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Abstract 

 

Real-time atomic-resolution probing of lithium ion intercalation in TiO2–

related anodes using transmission electron microscopy 

 

by 

Sung Joo Kim 

 

Nanostructured TiO2 polymorphs such as rutile and bronze have been considered for lithium ion 

battery (LIB) application due to their chemical stability and accessibility. Despite their promising 

performance as anodes and coating materials, understanding of lithium ion behaviors in TiO2-

related systems is still controversial, since most studies have relied on bulk characterization 

techniques which do not present local changes in morphology. Here, we employed in-situ 

transmission electron microscopy (TEM) and high-resolution scanning TEM (HRSTEM) to 

perform nano-scale structural studies of TiO2-related anodes upon Li intercalation.  

The electrochemical study of a single-crystalline rutile TiO2 nanowire (NW) was conducted 

under high-resolution TEM aided by selected area electron diffraction. The result demonstrates 

the two-step lithiation accompanied by the highly anisotropic volumetric expansion and phase 

transformation. 
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An in-depth study of lithiation in bronze TiO2 (TiO2-B) had been possible by the growth of a 

high-quality TiO2-B thin film templated by Ca-modified bronze phase, CaTi5O11 (Ca:TiO2-B). 

Various interfaces and defects in TiO2-B and Ca:TiO2-B thin films deposited on (100) and (110) 

SrTiO3 substrates were first studied under HRSTEM. High crystallinity of (001) TiO2-B on a 

Ca:TiO2-B template motivated us to perform lithiation on the structure under HRTEM. Revealed 

by high-resolution observation of electrochemical lithiation into TiO2-B, many defects were 

induced by strain relaxation upon Li-induced TiO2-B lattice expansion. In fact, depending on Li 

intercalation direction into the structure, either high-symmetry structural transformation or plain 

shears was generated. The observations were corroborated by post-mortem HRSTEM 

characterization and theoretical calculation.  

The capability of a TiO2 nanostructure as a coating material for a LIB anode was also 

investigated via potentiostatic lithiation of a rutile TiO2-coated Si NW. It was found that lithium 

intercalation into this NW occurred locally by having each segment achieving full lithiation 

throughout the Li migration pathway. The TiO2 coating also influenced final lithiated 

morphology of a coated Si (Li15Si4) to be different from that of an uncoated one.  

The results discussed in this thesis provide the in-depth knowledge on the Li ion dynamics in the 

two TiO2 polymorphs. The application of in-situ high-resolution TEM technique can be 

expanded towards other polymorphs of various different structural forms.   
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Chapter 1. Introduction and Background 

 

1.1. Fossil fuel  

According to the 2014 energy review published by US Energy Information Administration (EIA), 

the fossil fuel is by far the largest primary source of US annual energy consumption, accounting 

for 82 % of total consumption
1
, which is not much deviated from the reported percentage of 

global energy consumption 81 %.
2
 Recently, EIA projected an alarming 38 % increase in world 

fuel consumption including petroleum and liquid fuels by 2040 due to increasing demand from 

developing countries in Asia and Middle East. According to Topal, et al., the depletion time for 

fossil fuel is projected to be 37, 107, and 37 years, respectively, for oil, coal, and gas.
3
 A 

continued surge on consumption rate of fossil fuels, however, may shorten the projected 

depletion time and increase the unwelcoming emission of greenhouse gases (e.g. CO2) that 

potentially contribute to global warming. Hence, there has been growing need and research 

interest for the technology for effective energy generation and storage.  

 

1.2. Renewable Energy and Battery Market 

According to the data published by International Energy Agency, the portion on modern 

renewables excluding traditional biomass has already passed 10 % of total global energy 

consumption;
4
 These include geothermal, hydropower, wind, bio-fuels, and solar energy. From
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 those categories, solar energy has become the fastest developing renewable energy in production. 

According to the 2014 Global Status Report on Renewables, solar PV (photovoltaics) has 

demonstrated the most remarkable growth rate of 55 %, within the period from 2008 to 2013, 

outperforming all other renewable energies.
2
 Now, it has had the second highest increase in 

global capacity, only second to hydropower, and recently become the fourth largest renewable 

energy sector. Surprisingly in 2013, there has been a first cross-over between solar cell global 

installment and investment, possibly indicating the decrease in the PV cost.
2
 Despite continued 

increase in power conversion efficiency (PCE) and cost reduction, PV is still unlikely to take 

over a large portion of energy utilization capacity from the fossil fuel and stir up the 

consumption interest for this new energy source. The main reason is its installation cost. 

According to Beard and Nozik, the energy cost needs to be lowered as much as 0.03 $/kWh, that 

is a half or a third of the current average grid cost.
5
 Another reason is the difficulty in solar 

energy storage. Environmental factors such as the position of the sun and diurnal cycles also 

need to be considered since they affect depreciation and the maintenance costs of solar modules.          

Hence, the application of a battery for electrical energy storage (EES) is underway for successful 

deployment of the renewable energy technology since it meets the requirements for EES 

including a compact size, high cycling efficiency, and a flexible control on outputs.
6
 A battery 

uses electrochemical means to store energy within the electrode via charge transfer reactions 

between the electrode and the electrolyte. This makes the operation self-sustained without having 

to recharge externally like other storage systems such as a fuel cell.    

Hence, a battery, specifically a rechargeable (secondary) battery, is actively used for versatile 

applications, not just for renewable energy storage but also for portable electronics and electric 

vehicles (EV). A high operational capacity of a Lithium ion battery has already improved the 
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performance of mobile phones and laptop computers ever since Sony released its first 

commercial battery with much improved safety in 1991. In fact, most of newly released 

smartphones carry portable Li-ion batteries. According to the 2013 Li ion battery market report 

by Frost and Sullivan, the consumer sector including portable electronics occupies around 60% 

of a total Li ion battery market.
7
 The second largest sector is automotives that accounts for 18.3% 

of a total Li ion battery market share. This market will continue its growth because of the 

increase in EV production and the continuing consumer demand for hybrid electric vehicles 

(HEVs) and plug-in hybrid electric vehicles (PHEVs).  The pre-existing vehicles of such kinds 

like Nissan Leaf (EV) and Chevy Volt (PHEV) from General Motors continue to generate more 

demands in the automotive market. Other companies like BMW and Volkswagen that newly 

launched the electric and the hybrid electric vehicles are expecting to bring the automotive 

market towards a new level.              

 

1.3. Working principles and development of a Li-ion battery   

A Li battery cell is composed of the positive and negative electrodes that are separated by the 

electrolyte solution which has appreciable ionic conductivity to be capable of driving Li ion 

transfer across the electrodes under the certain chemical potential difference. Chemical reactions 

in either of the electrodes liberate electrons out, letting them pass through a current collector 

towards the external circuit. When the cell is discharged, the Li ions flow from the negative to 

the positive electrode to minimize the potential difference between two electrodes. However, 

upon charge, the ions are forced to migrate back to the negative electrode, thus generating 

potential difference between the two. The electrical energy, or specifically energy density (Whg
-1

) 
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delivered from the chemical reaction is the function of the cell potential (V) and specific capacity 

(Ahkg
-1

). A Li ion battery has demonstrated by far the best performance with the highest energy 

density out of all types of commercial battery systems known to exist.
8
   

Before the discovery of a Li ion battery in 1972, a battery community initially considered Li 

metal, being the most electropositive as well as the lightest metal, to be the most suitable 

replacement for Ni-Cd and Pb-based batteries.
9-10

 However, a soon found safety issue owing to 

dendritic growth of Li metal during cycling has made the research gradually put more emphasis 

on the ionic rather than the metallic character of Li. Hence, the host materials for Li ion insertion 

replaced Li metal, to be subsequently paired up with high-potential insertion positive electrodes 

like transition metal oxides. Taking nearly two decades from a concept to commercialization, the 

new-generation Li-ion cell was finally realized with the creation of a graphite - Lithium cobalt 

oxide (LCO) cell, as also schematically shown in Figure 1.1. More than 20 years since its first 

appearance, this cell is still being used in many of today's portable electronics.  

Since its discovery, there has been tremendous interest in improving the performance (i.e. 

potential or energy density) of the Li ion battery by scrutinizing over all possible transition metal 

oxide candidates for both positive and negative electrodes. Many Li-alloyed transition metal 

oxides (LiMOx, M = Co, Ni, Mn, and Fe) that are structured in spinel have been intensively 

studied for positive electrodes.
11-13

 With controlled tuning of redox potentials via incorporation 

of poly-anions like phosphate (PO4
3-

) was discovered a more customized positive electrode like 

olivine LiFePO4
14-15

, which is currently considered very promising for the next-generation Li-ion 

cell. The important criteria when searching for an anode material are low potential relative to Li, 

high specific capacity, and cyclability. With regards to specific capacity, no anode can surpass Si, 

which has a theoretical capacity of 4200 mAhg
-1

 when fully lithiated to Li4.4Si. This value easily 
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overpasses specific capacity of conventional graphite (372mAhg
-1

), even exceeding that of Li 

metal (3600mAhg
-1

). However, charging of Si involves large volumetric expansion (~400%)
16

 

that leads to the fracture of a neighboring current collector and induces a large drop in specific 

capacity over the course of cycling. In fact, anodes like Si, Ge, and Sn that operate via 

alloying/dealloying reaction upon electrochemical cycling heavily suffer from capacity fading 

due to a large volume change and the formation of unstable secondary phases.
16-19

 As an 

alternative to the system above, anodes like transition metal binary compounds that operate via 

conversion reaction have also been studied. The reaction involves full reduction of a binary 

compound to metal nanoparticles before they get embedded in a newly formed Li-binary 

compound matrix. The main advantage of a such reaction is high reversibility upon discharge 

since a considerably large interfacial surface between nanoparticles and the matrix after charging 

is conducive to fast decomposition of the matrix upon applying reverse polarity.
20

 However, the 

downside of a such reaction is large cycling hysteresis generated by the difference in a reaction 

pathway between charge and discharge. Hence, low coulombic efficiency induced by severe 

polarization loss still remains the fundamental problem with no effective solution. Despite all the 

advantages that they have, both alloying/dealloying reaction and conversion reaction face 

challenges that are too formidable for commercial use. In this regard, anodes with the third type 

of reaction, that is insertion/deinsertion reaction, have been widely considered due to their high 

coulombic efficiency and capacity retention, despite their low specific capacity range (120-330 

mAhg
-1

). Besides the conventional carbonaceous materials like Graphite, there is another class of 

insertion/deinsertion reaction materials, titanium oxide (TiO2) systems, that have been 

considered promising as Li ion battery anodes for their unparalleled chemical and structural 

stability.   
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1.4. Nanostructured engineering of TiO2 anodes 

The two important requirements for commercialization as a Li ion battery anode are its 

availability for mass production and environmental friendliness. In this context, TiO2 is good 

since it has excellent chemical stability and relative easiness for cost-efficient fabrication.  When 

applied as a Li ion battery anode, a volumetric change of TiO2 is limited to only 4%
21-22

;this 

suggests the outstanding structural stability for prolonged cycling. Furthermore, a relatively high 

working potential (1.5-1.8 V vs. Li)
23

 hampers any unstable solid-electrolyte interphase (SEI) 

layers to form, further contributing to battery stability. All TiO2 polymorphs including rutile, 

bronze, and anatase follow the same reaction path that can typically be expressed as following:  

 

where a positive Li ion basically compensates Ti
3+

 in the original Ti
4+

 lattice by taking one 

electron. It has been known that except a bronze polymorph, this induces phase transition 

depending on its ionic concentration in the reaction.  

Unfortunately, the maximum attainable capacity of bulk TiO2 upon Li insertion is only half of 

the a full theoretical capacity 330 mAhg
-1

 because Li-Li repulsion impedes Li ion mole fraction 

in LixTiO2 to go beyond 0.5.
24

 Furthermore, low ionic and electronic conductivity of bulk TiO2 

result in very low energy density.
25

 Hence, to alleviate such problems, nanostructured 

engineering of TiO2 has been proposed to not only enhance the intercalation density but also 

improve cycling characteristics. By greatly reducing the scale of the operating system to 

nanometers, lithium ions with much smaller diffusion length can be less kinetically confined. 

Furthermore, a high surface area of the nanostructured TiO2 promotes more active chemical 

22 TiOLixexLiTiO x 
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reactions between Li ions and TiO2. Ultimately, these not only boost the specific capacity but 

also increase the rate capability of a TiO2 system. Until recent, many papers on various TiO2 

polymorphs have reported dramatic improvement in their performance as anodes by synthesizing 

them into various nanostructured forms.    

Many electrochemical studies on rutile TiO2 nanoparticles have focused on the effects of 

nanostructuring on their specific capacity. According to Hu et al., there is an order of magnitude 

difference in the charge capacity between micro-sized and nano-sized nanoparticles.
26

 A more 

systematic study on this subject suggested the inverse relationship between the particle size and 

the charge capacity.
27

 Not surprisingly, a similar effect has also been demonstrated for rutile 

nanowires
28

 and nanotubes
29

. Since the surface effects upon Li intercalation is much larger than 

that of a bulk, a significant amount of Li stored at the surface of the rutile nanostructure greatly 

contributes to the storage capacity and, thus, makes the size dependence of its specific capacity 

more dramatic.
30-31

 For anatase TiO2 nanostructures, many studies on its size dependence of 

specific capacity have been done under different annealing temperatures because the crystallite 

size is dependent on this temperature
32-33

 Similar to that of a rutile polymorph, its size and 

specific capacity has demonstrated inverse relationship. However, as opposed to a rutile structure 

with which the capacity retention is also strongly size-dependent, the anodic cyclability bears no 

relationship with the crystallite size in the case of an anatase.
34

 In fact, regardless of the size, its 

cyclability is well maintained above 90%. To further improve its specific capacity while 

maintaining cyclability close to 100%, another morphology like a nanotube
35-36

 was also 

considered. A TiO2 nanotube has shown superior performance with well-maintained specific 

capacity of nearly 270 mAhg
-1

 at 1C due to additional Li intercalation and accommodation of 

volumetric expansion through the inner core of the nanotube.  
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Nanostructured engineering of bronze polymorph of a TiO2 (TiO2-B) has demonstrated the most 

promising results with its specific capacity exceeding those of the above mentioned polymorphs. 

Li mole fraction upon full intercalation into TiO2-B NWs, for example, is 0.91, which is 

equivalent to the specific capacity of 305 mAhg
-1

.
37-38

 What is more impressive than the high 

capacity is extremely high rate capability; even at discharge rate of 2000 mAg
-1

, the specific 

capacity remains above 100 mAhg
-1

.
38

 This remarkable feature of TiO2-B is stemmed from its 

large b-axis open channels that act as sub-surfaces for Li ion intercalation via non-faradaic, 

surface redox process.
39

 Hence, this surface charge transfer and storage mechanism, also known 

as a pseudocapactive behavior, allows fast charge-discharge rate capability of a TiO2-B anode.
40

 

Obviously, an increased surface area of TiO2-B upon nano-structuring further contributes to 

enhancement of its property. To better exploit this unique surface phenomenon, various other 

morphologies such as nanoflowers,
41

 nanosheets,
42

 and nanoparticles
43

 have also been actively 

considered.   

 

1.5. TiO2 coating for nanostructured anodes  

In addition to the electrochemical studies of nanostructured TiO2 as an anode material, there has 

been a significant work on utilizing TiO2 polymorphs as a coating layer on various high-

performance Li ion battery anodes like SiO
44

, Li4Ti5O12
45

, and ZnO
46

. This is because the 

electrical conductivity of nanostructured TiO2 increases significantly under a certain degree of Li 

insertion. This provides effective conduction paths to the anode and ultimately enhances its 

electrochemical reversibility.
44-45,47-48

 Another reason is its excellent thermal stability upon SEI 

formation reaction between Li and the anode. According to the work by Jeong et al.
44

, the 
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outstanding thermal stabilization of a SiO anode upon lithiation can be achieved by TiO2 coating 

by restraining any exothermic reaction between lithiated SiO and the electrolyte even at high 

temperature;this cannot be expected from more conventionally used carbon coating. Thermal 

stability over the wide temperature range is critical for the safety of a rechargeable Li ion cell.  

Although there have been intensive characterization works on electrochemical properties of the 

various polymorphic TiO2-related nanostructures, there has been a lack of extensive 

experimental studies on structural transformation of TiO2 upon Li ion intercalation as most works 

rely heavily on theoretical predictions. A handful of experimental papers on this subject is based 

on bulk structural characterization techniques such as X-ray photoelectron spectroscopy (XPS), 

X-ray absorption near-edge structure (XANES), and X-ray diffraction (XRD), all of which do 

not present clearly but rather are only suggestive of Li ion intercalation behaviors within the 

TiO2 hosts. Studying such behaviors requires in-situ high-resolution characterization like 

transmission electron microscopy (TEM), which this dissertation uses extensively to directly 

probe Li ion dynamics within TiO2-related anodes.   

 

1.6. Objectives and organization of the dissertation 

The primary objective of this thesis is to demonstrate the capability of in-situ TEM to investigate 

the functionality of various nanostructures involving TiO2 polymorphs as host anode materials 

for Li ion battery. As a nano-sized probe tool, TEM is capable of atomically resolving any local, 

nano-scale structural changes associated with Li ion migration into the host, thereby enabling the 

direct interpretation of all the electrochemical activities within TiO2-related anodes. All the 

model samples studied in this work will be synthesized and prepared for TEM in different forms 
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and manners. By investigating all the nano-scale morphological changes associated with Li 

migration within the nanostructures, this dissertation aims to obtain better understanding of the 

Li ion dynamics under various structural forms and bonding environments of TiO2. The work 

strongly relates itself to a structural stability aspect of TiO2 nanostructures, as a mean to explore 

the possibility of its use as the next-generation Li ion battery anodes. 

The dissertation is organized as follows: Chapter 2 explains primarily the experimental 

techniques for TEM and STEM, and auxiliary spectroscopy tools. Chapter 3 discusses about a 

lithiation mechanism, specifically multi-step phase transformation, of a rutile TiO2 NW. Chapter 

4 and 5 discuss TiO2-B and its Ca-modified variant, CaTi5O11 (Ca:TiO2-B), which can act as a 

template for high-quality TiO2-B growth. Due to the novelty of single crystalline thin-film forms 

of TiO2-B and Ca:TiO2-B, the whole Chapter 4 is dedicated in detail the STEM characterization 

of the atomic structure of defects and interfaces of these films before considering the in-situ Li 

intercalation experiments. The chapter fully discusses TiO2-B and Ca:TiO2-B films grown on 

(100) and (110) SrTiO3 substrates. In chapter 5 performs electrochemical lithiation on one of the 

films studied in Chapter 4, (001) TiO2-B grown on a (100) substrate, mainly focusing on its 

strain relaxation mechanism upon Li insertion. Chapter 6 specially looks into the use of rutile 

TiO2 crystallites as the semi-inert coating material for a high performance anode material like Si 

to investigate the effect of TiO2 coating on both a lithiation behavior and a final morphology of 

Si. Finally, aconclusion in chapter 7 summarizes all the findings from the current works and 

proposes the future works, some of which have preliminary results presented in the appendix.   

