metastasis and was 

validated by arrayCGH (but optimal hybridization for FISH analysis was not achieved following 

decalcification protocol)  (Figure 2.1d).  Interestingly, the available gene and exon expression 

data for case PCA0211 suggested that this case was ETS fusion negative, and exhibited high 

expression of KRAS Exons 2-6 (not Exon 1) similar to the DU145 cell line. 

 We next examined expression of the UBE2L3-KRAS protein.  The predicted 296 amino 

acid fusion protein trims 17 amino acids from the C-terminus of UBE2L3 (Figure 2.2a). The full 

length KRAS protein is preserved, with a 4 amino acid insertion between UBE2L3 and KRAS. 
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Using both a monoclonal antibody raised against the Ras family and a polyclonal antibody 

specific to KRAS, we detected a 33 kDa fusion protein in addition to the 21 kDa band 

corresponding to wild-type KRAS in DU145 cells (Figure 2.2b).  Specificity of the band 

corresponding to the predicted UBE2L3-KRAS protein was confirmed by siRNA based knock 

down of KRAS, UBE2L3 and the chimeric junction of UBE2L3-KRAS.  The UBE2L3-KRAS 

protein was found specifically in DU145 cells and not in a panel of other prostate cell lines 

(Figure 2.2c). Specific expression of the protein was also independently confirmed by mass 

spectrometric assessment of DU145 cells using a multiple reaction monitoring (MRM) assay 

(which does not require antibody based detection) (Figure 2.2d). Over-expression of UBE2L3-

KRAS in HEK293 cells, however, did not result in detectable fusion protein. Interestingly, in the 

presence of the proteosomal inhibitor, bortezomib, expression of the fusion protein was clearly 

apparent suggesting decreased stability of the fusion protein in the over-expression system 

(Figure 2.2c). 

 UBE2L3 is a ubiquitin-conjugating enzyme (E2) 18 and may account for the apparent 

instability of the fusion protein. We therefore attempted to detect possible ubiquitination of 

UBE2L3-KRAS protein. We identified a Rat anti-Ras monoclonal antibody which precipitated 

the 33kDa UBE2L3-KRAS protein as well as additional bands in the 40-55kDa region which 

were specific to HEK 293T cells expressing the fusion. These shifted bands are recognized by 

both anti-Ras and anti-HA tagged ubiquitin antibodies, and their molecular weights match the 

prediction for ubiquitinated fusion proteins. We further detected these ubiquitinated UBE2L3-

KRAS proteins in DU145 cells. These data suggest that the UBE2L3-KRAS protein is 

ubiquitinated, which may contribute to its decreased stability. 
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 To determine the function of the UBE2L3-KRAS fusion, we over-expressed it in NIH 

3T3 cells, a system classically used to study RAS biology 1,19. Of note, enforced expression of 

UBE2L3-KRAS induced loss of fibroblast morphology, increased cell proliferation and foci 

formation (Figure 2.3a-b). Cell cycle analysis revealed an increase in the S phase fraction of 

cells. To determine the effects of UBE2L3-KRAS expression on tumor growth in vivo we 

implanted nude mice with the stable NIH 3T3 vector control cells or NIH 3T3 UBE2L3-KRAS 

fusion expressing cells.  We observed robust tumor formation by the UBE2L3-KRAS expressing 

cells but not the vector transfected cells (Figure 2.3c). To interrogate the potential RAS-related 

signaling pathways engaged by UBE2L3-KRAS in NIH 3T3 cells we carried out a series of 

immunoblot analyses on key signaling intermediaries. As reported in the literature for NIH 3T3 

cells, KRAS is a stronger inducer of the MEK/ERK cascade; whereas HRAS is a stronger 

activator of the PI3K/AKT pathway 6. Interestingly, UBE2L3-KRAS over-expression resulted in 

attenuated endogenous MEK and ERK phosphorylation (Figure 2.3d) in NIH 3T3 cells, instead, 

the signaling was directed to AKT and p38 MAP Kinase cascades, both of which have been 

implicated in prostate cancer 15,17. 

As activation of the MEK-ERK pathway is dependent on membrane attachment of Ras 

proteins, we investigated their sub-cellular localization using immunofluorescence assays. 

Interestingly, Ras proteins, which are normally distributed in the cytoplasm, were found to be 

highly enriched in the late endosome after ectopic expression of UBE2L3-KRAS fusion in 

NIH3T3 cells. We speculate that this relocation of Ras proteins may decrease their association 

with the cellular membrane, and possibly enhance the growth-factor receptor signaling in the 

endosome. 
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 To investigate the role of the UBE2L3-KRAS fusion in a prostate background, we over-

expressed the fusion in RWPE prostate epithelial cells. The expression of the fusion protein was 

enhanced by incubation with bortezomib (Figure 2.4a, insert). Over-expression of the UBE2L3-

KRAS fusion in RWPE cells led to increased cell invasion, proliferation, and a transient increase 

of tumor growth in nude mice (Figure 2.4a). It is notable that in the RWPE model, signaling 

pathway analysis did not reveal inhibition of the MEK/ERK pathway or activation of AKT/p38 

MAPK, (data not shown). Although the MEK inhibitor U0126 inhibits the invasion of RWPE 

cells over-expressing either wild type or mutant KRAS, treatment of RWPE cells over-

expressing the fusion continued to exhibit invasive properties in the presence of U0126, 

suggesting that downstream effectors other than MEK/ERK may be engaged by the fusion in the 

prostate context. 

To further confirm the function of endogenous UBE2L3-KRAS in DU145 cells, we 

performed stable knock-down of UBE2L3-KRAS fusion and generated chicken embryo 

chorioallantoic membrane and mouse xenograft models. This resulted in decreased cell invasion 

and proliferation in vitro, as well as the inhibition of tumor formation in the in vivo models 

(Figure 2.4b-c). 

 

DISCUSSION 

The addiction of cancer cells to causal gene fusions often results in in vivo amplification, which 

may be exploited to reveal unbalanced recurrent gene rearrangements. Based on this rationale, 

we developed an integrative genomic-based approach called ABRA to explore driving gene 

fusions contributing to the progression of prostate cancer. This led to the nomination of the 

UBE2L3-KRAS fusion in DU145 prostate cancer cells. This fusion encodes a protein 
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encompassing most of the UBE2L3 protein and full length KRAS, which is ubiquitinated in 

DU145 cells.  Importantly, recurrent genomic rearrangements at the KRAS locus were found in 2 

out of 62 metastatic prostate tumors in addition to the DU145 metastatic prostate cancer cell line.  

While a number of oncogenic activating point mutations of KRAS have been identified, this is the 

first description of a mutant chimeric version of KRAS that is oncogenic and thus may represent a 

new class of cancer-related alteration. Consistent with this finding, we recently described gene 

fusions of BRAF and RAF1 in 1-2 % of prostate tumors, further implicating the RAS-RAF-

MAPK signaling pathway in subsets of prostate cancer20. 

While both KRAS G12V and UBE2L3-KRAS exhibit an oncogenic phenotype in vitro and 

in vivo, UBE2L3-KRAS over-expression leads to attenuation, rather than activation, of the 

MEK-ERK pathway in NIH 3T3 cells. Instead, it appears that the KRAS fusion enriches Ras 

proteins in the endosome, and switches signaling to the AKT and p38 MAPK cascades. This 

observation may have important implications in understanding the biology of this most studied 

proto-oncogene. Future studies will be needed to elucidate the details of how chimeric KRAS 

engages endogenous RAS- related signaling pathways in the context of prostate cancer. 

 

MATERIALS AND METHODS 

Amplification Breakpoint Ranking and Assembly. The microarray CGH data from prostate 

cancer cell lines were segmented by the circular binary segmentation (CBS) algorithm 21, and the 

genomic position of each amplification breakpoint was mapped with the genomic regions of all 

human genes. The 3’ amplified genes were rated by their rConSig Score, which identify KRAS as 

the top candidate. Matching the amplification level of 3’ KRAS with 5’ amplified genes from 

DU145 nominated UBE2L3, SOX5 and C14orf166 as 5’ partner candidates. 
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Reverse Transcription PCR, Nuclease protection assay and Fluorescence In Situ 

Hybridization. RT-PCR with the fusion primers confirmed the UBE2L3-KRAS fusion in DU145 

cells. Fusion qPCR was performed on a panel of prostate cancer cell lines (StepOne Real Time 

PCR system, Applied Biosystems). Ribonuclease protection assays were performed utilizing a 

230 bp fragment spanning the UBE2L3-KRAS fusion junction.  Interphase FISH was done on 

cell lines, paraffin-embedded tissue sections, and tissue microarrays using bacterial artificial 

chromosome probes. 

Western Blotting and Multiple Reactions Monitoring Mass Spectrometry. Lysates from 

DU145, PrEC, RWPE, 22RV1, VCaP and PC3 cells, either untreated or treated with 500nM 

bortezomib for 12 hours, were probed with anti-RAS monoclonal (Millipore) and anti-KRAS 

rabbit polyclonal antibodies (Proteintech Group Inc). Cell lysates from DU145 and LnCaP cells 

treated with bortizomib were analyzed by Multiple Reactions Monitoring Mass Spectrometry to 

identify the fusion peptides. 

In Vitro Overexpression and Stable Knockdown of UBE2L3-KRAS Fusion. Expression 

plasmids for UBE2L3-KRAS were generated with the pDEST40 (with or without 5’ FLAG) and 

pLenti-6 vectors (without 5’FLAG). The expression plasmids were introduced into HEK (5’ 

FLAG-UBE2L3-KRAS pDEST40 vector), NIH/3T3 (UBE2L3-KRAS pDEST40 vector) and 

RWPE cells (UBE2L3-KRAS pLenti-6 vector) using standard protocols. The prostate cancer cell 

line DU145 was infected with lentiviruses with scrambled shRNA or UBE2L3-KRAS shRNA, 

and stable cell lines were generated by selection with puromycin (Invitrogen).  

Cell Proliferation, Invasion and Pathway Analysis, Xenograft Mice Model. Cell counting 

analysis and basement membrane matrix invasion assays were performed as described previously 

22,23. Protein lysates from NIH/3T3 stable cell lines expressing UBE2L3-KRAS, V600E mutant 
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BRAF, G12V mutant KRAS, and vector controls were probed with phospho and total MEK1/2, 

p38 MAPK, Akt, and ERK antibodies (Cell Signaling Technologies). The stable NIH/3T3 and 

RWPE cells expressing UBE2L3-KRAS, and pooled or single clone population of DU145 cells 

with the stable knockdown of UBE2L3-KRAS were implanted subcutaneously into nude mice. 
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  Figure 2.1. Identification and characterization of a novel KRAS rearrangement in metastatic prostate cancer. (a) Left panel, 
amplification breakpoint analysis and ConSig scoring of 3’ amplified genes from a panel of advanced prostate cancer cell lines nominated 
KRAS as a top fusion gene candidate with 3’amplification in the DU145 prostate cancer cells. The ConSig scores are depicted by the yellow line 
and the level of 3' amplification for each 3' fusion gene candidate is depicted by red columns. Right panel, matching the amplification level of 5’ 
amplified genes in DU145 cells nominates SOX5, C14orf166, and UBE2L3 as 5’ fusion partner candidates for KRAS. The relative quantification 
of DNA copy number data from the genomic regions 1Mb apart from the candidate fusion genes is shown. The x axis indicates the physical 
position of the genomic aberrations. The fusion partners are indicated by grey arrows. (b) Schematic of sequencing result from Reverse 
Transcription PCR revealing fusion of UBE2L3 with KRAS in DU145. Structures for the UBE2L3 and KRAS genes have their basis in the 
Genbank reference sequences. The numbers above the exons (indicated by boxes) indicate the last base of each exon. Open reading frames are 
shown in darker shades. The exons of UBE2L3-KRAS fusion are numbered from the original reference sequences. Line graphs show the 
position and DNA sequencing of the fusion junction. (c) A panel of prostate cancer cell lines was analyzed for UBE2L3-KRAS mRNA 
expression by SYBR assay with the fusion primers. * NPP, normal prostate pool. (d) Left panel, the genomic organizations of UBE2L3 and 
KRAS loci were shown in the schematic, with red and green bars indicating the location of BAC clones. Genes are shown with the direction of 
transcription indicated by the arrows and exons indicated by bars. Right panel, FISH assay (upper) and copy number data analysis (lower) 
confirms the fusion of UBE2L3 to KRAS in DU145 cells and recurrent rearrangements at the KRAS locus. Left FISH figure shows three copies 
of fusion signals as indicated by yellow arrows, using co-localizing probes for the fusion. Right FISH figure shows triplicate KRAS 3’ signals in 
DU145, and 3’ deletion of KRAS in a metastatic prostate tumor, PCA0216, using probes that tightly encompass the KRAS locus. Relative 
quantification of copy number array CGH data at the KRAS locus in DU145, metastatic prostate tumors PCA0211 and PCA0216 are shown in 
the lower panel. 
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Figure 2.2. Characterization of the UBE2L3-KRAS fusion protein. (a) Schematic representations of UBE2L3, 
KRAS and the predicted UBE2L3-KRAS fusion protein. (b) Expression of the UBE2L3-KRAS fusion protein in 
DU145 cells. Immunoblot analysis of DU145 cells using an anti-RAS mouse monoclonal antibody and an anti-
KRAS rabbit polyclonal antibody detects a 33kDa fusion protein specific to DU145 cells. siRNA duplexes 
employed are indicated. β-actin was used to demonstrate equal loading. (c) Survey of the UBE2L3-KRAS fusion 
protein in a panel of prostate cancer cell lines and stabilization of protein expression with a proteosomal inhibitor, 
bortezomib.  Cell lines are indicated and treated in the presence or absence of 500nM bortezomib for 24 hours. 
HEK293 cells were transfected with an expression construct encoding UBE2L3-KRAS.  Immunoblot analysis was 
carried out using KRAS polyclonal and RAS monoclonal antibodies.  (d) Mass spectrometric assay for the detection 
of the UBE2L3-KRAS protein in DU145 cells. An MRM-MS assay was developed to detect the UBE2L3-KRAS 
fusion protein. Upper panel, sequence of the UBE2L3-KRAS fusion protein with amino acids colored in red from 
UBE2L3 and colored in green from KRAS. Tryptic peptides used for MRM-MS analysis are underlined. Matrix 
represents positive measurement (highlighted in red) of peptides from corresponding gel fraction of DU145, LNCaP 
and VCaP whole cell lysates. 
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Figure 2.3. Transforming activities of the UBE2L3-KRAS fusion in NIH 3T3 cells. (a) Overexpression of 
UBE2L3-KRAS in NIH 3T3 cells increases cellular proliferation. pDEST40 represents an empty vector. (b) 
Overexpression of UBE2L3-KRAS induces foci formation in NIH 3T3 cells. Oncogenic KRAS G12V was used as a 
positive control with respective empty vectors as negative controls (pDEST40 and pBABE). Photographs of 
representative plates are shown in the upper panel and quantification of foci formation is shown in the bar graph of 
the lower panel. (c) The UBE2L3-KRAS transfected NIH 3T3 cells form tumors in nude mice. Stable polyclonal 
populations of NIH 3T3 cells expressing either the vector or UBE2L3-KRAS fusion gene were injected 
subcutaneously into nude mice. Tumor growth was monitored from day 7 to day 15 as indicated. The insert shows 
the presence of the fusion protein in the stably transfected NIH 3T3 cells which is further stabilized upon 
bortezomib treatment. (d) Investigation of the downstream signaling pathways engaged by the UBE2L3-KRAS 
fusion in NIH 3T3 cells. Lysates prepared from stably transfected NIH 3T3 polyclonal populations and vector 
controls were subject to immunoblot analysis for phospho- and total MEK, ERK, AKT and p38 MAPK. Oncogenic 
BRAFV600E and KRASG12V were included as controls. β-actin was used as a loading control.  
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Figure 2.4. The oncogenicity of UBE2L3-KRAS fusion in the prostate context. (a) Expression of the UBE2L3-
KRAS fusion in RWPE benign prostate epithelial cells leads to increased cellular proliferation and invasion. Left, the 
results of cell proliferation assays using stable RWPE cell clones infected with either the pLenti-6 vector or UBE2L3-
KRAS. The inset shows the 33kd fusion protein detected only in the fusion transfected cells treated with bortezomib 
to enhance protein stability (data from a representative clone is shown (Clone 2)). Right, modified Boyden chamber-
matrigel assays using the pLenti-6 vector and the fusion expressing cells (Clone 2). Invading cells were stained with 
crystal violet and quantitated. DU145 prostate cancer cells were used as a positive control. (b) Knockdown of the 
UBE2L3-KRAS fusion reduces cell proliferation and invasion in DU145 cells. Left, cell growth relative to the 
control shRNA was monitored using WST-1 assay for 6 days. Insert shows the immunoblot analysis for the 33kd 
fusion protein detected using Ras monoclonal antibody. Right, results of matrigel invasion assay for DU145 pool and 
clone with UBE2L3-KRAS knock-down. Scrambled shRNA duplexes are used as control. (c) Knock-down of the 
UBE2L3-KRAS fusion attenuates prostate tumor growth in mouse xenograft models. The figure shows a plot of 
mean tumor volume trajectories over time for mice inoculated with DU145 pool (red) or single clone (green) after 
UBE2L3-KRAS stable knock-down. Error bars represent the standard error of the mean at each time point. (d) A 
summary of RAS-RAF signaling pathways in relation to recurrent gene fusions characterized in prostate cancer. 
Genes that participate in fusion events are indicated in red.  In parenthesis are the percentage of prostate cancers 
harboring aberrations in the ETS family, RAF family, and KRAS gene locus. * ETS family members involved in 
gene fusions include ERG, ETV1, 4, and 5. Figure adapted and modified from: Gioeli, Kraus, Weber et al, Current 
Clinical Oncology: Prostate Cancer. 
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CHAPTER 3 

 

OUTLIER KINASES IN INDIVIDUAL CANCER SAMPLES REPRESENT 
PERSONALIZED THERAPEUTIC TARGETS 

 

SUMMARY 

Cancer-specific oncogene ‘dependence’ provides the basis for targeted therapeutic approaches. 

