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ABSTRACT 

 

Multivalent polymers can be used as gene delivery vectors, diagnostics, and therapeutics when 

they are conjugated with small molecules such as oligonucleotides, imaging agents, and drugs.  

The inherent random nature of attaching small molecule ligands to a polymer leads to a large 

mixture of different ratios of small molecules to polymer that can be approximated by one or more 

Poisson distributions. The variety of ligand to polymer ratios leads to a large difference in 

hydrophobic character, which can alter various biological properties. This thesis examines 

methods for isolating precise ratios of small molecules, specifically fluorophores, to a multivalent 

polymer. The hydrophobicity ratio has been known to effect the polymer’s behavior in solution 

and in cell. The exact effect of this ratio was determined using precise ratio materials isolated. The 

precise ratio of fluorophores on a polymer is specifically of interest because of the environmental 

dependence (pH, concentration, salts, etc.) on fluorophore properties. The precise ratios of a 

fluorophore on a polymer also provides a model system for understanding how changes in 

hydrophobicity alter a multivalent polymer’s biological behavior. 

Precise dye-polymer ratios of fluorescein and TAMRA were obtained on an acetylated generation 

5 poly(amidoamine) (G5 PAMAM) dendrimer by using semi-preparative reverse-phase high 

performance liquid chromatography (semi-prep rp-HPLC). The fluorescein-G5 conjugates were 

obtained by cycloaddition of an azide functionalized fluorescein molecule with a precise ratio of 

cyclooctyne ligands on a G5 PAMAM dendrimer. The TAMRA-G5 PAMAM conjugates were 

obtained by direct conjugation and isolation. Both sets of materials were fully characterized by 1H 

NMR, 19F NMR, MALDI-TOF-MS, rp-UPLC, fluorescence spectroscopy, and UV-Vis 

spectroscopy. Another polymer platform was also chosen in order to determine the polymer effects 

on the photophysical properties of the fluorophore. Amine-terminated G3 PAMAM dendrimers 

with precise ratios of TAMRA were obtained and fully characterized in order to determine the 

photophysical properties of the fluorophore in order to observe the polymer’s effects on the 

fluorophore’s properties in a controlled manner. Similar absorption and emission spectra were 

obtained compared to the neutral TAMRA-G5 materials, with increasing ratio having a decrease 

in fluorescence intensity. 
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To determine how precise ratios of fluorophores effect biological behaviors such as biodistribution 

and cell uptake, precise ratios of TAMRA on amine-terminated G5 PAMAM dendrimers were 

studied in HEK 293A cells. Dendrimers with 2-4 TAMRA were found to have greater uptake than 

dendrimers with a single TAMRA.  Fluorescence Lifetime Imaging Microscopy (FLIM) showed 

that the different ratios of TAMRA alone was sufficient to change the fluorescence lifetime of the 

material observed inside cells. In general, the effects of the ratio of TAMRA to G5 on fluorescence 

lifetime were consistent with environmentally induced lifetime shifts. 

Since a typical multivalent polymer used for biological applications has more than just a 

fluorophore conjugated to it, such as a targeting agent or drug, multiple distributions of small 

molecules to the polymer will occur. Using the amine terminated precise ratio TAMRA-G5 

material, controlling a second distribution of small molecules on a polymer was investigated. 

Having the same fluorophore ratio while increasing the ratio of the targeting agent or drug allows 

for biological studies to determine the effect of multivalency on targeting and therapeutic effects 

without fluorophore ratio convolution. Multiple strategies are discussed along with the advantages 

and disadvantages of each strategy. 
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Chapter 1.  

Introduction 

Portions adapted with permission from:  

Dr. Mallory A. van Dongen, Casey A. Dougherty, and Prof. Mark M. Banaszak Holl.  

Biomacromolecules, 15, 3215-3234 (2014). 

Copyright 2014 American Chemical Society. 

 

1.1. Multivalent Polymers for Biological Applications 

Multivalent polymers have been explored in biomedical applications to improve the water 

solubility, biodistribution, targeting ability, and toxicity of typical small molecule treatments.1,2 

Since multivalent polymers possess a high number of reactive sites, multiple copies of 

oligonucleotides, antibacterial agents, fluorophores, drugs, or targeting agents can be attached.1-5,6 

The size, structure, and surface functionality of multivalent polymers can also be tuned for a 

specific desired biological application.2 Multivalent polymers have especially become of interest 

in the development of theranostic materials.   A theranostic is a material employed that can 

diagnose and treat a disease. A multivalent polymer is an ideal candidate for theranostic materials 

since it can easily be functionalized with multiple small molecules, including a therapeutic (drug, 

oligonucleotide, or antibacterial agent) and imaging agent (fluorophore, quantum dot, fluorescent 

protein, or MRI contrast agent).7,8  

The presence of an imaging agent on the polymer to impart diagnostic capabilities is important in 

all biomedical applications, particularly in the development of theranostic materials.9-11 

Conjugating an imaging agent to the polymer for diagnostics provides the ability to noninvasively 

observe in cells and tissues where the polymer is going, how much polymer is present, and where 

the polymer is moving over a period of time.12-14  Typical imaging agents used for diagnostics 

include organic fluorophores, paramagnetic metal ions, and radiolabeled small molecules.15,16 

Small molecule imaging agents, however, can suffer from high toxicity, non-specificity, and 

modification limitations due to a lack of functional groups on a small molecule.17,18 Multivalent 

polymers can help increase the stability, biocompatibility, and sensitivity of current small molecule 
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imaging agents, which in turn can provide a better understanding of molecular pathways involved 

in diseased processes.19 

There are many synthetic obstacles to overcome before obtaining useful multivalent polymers for 

biological studies.1,20 Control over properties such as the molecular weight distribution and the 

degree of hydrophobicity is essential to predicting and reproducing a polymer’s biological 

behavior.21-24 Multivalent polymers inherently have a molecular weight distribution, and 

modification of the polymer produces a large mixture of varying ratios of small molecules to the 

polymer. A mixture of different ratios of small molecules on a polymer leads to a range of 

biological behaviors such as biodistribution and pharmacokinetics differences.25 The difference in 

biological behavior arises from the multivalent polymer being typically hydrophilic and the small 

molecules attached being hydrophobic. The combination of the two opposing properties creates a 

large difference in how hydrophobic the polymer becomes post conjugation based on the ratio of 

small molecule to polymer. 

