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Abstract

This thesis reports on the design and validation of estimation and planning algorithms for un-
derwater vehicle cooperative localization. While attitude and depth are easily instrumented with
bounded-error, autonomous underwater vehicles (AUVs) have no internal sensor that directly ob-
serves XY position. The global positioning system (GPS) and other radio-based navigation tech-
niques are not available because of the strong attenuation of electromagnetic signals in seawater.
The navigation algorithms presented herein fuse local body-frame rate and attitude measurements
with range observations between vehicles within a decentralized architecture.

The acoustic communication channel is both unreliable and low bandwidth, precluding many
state-of-the-art terrestrial cooperative navigation algorithms. We exploit the underlying structure
of a post-process centralized estimator in order to derive two real-time decentralized estimation
frameworks. First, the origin state method enables a client vehicle to exactly reproduce the cor-
responding centralized estimate within a server-to-client vehicle network. Second, a graph-based
navigation framework produces an approximate reconstruction of the centralized estimate onboard
each vehicle. Finally, we present a method to plan a locally optimal server path to localize a client
vehicle along a desired nominal trajectory. The planning algorithm introduces a probabilistic chan-
nel model into prior Gaussian belief space planning frameworks.

In summary, cooperative localization reduces XY position error growth within underwater ve-
hicle networks. Moreover, these methods remove the reliance on static beacon networks, which
do not scale to large vehicle networks and limit the range of operations. Each proposed localiza-
tion algorithm was validated in full-scale AUV field trials. The planning framework was evaluated

through numerical simulation.

X1V



Chapter 1

Introduction

1.1 Motivation

Autonomous underwater vehicles (AUVs) have equipped oceanographers with the ability to safely
and efficiently explore and research a variety of difficult environments (Bellingham and Rajan,
2007) including the under-ice Arctic Ocean (Jakuba et al., 2008; Kunz et al., 2009), the deepest
regions of the Mariana trench (Bowen et al., 2009; Whitcomb et al., 2010), and the Great Barrier
Reef (Williams and Mahon, 2004). AUVs require robust navigation algorithms to safely operate
in such hostile environments and geo-reference the valuable scientific data that they collect.

Water is opaque to electromagnetic signals, prohibiting the direct use of the global positioning
system (GPS) and other radio frequency based navigation techniques while submerged. Terrain-
aided navigation utilizes prior bathymetric terrain maps for localization, but is not applicable to op-
erations in the mid-depth zone where rich altitude information is not available. Visually-aided nav-
igation, commonly used in terrestrial and aerial robotics, is only possible when an AUV is close to
the seafloor due to backscatter, strong attenuation, and a generally unstructured scene, which chal-
lenge state-of-the-art computer vision algorithms. Underwater vehicles typically employ acoustic
beacon networks, such as narrowband long-baseline (LBL) and ultra-short-baseline (USBL), to
obtain accurate bounded-error navigation in the mid-depth zone where there is no apparent visual
information. Acoustic beacon methods, however, generally require additional infrastructure and
limit vehicle operations to the acoustic footprint of the beacons.

Acoustic modems enable vehicles to both share data and observe their relative range. How-
ever, the underwater acoustic channel is unreliable, exhibits low-bandwidth, and suffers from high
latency (sound is orders of magnitude slower than light). Despite these challenges, underwater
navigation can benefit from cooperative localization—each vehicle is treated as a mobile acoustic
navigation beacon, which requires no additional infrastructure and is not limited in the range of

operations by static beacons.



This thesis reports on novel estimation and control algorithms for synchronous-clock coop-
erative underwater localization. The contributions of this work include: an exact one-to-many
(server-to-client) localization algorithm, an approximate many-to-many (peer-to-peer) cooperative
localization algorithm, and a planning framework for establishing more informative geometries for
range-only server-client localization. These algorithms are designed to be tolerant to the extremely
faulty and bandwidth-limited acoustic communication channel. Moreover, they are not limited to
AUVs and can be applied to any network of platforms (terrestrial or aerial, manned or unmanned)
in order to share navigation information with limited communication bandwidth. The work pre-
sented in this document builds upon the existing state-of-the-art in related work stemming from
single-robot navigation, terrestrial cooperative localization, underwater navigation, and planning

under uncertainty. The most salient features of the prior literature are discussed below.

1.2 A Review of Single Robot Navigation

Figure 1.1 Illustration of the full SLAM problem. A SLAM solution computes the unknown robot and landmark poses
represented by circles and stars, respectively, given noisy observations illustrated by edges.

Iy
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L

One of the fundamental challenges in robotics lies in answering the question ‘where am 1?°.
The problem of concurrently building a model of an a priori unknown environment and localizing
within it has been addressed by robotics researchers over the last several decades by the develop-
ment of simultaneous localization and mapping (SLAM) frameworks. Since we are interested in
underwater localization, we focus on metric SLAM formulations. This class of algorithms com-
putes a joint estimate over robot poses and a map—generally a collection of landmarks or features.
The SLAM solution is often partitioned into two sub problems: inference (i.e., optimization) and
data association (i.e., recognizing landmarks), known as the back-end and front-end problems,
respectively. Here, we only review the back-end SLAM problem as it relates to cooperative local-
ization and assume that the identities of robots and landmarks are known.

In general, the full metric SLAM solution is provided by the maximum a posteriori (MAP)

estimate over a set of poses X = {xy,...,%,} and landmarks L. = {l;,...,1,,} given the set of



control inputs U = {uy,...,u,_1} and observations Z = {z,,...,z,}

X,L = argmax p(X, L|U, Z), (1.1)
X,L
as illustrated in Fig. 1.1. In the following sections, we review various solutions to the general

problem.

1.2.1 Filtering Approaches

The pioneering SLAM formulation by Smith et al. (1986) began to address the problem of fusing
uncertain spatial information from sensors of varying quality for robot navigation. Their solution,
among others including Leonard and Durrant-Whyte (1991), tracks the so-called stochastic map,
a map composed of various landmarks such as corners, edges, or other fiducial markers scattered
throughout the environment. The robot adds landmarks to the map relative to its current pose as it
travels. Subsequent re-observation of the initialized landmarks provides a constraint on the robot’s
pose as a loop closure event. The power of SLAM algorithms rests in the ability to identify and
incorporate these events, thereby strengthening map relationships.

Early SLAM solutions recursively track a state vector composed of the current robot pose and
landmark positions, = [x,1],...,1']7, within a Bayesian estimation framework, e.g., the
extended Kalman filter (EKF). The filtering solution corresponds to the Bayes filter formulation of
(1.1). Given linear Gaussian noise models, the Kalman filter provides the optimal minimum mean
squared error (MMSE) estimate. System nonlinearities are dealt with in ad hoc estimators such
as the EKF by repeated linearization or the unscented Kalman filter (UKF) by applying the un-
scented transform. The posterior distribution over state, however, is assumed to be approximately
Gaussian, x ~ N (,u, Z) with mean p and covariance Y. Filtering complexity generally grows
with state size because map updates involve expensive matrix operations (in general, matrix mul-
tiplication is O(n?) in the state dimension). Additionally, the fully dense covariance matrix has a
quadratic memory requirement.

The information filter (Bar-Shalom et al., 2001) is the information (inverse covariance) form of
the Kalman filter,  ~ N1 (n, A), where 1 and A are the information vector and matrix, respec-
tively. Thrun et al. (2004) empirically observed that the information matrix over landmark states is
dominated by a few terms that encode relationships between nearby landmarks, suggesting that the
dense information matrix can be approximated as a sparse matrix. By performing a sparsification
procedure, the authors improved upon previous EKF based implementations, allowing constant
time updates and memory requirements linear in the number of map landmarks. The sparsification
procedure, however, introduced the potential for overconfidence as it throws away information,

i.e., ignores conditional relationships between map elements.



Particle filters (Doucet et al., 2001) are also a popular tool for filter-based SLAM (Montemerlo
et al., 2002). Unlike the previously mentioned methods, the particle filter is able to represent ar-
bitrary posterior distributions—not only unimodal Gaussian. However, the complexity of particles

filters is difficult to evaluate due to the ambiguity in defining adequate particle density.

1.2.2 Graph-based Approaches

The challenge of the data association problem is defining a set of repeatably observable landmarks
or features. Lu and Milios (1997) proposed a SLAM solution that copes with this problem through
an alternate map representation: modeling the environment as a collection of robot poses or views
as opposed to a set of landmarks or features. The collection of historic robot poses is commonly re-
ferred to as the pose-graph. Lu and Milios (1997) showed that the pose-graph formulation leads to
an equivalent optimization problem that minimizes the error of reprojected data between overlap-
ping views. Although their original solution solved a batch maximum likelihood estimate (MLE)
problem, Gutmann and Konolige (1999) later presented a real-time implementation that essentially
performs a batch update over a sliding window of robot poses. Several derivative works employ
an equivalent ‘delayed-state’, i.e., view-based, filtering framework (Eustice et al., 2006a; Walter
et al., 2007) to achieve real-time performance.

Based on the work of Lu and Milios (1997) and Thrun et al. (2004), Eustice et al. (2006a) ob-
served that the information matrix of a delayed-state representation is exactly sparse, i.e., requires
no approximate sparsification procedure. The authors noted that the information matrix becomes
fully dense as a result of marginalizing out robot poses, whereas maintaining the robot trajectory
preserves sparsity. The distribution over the delayed-state vector can be factored as a Markov
random field (MRF) and represented graphically (Fig. 1.2a). The information matrix exactly cor-
responds to the adjacency matrix of the the MRF. Marginalization introduces new edges in the
graph called fill-in, which generally increases the graph density and therefore the complexity of
the solution. This insight allows the benefits of constant time updates without the drawbacks of
an approximate sparsification that can lead to overconfidence. Furthermore, Eustice et al. (2006a)
noted that the information form encodes a sparse linear system in which most updates involve only
a small portion of the system, suggesting a fast approximate method for state-recovery.

Filtering solutions all suffer from eventual divergence that occurs as a result of linearization
error (Julier and Uhlmann, 2001). Lu and Milios (1997) computed the full robot trajectory as
the solution to a sparse nonlinear system over robot poses—minimizing the squared error over
robot poses. Similarly, the full SLAM problem defines a sparse system over both robot poses
and landmarks as in Fig. 1.2. Graphical SLAM by Folkesson and Christensen (2004), Square
root smoothing and mapping (SAM) by Dellaert and Kaess (2006), and GraphSLAM by Thrun



Figure 1.2 The graphical representation of the SLAM problem (Fig. 1.1) exposes its sparse underlying structure.

/ /
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(a) Information matrix and MRF associated with the full SLAM problem.

A ® =D
(b) Measurement Jacobian and factor graph associated with the full SLAM problem. Small circle nodes

represent factors, i.e., measurements. The factor graph corresponds to a least-squares problem that
computes the parameter vector, ®, in order to best explain the observations.

and Montemerlo (2006) considered the efficient solution of this system using the Gauss-Newton
algorithm, involving iteratively solving a large sparse linear system. Current state-of-the-art SLAM
algorithms leverage well established sparse linear algebra routines to quickly and efficiently solve
the underlying large linear system (Dellaert and Kaess, 2006; Olson et al., 2006b; Kaess et al.,
2008, 2012; Kummerle et al., 2011; Polok et al., 2013).

For additive Gaussian noise models, the MAP SLAM formulation (1.1) can be written

A

© = argmax p(O|U, Z)
©

= argmin — log p(®|U, Z)

e
= argmin E ‘
® i

£(0) —u; ;+2th(e)—sz;, (1.2)
J

where the parameter vector © includes poses X and landmarks L, and f;(-) and h;(-) are the
process and observation models with noise covariance matrices Q); and R, respectively. We rec-
ognize (1.2) as a nonlinear least-squares problem. Within a nonlinear least-squares solver (e.g.,

Gauss-Newton), (1.2) is linearized to produce a large linear least-squares problem in the estimate



update /O

2

A)® —b (1.3)

50 = argmin)
5©
= (ATA)"'A Db,

where the matrix A represents the stacked whitened measurement Jacobian and A = AT A is the
information matrix (inverse error covariance matrix, i.e., X~ !). Probabilistic graphical models
corresponding to this problem are discussed in Appendix A.