Protein kinases provide some of the most effective targets in personalized cancer treatment; 

therefore determination of tumor-specific kinase aberrations is a major objective of cancer 

genomic analyses. In this study, we analyzed high-throughput transcriptome sequencing data 

from a compendium of 485 cancer and benign samples from 25 different tissue types to delineate 

sample-specific ‘kinome’ expression profiles. Comparing gene expression data across different 

sample sets, we identified distinct ‘outlier kinases’ in individual cancer samples, defined as 

genes showing the highest levels of absolute and differential expression. In pancreatic cancer, 

frequent outlier kinases included therapeutic targets like MET, MST1R, AKT2, EPHA2, AXL, 

and PLK2, distinct from breast cancer where predominant outlier kinases included ERBB2, RET, 

and FGFR4 etc.. These outlier kinases were found to impart sample-specific dependencies in 

various cell lines tested by siRNA knockdown or therapeutic inhibition, both in vitro and in vivo. 

Interestingly, we observed that a subset of KRAS-dependent pancreatic cancer cell lines display 

outlier expression of polo-like kinases (PLKs) and show increased sensitivity to the PLK 

inhibitor BI6727 in combination with KRAS knockdown. Together, our results suggest that 

outlier kinases represent effective personalized therapeutic targets that are readily identifiable 

through clinical RNA-sequencing of tumors.  
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INTRODUCTION  

The dependence of cancers on a primary driver gene known as ‘oncogene addiction’1 forms the 

guiding principle of targeted therapy  that has had some outstanding successes, such as imatinib 

for BCR-ABL-positive chronic myeloid leukemia, Herceptin and  lapatinib for ERBB2-positive 

breast cancers, gefitinib for lung cancers with kinase domain mutations in EGFR, and more 

recently crizotinib for lung cancers with ALK gene fusions. Evidently, protein kinases  are the 

mainstay of a majority of the current targeted therapeutic strategies for cancers, and inhibitors of 

several common driver kinases such as AKT, BRAF, CDKs, KIT, RET, SRC, MAPKs, MET, 

PIK3CA, PLKs, AURKs, S6Ks, and VEGFR are under various stages of clinical use, trials or 

development 2,3. While activating somatic mutations or amplifications are associated with some 

of these genes, overexpression of kinases (presumably resulting from underlying cancer genomic 

aberrations) is often a strong indicator of increased activity that may impart dependence on 

cancer cells.     

Pancreatic cancer is the 4th leading cause of cancer related deaths in the U.S., with the 

worst prognosis (5 year survival < 3%) of all major malignancies 4, attributed to diagnosis of the 

disease at an advanced, unresectable stage and poor responsiveness to chemo-/ radiation-therapy 

5,6. The overarching oncogenic driver of pancreatic cancer is mutant-KRAS that has eluded 

therapeutic interventions 7,8, spurring the search for alternative targets 8. The identification of 

distinct kinases in independent screens for synthetic lethal interactors of KRAS 9-11 led us to 

systematically explore potential ‘personalized kinase targets’ in a panel of pancreatic cancer cell 

lines, based on kinome expression profiling.     

 Next-generation sequencing of cancer transcriptomes affords a direct readout of gene 

expression that offers significant advantages over microarrays in terms of throughput, 
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eliminating probe bias, and simultaneous monitoring of diverse components of transcriptome 

biology 12, including gene expression 12-15, alternative splicing 16,17, chimeric/-readthrough 

transcripts 18,19 and non-coding transcripts 20. Here, we set out to use transcriptome data from a 

compendium of 485 cancer and benign samples from 25 different tissue types to carry out gene 

expression profiling of the complete complement of kinases in the human genome, the kinome, 

to identify ‘individual sample-specific outlier kinases’ inspired by the concept of cancer outlier 

profile analysis (COPA)21,22. Importantly, while COPA analysis was used to identify subsets of 

samples displaying outlier expression of candidate genes, here we interrogated individual 

samples to identify outlier genes, focusing on kinases that display the highest levels of absolute 

expression among all the kinases in a sample and the highest levels of differential expression 

compared to the median level of expression of the respective gene(s) across the compendium. 

We hypothesized that such sample-specific outlier kinases may impart ‘dependence’ on the cells 

due to extremely high expression and thus potentially provide personalized therapeutic targets.  

Here, we analyzed the expression profiles of breast and pancreatic cancer kinomes to 

identify sample-specific outlier kinases. Focusing on cell lines displaying outlier expression of 

kinases with available therapeutics, we tested their dependence on specific outlier kinases 

compared with random targets using siRNA/ small molecule inhibitors to test their effects on cell 

proliferation. Using this approach we identified several cell line-specific dependencies as well as 

kinase targets showing enhanced effects with ERBB2-inhibition in breast and KRAS-knockdown 

in pancreatic cancer cells.   

RESULTS 

Delineation of cancer specific kinome outlier profiles using transcriptome sequencing data  



44 
 

Taking advantage of the direct and unbiased readout of gene expression in terms of defined 

RNA-Seq reads, we carried out a systematic analysis of the human kinome expression in cancer. 

RNA-Seq-based normalized read-counts of all 468 kinases available in our transcriptome 

compendium, comprised of 485 samples from 25 different tissue types, revealed distinct kinases 

expressed at very high levels- both in absolute terms and in the context of their typical range of 

expression levels-  in virtually all samples examined. Querying individual breast cancer samples 

(123 samples) for kinases that display the highest levels of absolute expression among all the 

kinases in an individual sample (>20 RPKM) and the highest levels of differential expression 

compared to the median level of expression of the respective gene(s) across the compendium of 

non-breast samples (>5 fold), we identified common outlier kinases across the cohort of breast 

cancer samples (Figure 3.1A). Thus, for example, all breast cancer cell lines known to be 

ERBB2-positive scored an outlier expression of ERBB2.  Interestingly, many ERBB2-positive 

cell lines also displayed outlier expression of additional therapeutic target kinases like 

RPS6KB1, FGFR4, and RET, among others (Figure 3.1A, inset; Figure 3.2). Multiple outlier 

kinases in individual cancer samples could represent multiple therapeutic avenues and were thus 

explored further.   Similarly, kinome expression data from 22 pancreatic cancer cell lines and 18 

tissues revealed a set of kinases specifically overexpressed in pancreatic cancers as compared to 

other tissues and cell lines (Figure 3.1B). Assessment of outlier kinases in pancreatic and breast 

cancer cohorts revealed distinct outlier kinase profiles between the two diseases. For example, 

common outlier kinases in breast cancer included ERBB2, FGFR4, and RET, while kinases 

displaying outlier expression across multiple pancreatic cancer samples included EPHA2, 

MST1R, MET, PLK2, and AKT2. Interestingly, AXL and EGFR demonstrated outlier 

expression in both pancreatic and breast cancer samples. 
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FGFR4 as a targetable outlier kinase in ERBB2-positive breast cancer cell lines 

Among the ERBB2-positive breast cancer cell lines analyzed, ZR-75-30 exhibited singular 

outlier kinase expression of ERBB2, whose knockdown resulted in a strong growth inhibition, 

while knockdown of RPS6KB1, another oncogenic kinase with potent activity in the mTOR 

signaling pathway, did not have any effect on the proliferation rate of ZR-75-30 cells (Figure 

3.2).  Among the additional kinases showing outlier expression in ERBB2-positive samples, 

FGFR4 was observed frequently, such as in MDA-MB-361 and MDA-MB-453 (Figure 3.2), as 

well as in MDA-MB-330, HCC202, and HCC1419. To assess the significance of FGFR4 outlier 

expression in the backdrop of ERBB2 overexpression, MDA-MB-361 and MDA-MB-453 cells 

were treated with Herceptin and or short hairpin RNA-encoding lentiviral constructs against 

FGFR4. In MDA-MB-361 cells, targeting ERBB2 using Herceptin had no effect on cell 

proliferation, while shRNA-mediated knockdown of FGFR4 impaired the growth rate of these 

cells significantly (Figure 3.2). In MDA-MB-453 cells, both Herceptin treatment and FGFR4 

knockdown diminished cell proliferation rates significantly, but an even greater effect was 

obtained with combined treatment, demonstrating dependence on both FGFR4 and ERBB2 in 

this cell line.  

 To further examine the dependency of a subset of ERBB2-positive cells on FGFR4, we 

generated Herceptin-resistant sub-lines for MDA-MB-453 cells and BT474, an ERBB2-positive 

breast cancer cell line that does not exhibit FGFR4 outlier expression (Figure 3.3A). Consistent 

with the experiment using Herceptin combined with shRNA-mediated FGFR4 inhibition (Figure 

3.2), MDA-MB-453 cells were found to be independently responsive to both Herceptin and 

PD170374, a small molecule inhibitor of FGFR, with the strongest effect on cell proliferation 

seen upon combined treatment with the two reagents (Figure 3.3B, left). Interestingly, the 
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MDA-MB-453 cells grown to be resistant to Herceptin, continued to display responsiveness to 

the FGFR inhibitor PD170374 (Figure 3.3B, right), suggesting that FGFR4 represents an 

independent therapeutic target in a subset of ERBB2-positive breast cancer cells. Similar effect 

was obtained using another FGFR inhibitor Dovinitib, which significantly decreased cell 

proliferation in both the MDA-MB-453 parental and Herceptin-resistant sub-lines (Figure 3.3C, 

left) but did not affect BT-474 parental or Herceptin-resistant sub-lines (Figure 3.3C, right). 

Taken together, these results suggest that a subset of ERBB2-positive breast cancers that display 

outlier expression of FGFR4 may respond to combined treatment more effectively compared to 

only ERBB2-directed therapy.  

Pancreatic cancer cell lines are sensitive to knockdown of cell-specific outlier kinases 

Extending the kinome outlier analysis to pancreatic cancer, a tumor type critically lacking in 

rational therapeutic targets, particularly in the realm of actionable kinases, kinome expression 

profiles of individual pancreatic cancer cell lines were used to identify sample-specific outlier 

kinases (Figure 3.4, left). Next, the pancreatic cancer cell lines were tested for effect on cell 

proliferation following siRNA-based knockdown of sample-specific outlier and non-outlier 

kinases. Knockdown of the sample-specific outlier kinases for example EGFR in L3.3, PLK2 in 

MIA-PaCa-2, MET in BxPC-3 and AKT2 in PANC-1 cells, inhibited the proliferation of 

respective cells, (Figure 3.4, middle)., A similar growth inhibition was observed following 

knockdown of MET in HPAC and AXL in Panc08.13 and PL45 cells. Conversely, knockdown 

of the non-outlier kinases AXL in L3.3 and BxPC-3 cells, MET in MIA-Paca-2, and PLK2 in 

PANC-1 cells did not significantly affect cell growth (Figure 3.4, right), as well as PLK2 in 

BxPC-3 and L3.3 cells -despite comparable levels of siRNA-mediated knockdown of target 
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genes. These observations strongly support the notion that outlier kinases represent potential 

therapeutic targets in individual cancer samples.  

 Notably, knockdown of the outlier kinase PLK2 in MIA-PaCa-2 cells did not have as 

profound an effect on cell proliferation as outlier kinase-targeting in many other samples. We 

hypothesized that this could be due to a pervasive influence of oncogenic KRAS in these cells, 

and therefore tested the effect of KRAS knockdown in pancreatic cancer cell lines with PLK 

outlier expression. 

Effect of KRAS knockdown combined with PLK inhibition  

The impact of KRAS knockdown in the context of PLK outlier expression in pancreatic cancer 

cell lines (Figure 3.5, left) was assessed using pooled clones of pancreatic cancer cell lines 

stably transduced with two different inducible shRNAs against KRAS. Following induction by 

doxycycline, the cells expressing KRAS-shRNAs were distinguished by red fluorescence 

(resulting from red fluorescent protein co-expressed with the shRNA) (Figure 3.5, middle). 

KRAS knockdown efficiency of 50% or more was obtained in all the cells tested. Of the cell 

lines tested, knockdown of KRAS significantly inhibited the proliferation of L3.3, MIA-PaCa-2, 

and Panc-03.27, which all harbor oncogenic mutations in KRAS and were designated as KRAS-

dependent (in the context of sensitivity to KRAS knockdown) (Figure 3.5A, right). The BxPC-3 

cells with wild type KRAS as well as HPAC and PANC-1 cells, with mutant KRAS, were not 

affected by KRAS knockdown and were categorized as KRAS-independent (Figure 3.5B, 

right).   

 Incidentally, all three PLK outlier cell lines tested here, L3.3, MIA-PaCa-2 and Panc-

03.27, were found to be KRAS-dependent, based on their reduced proliferation upon KRAS 
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knockdown (Figure 3.5A). Treatment with the PLK inhibitor BI6727 alone significantly 

inhibited cell proliferation only those cell lines with PLK outlier expression (Figure 3.5A, right) 

but had no effect in cell lines without PLK outlier expression (Figure 3.5B, right). The decrease 

in cell proliferation following BI6727 treatment was associated with increased apoptosis, as 

measured by flow cytomteric analysis of Annexin V/Propidium Iodide-stained cells 

(Supplemental figure S2A) Further, treatment with BI6727 in combination with knockdown of 

KRAS enhanced the inhibition of cell proliferation in the KRAS-dependent, PLK outlier cells 

(Figure 3.5A, right) but had no effect in the KRAS-independent cells without PLK outlier 

expression (Figure 3.5B, right). Investigating the likely reason for intriguing lack of sensitivity 

to KRAS knockdown in a subset of pancreatic cancer cells harboring oncogenic KRAS, we 

observed that following KRAS knockdown, the levels of phospho-ERK, one of the major 

effector proteins in the RAS signaling pathway, were reduced in the KRAS-dependent cell lines 

L3.3 and MIA-PaCa-2 but not in the KRAS-independent cell line PANC-1, in which kinase 

activity was likely sustained by other outlier kinases.  Interestingly, the KRAS-independent cell 

lines BxPC-3 and PANC-1 did respond to inhibition of their respective outlier kinases, both in 

vitro (Figure 3.4, middle) as well as in vivo, described below.  

XL184 treatment in BxPC-3 and PANC-1 pancreatic cancer xenografts 

To test the effect of inhibiting sample-specific outlier kinases in vivo, we examined tumor 

xenografts of the KRAS-independent pancreatic cancer cell lines BxPC-3 and PANC-1 

established in NOD/SCID mice, treated with the MET inhibitor XL184. As predicted, growth of 

BxPC-3 cells, which display outlier expression of MET, was significantly inhibited, as measured 

by tumor volume and weight (Figure 3.6A-C). However, growth of PANC-1 cells, which do not 

harbor MET outlier expression, was also significantly inhibited. 
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 As PANC-1 displays significant outlier expression of and dependence on AKT2 (Figure 

3.4), we queried whether the profound inhibitory effect of XL184 on PANC-1 in vivo was 

mediated by non-specific targeting of AKT2. Western blot analysis of PANC-1 xenograft tumor 

lysates revealed markedly decreased phospho-AKT expression after XL184 treatment (Figure 

3.6D). This suggests that XL184 suppresses PANC-1 proliferation through inhibition of AKT 

signaling. Importantly, there was no difference in body weight between treated and untreated 

BxPC-3 and PANC-1 xenografts, demonstrating that XL184 had no significant in vivo toxicity. 

 

DISCUSSION 

The advent of high-throughput sequencing enables a comprehensive characterization of the 

genomic and transcriptomic landscape of individual cancer samples, inexorably leading to the 

challenge of defining and prioritizing clinically relevant findings to translate into improved 

diagnostic and therapeutic options 23,24.  Clinical sequencing of cancers aims to identify 

actionable genomic aberrations and match patients with available therapies. Protein kinases, 

being central to biological and disease processes, including cancer, and being therapeutically 

targetable, comprise a large proportion of available and potential targets; thus any novel disease-

specific kinase aberrations are of great clinical interest. This study proposes and tests the 

hypothesis that specific kinases showing outlier expression in individual cancer samples impart 

‘dependence’ on the cells, which may be targeted in combination with existing treatment 

modalities. Importantly, a case is made for considering the entire profile of kinome aberrations to 

prioritize potentially effective targets.    
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 The ‘sample-centric’ analysis of kinome expression revealed unique profiles of outlier 

kinases that were tested for dependency. Importantly, this approach uncovers multiple potent 

targets in an unbiased manner. For example, the well-known ‘ERBB2-positive’ breast cancer cell 

lines MDA-MB-361 and MDA-MB-453 were found to display outlier expression of the 

additional therapeutic target FGFR4.  Notably, a subset of ERBB2-positive primary breast cancer 

tissues was found to display outlier expression of FGFR4 in Oncomine (data not shown).  

Targeting outlier FGFR4 in ERBB2-positive breast cancer samples was found to confer 

independent as well as additive effects upon their combined knockdown (Figure 3.2), 

highlighting the potential of combining two or more therapeutic targets in treating cancer, even 

in cases with a predominant driver such as ERBB2. Interestingly, we also showed that even after 

the ERBB2-positive cell line MDA-MB-453 becomes resistant to Herceptin treatment, cell 

proliferation still remained dependent on FGFR4 and responded to FGFR inhibitors (Figure 3.3). 

Our results suggest that the ERBB2-positive breast cancers may be partly dependent on 

additional drivers, such as FGFR4, RET, EGFR, and MET, which may sustain these cancers 

despite elimination of ERBB2 activity. Another important corollary to our observations is that 

combinatorial targeting of ERBB2 and additional outlier kinases at the outset may be much more 

effective than approaching one target at a time. Further, each cancer sample needs to be 

investigated individually to rationally determine patient-specific target combinations.  