This dissertation focuses on providing a better understanding of the hydrophobicity ratio on a 

hydrophilic multivalent polymer. A more detailed analysis of biological behavior of polymers can 

be obtained by systematically altering the fluorophore ratio on the polymer on a per particle level, 

meaning every polymer particle in a given sample has the exact same ratio. The precise ratio of a 

fluorophore on a polymer provides a model that can also be applied to the biological behavior for 

different ratios of other hydrophobic small molecules to a polymer, such as for drugs and targeting 

agents. Altering the fluorophore ratio on the polymer provides the ability to observe both the 

hydrophobicity effects on the polymer’s biological behavior and also the fluorophore’s 

photophysical properties. Complete 

characterization and application of the 

materials in solution and in cells will be 

discussed.  

1.2. The Synthetic Challenges of Using 

Multivalent Polymers 

Typical conjugations of a small molecule to a 

multivalent polymer with a large number of 

reaction sites produces an undesired 

complicated mixture of products.22,26 A low 

Figure 1.1. Example Poisson distribution of a 

ratio of 4 functional ligands conjugated to a 

polymer with 128 reaction sites. 
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average conjugation of a fluorophore, targeting agent, drug, or antibacterial agent to a multivalent 

polymer with a large number of reaction sites performed under typical reaction conditions leads to 

a mixture of ratios of small molecule to polymer. The mixture of ratios will resemble a Poisson 

distribution for the case of a low average conjugation to a multivalent polymer with many reactive 

sites. For example, when conjugating 4 functional ligands to a polymer with 128 reaction sites, 

only 20% of the sample actually contains 4 ligands per polymer particle according to a Poisson 

distribution (Figure 1.1).  

Poisson statistics describe the ligand 

distribution in polymer conjugate systems 

when the materials are synthesized under 

ideal reaction conditions, such as quick 

stirring and low concentrations. When 

ideal conditions are not met, deviations of 

the Poisson distribution will occur. For 

instance, when attempting to conjugate an 

average number of ligands to a polymer 

under ideal (stirring) and non-ideal 

(quiescent) conditions, 2 different averages 

are achieved. As shown in the example of 

conjugating 2.5 equivalents of 3-(4- (2-

azidoethoxy) phenyl) propanoic acid to a 

generation 5 poly(amidoamine) (G5 

PAMAM) dendrimer, averages of 1.9 and 

1.5 are achieved for the stirring and 

quiescent reaction conditions (Figure 1.2a). 

The distribution of ligand to dendrimer 

ratios can be resolved using reverse phase 

ultrahigh performance liquid 

chromatography (rp-UPLC), and the 

UPLC trace for each conjugation can be fitted to determine the amount of each ratio in the sample. 

When the distributions of the stirring and quiescent samples were compared to a Poisson 

Figure 1.2. The variation in ligand-polymer 

distribution as a function of ligand-polymer ratio 

and mass transport.  a) rp-UPLC traces of 2.5 

equiv/dendrimer yielding mean ligand-polymer 

ratios of 1.5 (yellow) and 1.9 (cyan). b) 

Distribution obtained from fitting rp-UPLC traces 

in panel (a) and PD based on mean ligand-polymer 

ratio. c) rp-UPLC traces of 9 equiv/dendrimer 

yielding mean ligand-polymer ratios of 6.4 (blue) 

and 9.2 (purple). d) Distribution obtained from 

fitting rp-UPLC traces in panel (c) and PD based 

on mean ligand-polymer ratio. 
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distribution of the corresponding averages, it can be seen that the quiescent material deviates from 

the Poisson distribution while the stirred material is in much better agreement with the Poisson 

distribution (Figure 1.2b). Poisson distribution deviations occur to an even larger degree when 

conjugating higher averages of ligands to dendrimer, as seen in Figures 1.2c and 1.2d. The 

effectiveness of mass transport during the reaction is a concern since it can alter, and worsen, the 

predicted distribution. As is illustrated in Figure 1.2, poor mass transport from non-ideal conditions 

results in a larger distribution of ligand to dendrimer ratios compared to the Poisson distribution, 

and the effect becomes more pronounced as the ligand to dendrimer ratio increases. 

Multivalent polymers used for a biological 

application are typically conjugated to more 

than one hydrophobic small molecule, 

leading to multiple Poisson distributions.27-

33 For example, when a polymer is reacted 

with one small molecule and then 

subsequently reacted with a second small 

molecule, such as for theranostic materials 

attaching both a dye and a drug, the 

resulting distribution is the product of each 

individual Poisson distribution (Figure 1.3). 

Figure 1.3 models an average of 4 

fluorophores and 5 drugs sequentially 

conjugated to a polymer with 128 reaction 

sites. For the ideal Poisson distribution, a 

total of 196 different species are produced from the double conjugation and only 2.8% of the 

sample possesses a mean of 4 fluorophores and 5 drugs on the polymer. If the conjugation of the 

dye and drug to the polymer were performed under non-ideal conditions, as in Figure 1.2, poor 

mass transport leads to a broader distribution and a larger number of different species.  

Having almost 200 different species with varying ratios of hydrophobicity in a polymer sample is 

a major issue in biological applications of multivalent polymers because of 1) the inability to 

reproducibly synthesize a batch of material, 2) the unknown biological behavior from each ratio, 

Figure 1.3. Example double Poisson 

distribution of a conjugation of a dye (average 

of 4) and a drug (average of 5) to a polymer with 

128 reaction sites. 
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and most notably 3) the large difference in effective concentration of each small molecule, also 

known as the degree of hydrophobicity, on the polymer.  