 



11 
 

1.7. References 

 1. US Energy Information Administration, Monthly Energy Review (2014) 

 2. Renewable Energy Policy Network for the 21st Century, Renewables 2014: Global Status 

Report (2014) 

 3. S. Shafiee, E. Topal, "When will fossil fuel reserves be diminished?", Energ. Policy 37 

181-189 (2009) 

 4. International Energy Agency, Key World Energy Statistics (2014) 

 5. M. C. Beard, J. M. Luther, A. J. Nozik, "The promise and challenge of nanostructured 

solar cells", Nat Nano 9 951-954 (2014) 

 6. B. Dunn, H. Kamath, J.-M. Tarascon, "Electrical Energy Storage for the Grid: A Battery 

of Choices", Science 334 928-935 (2011) 

 7. Frost & Sullivan, 2020 Vision: Global Lithium-Ion Battery Market (2014) 

 8. J. M. Tarascon, M. Armand, "Issues and challenges facing rechargeable lithium batteries", 

Nature 414 359-367 (2001) 

 9. H. Ikeda, T. Saito, H. Tamura, Proc. Manganese Dioxide Symp. 1 (1975) 

 10. M. S. Wittingham, "Electrochemical energy storage and intercalation chemistry ", 

Science 192 1126-1127 (1976) 

 11. A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, "Nanostructured 

materials for advanced energy conversion and storage devices", Nat. Mater. 4 366-377 

(2005) 

 12. K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, "LixCoO2 (0<x≤1): A new 

cathode material for batteries of high energy density", Mater. Res. Bull. 15 783-789 

(1980) 

 13. M. M. Thackeray, W. I. F. David, P. G. Bruce, J. B. Goodenough, "Lithium insertion into 

manganese spinels", Mater. Res. Bull. 18 461-472 (1983) 

 14. N. Ravet, J. B. Goodenough, S. Besner, M. Simoneau, P. Hovington, M. Armand, 

Abstract #127, 196
th

 ECS Meeting, Honolulu, HI, (1999) 



12 
 

 15. M. Takahashi, S. Tobishima, K. Takei, Y. Sakurai, "Characterization of LiFePO4 as the 

cathode material for rechargeable lithium batteries", J. Power Sources 97–98 508-511 

(2001) 

 16. H. Wu, Y. Cui, "Designing nanostructured Si anodes for high energy lithium ion 

batteries", Nano Today 7 414-429 (2012) 

 17. X. H. Liu, L. Q. Zhang, L. Zhong, Y. Liu, H. Zheng, J. W. Wang, J.-H. Cho, S. A. Dayeh, 

S. T. Picraux, J. P. Sullivan, S. X. Mao, Z. Z. Ye, J. Y. Huang, "Ultrafast Electrochemical 

Lithiation of Individual Si Nanowire Anodes", Nano Lett. 11 2251-2258 (2011) 

 18. X. H. Liu, S. Huang, S. T. Picraux, J. Li, T. Zhu, J. Y. Huang, "Reversible Nanopore 

Formation in Ge Nanowires during Lithiation–Delithiation Cycling: An In Situ 

Transmission Electron Microscopy Study", Nano Lett. 11 3991-3997 (2011) 

 19. L. Y. Beaulieu, K. W. Eberman, R. L. Turner, L. J. Krause, J. R. Dahn, "Colossal 

Reversible Volume Changes in Lithium Alloys", Electrochem. Solid-State Lett. 4 A137-

A140 (2001) 

 20. J. Cabana, L. Monconduit, D. Larcher, M. R. Palacín, "Beyond Intercalation-Based Li-

Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting 

Through Conversion Reactions", Adv. Mater. 22 E170-E192 (2010) 

 21. M. Wagemaker, G. J. Kearley, A. A. van Well, H. Mutka, F. M. Mulder, "Multiple Li 

Positions inside Oxygen Octahedra in Lithiated TiO2 Anatase", J. Am. Chem. Soc. 125 

840-848 (2002) 

 22. D. Deng, M. G. Kim, J. Y. Lee, J. Cho, "Green energy storage materials: Nanostructured 

TiO2 and Sn-based anodes for lithium-ion batteries", Energy Environ. Sci. 2 818-837 

(2009) 

 23. V. Aravindan, Y.-S. Lee, R. Yazami, S. Madhavi, "TiO2 polymorphs in ‘rocking-chair’ 

Li-ion batteries", Materials Today In press (2015) 

 24. G. Nuspl, K. Yoshizawa, T. Yamabe, "Lithium intercalation in TiO2 modifications", J. 

Mater. Chem. 7 2529-2536 (1997) 

 25. X. Su, Q. Wu, X. Zhan, J. Wu, S. Wei, Z. Guo, "Advanced titania nanostructures and 

composites for lithium ion battery", J Mater Sci 47 2519-2534 (2012) 

 26. Y. S. Hu, L. Kienle, Y. G. Guo, J. Maier, "High Lithium Electroactivity of Nanometer-

Sized Rutile TiO2", Adv. Mater. 18 1421-1426 (2006) 



13 
 

 27. C. Jiang, I. Honma, T. Kudo, H. Zhou, "Nanocrystalline Rutile TiO2 Electrode for High-

Capacity and High-Rate Lithium Storage", Electrochem. Solid-State Lett. 10 A127-A129 

(2007) 

 28. B. Han, S.-J. Kim, B.-M. Hwang, S.-B. Kim, K.-W. Park, "Single-crystalline rutile TiO2 

nanowires for improved lithium ion intercalation properties", J. Power Sources 222 225-

229 (2013) 

 29. D. Liu, P. Xiao, Y. Zhang, B. B. Garcia, Q. Zhang, Q. Guo, R. Champion, G. Cao, "TiO2 

Nanotube Arrays Annealed in N2 for Efficient Lithium-Ion Intercalation", J. Phys. Chem. 

C 112 11175-11180 (2008) 

 30. C. Jiang, E. Hosono, H. Zhou, "Nanomaterials for lithium ion batteries", Nano Today 1 

28-33 (2006) 

 31. A. Stashans, S. Lunell, R. Bergström, A. Hagfeldt, S.-E. Lindquist, "Theoretical study of 

lithium intercalation in rutile and anatase", Phys. Rev. B 53 159-170 (1996) 

 32. A. K. Rai, L. T. Anh, J. Gim, V. Mathew, J. Kang, B. J. Paul, J. Song, J. Kim, "Simple 

synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium 

ion batteries", Electrochim. Acta 90 112-118 (2013) 

 33. V. Subramanian, A. Karki, K. I. Gnanasekar, F. P. Eddy, B. Rambabu, "Nanocrystalline 

TiO2 (anatase) for Li-ion batteries", J. Power Sources 159 186-192 (2006) 

 34. J. W. Kang, D. H. Kim, V. Mathew, J. S. Lim, J. H. Gim, J. Kim, "Particle Size Effect of 

Anatase TiO2 Nanocrystals for Lithium-Ion Batteries", J. Electrochem. Soc. 158 A59-

A62 (2011) 

 35. D. Pan, H. Huang, X. Wang, L. Wang, H. Liao, Z. Li, M. Wu, "C-axis preferentially 

oriented and fully activated TiO2 nanotube arrays for lithium ion batteries and 

supercapacitors", J. Mater. Chem. A 2 11454-11464 (2014) 

 36. W. Wei, G. Oltean, C.-W. Tai, K. Edstrom, F. Bjorefors, L. Nyholm, "High energy and 

power density TiO2 nanotube electrodes for 3D Li-ion microbatteries", J. Mater. Chem. A 

1 8160-8169 (2013) 

 37. A. R. Armstrong, G. Armstrong, J. Canales, P. G. Bruce, "TiO2-B Nanowires", Angew. 

Chem. Int. Ed. 116 2336-2338 (2004) 

 38. A. R. Armstrong, G. Armstrong, J. Canales, R. García, P. G. Bruce, "Lithium-Ion 

Intercalation into TiO2-B Nanowires", Adv. Mater. 17 862-865 (2005) 



14 
 

 39. V. Augustyn, P. Simon, B. Dunn, "Pseudocapacitive oxide materials for high-rate 

electrochemical energy storage", Energy Environ. Sci. 7 1597-1614 (2014) 

 40. A. G. Dylla, G. Henkelman, K. J. Stevenson, "Lithium Insertion in Nanostructured 

TiO2(B) Architectures", Acc. Chem. Res. 46 1104-1112 (2013) 

 41. Z. Zhang, Z. Zhou, S. Nie, H. Wang, H. Peng, G. Li, K. Chen, "Flower-like hydrogenated 

TiO2(B) nanostructures as anode materials for high-performance lithium ion batteries", J. 

Power Sources 267 388-393 (2014) 

 42. A. G. Dylla, P. Xiao, G. Henkelman, K. J. Stevenson, "Morphological Dependence of 

Lithium Insertion in Nanocrystalline TiO2(B) Nanoparticles and Nanosheets", J. Phys, 

Chem. Lett. 3 2015-2019 (2012) 

 43. Y. Ren, Z. Liu, F. Pourpoint, A. R. Armstrong, C. P. Grey, P. G. Bruce, "Nanoparticulate 

TiO2(B): An Anode for Lithium-Ion Batteries", Angew. Chem. Int. Ed. 51 2164-2167 

(2012) 

 44. G. Jeong, J.-H. Kim, Y.-U. Kim, Y.-J. Kim, "Multifunctional TiO2 coating for a SiO 

anode in Li-ion batteries", J. Mater. Chem. 22 7999-8004 (2012) 

 45. Y.-Q. Wang, L. Gu, Y.-G. Guo, H. Li, X.-Q. He, S. Tsukimoto, Y. Ikuhara, L.-J. Wan, 

"Rutile-TiO2 Nanocoating for a High-Rate Li4Ti5O12 Anode of a Lithium-Ion Battery", 

J. Am. Chem. Soc. 134 7874-7879 (2012) 

 46. J.-H. Lee, M.-H. Hon, Y.-W. Chung, I.-C. Leu, "The effect of TiO2 coating on the 

electrochemical performance of ZnO nanorod as the anode material for lithium-ion 

battery", Appl. Phys. A 102 545-550 (2011) 

 47. R. van de Krol, A. Goossens, E. A. Meulenkamp, "Electrical and optical properties of 

TiO2 in accumulation and of lithium titanate Li0.5TiO2", Journal of Applied Physics 90 

2235-2242 (2001) 

 48. G. Du, N. Sharma, V. K. Peterson, J. A. Kimpton, D. Jia, Z. Guo, "Br-Doped Li4Ti5O12 

and Composite TiO2 Anodes for Li-ion Batteries: Synchrotron X-Ray and in situ Neutron 

Diffraction Studies", Adv. Funct. Mater. 21 3990-3997 (2011) 

 

 

  



15 
 

 

 

 

Figure 1.1 A representation of a Li ion battery similar to that developed by Sony based on 

insertion-deinsertion reaction upon electrochemical charge and discharge. 
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Chapter 2. Experimental Techniques 

 

2.1. Overview 

This dissertation work involves primarily the electrochemical characterization of TiO2 

polymorphs grown into different structural forms. For each of these systems, we performed the 

systematic study that correlates three different basis of materials science - that is structure, 

properties, and performance.
1
 Prior to discussing the results obtained from each study, it is 

essential to go through the experimental set-ups and techniques that are extensively used in 

synthesizing and characterizing various forms of TiO2 polymorphs. Hence, this chapter is 

dedicated to providing a such overview. More details about each of these techniques, if necessary, 

will be included within the experimental procedure part of each of their relevant chapters. 

 

2.2. Characterization Techniques 

2.2.1 Transmission Electron Microscopy 

All the material systems that will be discussed in this thesis are within the order of nanometers 

and can only be characterized with instruments that accommodate such a scale. The structural 

characterization of these systems, however, are performed on an Angstrom (1 x 10
-10

 m) level 

since it is the scale of interatomic bonds of the atomic unit cells and crystal lattice 
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structure that constitute various kinds of material systems.
2
 It is also the scale that can provide 

better physical understanding of the material properties from a structural perspective.    

The transmission electron microscope (TEM) is the most practical atomic-scale characterization 

tool available for local probing and imaging of the crystal. It involves an electron beam 

interaction with the thin material specimen. Since electrons are accelerated by several hundred 

kilo-volts in TEM, the effective wavelength of the electron beam, according to the de Broglie 

equation, 
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e , is approximately 0.02-0.03 Å for 200-300 keV
3
, which 

is far below the resolution required to observe the atomic-scale features. In the following 

paragraph, the general TEM set-up and techniques used for the study presented in this 

dissertation will be introduced. For a more detailed understanding of theory and practice of TEM, 

the textbooks written by Fultz and Howe
4
 and by Williams and Carter

3
, can be referred.  

TEM is composed of three major components - an electron gun, electromagnetic lenses, and 

detectors. High-energy electrons start off by accelerating from the electron gun toward the 

specimen, pass through an aligned lens system that defines configuration of an electron beam, 

and finally reach a detector to be collected after interacting with the specimen. Various types of 

lenses and apertures near those lenses determine the modes of TEM operation, depending on 

how an electron beam probes the specimen and what elemental and crystallographic information 

needs be obtained.  

A most widely used mode of operation is conventional TEM (CTEM) - that is also performed in 

this dissertation work - uses a parallel illumination system with which all electron rays are 

formed parallel to the optic axis before reaching a specimen by the condenser lens system and 
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finally focused onto an objective plane within the objective lens system. The electron beams then 

are diffracted by the specimen towards a specimen image plane and the back focal plane. Both 

intermediate and projector lens systems can be functional to focus the beam on either of the two 

planes to obtain either an image or a diffraction pattern from a selected region. In conjunction 

with these lenses, apertures are often inserted to limit and select only the portion of the total 

electrons emitted from the source. Hence, they give the control over the resolution of an image 

and a diffraction pattern and the image contrast. The image resolution is determined by the size 

of a condenser aperture, located within the condenser lens system, before the selected portion of 

an electron beam is impinged upon the specimen for probing. However, in choosing the imaging 

resolution (smaller aperture allowing a fewer electrons) needs to sacrifice the imaging signal 

(larger aperture allowing more electrons). An additional artifact such as the Airy disk blur that 

reduces image resolution upon insertion of a smaller aperture also needs to be considered. An 

objective aperture is located at the back focal plane which contains the diffraction pattern of the 

specimen. This allows the aperture to select a certain diffraction to be used to form an image, and 

this is known as a 'diffraction-contrast image'. By either using a center diffraction spot (from a 

direct beam) or any other diffraction spot (from a diffracted beam), either a bright-field (BF) or a 

dark-field (DF) mode of imaging can be performed. Another main aperture, selected area 

aperture, that is located in the image plane can be used to choose rays on a specific area of 

interest to generate a diffraction pattern. Another TEM mode besides CTEM mode is high-

resolution TEM (HRTEM) mode, also known as 'phase-contrast imaging mode', which is 

associated with the interference of the electron waves after diffracted from the specimen. It is 

closely related to the phase change of the electron wave by a specimen and the objective lens. 
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HRTEM provides detailed information about the atomic-scale features including atom 

arrangements near various types of defects. 

In addition to CTEM and HRTEM, a large portion of a thesis work is devoted onto the use of 

scanning TEM (STEM) for profound chemical analysis of the materials. In STEM mode, the 

condenser lens system ensures the electron rays from the source converged onto a specimen to 

generate a point that acts as a movable "probe" that can be rastered across the specimen. Then, 

the signal generated from the scanned region of the specimen gets collected to the detector for a 

certain time period to be displayed pixel-by-pixel onto a computer screen as a raster image. 

Indeed, each of the electron detectors used in STEM mode is responsible for collecting as much 

electrons scattered off or transmitted through the atomic columns as possible at various angles, 

and the most frequently used ones are high-angle annular dark field (HAADF) detector and 

bright field (BF) detector. The HAADF detector is responsible for collecting incoherent 

elastically-scattered electrons at high angles (i.e. Rutherford scattering) and helps generate the 

imaging contrast with which its intensity is proportional to atomic number (Z) of a probed atom 

(i.e. 2ZI  ).
5
 HAADF imaging in STEM, hence, is alternatively known as Z-contrast imaging. 

All the coherent elastically scattered electrons at low angles (i.e. Bragg scattering) that are 

responsible for diffraction contrast will be neglected as they fall within the inner diameter of the 

HAADF detector with a large collection angle. This implies that HAADF imaging is not 

influenced by the artifacts (i.e. thickness contrast, bending contour, etc) and diffraction contrast 

(i.e. defects) but is based solely on the contrast from the mass and thickness of the specimen. 

Another imaging mode, that is BF imaging, will not be discussed in this thesis since the data 

based on this technique are not used much in this study. The schematics of a STEM is illustrated 

in the Figure 2.1. 
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In reality, electromagnetic lenses that are essential to various TEM/STEM modes of operation 

suffer through imperfection that greatly limits the imaging resolution. One consequence for 

having a lens defect is spherical aberration (CS) that accounts for off-axis rays in a lens field 

behaving differently; the rays further away from the optic axis bend back towards the axis more 

strongly than the ones close to the optic axis. The variation in focal power within different areas 

of the lens due to this imperfect geometry forbids all rays converging into a single spot and 

creates 'disk of least confusion', thus limiting the lens resolution. To solve such a problem, a CS-

corrector has been developed over the past decades
6
 to achieve the ability to resolve atomic 

columns and identify single atoms, thus making imaging more informative.  

For the works presented in this thesis, several TEM/STEM microscopes were employed for 

different modes of microscopy. For CTEM/HRTEM operation, a JEOL JEM-3011 HRTEM, 

operated at 300 kV, was used. For high-resolution STEM operation, two Cs-corrected STEMs - 

JEOL JEM-2100F STEM and JEOL JEM-3100R05 AEM - operated at 200 kV and 300kV 

respectively were used. The point-to-point resolutions for the two STEMs are 0.10 nm and 

0.055nm, respectively. All the microscopy works were performed at the University of Michigan 

Electron Microbeam Analysis Laboratory (EMAL). 

 

2.2.2 Spectroscopy in the Transmission Electron Microscope 

Although high-resolution images of the specimen taken with TEM/STEM entail a lot of 

crystallographic information about the material of interest themselves, the spectroscopy in 

conjunction with imaging is still needed for proper chemical profiling of the elements and 

compounds within the specimen. Both X-ray energy dispersive spectroscopy (XEDS) and 



21 
 

electron energy loss spectroscopy (EELS) enable a detailed chemical analysis of a single or a 

group of atoms that constitute the specimen, but each having both advantages and disadvantages 

of its own. 

XEDS uses the ionized radiation of a high-energy electron that bombards onto the specimen and 

ejects an inner electron from the core of the atom nucleus. This induces an electron transition by 

having an electron weakly bound to an outer shell fall onto a hole in a core. This transition 

process generates a X-ray emission that can be a characteristic of a particular element. Despite  

most elements from the periodic table can be mapped out using XEDS, the detection of lighter 

elements like B, C, N, and O is somewhat inefficient and limited by the detector window. 

Another practical problem associated with XEDS is the low collection efficiency of X-rays. 

Despite that the total solid angle of characteristics X-ray scattering is 4π steradian, only the small 

fraction of X-ray (in the range of 0.03-0.3 steradian) can be collected using a detector due to its 

geometrical limitation. The collection angle is limited because the upper pole piece of the 

objective lens gets in the way of the detector window, making the detector difficult to approach 

near the region within the specimen and tilt to higher angles. The tilting angle of the detector 

needs to be compromised since the spurious signals from the specimen holder can be shown 

from the X-ray detection at a lower angle.  

Another spectroscopy technique used for chemical analysis in this work is EELS. When a high 

energy electron impinges upon and interacts inelastically with an atom from the specimen, it 

loses its energy to the specimen before it continues down through the TEM column. The 

bombardment of a beam electron with an inner electron near the core of an atom (i.e. bound to K, 

L, M, etc., shells) gives enough energy to ionize an inner electron to have it completely extracted 

or transitioned into an higher unoccupied shell. The characteristic signal from this ionization loss, 
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also known as an EELS edge, presents the information about an individual element or ion in the 

material. The affected beam electrons continue their way down passing the entrance aperture 

through the drift tube and are spread out by the surrounding magnetic prism before being focused 

onto the detector (a CCD or a photodiode). In this thesis work, the PEELS spectrometer 

developed by Gatan, Inc (known as Gatan Imaging Filter or simply GIF) that has a 2D slow-scan 

CCD detector was used. In EELS, spatial resolution is important to obtain the high-intensity 

ionization-edge spectrum and is dependent on the penetration thickness of a specimen. Hence, a 

thin specimen is preferred since thinner the specimen, less the degree of the inelastic scattering 

of the beam electrons, and thus more electrons can pass through the entrance aperture and 

contribute to the EELS edge. A thicker specimen causes more scattering of electrons to induce 

multiple plasmon events to generate more intense low-loss plasmon peaks that can potentially 

dampen out all other important peaks. Another factor that affects EELS spatial resolution is 

carbon contamination that occurs as the focused high energy beam probe decomposes carbon 

within the TEM column to have it deposited onto the specimen. Despite the difficulty of the 

specimen preparation (i.e. thin, clean specimen), however, EELS is extremely powerful, 

especially when studying the local chemistry of the small region of interest (i.e. off-

stoichiometry defects). This is true for many elements except for some that produce high energy 

EELS edges that are more difficult to collect. Since the difference in the orbital energy of an 

atom is related to a different bonding state with another neighboring atom, each EELS edge of an 

atom arising from the excitation loss should be distinct from one another. If monochromated, 

EELS can be even more powerful with higher energy resolution that can resolve more peaks and 

generate more information on, for example, the oxidation state of the element at different 

bonding environments.
7
  



23 
 

In this work, both XEDS and EELS were used interchangeably depending on the element of 

interest and the information needed from it. However, for the most part, EELS was preferentially 

used for detecting a Li signal and identifying the oxidation state of TiO2, and, hence, only EELS 

work is presented in this thesis. With the help of advanced STEM, an extremely fine sub-

angstrom probe was used to perform atomic-scale XEDS and EELS to determine any fine 

structures on a very local region. For this work, both EELS and XEDS were performed under the 

microscope JEOL JEM-2100F and JEOL JEM-3100F using a XEDS detector developed by 

EDAX and a EELS system (GIF) by Gatan.  