 Next, we extended the approach of nominating sample-specific outlier kinases to 

pancreatic cancer, which is characterized by a bleak prognosis due to presentation at an advanced 

stage and resistance to tradiational chemoradiation therapy in the setting of its pancreatic cancer 

sanctuary, encompassing tumor stroma, extracellular matrix, tumor infiltrating immune cells, and 

cancer stem cells. Given the paucity of effective targets in pancreatic cancer, the strong response 
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of pancreatic cancer cell lines to knockdown/inhibition of a priori designated outlier kinases is a 

promising lead. Our results also underscore the importance of matching sample-specific 

actionable targets with the appropriate therapeutics. For example targeting MET was found to be 

more effective in pancreatic cancer cell lines with MET outlier expression compared to non-

outlier samples.  Notably, many of our experimental results are consistent with several anecdotal 

studies using kinase inhibitors against EGFR, MET and AKT2 25-29. Considering the outlier 

kinases in pancreatic cancer in the context of the predominant oncogenic KRAS mutation, our 

results suggest that subsets of KRAS-dependent cells are significantly affected upon combined 

inhibition of KRAS and the PLK outlier kinases. Previously Luo et al, demonstrated a synthetic 

lethal interaction between mutant KRAS and PLK in lung and colorectal cancer cell lines 9. 

Further, successful demonstration of the dependence of pancreatic cancer cells on outlier kinases 

in an in vivo setting provides a platform to carry out pre-clinical investigations of primary human 

tumors in mouse ‘avatars’ with unique outlier kinase profiles. Overall, our study provides a 

metric to define and prioritize personalized target spectra specific to individual tumors. 

 

MATERIALS AND METHODS 

Kinome analysis 

Transcriptome sequencing data from 485 cancer and benign samples from 25 different tissue 

types previously generated on Illumina GA and GAII platforms, was mapped using Bowtie 30 

against UCSC genes in hg18 human genome assembly (http://genome.ucsc.edu). Unique best 

match hit sequences normalized for the number of reads per kb transcript per million total reads 

in the given sequencing run (RPKM) 13 were used to generate gene expression data matrix for the 

http://genome.ucsc.edu/
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entire compendium 31. The expression data for the complete list of kinase genes 32 was used to 

identify ‘outlier  kinases’ in individual samples based on their absolute expression (>20 RPKM) 

within the sample and differential expression (>5 fold) across the compendium, as well as 

separately for breast and pancreatic cancer samples. 

Cell culture 

All human breast and pancreatic cancer and benign epithelial cell lines were procured from the 

American Type Culture Collection (ATCC), except the benign immortalized pancreatic epithelial 

cell line HPDE provided by Dr. Diane Simeone and the pancreatic adenocarcinoma cell line L3.3 

obtained from the University of Texas MD Anderson Characterized Cell Line Core (Houston, 

TX). All cell lines were grown in recommended culture media and maintained at 37°C in 5% 

CO2. To ensure cellular identities, a panel of cell lines was genotyped at the University of 

Michigan Sequencing Core using Profiler Plus (Applied Biosystem) and compared with the 

short-tandem repeat (STR) profiles of respective cell lines available in the STR Profile Database 

(ATCC).   

Transcript knockdowns and cell proliferation assays 

ON-TARGETplus siRNA against AKT2, AXL, EGFR, MET, PLK2, and non-targeted control 

(siNTC) from Dharmacon were used at 100nM. Cells were transfected in 6-well plates at a 

density of 50,000 cells per well using Oligofectamine (Invitrogen), as per the manufacturer’s 

protocol. Transfection was repeated 24 hours later, the cells grown for an additional 48 hours, 

and the cells replated at a density of 5,000 cells per well in 24-well plates. Cells were counted 

over a period of 1 to 6 days using Beckman Coulter cell counter (Beckman Coulter). 
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 Transient transductions with shRNA against ERBB2, RPS6KB1, FGFR4, or non-targeted 

control (shNTC) were carried out in 6-well plates in the presence of 8ug/mL Polybrene (Sigma). 

For Herceptin (Trastuzumab; Roche) experiments, cells were grown for 3 days in 24-well plates 

with and without Herceptin (100ug/mL), in combination with FGFR inhibitors PD173074 

(TOCRIS Bioscience) at 1uM or TKI-258 (Dovitinib; Selleck Chemicals) at 0.1 uM.  

 Herceptin-resistant cell lines were generated from MDA-MB-453 and BT-474 by 

maintaining the cells in the continuous presence of 100ug/mL Herceptin over 1 month. Cell 

proliferation assays were carried out over a period of 1 to 7 days using Beckman Coulter cell 

counter and growth curves were plotted using GraphPadPrism software. Standard deviation was 

calculated by one-way ANOVA.  

Generation of stable cell lines with doxycycline-inducible KRAS-shRNA lentiviral 

constructs 

Doxycycline-inducible shRNAmir-TRIPZ lentiviral constructs targeting KRAS or non-targeted 

control (Open Biosystems) were used to transduce a panel of pancreatic cell lines in the presence 

of 8µg/mL Polybrene. Constructs were marked by red fluorescence protein (RFP) expression. 

Forty-eight hours post-transduction, cells were selected in medium containing 1µg/mL 

puromycin (Invitrogen) for 4 days. shRNA expression was induced by growing cells in medium 

containing 1µg/mL doxycycline (Sigma) for 72 hours. The enrichment of stable cells and 

efficiency of shRNA induction were assessed by measuring the percentage of cells displaying 

red fluorescence by flow cytometry (FACSAria Cell Sorter BD Biosciences). Experiments with 

stable cell lines were performed in the presence of 1µg/mL doxycycline, refreshed daily. 

Experiments with the PLK inhibitor BI6727 (Volasertib; Selleck Chemicals) were carried out 
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with cells plated in 96-well culture plates at a density of 3000- 4000 cells/well and treated with 

10nM BI6727 or DMSO. This concentration was selected based on IC50 values calculated from 

prior proliferation assays using 1-500nM BI6727 (data not shown). At 0, 1, 3, and 5 days 

following drug treatment, viable cells were quantified using WST-1 reagent (Roche) and 

absorbance measured at 440nm, as per the manufacturer’s protocol. Growth curves were plotted 

using GraphPadPrism software. Standard deviation was calculated by one-way ANOVA. 

Quantitative real-time PCR assay 

RNA was isolated from cell lysates by the RNeasy Micro Kit (Qiagen), and cDNA was 

synthesized from 1µg RNA, using SuperScript III (Invitrogen) and Random Primers 

(Invitrogen), as per the manufacturer's protocol. SYBR Green (Invitrogen)-based quantitative 

real-time PCR (qPCR) was carried out on StepOne Real Time PCR system (Applied Biosystems) 

using gene specific primers designed with Primer-BLAST and synthesized by IDT Technologies. 

QPCR data were analyzed using relative quantification method and plotted as average fold-

change compared to control siRNA/shRNA treatments. GAPDH was used as an internal 

reference.    

Apoptosis assay 

Apoptosis assay was carried out using ApoScreen Annexin V Apoptosis Kit (Southern Biotech), 

as per the manufacturer’s protocol. Briefly, cells treated for 48 hours with DMSO or increasing 

concentrations of BI6727 were washed with cold PBS, suspended in cold 1X binding buffer, 

stained with Annexin V and Propidium Iodide (PI), and subjected to flow cytometry by 

FACSAria Cell Sorter (BD Biosciences). Results were analyzed and plotted using Summit 6.0 

Software (Beckman Coulter). 



55 
 

 

 

Western blot 

10µg cell or tissue lysates were separated on 4-12% SDS polyacrylamide gels (Novex) and 

blotted on PVDF membranes (Amersham) by semi-dry transfer. Antibodies to phospho-AKT, 

total AKT, phosho-ERK, and total ERK (Cell Signaling) were used at 1:1000 dilutions for 

standard immunoblotting and detection by enhanced chemiluminescence (ECL Prime), as per the 

manufacturer’s protocol.  

In Vivo Tumorigenicity Studies  

Six-week-old male NOD/SCID mice (Taconic) were housed under pathogen-free conditions 

approved by the American Association for Accreditation of Laboratory Animal Care in 

accordance with current regulations and standards of the US Department of Agriculture and 

Department of Health and Human Services. Animal experiments were approved by the 

University of Michigan Animal Care and Use Committee and performed in accordance with 

established guidelines. Mice anesthetized with an intra-peritoneal injection of xylazine (9 mg/kg) 

and ketamine (100 mg/kg) were implanted with 1x106 BxPC-3 or  

PANC-1 cells suspended in 50 µL 1:1 mixture of Media 199 and Matrigel (BD Biosciences) 

injected subcutaneously into their flanks using a 30-gauge needle.  

 When tumors reached 0.4 mm, mice were randomized into control and treatment groups 

(n=8 per group). The MET inhibitor XL184 (Selleck Chemicals) was orally administered at 

30mg/kg twice per week for three weeks. Tumor growth was monitored weekly. Tumor caliper 
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measurements were converted into tumor volumes using the formula: ½[length x (width)2] mm3 

and plotted using GraphPadPrism software. Standard deviation was calculated by one-way 

ANOVA. At three weeks of treatment, mice were weighed and euthanized and the tumors 

harvested. Statistical comparisons were conducted using one-way ANOVA.  
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Figure 3.1: Scatter plot representation of outlier kinases in (A) breast and (B) pancreatic cancer samples. 
Kinases displaying an absolute expression >20 RPKM (reads per kilobase transcript per million total reads) and 
differential expression >5 fold (versus non-breast or non-pancreas samples, respectively) were designated as outliers. 
The colored circles represent salient kinases displaying outlier expression in multiple samples. Examples of sample-
specific kinome profiles are shown in the insets (BT-474 breast cancer and AsPC-1 pancreatic cancer cell lines), with 
kinases displaying high outlier expression highlighted in red. 
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Figure 3.2: Sample-wise outlier kinases in ERBB2-positive breast cancer cell lines. (Left) The 
scatter plots display kinome expression profiles of individual breast cancer cell lines. Kinases 
targeted for knockdown are shown in color. (Right) Growth curves show the effect of targeting 
outlier (ERBB2) versus non-outlier (RPS6KB1) kinases in ZR-75-30 cells and the effects of 
Herceptin and/or knockdown of the outlier FGFR4 in MDA-MB-361 and MDA-MB-453 cells. 
Values represent mean ± SD. **, P<0.01; ****, P<0.0001. 
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Figure 3.3. Herceptin-resistant cell lines respond to targeting of the outlier kinase FGFR4. (A) The growth 
curves show the effect of Herceptin treatment on MDA-MB-453 and BT-474 (left) and their Herceptin-resistant 
sublines (right). (B) The bar graphs demonstrate the individual and combined effects of Herceptin and the FGFR 
inhibitor PD170374 on cell proliferation in MDA-MB-453 (left) and its Herceptin-resistant subline (right). (C) The 
bar graphs display the effect of the FGFR inhibitor Dovitinib on parental and Herceptin-resistant sublines of 
MDA-MB-453 (with FGFR4 outlier expression) and BT-474 (without FGFR4 outlier expression). Values 
represent mean ± SD. ***, P<0.001; ****, P<0.0001. 
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Figure 3.4. Pancreatic cancer cell lines are sensitive to knockdown of outlier kinases. Scatter 
plots display kinome profiles of select pancreatic cancer cell lines; kinases targeted for knockdown 
are shown in color (left). The growth curves display the effects of siRNA-mediated knockdown of 
sample-specific outliers (middle) and non-outliers (right) for each cell line. Values represent mean ± 
SD. ****, P<0.0001. 
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Figure 3.5. Knockdown of KRAS combined with PLK inhibition reduces cell proliferation in 
indicated KRAS-dependent cell lines (A) but not in KRAS-independent cell lines (B). The scatter plots 
demonstrate the absolute and differential expressions of PLK1/2 for each cell line (left). The flow 
cytometric profiles of doxycycline-induced cells expressing KRAS shRNA with RFP expression (red) 
versus un-induced cells (gray) are displayed (middle).The growth curves show the individual and combined 
effects of KRAS shRNA and the PLK inhibitor BI6727, using WST-1 assay (right). Values represent mean 
± SD. ****, P<0.0001. 
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Figure 3.6. XL184 treatment suppresses tumor growth in BxPC-3 and PANC-1 pancreatic cancer 
xenografts. (A) The growth curves demonstrate the effect of the MET inhibitor XL184 on tumor growth in BxPC-
3 and PANC-1 xenografts. (B) BxPC-3 and PANC-1 xenograft tumors after 3 weeks of XL184 treatment are 
shown as compared to the controls. The bar graphs display tumor weight (C) and total body weight (D) after 3 
weeks of XL184 treatment. Values represent mean ± SE. **, P<0.01; ***, P<0.001; ****, P<0.0001. (E) The 
western blot shows the effect of XL184 treatment on phospho-AKT levels in PANC-1 xenografts. 
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CHAPTER 4 

MASS SPECTROMETRIC ANALYSIS IDENTIFIES ARGONAUTE-2 AS A RAS 

INTERACTING PARTNER 

SUMMARY 

Since the discovery of RAS family of small GTPases over thirty years ago, targeting RAS still 

remains an intractable therapeutic target. To potentially expand therapeutic avenues for blocking 

RAS function, we explored endogenous interactors of RAS in a panel of cancer cell lines using 

co-immunoprecipitation mass spectrometry (co-IP MS) and discovered a specific interaction 

between RAS and Argonaute 2 (AGO2), a key component of RNA silencing pathways. In 

fractionated cell lysates, RAS protein co-sediments with AGO2 in membrane fractions, whereas 

in situ the two proteins co-localize in intracellular membrane organelles. Using antibodies that 

bind the Switch regions in RAS, we determined that the Switch II domain was critical for AGO2 

interaction. We also demonstrate a direct, nucleotide independent binding of KRAS and AGO2 

in vitro, using purified components, with the conserved Y64 residue as a critical amino acid. 

Further interaction analysis revealed that the N-terminal “wedge” domain of AGO2 (amino 

acids, aa 112-114) was essential for RAS binding only to the RAS Switch II domain, suggesting 

that unlike RAF, AGO2 is likely not a RAS effector. 
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INTRODUCTION 

Despite extensive characterization of the RAS/GAP molecular switch (es) and downstream 

signaling axes, therapeutic targeting of RAS driven cancers remains elusive, suggesting potential 

gaps in our understanding of the spectrum of RAS mediated signaling
1-3

. 

RAS effectors bind RAS through the conserved Switch I and Switch II domains, and 

drive cellular transformation by activating downstream kinases and GTPase signaling modules. 

These interactors have been identified using conventional approaches of yeast two hybrid 

analysis
4
 and ectopically expressed epitope-tagged RAS constructs 

5,6
. Recently, we performed 

co-immunoprecipitation followed by mass spectrometry (co-IP MS) to analyze the endogenous 

interactome of oncogenic ERG in the prostate cancer cell line VCaP that harbors the TMPRSS2-

ERG gene fusion, and discovered interactions with PARP and DNAPK
7
.  Here, we employed a 

RAS antibody for a similar co-IP MS based strategy to investigate endogenous interactors of 

RAS in a panel of lung and pancreatic cancer cell lines representing the spectrum of KRAS 

mutation status and dependency. Surprisingly, the most prominent interacting protein, across all 

cell lines analyzed, was EIF2C2, commonly known as Argonaute 2 (AGO2), a key effector of 

the RNA silencing pathway. Recent studies have demonstrated a role for AGO2 in RAS induced 

senescence
8,9

. Multiple reports also showed that phosphorylation of AGO2 by MAPK/PI3K 

pathway activators alters its microRNA related function through different mechanisms 
10-13

, 

portending that signaling  molecules may have direct effects on RNA silencing mechanisms 
14

.  

Considering the potential functional implications of RAS-AGO2 interaction, here we 

corroborated and characterized this interaction in detail.    

 

RESULTS 

Endogenous interaction of RAS and AGO2 



67 
 

To analyze RAS-interacting proteins in an endogenous setting, we first used the pan-RAS 

antibody RAS10 
15

, which efficiently immunoprecipitates RAS proteins by binding to the Switch 

I domain (amino acids, aa, 32-40) (Figure 4.1A-C). Co-immunoprecipitation of RAS followed 

by tandem mass spectrometry (RAS co-IP-MS) was performed using NIH3T3 cells ectopically 

overexpressing human wild-type or mutant KRAS and a panel of ten lung and pancreatic cancer 

cell lines of known KRAS mutation status, according to the schema in Figure 4.1D. As expected, 

the spectral counts of peptide fragments obtained through MS analyses showed robust detection 

of the bait protein (RAS) in all of the 12 cell lines analyzed. Intriguingly the RAS co-IP MS 

identified peptides spanning EIF2C2, commonly known as Argonaute 2 (AGO2), the catalytic 

component of the RNA-induced silencing complex (RISC) in NIH3T3 cells expressing KRAS
WT

 

or KRAS
G12V

 , as well as all of the ten cancer cell lines tested (Figure 4.2A). Remarkably, only 

the RAS and AGO2 peptides were consistently detected in every cell line tested, with cumulative 

spectral counts of 576 and 253, for RAS and AGO2 peptides respectively. Analyzing the RAS 

co-IP MS data further, we noted that peptides mapping uniquely to KRAS, NRAS and HRAS 

were readily detected in most cell lines (Figure 4.2B).  By contrast, among all AGO family 

proteins only AGO2 peptides were observed in all of the 12 cell lines (only one peptide uniquely 

mapped to AGO1 in a single sample) (Figure 4.2B).  