1.3. Hydrophobicity Ratio Effects of Fluorophores on Polymer Behavior 

The degree of hydrophobicity has been shown to effect biological observations including cell 

permeation, biodistribution, and transfection efficiency.34-37 When the ligand-polymer ratios are 

present as a mixture, it is difficult to know which ratio is responsible for each biological property 

observed. A better understanding of how a polymer’s hydrophobicity affects its biological 

behavior is needed in order to most effectively use multivalent polymers to treat and diagnose 

diseases. To understand how the hydrophobicity ratio affects a polymer’s biological behavior, 

studies have looked at the effects of the local concentration of dye on a polymer and the ratio of 

dye to polymer as one way to observe hydrophobicity effects.38-40  Dye-dye interactions have long 

been understood to impact photophysical properties,41 so looking at the local concentrations of dye 

on a polymer can provide information on how small molecules interact with each other and how 

they can change the polymer’s behavior in a cellular environment. 

Mier et al. studied the stochastic conjugation of multiple dyes to PAMAM dendrimer including 

fluorescein, rhodamine, coumarin, and dansyl.42 With the exception of dansyl, they found that 

fluorescence intensity decreased with an increasing mean number of dyes due to a combination of 

a small Stokes shift and the high effective concentration resulting from multiple dyes conjugated 

to the same polymer core.  By way of contrast, dansyl-modified PAMAM gave materials where 

fluorescence increased the dye-dendrimer ratio, presumably due to the large Stokes shift of 195 

nm.   

Schroeder et al. examined Cy3 and Cy5 dye optical properties conjugated to G5 PAMAM or G6 

PAMAM dendrimer in order to create a new set of materials for biological imaging with enhanced 

stability and increased accuracy in single molecule imaging.43 Dendrimer mixtures with an average 

of 8 Cy5 dyes gave slower photobleaching compared to free dye with a 6 to 10 fold increase in 

photobleaching lifetime value for G5 PAMAM. The dendrimers with an average of 14 Cy5 dyes 

on G6 PAMAM showed a ~17x increase in photobleaching lifetime value. Note that the average 

conjugation numbers used in this case will generate mixtures with <0.5% of the material having 

zero or one dye, thus helping to ameliorate the most dramatic difference in effective local 

concentration, and thus photophysical properties, that typically occur as a dye-polymer ratio is 

varied.   
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Juliano et al. also studied the effects of the fluorophore to polymer ratio on gene expression using 

G5 PAMAM dendrimer as the polymer and Oregon Green 488 as the fluorophore.35 Several ratios 

of Oregon Green were stochastically conjugated in order to obtain distributions of heterogeneous 

materials with overall ratios of 0.0, 0.8, 1.75, and 4.0. With an increase in Oregon Green 488 ratio 

to the dendrimer, an increase in the transfection efficiency of an oligonucleotide expressing a 

luciferase reporter gene was observed. 

Wagner et al. employed stochastically prepared G3 PAMAM dendrimer conjugated to a mean of 

1 Alexa Fluor 555 dye to quantify the rate constant of dendrimer uptake in Caplan-1 cells.44 

Following a Poisson distribution, this material should have about 37% of the dendrimer containing 

no dye, 37% containing one dye, 18% two dyes, and 6% containing three dyes. Interestingly, they 

did not resolve different species as being present in this case although rp-HPLC is able to achieve 

this for some ligands.26,45,46 In this study, both the average uptake rate for the dye conjugate 

materials and the predicted efflux rate was reported based upon measurements of the mean 

fluorescence of the mixture.  Differences in dye fluorescence as function of conjugation number 

per dendrimer particle were not addressed as part of the study.   

Many studies have been reviewed41 and shown that the hydrophobicity alters the polymer’s cell 

membrane permeability,44 transfection efficiency,35,47-51 colocalization,43,47 biodistribution,48 and 

pharmacokinetics.53,54 In all the cases discussed, the presence of broad conjugation heterogeneity 

in the stochastic mixtures of dye polymer conjugates has prevented a detailed understanding of 

what fraction, or fractions, of the conjugates are providing the observed biological activity. 

1.4. Controlling Fluorophore Ratio on Polymer: Current Methods in the Field 

 A number of synthetic strategies to overcome mixtures of ligand-polymer ratios have been 

employed in order to obtain better defined ratios of fluorophores to polymers. One strategy 

employed has been a convergent assembly of functionalized dendrons. Convergent synthesis is an 

Figure 1.4. Example of the use of convergent dendrimers to obtain precise ratios of dyes on a 

polymer. 
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interesting strategy to avoid the heterogeneity associated with conjugation to pre-formed polymers, 

such as divergent dendrimers.  An approach making use of three independent dendron units was 

published by Weck et al. in 2011 (Figure 1.4).49,50 The functionalizable polymer formed upon 

linking all three dendrons is designed to have 9 terminal amines and 9 terminal azides on a polymer 

that contains a theoretical total of 72 terminal groups. The terminal amines and azides can be used 

to conjugate on a precise ratio of dyes, drugs, or targeting agents. A Poisson distribution would 

not be observed due to the low number of reaction sites on the polymer and provide precise ratios 

of the small molecule of choice to the polymer.  The final functionalization step employed only 2 

equivalents of dye for terminal amine to drive the reaction to completion.  

Weck et al. also developed another method to construct generation 2 poly(amide) based dendrons 

and dendrimer materials using copper catalyzed and copper free click chemistry (Figure 1.5). Click 

chemistry materials provide the multi-functionality of amine, azide, and alkynes.51 Applying 

different click functionalities to dendrons has provided a large step in creating monodisperse 

dendrimers. The removal of copper from the resulting dendrimers is difficult, and the presence of 

copper decreases the material’s biocompatibility. Because of the metal contamination, cyclooctyne 

functionalities were added to the dendrons so as to make copper catalysis unnecessary. Dendrimers 

were formed from dendrons at 100% completion with the cycloocytne and azide functionalities. 

Completion of reaction for each generation is a major challenge in creating divergent dendrimer 

materials, including the PAMAM dendrimer commonly used in biological applications.51 The 

click-functionalized dendrons were further applied to imaging applications and conjugated with 

near infrared (IR) cyanine dyes. The fluorescent dendrons clicked together to form monodisperse 

near IR polymer imaging agents.  