 

2.2.3 In-situ electrochemical testing under TEM 

What is even more impressive than simply characterizing as-grown samples is to gain capability 

to alter the specimen environment while performing the atomic-scale characterization inside a 

TEM. Hence, this so-called in-situ microscopy is an extremely powerful technique that offers 

dynamic information of the specimen under various external stimuli including an electrical bias, 

optical illumination, mechanical stress, and heating.
8
 As appealing as all other commercially 

available TEM holders with in-situ capabilities, the in-situ TEM-STM holder is capable of 

applying an electrical bias to perform electrical measurement and observe structural changes of 

any nano-scale devices.
9-11

 This holder consists of a conductive STM tip drivable by a piezo-

motor on one side and a fixed metal rod for specimen loading on the other. After making a fine 

contact between a STM tip and a specimen loaded onto a metal rod, a voltage bias can be applied 

externally through a STM tip to the specimen that is grounded on one side to take time-integrated 

current measurement. Using this holder, much work has been done on many promising lithium 
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ion battery anodes for their structural characterization by simply coating Li metal onto a STM tip 

and inducing Li ion migration toward the anode material via electrical biasing.
12-13

 Unfortunately, 

the holder does not have any property testing capability as in the in-situ electrochemistry TEM 

holder equipped with a microfluidic cell. However, HRTEM imaging can easily be performed 

with the TEM-STM holder because it does not have a cell window that seals off a liquid 

electrolyte from affecting vacuum and greatly disturbs the electron beam. Details on the in-situ 

TEM electrochemical testing set-up for the lithium ion cell will be dealt in subsequent chapters. 

 

2.3. Sample preparation  

2.3.1 Materials Synthesis and Thin Film Deposition 

A. Growth of Nanowires
a
 

Rutile TiO2 nanowires were prepared by the hydrothermal method, which begins with synthesis 

of titanium tetraiospropoxide (TTIP). A substrate coated with TTIP dissolved in a solvent was 

initially mixed with a precursor, rinsed, and dried for several times before annealing it at high 

temperature to produce a thin TiO2 layer on it. Then, TTIP stirred into the acid and water was 

placed inside an autoclave with a coated substrate to be heated for many hours before cooling it 

to room temperature. For the growth of rutile TiO2-coated Si nanowires, Si NWs were first 

fabricated on a n-Si wafer via an electroless etching method. Then, TiO2 coating was done via 

atomic layer deposition by introducing TTIP and O2 as sources.  

 

                                                           
a
 Growth of all the NWs was performed by Alireza Kargar from Deli Wang's group in University of 

California-San Diego.  
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B. Thin film deposition 

TiO2-B thin film growth was done by pulsed laser deposition (PLD), which is a fine scale 

epitaxial growth technique for a thin film.
b
 PLD uses high power laser pulses focused onto the 

surface of the ablation target, which in this study was TiO2. This starts an ablation event by 

producing a plasma plume that blows rapidly off from the surface of the target and builds up on a 

heated substrate as a thin film. More details on growth of a TiO2-B film will be dealt in Chapters 

4 and 5.       

 

2.3.2 Transmission Electron Microscopy Specimen Preparation for TEM/STEM Imaging 

NW TEM specimens were prepared by scraping a copper TEM grid with a carbon support 

(Structure Probe, Inc, and Ted Pella, Inc) against the NWs grown on a substrate to pull off a few 

NWs.  

Cross-sectional thin film specimens for TEM were prepared by mechanical polishing. Thin films 

were first glued to the sacrificial silicon wafers with M-Bond 610 epoxy (Vishay Precision 

Group) before being segmented into several pieces by a diamond cutter. Then, a single cut piece 

was placed on a wedge-polishing tool (Precision TEM, Inc), thinned, and fine-polished against 

diamond lapping films (Southbay Technology, Inc.) of varying grit sizes before being glued with 

a molybdenum ring (Structure Probe, Inc) with M-Bond 610 epoxy. The details of a mechanical 

polishing procedure is illustrated in Figure 2.2. The polished cross-sectional pieces were then 

                                                           
b
Kui Zhang in our (Xiaoqing Pan's) group performed the PLD growth of all the TiO2-B thin films. For the 

details of the growth technique, his thesis needs to be referred.
14
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ion-milled under Ar gas for finer polishing using a Precision Ion Polishing System (Gatan, model 

691 and model 695).   

 

2.3.3 Transmission Electron Microscopy Specimen Preparation for in-situ TEM 

Preparation for a cross-sectional thin film specimen for in-situ TEM experiments is similar to 

that for TEM imaging, except that it is glued onto a half-cut Mo ring. This is a necessary 

measure to ensure a STM tip motion is not interrupted by a Mo ring when it approaches the film 

surface inside TEM. This half ring attached with a specimen is then attached onto a specially 

designed Cu post using a silver conductive epoxy (Ted Pella, Inc) for loading onto a TEM-STM 

holder.  

For preparation for a NW specimen for in-situ TEM, a tinned Cu wire finely polished to 0.25mm 

in diameter (a dimension equivalent to that of a specimen-loading metal rod of a TEM-STM 

holder) was cut sharply with scissors. A sharp end of the wire then is wetted with a silver 

conductive epoxy (Ted Pella, Inc) before the light contact with the NW batch to have a couple of 

NWs transferred from a substrate onto a Cu wire. (See Figure 2.3) 
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 Figure 2.1 Schematics of STEM with relevant components for specimen characterization   
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Figure 2.2 A schematic illustrating the various steps involved in cross-sectional preparation of 

the TEM specimen. (1) The film side of the specimen is glued to a sacrificial Si piece (2) before 

the glued piece gets stayed on the hot plate for 3-4 hours for curing of a glue layer. (3,4) The 

glued piece is cut into smaller pieces and (5) then flat-polished on both sides into a wedge shape 

before (6) it gets glued to a Mo ring for finer ion milling. (7) The ion milling stops as the hole 

formed in Si upon fine thinning reaches the film side. At this point, the TEM specimen is ready 

for examination under TEM.    
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Figure 2.3 A schematic illustrating the various steps involved in preparation of a NW specimen 

for in-situ TEM. (2) A STM tip soaked with a silver paste on the edge is pressed against the NWs 

on a substrate to pull out some NWs from the substrate. (3) After pulling out NWs, the silver 

paste that connect NWs to the STM tip is let dry in air or put on a hot plate for better adhesion 

between NWs and the STM tip.   
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Chapter 3. Phase transformation mechanism of a rutile TiO2 NW upon lithiation 

 

3.1. Introduction and Background 

Over the past decade, inorganic oxide semiconductors have attracted tremendous interest for the 

possible exploitation of their profound material chemistry. Amongst many oxides, rutile TiO2 has 

received attention because of its application in the field of lithium ion batteries as an anode that 

acts as a low-voltage lithium intercalation host.
1-4

 Since the extent of intercalation is limited in 

the bulk material, nanostructured rutile TiO2 has been considered for shortening transport lengths 

of Li ions and for effective strain relaxation, thus providing more undisrupted Li ion migration 

channels. In fact, recent studies demonstrate the superior performance of nano-sized rutile TiO2, 

with specific charge capacity 4–5 times greater than that of micro-sized (bulk) materials
5-8

 and 

excellent capacity retention.
8-10

  

In view of the dramatic increase in the extent of lithium intercalation provided by the nano-scale 

material, it would be of considerable interest to learn more about the details of its structure. In a 

series of theoretical studies, the possible existence of an intermediate phase transition, rutile-to-

monoclinic LixTiO2 upon lithium insertion of x ~ 0.5, has previously been reported,
11-13

 and it has 

been speculated that this could be a major factor contributing to irreversible charge capacity loss 
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upon cycling. Some studies of TiO2 have also suggested that the fully lithiated form, 

LixTiO2 (x ~ 0.8), has a hexagonal structure that is energetically more favorable than the rutile 

form.
12

 This view is supported by ex situ X-ray diffraction (XRD), transmission electron 

microscopy (TEM) and selected-area electron diffraction (SAED) results,
5-6

 though others have 

argued that LiTiO2 has either the rock-salt or spinel structure,
2,7,9,14

 depending on the dimensions 

of the structure, and that the hexagonal phase does not exist. In fact, the situation is ambiguous 

since the peak or ring positions in XRD and SAED of hexagonal and rock-salt phases are 

strikingly similar. More importantly, these experimental studies are potentially influenced by 

exposure of the material to the atmosphere. Obviously, a definitive experiment is needed to 

resolve these matters, and in this chapter, the electro-chemical testing of a single-crystal rutile 

TiO2 nanowire (NW) within a high-resolution transmission electron microscope (TEM) was 

reported, thus, offering direct proof of the actual structural transitions that occur upon Li ion 

insertion and cycling. 

 

3.2. Experimental Procedures 

A batch of rutile TiO2 NWs with varying sizes was grown via a hydrothermal method, as 

explained in Chapter 2 and also reported elsewhere.
15

 High-resolution transmission electron 

microscopy (HRTEM) and scanning transmission electron microscopy (HRSTEM) images of 

TiO2 NWs were taken using JEOL JEM-3010F and aberration-corrected JEOL-JEM2100F 

transmission electron microscopes, operating at accelerating voltages of 300kV and 200kV, 

respectively.  
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A TEM specimen was prepared by embedding NWs in Ag-based paste on a Cu post. A prepared 

specimen was loaded onto a single-tilt in-situ Nanofactory Instruments TEM-STM holder to be 

part of an electro-chemical cell assembly as an anode in a JEOL JEM-3010F microscope. Bulk 

Li metal, as a counter-part, was scrapped onto a tungsten STM tip that was loaded on a piezo-

drive of the holder inside the glove box. A naturally formed Li2O layer on the Li metal from the 

3-6 sec exposure to air during transportation from an Ar-filled bag into the TEM column, acted 

as a solid electrolyte that allows transport of Li ions but not electrons. (Figure 3.1) A piezo-

movement supporting the W tip (an in situ STM–TEM holder) attached with NWs can be 

controlled with great precision, allowing a single NW to be contacted within the TEM, thus 

completing the assembly of an electro-chemical cell. Electrical biasing of the assembly was 

provided by a Keithley 2635A source meter. 

 

3.3. Results and Discussion 

The morphology of an as-grown single-crystalline rutile TiO2 NW is shown in HRTEM and 

HRSTEM images in Figure 3.2. From the SAED shown in the inset of Figure 3.2b, the long 

dimensions of the NWs are found to be along the c-direction. Based on theoretical results, Li 

ions are expected to migrate via tetrahedral sites along c-axis channels. The calculated Li ion 

diffusion coefficient is 10
−6

 cm
2
 s

−1
 along the c direction versus 10

−15
 cm

2
 s

−1
 along either 

the a or b direction.
16

 Hence, within the as-grown NWs for this study, Li ion migration is 

expected to be very mobile and efficient along their length, largely free of kinetic limitations 

normally observed in poly-crystalline nanostructures with non-homogenous channels that are 

usually tested, thus favoring Li insertion and extraction during in situ electrochemical testing 
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within the TEM. Another advantage of having a single-crystal NW is unambiguous spot-pattern 

identification of the phase using SAED, which should be free of multiple ring patterns found in 

poly-crystalline nanostructures. 

Then, electro-chemical cycling was done on a NW using a standardized bias cycle, varying the 

electrical input for insertion of Li ions into and extraction from it to resemble the standard cyclic 

voltammetry testing of a bulk cell. Before cycling, the NW was first lightly lithiated by applying 

a potential sweep of −5 to 0 V with respect to the Li counter-electrode at a rate of 2 V s
−1

. Then 

the NW was tested with continuous bias cycling, first with delithiation (0 to 5 to 0 V), then 

lithiation (0 to −5 to 0 V) at a rate of 2 V s
−1

. This cycle scheme was adopted instead of a 

conventional fixed-voltage lithiation (and delithiation) process in order to limit the quantity of Li 

ions moving into the single nanostructure and thus prevent the NW from becoming fully lithiated 

at this stage.  After multiple electro-chemical cycles, the morphological change of the rutile TiO2 

NW was examined by TEM, which revealed a clear structural transformation, accompanied by 

volumetric expansion, as shown in Figure 3.3. Compared to the pristine TiO2 NW, the lateral (a-

b directions) expansion is at least 140 %, with a slight longitudinal (c direction) contraction of 97 

%. The total volumetric expansion of the NW is thus approximately 120 %. Along with lateral 

expansion, the NW also twisted sharply. SAED taken on the NW confirms that there has been a 

structural change of the NW from rutile (P42/mnm) to monoclinic (P2/m). The remnant peaks in 

the SAED pattern are from primitive rutile, implying that the physical contact made between the 

Li-coated tip and the NW was not uniform enough to cause Li ions to be inserted through all 

available c-channels into the NW. A similar test was conducted on another rutile TiO2 NW close 

to the zone axis [100] to verify this phase transformation (Figure 3.4). Both low- and high-

magnification images clearly show that there is lattice expansion of a rutile TiO2 NW upon 
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intermediate phase transformation (TiO2 → LixTiO2). The measured lattice spacings (d(202)) for 

TiO2 and LixTiO2 are 0.248nm and 0.250nm, respectively, the difference of which is slightly 

larger than that theoretically calculated. (d101 for TiO2 and LixTiO2 are 0.2487nm and 0.2489nm) 

The SAED study of the NW before and after just two cycles clearly demonstrates the emergence 

of a new, distinct pattern overlapping the primitive pattern from the rutile phase (Figure 3.5). 

Simulation of the diffraction confirms that this pattern is, in fact, coming from a monoclinic 

phase. 

The structural deformation observed agrees well with recent theoretical calculations on lithiation 

of rutile TiO2.
11-13

 As Li ions are inserted into tetrahedral sites along open c-channels, 

neighboring Ti ions get repelled away from their initial positions.
13

 This distortion lowers crystal 

symmetry, which changes from tetragonal to monoclinic, with highly anisotropic expansion of a- 

and b-lattice constants and slight contraction of c-lattice constant. This phase transformation of 

rutile TiO2 to monoclinic LixTiO2, predicted to happen near x~0.5, can be regarded as an 

intermediate phase transformation since it is not reversible under conditions that should lead to 

extraction of Li ions from the TiO2 NW. Sharp twisting and bending of the NW is likely to 

disrupt the c-channels, potentially contributing to loss of capacity, as reported in the literature.
6,9

 

At this stage, no further morphology change or volumetric expansion was found to occur, even 

after 20 voltage cycles, indicating that the NW has remarkable structural stability under this 

degree of lithiation. I-V curved measured during cycling at this stage (Figure 3.6) provide 

evidence of reversible Li-ion insertion and extraction, though its extent is difficult to measure 

quantitatively. In accordance with the I-V curve, evidence of reversibility is provided by the 

subtle changes in overall contrast observed in the in-situ TEM images observed first with 

delithiation (0 to 5 to 0 V) then with lithiation (0 to -5 to 0 V). The overall dimension of the NW 
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under monoclinic phase remains unchanged throughout the electro-chemical cycling at this stage.  

The possibility that additional structural transitions of LixTiO2 might occur was explored by 

injecting more Li ions into the NW by applying a constant potential of -4 V for 5-6 minutes. 

During this lithiation process, a slow but gradual change in image contrast along the body of the 

structure was observed. The most noticeable change, however, was the further expansion of the 

NW along the a-direction. Instead of a uniform dilation, the expansion appeared in bubble-like 

form, indicated by a clear change in image contrast. As lithiation proceeded, multiple bubbles 

tended to grow along the a-direction, as shown in Figure 3.7a and c. This bubble-like dilation is a 

clear indication of transformation of the monoclinic NW into a new phase. The SAED pattern 

from the bubble matches well with the rock-salt structure (Fm-3m). An interesting aspect of this 

observation is the way in which the transformation of the NW from monoclinic to rock-salt 

proceeds. As Li ions are continuously injected along c-channels in the NW, they tend to 

accumulate near the contact between the NW and the Cu rod. When the Li content becomes high 

enough, it evidently raises the probability of octahedral site occupancy by Li ions, thus making 

the monoclinic-to-rock-salt transition more favorable. This may be why the top half of the NW 

remains monoclinic in structure. Another noticeable feature is the array of (200) stripes that 

emerge across the NW. (Figure 3.7b) This is similar to what has been observed in the lithiation 

of a SnO2 NW
17

 and is most likely either a tetrahedral or octahedral site filling within the 

monoclinic structure,  reflecting a Li preference during inter-structural diffusion.  

Figure 3.8 summarizes the proposed overall structural transformation upon lithiation of a rutile 

TiO2 NW. After multiple cycling, the NW first irreversibly undergoes the intermediate phase 

transition from rutile to monoclinic structure, accompanied by large anisotropic lateral expansion 

and distortion. The distortion may give rise to some capacity loss due to disruption of c-channels 
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and preferential migration paths of Li ion within the structure, but at this stage, the NW does not 

undergo any further structural transformation upon continuous electro-chemical cycling that does 

not exceed a certain level of Li insertion. It is suspected that the functional form of 

nanostructured rutile titania as an anode actually has the monoclinic structure. When more Li 

ions are injected into the structure, the NW undergoes further transverse a-direction dilation and 

is able to reach its final stage of lithiation, which is a rock-salt phase. This discovery is of great 

importance since it is the first direct experimental proof that rutile TiO2 nano-structures in fact 

undergo two-step lithiation with increasing Li-mole fraction in LixTiO2. 

 

3.4. Conclusions 

To summarize the observations, electro-chemical lithiation on a single-crystal rutile TiO2 

nanowire have been performed and analyzed by constructing a nano-scale Li-ion battery within 

the TEM. The theoretical prediction regarding formation of an intermediate (monoclinic) phase 

have been somewhat verified, though we found that full lithiation in fact corresponds to yet 

another (rock-salt) phase. It is believed that the results presented here can expand the 

understanding of structural transition of the rutile TiO2 system, the study of which has long 

proven to be difficult using bulk electro-chemical testing devices. These findings may lead to an 

improved nano-structuring of rutile TiO2 to better accommodate anisotropy, thus optimizing its 

performance as a Li-ion battery anode. 
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Figure 3.1 a. Schematic illustration of electrochemical set-up built inside TEM,  b. TEM image 

of the set-up, and c. projected migration route of Li ion in a NW. 
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Figure 3.2 a. SEM image of rutile TiO2 NWs grown on a fluorine-doped tin oxide substrate. b-e. 