 The putative endogenous interaction between RAS and AGO2 was corroborated by 

reciprocal IPs of RAS and AGO2 using two different antibodies for each, in two different lung 

cancer cell lines, H358 and H460 harboring distinct KRAS mutations (Figure 4.2C). Further, 

consistent with the co-IP MS analyses (Figure 4.2A), the RAS-AGO2 interaction was readily 

detected by co-IP followed by immunoblot analysis in two cell lines with wild-type KRAS and 

representative lung and pancreatic cancer cells harboring various activating mutations of KRAS 
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(Figure 4.2D). The RAS-AGO2 interaction was robustly maintained even under a highly 

stringent condition of 1 M NaCl (Figure 4.3A).  Furthermore, this interaction was unaffected in 

the presence of RNase (considering that AGO2 is RNA bound), suggesting that the RAS-AGO2 

is not RNA-dependent (Figure 4.3B-C). RAS was also detected in FLAG immunoprecipitates 

when FLAG-tagged AGO2 construct was expressed in HEK293 cells (Figure 4.3D), further 

corroborating the endogenous co-IP MS observations.  

 

Colocalization of RAS and AGO2 in Membrane Organelle Fractions 

RAS proteins are restricted to the plasma membrane and membranes of various intracellular 

organelles like the endoplasmic reticulum, Golgi, mutivesicular bodies and the mitochondria and 

it is generally accepted that distinct RAS localization affects signaling outputs 
16,17

. On the other 

hand, AGO2 is known to assemble into cytoplasmic messenger ribonucleoprotein particles 

(mRNPs) 
18

., and AGO2 is also known to function inside the nucleus 
19,20

. Studies have also 

detected functional AGO2 complexes in organelle structures like the endoplasmic reticulum 
21

 , 

multi vesicular bodies 
22

 and mitochondria 
23

. To investigate the cellular compartment where 

RAS and AGO2 could interact we performed cell fractionation analysis using H358 cells. As 

expected, AGO2 was detected in the cytoplasm, slightly enriched in the membrane/organelle 

fraction and within the nucleus (Figure 4.4A). The RAS10 antibody detected RAS only in the 

membrane/organelle enriched fraction, indicating that RAS and AGO2 may reside in 

intracellular organellar structures. Further, AGO2 is also known to form low to high molecular 

weight complexes depending on its association with RNA 
18

. Similar sucrose density 

sedimentation analysis of H358 cells showed the presence of total RAS as well as KRAS 

predominantly in smaller molecular weight fractions (Complex I) with AGO2 and AGO1 
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(Figure 4.4B). To demonstrate endogenous RAS and AGO2 co-localization using 

immunofluorescence, we used RAS10 antibody for immunostaining in H358 (KRAS
G12C

) cells 

(Figure 4.5A) and determined the specificity of the RAS10 Ab staining using RAS peptides 

recognized by the antibody prior to immunostaining. As seen in Figure 4.5B, the 

immunostaining by RAS10 was abrogated upon pre-incubation with a RAS peptide that spans 

the RAS10 Ab epitope in the Switch I effector domain (aa 30-39) (right) but not by a RAS 

peptide spanning aa 34-43 (left). To validate the specificity of AGO2 antibodies for 

immunofluorescence analyses, we performed AGO2 immunofluorescence in mouse embryonic 

fibroblast (MEFs) with homozygous knockout of AGO2 (AGO2-/- MEF) and in AGO2-/- MEF 

cells expressing AGO2 (AGO2-/- MEF +AGO2). As expected, AGO2 was detected only in MEF 

AGO2-/- +AGO2 cells (Figure 4.5C), mostly in the intracellular fraction and weaker nuclear 

staining.  Using these experimentally validated, highly specific antibodies, we performed co-

localization analyses for RAS and AGO2 in two independent lung cancer cell lines, H358 

(KRAS
G12C

) and H1793 (KRAS
WT

) (Figure 4.5C-D) and observed a significant overlap in the 

immunofluorescence signals localized within intracellular organelles. The acquired images were 

analyzed using ImageJ software (version 1.41) and as a measure of co-localization, Manders 

coefficient was used to evaluate the overlap in fluorescence 
24

. The Manders co-efficient for 

RAS and AGO2 was assessed as 0.4 and 0.6 in H358 and H1793 cells respectively (a value of 

0.99 is considered as complete overlap while 0 or below signifies no overlap). Together these 

data suggests that a considerable fraction of RAS and AGO2 co-localize in intracellular 

organelles.  

  

AGO2 binds RAS through the wedge domain within its N-terminus 
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Next, to identify specific region(s) in AGO2 involved in the interaction with RAS, a panel of 

FLAG-epitope tagged AGO2 expression constructs (summarized in the schematic in Figure 

4.6A) was employed. RAS co-IP analysis of the FLAG tagged AGO2 deletion constructs showed 

that the N-terminal domain of AGO2 was necessary (Figure 4.6B) and sufficient (Figure 4.6C) 

for RAS binding. Further analysis of a panel of deletion constructs spanning the N-terminal 

domain suggested that the region spanning 50-139 amino acids was critical for RAS binding 

(Figure 4.7A). Interestingly, this stretch of amino acids was recently shown to be part of the so 

called “wedging” domain, important for microRNA duplex unwinding prior to RISC assembly 

25
. To further define AGO2 residues critical for interaction with RAS, we focused on amino acid 

residues within the aa 50-139 stretch that are unique to AGO2 (as compared to AGO1, 3 and 4), 

considering that amongst the Argonaute family proteins, AGO2 was almost singularly 

represented in the RAS co-IP MS data. ClustalW alignment of all human Argonaute proteins 

(AGO1-4) was used to identify the amino acid residues that are unique to AGO2 in the wedging 

domain (Figure 4.7B). Alanine substitution of each of the 10 residues unique to AGO2 within 

the aa 50-139 stretch was followed by RAS co-IP analysis, and amino acids K112 and E114 of 

AGO2 were found to be critical for a direct association with RAS (Figure 4.7C).  

 

Y64 residue within the Switch II domain of RAS is critical for direct AGO2 binding 

In parallel analyses aiming to define the residues in RAS that are critical for AGO2 association, 

we first employed the two antibodies that exclusively bind to the Switch I (RAS10 mAb) or the 

Switch II (Y13-259) domains in RAS (summarized in Figure 4.8A). Using H358 cell lysates for 

RAS IP we observed that in contrast to the Switch I specific RAS10 Ab, the Switch II specific 
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Y13-259 Ab failed to co-immunoprecipitate AGO2 (Figure 4.8B), strongly suggesting that the 

Switch II domain in RAS may be critical for AGO2 interaction.  

Next, we sought to determine the specific residues in the RAS Switch II region involved 

in its interaction with AGO2, using in vitro co-IP analyses with a panel of mutations flanking the 

Y64 residue in the switch domain, known to be important for interactions with multiple 

effector/regulator proteins. First to validate the in vitro co-IP assay, purified recombinant 

KRASG12V or KRASWT proteins incubated with varying concentrations of AGO2 protein, 

followed by RAS immunoprecipitation showed a concentration dependent, direct interaction 

between recombinant AGO2 and RAS proteins (Figure 4.8C). Next, co-IP of recombinant 

AGO2 protein with the panel of Switch II mutant RAS proteins including and flanking the Y64 

residue,   showed that altering the Y64 residue (but not the adjoining amino acids) significantly 

reduced KRAS binding to AGO2 (Figure 4.8D).  

To assess if GDP/GTP loading of KRAS may influence AGO2 interaction in vitro, we 

also carried out in vitro co-IP analyses using KRASWT and KRASG12V proteins loaded with 

GDP/GTPγS, and as seen in Figure 4.9A, AGO2 binding was seen to be independent of 

nucleotide loading on KRAS. To further substantiate this observation, and to obviate potential 

technical concerns inherent in antibody based co-IP, we carried out an antibody-independent pull 

down assay using His-tagged AGO2 protein bound to Co-NTA beads. Similar to the antibody 

based assay, both the KRASWT and KRASG12V proteins were observed to bind to His-tagged 

AGO2, independent of the nucleotide loading on KRAS (Figure 4.9B). To validate the 

efficiency and specificity of nucleotide loading onto KRAS in our experiments, we performed 

RAF-RBD pull down assays and observed the expected differential between GDP and GTP 

bound KRAS with respect to RAF-RBD binding (Figure 4.9C). Also, consistent with the in vitro 
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co-IP analyses, the His-tagged AGO2 pull down assay also showed specific dependency of 

AGO2-RAS binding on the Y64 residue (Figure 4.9D). Thus, these data define the amino acids 

in RAS (Y64) and AGO2 (K112/E114) as critical for the RAS-AGO2 interaction.  

Lastly, we reasoned that if the RAS-AGO2 interaction is limited to Switch II domain we 

may be able to detect AGO2 in the RAS-GTP complexed with RAF on RAS binding domain of 

RAF (RBD) agarose beads which only involves the Switch I domain. As expected, we were able 

to detect AGO2 on RAS-GTP bound to RBD-agarose in H358 (KRAS
G12C

) cells (Figure 4.9E), 

further suggesting that AGO2 binds through the Switch II domain with no involvement of the 

effector domain. 

DISCUSSION 

RAS, one of the earliest proto-oncogenes identified 
26

, has emerged as one of the most prevalent 

cancer aberrations with extensively characterized oncogenic driver functions
22,46-49

, that remains 

a pertinent but as yet an unsuccessful therapeutic target. In recent years, there is a renewed 

interest in targeting RAS to alter its status from undruggable to druggable 
3,27-30

. In this context, 

discovery of novel endogenous interactors of RAS could potentially advance our understanding 

of RAS biology as well as provide novel therapeutic avenues. 

In this study, we identify a novel interaction of RAS with AGO2, a key mediator of 

RNA-based gene silencing
31-33

.  The RAS-AGO2 interaction is independent of the mutation 

status of RAS (and thus, to GDP/GTP loading status in vitro), the two proteins co-localize in 

intracellular membrane organelles, sites that are known for RAS trafficking and AGO2 activity. 

The RAS-AGO2 interaction involves  the Switch II domain of RAS (particularly the Y64 

residue), and the N-terminal Wedge domain of AGO2 (K112-E114 residues).  
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  Our study focused on analyzing endogenous interactors of RAS, common across a panel 

of cancer cells spanning the spectrum of KRAS mutation profiles.  To the best of our knowledge, 

this is the first study using endogenous RAS as bait for mass spectrometric analyses; previous 

co-IP MS analyses used N-terminal epitope-tagged-HRAS, -MRAS, or -RRAS ectopically 

expressed in NIH3T3 cells 
5,6

.  Studies using tagged AGO2 as bait for mass spectrometry have 

also been reported
34,35

, and as a 25kDa cutoff was employed for analyses, may have missed the 

detection of the 21 kDa RAS protein. In our study, the pull-down of AGO2 using multiple 

independent antibodies, consistently co-precipitated RAS (Figure 4.2D) and we found that this 

interaction is direct, as assessed using purified components (Figures 4.8-4.9). Endogenously, the 

RAS-AGO2 interaction is readily detected in both cancer and benign cells, independent of RAS 

mutation status (Figure 4.2E), together suggesting a more general role for this interaction in the 

cell.   

Since the RAS-AGO2 interaction is restricted to the intracellular membrane bound 

organelles, we believe that the endogenous RAS interacts with AGO2 within membranous 

organelles, before it reaches the plasma membrane. While effector binding of activated RAS is 

extensively studied and restricted to the plasma membrane, the function of RAS in other 

organelles remains unappreciated. Since both RAS
16

 and AGO2
23

 associate with different 

proteins depending on their location in the cell,  compartmentalized association of the two 

molecules could therefore have an effect both on RAS signaling and AGO2 silencing 

mechanisms.  

The N-terminal domain represents the most distinct region in the highly conserved AGO 

protein family, that regulates the endonucleolytic activity unique to AGO2 
36

.  Interestingly, the 

RAS interaction observed with AGO2, involves residues in the N-terminal, unique to AGO2. A 
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recent report 
25

 suggests that the region we identified in AGO2 as critical for RAS binding (i.e., 

the ‘wedge domain’),  is  important for small RNA duplex unwinding, a prerequisite for RISC 

assembly.  It is possible that mutant KRAS interaction directly involving the residues in the 

wedge domain attenuates AGO2 function through its effect on RISC assembly. Furthermore, 

AGO2 as a preferred RISC component among AGO family members suggests that unique 

properties of AGO2 such as endonucleolytic activity 
37

 and its ability to bind open reading 

frames of mRNA transcripts 
38

 may play an important role during oncogenic stress. 

 

MATERIALS AND METHODS 

Cell lines, specimen collection and DNA constructs 

Lung and pancreatic cancer cell lines were purchased from the American Type Culture 

Collection (ATCC). No further testing for Mycoplasma was performed in the lab. PDX1319 cells 

were obtained through the Xenograft Core, University of Michigan, directed by Dr. Diane 

Simeone, University of Michigan, Ann Arbor. Cells were grown in specified media 

supplemented with 10% fetal bovine serum and antibiotics (Invitrogen).  

Coimmunoprecipitation and Tandem Mass Spectrometric analysis  

Methods used for immunoprecipitation with RAS/control IgG followed by Tandem Mass 

Spectrometric analysis and database searching are schematically outlined in. Clustal W analysis 

was performed using the online program, 

http://www.ebi.ac.uk/Tools/services/web/toolform.ebi?tool=clustalo with peptide sequences 

obtained from RAS co-IP MS analysis of H358 lung cancer cells.  

Immunoprecipitation (IP) and Western blot Analysis 
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Fresh protein extracts were prepared by lysis of cells in K buffer (10mM Tris HCl, 0.1%, 

150mM NaCl, 1% Triton X100 and protease inhibitors). After brief sonication, debris were 

removed by centrifugation. For IP, 50-400 µg of lysates were pre-cleared with Protein A/G 

agarose beads (Pierce) for 1 hour and treated overnight at 4
0
C with 1-10 µg of control or specific 

antibody as indicated. The immune complexes were then precipitated with Protein A/G agarose 

beads, washed with K buffer and resuspended in sample loading buffer. RAS10 monoclonal 

antibody immunoprecipitates were routinely washed at 500mM NaCl for increased stringency 

and a final wash was carried out with buffer containing 150mM NaCl prior to SDS-PAGE 

analysis. RNase/DNase treatments of lysates were performed prior to pre-clearing of lysates 

followed by IP. After SDS-PAGE separation, proteins were transferred onto nitrocellulose 

membranes for immunoblot analysis. For IP using FLAG tagged constructs, FLAG M2 agarose 

beads (Sigma) were used as per manufacturers’ protocol.  

Sucrose Density Co-sedimentation analysis 

Sucrose gradient fractionation was performed as described earlier
18

. Briefly, cells were lysed in 

buffer containing 25 mM Tris–HCl (pH 7.4), 150 mM KCl, 0.5% NP-40, 2 mM EDTA, 1 mM 

NaF, 0.5 mM dithiothreitol and protease inhibitors (Roche) and centrifuged at 10,000g for 10 

min at 4°C. For fractionations, gradients from 15% (w/v) to 55% (w/v) sucrose in 150 mM KCl, 

25 mM Tris (pH 7.4) and 2 mM EDTA were used. Lysates were separated by centrifugation at 

30,000 r.p.m. for 18 h in an SW41 rotor at 4°C. For each lysate 22 fractions of 0.5ml each were 

collected, 45ul of which was used for immunoblot analysis. 

KRAS and AGO2 plasmid constructs  

Full length FH-AGO2 and mutant KRAS
G12V

 constructs were obtained from Addgene (pIRESneo-

FLAG/HA-AGO2 corrected plasmid 10822, PI:Thomas Tuschl; FLAG-AGO2 plasmid 21538: 
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PI: Edward Chan and plasmid 12544 PI: Channing Der). Deletion constructs of AGO2 spanning 

different domains (indicated in the figures) were subcloned as FLAG-tagged expression plasmids 

in pDEST40 (Life Technologies) vector backbone. Site directed mutagenesis was performed on 

AGO2 encoded plasmid 10822 to obtain the constructs described in Figure 3C. Wild-type 

KRAS4A was cloned for mammalian expression in pDEST40 vector. 

Cell transfection  

NIH3T3 or HEK293T cells were transfected with the indicated plasmid constructs using Fugene 

HD (Promega) according to standard protocols.  

Recombinant KRAS and AGO2 proteins 

Human derived KRASWT and KRASG12V full length coding regions were cloned as HIS-

SUMO tagged proteins in a pET21d plasmid backbone described earlier
39

. Site directed 

mutagenesis was used to introduce the specific mutations described in the figures. Individual 

recombinant KRAS proteins were transformed into Rosetta cells for bacterial expression (further 

details awaited). 

His tagged KRASG12D (1-166aa) and KRASG12DY64G (1-166aa) were provided by Gideon 

Bollag (Plexxikon Inc.). His-tagged AGO2 was cloned in baculoviral vector and purified using 

Ni-NTA columns. 

In vitro co-immunoprecipitation 

100ng of baculoviral AGO2 or AGO1 proteins (Sino Biologicals) and 50ng of the indicated 

KRAS protein, were incubated in the above mentioned K-buffer with the addition of 0.2% BSA. 

After 2 hours of incubation at 4
0
C, 1µg of IgG (RAS or control) was added and incubated further 

for 2 hours. 10ul of Protein A/G agarose beads (50% slurry) equilibrated in K buffer were then 
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added to pull down the immune complexes, washed five times at RT and resolved using SDS-

PAGE. 

His-AGO2 pull down assay 

30 µg of his-AGO2 (made in house) protein was incubated with 600ul of Ni-NTA beads, 50% 

slurry (Qiagen) resuspended in Ni-NTA buffer (20 mM Tris-HCl (pH.8), 0.1% beta-

mercaptoethanol, 150 mM NaCl,0.5% Triton X-100). Loading performed at 4
0
C for 1hr.Spin and 

wash the beads using Ni-NTA buffer and incubate 25 µl of control/His-AGO2 loaded beads with 

KRAS proteins in Ni-NTA buffer containing 0.2% BSA. Incubate for 1.5 h at 4 °C and wash 5 

times. All washes were at room temperature with rotation for 5 minutes and spin at 4000 rpm for 

2 min. Binding was assessed by immunoblot analysis (using RAS10 and AGO2, polyclonal 

antibodies). 