Algorithms to solve linear systems are classified as direct methods (e.g., matrix factorization
as in Cholesky, LU, or QR), or iterative methods (e.g., relaxation or conjugate gradients). Direct
methods are more common for SLAM solutions. Dellaert and Kaess (2006) considered direct fac-
torization methods (LU and QR) in their Square root SAM algorithm. Kaess et al. (2008) proposed
recursively updating the QR factorization within the incremental smoothing and mapping (iISAM)
framework. Direct solution methods rely on variable elimination (equivalent to marginalization).
As such, an optimal variable ordering exists which reduces fill-in as variables are eliminated, there-
fore preserving sparsity and boosting performance. Both Square root SAM and iSAM exploit
efficient variable ordering heuristics to speed up inference.

Iterative linear solvers offer several advantages over direct methods in terms of memory man-
agement, parallelization, and distribution. However, they may require many iterations for conver-
gence. Duckett et al. (2000, 2002) proposed a Gauss-Seidel relaxation based SLAM algorithm
that was capable of producing consistent maps. Both Howard et al. (2001) and Frese et al. (2005)
considered multi-grid relaxation methods popularized in computational mechanics for the solu-
tion of large partial differential equations. Relaxation based methods unfortunately have no upper
bound on the number of iterations required to reach a desired tolerance of a fixed-point solution.
Conjugate gradients only requires a finite number of iterations to converge, but cannot guaran-
tee that intermediate steps monotonically approach the minimum. Moreover, the required number
of iterations may still be prohibitively large. Thrun and Montemerlo (2006) suggested conjugate
gradients for a batch solution, while Konolige (2004) implemented a real-time iterative method
based around conjugate gradients similar to Gutmann and Konolige (1999). Dellaert et al. (2010)
proposed a special preconditioned conjugate gradients method for large scale SLAM problems
that outperforms direct methods for dense maps. Preconditioning is extended to extremely large
structure-from-motion (SfM) problems (analogous to the batch full SLAM problem) by Agarwal
et al. (2010) and Jian et al. (2012, 2013).



1.3 A Review of Cooperative Navigation

Figure 1.3 The graphical representation of cooperative SLAM illustrates the sparse structure as well as the origin of
information, i.e., edges and factors are colored by their origin platform. ® includes poses of all platforms, while no
landmarks are present in this example—observations are only directly between platforms.
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(a) Information matrix and MRF associated with the cooperative SLAM problem.

A ®=b

(b) Measurement Jacobian and factor graph associated with the cooperative SLAM problem.

Fielding teams of robots promises to boost reliability and performance over single robot de-
ployments. Additionally, information can be shared across the team to improve navigation. Similar
to single-robot SLAM, cooperative multiple-platform SLAM is interested in answering the ques-
tion ‘where are we?’. These algorithms fuse information originating from several platforms includ-
ing relative vehicle observations in addition to odometry and landmark measurements. Cooperative
SLAM imposes a larger computational cost (as the state dimension grows linearly with the number
of platforms) and increased communication cost when compared to single robot SLAM. Addi-
tionally, cooperative SLAM algorithms may have to determine the initial correspondence between
local reference frames defined for each separate platform. For the cooperative AUV algorithms
presented in this thesis, all platforms are initialized in the same local reference frame given GPS
observations at the surface.

The multi-platform SLAM problem can be solved as a batch process within a centralized esti-



mator as suggested by Howard et al. (2002) and Dellaert et al. (2003) using an MLE framework.
A centralized system has direct access to all measurements as they become available and hence
provides the benchmark solution. This solution corresponds to (1.1) where all vehicle poses are
now included as illustrated in Fig. 1.3. Centralized solutions, however, are not generally attainable
online due to their large communication and processing requirements. Decentralized solutions are
necessary for real-time implementation within the underwater domain given the constraints of the
acoustic communication channel (Section 1.5). Below, we classify distributed systems as a su-
perset of decentralized in that distributed systems may require some centralized coordination (Mu
et al., 2011).

1.3.1 Distributed SLAM

Early work on decentralized cooperative networks by Kurazume et al. (1994) and Rekleitis et al.
(2000) assigned alternating dynamic and static roles to each robot team member. Each moving
team member performs single-robot SLAM treating the stationary robots as landmarks. Although
these methods do not recreate the centralized benchmark, they do not require any (or have little)
communication overhead and greatly reduce the rate of error accumulation. However, error growth
is still unbounded in time since the ‘landmarks’ must be re-initialized each time the role designation
switches. Moreover, this scheme slows the overall rate of team movement as several team members
are static at any given time vitiating several benefits of multiple vehicle operations.

Egocentric algorithms, e.g., Fox et al. (2000), consider the problem of strictly localizing a vehi-
cle given the estimated pose of another vehicle and a relative pose measurement. These algorithms
apply the naive Bayes assumption, i.e., that all vehicle estimates are independent, and are so-called
egocentric since they track only their own state estimate. After incorporating information from
another platform, however, the two vehicle states are dependent. At the next measurement update,
the vehicles (erroneously) assume that their estimates are independent. These methods incur very
low communication cost as only a single pose vector and covariance ever need to be transmitted.
Egocentric methods ignore dependency, and are inconsistent (overconfident) as a result, but are
trivially tolerant to communication failure. Problems associated with ‘double-counting’ informa-
tion are a hallmark of the cooperative localization literature. A consistent estimate is one that does
not produce an overconfident covariance estimate (Bar-Shalom et al., 2001), i.e., )y > >, where )y
and X are the estimated and true covariance, respectively.

Roumeliotis and Bekey (2002) first noted that ignoring dependencies that develop between
estimates can lead to gross inconsistency and overconfidence. They proposed a distributed Kalman
filter approach, which accounts for the interdependency of information at the cost of significantly

increased communication. Thrun and Liu (2003) presented the distributed version of the sparse



extended information filter (SEIF), which is similar in spirit to Roumeliotis and Bekey (2002),
although it performs a sparsification procedure to reduce complexity. These methods distribute
the full computation of the centralized filter, which is guaranteed to be consistent as it accounts
for all information, amongst the vehicle network. Nerurkar and Roumeliotis (2008) and Nerurkar
et al. (2009) developed a distributed nonlinear MAP estimator. The authors leverage a distributed
conjugate gradients algorithm (Bertsekas and Tsitsiklis, 1997) to distribute the computation of the
centralized linear subproblem.

Instead of attempting to reconstruct a centralized filter, Bahr et al. (2009b) proposed a book-
keeping strategy to prevent fusing correlated data, termed the interleaved update (IU) algorithm.
While IU avoids inconsistency, the communication cost is significantly higher than its egocentric
counterpart as it maintains and communicates a bank of filters, which grows exponentially in the
size of the vehicle network. Moreover, IU only uses a subset of relative platform information as it
periodically discards correlated information.

Decentralized data fusion (DDF) for general multiple sensor systems has recently informed
cooperative navigation research. The key philosophy of DDF is that locally obtained information
is first fused locally and then communicated where it is fused with all accumulated messages from
the network. In this way, each platform has a consistent estimate that is tolerant to communica-
tion failure using all received information. Covariance intersection (CI) presented by Julier and
Uhlmann (1997), later expanded by Mahler (2000) and generalized by Bailey et al. (2012), sug-
gests a conservative approach for combining estimates with unknown dependence. Grime et al.
(1992) reported the channel filter, which is capable of distributing the linear information filter for
known communication topologies. In the case of DDF frameworks, each locally computed esti-
mate will not exactly match the centralized solution because each platform may have only received
a subset of the information.

Graph-based cooperative localization research shares the DDF mentality by combining a local
and global fusion layer. As such, many algorithms require that each platform perform the following

three tasks:
i. Build a local graph fusing local information (as in the single robot SLAM scenario),
ii. Communicate and collect local graphs from other platforms,

1ii. Optimize the global graph that fuses the received local graphs.

The decentralized data fusion smoothing and mapping (DDF-SAM) algorithm, proposed by Cun-
ningham et al. (2010, 2012, 2013) explicitly performs exactly these tasks within the iSAM frame-
work. Each robot builds a local graph just as in single robot SLAM and communicates it across

the network. Concurrently, each robot collects local graphs from each of its teammates. The set



of received local graphs is then optimized in a single framework. These methods attempt to recon-
struct the centralized graph (Fig. 1.3). Unfortunately, the communication cost grows with the size
of each local graph.

The DDF model for distributed robot localization, such as in Cunningham et al. (2010), remains
the standard. Kim et al. (2010) report on the alignment of multiple pose-graphs using iISAM. They
employ the ‘anchor-node’ concept, equivalent to the base-nodes of Ni et al. (2007), to simultane-
ously compute the initial correspondence between robot reference frames. Howard et al. (2003)
distribute their earlier centralized MLE approach (Howard et al., 2002) using a system similar to
relaxation. The advantage to these solutions is that the estimate is guaranteed to be consistent
because the full pose history is maintained.

The above algorithms may consider a communication limit, but do not constrain it to the point
of affecting performance. Ribeiro et al. (2006) suggested a noteworthy approach to multi-sensor
data fusion, transmitting a single bit per measurement, the sign-of-innovations. Within this frame-
work, each platform attempts to approximate the centralized estimate using each quantized mea-
surement. The authors derive an algorithm that closely mirrors the standard Kalman filter by ap-
proximating the posterior probability given each quantized measurement as a Gaussian. Nerurkar
et al. (2011b) elaborated on this work by allowing local analog (not quantized) measurements in
addition to the remote quantized observations. Trawny et al. (2009) presented a MAP estima-
tor integrating sign-of-innovations quantized observations. Although there is a small bandwidth
requirement, these algorithms require a non-lossy all-to-all communication topology.

Leung et al. (2010) attempted to reduce the required bandwidth of communicated information
by leveraging the Markov structure of local graphs. This approach greatly reduces the required
bandwidth, although relies on acknowledgments to bound communication. Without acknowledg-

ment, the required communication may grow too large.

1.3.2 Submap Approaches

Submap-based SLAM, multiple session SLAM, and the multiple platform cooperative localiza-
tion problem are in many ways strongly related. Submap and multiple session approaches seek to
align several maps originating from a single robot at different times, whereas multiple platforms
may align several maps from different robots collected simultaneously. In order to efficiently cope
with large environments, many single-robot SLAM algorithms employ submap-based distribution
schemes such as ATLAS SLAM (Bosse et al., 2004; Newman et al., 2002). A submap-based ap-
proach essentially performs SLAM within small regions of the environment to remain tractable,
then performs a separate optimization step to align each of the submaps. Multiple session algo-

rithms (Ozog et al., 2015) may be employed to support long-term single-robot applications.
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Ni et al. (2007) proposed a submap-based SAM approach termed Tectonic SAM. The authors
partition the measurement Jacobian by metric submaps, and perform the optimization first over
submaps and then over the map separators. The global alignment can be performed efficiently by
adding ‘base-nodes’—variables that dictate the relative coordinate frame of each submap. Base-
nodes reduce the complexity of the measurement Jacobian. Tectonic SAM was then trivially ex-
tended to a distributed multi-robot application by Andersson and Nygards (2008) in an algorithm
dubbed collaborative smoothing and mapping (C-SAM) wherein each submap was defined as each
robot’s local map. Each robot then communicates information regarding the separator variables

across the network.

1.3.3 Network Localization

Relative robot localization shares a high dot product with network localization from the distributed
sensor network community. Researchers here often want to localize static nodes given only rela-
tive range or bearing information to a number of neighboring nodes (Hendrickson, 1995; Jacobs
and Hendrickson, 1997; Patwari et al., 2005; Aspnes et al., 2006). These algorithms are often
based on geometrical methods aiming to avoid ambiguities endemic to the partial-state informa-
tion contained in range- or bearing-only observations (Anderson et al., 2008). Another body of
work considers the optimization problem given a set of range-only measurements. In particu-
lar, Barooah et al. (2006) proposes a decentralized relaxation-based algorithm for localization and
time-synchronization. While these applications involve static nodes, a relaxation-based method is
attractive for its low-bandwidth requirement and ability to reconstruct the centralized solution after

a number of iterations.

1.3.4 Consensus

Consensus algorithms have gained popularity in multiple platform systems for their distributive
properties (Ren et al., 2005). Consensus describes methods for summarizing and sharing informa-
tion in order to reach an agreement. Other than fairly weak assumptions on network connectivity,
communication in a consensus network only depends on the estimated quantity—independent of
the number of platforms, or even the origin of each message. In the cooperative control com-
munity, agreement may refer to the relative geometry within a vehicle formation. Within sensor
networks, agreement could pertain to estimating a particular quantity, e.g., ocean temperature or
salinity (Lynch et al., 2008). Peterson and Paley (2013) proposed a consensus-information filter
for estimating flow-field parameters in mobile networks based on the distributed Kalman filter by
Olfati-Saber (2007).
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Aragues et al. (2012) proposed a multiple platform consensus-based SLAM formulation to
estimate the global landmark map. Within a cooperative localization context, instantaneous vehicle
poses involved in relative measurements could be considered landmarks. The size of the map, then,
would monotonically increase for each new relative measurement, quickly exceeding allowable
bandwidth in the underwater domain. While ill-suited to the cooperative localization problem,
consensus deserves mention for its low-bandwidth decentralized estimation capabilities and use

within cooperative control architectures.