TEM and HR-TEM images of a rutile TiO2 NW 
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Figure 3.3 a and b. TEM images of a NW before and after transition to intermediate state,  c. 

and d. higher magnification images of a and b, e. diffraction pattern from region shown in d (* is 

from the remaining rutile phase), and g. schematic of structural transformation of a rutile TiO2 to 

monoclinic structure via intercalation of Li ion. (Red: Oxygen, Green: Lithium, Blue: Titanium) 
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Figure 3.4 Low- and high-magnification TEM images of a and c. a TiO2 NW in primitive state 

and b and d. a LixTiO2 NW in transition to intermediate state.  
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Figure 3.5 a and b. Selected area diffraction of a primitive TiO2 NW and a LixTiO2, respectively, 

under transition from rutile to intermediate state. Red and orange dots are the representative 

reciprocal spots for primitive TiO2 and transformed LixTiO2, respectively. c. Simulated electron 

diffraction pattern showing phase overlap between rutile TiO2 and monoclinic LixTiO2.     
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Figure 3.6 Representative graph showing the lithiation and de-lithiation behavior of the LixTiO2 

NW under standard voltage sweep. Lithiation (during the low-resistance branch of the voltage 

sweep from 0 to –5 V) of the NW (e.g., TiO2 + xLi
+
 + xe

- 
→ LixTiO2) induces the NW to go 

through the transition from a low-resistance to a high-resistance state, while the opposite is true 

for de-lithiation (during the high-resistance branch of the voltage sweep from 0 to 5 V). Li-rich 

LixTiO2 exhibits Schottky-type semiconductor behavior, while Li-deficient LixTiO2 exhibits 

close-to-ohmic behavior, as reported in many literature references for other Li intercalation 

systems.
18

 This transition, despite some difference in magnitude in each cycle, repeats 

throughout the continuous electrochemical cycling at this stage of Li intercalation.  
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Figure 3.7 a. TEM image of a LixTiO2 NW (pulled out of Cu post) after full lithiation that shows 

anisotropic distortion indicated by b. the array of stripes due to preferential insertion of lithium 

and anisotropic strain induced along a-plane, and c. side-swelling along b-direction. d. 

Diffraction pattern at the region in c marked by a circle. 
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Figure 3.8 Schematics of structural transition of a rutile LixTiO2 from primitive to fully lithiated 

phase  
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Chapter 4. Atomic structure of defects and interfaces in TiO2-B and Ca:TiO2-B (CaTi5O11) 

films grown on SrTiO3 

 

4.1. Introduction and Background 

Recently, there has been tremendous interest in the bronze polymorph of TiO2 (here designated 

TiO2-B) due to its intriguing structure, which is composed of edge- and corner-sharing TiO6 

octahedra.
1-3

 Compared to other polymorphs, such as anatase and rutile, bronze has the lowest 

density due to large, open channels suitable for diffusion of ionic species. This unique 

characteristic has triggered extensive study of various properties of TiO2-B including electronic, 

vibrational properties
4
, structural stability

5
, water adsorption

6
, and lithium ion transport

1-2,7-10
. 

Films of TiO2-B have many possible applications, including dye-sensitized solar cells (DSSCs)
11-

12
 and Li ion batteries. TiO2-B can potentially be used as a dye-absorbent for DSSCs because of 

its exceptional surface reactivity, comparable to that of commonly used anatase (here designated 

TiO2-A)
13-14

. It has been reported that the (100) facet of TiO2-B is less surface stable but more 

reactive to a dye molecule than most facets of anatase. TiO2-B may also be used as an anode 

material in Li ion batteries
1-2,15-16

. Open (001) plane channels in TiO2-B aligned parallel to [010] 

act as sub-surfaces for fast Li ion transport, hence, enhancing battery charging rate
17

.  

Although crystallographic orientation plays a critical role in device functionality, it is difficult to 

control the growth of TiO2-B films due to lack of a lattice-matching substrate that can guarantee 

high crystallinity of the film. The use of a template layer has proven successful for single 



49 
 

crystalline film growth of materials with low symmetry, especially when such a layer partially 

satisfies an epitaxial relationship with both film and substrate.
18-19

 For a material of lower 

symmetry, like monoclinic TiO2-B, choices for the template layer are limited by availability of 

crystal types similar to that of TiO2-B that also have a small lattice mismatch with a substrate. By  

identifying such a template layer, however, the film was successfully grown on SrTiO3 (STO) 

substrates using pulsed-laser deposition (PLD). The template phase, a Ca modification to the 

TiO2-B structure (here referred to as Ca:TiO2-B) with the formula CaTi5O11, is composed of a Ca 

bonded TiOx layer intercalated in between left c-oriented and right c-oriented TiO2-B layers.
10

 

By using high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction 

(XRD), both the c-axis growth and off-c-axis growth (tilted 45° to the substrate normal) of 

Ca:TiO2-B, respectively, on (100) and (110) STO substrates have been examined. Interestingly, 

these films were found for their uses to serve as an anode material for a Li ion battery that 

exhibits high capacity and significantly enhanced rate capability.
10

 More to the point, (001) 

Ca:TiO2-B provides a suitable template layer for c-axis growth of high quality TiO2-B films.  

In addition to its value for optimizing film growth of the Ca:TiO2-B phase (and the TiO2-B phase 

deposited on top) along different orientations, the careful study of interfacial structures and 

various types of defects within the film is important since defects can potentially influence 

device characteristics. Hence, in the present work, using aberration-corrected scanning 

transmission electron microscopy (STEM), a detailed study of three sets of films was performed 

to discuss two main aspects: 1) interfacial structure and defects associated with the growth of 

Ca:TiO2-B films on (100) and (110) STO substrates, and 2) defect structure associated with 

subsequent growth of a (001) TiO2-B film on (001) Ca:TiO2-B.  
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4.2. Experimental Procedures 

The CaTi4O9 target used to grow Ca:TiO2-B thin films was fabricated by mixing 80 % TiO2 and 

20 % CaO powders, sintering at 1400 ºC, and pressing a pellet under force equivalent to 10,000 

lb. The TiO2 target used to grow TiO2-B thin films was made from pure TiO2 powder in like 

manner. The vacuum chamber for PLD has a base pressure of <10
-7

 Torr. A 248 nm KrF excimer 

laser with a pulse duration of 22 ns and a fluence of ~3.4 Jcm
-2

 was used for the film deposition 

at a repetition rate of 10 Hz. The target-to-substrate distance was set to 6.35 cm. All thin film 

deposition was done at 800 ºC in oxygen at ambient pressure of 0.05 Torr with a deposition rate 

of 0.01-0.02 Å/pulse. The deposited film thickness was in the range of 5-200 nm, which was 

measured by a Veeco Dektak profilometer and confirmed with TEM.  

All high-angle annular dark field (HAADF) images were taken using a spherical aberration-

corrected STEM (JEM JEOL-2100F). Cross-sectional TEM specimens were prepared via 

mechanical polishing and ion-milling under Ar gas at 4 kV. 

 

4.3. Results and Discussion 

4.3.1 Overview of films grown on (100) and (110) STO substrates 

Films of Ca:TiO2-B were deposited by PLD on both (100) and (110) STO substrates at 800 °C 

using a PLD target composed of CaTi4O9. A film of the regular TiO2-B was subsequently 

deposited by PLD on the Ca:TiO2-B film on the (100) STO substrate at 800 °C using a PLD 

target composed of pure TiO2. As shown schematically in Figure 4.1a and 4.1b, growth of 

Ca:TiO2-B is highly dependent on the STO orientation. Whereas growth on (100) yields a 
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smooth, epitaxial film that provides a good template for subsequent growth of TiO2-B (Figure 

4.2), growth on (110) initially results in a mixture of CaTiO3 (here designated as CTO) and TiO2-

B at the interface, yielding a film with many more defects and a rough surface that does not 

support the subsequent growth of a high quality TiO2-B film. In fact, owing to its high 

crystallinity, (001) TiO2-B deposited on (100) STO was the model system used for 

electrochemical study under TEM as will be discussed in Chapter 5. STEM images shown in 

Figure 4.1c and 4.1d illustrate the features of the films grown on (100) and (110) substrates. 

Detailed differences and thorough analyses of interface and film structures are discussed below.  

 

4.3.2 Interfacial structure and defects in a Ca:TiO2-B film grown on (100) STO 

For the c-axis growth of a Ca:TiO2-B film, the titania polymorph that prefers to grow, TiO2-A, 

competes with Ca:TiO2-B to form an epitaxial interface with (100) STO. For Ca:TiO2-B, since 

both in-plane a and b cell parameters are almost integer multiples of the lattice parameter of STO, 

the film can have either a (100) plane or a (010) plane oriented parallel to the STO surface. TiO2-

A, despite similar lattice mismatch (~3 %), exhibits a better epitaxial relationship with STO 

because the square-shaped arrangement of Ti atoms within its c-plane provides a cube-on-cube 

relationship with the similarly configured TiOx termination of STO.
20

 This characteristic 

naturally drives the growth of the TiO2-A on this substrate over a wide temperature range, 600-

900 °C. Hence, along either the [100] or [010] direction, the three differently configured 

interfaces were observed between the film and STO: (100)Ca:TiO2-B||(100)STO, (010)Ca:TiO2-

B||(100)STO, and (100)TiO2-A||(100)STO. Figure 4.3 shows high-resolution STEM images of 

these three possible interfaces between the film and (100) STO. STO substrates in all three cases 
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are atomically rough, in that there are several nm-wide steps with various heights, also known as 

surface-step terraces (SSTs), which contribute to misfit strain with the epitaxial film.
21-22

 

Although this is expected to generate vertical mismatch gaps at opposite ends of the SSTs due to 

incomplete accommodation of full unit cell stacking (Figure 4.4), the gaps were nevertheless 

filled by an additional vertical atomic plane during growth leading to local atomic rearrangement 

near the interface between the film and the substrate. This, in turn, would generate an elastic 

strain field near the interface, which affects the local atomic configuration of the Ca:TiO2-B (and 

TiO2-A) layer during continued growth. Based on comparison of the three different interfaces, a 

Ca:TiO2-B layer does not accommodate SSTs of more than one-half unit cell high (Figure 4.3a 

and b) whereas a TiO2-A layer accommodates SSTs as high as two unit cells, as shown in Figure 

4.3c. In addition to the cube-on-cube in-plane symmetry it shares with STO, TiO2-A also has 

good vertical matching with STO, corresponding to a 4 % mismatch. This is what enables TiO2-

A to tolerate SSTs of any width and height. On the other hand, Ca:TiO2-B has a- and b-axis 

atomic configurations that are both different and have a larger vertical mismatch with STO. To 

tolerate even one-half unit cell surface roughness, as shown in Figure 4.3a, Ca:TiO2-B needs to 

undergo local atomic ordering near the interface with STO. The first TiOx stack that is left c-

oriented (here denoted as A) suddenly changes its stacking orientation to the right c-orientation 

(here denoted as B) along the same plane at the one-half unit cell SST (indicated with a line on 

either side of the arrow in Figure 4.3a). This is due to the discontinuation of a Ca-modified TiOx 

layer at the SST in order to accommodate the vertical lattice mismatch generated by this step.  

Another prominent defect in the Ca:TiO2-B film grown on (100) STO is the interphase boundary 

between Ca:TiO2-B and TiO2-A. Two of the major types of interface observed are (010)Ca:TiO2-

B||(100)TiO2-A (Figure 4.5a) and (100)Ca:TiO2-B||(100) TiO2-A (Figure 4.5b). The first has a 
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boundary complexion that is rough but relatively sharp compared to the second, which has 

smooth and diffuse boundary complexion because the (100) planar surface of Ca:TiO2-B is 

jagged due to repeated A- and B-orientation TiOx stacking. Hence, despite the similar lattice 

mismatch in the two boundaries, the different planar surface morphology induces differently 

shaped interphase boundaries. A third type of interphase boundary, (100)Ca:TiO2-

B||(010)Ca:TiO2-B (Figure 4.5d), has a complexion much more diffuse than that of 

(010)Ca:TiO2-B||(100) TiO2-A, with a width of 5-10 nm.  

In addition to the vertical interphase boundaries, horizontal interphase boundaries were also 

observed in the Ca:TiO2-B film. These were formed when Ca:TiO2-B was deposited on top of an 

existing TiO2-A grain. For a non-flat TiO2-A base, two Ca:TiO2-B grains with two different in-

plane matching relationships with (001) TiO2-A were observed. As illustrated in Figure 4.5c and 

4.5d, for (100)Ca:TiO2-B||(100)TiO2-A, the boundary is sharp, as opposed to (010)Ca:TiO2-

B||(100)TiO2-A, where the boundary is diffuse over a wide extent along the c-axis. Other minor 

defects that were observed, such as tiny grains buried inside a much larger grain along the film 

interface with STO, similar to a Ca:TiO2-B grain buried inside a TiO2-A grain, are illustrated in 

Figure 4.5d. These buried grains were identified in cross-sectional STEM as a lattice overlap 

between the small and larger grains of different phases.  

 

4.3.3 Interfacial structure and defects in a Ca:TiO2-B film grown on (110) STO 

Distinct from the direct epitaxial growth on (100) STO, the growth of Ca:TiO2-B films on (110) 

STO initially involves phase separation of Ca:TiO2-B into two different phases, TiO2-B and 

pseudo-cubic CTO before a continuous layer of Ca:TiO2-B starts to grow.  Hence, this growth is 
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quite unique since the film templates itself with these secondary phases. Although there has been 

a number of studies on the separate growth of an ultra-thin template layer of a certain phase for 

the successive deposition of a film of the same phase
23-24

, there has not yet been any study on the 

naturally driven growth of a secondary phase, acting as a  template for the growth of the main 

phase. As illustrated by the schematic (Figure 4.6a) and STEM images (Figure 4.6b and c), from 

each {100} facet of the triangular CTO islands on (110) STO, the growth of TiO2-B noticeably 

occurred along both in-plane and out-of-plane directions, forming grain boundaries with each 

other and interphase boundaries with neighboring naturally grown TiO2-A grains (Figure 4.6b 

and c). The volume proportion of TiO2-A occupying the film grown on a (110) substrate is 

approximately 10-15 %, larger than that for the film grown on a (100) substrate (5-10 %).  

The STEM image in Figure 4.7a and schematic in Figure 4.7b illustrate the possible steps 

involved in Ca:TiO2-B growth on (110) STO. The growth sequence of the layers on (110) STO 

may be: (1) CTO + (2) TiO2-B → (3) Ca:TiO2-B, which is different from that on (100) STO, 

where Ca:TiO2-B acts as a template layer for TiO2-B growth. Based on high-resolution images, it 

seems possible that phase separation occurred via some combination of Ca and Ti atom 

migration, allowing epitaxially more favorable formation of the CTO structure directly on (110) 

STO. Since (110) STO apparently does not support the direct growth of Ca:TiO2-B, which 

prefers to grow on (100), it is likely that (100) CTO induced the TiO2-B grains to form along its 

[100] direction (Figure 4.8). Once a TiO2-B layer was well established, single-crystalline 

CaTiO2-B was able to grow along the c-axis of a TiO2-B template layer, essentially reversing the 

process that occurs on (100) STO. 

As mentioned above, due to the nature of its growth, this film contains many grain boundaries 

between the two differently oriented Ca:TiO2-B grains and interphase boundaries formed 
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between the tilted grains of TiO2-B, Ca:TiO2-B, and TiO2-A phases. This type of tilt boundary 

contains both ordered and disordered complexions, marked with a rectangle and a circle, 

respectively in Figure 4.9a. In the ordered region, a local, periodic atomic arrangement is present 

where (001) planes of alternating TiOx layers in a Ca:TiO2-B grain are coherently bonded to (100) 

planes of the adjacent TiO2-A grain. The red dots in Figure 4.9a mark possible bonding sites for 

the Ti atoms from the two grains. While the ordered complexion is atomically sharp, the 

disordered complexion is rough, with random thickness; hence, the interphase boundary between 

Ca:TiO2-B and TiO2-A is also metastable. On the other hand, grain boundaries between Ca:TiO2-

B grains, which are more commonly found throughout the film, do not exhibit any epitaxial 

relation between the grains, having simply been formed via 45° inter-penetration of adjacent 

grains growing towards each other along their a-axes (Figure 4.9b).  

Since the growth of TiO2-B films happened on facets of small CTO islands, the interfacial strain 

between their (100) planes is not significant enough to induce much misfit relaxation, even if the 

lattice mismatch (calculated for diagonal mismatch) between pseudo-cubic CTO and TiO2-B is 

close to 6 %. Nevertheless, a few of the larger sized TiO2-B grains possess several types of c-

plane stacking defects. A good example is shown in Figure 4.10a and represented schematically 

in Figure 4.10e, where a few Ca-modified layers are intercalated within a TiO2-B grain, possibly 

due to incomplete phase separation between TiO2-B and CTO, making a layer of Ca:TiO2-B. In 

the same region was observed a sudden change in orientation of TiOx stacking (indicated with 

arrows in Figure 4.10c). Possibly, this could indicate that there are missing c-planes of Ca-

modified layers at those regions, and this could have resulted again from incomplete phase 

separation between TiO2-B and CTO. This possibility is reasonable since this defect feature, 

shown in a-direction growth of Ca:TiO2-B, is somewhat different from the case of c-growth of 
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Ca:TiO2-B on (100) STO, where TiOx layer stacking is unidirectional unless a Ca-modified TiOx 

layer is present. However, despite these planar defects, since the growth of either a pure or an 

intermixed TiO2-B layer happened along the a-direction from CTO, any planar defects associated 

with this growth do not affect the Ca:TiO2-B growth that happens from a c-plane of TiO2-B, so 

that defect-free single-crystalline grains could be grown, as shown in region 3 in Figure 4.10b. 

 

4.3.4 Interfacial structure and defects in a TiO2-B film grown on (001) Ca:TiO2-B  

Two main types of defects are present in a TiO2-B thin film grown on a (001) Ca:TiO2-B 

template, out-of-phase boundaries (OPBs) generated within a TiO2-B layer and interphase 

boundaries that are formed between TiO2-B and TiO2-A grains. OPBs are stacking defects 

induced by off-stoichiometry, or local deficiencies (e.g., missing rows of atoms) within a given 

layer or from an underlying layer. These are distinct from stacking faults that usually involve 

syntactic intergrowth of a differently configured layer of the same atomic type.
25

 Using 

aberration-corrected atomic scale microscopy, we confirm that the local atomic misregistry 

within a Ca:TiO2-B template layer is the origin of OPBs in the TiO2-B layer. As illustrated in 

Figure 4.11 and 4.12, a locally missing Ca-modified TiOx layer in Ca:TiO2-B stacking ultimately 

generates a c-axis offset equivalent of 0.42c (where c is the c-axis lattice constant of TiO2-B) for 

a TiO2-B film deposited on top. In addition to a c-axis offset, local deficiency of Ca atoms also 

affects the orientation of a TiO2-B layer nucleated above, as shown schematically in Figure 4.11c 

and d. This is due to the unique stacking sequence of Ca:TiO2-B that has a Ca-modified TiOx 

layer changing the orientation of a TiOx-only layer, for example, from A- to B-orientation and 

vice versa. Hence, the missing row of a Ca-modified TiOx in Ca:TiO2-B ultimately determines 
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the orientation of two abutting TiO2-B layers with respect to the phase boundary during TiO2-B 

growth. When the deficiency happens at the surface of a Ca:TiO2-B layer, the resulting two 

abutting TiO2-B grains will face in and out from each other (Figures 4.11a and b). However, 

when the missing Ca layer is in the middle of a CaTiO2-B layer, a single (Figure 4.12a) or multi 

unit-cell surface step (Figure 4.12c) is generated at the interface with a TiO2-B layer and may 

result in TiO2-B grains oriented in the same direction. Depending on the relative orientations of 

the two adjacent grains, the nature and orientation of OPBs can be different. When the two grains 

are oriented towards or away from each other, OPBs only have short-range or no periodicity 

(Figures 4.11a and b). However, as in many cubic systems
26-27

, when the relative orientation of 

the two grains is along the same axis, OPBs have long-range crystallographic periodicity (Figure 

4.12). From the interface between Ca:TiO2-B and TiO2-B, a few mono-layers are needed for the 

boundary between the two TiO2-B grains to become atomically ordered. Figure 4.12 illustrates 

different examples of long-range atomic ordering achieved between two TiO2-B grains oriented 

along the same direction. The periodic crystallographic patterns are presented with dotted lines. 