Another approach in order to obtain precise ratios of dyes on a polymer is to incorporate the 

fluorophore in the core of the dendrimer during synthesis.52 For example, Yin et al. branched off 

of a fluorophore in order to obtain precisely one dye per polymer particle (Figure 1.6).53 Using 

Figure 1.5. Schematic of Weck et al. dendron made utilizing Sharpless and Bertozzi click 

chemistry. 
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perylenediimides as the fluorophore of choice and 2-methacryloyloxyethyl acrylate and cystamine 

as the branches, dendrimers of varying sizes (G1, G2, and G3) were synthesized with one dye in 

the core having either 8, 16, or 32 cationic charges. It was observed that all peaks from starting 

materials disappeared in both NMR and MALDI-TOF-MS after excess of 2-methacryloyloxyethyl 

acrylate was added to the system, indicating 100% completion of the reaction.  It was observed 

that the larger the dendron (with more positive charges), the more enhanced the fluorescence was 

in aqueous solution. It was also observed that there was higher gene transfection efficiency with 

increasing dendron generation as well. Zimmerman et al.54 and Frechet et al.55 have also looked 

into using fluorophores at the core of a dendrimer in order to obtain precise dye-polymer ratios. 

While convergent synthesis and fluorophore at the core prove to be successful at obtaining a 

specified ratio of dye per polymer, there is a limitation in choice of how many fluorophores can 

be conjugated to the polymer and there is no opportunity to produce a systematic variation in ratios 

(n = 1,2,3,…) for one polymer platform.  

 1.5. Controlling Fluorophore Ratio on Polymer: Novel Method 

In order to obtain systemically varied ratios of dye to polymer, the Banaszak Holl group has 

developed a unique method to separate out different ratios of ligands to dendrimers using semi-

prep rp-HPLC (Figure 1.7). Isolating materials with systematic variation of ratios of click ligands 

to dendrimer on a G5 PAMAM core has been reported.26,45 This system is interesting in that 

dendrimer samples containing precise ratios of ligand to polymer can be isolated even though the 

divergent G5 dendrimer platform itself retains its normal molecular weight distribution.  This 

suggested two possible paths for obtaining G5 PAMAM dendrimer materials containing precise 

ratios of dye to polymer: 1) dye conjugation to materials containing precise ratios of click ligand 

to dendrimer or 2) isolation via direct separation of a stochastic mixture of dye conjugates. 

Figure 1.6.  Synthetic scheme of fluorophore (pink star) as core of dendrimer. Each reaction to 

add branches leads to a larger generation of dendrimer. Each step has precisely one fluorophore 

per polymer. 
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1.6. Goals of Dissertation 

The overall goal of this thesis is to better understand the importance of the dye-polymer ratio in 

terms of both photophysical and biological properties.  This control of the ratio of dye to polymer 

is important for understanding the biological behavior for polymer-based imaging agents.  It also 

provides a model system for how the ratio of a hydrophobic small molecule (drug, targeting agent, 

etc.) to a polymer affects the polymer’s biological behavior for therapeutic and targeting 

applications as well. Chapter 2 focuses on the synthesis, isolation, and full characterization of two 

dye-polymer conjugate platforms using G5 PAMAM dendrimer. Chapter 3 describes the synthesis, 

isolation, and full characterization a dye-polymer conjugate platform using a G3 PAMAM 

dendrimer. Chapter 4 uses fully characterized precise ratio dye-polymer G5 PAMAM dendrimers 

in a biological system to determine how the controlled systematic change in dye ratio alters 

photophysical properties and biodistribution in cells. Lastly, Chapter 5 looks at the challenges to 

control not only the one ratio on the polymer, but a second ratio as well on the polymer for potential 

theranostic and targeted imaging applications. 
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2.1. Introduction 

Precise control of dye-polymer ratio has 

been a major challenge in nanomaterials 

chemistry.1-4 For many classes of 

nanomaterials, there are a large number of 

functional sites to which a small number 

of ligands are conjugated.  This results in 

a Poisson distribution of ligand-polymer 

ratios in the product obtained. For 

example, a generation 5 

poly(amidoamine) (G5 PAMAM) 

dendrimer with 128 surface sites will 

generate eight species ranging from 0 to 7 dyes per particle when an average of three dyes is 

conjugated to the polymer (Figure 2.1).  Although deviations from the Poisson distribution can 

arise from mass transport,5 as well as site blocking and steric effects,6 these detailed considerations 

tend to lead broader, not narrower, distributions.  The presence of these distributions complicates 

Figure 2.1. Outline of procedure for obtaining 

precise ligand-polymer ratios on a G5 PAMAM 

dendrimer. 
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understanding the behavior of these materials and limits their effectiveness for desired 

applications.  

Because nanomaterials containing a Poisson distribution of dye-polymer ratios have a range of 

photophysical and biodistribution properties, a variety of strategies have been employed to 

minimize the distribution.   A particularly interesting approach for dendrimeric polymers is 

encapsulation in the internal spaces between the branched arms.7,8   Dye encapsulation can be 

tuned depending on concentration, dye structure, and dendrimer structure including generation, 

length of alkane linker in the core, and end-capping of arms.7,9-11  Dendrimer structural 

isomerization can be used to vary the dye hosting capacity.12 Computer simulations indicate that 

the dendrimer systems are dynamic and that no static encapsulation volumes exist within the 

dendrimer arms.13  

In order to overcome the limitations of encapsulated and stochastically conjugated systems, 

convergent synthesis methods for dendritic polymers have offered a powerful solution.14-17 

However, convergent synthesis is generally limited to dye-polymer ratios that are multiples of the 

numbers of dendrimer arms.  Convergent strategies are also limited in terms of both dendrimer 

generation and molecular weight.  Alternatively, methods to give a unique conjugation site on the 

polymer, for example the terminal site of a dendron, have also been employed.18  

There is a substantial need for advanced fluorescent probes with small dimensions (<10 nm) and 

well-defined photophysical and biological properties.19  We desired to develop a general strategy 

that would allow integer variation of dye-polymer ratios on water soluble, divergent dendrimer 

platforms.  In particular, the goal was to develop materials where the dye-polymer ratio was 

identical for all particles in the sample (precisely defined), as opposed to an average dye particle 

ratio made up of a Poisson distribution of materials (stochastic average).  Dendrimers synthesized 

using divergent synthetic methods are generally more defective than convergent materials; 

however, a greater range of generations, and therefore sizes and molecular weight is available. 