1.4 A Review of Underwater Navigation

Figure 1.4 AUVs onboard the R/V Tioga in Buzzard’s Bay, MA. The two adjacent AUVs on deck were used for
experimental validation throughout this thesis.

Underwater vehicles (Fig. 1.4) typically integrate body-frame velocity and attitude measure-
ments to compute a dead-reckoned navigation solution. While depth and attitude are instrumented
with bounded-error, dead-reckoned XY-horizontal position errors grow unbounded in time without
absolute position measurements, (e.g., GPS). Higher quality sensors are only capable of reducing
the rate of error growth. Therefore, alternative methods for constraining navigation errors are re-
quired. A detailed survey of the state-of-the-art in underwater navigation is presented by Kinsey
et al. (2006). We review typical Doppler navigation techniques and acoustic beacon-based naviga-

tion for underwater vehicles.
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Figure 1.5 Acoustic navigation example. (a) illustrates the trilateration of a vehicle position (black triangle) given
ranges to known beacons (yellow stars). (b) shows trilateration using mobile beacons whose positions are not well
known.
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(a) Fixed-beacon LBL example (b) Mobile-beacon example

1.4.1 Doppler Navigation

The Doppler velocity log (DVL) is capable of accurately measuring seafloor referenced (bottom-
lock) or water-column referenced (water-lock) velocity (RD Instruments, 1996). DVLs observe
velocity by measuring the time-dilation (either frequency shift or phase) of a reflected acoustic
beam. Vehicles compute a dead-reckoned navigation estimate by transforming observed beam
velocities into the world frame using observed attitude and then integrating in time. Whitcomb
et al. (1999a) report that noisy heading measurements are the most significant source of error for
bottom-track DVL navigation. For vehicle altitudes in excess of the bottom-lock maximum range,
water-lock navigation is possible, although vehicles must also estimate the water currents. Without

an absolute position reference, dead-reckoned position uncertainty will grow unbounded in time.

1.4.2 Fixed-beacon Acoustic Methods

Underwater acoustic beacon navigation systems attain bounded-error navigation by measuring
their relative range to beacons with known position (Vickery, 1998). These systems include: long-
baseline (LBL), short-baseline (SBL), and ultra-short-baseline (USBL) systems.

Vehicles observe their range to a beacon by measuring the acoustic time-of-flight (TOF) and
assuming a known sound velocity profile. Two-way travel-times (TWTTs)—round-trip TOF—are
obtained when a vehicle interrogates and then receives a response from the beacon network. The
rate at which vehicles can receive range measurements decreases with the number of vehicles in the

network. In contrast, the one-way-travel-time (OWTT) is computed with knowledge of the exact

13



transmit and receive times; the OWTT is the time difference between the time-of-launch (TOL)
and the time-of-arrival (TOA). This is accomplished by synchronizing all clocks in the network.
Synchronous-clock acoustic networks can scale to arbitrarily many vehicles because all vehicles
within acoustic range of the transmitting platform passively receive a range measurement leading
to constant time update rates. The synchronous-clock hardware employed in this thesis is detailed
in Appendix C.

The LBL navigation framework, for example in Fig. 1.5a, employs a network of fixed reference
beacons to which vehicles can measure range via TWTT (Hunt et al., 1974; Milne, 1983; Whit-
comb et al., 1999b; Yoerger et al., 2007) and provides the standard in underwater acoustic position-
ing. LBL, however, limits the area of operations to the coverage footprint of the reference beacons.
LBL range and accuracy is dependent on the acoustic frequency employed since attenuation of
acoustic signals is frequency dependent. Low frequency systems (8 — 16 kHz) can achieve a max-
imum range greater than 10 km, while more accurate high frequency systems (200 — 300 kHz)
only provide coverage up to a few hundred meters.

Most LBL systems require a lengthy calibration procedure to survey the beacon network,
spending valuable ship time (Jakuba et al., 2008). Range-only landmark-based SLAM (discussed
in Section 1.2) with a priori unknown beacon positions was initially proposed for terrestrial navi-
gation with radio frequency (RF) beacons by Kantor and Singh (2002) and later expanded by Dju-
gash et al. (2006) using the traditional EKF. This concept was later adapted to underwater acoustic
networks by Newman and Leonard (2003) and Olson et al. (2006a). The important insight in these
works was to treat beacon TOL positions as landmarks in the SLAM map.

Some recent work has addressed localization given only a single static beacon with known po-
sition. The vehicle is not able to trilaterate its position given a single range observation. However,
the vehicle can estimate its position given multiple range observations to the beacon and its dead
reckoned navigation. The observability requirements of such a system have been studied by sev-
eral authors including Song (1999), Gadre and Stilwell (2005), Zhou and Roumeliotis (2008), and
Fallon et al. (2010b) using both linear (Chen, 1984) and nonlinear observability analysis (Hermann
and Krener, 1977). The literature shows that only a few trivial scenarios exist that are unobserv-
able. In general, if the relative velocity between the platforms change, their relative position is

observable. In Chapter 4, we consider the information utility of relative vehicle trajectories.

1.4.3 Mobile-beacon Acoustic Methods

The idea of single fixed beacon navigation has led to the development of algorithms considering
a single mobile beacon. Scherbatyuk (1995) proposed an early least-squares algorithm to estimate

the initial position of an AUV and water current given ranges to a single beacon with known
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location. Similar solutions using an EKF are presented by Baccou and Jouvencel (2003) and
Gadre and Stilwell (2005). Both Scherbatyuk (1995) and Baccou and Jouvencel (2003) note that
the beacon could be another mobile vehicle given that it is able transmit its own position estimate.
Likewise, Vaganay et al. (2004) also reports an EKF-based solution where a well instrumented
AUYV acts as a communication/navigation aid, providing an accurate position estimate to a ‘client’
vehicle.

Recent algorithms for mobile-beacon acoustic navigation are instances of the more general
cooperative localization algorithms reviewed in Section 1.3. The challenge for these approaches
is in performing distributed estimation over the acoustic channel; each platform must decide what
information to share with its team and how to compute a navigation solution given that information.

Eustice et al. (2011), McPhail and Pebody (2009), and Fallon et al. (2011) consider navigating
an AUV given acoustic ranges to a ‘server’ surface ship using MLE, a nonlinear least mean squares
method, and iSAM, respectively. These methods consider each range estimate originating from an
independent ship position estimate, which is, in general, only valid if the position is provided via
independent GPS observations.

Bahr et al. (2009a) provide an alternative augmented navigation framework allowing an AUV
to navigate given ranges to a cooperative navigation aid (CNA) (GPS reference source). This
algorithm tracks all potential AUV positions as the intersection of range circles propagated forward
by the AUV’s dead-reckoning. Morice and Veres (2010) suggests a similar geometric bounding
technique to solve for the initial AUV position based on set membership.

Maczka et al. (2007) present an egocentric EKF (equivalent to the egocentric approaches pre-
sented in Section 1.3) that is capable of sharing range measurements and position estimates be-
tween multiple AUVs. As noted by Roumeliotis and Bekey (2002) and demonstrated by Walls
and Eustice (2011), ignoring the correlation that builds between platform estimates given rela-
tive observations leads to inconsistency. On the other hand, this approach is trivially tolerant to
communication failure.

Diosdado and Ruiz (2007) proposed a decentralized SLAM information filter algorithm for
use with AUVs. Each vehicle transmits the information matrix and vector corresponding to its
accumulated landmark-based map. This algorithm is similar to the channel filter (Grime et al.,
1992) in that it tracks common information in the network in order to maintain consistency.

The centralized extended Kalman filter (CEKF) framework proposed by Webster et al. (2009b,
2012), similar to other centralized delayed-state cooperative navigation solutions (Section 1.3),
is particularly well-suited for synchronous-clock acoustic navigation. This post-process method
fuses all available information. This work was later decentralized by the authors (Webster et al.,
2010, 2013) by exploiting properties of the information filter, but is not feasible in practice without

modification as it requires a non-lossy communication channel. This method serves as the basis
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Table 1.1 Comparison of various underwater communication modes.

’ Mode \ Frequency \ Range \ Data Rate ‘
Long-Wave Radio | 1 — 100 kHz | 6 —20 m 1 kbps
Optical — 100 m >1 Mbps
Acoustic 8-28kHz 100m-10km | 80 bps-5 kbps (burst)

for the work described in Chapter 2.

Fallon et al. (2010a) suggested a bookkeeping method dubbed the ‘measurement distribution
framework’. Similar to some DDF approaches for terrestrial cooperative navigation, this frame-
work distributes locally obtained map representations throughout a network. Unlike its terrestrial
counterparts, only the newest information is transmitted in an effort to reduce the communication
cost. Each vehicle tracks the information it has received from other platforms in a measurement
table. All contiguous information is then processed to obtain the best available estimate over ve-
hicle TOA and TOL poses. Vehicles have the ability to request information that is known to have
been lost (deduced from the measurement table). This method does not practically scale to many
vehicles because of communication cost; every GPS and range measurement must be transmit-
ted accompanied by a delta dead-reckoning from the previous observation event, this includes all
TOLs and TOAs.

1.5 A Review of Underwater Acoustic Communication

Multiple platform underwater navigation relies on the ability of each platform to communicate with
its team. The physical characteristics of the underwater environment limit underwater communica-
tion compared to terrestrial or air (Catipovic, 1990; Preisig, 2006; Partan et al., 2007; Otnes et al.,
2012). The high rate of absorption of both long-wave radio and optical signals in water has limited
their use for communications (see Table 1.1). Acoustic communication improves upon these other
modes in terms of range and reliability but still faces several complications.

Acoustic communication suffers from large propagation delays as a result of the slow sound
speed—roughly 1500 m/s, five orders of magnitude slower than the speed of light. Bandwidth
is also extremely limited when compared to terrestrial radio-based communication networks. A
rough limit on the range-rate product for acoustic communication is 40 km - kbps, which mostly
applies to vertical channels in deep water and overestimates performance in shallow-water (Partan
et al., 2007). Further physical difficulties faced by acoustic communication include: absorption
and spreading losses, waveguide effects, multipath, surface scattering, bubbles, and ambient noise
(Partan et al., 2007). In practice, underwater vehicle networks are only able to obtain real-world
bandwidth on the order of 100 bps (Murphy, 2012).
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Most acoustic transducers cannot simultaneously transmit and receive. Therefore, standard
acoustic communication networks partition a transmission periods amongst the network, limiting
each vehicle’s opportunity to share information. Time division multiple access (TDMA) is used
predominantly although frequency-division multiple access (FDMA) and code division multiple
access (CDMA) are also used with varying degrees of success. No typical medium access control
(MAC) protocol exists, and is usually designed application-specific. The choice of MAC dictates

the ability of each vehicle to regularly transmit navigation information.

1.6 A Review of Robot Planning

Planning has generally been considered a separate problem from localization and SLAM and an-
swers the question ‘how do I get there?’. In general, deterministic start-to-goal path planning is a
well studied problem (Latombe, 1991; Choset et al., 2005; LaValle, 2006). Recently, researchers
have begun to consider planning under uncertainty such that the planned path reflects the uncer-
tainty in the map, and may even attempt to improve the map. For range-only cooperative localiza-
tion, we are interested in computing paths that provide useful localization information to another

vehicle instead of simply a collision-free path to a goal state.

1.6.1 Deterministic Robot Planning

Path planning classically considers computing a collision-free path from a start to goal state given
a known configuration space. In early planning work, the objective of planning algorithms was
completeness—the ability to find a collision-free path if one exists. These methods, however,
did not scale well to high-dimensional configuration spaces and did not explicitly optimize any
performance metric. More recent planning algorithms can generally be categorized into three
classes: grid or resolution-complete, sampling-based, or optimization motion planning. These
methods all assume that the vehicle has perfect state feedback and that all controls will be executed
deterministically. Examples of each planner are illustrated in Fig. 1.6.