In both cases, there are possible sites for Ti atoms from the two abutting grains (here, labeled as 

Grain 1 and Grain 2 in the schematic representations in Figures 4.12b and d) to share and form 

bonds. The atoms occupying these sites are presented with the two colors representative of Grain 

1 and Grain 2. Even atoms that are displaced out from their original positions (Figure 4.12c) that 

do not seem to belong to either of the two abutting grains (area marked with red in Figure 4.12d) 

still have periodicity along the boundary. Another example is Ca:TiO2-B grains having two 

missing Ca-modified layers near the interface between TiO2-B and Ca:TiO2-B with a multi unit-

cell surface step (Figure 4.13a). An OPB generated in between the two grains oriented in the 
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same direction also has periodic crystallographic patterns again with possible sites for Ti atoms 

from either a left or right-side grain to occupy. (Figure 4.13b) 

The local misregistry of atomic stacking within a Ca:TiO2-B layer can be attributed to the SSTs 

from the STO substrate, forming an interface with the Ca:TiO2-B template layer. The interfacial 

strain between STO and Ca:TiO2-B comes not only from the difference in their in-plane lattice 

parameters but also from the imperfect vertical matching between unit cells of the film and the 

termination surface of the substrate. Another possible way to understand the local misregistry in 

Ca:TiO2-B is by considering growth characteristics of a thin film. The controlled growth of a thin 

film (e.g., via PLD) is highly uni-directional and performed under lower temperature conditions 

than bulk synthesis. Because lower temperature possibly hinders surface diffusion and structural 

rearrangement of Ca atoms, stacking defects are generated.   

The second distinct defect in a TiO2-B film is interphase boundaries between anatase and bronze 

polymorphs of TiO2 that were formed during growth. In conjunction with templated growth of 

TiO2-B, some TiO2-A grains grew simultaneously and formed a boundary with neighboring 

TiO2-B and Ca:TiO2-B, as shown in Figures 4.14a and b. The boundary consists of disordered 

arrays and does not exhibit any epitaxial relationships; hence, complexions arising from this 

boundary are most likely metastable. Looking into details, the interphase boundary between 

TiO2-A and TiO2-B grains is very sharp and uniform, with the width fluctuation from abutting 

phases varying only by a unit cell, whereas the boundary between TiO2-A and Ca:TiO2-B grains 

is relatively more diffuse over a wider thickness range. This qualitatively indicates that the 

boundary between TiO2-A and Ca:TiO2-B grains is more chemically unstable than between 

TiO2-A and TiO2-B grains.   



59 
 

Aside from these large interphase boundaries, as described above, there are small sized micro-

grains of TiO2-A sandwiched between two TiO2-B grains, and these clearly have an epitaxial 

relationship with the neighboring TiO2-B grains, as shown in Figure 4.14c. These are not stand-

alone grains formed directly from the STO substrate but possibly formed as high temperature 

derivatives of bronze-type grains under topotactic reaction as has been reported in the 

literature,
28

 judging from their atomic configuration. The formation of TiO2-A grains most likely 

occurred via shearing of the two (-201) TiO2-B planes along the [102] direction by 0.42c. After 

the reaction, (103) planes of a newly formed TiO2-A grain is under epitaxy with TiO2-B planes, 

forming a periodic boundary as shown in Figure 4.14d.  

 

4.4. Conclusions 

In summary, thin films of monoclinic TiO2-B and Ca:TiO2-B were grown on (100) and (110) 

cubic STO substrates in order to study the effect of substrate orientation on film morphology and 

the nature of defects present in the films. Aberration-corrected STEM has allowed analysis of 

both interfacial structure at phase boundaries and identification of a variety of interesting defect 

structures. Although the growth of a Ca:TiO2-B film on the (100) substrate is highly c-oriented, 

the growth on the (110) substrate is affected by phase separation induced formation of the 

secondary phase, cubic CaTiO3 that acts as a heterogeneous self-template for the 

crystallographically tilted growth of TiO2-B grains. For c-axis Ca:TiO2-B growth on a (100) 

substrate, SSTs at the STO surface induce local atomic ordering near the interface between 

Ca:TiO2-B and STO. However, for growth on a (110) substrate, a-direction growth of a TiO2-B 

layer separated from CTO induces only several planar stacking defects associated with a Ca-
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modified TiOx layer but does not affect Ca:TiO2-B deposited along the c-axis. For c-axis TiO2-B 

film growth on a (001) Ca:TiO2-B template, out-of-phase boundaries are nucleated out of the 

plane with a missing Ca-modified TiOx layer. This understanding of film growth mechanism and 

defect formation should provide an important step toward successful fabrication of high-

performance energy devices. 
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Figure 4.1 Schematics and corresponding high-resolution STEM images of films grown on a. 

and c. (100) and b and d.  (110) STO  substrates.  Scale bars are 10 nm.  

  



64 
 

 

Figure 4.2 Misfit strain analysis of TiO2-B and Ca:TiO2-B using geometric phase analysis. a. An 

actual HR-STEM image, b. a strain (εxx) map of an image, and c. a strain profile from the line-

scan A.     
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Figure 4.3 High-resolution STEM images of interfaces between STO and a. and b. Ca:TiO2-B 

and c. TiO2-A resulting from growth of a Ca:TiO2-B film on (100) STO. A and B denote left and 

right c-orientation of a TiOx stack. Scale bars are 5 nm.  
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Figure 4.4 A schematic illustration of a surface step terrace (= 0.5 unit cell (u.c.)), or SST, at the 

interface between STO and Ca:TiO2-B. Unit cells of Ca:TiO2-B cannot fulfill epitaxy 

everywhere along the surface where there are gaps (equivalent of Δd1 and Δd2 in the diagram) 

due to the step. However, during growth, each gap is filled with another vertical row of atoms.       
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Figure 4.5 High-resolution STEM images of interphase boundaries between TiO2-A and 

Ca:TiO2-B along a. [010] zone axis (ZA:010) and b. [100] axis (ZA:100). c. and d. High-

resolution STEM images of interphase boundaries formed via Ca:TiO2-B intergrowth from TiO2-

A. Scale bars are 5 nm.     
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Figure 4.6 a. Schematic of sequential growth of TiO2-B + Ca:TiO2-B mixture phase and another 

titania polymorph, anatase, grown on (110) STO, b. high-resolution STEM images showing the 

presence of CaTiO3 layer for tilted growth of the mixture phase. c. an interphase boundary 

formed between anatase and TiO2-B grains.  
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Figure 4.7 The growth of Ca:TiO2-B on (110) STO begins with Ca ion migration and formation 

of discrete layers of (1) CaTiO3 and (2) TiO2-B which then acts as a template layer for deposition 

of (3) Ca:TiO2-b as shown in a. high-resolution STEM images and b. atomic model schematic: 

(1) CaTiO3 and (2)TiO2-B are formed by phase separation via Ca flow. Scale bar is 5 nm.  
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Figure 4.8 Comparison of atomic configuration between (100) planes of CaTiO3 and TiO2-B. 
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Figure 4.9 High-resolution STEM images showing a. an interphase boundary between the 

Ca:TiO2-B and TiO2-A grains and b. a grain boundary between the two abutting Ca:TiO2-B 

grains tilted 45
o
 towards each other. A rectangle and a circle in a. show locally ordered and 

disordered regions within the boundary. Scale bars are 5 nm.  
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Figure 4.10 a. An example of an intermixed 2: TiO2-B variant template layer due to intercalated 

calcium layers and its schematics e. It is different from the perfect template layer as illustrated in 

Figure 5 and also as a schematics in d. b. and c. High-resolution STEM images of regions 3 and 

2, respectively. Scale bars are 5 nm 
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Figure 4.11 a. and b. High-resolution STEM images of defects at the interface between TiO2-B 

and Ca:TiO2-B that generate the two adjacent TiO2-B grains oriented opposite direction and c. 

and d. schematics of TiO2-B and Ca:TiO2-B interface without and with presence of Ca-modified 

layer indicated with the yellow arrow. Scale bars are 5 nm.      
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Figure 4.12 a. and c. High-resolution STEM images of defects at the interface between TiO2-B 

and Ca:TiO2-B with missing Ca-modified layer that generate the two adjacent TiO2-B grains 

oriented same direction. b. and d. Schematics of periodic boundary formed between the two 

adjacent grains from the regions marked with red in a and c. Sites with atoms marked with both 

gold and blue represent possible occupancy sites for Ti atoms from either Grain 1 or Grain 2. 

Scale bars are 5 nm. 

  



75 
 

 

Figure 4.13 a. High-resolution STEM images of defects at the interface between TiO2-B and 

Ca:TiO2-B with two missing Ca-modified layers that generate the two adjacent TiO2-B grains 

oriented same direction. b. This generates the long-range boundary condition throughout the 

boundary with possible occupancy sites for Ti atoms from either left or right-side TiO2-B grain. 

Scale bars are 5 nm. 
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Figure 4.14 High-resolution STEM Images of a. and b. an interphase boundary between an 

anatase grain grown directly on (100) STO substrate independent from TiO2-B and Ca:TiO2-B 

and c. an anatase micro-grain epitaxially formed between the two TiO2-B grains along with a d. 

schematics of bonding between periodic boundary formed between anatase and TiO2-B grains. 

Scale bars are 5nm.  
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Chapter 5. Study of strain relaxation mechanism of Ca:TiO2-B-templated TiO2-B thin film 

upon Li intercalation 

 

5.1. Introduction and Background 

As also mentioned in Chapter 4, the bronze polymorph of TiO2 (TiO2-B) is known to be a low-

density lithium intercalation host that has open channels, favorable for Li ion migration, which 

maximizes both specific capacity and charge-discharge capability.
1-4

 Indeed, the intercalation 

capacity of Li ions in TiO2-B is reported to range from 0.8 Li
+
 per TiO2 unit (bulk) to as high as 

0.91 Li
+
 per TiO2 unit (nanowires (NWs)).

5-8
  

However, despite the recent success of nano-scale engineering of TiO2-B, both in terms of 

mechanical stability and enhanced Li
+
 intake

5,9-11
, there is little known about the effect of Li 

insertion on structural stability of TiO2-B. Most mechanistic studies employ theoretical 

calculations using density functional theory (DFT), and only a few of them have been supported 

with experimental findings.
6,12

 Further, the theoretical results on the effect of Li ion intercalation 

are so different from one another that there has not even been agreement on Li site occupancy 

within the TiO2-B lattice.
13-16

 Recent work by Morgan et al. has demonstrated that this wide 

disagreement is because the DFT results are sensitive to the choice of assumed parameters.
15

 

These theoretical calculations thus have limited value for further study of the electronic and 

chemical profile of the TiO2-B structure (i.e., bonding profile and electron density) surrounding 
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the inserted Li ions.
17-19

 Here, by contrast, we conducted electrochemical lithiation of a highly 

crystalline TiO2-B thin film via in-situ high-resolution transmission electron microscopy 

(HRTEM) for direct visualization of Li ion insertion and migration into TiO2-B. In the course of 

this study, we observed the structural relaxation of a lithiated TiO2-B film upon its Li-induced 

volumetric expansion and identified its unique mechanism with the help of theoretical 

calculation.    

 

5.2. Experimental Procedures 

5.2.1 Experimental  

TiO2-B thin films were synthesized by pulsed laser deposition (PLD) of a pure TiO2 target onto a 

calcium-doped TiO2-B (Ca:TiO2-B) film deposited on (100) Nb-doped SrTiO3 (Nb:STO). The 

details about this growth were already presented in Chapter 4. 

Cross-sectional TEM specimens of after-cycled TiO2-B films were prepared via mechanical 

polishing followed by Ar ion milling. All the specimens were characterized using aberration-

corrected STEM (JEOL JEM 2100F and JEOL JEM 3100F).   

A mechanically polished TEM specimen was loaded onto a single-tilt in-situ TEM-STM holder 

(Nanofactory) as one electrode of an electro-chemical cell assembly. The rest of the procedure 

for the electro-chemical set-up is similar to that presented in Chapter 3.  
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5.2.2 Theoretical calculation  

First-principles electronic structure calculations and Monte Carlo simulations with cluster 

expansion formalism based on statistical mechanics were performed to predict phase stability of 

polymorph LixTiO2 phase at finite temperature.
c
  

 

5.3. Results and Discussion 

For the purpose of this study, we fabricated a highly crystalline thin film of TiO2-B on a (100) 

Nb:STO substrate, which again hinged on the use of CaTi5O11, as an interposed template layer, 

similar to that presented in the previous chapter. The lattice mismatch between regular TiO2-B 

and Ca:TiO2-B is again very small, less than 1% as calculated by geometric phase analysis 

(GPA).
21

 The thin film was grown along [001] direction with mixed arrangements of large TiO2-

B grains with (100) and (010) planes exposed to the film's cross-section as illustrated in the high-

resolution scanning transmission electron microscopy (HRSTEM) image that shows the 

boundary between those two representative grains (Figure 5.1b). Figure 5.1a and 5.1c are the 

atomic model schematics of a TiO2-B lattice along [100] and [010] orientations and 

corresponding simulated selected area electron diffraction (SAED) patterns
22

.  

The thin film geometry was preferred over a NW for this study since the surface of a thin film 

grown along [001] direction, being much wider than the end of a NW, offers more choice for Li 

ions to diffuse through many different pathways, thus increasing the chance to identify evidence 

for Li ion insertion via in-situ TEM. Furthermore, as already demonstrated in Chapter 4, the film 

                                                           
c
For the details of this theoretical work, the thesis written by Donghee Chang

20
 from Anton Van der Ven's 

group in University of California-Santa Barbara needs to be referred. 



80 
 

contains large defect-free regions where the Li ion source can make local contact and hence 

minimize any structural influence of defects in the film on lithiation. A schematic of our in-situ 

TEM set-up for lithiation of a TiO2-B film is shown in Figure 5.2a. By contacting the top surface 

of the film with the Li-metal coated STM tip, an electro-chemical cell was assembled and run 

with an external voltage source-meter. Figure 5.2b shows an image of the tip and the film after 

breaking up the contact, following an electrochemical lithiation experiment, as described below. 

The naturally grown Li2O on the STM tip acts as a solid electrolyte for the cell since it is 

electrically insulating but has high Li ion conductivity. Figure 5.2c shows the electron energy 

loss spectroscopy (EELS) spectra of the Li-K edge and the O-K edge in Li2O. The peaks shown 

in both near-edge spectra match well with the literature on the electronic environment in Li2O 

structure.
23

 Lithiation of a TiO2-B structure was conducted under potentiostatic mode at room 

temperature. Assuming that a sudden conductance change, observed at -3 V (film relative to 

STM tip) as the voltage was swept from 0 to -5 V, is an indication of the threshold for Li ion 

transport through the electrolyte into TiO2, we used the higher lithiation voltage of -4 V in order 

to expedite Li ion migration into the film. In this study, no analysis of delithiation of the film was 

attempted due to the difficulty of extracting much of the widely spread Li from the film after 

lithiation.  

Upon lithiation of the thin film under constant bias of -4 V, rapid surface wetting by Li metal 

occurred instantly across a wide region of the film surface, probably also covering most of the 

cross-section of the film (i.e., the sides of the TEM grid), followed by slower growth in extent of 

the layer as lithiation proceeded. Li metal in direct contact with the TiO2-B film formed a thin 

layer of sub-crystalline material, 2-3 nm in thickness, with a distinct cubic lattice. Using fast 

Fourier transformation (FFT), this layer was found to be c-LixO (space group: Fm3m). The 
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formation of c-LixO has been previously observed as a reaction product of Li and a nano-

structured TiO2 electrode during in-situ lithiation.
24-25

 This layer could only be identified at the 

top most surface of the thin film because of its few nm thickness, which makes it very electron 

beam (e-beam) transparent and thus hardly visible on the remainder of the film's cross-section. 

We speculate that the LixO formation is driven by the chemical interaction between Li metal and 

the TiO2-B film, which creates a solid-electrolyte interphase (SEI) layer that effectively slows 

the rate of further Li migration into the bulk of the film. Interestingly, extended exposure of the 

cross-section to the e-beam promotes further reaction between the Li metal that wet the surface 

of the cross-section and TiO2-B, inducing the complete phase transformation into spinel LixTiO2 

(Figure 5.3). Hence, all HRTEM images shown below were taken with a faster survey rate at 

lower beam dose to minimize the influence of the e-beam on the film.  

 

5.3.1 Strain-induced phase transformation upon b-axis lithiation in TiO2-B 

In conjunction with the initial formation of these surface features described above, a more well-

defined structural change occurred in TiO2-B under lithiation at -4 V. The change involved a 

nano-scale shear of the TiO2-B layer from the top surface all the way to the interface between 

TiO2-B and Ca:TiO2-B. The shear occurred in two different modes; 1) via abrupt burst vertically 

across the TiO2-B lattice and 2) via gradual rupture across the TiO2-B lattice.  

A first mode occurred within the film as soon as Li ions propagated laterally from a Li source 

throughout the wide periphery of the film's cross-section. As it propagated, Li ions diffused into 

primitive TiO2-B grains and induced the sudden rupture of the shear entirely across the TiO2-B 

lattice. Li ion migration was observed through the change in image contrast; as this contrast 
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swept across the film, the shears were abruptly ruptured. Hence, in the end, a large number of 

shears throughout the primitive TiO2-B lattice were generated over a wide region away from the 

tip-film contact. Schematics in Figure 5.4a and HRTEM images of the TiO2-B thin film before 

and after Li ion insertion (Figure 5.4b and c) demonstrate occurrence of this shear. The three 

identical features, each marked with an arrow, clearly indicate that changes occurred during 

lithiation. Interestingly, as demonstrated in the FFT pattern taken from a HRTEM image (Inset of 

Figure 5.4b), these shears only occurred when a (010) plane was exposed at the film's cross-

section. According to many theoretical studies
12,26

, Li ion intercalation most favorable occurs 

along a b-axis since it is the largest open channel in a TiO2-B lattice. This can imply that as Li 

ions propagated along the film's cross-section, it was most likely that they diffused through a 

(010) plane to induce shears.   

As opposed to the first mode, the second mode shears were generated when Li intercalated into a 

TiO2-B film that had already been lithiated to a certain extent. Interesting, this type of shears 

happened only at the tip-film contact. Along with the schematics in Figure 5.5a, HRTEM images 

in Figure 5.5b and c show a TiO2-B film with additional shears. Interestingly, the formation of a 

shear occurred much gradually than that under the first mode. The possible reason for this slow 

kinetics is because the formation of a solid-electrolyte interphase upon Li wetting on a film's 

cross-section made Li insertion into a bulk much difficult. This also explains why this type of a 

shear can proceed partially across the film and only happen at the tip-film contact where there is 

a large reservoir of Li from the source that can be electrochemically impinged upon the surface 

of the film.  

In both modes of shearing, the thickness of the Li metal wetting layer increased perceptibly when 

these Li ion induced defects were generated. This conveys our belief that Li ions transferred 
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from the STM tip to the TiO2-B structure either stayed on the cross-sectional surface of the thin 

film or migrated into TiO2-B structure, creating a unique set of defects. The defect generated in 

the TiO2-B layer did not extend into the Ca:TiO2-B layer, suggesting that Ca:TiO2-B is 

thermodynamically more stable than regular TiO2-B or possibly amount of Li inserted into the 

lattice was too low to induce any discernible structural change. The HRSTEM images in Figures 

5.6a and b provide a detailed illustration of one of the representative Li insertion-induced defects 

formed via shearing upon Li ion insertion. The tiny microstructure formed in between the two 

abutting TiO2-B lattices strikingly resembles that in the as-grown (100) TiO2-B film discussed in 

Chapter 4 with the anatase-type structure formed by the 6 Ti atoms each from TiO2-B on the left 

and right (Figure 5.6c). The angle of this shear normal to the substrate was found to be 34 
o
 for 

all the defects of this type, everywhere throughout the film. This raises the possibility that the 

lattice expansion upon Li insertion into a TiO2-B film generated the micro-structural misfit strain 

and induced the phase transformation to an anatase-type structure for effective strain relaxation. 

To explore this possibility, the theoretical calculation using density functional theory (DFT) was 

employed.  