RAS-GTP pull down assay 

The RAS-RAF interaction was studied using the RBD agarose beads as per manufacturer’s 

instructions (Millipore). Pull down assays were performed using the cell lysates as indicated. The 

pull down of RAS by RBD agarose beads indicates the presence of active GTP-bound RAS 

interacting with RAF1. 

Immunofluorescence 

Indicated cells were grown on poly-lysine coated cover slips. Cells were washed twice with PBS, 

fixed with 3.7% paraformaldehyde for 10 min, and then permeabilized with 0.1% (w/v) saponin 

(Sigma) for 10 min. Cells were co-incubated with primary antibodies against AGO2 and RAS for 

12 h at 4 °C, followed by incubation with appropriate Alexa-Fluor-conjugated secondary 

antibodies for 30 min at 37 °C. Cells were washed and mounted onto glass slides using 

Vectashield mounting medium (Vector Laboratories, Burlingame, CA) containing DAPI. 
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Samples were analyzed using a Nikon A1 laser-scanning confocal microscope equipped with a 

Plan-Apo ×63/1.4 numerical aperture oil lens objective. Acquired images were then analyzed 

using ImageJ software (version 1.41).  
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Figure 4.1. Characterization of RAS10 mAb (which binds the Switch1 domain of RAS) used for 

mass spectrometric identification of RAS binding proteins (A) Efficiency of the RAS10 mAb in 

pulling down RAS as seen by immunoblot analysis of RAS immunoprecipitates. The RAS10 mAb was 

used for both immunoprecipitation (IP) and immunoblot (IB) analysis.  (B) Scan of the entire immunoblot 

using the RAS10 mAb demonstrating the specificity of detection using total cell lysates or 

immunoprecipitates. Both the IP and immunoblotting were performed using the RAS10 mAb. (C) 

Immunoblot analysis of RAS bound to RAS binding domain of RAF (RBD) in the presence of different 

RAS antibodies. RBD agarose beads were added to H358 cell lysates in the presence of RAS10 

monoclonal or KRAS polyclonal (KRAS sc-521) antibody. Reduced interaction between RAS-GTP and 

RBD in the presence of RAS10 antibody indicates that the antibody binds the RAS Switch I domain and 

interferes with the RAS-RAF interaction. KRAS sc-521 polyclonal antibody, which binds the C-terminal 

region of KRAS was used as control. RAS10 mAb was used for IB analysis. (D) Schematic of the 

methodology used for RAS Co-IP MS. Proteins pulled down by the corresponding isotypic control IgG in 

each cell line were considered as non-specific hits and were excluded from the data obtained from RAS 

IP. 
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Figure 4.2. Identification of RAS-AGO2 interaction (A)Spectral counts of RAS and AGO2 peptides 

detected in RAS co-immunoprecipitation mass spectrometric (co-IP MS) analysis of NIH3T3 cells 

expressing KRAS
WT 

and KRAS
G12V

 and indicated cancer cell lines. (B) Distribution of peptides mapping to 

RAS and AGO gene families from RAS co-IP MS based on ClustalW alignments. Representative 

experiment from H358 cells is shown. Blue boxes indicate peptides mapping to multiple gene family 

members, and red boxes indicate peptides mapping uniquely to a protein. (C) Immunoprecipitation (IP) of 

RAS or AGO2 in H358 (left) and H460 (right) lung cancer cells followed by immunoblot analysis using 

multiple distinct antibodies, as indicated.  (D) IP of RAS from a panel of benign and cancer cells with 

differing mutational status of KRAS (as indicated) followed by immunoblot analysis of AGO2 or RAS. 

RAS10 mAb was used for both IP and IB.  

 



83 
 

 

Figure 4.3. AGO2 associates with RAS proteins in the presence of RNase (A) IP of RAS in H358 and 

HEK293 FLAG-AGO2 expressing cells under increasing concentrations of salt followed by immunoblot 

analysis. Immunoblot analysis of RAS10 Ab immunoprecipitates from H358 lung cancer (endogenous) 

and FLAG-AGO2 overexpressing HEK293 cell lysates treated with RNase (B) and DNase (C). RAS10 

mAb was used for both IP and IB. RAS10 mAb was used for both IP and IB. (D) FLAG tagged AGO2 

expressed in HEK293 immunoprecipitates RAS. Actin was used as control. 
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Figure 4.4.  Co-sedimentation of RAS and AGO2 (A) Cell fractionation analysis of H358 cells to show 

enrichment of distinct proteins in the cytocolic/membrane or organelle/nuclear fractions. GAPDH was 

used as a cytosolic marker while SAM68 and H3 were used as nuclear markers. 2ug of various fractions 

were assessed for the different protein contents. (B) Sucrose density gradient fractionation of cell lysates 

from H358 and HEK293 cells followed by immunoblot detection of total RAS, KRAS, AGO1 and AGO2 

proteins. 
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Figure 4.5. Co-localization of RAS and AGO2 proteins in the intracellular compartments (A) 

Membrane (yellow arrow) and intracellular organelle staining (red arrow) of RAS in H358 KRAS
G12C 

lung 

cancer cells, using RAS10 mAb that binds the switch I domain. (B) Specificity of the RAS10 mAb is 

demonstrated by pre-incubating the antibody with switch I domain specific (30-39aa) or non-specific (34-

43aa) RAS peptides, prior to immunofluorescence analysis (C) Immunofluorescence analysis of RAS and 

AGO2 co-localization in AGO2 knock out mouse embryonic fibroblasts (AGO2-/- MEF upper panels) 

and AGO2 knock out MEF cells expressing AGO2 (AGO2-/- MEF +AGO2,  lower panels). (D) 

Immunoflourescence analysis shows co-localization of RAS (red) and AGO2 (green) proteins in 

membrane bound organelles in H1793 KRAS
WT

 lung cancer cells. (E) Intracellular localization by 

immunofluorescence of RAS (red) and AGO2 (green) proteins in H358 KRAS
G12C

 lung cancer cells. 

Yellow color in the merged image indicates cytoplasmic co-localization of RAS and AGO2. The nucleus 

was visualized by DAPI staining (blue). Insets show magnified view of the areas marked.  
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Figure 4.6. The N-terminal domain of AGO2 interacts with RAS (A) Schematic summary of FLAG 

tagged AGO2 deletion and mutant constructs used for RAS co-IP analyses (B) Expression of FLAG 

tagged N-terminal, PAZ, or PIWI domains of AGO2 in HEK293 cells (left panel), followed by RAS IP 

(right panel). Immunoblot analysis shows that deletion of (1-226aa) N terminal domain in AGO2 

abrogates RAS interaction. (C) Expression (left panel) and RAS IP interaction analysis (right 

panel) of FLAG tagged N-terminal, PAZ, or PIWI domains of AGO2 in HEK293 cells. 

Immunoblot analysis shows that (1-226aa) N terminal domain is sufficient for RAS interaction 

using RAS10mAb. 
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Figure 4.7. Residues 112-114 in AGO2 are critical for its association with RAS. (A)Expression (left 

panel) and RAS IP analysis (right panel) of various indicated AGO2 N terminal deletion constructs in 

HEK293 cells. Immunoblot analysis indicates that 50-139 aa in the AGO2 N terminal domain is essential 

for RAS binding. Both RAS IP and IB were performed using RAS10 mAb. (B) ClustalW alignment of the 

Argonaute family proteins spanning the “wedge domain” (50-139 aa, marked in grey). Residues marked 

in yellow were identified as unique to AGO2 and were mutagenized to alanine for binding analysis. The 

numbers below indicate the amino acid position. AGO2
K98

 (marked in green) shared with AGO1 was also 

changed to alanine to be used as control. AGO2 residues K112 and E114, marked in red were critical for 

RAS interaction. (C) Expression of indicated AGO2 N terminal point mutant constructs within the wedge 

domain (50-139aa) in HEK293 cells, followed by RAS co-IP analysis.  
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Figure 4.8. The Switch II domain of RAS interacts with AGO2 (A) Schematic summary of the 

antibodies and recombinant proteins used for RAS-AGO2 co-IP analysis to identify residues in RAS, 

critical for AGO2 interaction. (B) RAS co-IP using antibodies that bind switch I domain (RAS10 Ab) or 

switch II domain (Y13-259 Ab), followed by immunoblot analysis for RAS and AGO2.  (C-D) 

Characterization of direct RAS-AGO2 interaction, in vitro. (C) Immunoblot analysis following in vitro 

co-IP of recombinant KRASG12V (top panel) and KRASWT (bottom panel) in the presence of varying 

concentrations of recombinant AGO2. (D) In vitro co-IP analysis of KRAS-AGO2 interaction using a 

panel of KRAS mutant proteins spanning amino acid residues 62-65 in the switch II domain. 
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Figure 4.9. Characterization of direct RAS-AGO2 interaction by in vitro co-IP (A) GDP or GTPγS 

loading of recombinant KRASWT (top panel) and KRASG12V (bottom panel) proteins prior to RAS-

AGO2 in vitro co-IP analysis using RAS10 Ab. (B) In vitro HIS-AGO2 pull down assay after GDP or 

GTPγS loading of recombinant KRASWT and KRASG12V proteins. (C) RBD pull down assay using 

recombinant KRASWT and KRASG12V proteins loaded with GDP or GTPγS to demonstrate efficiency 

and specificity of nucleotide loading. (D)Immunoblot analysis following His-AGO2 pull down assay 

using Ni-NTA beads upon incubation with different KRAS mutant proteins. (E) RBD pull down assay 

using lysates from H358 cells followed by immunoblot analysis for RAS (RAS10) and AGO2 (rat AGO2, 

Sigma). RBD associates only with the active form of RAS (RAS-GTP) which is more abundant in H358 

cells (mutated KRAS dependent) compared to H460 cells (mutated KRAS independent).     
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Number Cell Line Source Tissue Type KRAS or AGO2
status

RAS co-IP 
Mass Spec

RAS co-IP 
Western

1 A549 Human Lung Cancer KRAS G12S X ND
2 H358 Human Lung Cancer KRAS G12C X X
3 H441 Human Lung Cancer KRAS G12V X ND
4 H727 Human Lung Cancer KRAS G12V X X
5 BXPC3 Human Pancreas Cancer KRAS WT X X
6 CAPAN-1 Human Pancreas Cancer KRAS G12V X ND
7 MIA PaCa-2 Human Pancreas Cancer KRAS G12C X X
8 PANC-1 Human Pancreas Cancer KRAS G12D X ND
9 PDX 1319 Human Pancreas Cancer KRAS G12D X ND

10 PL-45 Human Pancreas Cancer KRAS G12D X ND
11 NIH3T3,

stable cell line
Mouse Fibroblast Benign overexpressing,

KRAS WT
X ND

12 NIH3T3,
stable cell line

Mouse Fibroblast Benign overexpressing,
KRAS G12V

X ND

13 H2009 Human Lung Cancer KRAS G12A ND X
14 H460 Human Lung Cancer KRAS Q61H ND X
15 HPNE Human Pancreas Benign KRAS WT ND X
16 AGO2 MEF-/- Mouse Embryonic

fibroblast
Benign AGO2 knockout ND X

17 AGO2 MEF-/-
+AGO2

Mouse Embryonic
fibroblast

Benign AGO2 knockout 
overexpressing 
AGO2

ND X

18 HEK293FT Human Embryonic
kidney

Benign for transient 
overexpression as 
indicated

ND X

19 NIH3T3
AGO2 -/-

Mouse Fibroblast Benign CRISPR/Cas9 for
AGO2 knockout

ND ND

 

 
Table 4.1 Cell lines used in the study. Cell lines used in this study for RAS co- IP MS and/or
RAS co-IP Western blot analysis, with their associated KRAS mutation status. NIH3T3 stable
lines were generated using plasmids encoding KRAS WT or KRAS G12V . HEK293 cells were used
for transfection for assays in the transient mode. PDX 1319 is a pancreatic cancer derived
xenograft cell line. ND: not determined
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 Lung Pancreas Mouse fibroblast   

 
Protein_ID

 

 
Protein

 
A549

 
H358

 
H441

 
H727

 
BXPC3

 
Capan-1

 
MIA PaCa-
2

 
PANC-1

 
PL45

 
PDX
1319

 
NIH3T3
KRASG12V

 
NIH3T3
KRASWT

Cumulative
spectral
counts

Number of
cancer cell
lines

NP_004976/ NP_002515/ NP_005334 KRAS/NRAS/HRAS 20 44 52 112 75 33 23 36 16 33 98 34 556 12
NP_036286 EIF2C2 (AGO2) 9 39 9 28 38 1 14 8 1 9 48 25 229 12
NP_004090 STOM 0 40 16 56 21 3 0 13 3 2 5 6 165 10
NP_001138303 PHB2 0 3 23 0 5 48 0 15 48 4 7 9 162 10
NP_258260 FCHSD1 26 20 0 0 0 13 0 11 13 0 8 11 76 7
NP_057018 NOP58 10 19 31 0 3 4 4 2 4 6 0 0 73 9
NP_001028886 NOP2 10 13 15 0 2 9 0 0 9 2 0 0 50 7
NP_542193 BRI3BP 0 3 3 20 0 3 3 2 3 3 0 0 40 8
NP_005605 RHEB 10 3 9 0 5 0 0 0 0 7 11 0 35 6
NP_055315 HTATSF1 9 29 0 0 0 2 0 2 2 0 0 0 35 5
NP_036473 GTPBP4 6 2 13 0 0 0 8 0 0 1 0 0 24 5
NP_055118 PES1 5 5 9 0 0 0 5 0 0 3 0 0 22 5
NP_078938 NAT10 6 9 1 0 0 2 4 1 2 1 0 0 20 8
NP_001092688 RAD51AP2 5 4 0 0 0 6 0 4 6 0 0 0 20 5

 

 
Table 4.2 Summary of shared peptide hits in RAS coIP mass spectrometry in cancer cell lines.
Spectral counts of peptides detected in at least 5 of 10 cancer cell lines tested by tandem mass
spectrometry of RAS co-immunoprecipitation.
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Table 4.3. Antibodies used in this study. IB: Immunoblotting, IP:Immunoprecipitation, IF: Immunoflourescence

 
Number

 
Antibody

 
Vendor

 
Catalog Number

 
Experiments

 
Validation method/s

1 Anti-Ras Clone 10 Millipore 05-516 IP, IB, IF recombinant protein detection, peptide competition
2 K-Ras-2B Antibody (C-19) Santa Cruz sc-521 IP, IB recombinant protein detection, KRAS siRNA
3 K-Ras monoclonal Ab Santa Cruz sc-30 IB recombinant protein detection
4 Ago2 rabbit pAb Millipore 07-590 IB, IF recombinant protein detection, MEF AGO2-/-
5 AGO2 mouse mAb, clone 2E12-1C9 Sigma WH0027161M1 IP, IB, IF recombinant protein detection
6 AGO2, 11A9, rat mAb Sigma SAB4200085 IP, IB recombinant protein detection
7 Anti-FLAG Sigma F1804 IB, IP FLAG-AGO2 detection in HEK 293 cells
8 Y13-259 rat mAb EMD-Millipore OP01, Y13-259 IP recombinant protein detection
9 Phospho-Akt (S473) Cell Signaling 9271 IB ND

10 Phospho-ERK (S473) Cell Signaling 9101 IB ND
11 Phospho-S6 Ribosomal (S236/236) Cell Signaling 2211 IB ND
12 AGO1 Sigma SAB4200084

ab18450
IB recombinant protein detection

13 Normal Rat IgG Abcam control IP ND
14 Normal mouse IgG Millipore 12-371 control IP ND
15 Normal rabbit IgG Millipore 12-370 control IP ND
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CHAPTER 5 

 

ARGONAUTE-2 PROMOTES KRAS MEDIATED CELLULAR TRANSFORMATION 

 

SUMMARY 

In the earlier chapter we describe a specific interaction between endogenous RAS and AGO2 in 

cells expressing both wild type and mutant RAS. To probe this interaction at a functional level, 

we characterized the role of AGO2 in established KRAS mutant cell line models of lung and 

pancreatic cancer and its effect on cellular transformation using NIH3T3 model. Using shRNA, 

we demonstrate that knock-down of AGO2 attenuates KRAS-mediated cell proliferation, while 

KRAS-mediated transformation is enhanced by overexpression of AGO2. Mechanistically, the 

intracellular KRAS-AGO2 interaction increases mutant KRAS levels and affects signaling 

outputs through modulation of Akt activation.  We also provide evidence that expression of 

mutant KRAS inhibits the assembly of regulatory messenger ribonucleoprotein particles 

(mRNPs) in NIH3T3 cells. Employing NIH3T3 AGO2-/- cells, we observed that interaction with 

AGO2 is required for maximal KRAS-mediated transformation, such that cells lacking AGO2 

fail to elevate mutant KRAS levels and limit phospho-Akt activation. The repurposing of RNA-

based gene silencing by RAS through its interaction with AGO2 expands its range of oncogenic 

activities, identifies a critical regulator of mutant RAS levels, and suggests a novel avenue for 

therapeutic intervention. 
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INTRODUCTION 

The discovery of a direct RAS-AGO2 interaction brings to the foreground a direct association of 

signaling networks and silencing mechanisms. Known functions of AGO2, its interacting 

partners and role in MAPK pathway are described below. 

AGO2: Core component of the RNA silencing pathway 

Protein encoding transcripts are transcribed from just 2% of the eukaryotic genome and are 

further regulated by 21-35 nucleotide containing small non-coding microRNAs which regulate 

gene expression. These double stranded microRNAs are themselves regulated at the 

transcriptional level and their biogenesis (from long dsRNA primary transcripts) is largely 

controlled by the Dicer and Drosha proteins through multiple pathways reviewed in literature 1,2. 