Acetylated G5 PAMAM dendrimer was selected as a material target because it is large enough to 

impart aqueous stability to at least ten hydrophobic ligands while it is small enough to escape 

through vascular pores and disperse through the tissue matrix to reach cells.20  In addition, it is 

small enough to be filtered and excreted by the kidney. G5 and G6 PAMAM dendrimers with these 

properties were recently prepared using stochastic conjugations of Cy3 and Cy5 dyes.21 The 

amine-terminated G5 PAMAM dendrimer is of interest because this material, which becomes 

file:///C:/Users/Casey/Desktop/Dissertation/CHAPTER%202-%20Isolation%20and%20Characterization%20of%20Precise%20Dye-Dendrimer%20Ratios.docx%23_ENREF_7
file:///C:/Users/Casey/Desktop/Dissertation/CHAPTER%202-%20Isolation%20and%20Characterization%20of%20Precise%20Dye-Dendrimer%20Ratios.docx%23_ENREF_8
file:///C:/Users/Casey/Desktop/Dissertation/CHAPTER%202-%20Isolation%20and%20Characterization%20of%20Precise%20Dye-Dendrimer%20Ratios.docx%23_ENREF_7
file:///C:/Users/Casey/Desktop/Dissertation/CHAPTER%202-%20Isolation%20and%20Characterization%20of%20Precise%20Dye-Dendrimer%20Ratios.docx%23_ENREF_9
file:///C:/Users/Casey/Desktop/Dissertation/CHAPTER%202-%20Isolation%20and%20Characterization%20of%20Precise%20Dye-Dendrimer%20Ratios.docx%23_ENREF_12
file:///C:/Users/Casey/Desktop/Dissertation/CHAPTER%202-%20Isolation%20and%20Characterization%20of%20Precise%20Dye-Dendrimer%20Ratios.docx%23_ENREF_13
file:///C:/Users/Casey/Desktop/Dissertation/CHAPTER%202-%20Isolation%20and%20Characterization%20of%20Precise%20Dye-Dendrimer%20Ratios.docx%23_ENREF_14
file:///C:/Users/Casey/Desktop/Dissertation/CHAPTER%202-%20Isolation%20and%20Characterization%20of%20Precise%20Dye-Dendrimer%20Ratios.docx%23_ENREF_18
file:///C:/Users/Casey/Desktop/Dissertation/CHAPTER%202-%20Isolation%20and%20Characterization%20of%20Precise%20Dye-Dendrimer%20Ratios.docx%23_ENREF_19
file:///C:/Users/Casey/Desktop/Dissertation/CHAPTER%202-%20Isolation%20and%20Characterization%20of%20Precise%20Dye-Dendrimer%20Ratios.docx%23_ENREF_20
file:///C:/Users/Casey/Desktop/Dissertation/CHAPTER%202-%20Isolation%20and%20Characterization%20of%20Precise%20Dye-Dendrimer%20Ratios.docx%23_ENREF_21


 

15 

 

positively charged in aqueous solution, is a useful non-viral vector for gene delivery.22-24  For all 

of these biological applications, materials with homogenous photophysical and biodistribution 

properties that also meet the biological criteria discussed above are desired.  For this combined set 

of reasons, we desired to find a solution to obtaining precise ligand-dendrimer ratio materials for 

divergent, hydrophilic dendrimers.   

Recently, we reported isolating materials with systematic variation of ‘click ligand’-dendrimer 

ratio on a G5 PAMAM core.25 This system is interesting in that dendrimer samples containing 

precise ligand-particle ratio can be isolated even though the divergent G5 dendrimer platform itself 

retains its normal molecular weight distribution.  This suggested two possible paths for obtaining 

G5 PAMAM dendrimer materials containing precise dye-particle ratios: 1) dye conjugation to 

materials containing precise click ligand-dendrimer ratios or 2) isolation via direct separation of a 

stochastic mixture of dye conjugates.  We now report the successful isolation of G5-(FC)n (n = 1-

4) using the click conjugation strategy 

and G5-TAMRAn (n = 1-3) using the 

direct separation of dye conjugates.   

2.2. Results and Discussion 

Conjugation of small numbers of 

hydrophobic ligands, including click 

linkers or dyes, to G5 PAMAM 

dendrimer generates a Poisson 

distribution of ligand-particle ratios 

(Schemes 2.1a and 2.2a).1,2  As 

highlighted in Schemes 2.1b and 2.2b, 

the amount of shift induced on a C18 

rp-HPLC column by each 

hydrophobic ligand is substantially 

greater than the peak width induced by 

the mass distribution of the dendrimer.  

The baseline separation achieved for 

the isolated fractions (Schemes 2.1c 

and 2.2c) is substantially improved 

Scheme 2.1. Isolation of dendrimer conjugates G5-Ac-

TAMRAn by semi-preparative rp-HPLC. a) Conjugation 

and full acetylation of G5-Ac-TAMRAn. b) Overlay of 

semi-preparative rp-HPLC traces for 2 individual runs.  