 

5.3.2 Phase stability and structural relationship of various lithiated TiO2 polymorphs 

To first understand the possibility of phase transformation from bronze to anatase-type structure 

upon lithiation, a phase stability calculation on series of lithiated titania polymorphs was 

conducted upon varying Li content. The TiO2 polymorphs considered in the calculation were 

bronze, anatase, and spinel structure. Pure anatase TiO2 and fully lithiated anatase TiO2 were 
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considered as reference for the calculation of the formation energies, per TiO2 formula unit, of 

lithiated TiO2 polymorphs (LixTiO2), which is also defined as: 

   
22

)1( LiTiOTiO ExxExExE      [1] 

where E(x) is the free energy required for specific Li vacancy arrangement at Li concentration x 

in LixTiO2 for anatase, bronze, and spinel TiO2 phases. ETiO2 and ELiTiO2 are the energies of the 

primitive anatase TiO2 and fully lithiated anatase LiTiO2. Based on this calculation, it was found 

that upon Li insertion over Li mole fraction x=0.4, anatase and spinel TiO2 become energetically 

favorable to form than TiO2-B. At x=0.5, the phase stability of LixTiO2 becomes in the 

descending order of spinel > anatase > bronze, showing that the ordered spinel phase becomes 

the most stable structure. This agrees well with previous experimental studies on the formation 

of spinel LiTi2O4.
27

 Upon Li insertion x>0.6, the anatase polymorph becomes the most stable. 

Phase stability calculation indicates that there is a thermodynamic driving force for the 

transformation from LixTiO2-B to both anatase-type LixTiO2 and spinel LixTiO2 upon insertion of 

high concentration Li in the range of 0.4<x<1. However, this does not imply that both phases are 

easy to be transformed from LixTiO2-B because the new phase nucleation is also heavily 

dependent upon strain energy penalties due to the structural misfit between the new phase and 

LixTiO2-B. Hence, the next step was to consider the possibility of LixTiO2-B having coherent 

interfaces with the new phase - anatase and spinel LixTiO2.  

To explore this possibility, the crystallographic relationship between the new phase and the Lix 

TiO2-B was first considered. Intuitively, the degree of shear-induced deformation upon lithiation 

for LixTiO2-B → spinel LixTiO2 transformation is ought to be greater than that of LixTiO2-B → 

anatase LixTiO2 because the transformation from a monoclinic (LixTiO2-B) to a cubic structure 
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(spinel LixTiO2) requires a larger degree of crystallographic deformation than that of a tetragonal 

(anatase TiO2) or an orthorhombic structure (-LiTi2O4).  

Indeed, the crystallographic pathways that link LixTiO2-B and spinel LixTiO2 could not be 

identified due to lack of similarity in Ti and O bonding configurations in the two materials.  

However, a crystallographic pathway linking LiTi2O4-B (x=0.5) and -LiTi2O4 can be easily 

identified as shown in Figure 5.7.  By shearing the corner of a LiTi2O4-B unit cell diagonally, a 

monoclinic structure can be transformed to an orthorhombic structure. As a result, a sheared 

monoclinic structure with some degree of lattice distortion shares a similar Ti and O bonding 

configuration with -LiTi2O4.  

In view of the crystallographic similarities between LixTiO2-B and anatase LixTiO2, it is possible 

that two phases can coherently coexist. This possibility can be evaluated using the Green-

Lagrange strain tensor E, which is a measure of atomic displacement that the new phase 

undergoes to fit crystallographically to the parent phase. E  is defined as: 

2

ˆ IFF
E






      [2] 

where F is the deformation tensor based on the ratio between the lattice constants of the 

transformed crystal L’ to the lattice constants of the original crystal L, according to L’=FL. F
+
 

corresponds to the transpose of F. If the set of three eigenvalues obtained from the deformation 

tensor F has one positive, one negative, and one close-to-zero eigenvalues, there exists a strain 

invariant plane, also known as a 'habit plane'. Both the transformations from TiO2-B to anatase 

TiO2 and from LiTi2O4-B to β-LiTi2O4 satisfy this requirements. However, the eigenvalues close 

to zero are still considerable and, thus, this transformation should be accompanied by coherency 
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strain. The estimated strain energy generated via transformation from LiTi2O4-B to β-LiTi2O4, 

according to first principles calculation, is 81 meV per Ti, which is smaller than the free energy 

difference of LiTi2O4-B and β-LiTi2O4. This indicates that it is energetically favorable for 

LiTi2O4-B to transform into β-LiTi2O4.           

A schematic in Figure 5.8 demonstrates the two examples of transformation possible in TiO2-B 

and lithiated TiO2-B at the calculated habit plane. Interestingly, the atomic configuration at the 

interface between LiTi2O4-B and β-LiTi2O4 matches very well with the one observed 

experimentally via in-situ TEM upon Li insertion into TiO2-B. This strongly implies that the 

shears generated in a film are most likely induced by the misfit strain from the volumetric change 

of a TiO2-B lattice upon b-axis lithiation. To relax this strain, the LixTiO2-B film at x=0.5 

undergoes the low order phase transformation to a β-LiTi2O4 phase along the habit plane under 

minimum stress.       

 

5.3.3 Structural relaxation of TiO2-B upon c-axis lithium intercalation 

The strain-induced structural transformation upon Li insertion discussed so far has been observed 

only for the TiO2-B grains with a (010) plane exposed at the film's cross-section. However, for 

the case of the grains with a (100) plane exposed to the surface, Li ions would experience 

difficulty in penetrating through the film's cross-section because the least open channel of TiO2-

B is along a-direction. In fact, the DFT calculations done by both Islam
12

 and Panduwinata
26

 

demonstrated a channels to have the migration energy barrier at least 3 times higher than b 

channels. Hence, we need to consider another possibility - that is c-axis Li migration, since its 

migration energy is as comparably low as that of b-axis. As Li ions penetrate through a (001) 
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plane and migrate along c-axis, it is likely that they also diffuse through b-axis and induce lattice 

expansion. Hence due to the local lattice misfit strain upon Li insertion, the film undergoes 

shearing to relieve the local misfit strain, similar to the case of b-axis lithiation. The cross-

sectional HRSTEM images of TiO2-B in Figures 5.9a and b demonstrate well how the shearing 

occurred. All the sheared pathway under the [100] view axis look slightly curved, but it is worth 

noting that the extent of a shear that initiated from the topmost surface of a TiO2-B film is 

different from region to region as illustrated in Figure 5.9a. This suggests that the local strain 

relaxation occurred at various places may happen at different points in time upon lithiation since 

Li migration can either proceed along c-axis or side-track to b-axis. Surprisingly, similar defect 

features were also observed during the post-mortem study of the film cycled electrochemically 

via a method explained elsewhere
28

, as shown in Figures 5.9c and d. A noticeable feature 

observed in some grains upon shearing induced by c-axis Li intercalation is the formation of a 

cubic mound at the topmost (001) plane. Figure 5.10 shows a HRTEM image of this mound and 

the corresponding fast Fourier transformation FFT image (from the region marked as B). By 

making the direct comparison of FFT patterns between the mound and the adjacent TiO2-B 

matrix (Figure 5.10b) generated from the HRTEM image (Figure 5.10a), it was found that the 

mound has a spinel LixTiO2 structure, which is known to be the most thermodynamically stable 

phase at x=0.5. 

Finally, to fully support that Li indeed intercalated into TiO2-B, a fine electronic study such as 

core-loss EELS was performed on a lithiated region of the specimen to detect any shift of 

valence of Ti. For EELS performed on a TiO2-B film prior to lithiation (a STEM image shown in 

Figure 5.11a), the L2 and L3 edges of Ti are consist of the two distinct peaks that correspond to eg 

and t2g levels. These levels are separated by the octahedral crystal field (orbital degeneracy) and 



88 
 

clear characteristics of 4+ valence of Ti. (EELS in Figure 5.11c(i)) However, the core-loss edges 

shown in the after-lithiated TiO2 film (EELS in Figure 5.11c(ii) taken from a STEM image in 

Figure 5.11b) only have a single peak per edge that was most likely aroused from the valley in 

between eg and t2g peaks upon valence transition of Ti from 4+ to 3+. This transition strongly 

suggests the phase transition from TiO2-B to LiTiO2-B upon full lithiation. In addition to a TiO2-

B layer, the core-loss edges on Ca:TiO2-B and STO layers were also examined. EELS spectra in 

Figure 5.12 demonstrates the point EELS study performed on all three distinct layers. As 

opposed to Ti edges in TiO2-B, the ones in both Ca:TiO2-B and STO definitely show the two 

distinct t2g and eg peaks in each edge, demonstrating almost no Li intercalation occurred in these 

regions.  

 

5.4. Conclusion 

In summary, we have discovered a relaxation mechanism of TiO2-B via in-situ TEM lithiation 

experiments performed on a thin film. Depending on Li intercalation direction into TiO2-B, 

LiTi2O4-B relaxes its structure locally in different ways, either by simple shearing or shear 

induced lower-order phase transformation. From the results, we also identified the interesting 

structural similarity to the as-grown TiO2-B film demonstrated in Chapter 4. This unique finding 

on structural relaxation upon Li insertion enriches the knowledge on intercalation chemistry of 

one of the promising anode materials and leads to more understanding of electro-chemical 

processes of thin-film Li-ion cell devices. 
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Figure 5.1 Schematic representations and corresponding simulated electron diffraction patterns 

of TiO2-B lattice projected along a. [100] and c. [010] direction. Ti and O atoms are drawn in 

blue and red, respectively. b. HRSTEM image showing the interfacial boundary between the two 

grains with (100) and (010) planes exposed to the cross-sectional surface.  
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Figure 5.2 a. A schematic and b. a TEM image of a set-up for an in-situ Li-ion cell inside TEM, 

and c. electron energy loss spectroscopy of Li STM tip demonstrating the existence of both Li 

and O.  
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Figure 5.3 a. The schematic showing the sequence of Li ion wetting on the cross-sectional TEM 

specimen, and b and c. high resolution STEM image and a corresponding FFT pattern 

demonstrating the effect of an electron beam on a Li wetted sample. d. A phase map from region 

1 showing the gradual transition of TiO2-B to LixTiO2.  
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Figure 5.4 a. A schematic demonstrating sequence of defect generation upon lateral Li 

propagation on a film’s cross-sectional surface. b and c. High-resolution TEM Image of a TiO2-

B thin film before and after lithiation. Arrows indicate the structural changes observed in the 

structure during lithiation. The inset in b shows the FFT pattern of the region marked with red.   

  



96 
 

 

Figure 5.5 a. Schematics of Li insertion at the direct contact between Li STM tip and the film. 

TEM Images of a TiO2-b and Ca:TiO2 dual-layer film b. before and c. after for additional lithium 

insertion. More pathways are likely to be generated under prolonged lithiation. (Arrows) Note 

that Ca:TiO2-B layer is unaffected during lithiation.  
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Figure 5.6 a. High resolution STEM and b. magnified STEM images of a lithiated TiO2-B layer. 

c. A 3-dimensional schematic showing microstructural shearing of TiO2-B upon lithiation.  
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Figure 5.7 The structural relationship between LiTi2O4-B and β-LiTi2O4 before and after shear-

induced structural transformation. Li atoms are omitted to show clearly the configuration of Ti 

and O ordering upon structural transformation. [Image Courtesy: Donghee Chang from the 

Anton Van der Ven's group] 
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Figure 5.8 The schematic illustration of the interfacial relationship along the habit plane upon a. 

pure anatase TiO2 phase inclusion in TiO2-B phase and b. β-LiTi2O4 phase inclusion in LiTi2O4-

B. The comparisons of ordering of Ti and O atoms at the habit plane for c. pure anatase TiO2 and 

TiO2-B and d. b-LiTi2O4 and LiTi2O4-B are also illustrated. [Image Courtesy: Donghee Chang 

from the Anton Van der Ven's group]  
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Figure 5.9 High-resolution TEM images demonstrating c-axis shearing of a TiO2-B plane shown 

along [100] after a and b. in-situ and c and d. ex-situ electro-chemical cycling. The inset in b. 

shows the FFT pattern of the region. 
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Figure 5.10 a. HR-TEM image and b. selected-area diffraction patterns, demonstrating the 

formation of B: spinel LixTiO2 at the top of the shear within the A: regular TiO2-B film, and c. 

corresponding atomic models of TiO2-B and LixTiO2.  
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Figure 5.11 High-resolution TEM images demonstrating a TiO2-B film a. before and b. after full 

lithiation. c. EELS Spectra on the regions marked with circles in both a and b demonstrate the 

shift of a valence state of Ti from Ti
4+ 

to Ti
3+

 upon full lithiation.   
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Figure 5.12 a. HR-STEM image of a TiO2-B thin film after lithiation, b. EELS near edge spectra 

of Ti K for TiO2-B, Ca:TiO2-B, and STO, and c. an edge spectrum of Li K that wets the top 

surface of the film.    
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Chapter 6. TEM Study on the effect of rutile TiO2 coating upon lithiation of p-Si NWs 

 

6.1. Introduction and Background 

Increasing demand for effective energy storage has triggered a tremendous interest in high 

energy-density electrodes for lithium ion batteries. Commercialized lithium ion batteries with 

graphite as the anode have been extensively used in mobile devices. However, a new system 

with higher capacity and energy density is needed for hybrid electric vehicles (HEVs), plug-in 

hybrid electric vehicles (PHEVs), and a high power grid system.
1
 Silicon is considered 

promising due to its high theoretical gravimetric capacity of 4200 mAhg
-1

, which greatly 

surpasses that of graphite (372 mAhg
-1

).
2
 However, the application of Si has been proved 

challenging due to pulverization associated with a large volumetric change of 300% during 

lithium insertion/extraction, leading to capacity loss.
3
 To overcome this problem, various 

approaches such as morphology control,
4
 carbon-coating,

5-8
 and use of polymer/organic 

binders,
9-10

 as well as active-inactive composites
11-16

 have been studied. 

Surface coating of Si nanowires (NWs) by the native silicon oxide (SiOx) has recently been 

proposed by Cho
14-15

 and Cui
17

 and their co-workers. The SiOx
 
shell not only enhances 

mechanical stability of a Si NW, but it also prevents formation of new solid electrolyte 

interphase (SEI), hence improving capacity retention. Other metal oxides like ZrO2, Al2O3, and 
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TiO2 have also been considered as coating layers for lithiated Si NWs based on their different 

potential ranges relative to Si and thermal stabilities under SEI formation.
11-13,16

 However, 

increasing thickness of a coating contributes to capacity fading and decreases coulombic 

efficiency due to the compressive stress on the Si core, making lithiation thermodynamically 

limited. Nevertheless, an optimized thickness of coating of an anode may sustain a longer battery 

life in exchange for its initial capacity being reduced. 

Despite extensive study of inert oxide layers on a Si NW, understanding of lithium ion 

transportation through the coated Si NW is still incomplete. In many ex-situ studies, the indirect 

observation and quantification of Li intercalation has proved difficult due to heavy incorporation 

of carbon needed to encapsulate the oxide coated NW for conductivity enhancement.
18

 The 

added carbon not only obscures the migration path of lithium, since intercalation may happen in 

both Si and C, but it also fails to suppress large exothermic reactions between LixSi and the 

electrolyte at high temperature.
19

 In contrast, an in-situ technique, where the electrochemical 

device is assembled inside a TEM, for example, offers a unique opportunity to scrutinize 

structural changes associated with lithium intercalation into a complex nanostructured system. 

Here, using this technique, it is demonstrated for the first time how lithium intercalates into a Si 

NW coated with a semi-inert TiO2 layer of varying thickness. Hence, this study examines how 

TiO2 coating affects the final morphology of the inner silicon core and the resulting dimension of 

the entire NW during Li intercalation by varying the coating thickness-to-NW-diameter ratio (i.e. 

t/D ratio). 
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6.2. Experimental Procedures 

Si NW arrays were fabricated on a n-Si wafer via an aqueous Ag-assisted electroless etching 

method. The P doping level was ~10
15

cm
-3

. A uniform TiO2 coating was deposited onto the Si 

NWs via atomic-layer deposition (ALD), allowing precise control over the layer thickness. Both 

the crystallinity and uniformity of thickness of TiO2 used in these studies were examined under a 

high-resolution transmission electron microscope (HR-TEM, JEOL JEM-3010F) and a scanning 

transmission electron microscope (HR-STEM, JEOL JEM-2100F).  

A TEM specimen for TiO2-coated Si NWs was prepared by the method already explained in 

Chapter 2. A prepared specimen was loaded onto a single-tilt in-situ Nanofactory Instruments 

TEM-STM holder, comprising half of an electro-chemical cell assembly in a JEOL JEM-3010F 

microscope. The complete set-up electro-chemical assembly was performed in a manner similar 

to that explained in Chapter 3. Lithiation and delithiation were performed under potentiostatic 

mode by applying a constant voltage across the electrodes. Due to large contact resistance and 

heterogeneity between the NW and Li (held on the STM tip), any potential and current 

measurement during the lithiation process is not reliable, so TEM SAED was used to confirm 

structural changes observed within the Si NW, especially a crystalline-to-amorphous phase 

transformation. The extent of lithiation was qualitatively determined by the location of the Li 

NW reaction front that is driven across the entire NW. 
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6.3. Results and Discussion 

6.3.1 Characterization of a TiO2-coated Si NW 

In this study, a rutile polymorph of TiO2 was selected as the coating material since, upon 

lithiation, it turns electrically conductive in certain extent to effectively enhance the electrical 

conduction to Si and undergoes only a 4% lattice expansion, effectively limiting the volumetric 

expansion of a Si NW. Figure 6.1a shows the Si NW coated with multi-crystalline TiO2. The 

NW is oriented along the [001] direction, as confirmed by SAED (Figure 6.1b). The EELS line 

scan across the NW (Figure 6.1c) shows that the coating of TiO2 around Si is uniform. Both BF 

TEM and DF STEM micrographs (Figures 6.1d and e) of TiO2/Si interfaces show that the Si NW 

does not undergo chemical reaction with TiO2 during coating. The coating thickness of TiO2 is 

either 10 nm or 30 nm, and the NW diameter varies over the range 65-220 nm. Individual grain 

dimension within the TiO2 coating varies in width but is uniform in height. 

 

6.3.2 In-situ lithiation of a TiO2-coated Si NW under TEM  

Figures 6.2a and b illustrate the open prototype electrochemical cell that was constructed inside a 

TEM by loading a TiO2-coated Si NW as one electrode and Li metal as the counter-electrode. 

The naturally formed Li2O layer on the Li metal surface, also identified in the characteristic near-

edge signal of Li K from EELS on the edge of a Li-coated STM tip (Figure 6.2c), was considered 

a solid electrolyte for Li ion transport. Upon contacting, the potential of -4V and 4V relative to 

the Li metal electrode was applied to the NWs for lithiation and delithiation.  
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A similar type of experiments was already performed on pristine phosphorous-doped Si NWs via 

in-situ TEM by Huang and co-workers with an electrochemical set-up similar to that used in this 

study.
3
 Their study shows the rapid migration of Li ions along the surface of a NW, followed by 

diffusion into Si from the side to form an amorphous LixSi shell. The interfacial boundary 

between the amorphous LixSi shell and crytalline Si core moves radially inward via continuous 

phase transformation (e.g., Si + Li
+
 + e

-
 → LixSi), causing radial expansion to happen more 

rapidly than axial expansion. Interestingly, this radial lithiation reaches a kinetic limitation such 

that after a certain period of time, it no longer proceeds due to the insufficient reservoir of 

electrons from along the contracted Si NW core. This prevents the Si NW from reaching full 

lithiation.
3
  

On the other hand, the axial migration of Li ions along the surface of a TiO2-coated Si NW is 

also expected to be fast, but radial penetration of Li into the NW should be somewhat limited by 

the presence of the semi-inert coating layer. Figures 6.3a, b, and c show sequential images of Li 

ion migration into a Si NW with TiO2 coating (t/D=0.23) during lithiation. Li ions first enter Si 

through a (100) facet in contact with the Li source, inducing radial expansion due to expansion 

along the [110] orientation.
20

 As the NW expands radially, the TiO2 coating fractures and begins 

to peel off, until the entire Si core reaches full lithiation, as shown in Figures 6.3d and e. The 

change in SAED pattern upon lithiation (Figures 6.3f and g) provides a clear indication of the 

lithiated Si phase, Li15Si4, corresponding to full lithiation. We note that the coated NW after 

lithiation has undergone average radial and axial expansions of ~248% and 108%, respectively.  