Resolution-complete planners discretize the environment into grid cells and apply search tech-
niques such as Dijkstra’s (Dijkstra, 1959) or A* (Hart et al., 1968) in order to find optimal paths
within the grid environment. Dolgov et al. (2010) present an A* approach for driving in unstruc-
tured parking lots. Resolution-complete planners are generally intractable in high-dimensional
configuration spaces. Using optimal search strategies, resolution-complete planners are also reso-
lution optimal.

Sampling-based motion planning algorithms such as the probabilistic road map (PRM) (Kavraki
et al., 1996; Svestka and Overmars, 1997) and the rapidly-exploring random tree (RRT) (Lavalle,
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Figure 1.6 Illustration of planning approaches for a holonomic vehicle moving from the start (green) to goal (red).
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1998; LaValle and Kuffner, 2001) can quickly explore high-dimensional configuration spaces and
offer probabilistic guarantees on completeness (completeness with probability one in the limit of
infinite samples). Elbanhawi and Simic (2014) provide a comprehensive review of sampling-based
techniques. Rickert et al. (2014) noted that probabilistic completeness does not generally reflect
the ability of a planner to provide high quality paths. The rapidly-exploring random graph (RRG)
algorithm and its derivative RRT* (Karaman and Frazzoli, 2011) provide both probabilistic com-
pleteness and asymptotic optimality for a user defined performance metric. Essentially, their proof
relies on showing that in the limit, the RRG contains all possible paths through the environment.
Optimization motion planning and trajectory optimization have recently become popular due
to the local optimality guarantees they provide (Quinlan and Khatib, 1993; Brock and Khatib,
2002; Ratliff et al., 2009; Kalakrishnan et al., 2011; Zucker et al., 2013). Sampling-based planners
often include an optimization or ‘smoothing’ final step. Optimization motion planning can also be

performed more rapidly than sampling-based planners, although initialization may be nontrivial.

1.6.2 Robot Planning under Uncertainty

Unfortunately, both control and sensing are nondeterministic, that is, control actions cannot be
applied perfectly nor the true state known exactly. Planning under uncertainty has been addressed
by planning in the information state or belief state, herein referred to as belief space planning.
Optimal paths are constructed over beliefs (distribution over state) as opposed to the underlying
state. Belief space planners will often seek paths that gain information (reduce uncertainty) in the
state. As with deterministic planning, solutions to belief space planning problems include both
sampling-based and optimization approaches.

Sampling-based approaches to belief space planning include: a simple breadth-first-search
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graph search (Sim and Roy, 2005), roadmap algorithms (Prentice and Roy, 2009; Agha-mohammadi
et al., 2014), RRT (van den Berg et al., 2011a), and RRG methods (Bry and Roy, 2011; van den
Berg et al., 2011a). These methods do not explicitly perform an optimization step, but are able to
find near optimal paths by searching over a set of candidate solutions.

Optimal motion planning with perfect state feedback can be formalized as a Markov deci-
sion process (MDP) given a probabilistic state transition model. With imperfect state information,
the belief space planning problem can be framed as a partially observable Markov decision pro-
cess (POMDP). While POMDPs are generally intractable (Kaelbling et al., 1998), several recent
methods have assumed parametric belief states (e.g., Gaussian) and are able to compute solutions
in polynomial time (Platt et al., 2010; van den Berg et al., 2011b, 2012; Patil et al., 2014; He et al.,
2011). These methods make linear Gaussian approximations and rely on iterative linear quadratic
Gaussian (LQG) or differential dynamic programming (DDP) to solve.

Active SLAM attempts to plan a path in (partially) unknown environments that trade off be-
tween completing some objective and reducing uncertainty in its map. In general, the active SLAM
problem can be expressed as a POMDP. Recently, active SLAM has been framed within belief
space planning frameworks (Sim et al., 2004; Sim and Roy, 2005; Stachniss et al., 2005; Kollar
and Roy, 2008; Kim and Eustice, 2015; Chaves et al., 2014; Indelman et al., 2014, 2015).

1.6.3 Robot Cooperative Control

Several researchers have proposed cooperative adaptive planning strategies in order to optimize
some performance metric. For example, Hollinger et al. (2012) present a path planning algorithm
for collecting data from a sensor network over the acoustic channel, i.e., data-muling, onboard an
AUV to maximize the information collected while minimizing the travel cost. Similarly Burns
et al. (2006) and Leonard et al. (2007) propose planning and control methods to maximize com-
munication performance and survey coverage, respectively. Both Lynch et al. (2008) and Peterson
and Paley (2013) present cooperative control algorithms to estimate unknown spatial fields using

consensus-information filters.

1.6.4 Planning for Cooperative Localization

Planning for range-only cooperative localization has been previously considered by several re-
searchers. Olson et al. (2006a) proposed an algorithm for an AUV to localize a fixed LBL beacon.
Charrow et al. (2012) presented an algorithm to localize a mobile target given radio-frequency
based range-only observations. Tan et al. (2014) considered planning a path for one AUV in order
to localize another AUV along a desired path. Both Bahr et al. (2012) and Seto et al. (2011) con-

sidered a similar problem, but did not assume that the desired path was known at planning time.
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To the best of our knowledge, no previous work has considered uncertainty in the execution of a

path or in the acoustic channel.

1.7 Thesis Outline

Cooperation within multiple platform teams offers the potential to improve performance, e.g.,
area-coverage and efficiency, while simultaneously providing navigation information to each team
member. These are desirable traits for a scientific tool, especially in the underwater community
where a vast area is yet unexplored and a high demand for geo-referenced data exists. This thesis

considers two problems:

e Given a team of underwater vehicles, we explore how to localize each team member using
one-way-travel-time (OWTT)-derived range constraints. This problem addresses the infor-
mation that must be exchanged amongst the team to produce a consistent navigation estimate

(i.e., a solution that does not double-count information).

e Certain geometries of cooperative teams are better suited to localize team members given
relative range observations, suggesting that vehicle surveys can be intelligently planned to
minimize error growth. In this problem, we consider the effect of relative vehicle trajectories

on reducing error across the vehicle network.

The solution domain is extremely constrained given the low bandwidth and generally erratic
nature of the acoustic communication channel. Both the estimation and control subproblems must
be tolerant to small infrequent communication updates between team members. The proposed
problem is to exchange information between members of an underwater communication network
in order to augment their navigation with measured relative range and, given an estimation frame-
work, compute minimal navigation error trajectories. Toward this end, we have produced the

following contributions:
(1) Developed an exact one-to-many (server-to-client) cooperative localization algorithm.

(i1) Designed an approximate many-to-many (peer-to-peer) scalable localization framework, which

computes the best solution given the subset of information available at-hand to each platform.

(i11) Developed a planning strategy for producing minimal navigation error survey trajectories.

1.7.1 Document Roadmap

Each objective and contribution is detailed in the following chapters.
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Chapter 2 We show that by expanding the state representation of a vehicle to include historic
poses (i.e., using a delayed-state framework), we can explicitly track correlation that devel-
ops between platform estimates as a result of sharing relative observations. We provide an
efficient method to incrementally transmit the delayed-state pose chain, represented as an
MREF, over a faulty communication channel in order to exactly reproduce the centralized

solution to the server-to-client localization problem.

Chapter 3 We exploit the factor structure of a pose-graph in order to approximately share navi-
gation information over a faulty communication channel. This method achieves a scalable
(albeit approximate) peer-to-peer localization solution, i.e., one in which every vehicle in the

network shares its local information and uses information obtained from other vehicles.

Chapter 4 We present a framework to compute a server trajectory that optimally localizes a client
vehicle along a desired survey path. To this end, we have incorporated both uncertain sensing
and acting into the planning framework, as well as a probabilistic model of the acoustic com-
munication channel. We allow server trajectories to be computed with a receding-horizon

approach or an optimization of parameterized trajectories.
Chapter 5 We provide a summary of contributions as well as potential avenues for future work.

Appendix A We review probabilistic graphical models as they relate to efficient distributed solu-
tions to the cooperative localization problem. Specifically, we review Gaussian MRFs and

factor graph models.

Appendix B We detail the XY AUV odometry model that results from forward Euler integrating

DVL and attitude observations. We also discuss the OWTT range observation model.

Appendix C We summarize specialized hardware and equipment for synchronous-clock acoustic
navigation as employed throughout our field trials. We detail the acoustic message specifi-

cation for each reported localization algorithm.

21



Chapter 2
One-to-many Localization

This chapter considers the problem of localizing a client vehicle by measuring its relative range to a
server platform’. In general, the server-client cooperative localization problem is a distributed state
estimation problem. Information sharing and fusion is nontrivial since the server and client state
estimates become correlated after incorporating relative range information. Moreover, platforms
are restricted by severe communication constraints imposed by the underwater acoustic channel.
We leverage properties of the MRF within a ‘delayed-state’ framework in order to achieve a con-
sistent estimate that can be computed onboard the client.

Underwater vehicles typically rely on fusing DVL body-frame velocities, attitude, and pressure
depth observations to compute a dead-reckoned navigation solution. While attitude and depth
are well instrumented, there is no easy method to directly observe XY-horizontal position (GPS
does not work underwater). In this chapter, we report a novel algorithm enabling server vehicles
to cooperatively aid the navigation of subsea client vehicles, and which is tolerant to the packet
loss and low-bandwidth that is endemic in underwater acoustic communication networks. Our
algorithm is capable of bounding the position error growth of the client vehicles to that of the
server vehicles.

Typical bounded-error underwater navigation methods, such as LBL,, measure the relative range
between the vehicle and fixed reference beacons (Milne, 1983; Whitcomb et al., 1999b). The
relative range is typically measured using two-way TOF acoustic broadcasts and assuming a known
sound-speed profile. Narrowband LBL beacon networks, however, are limited in their ability to
scale to many vehicles because only one vehicle can interrogate the network at a time. Moreover,
the range of vehicle operations is limited to the acoustic footprint of the beacon network. In the
same vein, USBL systems allow a topside ship to observe the relative range and bearing of a subsea

vehicle, but are similarly limited in their ability to scale to large vehicle networks.

Portions of this work have appeared in previously published work including (Walls and Eustice, 2012, 2013,
2014a).
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Figure 2.1 Origin state method algorithm overview: the server (blue) fuses its local observations and adds delayed-
state poses at each time-of-launch (TOL) (the blue circles). The server uses our novel origin state method to incre-
mentally broadcast its pose-graph in a fault-tolerant way. At the time-of-arrival (TOA) of each received origin state
packet, the client (yellow) reconstructs the server pose-graph and updates its estimator to fuse all new information. In
this example, although the client misses the server transmission at to, the client still reconstructs the server pose-graph
after receiving the origin state packet at ¢3, which encapsulates all server information accumulated between ¢; and 3.
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The use of synchronous-clock hardware enables a team of vehicles to observe their relative
range via the OWTT of narrowband acoustic broadcasts (Eustice et al., 2011). The OWTT rela-
tive range is measured between the transmitting vehicle at the TOL and the receiving vehicle at
the TOA. Since ranging is passive—all receiving platforms observe relative range from a single
broadcast—OWTT networks scale well. The use of OWTT observations to augment vehicle navi-
gation presents several open questions regarding how to share and incorporate information across
the network in a communication tolerant.

The underwater acoustic communication channel is severely limited by the physical charac-
teristics of seawater (Partan et al., 2007). Acoustic communication is constrained by high latency
and low bandwidth with packet loss often greater than 50%. The underwater acoustic channel has
an upper-bound range rate product of 40 km - kbps. In practice, underwater vehicle networks are
only able to obtain real-world bandwidth on the order of 100 bps (Murphy, 2012), which is several
orders of magnitude less than terrestrial communication networks. An unacknowledged broadcast
protocol is also commonly employed in conjunction with TDMA scheduling, which further limits
overall bandwidth by dividing transmission time between platforms in the network. All of these
challenges amount to a communication framework that enforces small communication data packets
and infrequent updates between vehicles.