Fractions selected for each ligand-dendrimer component 

are highlighted. c) rp-UPLC traces for the isolated 

dendrimer conjugates (each trace is baseline corrected 

and normalized).  Both rp-HPLC and rp-UPLC traces 

detected at 210 nm. 
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over previous reports25 because a more highly purified monomer of G5 PAMAM dendrimer was 

employed from which dimer, trimer, and all trailing generations have been removed by semi-

preparative rp-HPLC.26 The tail end of the G5-Ac-TAMRA stochastic mixture (purple trace in 

Scheme 2.1c) was combined to generate a mixture of G5-TAMRA conjugates containing  3 

TAMRA dye/dendrimer particle.   

rp-UPLC indicates the successful isolation of G5-Ac-TAMRA1, G5-Ac-TAMRA2, and G5-Ac-

TAMRA3 as discrete samples 

containing precise dye-dendrimer 

ratios within the error of the method 

(Scheme 2.1c).  No shoulders are 

present on the traces, which would 

indicate a mixture of ligand-particle 

ratios, as we have both seen and 

quantitatively analyzed in previous 

studies.1 Each of these samples was 

also analyzed by 1H NMR 

spectroscopy using methods described 

previously (Table A.1).2,25 In order to 

evaluate relative integral values and 

estimate the TAMRA-dendrimer ratio, 

the acetyl methyl peak of the 

dendrimer at 1.8 ppm was set to a value 

of 279 protons based on the average 

number of 93 arms present for 

monomer-only G5 PAMAM as 

determined by gel permeation 

chromatography and titration.2,26 The 9 

aromatic TAMRA protons were used 

to determine the relative amount of 

dye.  This resulted in an NMR-based 

estimate of the TAMRA/dendrimer 

Scheme 2.2. Isolation of dendrimer conjugates G5-Ac-

MFCOn by semi-preparative rp-HPLC.  a) Conjugation 

and full acetylation of G5-Ac-MFCOn . b) Overlay of 

semi-preparative rp-HPLC traces from 4 individual 

runs.  Fractions selected for each ligand-dendrimer 

component are highlighted. c) rp-UPLC traces for the 

isolated dendrimer conjugates (each trace is baseline 

corrected and normalized). d) Synthesis of precise ratio 

dendrimer conjugates G5-Ac-Fcn by ‘click’ reactions.  

Both rp-HPLC and rp-UPLC traces detected at 210 nm. 
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ratios of 0.7, 1.6, 3.1, and 4.4 for the G5-Ac-TAMRA1, G5-

Ac-TAMRA2, G5-Ac-TAMRA3, and G5-Ac-TAMRA3+ 

samples, respectively.  Unfortunately, the NMR analysis 

suffers in accuracy from the large difference in the number 

of dendrimer vs dye protons and the need to use an average 

value for the number of acetylated protons on the dendrimer. 

2,25  In addition, the isolated precise ratio samples derive 

from only a subset of the full stochastic distribution 

generated by the synthesis (i.e. the colored bars in Schemes 

1b and 2b extend over only part of the peak-width with this 

fraction decreasing as n increases).  This is known error in 

the use of the GPC and titration data to determine number 

of dendrimer arms and thus a known error in determination 

of NMR ratios.  This NMR error is also not constant for each 

sample because the relative size of the collected fraction vs 

real rp-HPLC peak width varies.  For these reasons, we 

believe the rp-UPLC data provides a better measure of the 

TAMRA-dendrimer ratio.  The full defect structure of the 

G5 PAMAM dendrimer is subsumed in the rp-UPLC peak 

width and the peak-to-peak separation is determined by the 

number of conjugated hydrophobic ligands.  Unlike the 

NMR analysis, this effectively decouples the rp-UPLC 

assessment of ligand-polymer ratio from the base polymer defect structure.  Baseline separation of 

the click ligand/dendrimer ratios is obtained for the isolated samples (Schemes 2.1c and 2.2c, 

Figure 2.2a). 

In order to generate the G5-Ac-FCn (n = 1 - 4) samples and drive the click reaction to completion, 

each G5-Ac-MFCOn (n = 1 - 4) was allowed to react with a ten-fold excess of azido-flourescein 

(based on the number of MFCO ligands).  rp-UPLC characterization indicated the occurrence of 

successful click reaction whether the trace was  detected at 210 nm (dendrimer backbone 

absorption) or at 491 nm (FC absorption) (Figure 2.2).  For both G5-Ac-FC3 and G5-Ac-FC4 a 

small amount of n-1 product was detected.  Each dye-dendrimer ratio was characterized by 1H 

Figure 2.2. rp-UPLC traces a) 

G5-Ac-MFCOn (n = 1 – 4) at 

210 nm  b) G5-Ac-FCn (n = 1 – 

4) at 210 nm  c) G5-Ac-FCn (n 

= 1 – 4) at 491 nm. Sample n= 

1 fluorescein (red), 2 (orange), 

3 (green), and 4 (purple). 
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NMR spectroscopy (Table A.2).  The analysis was directly analogous to that described for the 

TAMRA case (with the same limitations) and resulted in FC-dendrimer ratios of 1.2, 1.8, 3.3, and 

3.0 for the G5-Ac-FC1, G5-Ac-FC2, G5-Ac-FC3, and G5-Ac-FC4 samples, respectively.  The 

MFCO ligand also provides the opportunity to analyze the materials using 19F NMR spectroscopy.  

Spectra for G5-Ac-MFCOn (n = 

1 - 4) ( = -145.1 ppm) 

exhibiting integrated ratios of 

1.2, 2.2, 3.2 and 4 are illustrated 

in Figure 2.3a.  After 

conjugation with azide-FC, the 

peaks broaden, shift to  = -

145.8 ppm, and give integrated 

ratios of 0.8, 1.6, 2.9 and 4.  Note 

that the 19F NMR analysis does 

not require the use of average 

dendrimer arm values but 

directly measures the number of 

conjugated arms per dendrimer, 

independent of structural defects 

in the polymer scaffold.  

The decrease in intensity of the 19F signal (Figure 2.3b) upon clicking the dye to the cyclooctyne 

is only observed for dendrimer conjugates.  For small molecule click reactions between the MFCO 

click ligand and fluorescein in the absence of dendrimer, the peak shifts and broadens but does not 

decrease in intensity (Figure A.1). Since the intensity decrease is unique to the dendrimer 

conjugates measured in both deuterated DMSO and water, it suggests this change arises from the 

clicked ligand being internalized into the dendrimer. Hydrophobic dyes can be hosted in the 

branches of a dendrimer,7,9,10,13 and it appears the addition of the fluorescein dye favors the 

fluorinated ligand to be internalized into the dendrimer. Disappearance of the fluorine signal of a 

small molecule upon encapsulation into a polyglycerol dendrimer has been previously reported.30 

We also observe a decrease in the fluorine signal for clicked small molecules as a stoichiometric 

amount of the G5 PAMAM dendrimer is added to the solution (Figure A.2) further supporting the 