The local radial expansion varies, however, with a maximum of only 270%, since lithiation has 

been limited by remnants of the TiO2 coating. Since the coating is polycrystalline, variation in 

grain-to-grain bonding along the NW allows weaker bonding to generate a higher chance for 
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cracks to initiate and propagate. Hence, the strength of bonding within TiO2 influences the 

overall morphology phases found in the lithiated Si NW. 

It is interesting to note that, during the lithiation of this composite NW, there is no significant 

change in dimension of the TiO2 coating, implying that it functions as an effective buffer upon 

lithiation of Si. To prove this, an additional experiment was performed on a closed-ended NW 

(also capped by TiO2) instead of an open-ended one under experimental conditions (Figure not 

shown). Even after a long lithiation period, no significant change was observed. 

The average propagation speed of the reaction front for a pristine p-doped Si NW was found to 

be approximately 14 nm/s, ~10 times faster than in an undoped Si NW. This is comparable to the 

speed observed in an uncoated phosphorous-doped Si NW.
3
 The speed of lithium migration in a 

coated NW, however, varies from NW to NW during lithiation due to variations in coating, i.e., 

the presence of differently sized and shaped grains. Lithium ion diffusion can even be blocked at 

certain points in time of lithiation if the interfacial bonding between TiO2 and Si is robust enough 

to initially constrain the diffusion of lithium. Hence, Li ions that are originally migrating along 

the NW surface are driven inward instead, making sure that each segment of the Si NW is fully 

lithiated. Hence, the full degree of lithiation can be achieved locally by continuously diverting Li 

ions inside a NW by having a TiO2 shell interrupting their surface migration. During this first 

stage of lithiation, the hydrostatic stress from a lithiated NW builds up due to continuous feeding 

of Li ions that induces volumetric expansion as indicated from complete amorphorization of the 

Si core (see schematic in Figure 6.4) followed by crystallization to c-Li15Si4, which has lower 

energy of formation than the amorphous phase, LixSi.
21

 This leads to further tearing of TiO2 

coating from the core, allowing Li ions to initiate and repeat the process in adjacent segments of 

the NW until the entire coating is full of cracks. The details of this segmented lithiation are well 
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illustrated in Figure 6.5. Note that the length of each segment varies according to the presumed 

bonding strength between TiO2 and Si. This fully lithiated NW, upon delithiation, performed by 

applying +4V relative to Li metal, contracts both radially and axially by 21% and 3%, 

respectively, clearly showing some degree of integrity of the NW despite seemingly large 

structural reversibility (Figure 6.6). The use of more ionically conductive liquid electrolyte and 

incorporation of carbon improve Li extraction from the Si NW.
21-22

 (also see Appendix A) 

While the TiO2 coating appears to promote lithiation along the axial direction in this instance, the 

lithiation behavior is in fact a function of coating thickness. Here, another NW, with t/D=0.08, 

was also tested to observe lithiation behavior of a Si NW with thinner TiO2 coating. Since the 

strength of bonding between TiO2 grains is relatively weaker, compared to the tensile stress 

arising from lithiation of the Si NW core in the case with t/D=0.23, lithiation proceeds smoothly 

throughout the NW, with little effect of the TiO2 coating. The final morphology after full 

lithiation is quite uniform throughout, similar to that of the uncoated NW, as shown in Figures 

6.7a-c. This is very different from the NW with thicker coating that shows very rough surface 

profile (Figure 6.7d-f). This shows that an excessively thin coating has almost no mechanical 

influence on the NW lithiation, since the entire lithiated NW has undergone significant 

contraction in length (~28%) and only slightly less radial expansion than the uncoated one. The 

comprehensive plot in Figure 6.8a demonstrates the effect of the relative coating thickness (t/D) 

on the average radial expansion of the coated NW, based on four different NW measurements. 

From the plot, it is apparent that the thicker coating can suppress the NW core from expanding 

and somewhat maintain the integrity of a Si NW, again likely due to the stronger bonding 

between grains of the TiO2 coating. In addition to the average radial expansion, average axial 

elongation of the coated NW upon lithiation is also plotted against t/D. A coated NW with higher 
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t/D ratio tends to remain more elongated than one with lower ratio, due to the segmented 

lithiation. The overall difference in the lithiated morphology of the coated NW for both low and 

high t/D ratio is illustrated in Figures 6.8b and c and agrees well with that suggested by Cui and 

co-workers from their work on ex-situ electrochemical lithiation of a coated Si NW.
17

 Their 

work, which was also performed under potentiostatic mode, involved lithiating a batch of coated 

Si NWs and extracting comparative statistics of these NW dimensions before and after lihiation. 

They concluded that coated Si NWs with lower t/D ratio exhibit both radial expansion and 

contraction in length upon lithiation. However, for NWs with higher t/D ratio, they observed a 

slight increase in both the length and diameter upon lithiation, despite that the degree of radial 

expansion is still more significant than that of axial expansion, in agreement with our in-situ 

results
17

. 

 

6.4. Conclusions 

In summary, The nano-scale effect of TiO2 coating on the morphological changes of a Si NW 

was observed upon full lithiation by in-situ TEM. Coatings with sufficiently large t/D ratio 

induce segmented lithiation that promotes axial Li ion migration during transformation of Si to 

Li15Si4. Hence, the overall morphology of the coated Si NW upon full lithiation shows less radial 

expansion, as well as reduced axial contraction, than. These results confirm the effect of coating 

Si NWs with inert, or semi-inert oxide layers on lithiation, which may lead to a more optimized 

morphology control of Si nanostructures that can better accommodate anisotropy, thus improving 

the performance of Si as a Li-ion battery anode, while providing insight into the dynamics that 

occur during the lithiation process. 
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Figure 6.1  a. TEM micrograph of a single TiO2-coated NW, and b. SAED of a Si core showing 

[001] growth orientation, c, d, and e. Both EELS line scan as well as high-resolution BF TEM 

and DF STEM images of a Si/TiO2 interface illustrate the uniform shell thickness of TiO2 around 

a Si NW.  
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Figure 6.2 a. Schematic illustration of electrochemical set-up built inside TEM, b. TEM Image 

of the set-up, c. EELS Spectrum of a characteristic Li K peak from a Li2O layer grown on Li 

metal.  
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Figure 6.3  a, b, and c. Sequential TEM images illustrating different stages of lithiation inside a 

Si NW core, generating a fracture of TiO2 shell, d and e. TEM images of a TiO2-coated NW 

before and after lithiation, respectively and f and g. corresponding SAED of the these two stages. 
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Figure 6.4 Schematics of lithium ion insertion a. into a primitive p-Si NW and b. into a TiO2-

coated p-Si NW.  
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Figure 6.5 a. Sequence of TEM imaging of a TiO2-coated Si NW at various stages of lithiation 

and b. a schematic of segmented tearing of TiO2 coating.     
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Figure 6.6 TEM images of a lithiated TiO2-coated NW a. before and b. after delithiation and c 

and d. corresponding SAED of the these two stages.  
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Figure 6.7 TEM micrographs of a Si NW with the core diameter-to-coating thickness ratio of 

12:1 and 4.4:1, respectively, a and d. before and b and e. after lithiation. c and f. Lower 

magnification images showing the entire NWs.  
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Figure 6.8 a. A graph showing the radial expansion and vertical expansion of a silicon core (%) 

against the coating thickness-to-core diameter ratio. Summarized schematics showing the final 

lithiated morphology of coated Si NWs with b. low t/D ratio vs. c. high t/D ratio  
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Chapter 7. Summary and Future work 

 

7.1. Summary 

Overall, this thesis presented a detailed study of various TiO2-related Li ion battery anode 

materials using a novel structural characterization technique - in-situ atomic resolution 

transmission electron microscopy - that offers real-time observation of structural changes 

associated with Li intercalation in unprecedented details. In addition, postmortem analytical 

electron microscopy (aberration-corrected scanning transmission electron microscopy) combined 

with theoretical calculations using density functional theory were employed to enrich 

understanding of the mechanisms for lithium migration and structural relaxation upon lithiation 

for the anodes, originally detected by in-situ transmission electron microscopy. 

 

The atomic-resolution electrochemical study of a rutile TiO2 nanowire clearly demonstrated the 

two-step phase transformations upon lithium intercalation. It was found that rutile TiO2 turns into 

first a monoclinic structure upon reaching the intermediate lithiation stage (Li mole fraction 

x~0.5) and finally a rock-salt structure upon full lithiation x~1. The interesting aspect of 

lithiation of a rutile polymorph was its highly anisotropic nature of the phase transformations that 

induced a large asymmetric structural expansion when reaching the intermediate stage and 
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ultimately generated a bubble-like dilation at multiple regions along the nanowire upon full 

lithiation.  

 

The second topic of the thesis was related to the electrochemical lithiation of a TiO2-B thin film, 

which was successfully deposited as a thin film onto a conventional (100) SrTiO3 substrate. In 

the process of growth optimization, a Ca-variant of a TiO2-B structure (Ca:TiO2-B) was 

identified and effectively used as a template for the growth of a high quality TiO2-B film. 

Chapter 4 presented the comprehensive overview of interfaces and defects in TiO2-B and 

Ca:TiO2-B films deposited on (100) and (110) SrTiO3 substrates. A later part of the chapter 

focused on identifying the interfacial relationship between TiO2-B and Ca:TiO2-B. Near the 

interface between the two, a large number of both periodic and non-periodic out-of-phase 

boundaries were generated due to the missing Ca-modified layer either at the topmost surface or 

in the middle of a Ca:TiO2-B stack. Also interesting is the interfacial relationship of TiO2-B with 

a secondary phase anatase TiO2 grain that was not only grown directly from SrTiO3 but also 

structurally transformed from a parent TiO2-B structure. The latter was formed as a micro-grain 

that has a distinct epitaxial and orientation relationship with TiO2-B.  

 

The second part of the chapter discussed extensively many interesting defects in a lithiated TiO2-

B film grown on (100) SrTiO3 induced by strain relaxation upon a volumetric change of the film. 

It was found that the shape of these features are dependent on a Li insertion pathway. Upon Li 

intercalation along b-axis, lithiated TiO2-B underwent a phase transformation to a higher order 

symmetry anatase-type TiO2 structure via single column shearing. A theoretical study using 
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density functional theory was performed to calculate phase stability and the strain energy of 

various lithiated TiO2 polymorphs. Due to its striking structural similarity with LixTiO2-B and 

low strain energy of formation, anatase-type LixTiO2, or more specifically β-LiTi2O4, was found 

energetically favorable to be transformed from LiTi2O4-B, thus supporting the experimental 

finding. Upon Li intercalation along c-axis, lithiation that initiated from the topmost (001) plane 

of TiO2-B had Li either migrate vertically straight down towards a Ca:TiO2-B layer or diffuse 

laterally through a b-axis channel. This generated shears of varying depth from the top to a 

certain point across the film upon structural relaxation depending on the degree of a misfit strain 

within LixTiO2-B.  

 

A final work of this thesis involved in using rutile TiO2 as an semi-inert coating around a Si 

nanowire and understanding its influence on Li insertion into Si. Conclusively, a uniform TiO2 

coating around a Si nanowire helped suppress a volumetric expansion and maintain structural 

integrity of a Si core. It also gave rise to segmented lithiation by having each small nanowire 

portion experiencing full lithiation (up to Li15Si4) before the portion expanded to let Li progress 

towards the next segment of Si by tearing TiO2 coating. Hence, Li migration behavior of a coated 

nanowire was different from that of an uncoated one which had Li wet the surface of the 

nanowire prior to its radial inward migration. Hence, the lithiated Si nanowire, when coated, was 

expanded both vertically and radially while the uncoated or thinly coated nanowire was 

expanded radially but compressed vertically. This result agreed well with the results from 

literature using ex-situ transmission electron microscopy examination of a Si nanowire coated 

with a native SiOx layer after a potentiostatic cycling test using a standardized electrochemical 

cell.
1
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7.2. Future work 

Out of many future works, the first is to expand the scope of investigations on the lithiation 

mechanism towards many other TiO2 polymorphs besides rutile and bronze. A good system for 

an in-situ study is anatase TiO2, which is the most extensively studied anode system in literature 

due to its excellent chemical stability in a nanostructured form. It has been indirectly 

demonstrated that there is two-phase coexistence between the Li-poor anatase phase and the 

emerging orthorhombic β-phase (Li0.5TiO2) upon Li insertion up to the mole fraction of ~0.5.
2-5

 

By employing high-resolution transmission electron microscopy, the mechanism for nucleation 

and growth of the β-phase from the anatase nanostructure will be interesting to explore. So far 

only the preliminary study has been done using anatase nanotubes, as included in the appendix 

(see Appendix B). However, due to some difficulty in handling the polycrystalline nanotubes for 

in-situ microscopy, the future experiment will use more structurally robust single-crystalline 

nanowires instead.  

 

A comparative study of lithiation in TiO2 in various structural forms will be of extensive interest 

for investigation and especially useful for morphological optimization for the real battery 

application. For example, for the TiO2-B thin film, it was found that Li intercalation is limited to 

certain orientations and generates misfit strain to be ultimately relaxed via shearing and phase 

transformation. However, TiO2-B nanostructure, especially nanoparticles, are not likely to be 

influenced as much by the bulk strain as the surface strain due to the high surface-to-volume 

ratio. The influences of the surface strain from some facets like (110) and (001) surfaces on Li 
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intercalation process are of great interest since these surfaces are found to accommodate Li ion 

diffusion.
6
 Li intercalation into these nanoparticles can be performed via in-situ high-resolution 

transmission electron microscopy by loading them on a highly conductive graphene sheet for 

enhanced Li ion transport.  

 

Lastly, investigating TiO2 polymorphs for a rechargeable Na ion battery application using in-situ 

transmission electron microscopy will be novel and interesting due to high abundance of Na on 

earth. The electrochemical testing of anatase TiO2 using Na has been demonstrated in 

conjunction with in-situ X-ray diffraction and ex-situ electron microscopy to study the Na 

intercalation mechanism into anatase TiO2. However, there are some disagreements on the 

reaction pathways, especially whether anatase TiO2 undergoes entirely an insertion reaction
7
, as 

in the case using Li, or a mixed conversion and insertion reaction
8
. Energy dispersive 

spectroscopy and selected area electron diffraction will be conducive to identifying Na migration 

pathways and structural changes of TiO2 upon reactions with Na.  
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Appendix A Lithiation of a rutile TiO2-coated Si NW using a liquid cell prototype inside TEM 

 

A.1. Introduction and Background 

As an extension to the study on lithiation of a Si nanowire (NW) coated with rutile TiO2 using 

in-situ transmission electron microscopy (TEM) as demonstrated in chapter 6, a similar study on 

NWs but using a liquid cell prototype rather than a solid cell prototype for in-situ TEM was 

performed. The difference between the two prototypes comes from the choice of an electrolyte; a 

liquid cell prototype uses a low vapor pressure ionic liquid electrolyte (ILE) rather than 

amorphous Li2O used in the solid cell.   

Despite the convenience of its use for in-situ TEM, Li2O is seldom used as an electrolyte in the 

conventional battery system because Li ion diffusivity is only about 10
-10

 cm
2
s

-1
.
1
 Hence, it is 

more desirable to apply a liquid electrolyte that has a reasonably high Li ion diffusivity for 

effective cell operation. Along with the low vapor pressure, lithium bis(trifluoromethylsulfonyl) 

imide (LiTFSI) dissolved into 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide 

(P14TFSI) has a reasonable ionic diffusivity of around 10
-6

cm
2
s

-12
 and, thus, is a good liquid 

electrolyte candidate to be used for a cell assembled in TEM. Certainly, using a liquid electrolyte 

is anticipated to provide a better picture of electrochemical reactions between Li and the NW 

since they must resemble to that occurring in a standard electrochemical cell. Therefore, in this 
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work, using an ionic liquid electrolyte, electrochemical lithiation was performed on a TiO2-

coated Si NW inside TEM.  

 

A.2. Experimental Procedures 

A batch of ~30nm p-doped Si NWs was grown on a Si substrate by chemical vapor deposition 

(CVD). A uniform rutile TiO2 coating was deposited onto a Si NW via atomic layer deposition 

(ALD) with a precise control over the layer thickness prior to be decorated with rutile TiO2 

nanotube (NT) powders.  

A TEM specimen was prepared by embedding NWs in a Ag-based paste on a tungsten wire. A 

prepared specimen was loaded onto a piezo-drive of a single-tilt in-situ Nanofactory Instruments 

TEM-STM holder to be part as an anode of an electro-chemical cell assembly in a JEOL JEM-

3010F microscope. Bulk Li metal, as a counter-part, was scrapped onto a copper rod and dipped 

into an ILE consist of P14TFSI solution mixed with 10 wt% LITFSI to coat it on the surface of Li, 

prior to loading it on the other side of the holder. A piezo-movement of the W tip attached with 

NWs can be controlled with great precision within the holder, allowing it to be contacted with 

the liquid electrolyte, thus completing the assembly of an electro-chemical cell inside the TEM. 

 

A.3. Results and Discussion 

Figure A.1a illustrates the schematic of a liquid cell prototype used for testing a single TiO2-

coated Si NW inside TEM. In order to avoid the effect of an electron beam that readily reacts 
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with liquid electrolyte, a long NW with a length greater than 10 μm, as illustrated in Figure A.1b, 

was used for testing. Figure A.1c shows the NW after getting immersed into an ILE.  

In this study, lithiation and delithiation of a TiO2-coated Si NW were conducted under 

potentiostatic mode at room temperature. A bias of -3V with respect to Li metal for lithiation and 

3V for lithium extraction were used; these voltage were set slightly larger than the ones used in 

literature
3
 in order to expedite Li ion migration into the film. According to Figure A.2a, c, and e, 

upon lithiation and delithiation, the NW underwent a lateral expansion and contraction 

approximately by 140% and 90%, respectively. The axial changes, based on the measurement 

from the reference point (yellow lines in Figure A.2a, c, and e) to the contact with an ILE (red 

lines in Figure A.2a, c, and e) upon lithiation and delithiation were 120% and 97%, respectively. 

All measurements included both a Si core and a TiO2 shell, and the degree of dimensional 

changes in a Si core alone was not considered because of difficulty in measurements especially 

upon delithiation as TiO2 nanoparticles detached from a lithiated Si did not contract as much as a 

core.  

SAED was simultaneously performed to observe the structural changes associated with the 

electrochemical cycle (Figure A.2b, d, and f). Indeed, the structural change of a Si core occurred 

from c-Si to c-Li15Si4, which in fact agreed with the result obtained using a solid cell prototype in 

Chapter 6. However, upon delithiation, the lithiated Si changed its structure from c-Li15Si4 to a-

LiSi, indicating more extraction of Li ions happened than that using a solid cell. This is because 

of higher Li ion diffusivity of an ILE than that of a solid electrolyte. In order to extract Li 

entirely from Si, many in-situ TEM studies applied a carbon coating on a Si NW to improve ion 

transport back to its source upon delithiation.
4-5
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A TiO2-coated Si NW demonstrated remarkable cyclability and structural integrity even after the 

second lithiation and delithiation as demonstrated in Figure A.3. Upon lithiation and delithiation, 

the NW underwent the lateral expansion and contraction by 159% and 76%. Interestingly, the 

degree of structural changes was slightly higher than that of the first cycle because lithiation and 

delithiation behaviors of Si during the second cycle are less influenced by the much weakened 

coating after the first cycle. The observation suggests both the advantage and disadvantage of 

having a TiO2 coating around Si. While the uniform coating effectively suppresses the Si core 

from expanding upon lithiation, it can also block Li from being extracted from Si when it gets 

delithiated. Nevertheless, high fluidity of an ILE was conducive to NW cyclability as it helped Li 

migration in and out of the NW.  