Once the mature dsRNAs are transported to the cytoplasm, they are loaded onto Argonaute 

proteins, where the non-complementary or passenger strand is removed and the guide strand 

helps enhance the affinity of the AGO protein to its target transcript. Perfect complementarity 

between the small RNA and its target mRNA, as seen with the small interfering RNA or siRNA, 

results in AGO2 mediated endonucleolytic cleavage of the target transcript. In case of 

microRNAs (with partial complementarity to its target sequence), the target sequence is either 

held in a repressive complex preventing translation or deadenylated to prevent degradation 3. 

While all human Argonaute AGO1, AGO2, AGO3 and AGO4 proteins have overlapping 

functions and can form such RNA induced silencing complexes or RISC 4, only AGO2 has been 

shown to have endonucleolytic activity to cleave the target mRNA sequence. 

 Argonaute proteins have two conserved RNA binding domains called the PAZ (PIWI-

Argonaute-Zwille) domain and an RNAse like PIWI domain. The different AGO proteins are 
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most divergent at their N-terminal. Recently independent groups demonstrated that four catalytic 

residues in the PIWI domain and critical residues in its N-terminal domain are sufficient for 

AGO2 endonucleolytic activity 5,6. Given that majority of the eukaryotic gene silencing is 

mediated through microRNAs, the role of the endonucleolytic activity, which requires perfect 

complementarity of the guide and target sequences, remains unclear. 

Localization and post translational modifications controls AGO2 activity 

Most of the AGO associated activities have been demonstrated in the cytoplasmic compartment 

of the cell, where it resides in non-membrane bound, ribosome free cytoplasmic structures called 

Processing bodies (P-bodies) 7 or in stress bodies 8. Here, untranslated mRNA associates with 

AGO2 to form miRNA containing RibonucleoProtein (mRNP) complexes such that the 

transcripts can either be degraded or return for translation9. The movement of AGO2 is further 

regulated by post translational modification such that phosphorylation at tyrosine residue 387 10, 

and tyrosine 529 prevents its accumulation in P-bodies11, suggesting that phosphorylation of 

AGO2 is an emerging critical regulator of AGO2 function.. Proline residue hydroxylation of 

AGO2 was also recently identified as important for its stability and efficient RNA silencing 

activities 12. Recently, AGO2 was found to be sumolyated by SUMO1 and SUMO2/3 enzymes 

which results in increased stability of the AGO2 protein 13. These studies providing clues to the 

fine tuning of AGO2 function through various mechanisms in different cellular contexts.  

 Like RAS proteins, AGO2 is also detected in different cellular compartments, but unlike 

RAS is not restricted to the plasma membrane and membrane bound cytoplasmic organelles. 

Among the membrane bound structures, the rough endoplasmic reticulum (rER) is a known site 

for RNA gene silencing by AGO proteins 14 and AGO2 has been detected in late endosomes 15 
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and mitochondria 16 where it associates with different proteins to affect cellular proliferation or 

differentiation, respectively. Much of the recent literature demonstrates a role for AGO2 within 

the nucleus where it controls RNA Induced Transcriptional Silencing (RITS) 17-21, DNA 

methylation 22, pre-mRNA splicing 23 and double stranded break repair 24,25. Together with 

silencing activities in the cytoplasmic RISC complexes, these surprising new functions of small 

RNA bound Argonaute proteins suggest wide-ranging activities within the cell. 

AGO2 interacting proteins 

In 2005, Dicer 26,27 and TRBP 28 were identified as AGO2 interacting proteins which were later 

shown to be sufficient for AGO2 mediated RISC activity in vitro 29. An unbiased comprehensive 

mass spectrometric analysis of tagged AGO2immunoprecipitates, showed a large number of 

RNA binding proteins that interact with AGO2 30 in either an RNA dependent or independent 

manner, suggesting that these proteins can either affect RISC activity/assembly or are 

components of the mRNP complexes, respectively. A functional interaction between AGO2 and 

P body component, GW182, helped identify localization of AGO2 to the  P-bodies and was 

demonstrated to be a pre-requisite to microRNA mediated repression 31. AGO2 interacting 

proteins with roles/putative functions in every step of RISC function including RISC loading, 

RISC activation, duplex unwinding, AGO recruitment to mRNA targets, stabilization of AGO-

mRNA complexes and others have been identified and reviewed 32. Yet, RAS has not been 

detected as an AGO2 interacting partner likely because the workflow did not include analysis of 

proteins below 25kDa. 

 AGO proteins bound to both the microRNAs and their binding sites in target transcripts 

are being identified using Photoactivatable Ribonucleoside-Enhanced Crosslinking and 
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Immunoprecipitation (PAR-CLIP), a transcriptome-wide crosslinking method for RNA binding 

proteins that incorporate photoactivatable nucleoside analogs which undergo transition during 

complementary DNA (cDNA) synthesis and reveal precise binding of the RBP33. Global analysis 

of thousands of such binding sites revealed that AGO proteins bound with equal efficiency to the 

transcript coding sequences (CDS) and the 3’UTR regions. Using CLIP methodology, arsenite 

induced stress was also shown to increase AGO2 occupancy of target transcripts (in both the 

coding and  the 3’UTR sequences), accompanied by stronger translation repression 34.  

Argonaute 2 in the RAS/MAPK/PI3K pathway 

One of the most intriguing aspects of the RAS-AGO2 interaction is the intersection of the 

RAS/MAPK pathway to AGO2 and its microRNA mediated function (Figure 5.1). One of the 

earliest studies showed that phosphorylation of TRBP, part of the Dicer associated microRNA-

generating complex, was activated upon ERK signaling. A coordinated decrease in the tumor 

suppressor let-7 microRNA suggested that the signaling mechanism target the microRNA 

pathway to control biological processes 35. A more direct link to the MAPK pathway came into 

focus when EGFR was shown to phosphorylate AGO2 at tyrosine residue 393, reduced AGO2-

Dicer interaction and interfered with microRNA maturation only under hypoxic conditions15.  

In a more recent study on oncogene induced senescence, AGO2 demonstrated 

transcriptional silencing through repression of RB1/E2F-target genes in a let-7 dependent 

manner. It is interesting to note that the authors used RASG12V mutant to induce senescence in 

these models to establish a tumor suppressor role of AGO2/microRNA axis during senescence36. 

Similarly, a non-receptor type phosphatase, PTP1B, upon inactivation by reactive oxygen species 

(ROS), dephosphorylates AGO2 Tyrosine 393 residue and counters the effect of oncogenic 

HRAS to induce senescence in IMR90 cells37. Together these studies suggest that AGO2 may 
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have a vital role in RAS induced senescence through strategic control of the microRNA mediated 

machinery.   

 In this chapter, using multiple cell line models, we provide evidence for 

phenotypic consequences of AGO2 modulation in mutant KRAS driven cellular transformation 

and a requirement for a direct RAS-AGO2 interaction in this process. 

RESULTS 

AGO2 positively regulates mutant KRAS levels in mutant KRAS dependent cancer cells 

Next, we set out to analyze functional implications of RAS-AGO2 interaction, particularly in the 

context of KRAS driven transformation. To this end, we first carried out knockdown of AGO2 in 

H358 lung cancer cells that harbor a homozygous KRAS mutation and are known to be KRAS-

dependent38. Whereas AGO2 is known to negatively regulate wild-type RAS levels 39, here, 

AGO2 knockdown resulted in a remarkable reduction in mutant KRAS protein levels (Figure 

5.2A, left panel). Conversely, overexpression of AGO2 in the same cells led to elevated levels of 

KRAS, implying a positive regulation of mutant KRAS levels by AGO2 in these cells (Figure 

5.2A, right panel). Consistent with these observations, knockdowns of AGO2 and/or KRAS in 

H358 cells showed reduced rates of cell proliferation while AGO2 overexpression resulted in 

increased cell proliferation (Figure 5.2B). Furthermore, AGO2 knockdown reduced the ability of 

H358 cells to form colonies in colony formation assays (Figure 5.2C) and resulted in marked 

reduction in levels of known mediators of KRAS signaling, including p-Akt, p-mTOR and p-

RPS6 based on a Pathscan intracellular signaling array (Cell Signaling) (Figure 5.2D). 

Interestingly, similar AGO2 depletion experiments (using the same shRNAs as described above) 

in H460 lung cancer cells that harbor mutant KRAS but are known to be KRAS independent, did 
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not affect KRAS levels, cell proliferation, colony formation (Figure 5.2E) or intracellular 

signaling (Figure 5.2F). These phenotypic effects upon AGO2 knockdown in the context of 

KRAS dependency were also observed in pancreatic cancer cell lines where knockdown of either 

KRAS or AGO2 dramatically reduced cell proliferation in mutant KRAS-dependent MIA PaCa-2 

cells but not in mutant KRAS-independent PANC-1 cells (Figure 5.2G). To further explore the 

dependence of KRAS oncogenic phenotype on AGO2, we tested AGO2 depleted MIA PaCa-2 

cells for their ability to establish xenografts in SCID mice. A dramatic reduction in tumor 

volume in AGO2 depleted cells was observed (Figure 5.2H). Immunoblot analysis showed that 

similar to H358 lung cancer cells, knockdown of AGO2 in the KRAS dependent pancreatic MIA 

PaCa-2 cells also results in reduced levels of KRAS protein (Figure 5.2H, inset). These data 

suggest that KRAS dependent cancer cells manifest a coincident dependence on AGO2 to 

maintain oncogenic KRAS protein levels. Together, these experiments support a functional role 

for AGO2 in potentiating the oncogenic activities of mutant KRAS, and led us to further explore 

mechanistic correlates of the RAS-AGO2 interaction. 

 

KRAS driven NIH3T3 cellular transformation depends on direct AGO2 binding to inhibit 

functional RISC assembly 

To address mechanistic underpinnings of the phenotypic effects associated with the mutant 

KRAS-AGO2 interaction, we employed the classic experimental model system of NIH3T3 cells 

to ectopically express human KRASWT or KRASG12V 40,41, with or without AGO2, and carried out 

transient foci formation assays. As expected, no foci were observed in cells transfected with 

KRASWT, as well as in cells with KRASWT±AGO2. However, NIH3T3 cells transfected with 

KRASG12V generated characteristic foci of transformed cells resulting from loss of contact 
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inhibition. Remarkably, co-transfection of KRASG12V but not BRAFV600E with AGO2 enhanced 

the number of foci by approximately five-fold, compared to the vector control (Figure 5.3A-B). 

Consistent with AGO2 overexpression in H358 cells (Figure 5.2A), immunoblot analysis of 

NIH3T3 cells overexpressing AGO2 showed an increase in KRAS protein levels (Figure 5.3C).  

Furthermore, to understand the effects of AGO2 in the RAS signaling pathways, we 

analyzed protein lysates from NIH3T3 cells stably expressing KRASG12V+vector or 

KRASG12V+AGO2, using the Pathscan intracellular signaling arrays. Cells expressing 

KRASG12V+AGO2 showed a marked increase in the levels of p-Akt, p-mTOR and p-RPS6 

(Figure 5.3C bottom panel) suggesting that the increased levels of oncogenic KRASG12V 

protein signals largely through PI3K activation.  

To probe the requirement of mutant KRAS-AGO2 interaction for oncogenic 

transformation we first performed in vitro RAS co-IP assays using mutant KRASG12D and the 

double mutant KRASG12DY64G which has previously been shown to have limited oncogenic 

potential42. We next engineered a retroviral vector in which we introduced the Y64G substitution 

in the context of oncogenic KrasG12V. Transfecting this KRASG12VY64G double mutant into 

NIH3T3 cells failed to generate foci (Figure 5.3D). As an important corollary to our hypothesis 

that mutant KRAS-AGO2 interaction leads to elevated mutant KRAS protein levels, the 

KRASG12VY64G stably expressing cells, in which mutant KRAS fails to engage AGO2 also showed 

much lower levels of KRAS protein as compared to KRASG12V expressing cells (Figure 5.3E, top 

panel). An independent construct encoding KRASG12VY64G showed similar results in both the foci 

formation assay and its inability to express high levels of the KRAS protein despite similar levels 

of KRAS transcripts. Curiously, KRASG12VY64G expression showed activated phospho-Akt and 

phospho-ERK activation similar to that of KRASG12V expressing cells, suggesting that the switch 
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II domain may play a critical role in KRAS activation through interactions of Y64 with various 

effectors and regulators. Yet, despite the increased activated ERK/Akt levels, cells expressing 

KRASG12VY64G failed to show the characteristic morphology of KRASG12V cells (Figure 5.3D, 

bottom panel). In vivo these cells also failed to establish tumors in the xenograft mouse model 

(Figure 5.3F), supporting a critical role for Y64 in the Switch II domain, including its 

association with AGO2, for transformation.  

 To more directly explore the potential effect of  KRASG12V on functional mRNPs, as 

implicated by its interaction with AGO2, we exploited a recently described method for 

intracellular single-molecule, high-resolution localization and counting (iSHiRLoC) of 

microRNAs 43,44 wherein the mobility of fluorophore labeled let-7a microRNAs was tracked 

following microinjection into NIH3T3 cells. The diffusion coefficient distribution of single 

particles as a readout of  microRNA assembly into mRNPs (Figure 5.4A) suggests that in 

NIH3T3 cells expressing wild-type RAS, let-7a assembles into both ‘fast’ (low molecular 

weight) and ‘slow’ (high molecular weight) mRNPs representing early and late intermediates of 

the RNA silencing pathway, respectively. By contrast, in cells expressing mutant KRASG12V, the 

let-7a probe manifested predominantly in fast moving complexes (Figure 5.4A) suggesting that 

the large mRNPs are reduced in the presence of mutant KRASG12V, presumably due to its 

interaction with AGO2. Importantly, in the NIH3T3 cells stably expressing KRASG12VY64G 

wherein the mutant KRAS-AGO2 interaction is abrogated, let-7a again accumulated in both fast 

and slow mRNPs (Figure 5.4A). 

Since AGO proteins, especially AGO2 is known to elevate microRNA levels in general 

and let-7 in particular 45, we assessed the levels of let-7 microRNAs in KRASG12V expressing cells 

and interestingly observed a significant reduction in both let-7a2 and let-7f microRNAs (Figure 



102 
 

5.4B). In the same assay, KRASG12VY64G expressing cells, which do not allow mutant KRAS-

AGO2 interaction, showed no change in let-7 levels, providing  evidence for a direct role of 

mutant KRAS in the modulation of microRNA levels in this model. Cognate analysis of the 

levels of let-7 target transcripts in these cells, showed an almost one log fold change in the 

mRNA levels of HMGA1 and HMGA2 (Figure 5.4C), known to be post transcriptionally 

modulated through multiple let-7 binding sites in their 3’UTR regions 46. Curiously, we did not 

observe increased levels of endogenous KRAS or MYCN levels, which are also known to 

contain let-7 binding sites in their 3’UTR.   Together, our data using the KRASG12VY64G mutant 

and let-7, as an example of AGO2 regulated microRNA, support the conclusion that mutant 

KRAS, through its direct association with AGO2, attenuates microRNA levels and prevents 

microRNA mediated gene silencing. 

 

AGO2 interaction is required to maximize oncogenic potential of mutant KRAS 

To further underscore the role of AGO2 in KRASG12V driven oncogenesis, we generated NIH3T3 

cells with AGO2 knockout (NIH3T3 AGO2-/-) using the CRISPR/Cas9 methodology 47 (Figure 

5.5). Validation of AGO2 knockout in NIH3T3 AGO2-/- cells was performed at the DNA, RNA 

and protein levels (Figure 5.5B-D). Loss of AGO2 in NIH3T3 cells resulted in lower levels of 

let-7 family microRNAs (Figure 5.5E), consistent with previous studies demonstrating that a 

loss of AGO2 results in a reduction of absolute levels of all microRNAs 45. In NIH3T3 AGO2-/- 

cells, the reduction of let-7 family microRNA levels resulted in a concomitant increase in target 

HMGA1/HMGA2 transcript levels (Figure 5.5F).  

Despite reduced levels of microRNAs, mutant KRAS expression in the NIH3T3 AGO2-/- 

background showed a markedly reduced ability to generate foci compared to parental NIH3T3 
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(Figure 5.6A). Partial rescue of the ability to establish foci in these cells was achieved by 

overexpression of AGO2 or AGO2K98A (which permits RAS interaction) but not the AGO2K112A 

mutant (which fails to bind RAS). These observations also support the notion that a direct 

association of oncogenic KRAS and AGO2 is required for mutant KRAS driven transformation. 

Further, consistent with the data presented thus far, NIH3T3 AGO2-/- cells stably expressing 

KRASG12V  showed reduced expression of mutant KRAS compared to that of NIH3T3 cells stably 

expressing KRASG12V (Figure 5.6B, top panel). Also consistent with AGO2 overexpression 

elevating phospho-Akt levels in the presence of activated KRAS (Figure 5.6B), loss of AGO2 

reduced phospho-Akt signaling by mutant KRAS and a slight increase in phospho-ERK 

signaling, suggesting that AGO2 may have an essential role in modulating the signaling outputs 

of activated KRAS in these cells. In addition, NIH3T3 AGO2-/- cells stably expressing KRASG12V 

did not display the characteristic morphology of NIH3T3 KRASG12V cells (Figure 5.6B, bottom 

panel). Sucrose density sedimentation analysis of NIH3T3 AGO2-/- showed that in contrast to 

NIH3T3 parental cells, RAS is restricted largely to the first four fractions of the gradient with 

minimal overlap with AGO1 complexes, indicating that RAS associates with higher molecular 

weight fractions through its interaction with AGO2 (Figure 5.6C). Finally, in vivo experiments 

in a mouse xenograft model showed significantly decreased tumor growth with NIH3T3 AGO2-

/- cells expressing KRASG12V compared to parental NIH3T3 cells expressing KRASG12V, further 

demonstrating a requirement for AGO2 for KRAS driven transformation (Figure 5.6D). 
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DISCUSSION 

 

Functionally, we demonstrate that the RAS-AGO2 interaction is required for KRAS mediated 

oncogenesis. Mechanistically, mutant KRAS binding appears to attenuate AGO2 assembly into 

functional mRNP particles and may directly modulate microRNA levels (as demonstrated by let-

7 microRNA analysis). We also observed that AGO2 may play an important role in the signaling 

output mediated by mutant KRAS, particularly AKT-mTOR pathway. 