A variety of cooperative localization frameworks exist for improving position estimates across
a team of robots by sharing local navigation information. Previous methods, however, do not
address the severely limited bandwidth and fragility of the underwater acoustic communication
channel. In this chapter, we consider a solution to the navigation of a client vehicle aided by a

server platform, as depicted in Fig. 2.1. We present the following contributions:

e We present a general algorithm, called the origin state method (OSM), that allows a server

to broadcast its pose-graph via a faulty, low bandwidth communication channel that works
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in real-time for practical, underwater, acoustic networks.

e We use the OSM algorithm to compute a ‘delta information” over server TOL poses, which
serves as input to a decentralized extended information filter (DEIF) algorithm (Webster
et al., 2013) that exactly computes the result of the centralized extended information filter

(CEIF) onboard the client up to communication delay.

e We provide extensive evaluation over more than 12 h of field trials demonstrating the abil-
ity of the OSM to broadcast a server pose-graph to multiple clients using a small, fixed-
bandwidth data packet.

e We provide a novel factor-based interpretation of the ‘delta information” and discuss how it
can be used in real-time in other estimation frameworks such as the nonlinear least-squares
1ISAM framework (Kaess et al., 2008).

The remainder of this chapter proceeds as follows. Section 2.1 reviews the prior literature
within cooperative localization. Section 2.2 summarizes the proposed OSM algorithm. Section 2.3
describes the interface between the OSM and the DEIF. Section 2.4 presents the results of more
than 12 h of field trials performed with multiple AUVs. Finally, Section 2.6 concludes.

2.1 Related Work

Cooperative vehicle networks enable robots with the best navigation sensors to localize robots with
poorer position estimates. The goal is to augment each platform’s local sensing with measurement
constraints between the vehicles themselves as depicted in Fig. 2.2. Prior literature is discussed
below and summarized in Table 2.1.

Simple, real-time algorithms that require minimal bandwidth are within the egocentric class
of filters (Fox et al., 2000; Maczka et al., 2007; Vaganay et al., 2004). These algorithms scale by

treating each inter-vehicle relative observation as independent and only require the transmitter’s

Figure 2.2 Joint pose-graph (MRF) over server, x;,, and client, x.,, poses where © is a vector including server and
client poses, A is the information matrix, and 7 is the information vector. Green lines illustrate edges generated by
relative range observations between server TOL poses and client TOA poses. In order to construct the full pose-graph,
the client must have access to the server’s local information (shown in red).
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Table 2.1 Summary of prior algorithms for multiple platform navigation, specifically within the context of server-client communication topologies. No previous
method is able to reproduce the centralized solution while being tolerant to communication packet loss.

Literature Online/ Packet loss Bandwidth Reproduces | Consistent | Comments
real-time tolerant conservative ¢ centralized estimate

Howard et al. (2002) no — — yes yes Centralized MLE.
Centralized Dellaert et al. (2003) no — — yes yes Centralized MLE.

Webster et al. (2012) no — — yes yes Centralized EKF.

Fox et al. (2000) yes yes yes no no Sampling-based approach.
Egocentric Vaganay et al. (2004) yes yes yes no no Moving LBL paradigm.

Maczka et al. (2007) yes yes yes no no Egocentric KF.

Roumeliotis and Bekey (2002) yes no no yes yes Distributed EKF.

Ribeiro et al. (2006) yes no yes yes yes Quantized innovations.

Bahr et al. (2009b) yes yes yes no yes Bank of estimators.

Fallon et al. (2010a) yes yes no yes yes Requires acknowledgements.

Cunningham et al. (2010, 2012) yes yes no yes yes Transmits reduced pose-graph.
Distributed Kim et al. (2010) yes yes no yes yes Transmits entire server graph.

Leung et al. (2010) yes yes no yes yes Transmits knowledge sets.

Webster et al. (2010, 2013) yes no yes yes yes Transmits delta information.

Nerurkar et al. (2011a) yes no yes yes yes Sign-of-innovations.

Bailey et al. (2011) yes no yes yes yes Transmits delta information.

Origin State Method yes yes yes yes yes Can be used in conjunction with EIF or

(this chapter) iSAM.

“We consider an algorithm bandwidth conservative if it employs a fixed-bandwidth data packet and does not require
acknowledgement.




current position estimate. While completely resistant to communication failure, these methods do
not account for the correlation that develops through relative observations between robot estimates,
which can lead to inconsistent (i.e., overconfident) estimates (Maczka et al., 2007). The negative
consequences of ignoring correlation have been demonstrated by Roumeliotis and Bekey (2002),
Bahr et al. (2009b), and Walls and Eustice (2011).

Covariance intersection (Julier and Uhlmann, 1997) can be used to consistently fuse two es-
timates with unknown correlation. Recently, it has been applied to the cooperative localization
problem by Li and Nashashibi (2013) and Carrillo-Arce et al. (2013) to cope with inconsistency
in egocentric algorithms. However, previous work requires a full rank (i.e., range and bearing)
relative observation. Bahr et al. (2009b) previously noted the challenge of incorporating partial
relative pose information in cooperative frameworks with covariance intersection.

Bahr et al. (2009b) and Fallon et al. (2010a) proposed distributed bookkeeping strategies to
ensure that information is incorporated in a consistent manner. Each of their approaches requires
additional bandwidth or use of acknowledgments. Similarly motivated, Ribeiro et al. (2006) and
Nerurkar et al. (2011a) achieve consistency through a noteworthy approach in which they transmit
just a single bit per measurement (representing the sign-of-innovations)—yielding an algorithm
that closely mirrors the standard Kalman filter. While reducing overall bandwidth, the algorithm
requires full packet reception, which is unrealistic for faulty communication channels.

The most general cooperative localization algorithms estimate the full joint distribution over all
vehicle poses termed the pose-graph (Fig. 2.2), and can generally be realized through centralized
estimators in post-process or high-bandwidth systems in real-time (Howard et al., 2002; Dellaert
et al., 2003). Roumeliotis and Bekey (2002) developed a distributed EKF-based method, though
it requires moderately high-bandwidth, and two-way information exchange. Cunningham et al.
(2010, 2012) and Kim et al. (2010) studied the problem of nonlinear SLAM in a distributed fash-
ion using SAM where each platform (i) transmits its full local pose-graph (or a representative
subset), (ii) collects the local pose-graphs from neighboring platforms, and (iii) estimates the full
distribution by optimizing over all available graphs. The result is a consistent estimate that matches
the centralized estimator solution at the expense of high communication cost, which grows with
the size of the local graph. Leung et al. (2010) exploits the Markov property to reduce the required
information exchange within a recursive Bayesian filter.

Webster et al. (2012) presented a post-process centralized EKF for synchronous-clock acoustic
cooperative localization. They later distributed this centralized filter result exactly (Webster et al.,
2013) with the DEIF by leveraging the sparse update properties of the delayed-state information
filter. Their solution requires a strict server-client support topology, as the server transmits repre-
sentative local information (the ‘delta state’ information) to the client where the centralized filter

solution is reproduced. Bailey et al. (2011) independently developed an equivalent formulation
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for sharing locally obtained information, relying on fusion centers to perform relative robot mea-
surement updates. The fusion centers increase complexity, but allow for arbitrary communication
topologies. In practice, both of these methods are not practical in the underwater scenario because
they require a non-faulty communication channel. We previously reported (Walls and Eustice,
2012) a preliminary method toward alleviating the non-faulty communication constraint in dis-
tributing local server information, but which still relied upon a client acknowledgment scheme—
limiting scalability to multiple clients.

Several other works in acoustic cooperative underwater navigation have emerged for fusing
OWTT-based relative ranges in server-client communication topologies (Vaganay et al., 2004;
Maczka et al., 2007; McPhail and Pebody, 2009; Bahr et al., 2009a,b; Eustice et al., 2011; Fal-
lon et al., 2010b, 2011). Previously considered ‘single-beacon’ cooperative localization or the use
of CNAs are equivalent to the server-client scenario explored here. Earlier methods, however,
generally compromise between offline and consistent (by estimating the full joint distribution), or
real-time and inconsistent (by ignoring correlation between relative range observations). Note that
online methods that neglect correlation are, in fact, exact when the server positions are actually
independent. While many of these algorithms have been validated in post-process using exper-
imental data, only a few have been presented with real-time field trials including Maczka et al.
(2007), Fallon et al. (2010b), and Fallon et al. (2010a).

Our work is closest to Webster et al. (2013) and Bailey et al. (2011) in its effort to distribute
local data fusion and to leverage the sparsity of the Gaussian information form to compactly broad-
cast this information. The approach reported herein improves upon previous methods by (i) im-
proving network scalability via a generally passive origin shifting scheme that eliminates the need
for client-side acknowledgments, (ii) introducing a recovery packet mechanism that enables clients
to enter and leave the network or recover after a long period of communication dropout, and (iii)
presenting several AUV trials demonstrating our algorithm’s ability for real-time underwater nav-

igation.

2.2 Consistent Cooperative Localization

We consider one or more independent server vehicles aiding the navigation of multiple client ve-
hicles, such as is depicted in Fig. 2.3. For the sake of presentation, we refer to a single server
vehicle throughout this section, although our algorithm can support multiple (the multiple server
scenario is demonstrated in Section 2.4). The client vehicles are able to passively observe their
range to the server vehicle during periodic server broadcasts. Each client updates its pose estimate
using its local information, the range observations to the servers, and the information broadcast by

each server. A centralized estimator, for example Webster et al. (2012), which has access to the
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Figure 2.3 Supported communication topology. One or more server vehicles (left, blue) broadcast state information
to a network of client vehicles (right, yellow). The OSM algorithm allows each client to reproduce the corresponding
centralized estimate. Servers can support many clients in parallel.
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local and relative observations of all vehicles, but is realizable in post-process only, serves as the
gold-standard benchmark solution. The centralized solution includes information from all servers
and a single client vehicle, but not information from the other client vehicles. Our formulation is
able to reproduce this centralized delayed-state filter result onboard each client vehicle in real-time
for the server and individual client states.

Relative range observations occur between the server at the time-of-launch (TOL) and each
client at the time-of-arrival (TOA) by measuring the one-way-travel-time (OWTT) of an acoustic
broadcast. All vehicles synchronize their local clocks to GPS time while at the surface. Low-
drift reference clocks enable the vehicles to remain synchronized throughout operation. During
our trials we used a SeaScan Inc. temperature compensated crystal oscillator (TXCO), which
provides a stable reference pulse with approximately 1 ms drift over 14 h (Eustice et al., 2011).
Newer commercially available free-running clocks promise several orders of magnitude improved
performance, for example, Symmetricom (2013) provides a 120 mW chip scale atomic clock with
less than 1 ms drift over 5000 h (~208 days). Appendix C details the synchronous-clock and
acoustic modem hardware.

Previously reported algorithms that are able to compute a consistent estimate track the joint
distribution over both client and server poses, i.e., the joint pose-graph over the client and server
(see Fig. 2.2). Although the client may only be interested in computing its own state estimate,
tracking the server’s pose-graph allows the client to track correlation between successive relative
range observations. In general, the server must transmit its full local pose-graph to the client at the
time of each new relative measurement in order for the client to compute this full solution. Since
the size of the server pose-graph continually grows, transmitting the full server information is not
feasible in a communication constrained domain. OSM supplies a fixed-bandwidth representation
of new server poses that allows each client to asynchronously reconstruct the server pose-graph

despite high packet loss. Each server broadcast contains all new local information relative to a
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Figure 2.4 Server pose-graph example. The gray-shaded area of the information matrix illustrates that process predic-
tions and measurements occurring between the previous TOL, x,,, and the current TOL, x;,, contribute additively to
a subblock of the information matrix. The information matrix sparsity pattern corresponds to the adjacency matrix of
the MRF. The information shown here exactly corresponds to the server information in Fig. 2.2.
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server state known by the client, termed the origin state. The client then reconstructs the server
pose-graph and can compute the centralized solution. Fig. 2.1 provides a graphical overview of the
OSM algorithm.

2.2.1 Information Filter

The OSM algorithm relies upon manipulating a Gaussian distribution parameterized in the infor-
mation form to efficiently broadcast the server pose-graph, an MRF. We assume that the server
state evolves with linear Gaussian noise models. Client process and measurement models, how-
ever, can be fully nonlinear. The server MRF will therefore have a known and predictable structure
that we can leverage to broadcast it over an unreliable communication channel. Although we may
use any estimator that satisfies our assumptions, we employ a delayed-state information filter to
initially construct the server pose-graph.