After the second round of lithiation, there were notable signs of degradation observed throughout 

the NW. Although having double TiO2 layers (ALD TiO2 and TiO2 NTs) surrounding Si made 

the coating more robust, the weak bonding among different grains induced uneven expansion of 

the NW as shown in Figure A.4a. This could potentially disintegrate the NW as the local stress 

built up inside the NW due to the difference in Li ion kinetics among different regions along the 

NW. In addition, some parts of a TiO2 coating were detached from a Si NW as it expanded and 

was unable to hold its coating epitaxally (Figure A.4b). Finally, some TiO2 NTs decorated 

around a ALD TiO2 coating disappeared (Figure A.4c) possibly due to the weak bonding with an 

inner coating. The degradation of a coating affected the delithiation behavior of the coated NW. 

Li, instead of being extracted through the channels inside Si towards the NW-liquid electrolyte 

interface, migrated out laterally through the intraparticle gaps of the damaged TiO2 coating. 

Figure A.5a illustrates the weak image contrasts sporadically emerged from a TiO2 coating. 

These contrasts can be attributed to Li that migrated out of Si as the NW shrinked radially upon 
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delithiation. This finding suggests the possibility of fast extraction of Li through the sides, which 

would otherwise have been impossible if the coating remained completely intact. In context to 

the conventional Li ion battery where the NW anode is completely immersed in the liquid 

electrolyte, this further implies that the amount and speed of Li extraction and transport through 

the electrolyte should be improved and contribute to an increase in charge/discharge rate 

capability. (see Figure A.5b) Hence, by optimizing the design of a coating around Si, the NW 

can potentially maintain its structural integrity upon lithiation while providing expedite inlets and 

outlets for Li during charge and discharge.              

 

A.4. Conclusions 

In summary, the electrochemical lithiation and delithiation of a rutile TiO2-coated Si NW were 

performed using a liquid cell prototype inside TEM. Upon multiple lithiation and delithiation 

cycles, the Si core maintained its good cyclability and structural integrity despite the degradation 

of the TiO2 coating. A more careful design of a TiO2 coating around Si would not only restrain 

Si from large volumetric expansion upon Li insertion but also provide multiple routes for 

efficient Li extraction prior to being carried out by a liquid elctrolyte.  
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Figure A.1 a. A schematic illustration of an electrochemical set-up built inside TEM, b. Low-

magnification TEM image of a primitive rutile TiO2-coated Si NW, and c. TEM image of a NW 

contacted with an ILE.  
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Figure A.2 Low-magnification TEM images of a TiO2-coated Si NW a. before, c. after lithiation, 

and e. after delithiation, and b, d, and f. Corresponding SAED patterns taken from the areas 

within the NWs (circles), respectively. D is the maximum diameter of the NW at different stages.   
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Figure A.3 TEM Images demonstrating various stages of lithiation and delithiation of a TiO2-

coated Si NW; a. primitive, b and c. after 1
st
 lithiation and delithiation, and d and e. after 2

nd
 

lithiation and delithiation. Measurements at different stages marked with a same color mean that 

the they were taken at the same location within the NW.  

  



137 
 

 

Figure A.4 TEM Images that demonstrate the aftermath of NW lithiation. a. Non-uniform 

expansion of Si, b. detachment of a TiO2 coating, and c. missing TiO2 nanoparticles.  
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Figure A.5 a. TEM image of a NW undergoing delithiation. Li ions were being extracted from 

the TiO2 side wall through the intraparticle gaps. b. This would lead to fast extraction of Li ions 

through the side for the case of a conventional cell where the entire NW is immersed in the liquid 

electrolyte.  
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Appendix B Structural Characterization of nanostructured anatase TiO2 upon electrochemical 

lithiation 

 

B.1. Introduction and Background 

Another TiO2 polymorph, besides rutile and bronze, that will be interesting to discuss in this 

thesis is the anatase polymorph of TiO2. It is one of the most studied intercalation anode 

materials for a Li ion battery for its reversible Li ion storage capability. Along with its excellent 

chemical stability in smaller dimensions, nanostructured anatase TiO2 has not only overcome the 

disadvantages of the bulk (i.e. poor ionic and electrical conductivity) but also enhanced the 

electrochemical energy storage properties. According to Wagemaker and co-workers, anatase 

TiO2 nanostructure experiences immediate phase separation into a Li-poor α phase (Li0.05TiO2) 

and  a Li-rich β phase (Li0.5TiO2) upon Li insertion.
1-3

 Despite the two phases being indirectly 

identified both in in-situ X-ray diffraction and ex-situ nuclear magnetic resonance, the distinct 

boundary nucleation and growth upon phase separation between the two phases are more to be 

explored. The theoretical study done by Van der Ven, et al., using density functional theory 

suggests this boundary lies along the strain invariant plane. According to their calculation, Li 

diffusion parallel to the boundary makes the growth of the Li-rich phase self-limited since it is 

only ensued by Li insertion into the Li-poor phase. Thus, this promotes the 
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growth of a Li-rich phase "shell" around the Li-poor phase and possibly leads to the performance 

degradation of an electrode.  

In this work, a direct probing of the two-phase reaction in anatase TiO2 nanostructures was 

attempted for the first time using in-situ transmission electron microscopy (TEM). For a 

preliminary study, polycrystalline anatase TiO2 nanotubes (NTs) were selected as a test anode 

material. In conjunction with an in-situ study, post-mortem scanning TEM (STEM) was 

performed on electrochemically cycled NWs using a standard Li ion cell to identify structural 

changes that could be indicative of phase separation in anatase TiO2 NTs.  

 

B.2. Experimental Procedures 

TiO2 nanotube arrays were prepared by an anodization process in a two-electrode 

electrochemical bath. The working electrode, Ti foil (99.5% purity, 0.25 mm thick, Alfa Aesar) 

was cleaned in a mild detergent, rinsed with DI water and ultra-sonicated  in acetone and ethanol 

for 5 minutes in each solvent. Then, the Ti foil was immersed in 1:18:81 it for another 5 minutes. 

After cleaned, it was dried by a N2 blow. A platinum foil was used as the counter electrode. The 

voltage was applied by a DC power supply (Agilent, E3612A). A thin TiO2 nanotube array layer 

was produced by anodizing the Ti foil in a solution of ethylene glycol (99.8%, JT Baker) 

containing 0.30% ammonium fluoride (NH4F, 96%, Alfa Aesar) and 5% H2O at 60 V for 3.5 

hours. The procedures for TEM sample preparation and an in-situ TEM set-up for TiO2 NTs are 

similar to that described in Chapter 3 of the thesis.  

Li ion half-cells (EL-CELL ECC-STD) were assembled inside an argon-filled glove box 

(Innovative Technology Inert Lab) with both O2 and H2O levels below 2 ppm and tested on a 4-
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channel system (Princeton Applied Research VersaSTAT MC) using Li metal, non-aqueous 

electrolyte (1M LiPF6 in ethylene carbonate : dimethyl carbonate 1:1 (v/v), Merck), a 1.55-mm-

thick glass fiber separator, and a TiO2 NT film deposited on a electrically conductive Ti foil.  

The post-mortem imaging was performed using high-resolution STEM.  

 

B.3. Preliminary Findings 

Cyclic voltammetry on a TiO2 NT film performed at 0.1mV/s clearly revealed the distinct peaks 

both during reduction and oxidation. These peaks were shown approximately at 1.7 eV and 2.1 

eV and are possibly indicative of the co-existence of the two phases, Li-poor TiO2 and Li0.5TiO2. 

Other small peaks were also identified approximately at 1.4 eV and 1.65 eV, respectively, upon 

reduction and oxidation, and they are possibly biphasic peaks of two phases, Li0.5TiO2 and 

LiTiO2. (Figure B.1) However, the above measurement only shows two-phase coexistence not 

phase separation. The possibility of the two phase separation was hinted when performing a 

galvanostatic electrochemical measurement on TiO2 NTs. As shown in Figure B.2a, upon 

reaching a biphasic plateau around 2.0 V, a tentative "overshoot" of an potential was observed. 

When projecting this qualitatively into the Gibbs free energy diagram like in Figure B.2b, this 

bump corresponds to a sudden change in the slope of a free energy curve since the potential (V) 

is the mole fraction derivative of Gibbs free energy. Interestingly, this overpotential happened 

regardless of the Li discharge rate of the cell, and this means that Li ion diffusion into a LixTiO2 

lattice proceeded slowly to overcome the energy barrier of formation of β-Li0.5TiO2. (Figure 

B.2b) However, by eventually overcoming the barrier, LixTiO2 could finally reach the biphasic 

state between β-Li0.5TiO2 and Li-poor LixTiO2. (Figure B.2c) 
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An ex-situ STEM examination performed on after-cycled anatase TiO2 NTs revealed intriguing 

structural changes occurred after 200 cycles (charge/discharge rate range of 0.5~1C). Figure B.3a 

and b show the high-resolution STEM of the cross-section of one of NTs before and after cycling. 

In contrast to the as-grown NT that has small, randomly shaped nano-pores naturally formed 

upon growth, the after-cycled NT has much uniformly dispersed large nano-pores that are 

distinct in shapes and orientations. There is also a clear increase in the depth of these voids as 

demonstrated in the comparative phase maps calculated from the fast-Fourier transformation 

(FFT) patterns of TEM images via geometric phase analysis before and after the electrochemical 

cycles.
4-5

 (Figure B.3d and f)  The density of these voids is neglected in this study since the 

number of voids in each NT varies from one to the other. The nano-pores in the after-cycled NTs 

are rectangular-shaped with sharp edges top and bottom and diffuse edges left and right. Based 

on STEM imaging performed along a [011] zone axis, the sharp and diffused edges correspond 

to {011} and {100} planes respectively. Interestingly, the sharp edges lie parallel to the a-axis, 

which happens to be the most favorable direction for Li ion migration. 

The origin of this feature can be understood in context to previous works that have been done on 

Li ion migration in anatase TiO2. According to Wagemaker et al., Li ions travel through the 

energetically favorable octahedral sites in LixTiO2 that are located zigzag along a-direction. At 

x=0.5, LixTiO2 undergoes instant phase transformation from a tetragonal (α) to an orthorhombic 

(β) structure.
3
 However, based on in-situ X-ray diffraction, they later concluded that the 

mechanism for phase transition in anatase TiO2 is size-dependent; smaller nanostructures ranged 

from ~15nm to ~40nm only exist or nucleate as single domains, either α or β-phase, without 

having any phase boundaries, while larger nanostructures (>130nm) have two phases co-existing 

with a distinct phase boundary within each single crystallite.
6
 This difference is due to the fast 
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initial phase boundary movement that instantly affects both domain sizes and their solubility 

limits of the two phases. According to Van der Ven, et al., this instant movement is theoretically 

possible in anatase TiO2 because it is interfacially controlled and not diffusion-controlled by Li 

ions.
7
 The growth of α and β phases is most likely induced by the diffusion-less martensitic 

transformation that has the strain-free habit plane in b-c axis and not by slow Li ion diffusion 

into LixTiO2. However, as lithium ions migrate, several variants of a β phase grow larger and 

start impinging upon each other. This not only induces a loss of lattice coherency at α-β 

interfaces perpendicular to the habit plane but also generates a head-to-head stress between the 

two impinged β phases to generate defects and, if worse, cracks. 

Based on these studies, a parallel correlation can be done with our STEM results. First, our NTs 

are larger than 130nm on average and most likely undergo two phase coexistence between α and 

β phases. Hence, the two parallel sharp edges in large nano-pores are most likely the traces of 

phase separation between α and β phases upon Li insertion. The nano-pores were most likely 

formed due to a loss of strain coherency between α and β phases as the boundary expanded via 

constant Li insertion. The question that still remains, however, is whether these distinctly shaped 

nano-pores were expanded from the original nano-pores of an as-grown NT or newly nucleated 

within the NT upon Li insertion. To answer this question, the electrochemical lithiation of an 

anatase NT was attempted inside TEM to directly observe phase transformation.  

To observe the phase transition occurring in an anatase TiO2, lithiation of a NT was conducted 

under potentiostatic mode at room temperature under illumination of a low-dose electron beam. 

Upon constant Li insertion of a TiO2 NT bundle under -4V bias, the Moirés fringes emerged at 

different regions throughout a NT (Figure B.4). This implies that there is presence of a new 

phase in addition to the original phase and might already suggest the possible two phase co-
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existence. Unfortunately, the orientation and epitaxial relationship of a new phase relative to the 

original could not be identified during the lithiation due to the difficulty of performing high-

resolution TEM and selected area electron diffraction (SAED) on a polycrystalline nanostructure. 

Nevertheless, upon continuous lithiation up to lithium mole fraction almost equivalent to 1, the 

NT underwent full phase transformation from anatase to β-Li0.5TiO2 as clearly demonstrated 

from SAED (Figure B.5). Polycrystalline Li2O was also detected in the diffraction pattern and 

could have been derived from solid-electrolyte interphase formation between a TiO2 NT and Li 

at the surface of a NT. After phase transformation, the NW structure disintegrated completely. 

The tearing of a NT was again possibly driven by two phase separation during lithiation. The 

randomness in structural disintegration was probably due to the polycrystallinity of anatase TiO2 

that has randomly oriented grains (Figure B.5). It is interesting to note that the fracture 

generation upon loss of coherency was observed in a similar manner in another biphasic Li 

insertion material, LiFePO4, although the phase boundary migration in LiFePO4 is driven purely 

by Li ion diffusion and not by an interfacial phenomenon.
8-9

  

            

B.4. Conclusions and Future Work 

In summary, the electrochemical lithiation was attempted for the first time on a polycrystalline 

anatase TiO2 NT inside TEM to observe in real-time two phase separation between a Li-poor α 

phase and a Li-rich β phase. Although the structural disintegration of an anatase TiO2 upon full 

lithiation is suggestive of phase separation, high-resolution TEM characterization is necessary to 

obtain the clearer picture on the phenomenon. Unfortunately, the polycrystalline NT form of 

anatase TiO2 made the in-situ experiment difficult since the NWs were too fragile to load 

individually onto the sample post. A much simpler system like a solid, single-crystalline anatase 
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TiO2 will be a good material system for in-situ TEM study. Single crystallinity of a NW not only 

promotes Li insertion but also enables clear visualization of the Li intercalation phenomenon.     
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Figure B.1 Cyclic voltammetry curve of a TiO2 NT film at the scan rate of 0.1mV/sec. 
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Figure B.2 a. A representative galvanostatic curve of a TiO2 NT film upon 3
rd

 discharge. An 

"overshoot" due to an over-potential is marked with red. b and c. Corresponding schematics of 

Gibbs free energy illustrating the sequential changes in a tangential line. An "overshoot" is 

possibly due to resistance of lithiated TiO2 to nucleate the new phase, β-Li0.5TiO2.   

  



148 
 

 

Figure B.3 HRSTEM images of a TiO2 NT and their corresponding FFT patterns and Bragg-

filtered maps  a, c, and d. before and b, e, and f. after electrochemical cycling. The red circles 

on FFT patterns in c and e are the reciprocal lattice spots used for map calculation.  
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Figure B.4 Low-magnification TEM images of an anatase TiO2 NT bundle a. before and b. 

during lithium insertion. 
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Figure B.5 Low-magnification TEM images of an anatase TiO2 NT bundle a. before and b. after 

lithiation and c and d. corresponding SAED.     
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Appendix C Observation of a conversion reaction of a CuO nanowire upon Li insertion 

 

C.1. Introduction and Background 

The electrochemical study presented so far in this thesis has been dedicated to TiO2 polymorphs 

that undergo insertion/de-insertion reaction upon Li insertion. As already discussed in Chapter 1, 

most of other binary transition metal oxides undergo a conversion reaction upon lithiation. 

Despite that less than one electron transfer is possible in intercalation materials, many possible 

oxidation states of transition metal oxides allow more than one electron transfer through a 

conversion reaction and, thus, greatly enhances specific charge capacity.
1
 As one of widely 

studied conversion systems, CuO has been known to transform directly into metallic Cu 

nanoparticles upon Li-induced reduction. Upon Li extraction, the system irreversibly undergoes 

oxidation to Cu2O, instead of CuO.
2
 Here, the conversion reaction of CuO upon Li insertion was 

observed using high-resolution transmission electron microscopy (HRTEM).  

 

C.2. Experimental methods 

Monoclinic CuO NWs were grown on a copper foil using a thermal oxidation method as reported 

in elsewhere.
3
 The procedures for TEM sample preparation and an in-situ TEM set-up for CuO 

NWs are similar to that described in Chapter 3 of the thesis.  
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C.3. Results and Discussion 

Both schematics and TEM images in Figure C.1 demonstrate how lithiation proceeded under a 

potentiostatic mode of -3V. Clearly, as Li was driven from its source towards the other end of the 

NW, CuO immediately began to dilate both radially and vertically. A reaction front (as marked 

with yellow in Figure C.1b) had the distinct conical shape, which was indicative of faster Li 

diffusion along the surface than through the channels inside the NW.
4
  

Ultimately, the entire NW underwent the radial and vertical expansion of 121%. and 119%, 

respectively. This expansion was kinetically induced upon reduction of CuO to Cu while oxygen 

ions were attached to Li to form a binary compound, Li2O. This is shown in TEM images (Figure 

C.2a and b) by the change in the morphology of the NW before and after lithiation and the 

corresponding selected area electron diffraction (SAED) patterns (Figure C.2c and d). After 

lithiation, reduced 2-5 nm Cu nanoparticles got embedded in Li2O matrix. Both the 

polcrystallinity of Cu and the amorphous nature of Li2O are clearly marked by the ring patterns 

in SAED (Figure C.2d). A 5-7 nm thin layer that was observed at the surface of the lithiated NW 

is possibly a solid-electrolyte interphase (SEI) layer.  

So far, lithiation of a CuO NW performed using Li2O as a solid electrolyte demonstrated the 

similar result to that using a liquid electrolyte.
4
 However, different from the liquid cell prototype 

case, upon applying reverse polarity, delithiation of the NW could not be achieved in our work. 

Instead, an interesting feature was detected near the interface between Li source and the NW 

(Figure C.3). Figures C.3b and c show the TEM images of a lithiated NW near and away from a 

Li contact, respectively, after a reverse bias was applied. Comparing to the smooth SEI layer 
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formed around the lithiated CuO NW away from the contact (Figure C.3c), the layer surrounding 

the NW near the contact was at least twice as large and very rough with jagged edges (Figure 

C.3b). It is suspected that these edges were induced by the growth of a Li2O matrix followed by 

polycrystallization because the lattice spacing obtained in one of crystallites in Figure C.3d is 

0.26 nm which is equivalent to the interplanar spacing of (111) Li2O. There is still a large 

concentration of Li surrounding the NW, and hence it is possible that this layer could have 

grown more upon further applying a bias.  

The expansion of Li2O crystallites was resulted by the inefficient extraction of Li from the NW. 

Due to low Li ion conductivity of Li2O electrolyte, Li ions that were unable to migrate back to 

the source were gradually accumulated at the Li source-NW contact to interact with surrounding 

residue oxygen ions from a TEM column.
5
 Hence, upon replacing an electrolyte with higher 

ionic conductivity (i.e. ionic liquid electrolyte), the electrochemical reversibility could have 

enhanced as demonstrated in literature.
4
     

 

C.4. Conclusions 

In summary, electrochemical lithiation and delithiation on a CuO NW were performed under 

TEM. Upon lithiation, a CuO NW underwent a conversion reaction by reducing into metallic Cu 

embedded in a Li2O matrix. However, delithiation upon applying a reverse bias was unsuccessful 

by inducing the formation and growth of large Li2O crystallites surrounding the NW, most likely 

due to low Li ion conductivity of a solid electrolyte.  
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Figure C.1 a. A schematic illustrating the lithiation process of a CuO NW connected to the 

electrochemical set-up built inside TEM, b and c. TEM images demonstrating lithiation of CuO 

with the migration of a reaction front.  
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Figure C.2 TEM images and corresponding SAED patterns of a CuO NW a and c. before and b 

and d. after lithiation.  
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Figure C.3 a. A TEM image of a NW upon applying a reverse bias. b and c. Higher 

magnification TEM images of regions marked with b and c in a. d. HRTEM image of the NW 

surface near the Li source-NW contact.  

 