 Our data also suggests that binding of mutant KRAS to AGO2 inhibits AGO2 function, 

as seen by reduced let-7 levels with concomitant increase in target mRNA (HMGA) expression.  

Importantly, experiments using mutants in both KRAS and AGO2 that abrogate binding of the 

respective partners, shows that the direct binding of mutant KRAS and AGO2 is necessary to 

elevate mutant KRAS levels and increased phospho-Akt signaling, leading to increased 

transformation potential (Figure 5.6A-B). Since we have used mutant KRAS constructs that do 

not have 3’UTR regions that bind microRNA, it remains unclear how AGO2 association can 

elevate mutant KRAS levels. Modulation of various microRNAs (other than let-7 microRNA, 

that we describe here) that can bind open reading frames under stress may have a direct or 

indirect role in this process 34.   

Recently, an association of mutant KRAS with the RNA machinery through binding to 

HNRNPA2B1 was reported48, which also supports a likely interface of RAS with the RNA 

processing machinery, including with hub protein AGO2, as observed in our study. While the 

current study focused on characterization of the KRAS-AGO2 interaction and its role in mutant 

KRAS mediated transformation, a functional role of this interaction presents an intriguing 

subject for follow up studies.  
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The EGFR kinase was recently shown to phosphorylate AGO2 in response to hypoxia 

leading to inhibition of AGO2-mediated microRNA processing15,49. Similarly, the Akt serine 

threonine kinase was shown to phosphorylate AGO2 to inhibit AGO2-mediated mRNA 

endonucleolytic activity 50. Interestingly, AGO2 phosphorylation also leads to inhibition of 

microRNA loading onto RISC complexes in the presence of mutant HRASG12V51. The 

identification of AGO2 as a critical partner of RAS, further provides a direct mechanistic link 

between RAS oncogenic signaling and RNA silencing. Illumination of such integral effector 

mechanisms of RAS may inform novel approaches to therapeutically target this frequently 

mutated cancer pathway.  

MATERIALS AND METHODS 

shRNA mediated knockdown and cell proliferation assays 

H358, H460, MIA PaCa-2 and Panc-1 cells were treated with two independent shRNAs in viral 

vectors (validated Mission shRNA lentiviral particles, Sigma) targeting KRAS 

(TRCN0000040149, TRCN0000010369, TRCN0000040149) or AGO2 (TRCN0000007865 and 

TRCN0000011203). After 5 days, cells were trypsinized and plated in triplicate at 5,000 cells per 

well in 24-well plates. For NIH3T3 stable lines, cells expressing the indicated plasmids were 

plated as mentioned earlier. The plates were incubated at 37 °C with 5% CO2. Cells were 

counted using Coulter counter at the indicated times. 

Colony formation assay 

Cells were treated with lentiviral particles expressing AGO2 shRNA sequences in 6 well dishes. 

To select stably transfected clones, puromycin at 1 µg/ml was added to the cells two days after 
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transfection and allowed to grow over 10 days. Medium with selection antibiotic was changed 

every 2 days. Dishes were then stained using crystal violet, washed with water and 

photographed. 

Focus formation assay 

Foci formation assays were performed by transfecting/co-transfecting (the indicated constructs) 

150,000 early passage NIH3T3 cells in 6 well dishes using Fugene HD (Promega). After two 

days, cells were trypsinized and plated onto 150 mm dishes containing 5% calf serum. The cells 

were maintained under low serum conditions and medium was refreshed every two days. After 

21 days in culture the plates were stained for foci using crystal violet. Foci were also observed 

under the microscope to see the altered morphology and were counted manually. Three 

independent experiments were performed for each condition. 

Generation of NIH3T3 stable lines 

Early passage NIH3T3 mouse fibroblast cells were plated to 70% confluency and the indicated 

constructs were transfected using Fugene HD (Promega). Cells transfected with KRASG12V, upon 

selection with puromycin (1 µg/ul), showed distinct transformed morphology and continued to 

proliferate as clusters of cells (unlike naïve NIH3T3 cells). The KRASG12V cells continued to 

grow in the absence of selection antibiotic and were further transfected with either empty vector 

(pDEST40) or FLAG-AGO2 constructs. All the above transfected cells were then selected using 

G418 (200 µg/ml). 

Site directed mutagenesis was performed to generate Y64G mutation in the KRASG12V 

plasmid, 12544, described earlier. NIH3T3 cells were transfected with this construct, selected 

using puromycin to generate polyclonal population of cells stably expressing KRASG12VY64G. 
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Generation of NIH3T3 AGO2-/- line 

AGO2-knockout NIH3T3 cells were generated by CRISPR-Cas9-mediated genome engineering 

47. Genomic regions in murine AGO2 between exons 8 and 9, and between exons 11and 12 were 

targeted for deletion using primers TCCTTGGTTACCCGATCCTGG and 

AGAGACTATCTGCAACTATGG, respectively (PAM motif underlined). PCR products were 

cloned into the BbsI site of pX458 (pSpCas9(BB)-2A-GFP; obtained from the laboratory of Feng 

Zhang via Addgene (Cambridge, MA; plasmid 48138)) according to the cloning protocol 

provided by the Zhang lab (http://www.genome-engineering.org). Cells were transfected with the 

vectors using Lipofectamine 3000 (Life Technologies) according to the manufacturer’s 

instructions. 48 hours post-transfection, GFP-positive cells were FACS sorted as a single cell 

into 96-well plate. After culturing for 3 weeks, cells are distributed into two 24 well plates 

followed by PCR-based genotyping using primers mentioned above. A clone showing deletion of 

the targeted region in AGO2 was used for further analysis. Single-cell sorted cells obtained after 

transfection of the empty pSpCas9(BB)-2A-GFP construct was used as a negative control. 

NIH3T3 AGO2-/- cells were also transfected with the KRASG12V plasmid construct to generate 

stable cell lines after puromycin selection. 

Xenograft Models 

Five week-old female C.B17/SCID mice were procured from a breeding colony at University of 

Michigan.  Mice were anesthetized using a cocktail of xylazine (80 mg/kg, intraperitoneal) and 

ketamine (10 mg/kg, intraperitoneal) for chemical restraint. NIH3T3 cells stably expressing 

AGO2, KRASWT, KRASG12V +vector or KRASG12V + AGO2 (0.5 or 1 million cells for each 

implantation site) were resuspended in 100 μL of 1× PBS with 20% Matrigel (BD Biosciences) 

http://www.genome-engineering.org/
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and were implanted subcutaneously into flank region on both sides. Eight mice were included in 

each experimental group. Tumor growth was recorded every two days by using digital calipers, 

and tumor volumes were calculated using the formula (π/6) (L × W2), where L = length of tumor 

and W = width. For the Mia PaCa-2 xenograft model, cells were first treated with either 

scrambled or AGO2 shRNA overnight. After 2 days of puromycin selection the cells in each 

group were injected in 8 mice and the progression of tumor growth was monitored over time. To 

study oncogenic potential of NIH3T3 KRASG12VY64G and NIH3T3 AGO2-/- cells in vivo, 

subcutaneous implantation of cells on both flanks of mice were performed as before (n=5 mice).  

Four to five week old female SCID mice were used for all xenograft studies. Based on 

power calculation (http://www.biomath.info/power/index.htm), we determined that less than 6 

mice per group are sufficient to detect significant differences in tumor volumes between two 

groups. All mouse experiments were done in a blinded fashion with mice being randomly 

selected for experiments. The person performing the measurements was blinded to the treatment 

groups. No animals were excluded in any of the xenograft experiments. All experimental 

procedures involving mice were approved by the University Committee on Use and Care of 

Animals at the University of Michigan and conform to their relevant regulatory standards.  

Quantitative microRNA and mRNA RT-PCR 

For the quantitation of microRNA levels in the NIH3T3 cells transfected with indicated 

constructs (from both the transient foci assays and stable lines), total RNA was prepared using 

the miRNeasy kit (Qiagen). MicroRNA RT-qPCR was performed according to the 

manufacturer’s instructions (Applied Biosystems). U6 RNA was used as the endogenous control 

since its Ct values remained consistent. The vector transfected cells were used as reference. 

http://www.biomath.info/power/index.htm
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For quantitation of mRNA transcripts, RNA was extracted from the indicated samples and 

cDNAs were synthesized using SuperScript III System according to the manufacturer’s 

instructions (Invitrogen). Quantitative RT-PCR was conducted using primers detailed in Table 

S4 with SYBR Green Master Mix (Applied Biosystems) on the StepOne Real-Time PCR System 

(Applied Biosystems). Relative mRNA levels of the transcripts were normalized to the 

expression of the housekeeping gene GAPDH and vector transfected cells were used as 

reference. 

iSHiRLoC analyses 

RNA oligonucleotides were purchased from Exiqon and IDT, respectively. RNA oligos were 

obtained with a 5` phosphate and, for the let-7-a1 guide strand, with a 3` Cy5 modification. All 

oligos were HPLC purified by the appropriate vendor. Oligonucleotide sequences are as follows, 

let-7-a1 guide: P-UGA GGU AGU AGG UUG UAU AGU U-Cy5 

let-7-a1-passenger: P-CUA UAC AAU CUA CUG UCU UUC C 

RNA oligos were heat-annealed in a 1:1 ratio in 1x PBS, resulting in duplex RNAs, and were 

frozen for further use. Cells were cultured in DMEM (GIBCO) supplemented with 10% (v/v) 

fetal calf serum (FCS, Colorado serum) and 1x penicillin-streptomycin (GIBCO) at 37 oC. 1 - 

1.25 x 105 cells were seeded onto delta-T dishes (Bioptechs) 4 days prior to microinjection, such 

that they were ~80% confluent at the time of microinjection. Regular medium was replaced with 

a minimal medium (HBS), without serum and vitamins, but containing 20 mM HEPES-KOH pH 

7.4, 135 mM NaCl, 5 mM KCl, 1 mM MgCl2, 1.8 mM CaCl2 and 5.6 mM glucose immediately 

before microinjection. After microinjection, cells were incubated in phenol red-free DMEM 
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containing 2% (v/v) FBS in the presence of a 5% CO2 atmosphere at 37 oC for the indicated 

amounts of time prior to imaging.  

Microinjection was performed with samples containing 1 μM Cy5 labeled let-7-a1 

duplexes and 0.05% (w/v) 10 kDa fluorescein dextran (Invitrogen) in PBS. Imaging was 

performed as described 43,44  using a cell-TIRF system based on an Olympus IX81 microscope 

equipped with a 60x 1.49 NA oil-immersion objective (Olympus), as well as 488 nm (Coherent 

©, 100 mW at source, ~38 µW for imaging fluorescein) and 640 nm (Coherent ©, 100 mW at 

source, 13.5 mW for imaging Cy5) solid-state lasers. A quad-band filter cube consisting of a 

z405/488/561/640rpc dichroic filter (Chroma) and z405/488/561/640m emission filter (Chroma) 

was used to filter fluorescence of the appropriate fluorophore from incident light. Emission from 

individual fluorophores was detected sequentially on an EMCCD camera (Andor Ixon). Particle 

tracking analysis was performed by using tracks that spanned at least four video frames. 

Pathscan Intracellular signaling array analysis 

Pathscan intracellular signaling arrays were purchased from Cell Signaling. Indicated cells from 

the overexpression model or after knockdown were starved overnight and 40-80 µg of lysates 

generated from these were applied to the arrays. Arrays were processed according to the 

manufacturer’s instructions and developed using chemiluminescent substrates. For the analysis 

ImageJ software was used and control spots indicated in (Figure S10A) were used to normalize 

the data. The quantitative bar charts shown in the study are for those signaling moelcules that 

show intensity levels of greater than 50 for each of the duplicate spots in any given treatment of 

overexpression or knockdown.  
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Figure 5.1 Components of the microRNA machinery are modulated by the RAS/MAPK pathway 
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  Figure 5.2 AGO2 enhances mutant KRAS dependent growth by elevating KRAS protein expression (A) 
Immunoblot analysis of AGO2 and KRAS after knockdown or overexpression of AGO2. (B) Growth curves and (C) 

colony formation assays of mutant KRAS dependent H358 lung cancer cells, following either knockdown of 

KRAS/AGO2 using shRNA or AGO2 overexpression. Error bars are based on standard error of mean. *(P<0.05) and 

**(P<0.005) denote significant differences in growth at the indicated times compared to either scrambled or vector 

control. Data obtained from three independent experiments are shown  (D) Pathscan intracellular signaling arrays 

probed with lysates from H358 cells following AGO2 knockdown (E) Growth curves (left) and colony formation 

assays (right) of mutant KRAS independent H460 lung cancer cells, following knockdown of KRAS/AGO2. Data 

obtained from three independent experiments are shown. Inset, immunoblot analysis of AGO2 and KRAS after 

AGO2 knockdown. (F) Intracellular signaling array probed with lysates from H460 following AGO2 knockdown.  

(G) Growth curves of pancreatic cancer cells, MIA PaCa-2 (mutant KRAS dependent) (left) and PANC-1 (mutant 

KRAS independent) (right) following knockdown of KRAS or AGO2, as indicated. *(P<0.05) and **(P<0.005) 

denote significant differences in growth at the indicated times compared to scrambled control. Data obtained from 

three independent experiments are shown (H) In vivo growth of Mia PaCa-2 cells transiently treated with either 

scrambled shRNA or shRNA targeting AGO2 prior to injecting in nude mice. For each group (n=8), one million 

cells were injected and average tumor volume (in mm
3
) was plotted on y-axis and days after injection on the x-axis. 

Right, immunoblot analysis of AGO2 and RAS following AGO2 knockdown in Mia PaCa-2 cells. Indicated P-value 

was calculated using two sided student t-test for the two groups. 
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  Figure 5.3 Mutant KRAS-AGO2 interaction promotes transformation (A) Representative images of foci 

formation assays using NIH3T3 cells co-transfected with KRAS
WT

 or KRAS
G12V

 and AGO2 (left panel).   

Quantitation of foci from two technical replicate experiments (right panel). Foci assays were performed at least 

three times with similar results. P-value, calculated using two-sided student t-test between the two groups.(B) 

Representative images of foci formation assays using NIH3T3 cells co-transfected with BRAF
V600E

 with or 

without AGO2 (left panel).   Quantitation of foci from two technical replicate experiments (right panel). Foci 

assays were performed at least three times with similar results. P-value, calculated using two-sided student t-test 

between the two groups  (C) Immunoblot analysis shows increased levels of oncogenic KRAS levels in the 

presence of AGO2. Lower panel, intracellular signaling arrays probed with lysates from NIH3T3 cells stably 

expressing vector, AGO2, or KRAS
G12V

±AGO2. The colored circles mark duplicate spots corresponding to p-AKT 

(S473), p-RPS6 (S235/236) and p-mTOR (S2448). (D) Representative images of foci formation assays using 

NIH3T3 cells co-transfected with KRAS
G12V

 or KRAS
G12VY64G

. Quantitation of foci from two independent 

experiments (right). Indicated P-value was calculated using two-sided student t-test. (E) KRAS 

immunoprecipitation (using sc-521 pAb) followed by immunoblot analysis (RAS10 mAb) showing low levels of 

oncogenic KRAS protein expression in NIH3T3 cells stably expressing KRAS
G12VY64G

, despite similar phospho-

Akt activation. Lower panel shows morphology of indicated stable lines grown in 10% serum upon crystal violet 

staining. (F) In vivo growth of NIH3T3 cells stably overexpressing KRAS
G12V

 and
 
KRAS

G12VY64G
 in nude mice. For 

each group (n=8), 500,000 cells were injected and average tumor volume (in mm
3
) was plotted on y-axis and days 

after injection on the x-axis. 
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Figure 5.4 KRAS
G12VY64G

 fails to limit let-7a in small RNP particles.  (A) Distribution of let-7a-1–Cy5 diffusion 

coefficients at different time points following microinjection in parental NIH3T3, NIH3T3-KRAS
G12V 

and NIH3T3-

KRAS
G12V,Y64G

 cells, as described earlier. The fast (green) and slow (red) diffusing particles (demarcated by the dotted 

lines to guide the eye) were defined based on segregation of the two Gaussian distributions 2h after microinjection. Blue 

shaded region represents the diffusion coefficients lost due to limited time resolution of tracking. Number of particles 

analyzed is mentioned within each histogram. (B) from NIH3T3 cells stably expressing KRAS
WT

, KRAS
G12V

 or 

KRAS
G12VY64G

 constructs. U6 RNA and GAPDH mRNA were used as controls to normalize the microRNA and mRNA 

data respectively and vector transfected cells were used as reference. (C) Target genes HMGA1/2, KRAS and MYCN 

are known to be regulated by let-7 microRNA. Error bars show standard error of the mean of 4 replicates and asterisks 

indicate significant log2 fold changes (two sided t-test, P-value less than 0.05) between the indicated conditions 

compared to vector control. 
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Figure 5.5 Generation and characterization of NIH3T3 AGO2-/- cells. (A) Schematic showing the use 

of the CRISPR/Cas9 methodology to knockout AGO2 in NIH3T3 cells. Validation of AGO2 knockout 

was performed using genomic PCR (B), RT-qPCR (C), and immunoblot analysis (D). qPCR analysis of 

let-7 family microRNAs (E) and their target genes (F) in NIH3T3 AGO2-/- cells. Both the microRNA and 

transcript levels were compared to NIH3T3 cells treated with vector with no guide RNA. Error bars show 

standard error of the mean of 4 technical replicates and asterisks indicate significant log2 fold changes 

(two sided t-test, P-value less than 0.05) between the indicated conditions. (G) qPCR analysis of AGO2 

transcripts in NIH3T3 (left) and NIH3T3 AGO2-/- (right) cells two days after transfection for foci 

formation assay, demonstrating similar levels of expression of AGO2 constructs. Error bars show standard 

error of the mean of 3 technical replicates and asterisks indicate significant log10 fold changes (two sided 

t-test, P-value less than 0.005) in AGO2 expression over that of the vector control. 
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Figure 5.6 AGO2 interaction is required for maximal oncogenic potential of mutant KRAS (A) Left, 

representative images of KRAS
G12V

 driven foci in NIH3T3 and NIH3T3 AGO2-/- cells upon co-

transfection with various AGO2 constructs. Right, quantitation of foci from two replicate experiments. 