Figure 2.3. 19F NMR of a) pre and b) post click reactions for 

G5-Ac-MFCOn and- G5-Ac-Fcn (n = 1 - 4). Sample n= 1 

fluorescein (red), 2 (orange), 3 (green), and 4 (purple). 
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encapsulation hypothesis. MALDI-TOF-MS measurements illustrate an overall increase in 

molecular weight as function ligand number n for both fluorescein and rhodamine dendrimer 

samples (Figure A.3).  The breadth of the molecular weight distribution for the G5 PAMAM 

polymer (Figure A.4)31 limits the value of this approach for accurately determining the number of 

ligands present on each polymer particle. The defect structure of G5 PAMAM dendrimer results 

in molecular weight distribution ranging from ~21,000 to 28,000 Da.  The click ligand-FC and 

TAMRA conjugates have a mass of 707 and 527, respectively.  As discussed for the NMR analysis, 

the isolated fractions do not account for the full stochastic distribution of products and will 

therefore introduce error into attempts using mass spectrometry data to assign ligand-dendrimer 

ratios.  In addition, MALDI-TOF-MS shot noise for these samples is 660 Da, which is similar to 

the ligand mass.  For these reasons, MALDI-TOF-MS is of limited use in assigning numbers of 

ligand per polymer.  MALDI-TOF-MS was of greater use in characterizing precise ratios clusters 

of G5 PAMAM dendrimers where the mass shifts were ~30,000 Da.31 The precise ratio G5(G5)n 

dendrimer clusters were generated using the same precise ratio linker samples illustrated in 

Scheme 2.2. 

Both sets of precise dye-dendrimer ratio samples, G5-Ac-FCn (n = 1 – 4) and G5-Ac-TAMRAn (n 

= 1 – 3, 3+), were characterized in terms of 

absorption and fluorescent emission. 

Absorption spectra of G5-Ac-FCn show the 

anticipated increase in intensity at 491 nm 

associated with the fluorescein dye (Figure 

2.4), although the extinction coefficient 

does not vary linearly with concentration 

(Table A.3). This non-linearity is expected 

as these samples, although dilute in terms 

of polymer concentration, hold the 

conjugated dyes in close proximity to each 

other and therefore do not meet the criteria 

for Beer’s Law in terms of local dye 

concentration.  These samples of 0.1 

mg/mL concentration of polymer 

Figure 2.4. Absorption (dotted line) and emission 

(solid line) spectra of precisely defined G5-Ac-FCn 

(n = 1 – 4) conjugates (0.1 mg/mL). Sample n= 1 

fluorescein (red), 2 (orange), 3 (green), and 4 

(purple). 
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correspond to approximately 1 x 10-6 M polymer and 

dye for G5-Ac-FCn where n = 1; however for n = 2, 

3, and 4 the local concentration of dye is roughly 9, 

13.5 and 18 M respectively.  The emission spectra, 

centered at 526 nm, deviate even more strongly from 

a linear response as a function of n.   The emission 

intensity of G5-Ac-FC3 and G5-Ac-FC2 are identical 

and the emission for G5-Ac-FC4 is less intense than 

that observed for n = 2 or 3.  These observations belie 

the general strategy that placing more dye on a 

dendrimer will result in greater emission intensity.  

Absorption spectra of the G5-Ac-TAMRAn samples 

also deviate from a linear Beer’s law response and 

exhibit a transition from monomer to dimer-like 

spectral bands that is consistent with the rhodamine 

small molecule absorption behavior reported as a 

function of concentration in solution (Figure 2.5a).32  

The spectrum for G5-Ac-TAMRA1 is identical to that 

observed for unconjugated TAMRA at a dye 

concentration of 3.0 x 10-6 M, known to give a 

monomer absorption spectra.  The spectrum for G5-

Ac-TAMRA2 exhibits the increase in intensity at 520 nm associated the formation of TAMRA 

dimers and provides additional evidence that this sample contains a precise ratio of TAMRA-

dendrimer particles as opposed to a stochastic distribution.  Note the G5-Ac-TAMRA2 sample has 

a local dye concentration of about 9 M.  This overall peak shape is also observed for G5-Ac-

TAMRA3 and the 520 nm peak supersedes the 555 nm peak in intensity for the G5-Ac-TAMRA3+ 

sample.  The fluorescence emission intensity shows an inverse relationship with the TAMRA-

dendrimer ratio (Figure 2.5b).  

 The absorption spectra of the G5-Ac-TAMRAn (n = 1 – 3, 3+) samples provide an opportunity to 

better understand the spectra obtained for fluorescent dye encapsulated in G5 dendrimer. By 

applying the absorption spectra obtained from the precisely defined samples, we can better 

Figure 2.5. a) Absorption and b) 

emission spectra of precisely defined G5-

Ac-TAMRAn (n = 1 – 3, 3+) conjugates 

(0.1 mg/mL). Samples n= 1 TAMRA 

(orange), 2 (green), 3 (blue), and 3+ 

TAMRA (purple).   
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determine how precise encapsulation of small 

molecules in dendrimers is. A series of spectra are 

presented in Figure 2.6 at a constant dye concentration 

of 3.0 x 10-6 M in water, which would normally result 

in a monomer absorption signature,32 and the impact 

of dye encapsulation into the both G5-NH2 and G5-Ac 

dendrimer is illustrated.  At a 16:1 TAMRA:G5-NH2 

ratio, the 520 nm peak is more intense than the 550 nm 

peak, consistent with the conjugate containing 3+ 

TAMRA dye per dendrimer and an effective local dye 

concentration of > 14 M.  The 8:1 and 4:1 

TAMRA:G5-NH2 ratios have absorption peak shapes 

similar to the G5-Ac-TAMRA3 conjugate.  