The information filter tracks a Gaussian distribution over its state, «, parametrized in the in-
formation form; that is p(x) = N/ -1 (:I;; n, A), where the information vector, 17, and matrix, A, are

related to the mean and covariance by
n=Apand A =X 2.1)

where p and X are the mean vector and covariance matrix of x, respectively.
The single vehicle navigation problem is framed in terms of estimating the joint distribution
over a collection of historic poses (i.e., past vehicle states). In this case, the state vector is com-

posed of these historic poses, termed ‘delayed-states’,

corresponding to the distribution p(x), i.e., the pose-graph. The information filter state vector
grows over time by performing prediction with augmentation. As noted in Eustice et al. (2006a),

processes that evolve sequentially with the Markov property, i.e., with distributions that can be
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factored

p(@) = p(Xn|Xn-1) - - - p(Xa|x1)p(x1),

admit a sparse, block tri-diagonal information matrix. This sparsity leads to an update formulation
that only affects a small sub-block of the information matrix and vector, as depicted in Fig. 2.4.
New odometry inputs and local measurements only modify a block of the information matrix and
vector corresponding to the current robot pose and the most recent delayed-state (i.e., only the value
of the pose-graph edge between the last delayed-state and the current state is affected). Herein, we
assume that new poses are appended onto the state vector. Below we review the filter mechanics

originally presented by Eustice et al. (2006a) that lead to these sparse updates.

Process Prediction

Consider a state vector that is composed of a delayed-state and the current vehicle state, x,, =

[x),x%,]", with distribution p(,,|Z,,) parameterized by the information matrix and vector
A Naa Aapn
n =
_An,d An,n
Naq
N, = ;
7,

where Z,, represents the set of observations received up to time index n. The process prediction

computes the distribution p(x,1|Z,,) given a state transition model

Xn+1 == f(xnu un) + Wh,

where u,, represents a control input and w,, ~ N (0, Q) is an independent noise disturbance. The

information matrix and vector are propagated

AL — —Ad,d — ANy AL g Ad,nQ_lFTQ_l
T QUIFQ AL v
n o Mg — Ad,nQ_ln*
n+1 — _ _ 9
- _Q lFQ 1"7n - qj(f(l"’n? un) - Fl"’n)
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where, for notational convenience,

Q=N +F'Q'F
U= (Q+FA L F)™!
" =n, —F Q' (f(1y, un) — Faa,).
State augmentation appends the newest vehicle state to the state vector while also maintaining

the previous state as a delayed-state. In this case, prediction with augmentation simultaneously

appends the new state and predicts forward

[Aga Nagn O 0 0 0
Rwir = |Ava Apn O+ [0 FTQ'F —FTQ
0o 0 o |0 —Q'F Q!
~ )
-77d 0
Npsr = (M, | + |FTQ ' (f(1,) — Fus,,)
| 0 —Q7H (f () — Fiay)
e

We see here that the information update is sparse, as it only affects the lower block corresponding to
the previous and newest states. As mentioned earlier, the cumulative effect is that the information

admits a sparse tri-diagonal structure as more delayed-states are added.

Measurement Update

Consider the general nonlinear observation model

Zp+1 = h<Xn+l) + Vint1,

where v, 1 ~ N (O, R) is an independent noise perturbation. The observation model repre-
sents the conditional distribution p(z,1|x,+1). We can then compute the distribution over state,

p(Tni1|Zn 1), as a simple additive update

Apy1 =N + H'RT'H
MNot1 = Mpy1 + H'R Y (zn41 — h(ty, 1) +Hpt, o),

where H is the observation Jacobian and f1,, , ; is the state mean following process prediction. The

observation model generally only involves a portion of the state and, therefore, the observation
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Figure 2.5 Pose-graph over server TOL poses. The OSM algorithm allows the client to reconstruct the underlying
server pose-graph (horizontal lines) from the set of received OSPs (colored arcs). Each OSP encodes the transition
from x1, which represents the origin state.

OSP, OSP, OSP,

X1 X2 X3 X4
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Jacobian H is sparse. The information update term is defined by the outer product, H'R™'H,
which is then also sparse and only touches blocks of the information matrix corresponding to

nonzero elements of the measurement Jacobian.

2.2.2 Origin State Method

Our goal is to broadcast information that allows the client to reconstruct the server pose-graph.
However, the server does not have any knowledge of the information that the client has actually
received, because communication is broadcast and unacknowledged. The underlying assumption is
that the server pose-graph grows as a Markov chain—the standard model for a dynamical system.
The Markov chain is a special case of the more general MRF. Loop closures, popular in SLAM
literature, are not supported by this model since including them in the pose-graph breaks this chain
assumption. Each origin state broadcast, called an origin state packet (OSP), encodes a server
transition from the origin state to the current state (Fig. 2.5). The OSP represents the relationship
between the origin and current state as their joint marginal distribution, i.e., the two-node pose-
graph over the origin and current TOL states. We show here that the client can incrementally

reconstruct the server’s pose-graph from the sequence of received OSPs.

Server-side Origin State Operation

The server vehicle maintains an information filter, augmenting its state vector with a copy of each
TOL state. At the TOL, the server broadcasts an OSP containing the joint marginal informa-
tion over the current TOL state and a designated previous delayed-state, the origin, as depicted
in Fig. 2.5. The index label of the new TOL state and the origin are included in the OSP for
reconstruction by the client.

We can partition the set of intermediate server TOL states occurring between the origin state,
X,, and the nth TOL state, x,,, into the set of states received and not received by the client, ,. and
a7, respectively. The server pose-graph at the nth TOL then represents the distribution over the
state vector

-
T, = [XOT,X,TUF,XH ; (2.2)
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where the ‘s’ superscript indicates the distribution as tracked by the server. Note that the server

has no knowledge of the partition » and 7. This distribution is expressed

pS(Xo, XrUFa Xn|zn) - N_l (mfw nfu Af’b)?

Ao,o Ao,rUF 0
s _
An_ ArUF,o ATUF,TUF ArUF,n 9

0 An,rUf An,n

Mo
nn = T’TUF )
m,

(2.3)

(2.4)

where Z; is the set of all observations up to the ith time index. Note that A; is block tri-diagonal

as per the Markov chain assumption.

Under the OSM, the server computes an OSP at every TOL, which is simply the joint marginal

distribution corresponding to the state vector

:BSOSPn = |:X;)r7 X;Lr:| )
computed via the Schur complement of (2.3) and (2.4):

p%SPn (X0, Xn|Zn) :/ P* (X0, XrUr, Xn| Zy ) dXr 07

Xrur

_ -1 .
- N (w?)SPw nf)San A?)SPn)a

S S
s _ Ao,o Ao,n
OSP, = | 4 s |
_An,o An,n
S
s _ |
Nosp,, = | |-
n;,

(2.5)

(2.6)

2.7)

This formulation allows the server to remain ignorant about states the client has received, . More-

over, it allows the server to send useful information to multiple clients, where each client has a dif-

ferent set of received server TOL states. In order for the client to reconstruct the server pose-graph,

the client must already have the origin state in its representation, (i.e., the origin is a previously

received TOL state). The index label of the current TOL, n, and the origin, o, are included in the

broadcast.
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Algorithm 1 Server-side Origin State Method

Require: Ay, n, {initial server belief}
1: Ay, myp, 0 < O {backup origin state packet}
2: loop
3. if kis TOL,, then

4: NS n?, o <— originPacket(Ag, ;)

5: if 0,, # 0,,—1 then

6: {origin has been shifted, update backup packet}
7 Apy My, 00 <= NS 157515 0n—1

8: end if

9: broadcastOriginPacket (A}, 1S, on, Ap, 1M, 0p)
10: if recoveryRequired() then
11: broadcastRecovery() {Section 2.2.2}

12: end if
13: Ak, n < predictAugment(Ag, n;)

14: n<n+1
15:  else

16: Ak, my < predict(Ag, ny,)

17: endif

18:  Ag,m, < localMeasUpdate(Ay,ny, zk)
190 k<« k+1
20: end loop

Algorithm 1 summarizes the server-side operation. The server simply maintains an information
filter over its pose-graph, augmenting its state vector with each new TOL pose. At each TOL the
server computes an OSP to broadcast to the client. Origin shifting and recovery is introduced and
discussed below.

Although, in general, the size of the server pose-graph grows with the addition of each new
TOL pose, the dimension of the OSP marginal information matrix and vector is fixed. The OSP
dimension is twice the state dimension—therefore, a minimal vehicle state size is desirable to

reduce communication packet size.

Client-side Origin State Operation

The client incrementally reconstructs the server pose-graph from the sequence of successfully
received OSPs. Before the nth TOL, the client-side version of the server pose-graph reconstruction

contains the server states

34



Figure 2.6 Illustration of OSM operation. (a) represents the server’s pose-graph at the nth TOL. The server broadcasts
an OSP (b) to the client. The client has already reconstructed a portion of the server graph, (c), having missed TOL
poses, x5. The client then reconstructs the server goal information illustrated in (d) by fusion of (b) and (c¢). (a) and
(d) are equivalent with the unreceived TOL states, x marginalized out.
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(c) Client-side reconstruction through the last received OSP
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(d) Client-side goal information

where the ‘c’ superscript indicates the server distribution as tracked by the client, 7 = {r1,...,7,}
denotes the set of received server TOL indices, 7, is the latest received TOL index, and 7’ =
{ry,...,mm_1} represents other previously received server TOL indices. To simplify notation, we
let m = r,, for the remainder of the discussion. Note that the client has no representation for server
states corresponding to missed TOL poses, x5. This is equivalent to the server’s distribution at m

with states in x; marginalized out,

P (Xoy Xyt Xy | Ziy) = N7 (25,30, AS,),
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[Aoo Moy 0

A = Ao N M| (2.8)
L0 Apy A
[0,

Moy = | M0 | - (2.9)
g

After receiving the nth OSP, the client solves the following problem:
Given the information available to the client,

1. p°(Xo, X;|Zm,), the client-side server pose-graph up to the last received TOL and

2. p*(Xo, Xp|Zy,), the new OSP (computed server-side),

Construct the client goal distribution, i.e., the server pose-graph up to time n, as if unreceived

TOL states had been marginalized out,

pC(Xoa Xr, Xn|Zn) = N_l (mfw 777617 A;)7

Ao,o AO,T’ 0 0
Ar/ 0 Ar/ r’ Ar’ m 0
AC = | e B : , (2.10)
0 Am,r’ Am,m Am,n

0 0 An,m An,n

m,
ne = @2.11)
M

"

The boxed elements in (2.10) and (2.11) indicate unknown values in the desired goal recon-
struction while the remaining values are known from (2.8) and (2.9) because of the assumed
Markov structure for the server states (block tri-diagonal information matrix). In other words,
all new information since the last received OSP only affects a small portion of the information
matrix and vector. The client-side reconstruction is illustrated in Fig. 2.6.

The client-side reconstruction begins by marginalizing out x, from the (partially unknown)

goal distribution, (2.10) and (2.11), producing an expression that can be equated to the (known)
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received nth OSP, (2.6) and (2.7),

p%SPn(meann) :/ pc<X07XT7Xn‘Zn)dxr (2.12)

Xr

= Posp, (X0, Xn|Zn). (2.13)

Marginalization of the goal distribution via the Schur complement leads to a set of linear equations
in the unknowns. We proceed with a two-step marginalization procedure. First, we marginalize

out 7’ states from (2.10) and (2.11) via the Schur complement:

Now Ao O Aoo 0 0 Aoy
Amo Amm M| = | 0 A M| = [ A | Al [Avo A 0] (2.14)
0 Apm Aun] L0 A Ana 0
] [n Aoy
T | = | | = | A | Arr oty (2.15)
Ml L 0

where the tilde decoration indicates block elements that are changed from (2.10) and (2.11). This

step results in the following set of expressions,

A -1
Ao,o - Ao,o - Ao,'r’Ar/’r/Ar’,o )
A —1
Am,m - Am,m - Am,r’Ar/7r/Ar’,m )
A -1
Ao,m = _AO,T’/AT/’T/AT’/,’WL 5
AT (2.16)

m,o0 )
— -1
n, = N,— Ao,r’Ar/,r/nr’ )
_ —1
N = My — D AL M,

Second, we marginalize out state m from (2.14) and (2.15) and equate to the server-side OSP, (2.6)
and (2.7),

AS AS [\o o 0 Ao m | X A
0,0 on | _ ) o ) A;mlm |:Am Y Am n} (2 17)
Afz,o AiL,n 0 An,n An,m 7 ’ ’
S_ K ]\o m | X
o I R S (2.18)
'r];gl_ _T’n An,m

The unknown values of the goal client-side server reconstruction, boxed in (2.10) and (2.11), are
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Algorithm 2 Client-side Origin State Method

1: /\07 770 < 0
2: loop
if (AS,n5,0n, Ap,mp, 0p) < receivedPacket() then

W

4: if havePrimaryOriginIndex(o,) then

5: Ap,m,, < add0riginPacket(AS, 02, o)
6: updateDEIF(A,,n,,) {(2.21), (2.22)}

7: else if haveSecondaryOriginIndex(op) then
8: Ay—1,m,,_, < addOriginPacket(Ap, mp, 0p)
9: Ay, m,, < add0riginPacket(AS,nS, o)
10: updateDEIF(A,,n,) {(2.21), (2.22)}

11: else

12: requestRecovery()

13: end if

14:  endif

15: end loop

then computed by substituting (2.16) into the above equality

R = Ao (oo = 22,) " A

Am,m = Am,m + Am,T’A;/}r/Ar’,m ,
Am,n = —]\m,m[\;%n/\gm R
A = N2+ NN A (2.19)
If’m = _Amvm‘f\o_,?ln (f’o - "729)) )

Ny = Ii:’m + Am,r’Ar_/}rp/nr’ )
Ny = M+ AT

When only one TOL state has been received (i.e., m = 1, r = {r1}, and ' = {(}), the derivation
proceeds as above, but with only the second marginalization step.