Error bars show standard error of mean and asterisks indicate P values less than 0.005 for the indicated 

conditions compared to vector control. (B) Upper panel, Immunoblot analysis showing reduced 

expression of oncogenic KRAS in KRAS AGO2-/- stably expressing KRAS
G12V

 and the extent of phospho-

ERK and phospho-AKT activation in these cells. Lower panel shows crystal violet staining of indicated 

stable lines grown in 10% serum. (C) Sucrose density gradient fractionation of parental NIH3T3, NIH3T3 

KRAS
G12V

 and NIH3T3 AGO2-/- cell lysates followed by immunoblot detection of RAS, AGO1 and 

AGO2 proteins. (D) In vivo growth of NIH3T3 or NIH3T3 AGO2-/- cells stably expressing KRAS
G12V

 in 

nude mice. For each group (n=8), 500,000 cells were injected and average tumor volume (in mm
3
) was 

plotted on y-axis and days after injection on the x-axis. Error bars are standard error of mean * P<0.05 

and ** P<0.005 at the indicated times. (E) Schematic representation of the N-terminal domain of AGO2 

interacting with the switch II domain in RAS. 
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Source Gene Primer sequence (5'- 3')
Human AGO2_F ACCCACCCCACCGAGTTCGAC
Human AGO2_R AGTGCGAAGGCCTGCTTGTCC
Human GAPDH-F TGTAGTTGAGGTCAATGAAGGG
Human GAPDH-R GAGTCCTTCCACGATACCAAAG
Human AGO2_orf_F GCACTATCACGTCCTCTGGG
Human AGO2_orf_R GGTGTGACACAGCTGGTAGG
Human KRAS_orf_F ACACAAAACAGGCTCAGGACT
Human KRAS_orf_R AGGCATCATCAACACCCTGT
Human KRAS_F TCGACACAGCAGGTCAAGAGGAG
Human KRAS_R AGAAAGCCCTCCCCAGTCCTCA
Mouse MYCN ACAGAACTGATGCGCTGGAAT
Mouse MYCN GGCTGAAGCTTACAGTCCCAA
Mouse HMGA1_F CCTCTGGACGGTTGTGTTGT
Mouse HMGA1_R TGGGGGAGAGAATACAGGCA
Mouse HMGA2_F TGTGCCCTCTGACTTCGTTC
Mouse HMGA2_R AGCAAGCCGTCCAAGTACAA
Mouse KRAS_F GTTAGCTCCAGTGCCCCAAT
Mouse KRAS_R ATTCCCTAGGTCAGCGCAAC

 
 
 
Table 5.1 PCR primers used in this study. orf:open reading frame
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CHAPTER 6 

 

DISCUSSION AND FUTURE DIRECTIONS 

 

The physical association of RAS, a signaling hub, with the core component of RNA silencing 

complex described here, presents exciting new insights for both RAS and AGO2 function, as 

well as having wider implications not addressed in this thesis. From the discovery of the RAS-

AGO2 interaction to its relevance in normal/oncogenic processes, this concluding chapter 

attempts to connect the intriguing observations made in this study, with broader cellular 

processes mediated by the two well characterized entities.   

 

Identification of the RAS-AGO2 interaction 

It is the unbiased approach of mass spectrometric analysis of endogenous RAS 

immunoprecipitates that helped identify AGO2 as an interacting partner (Chapter 4). Use of a 

well characterized pan-RAS antibody for immunoprecipitation, used by most labs studying RAS, 

circumvented issues related to ectopic overexpression RAS, its localization, and potential 

interference of expression tags in protein-protein interactions; this provided us an opportunity to 

study RAS interacting proteins in a variety of lung and pancreatic cancer cell line models. 

Importantly, use of this antibody also excluded some of the canonical RAS interacting proteins 

that involve Switch I domain, facilitating identification of proteins that bind the Switch II 

domain. 
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The only previous report of a physical association of Argonaute with a GTPase is that of 

a PUF-AGO-eEF1A complex
1
 which attenuates translation elongation. Lack of evidence for 

genetic interaction in knockout mouse models of RAS and AGO2 may likely be due to an 

essential requirement for both KRAS
2
 and AGO2

3
 in early development. Previous studies using 

mass spectrometric analysis of AGO2 interactors have used a 25kda cut-off likely narrowly 

missing the 21kDa small GTPase
4
. Further, AGO2 antibodies used to demonstrate endogenous 

RAS co-immunoprecipitation requires the use of increased salt concentration (300mM) during 

washing of the immunoprecipitates, suggesting that RNA-dependent mRNP complexes bound 

indirectly to AGO2 may need to be detached before the fraction that binds RAS is uncovered.  

 

Is AGO2 a RAS effector? 

The surprising discovery and subsequent validation of RAS and AGO2 peptides in the mass 

spectrometric analysis in all the cell lines tested, suggested that AGO2 binds RAS in a nucleotide 

agnostic manner. Indeed, we have demonstrated that both RAS-GDP and RAS-GTP bind AGO2 

with equal efficiency, however GTP bound RAS may have distinct effects on AGO2 function, 

known to be sensitive to magnesium ions
5
, which incidentally are also integral to nucleotide 

exchanges on RAS
6
.  

Our studies of AGO2 activity in the context of GDP/GTP bound KRAS, suggest that 

AGO2 function is inhibited when oncogenic KRAS binds AGO2, as evidenced by both reduced 

let-7 levels and lack of let-7 in functional mRNPs (Figure 5.4). Since AGO2 is known to 

stabilize microRNA levels
7
, oncogenic RAS associated with AGO2 may result in decreased 

capacity of microRNAs to bind AGO2 and ultimately result in their degradation. 
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Considering that AGO2 is central to the RNA silencing machinery and thus controls 

expression of both proliferative and suppressive messages in the cells, local and 

compartmentalized effects of oncogenic RAS on AGO2 function may elicit specific proliferative 

signals. Moreover, the binding of mutant RAS to AGO2 under oncogenic conditions in the cell 

may also restrict movement of AGO2 to P-bodies that are cytoplasmic hubs of gene silencing, 

thereby increasing cellular protein translation levels in general.   Post translational modifications 

of AGO2
8,9

 that are being identified in different signaling contexts may in turn affect its 

association with RAS.  

Considerable work needs to be performed to delineate and tease out AGO2 mechanisms 

that are direct and indirect consequences of oncogenic KRAS binding. 

 

Why AGO2? 

Although the four mammalian AGO family members have overlapping functions
10

, AGO2 binds 

microRNA most efficiently, stabilizes microRNAs
7
, binds to coding regions of the transcripts

11
 

and is the only AGO protein that has endonucleolytic activity
12

. The AGO proteins differ most in 

their N-terminal sequences and in AGO2, two motifs in N-domain control the unique 

endonucleolytic activity of the protein
13,14

. We have also narrowed the region of RAS interaction 

to a stretch of about 100 amino acids (aa 50-141) in between these two motifs such that RAS 

binding may change the conformation of AGO2 or simply interfere with the endonucleolytic 

catalytic center of its PIWI domain. Even more fascinating is that the precise stretch involved in 

RAS binding has been identified as the ‘wedge region’
15

 of AGO2 that is involved in removal of 

the passenger strand of the small RNA duplex, critical for its loading into the RISC. Through 
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contacts with this unique structural motif of the AGO2 N domain, RAS could have a direct 

bearing on its microRNA binding and endonucleolytic activity. 

Both post translational modifications of KRAS and AGO2 and/or compartment specific 

protein interactions may provide localized clustering of these proteins for interaction, further 

suggesting a preference for AGO2 over other clade members of the Argonaute family.  

 

The role of the RAS Switch II domain in AGO2 binding 

Both the conserved Switch I and Switch II domains in RAS undergo conformational change 

upon nucleotide binding. Unlike the RAS-effectors that bind the Switch I domain (RAF, PI3K, 

RALGDS)
16

 or RAS-regulators that bind the Switch II domain in a nucleotide dependent manner 

(NF1 only binds RAS-GTP, SOS1 only binds RAS-GDP) our studies show that AGO2 binds 

RAS in a nucleotide agnostic manner.  

Considering that KRASY64 is critical for both SOS1 and AGO2 binding, could AGO2 

compete with SOS1 for KRAS binding? If so, what would be the consequences of such 

competition for KRAS signaling and transformation? If not, are there other residues in the 

Switch II domain that are critical for AGO2 association. Also importantly, does intracellular 

compartmentalization of KRAS determine preferred binding to AGO2? AGO2-activity based 

assays will help determine the effects of wild type versus mutant KRAS binding on AGO2 

function.  

While we observed that expression of oncogenic KRAS but not “oncogenic KRAS with 

Y64G mutation”, inhibits AGO2 function (reduced let-7 levels and mRNP complexes), 

expression of the wild type KRAS protein had no such effect. As mentioned earlier, this suggests 

that mutant RAS binding through the wedge domain of AGO2, possibly interferes with duplex 
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unwinding and proper RISC assembly
15

. Whether the structural changes in mutant KRAS caused 

due to constitutive GTP loading, leads to a direct inhibition of AGO2 function or prevents its 

shuttling to cellular compartments or simply altersthe profile of its protein/RNA interactions is 

yet to be determined. 

Experiments to elucidate biochemical and functional differences between wild type and 

mutant KRAS with respect to modulation of AGO2 activity are underway. 

 

Role of AGO2 in mutant KRAS driven cellular transformation 

Cellular transformation assays using NIH3T3 mouse fibroblasts, the earliest models to study 

RAS function, showed that AGO2 potentiates KRAS mediated cellular transformation. 

Conversely, knockdown of AGO2 using small hairpin RNA silencing molecules also showed a 

dependency of cellular growth on AGO2 levels in a mutant KRAS dependent manner.  While 

overexpression of AGO2 increases mutant KRAS expression and activates the PI3K/Akt/mTOR 

pathway, knockdown decreases mutant KRAS levels to reduce signaling.  

The oncogenic double mutant used in our study (KRAS
G12VY64G

) was intriguing in many 

aspects since it had lost oncogenic potential and yet, showed increased activation of the RAS 

effector pathways. Most relevant and consistent with our understanding of the KRAS-AGO2 

interaction, KRAS
G12VY64G

 expressing cells failed to inhibit RISC formation in the iSHirLoC 

assay and showed no reduction in let-7 levels, suggesting that failure to bind AGO2 abrogates 

the ability of oncogenic KRAS to inhibit AGO2 function. Yet expression of KRAS
G12VY64G

, 

elevates both phospho-Erk and phospho-Akt signaling in cells. While the substitution of Y64 

residue in the Switch II domain may have no bearing on the RAF/MEK/Erk pathway, Akt 

activation through PI3K was predicted to be diminished since PI3K binds KRAS-GTP through 
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Y64 to elevate phospho-Akt levels. This suggests that indirect mechanisms of Akt/mTOR 

activation may be responsible for elevated phospho-Akt levels in these cells. Recent work 

suggests that STAT3 pathway may be more active in the mutant KRAS pancreatic cell context 
17

 

and will need to be explored in these cells.  

But the nexus of AGO2 regulating mutant KRAS levels and PI3K pathway was most 

apparent, when we tested the potential of mutant KRAS to generate tumors in NIH3T3 cells 

deleted for AGO2 using CRISPR/Cas9 system. In this scenario, cells lacking AGO2, limited both 

mutant KRAS expression levels and showed reduced activation of phospho-Akt levels, 

establishing a previously unknown connection between AGO2 and the PI3K pathway.  

 

Can AGO2 be the missing puzzle piece of RAS function? 

 Despite the vast knowledge of effector function of RAS, the ability to target this function 

remains limited. Neither inhibitors of downstream RAS effectors, nor inhibitors of RAS 

membrane targeting mechanisms have yielded benefits to patients with mutant RAS driven 

tumors. Integrating AGO2 interaction and inhibition of its RNA silencing activities, as one of the 

functions of mutant KRAS could explain some of the anomalies reported in literature.  

Through modulation of the microRNA based machinery, context dependent RAS 

signaling observed in various models of pancreatic, lung and colon cancer can be explained. 

Given that microRNA profiles of different cells are distinct, the lack of mutant KRAS specific 

gene signatures can also be explained through regulation of AGO2 function. Inconsistencies 

observed in synthetic lethal screens and cell line specific effects also can be attributed to post 

transcriptional gene silencing mechanisms rather than simple linear effects of RAF/MAPK/ERK 

or PI3K/Akt/mTOR pathway activation, which are highly conserved and identical in most cells. 
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Without clear evidence of nuclear reprogramming, the vast number of oncogenic activities of 

mutant RAS in different models also remains unexplained. 

The prevalence of RASopathies suggests that RAS function is compromised during 

development in these patients. RAS/RAS pathway mutants detected in these patients, show 

activated RAS-GTP but remain unresponsive to MEK/PI3K inhibition in various models. 

Activation of RAF/PI3K pathways alone, fails to explain the breadth of the neurological and 

cytoskeletal deformities observed in these patients.  

Differential binding affinities of various RAS mutants to AGO2 or different effects on 

AGO2 function could also explain how mutant RAS can manipulate the RNA silencing 

machinery to reprogram cells without direct entry into the nucleus. Given that other regulators 

like NF1 and SOS1 fail to bind the oncogenic form of RAS (due to conformation change of 

Switch II region), AGO2 remains the only protein that continues to associate with oncogenic 

KRAS through its binding to the Switch II domain.  In this context, it is intriguing that the new 

inhibitors of KRAS 
18-21

 make contacts in the switch II region of KRAS where it is likely that 

they interfere with AGO2 function. 

 

Exploring RAS-AGO2 interaction in genetic models 

The study of functional aspects of the RAS-AGO2 interaction in established genetically 

engineered lung and pancreatic cancer mouse models of mutant KRAS (crossed with AGO2 

conditional lethal mouse models) are still awaited. In parallel, other genetic models like 

Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis need 

to be explored, retrospectively, as experimental models to trace the evolutionary conservation of 

the RAS-AGO2 interaction. Here, it is interesting to note that S. cerevisiae lacks both the 
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Argonaute mediated RNA silencing pathway 
12

 and the PI3K pathway 
22

, both of which are 

critical for maximal RAS driven cellular transformation (Figure 5.6). Of the 93 small GTPases 

found in Arabidopsis, RAS homologs are curiously not conserved, limiting the use of both the S. 

cerevisiae and Arabidopsis as genetic models.  

While the C.elegans genome encodes RAS GTPase similar to the mammalian form, it has 

27 Argonaute protein homologs, which largely perform RNA silencing functions with exogenous 

or endogenous siRNAs involving various Argonautes with or without endonucleolytic activity
23

. 

It is possible that Argonautes using microRNA based RNA silencing may be involved in RAS 

mediated signaling. Interestingly a C.elegans Argonaute protein CSR-1, homolog of mammalian 

AGO1, was shown to coimmunoprecipitate with translational GTPase, EEF1A, to attenuate 

translation elongation. Both, the interaction and function, was also conserved in mammalian 

cells, providing the only evidence of a direct interaction between an Argonaute protein and a 

GTPase
1
. The same Argonaute gene, csr-1, was also found to be required in combination with 

ksr-1 (kinase suppressor of RAS signaling) providing a genetic evidence for a role for small 

RNAs and post transcriptional gene silencing in RAS-ERK pathway
24

. Since AGO2 also 

regulates KRAS levels through small RNA, alternate approaches using binding 

competent/incompetent rescue mutants will help tease the direct and indirect effects of the RAS-

AGO2 interaction. 

The Drosophila eye development as a genetic model remains the best model to 

extrapolate our findings of a direct interaction between mammalian RAS and AGO2. The fruit 

fly has both the RAS protein, which shares extensive homology to mammalian RAS and has only 

4 Argonaute proteins of which dAGO1 is closely related to human AGO2 (even retaining one of 

the residues required for RAS interaction, identified in our study). Elegant studies using RAS 
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mutants that rescue the lethality associated with RAS null allele have been performed to 

demonstrate the role of the RAS/RAF/MEK/ERK pathway in eye development 
25

. Yet not all 

functions of RAS could be restored by effector domain mutants that bind differentially to 

RAF/PI3K and mechanisms controlling the thresholds of RAS effector pathway were shown to 

specify distinct cellular responses of the same photoreceptor cells. A direct role for Argonaute 

and small RNA based silencing machinery in these RAS models can be performed once we 

demonstrate the interaction between RAS and AGO2 in Drosophila cells. 

While probing the interaction to better understand human cancers, the study of 

evolutionarily primitive model organisms with different RAS-like signaling molecules and 

silencing mechanisms using different Argonaute proteins will provide insights into the 

evolutionary underpinnings of the RAS-AGO2 interaction.   
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APPENDIX 

Supplementary Information for the individual chapters presented in this thesis can be obtained online at 

the addresses mentioned below. 

 CHAPTER 2 CHARACTERIZATION OF KRAS REARRANGEMENTS IN  

METASTATIC  PROSTATE CANCER 

http://cancerdiscovery.aacrjournals.org/content/1/1/35/suppl/DC1 

CHAPTER 3 OUTLIER KINASES IN KRAS DEPENDENT CANCER 

http://cancerdiscovery.aacrjournals.org/content/3/3/280/suppl/DC1 
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