As an implementation aside, at the TOA of the first received OSP, the client does not need
to perform any computation to reconstruct the server pose-graph. The initial OSP is simply the
two-node server pose-graph consisting of the server origin state and the current TOL state. (Note
that this allows any new clients to immediately enter and join the network, i.e., the network can

dynamically resize).

Origin Shifting

The information difference (_/N\O,o — Af,’o) in (2.19) represents the delta information known about the
origin state between the client through the last received OSP, p°(x,|x,, Z,), and the server at the

current TOL, p®(x,|x,,, Z, ). This difference approaches machine precision as the time between the
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origin and new TOL state grows (because little additional smoothing of the origin state occurs after
sufficient time). The reconstruction rules require the inversion of this decreasing term, leading to
numerical inaccuracies that can cause divergent errors in the reconstruction. A simple solution is
to ensure that the origin is periodically shifted forward.

We initially proposed an origin shifting scheme based on acknowledgments from each client
(Walls and Eustice, 2012); however, an acknowledgment based scheme does not scale well to
many clients. Moreover, numerical instability will continue to plague an acknowledgement driven
system if the server does not regularly receive acknowledgments. Instead, we propose a shifting
scheme in which the server evaluates a function based upon the numerical stability of the newest
OSP—keeping the OSP broadcast passive and not requiring any client acknowledgements, such
that the method can more easily scale to many client vehicles.

During our real-time experiments (Section 2.4), the server shifted the origin forward using a
threshold, T, on the trace of the difference term in (2.19),

trace(A,, — A3,) < T. (2.20)

The trace is only used as a measure to test the numerical stability of the OSP and is tuned to
produce an accurate reconstruction. Note that /~\O7O is the A; , element from the previous OSP, and
is therefore readily available without additional computation.

When the shifting function suggests shifting the origin, the new origin is set to the previous
TOL state. The server is now free to marginalize out TOL states preceding the new origin. To help
ensure that each client vehicle can maintain a reconstruction of the server pose-graph that contains
the origin state, in practice each server broadcast encodes at least two OSPs: the primary OSP
encoding the transition from the origin to the current TOL, and a secondary OSP encoding the
transition from the previous origin to the current origin. Depending upon the available bandwidth,
the server could extend the broadcast to include more than two OSPs to increase tolerance to
packet loss. From an implementation standpoint, the server does not need to recompute previous
OSPs, it simply stores previously broadcast messages. The server-side origin shifting step and
corresponding client behavior are outlined in Algorithm 1 and Algorithm 2, respectively.

After the server shifts the origin forward, the client-side reconstruction will contain server TOL
states preceding the new origin. The reconstruction rules (2.19) are unmodified if the client first

marginalizes out these earlier server states.

Recovery Packet

Passively shifting the origin limits the robustness of the OSM algorithm. The server can no longer

guarantee that the client has received the origin TOL state (or the previous origin state, as described
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above). If the client vehicle has not received an update in a sufficiently long period of time, it will
require a special information packet in order to recover (i.e., reconstruct the current server pose-
graph given the state it has already received). Once the client identifies that it has lagged behind, it
transmits a recovery request to the server containing the last received TOL index. After receiving
a client request, the server computes this special information as an additive ‘delta information’
(discussed in Section 2.3) from the last TOL state that the client has received up to the current
origin state. One implementation detail here is that now the server must not marginalize out the
oldest TOL states from its pose-graph in order to compute a recovery packet, unless it can guarantee
that each client has received a more recent TOL. The full client-side operation is summarized in
Algorithm 2.

Recovery requests could limit the scalability of the algorithm because each client vehicle re-
quires a slot in the TDMA schedule to transmit. In our field trials (Section 2.4), recoveries were

rarely necessary, so that only a small fraction of the TDMA was reserved.

2.3 Online Distributed Estimation

We demonstrate that the incremental reconstruction of the server pose-graph within the OSM
framework can be used onboard the client to exactly reproduce the centralized solution to the
multiple vehicle localization problem. We couple the OSM algorithm with the DEIF algorithm
update (Webster et al., 2013) to compute the client-side state estimate following OWTT range
observations. The DEIF algorithm is a method in which a client vehicle can exactly reproduce
the centralized delayed-state filter solution for server-client cooperative networks. Essentially, the
DEIF provides an efficient way to incorporate the newest server information in a delayed-state
framework. The DEIF, as originally proposed, is not real-time practical since it relies on an unre-
alistic communication assumption (perfect packet reception) to build the server information—this
is remedied by the OSM representation. The full operation of the OSM and DEIF is illustrated in
Fig. 2.1.

To review the DEIF, the server vehicle maintains an information filter to fuse its local mea-
surements, augmenting its state vector with each TOL position. As with the OSM, the server state
evolves as a Markov process. Each ‘delta information’ encompasses all the local information that

the server has gained between TOLs, computed as

ANs, = A, — A, |,
" " " 2.21)
Ansn = nsn - nsn_17

where the operation conforms for the dimensionality difference and the ‘s’ subscript indicates the
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Figure 2.7 Illustration of the DEIF update step. The client adds the server delta information to exactly reconstruct the
centralized information.

AN, = Ay, — A

(a) Server-side DEIF operation. Server information is indicated in red.

[ [

/
AC4 — AC4 _|— Aj\84
(b) Client-side DEIF operation. Local client information and range information are shown in blue and
green, respectively.

S3

server’s information. The delta information is illustrated in Fig. 2.4 and Fig. 2.7. Delta information
packets can be conceptually considered as expressing a transition on the server pose-graph from
the previous TOL state to the current TOL state. The DEIF design insightfully noted that the delta
information updates computed by the server are equivalent to the delta information updates within
the CEIF.

The client-side DEIF is driven by its local measurement updates and periodic (assumed non-
lossy) delta information packets from the server vehicle, which the fault-tolerant OSM algorithm
provides. The client-side DEIF tracks the current client state in addition to the set of server TOL
states -

x,=|x/ x! ....x/|,

Cn? 77817 % 8n

where the ‘c’ subscript indicates the client state. Upon packet reception, the client vehicle simply

adds the delta information into its information filter

A, = A, +AA,,

‘ (2.22)
Ne, = Mo, + AN,

where information includes both server TOL states and the current client state. Following the
subsequent relative range measurement update, the client-side filter matches the corresponding
centralized filter exactly up to communication delay. The delta information addition is illustrated
in Fig. 2.7. The client is not required to maintain the full set of server TOL poses in its state vector.
Full details of the algorithm as well as extensive comparitve results are provided in Webster et al.
(2013).

The DEIF requires that the client receive each delta information (2.21) broadcast by the server

in order to reconstruct the server pose-graph. We use the OSM to reconstruct the server pose-graph
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Figure 2.8 Ocean-Server, Inc. Iver2 AUVs used in the field experiments.

onboard the client. The client vehicle is then able compute the delta information to the DEIF, and

therefore locally reconstruct the CEIF.

2.4 Field Trials

Seven field trials spanning more than 12 h of operation with a single server and two client ve-
hicles were performed over August 18-20, 2013, at the University of Michigan Biological Sta-
tion (UMBS). These trials demonstrate the OSM algorithm’s ability to incrementally broadcast
and reconstruct the server pose-graph, compute the centralized solution, and fuse range-only con-
straints in a multiple vehicle framework. In addition to the single server-client topology, we provide

post-process results demonstrating a two-server support network.

2.4.1 Experimental Setup

We fielded two Ocean-Server, Inc. Iver2 AUVs, designated AUV1 and AUV2, (Fig. 2.8). Each
AUV is outfitted with an advanced dead-reckoning sensor suite outlined in Appendix C. Through-
out our experiments, AUV 1 acts as the server, aiding AUV?2, which is considered to be the client.
AUV1 is the only vehicle that observes and fuses GPS when at the surface. To demonstrate the
ability of our OSM algorithm to support multiple client vehicles, we also consider a topside support
ship (with only GPS reported velocity and heading for input) as a client vehicle. All vehicles were
outfitted with a Woods Hole Oceanographic Institution (WHOI) Micro-modem and co-processor
board capable of encoding multiple frame, higher bandwidth phase-shift keying (PSK) data packets
(Freitag et al., 2005a,b).

For baseline comparision of our OWTT navigation, we deployed a three-beacon 25 kHz LBL

network to independently measure underwater vehicle position. Fig. 2.9 depicts the LBL beacon
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Figure 2.9 Experiment B setup with three LBL beacon locations.
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locations used during our field trials, which were positioned to provide good triangulation observ-
ability over the client vehicle survey area (the beacon locations were moored and held fixed for all
experiments). Each vehicle interrogated the LBL network roughly twice per minute, resulting in
a maximum of six range constraints per minute. We recorded two-way LBL, along with GPS po-
sition fixes at the surface, for all vehicles for ground-truth comparison (none of the client vehicles

used these measurements during the real-time experiments).

2.4.2 Vehicle State Description

Since AUV attitude and depth are both instrumented with small bounded error, we focus on world-
frame XY horizontal position estimation. By broadcasting pressure depth with each acoustic
packet, OWTT 3D range measurements, zsp, can be projected into the horizontal plane, z,, ac-
cording to the method outlined in Appendix B. Moreover, we are motivated to maintain a minimal
state size because of the limited acoustic channel capacity.

The state estimator on each vehicle tracks a state vector composed of its horizontal position,

X =[x, yk]T. The state is time-propagated using an odometry-driven plant model,
X1 = Xg + Upt1,

where uy,; 1s the delta odometry measurement. The odometry input and corresponding input
covariance, (Qx,1, are obtained by Euler integrating DVL and attitude heading reference sys-
tem (AHRS) measurements and performing a first-order covariance estimate as described in Ap-
pendix B. In the case of the topside surface craft, world-frame velocity is integrated from GPS
reported speed and track direction.

For the server vehicle, GPS reported z, y observations at vehicle surfacings are treated as linear
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Figure 2.10 Acoustic message composition. Each PSK Rate 1 and Rate 2 Micro-modem message contains three 64-
byte frames. We use the first two frames to hold two origin state packets and the third frame is reserved for recovery
packets, or an additional origin state packet if no recovery has been requested.

Primary (n<oy) Secondary (0,—0j) Tertiary (0j—0;)

Origin State Packet (60B)} JOrigin State Packet (60B) OSP/Recovery (60B)
<—— 64B >|< 64B >|< 64B ————|

observations of state. OWTT measurements, z,, provide a range between the server TOL position

and the client TOA position, with nonlinear observation model:

zr:‘ + v,

XstoL — Xeron 9

where v ~ N(0, o2) represents the range measurement noise. In our experiments, we used o, =

30 cm, to account for noise in both TOF observation and depth.

2.4.3 Acoustic Communication Considerations

Each origin state packet requires 60 bytes to encode. Each double precision element of the origin
state information is rounded to a precision of 107° to reduce the packet size. Moreover, since
the information matrix is symmetric, only the upper diagonal elements are transmitted. The full
message specification is detailed in Appendix C. Both Micro-modem PSK Rate 1 and Rate 2
messages allow the user to broadcast three 64 byte frames (Fig. 2.10). We fill the first two frames
of Rate 1 and Rate 2 messages with the primary and secondary OSPs as discussed in Section 2.2.2.
If a client vehicle has requested a recovery packet, we transmit the custom recovery packet in
the remaining third frame, so that normal operation continues for vehicles that do not require
a recovery step, otherwise we broadcast a tertiary OSP. Acoustic packets were encoded using
dynamic compact control language (DCCL) (Schneider and Schmidt, 2010a) and transmitted using
the Goby-acomms library (Schneider and Schmidt, 2012).

We employed a fixed TDMA cycle, whereby all vehicles were assigned a communication time
slot. The server vehicle broadcast an OSP roughly once per minute, while the client transmitted

a single data packet over the same time window, used to monitor vehicle health state and to place

Table 2.2 Acoustic statistics across Experiments A—G
| A | B | c¢c | D |EJ|]F |G
Server:AUV1 broadcast bps 25.6 25.1 224 23.0 23.0 22.8 23.2

Client: AUV2 Reception rate | 47.9% | 43.2% | 32.9% | 32.1% | 53.0% | 34.4% | 33.7%
Client: Topside Reception rate | 46.1% | 55.9% | 62.6% | 57.1% | 60.2% | 50.4% | 39.9%
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Figure 2.11 Pose-graph reconstruction example from Experiment G. Light gray trajectory depicts the server pose-
graph over all poses, while the black pose-graph represents server TOL states. The thick red line represents the
client-side reconstructed server pose-graph (as if missed server TOL poses had been marginalized out). The two
pose-graphs are equal up to communication round-off errors.
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recovery requests when needed. As noted in Table 2.2, the average server throughput used for
navigation data was ~25 bps. The average client-side navigation packet reception rates across
experiments varied between 32% and 63%. Our origin state method allowed each client to reliably

reconstruct the server pose-graph despite the small bandwidth allotment and low reception rates.

2.4.4 Results

Fig. 2.12 summarizes the relative vehicle trajectories over the seven individual field trials. The
relative server-client geometries between AUV1 and AUV2 were purposely varied between the
different experiments while the topside surface craft had no control and drifted around the survey
site, occasionally motoring to stay within the site boundary. During Experiments A and B, the
server and client swam on orthogonal lawn-mower trajectories, Experiments C and D, the server
and client swam along the same lawn-mower trajectory with the server following at a fixed dis-
tance, Experiment E, the server encircled the client via a bounding diamond-shaped trajectory,
while during Experiments F and G, the server-client swam along the same lawn-mower trajectory,
beginning at different boundaries of the survey area. As seen in Table 2.2, the different relative
geometries and conditions led to varied communication reception performance ranging from 32—
63% throughput. During the course of our experiments, each vehicle swam at fixed depth with
AUV1 holding a depth of 8 m, AUV2 at 10 m (apart from prescribed surface intervals for GPS

ground-truth), and the topside transducer was suspended at 10 m depth.
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Figure 2.12 Summary of the seven field trials used for experimental evaluation. (a)-(g) Topdown view of the 3-node
vehicle trajectories with total trial time indicated in each subcaption. AUV?2 and Topside acted as clients while AUV 1
performed the server role. (a) AUV shifted the origin forward at an accelerated rate in order to artificially induce
recovery requests. (b) AUV1 and AUV?2 followed orthogonal lawnmower surveys. (c),(d) AUV1 followed AUV2
along the same lawnmower survey. (¢) AUV 1 maintained a diamond box path bounding AUV2’s lawnmower survey.
(),(g) AUVI and AUV?2 followed similar lawnmower surveys, beginning from opposite ends of the survey area, i.e.,
AUV 1 began on the East boundary while AUV2 began on the West boundary.

200

NG . . . 300
. 3
200 s — AUV1 ‘\QJFN Q N O -3\
—_— d 200
100 - - AUV_2 1 100 C - —2- &
7 va i —— Topside ) X ——
Y = —= 100
_ 0 1 1 _ C —4
E L = g ¢ C Y < 2
= = Z ¢ —_—
£ -100 B ] £ 0
=3 (| =) 3
z Z —100 C - Z
—200 I 0
LN H
—300} 1=
€ AUVI1 Start & AUV2 Start 200 —200
_wl| @ AUVIEmd O AUV2End 3 LILINYIL ]
72(]() 71‘0[) (‘] l("[) 2[‘)(] 3(‘]() 4(‘]() 7.“'“—35”“ —200 —100 0 100 200 300 —300 =300 =200 —100 “] 100 200 300 100
East [m] East [m] East [m]
(a) Experiment A (0.94 h) (b) Experiment B (2.02 h) (c) Experiment C (1.87 h)
300 300 200 T
-
mﬂﬂi
. /] . 9
200 200 10
100
B _ 00 / _ i
£ El £
= 0 £ 0 £
= 2 = 2
Z 2 g Z 100 Cjﬁ %
~100 —4 I un||||| ~100 <
it "””“'..ul' N\ T
H"Hlll —200 i
—200 '””“l “l —200 H
KRN A/ i
I a0 200 =0 0 100 200 800 SO0 S0 a0 <0 0 w020 a0 W 3a 20 =10 0 00 200 300
East [m] East [m] East [m]

(d) Experiment D (1.92 h) (e) Experiment E (2.01 h)

|

(f) Experiment F (1.63 h)

200

100

North [m]

—100

—200

X

11

100

=300

—300 —200 —100 0

East [m]

(g2) Experiment G (1.65 h)

200 300

Client-side Server Pose-graph Reconstruction

The client was able to accurately reconstruct the server pose-graph using the OSM framework
throughout all of our field trials. Fig. 2.11 illustrates an example ‘true’ server pose-graph with the

client-side reconstruction overlaid. Note that the client-side reconstruction does not contain all of
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Figure 2.13 Server OSP TOL indices and the corresponding index received by the client during Experiment D. The
shaded red/green/blue regions represent the OSPs broadcast by the server (color coded according to Fig. 2.10), while
the thick black line plots the client’s latest received server index. Large steps in the server indices indicate an origin
shift. (a) illustrates the real-time server origin shifting, while (b) demonstrates how the OSM algorithm adapts to
varying conditions, waiting longer before shifting the origin when GPS is cut out. Note that the real-time server
shifted the origin four times during the same region whereas the post-process origin only shifted twice (indicated by
dashed lines).
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the server TOL poses. The client’s version of the server pose-graph, however, is equivalent to the
server’s as if the TOL states corresponding to dropped messages had been marginalized out. As
shown in Fig. 2.14a, each client is able to reconstruct the server pose-graph with small error, on
average to the order of 10~° m. Moreover, this error is attributed to the communication round-off
of the OSP (using the origin-shifting scheme with full precision OSPs in post-process, both mean

and max reconstruction error is on the order of 1072 m).

Server Origin Shifting

During Experiment A, the server shifted the origin forward at an artificially increased rate (every
other TOL) in order to force a client recovery request. During this trial, AUV2 and Topside received
one and three recovery packets, respectively, after transmitting requests to the server. These packets
were successfully integrated into the server pose-graph reconstruction.

Throughout the remaining 11 h of field trials showcasing normal operation, neither client re-
quired a recovery packet. Moreover, during normal operation (Experiments B—G), both clients
used a total of 554 Frame 1 OSPs, 62 Frame 2 OSPs, and only 2 Frame 3 OSPs. The server used a
trace threshold 7' = 5- 1072,

The client will require a secondary (Frame 2) OSP at most once per server origin shift, because
the secondary packet ’catches’ the client up to the current origin. We expect the client to occasion-

ally require a secondary packet following an origin shift because of the high likelihood of missing
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any single transmission. However, the client would need to lose communication with the server
over an entire period between origin shifts in order to require the tertiary (Frame 3) OSP. In order
to require a recovery packet, communication would have to drop out over at least two origin shift
periods, depending on the number of broadcast redundant OSPs.

The rate at which the server will shift the origin (based on the trace metric in (2.20)) depends
on the server noise models and available measurements. Absolute position observations, e.g., GPS,
and noisy process models will reduce correlation between the current state and the origin state, so
that subsequent measurements will not influence the origin as much. Therefore, after receiving
absolute position observations or sufficient time given a noisy process model, the server will be
forced to shift the origin. Fig. 2.13 illustrates the server’s origin shifting during Experiment D.
The server surfaced at regular intervals, receiving several GPS observations. In post-process, we
cut out GPS measurements over a nearly 30 min window. In this case, the server shifted the origin
forward less frequently (twice as opposed to four times as seen in Fig. 2.13b). This demonstrates
the ability of the OSM algorithm to automatically adapt origin shifting to varying measurement

availability.

Client-side DEIF

Each client employed a DEIF to integrate server and client information with relative range observa-
tions. The state estimate of the post-process CEIF agrees with our real-time DEIF with differences
commensurate with those reported by Webster et al. (2013) (on the order of 10™° m) and on par
with the errors observed in the server pose-graph reconstruction (see Fig. 2.14b). The two esti-
mates are equal at the TOA of each OSP. The estimates may vary in between TOAs because the
CEIF is able to incorporate server information the instant it is received, while the DEIF must wait

to incorporate server information until the OSP is received (i.e., up to communication delay).

Multiple Server Implementation

It is a relatively simple extension to move from a single to multiple independent server implemen-
tation as is depicted in Fig. 2.3. In this case, the client vehicle reconstructs the local pose-graph
from each server and fuses relative range constraints. Range constraints are still measured by the
client to each server. The client-side DEIF reproduces the centralized filter (up to communication
delay). Communication delay will cause the linearization point used for range observations to dif-
fer between the client-based and centralized results. This is because one (or both) of the servers
will have made observations that the client has not yet received.

We tested the two server scenario in post-process using the field collected sensor data from
Experiment C. In this trial, the Topside vehicle acted as the client with AUV1 and AUV?2 acting
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Figure 2.14 Summarized reconstruction and estimation error across all seven field trials (A—G). (a) The server pose-
graph reconstruction error is computed as the norm of the difference between server TOL poses received on the client
and their actual value computed on the server. The maximum error for any single pose remains below 1 mm for all
trials, while the mean error is on the order 107> m. (b) Difference in the CEIF versus the DEIF client trajectory
estimate at the TOA. Each bar represents the mean norm difference between state estimates for each estimator. Note
that the client-side DEIF is able to reproduce the centralized CEIF estimate in real-time to high accuracy.
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as servers. The Topside-based DEIF solution differs with the corresponding CEIF on average by
4.5 cm. We can attribute this difference primarily to a difference in range observation linearization

point.

Performance Baseline

OWTT navigation allows AUVs to navigate subsea for extended periods of time with bounded
error. Bounded error navigation is usually achieved with the use of networks of stationary acous-
tic beacons, e.g., LBL or USBL. The cost of deploying, surveying, and later recovering an LBL.
system is high with respect to time, however. Here, we discuss the ability of OWTT relative rang-
ing frameworks to approach the accuracy of LBL systems without the operational and equipment
overhead. The accuracy of the post-process CEIF has previously been extensively compared to an
LBL navigation solution by Webster et al. (2012).

Fig. 2.15 compares both LBL. and OWTT based DEIF navigation solutions to a baseline tra-

jectory computed by fusing GPS and odometry measurements. Since each range observation only
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Figure 2.15 OWTT and LBL navigation comparison to a GPS baseline. OWTT compares well with LBL in (a),
while OWTT has a larger error in (b) (outlined in red in the lower right corner). The server/client relative geometries
(Fig. 2.12), however, greatly influence this result. The middle axis in each subfigure plots the z, y uncertainty estimated
by the DEIF, showing that in (b) y, East, uncertainty is not as well bounded. Finally, the lower axis shows the norm
difference between OWTT and LBL solutions.
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(a) Experiment B: good server-client geometry (b) Experiment C: poor server-client geometry

adds information in a single direction, the relative geometry between server and client is of ut-
most importance. Experiment B (Fig. 2.15a) intuitively has an informative relative geometry as
the server continually crosses over the clients path, helping to bound error in both z, y directions.
Experiment C (Fig. 2.15b), however, does not have such a useful relative geometry, as the server
largely remains behind the client along the North—South direction. Indeed, we see that the server is
able to well bound uncertainty along the East—West direction during Experiment B, but not as well
in Experiment C. Moreover, due to an informative relative server trajectory, the client DEIF closely
reproduces the full LBL solution in Experiment B. This is further evidenced by the norm differ-
ence between LBL and DEIF solutions (Fig. 2.15), which illustrates that the difference between
solutions decreases in Experiment B but increases with mission time in Experiment C.

Each client vehicle received at most one OWTT relative range constraint over each one minute

TDMA window, while potentially receiving six LBL ranges over the same period. Using OWTT
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navigation, however, we can achieve bounded error on the same order as LBL. This solution is
only e