Interestingly, for all three ratios ranging from 16:1 to 

4:1 TAMRA:G5-NH2, the 550/520 nm peak ratio 

suggests little if any monomer TAMRA is present in 

solution.  The 550/520 nm peak ratio for both the 1:1 

and 1:2 TAMRA:G5-NH2 ratios indicate that species 

containing both 1 and 2 encapsulated dye-dendrimer 

exist in solution.  The intensity of the 550 nm peak 

definitively indicates that neither the stoichiometric 

1:1 ratio, nor even the case where there are two 

dendrimers for every dye, succeeds in generating a 

defined sample containing 1 dye encapsulated per 

dendrimer. Since the absorption behavior of the 

encapsulated one equivalent of TAMRA dye is 

different than the conjugated precisely defined 

material, this also agrees with the claim that precisely 

one dye is conjugated to the denrimer material 

previously discussed. It is not until a four-fold excess 

of dendrimer is employed that the dye absorption 

Figure 2.6. Absorption spectra of 3.0 x 10-

6 M TAMRA dye in water with varying 

amounts of G5-NH2 or G5-Ac added to 

solution. The TAMRA only absorbance is 

at a concentration where only monomer 

behavior is present. Once G5-NH2 

dendrimer is added the TAMRA becomes 

encapsulated and shows dimer absorption 

behavior. The monomer absorption 

behavior is not seen until a large excess of 

dendrimer has been added.  The addition 

of G5-Ac does not cause any change in the 

absorption over the range of 16:1 to 1:4 

dye:G5-Ac ratios.      
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spectrum is consistent with that of monomer dye.  The absorption data indicate that attempts to 

form stoichiometric TAMRA:G5-NH2 ratios using encapsulation actually results in a distribution 

of ratios, similar to conjugation of small molecules to dendrimers.  Similar aggregation phenomena 

have been reported previously for the interaction of methylene blue with generations 1.5 to 7.5  

PAMAM dendrimer terminated with 

carboxylic acid groups.11 For this case 

involving a positively charged dye and 

negatively charged dendrimer, monomer, 

dimer, and higher aggregates were 

observed.  For the interaction of neutral 

G5-Ac with TAMRA, the absorption data 

for all ratios of TAMRA:G5-Ac, 16:1 to 

1:4, only the monomer absorption was 

observed (Figure 2.6).  This suggests that 

although it is favorable for TAMRA to 

intercalate into the G5-NH2 dendrimer for 

a water solution, intercalation into the G5-Ac dendrimer does not occur or is limited to a single 

dye.  This difference is consistent with previous observations that amine-terminated PAMAM 

dendrimer in water is extended with available volume between the arms if solvent is displaced 

whereas acetylated PAMAM is a compact, condensed structure with little available volume.33   

In order to better understand the trends in the absorption and emission spectra of the fluorescein 

samples, we also carried out fluorescence lifetime as well as quantum yield measurements.  The 

fluorescence lifetime measurements were carried out with femtosecond fluorescence upconversion 

spectroscopy, which is very sensitive to small changes in the decay rates.  The lifetime data 

suggests a two component decay with an initial short relaxation time on the order of ~15 ps and a 

longer decay of approximately ~200 ps (Table 2.1).  In addition to this overall decay profile, the 

G5-Ac-FC1 and G5-Ac-FC2 samples have long decay components close to ~200 ps, while those 

for G5-Ac-FC3 and G5-Ac-FC4 appeared to have shorter decay components (~165 ps), albeit 

within the error the measurement.  This possible difference between the G5-Ac- FC1/G5-Ac-FC2 

and G5-Ac-FC3/G5-Ac-FC4 samples is also supported by a similar trend in the quantum yield. 

# Fluoresceins 

per G5 

QY 

% 

Short 

(ps) 

Long 

(ps) 
R2 

1 21±2 13±2 199±40 0.94 

2 20±1 14±1 188±19 0.98 

3 13±1 15±1 166±21 0.99 

4 14±1 11±1 155±9 0.99 

Fluorescein 79 8.5±1.3 223±36 0.93 

Table 2.1. Fluorescence lifetime kinetic data for 

G5-Ac-MFCO-FCn (n = 1 – 4) samples. Data 

obtained by Joseph C. Furgal. 
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Combining these two results suggests that the decrease in the quantum yield observed for the G5-

Ac-FC3 and G5-Ac-FC4 is related to the increased decay rate of these samples.  Physically, the 

average distance between chromophores is becoming smaller in these samples and the possibility 

of chromophore-chromophore interactions and promotion of non-radiative pathways in the system 

is increased.  This type of trend has been observed previously for chromophores stochastically 

attached to dendrimers where the increased loading of the chromophores on the surface of the 

dendrimer was not linear in terms of the quantum yield or fluorescence lifetime with number of 

chromophores.34-36 Attempts to obtain lifetime data for these TAMRA sample were unsuccessful 

due to poor overlap of the laser emission with the TAMRA absorption.   Quantum yield data 

showed the expected decrease as the number of TAMRA dyes per particle increased (Table A.4). 

2.3. Conclusions 

In summary, two approaches to the formation of G5 PAMAM samples containing precise dye-

dendrimer ratios have been presented.  The first approach, using direct separation based on dye 

hydrophobicity, generated a set of TAMRA containing dendrimer, G5-Ac-TAMRAn (n = 1 – 3, 

3+).   The second approach, using click chemistry strategy, generated a set of fluorescein 

containing dendrimer, G5-Ac-FCn (n = 1 – 4), using a method that could be readily extended to 

any azide-containing dye or other desired functional group. Both absorption and emission spectra 

show a strong dependence on the dye/dendrimer ratio.   

2.4. Experimental Methods 

Biomedical grade G5 PAMAM dendrimer was purchased from Dendritech Inc. and purified using 

rp-HPLC method to obtain G5 dendrimer without trailing generations (G1-G4), dimers, and 

trimers.26 Aminofluorescein, trifluoroacetic acid, triethylamine, and acetic anhydride were 

purchased from Sigma-Aldrich (St. Louis, MO) and used as received. HPLC grade 

water,acetonitrile,  and methanol, as well as dimethyl sulfoxide, hydrochloric acid, sodium azide, 

and sodium nitrite, were purchased from Fisher-Scientific and used as received. Click-Easy™ 

MFCO-N-hydroxysuccinimide was purchased from Berry & Associates Synthetic Medicinal 

Chemistry (Dexter, MI) and used as received. 5-carboxytetramethylrhodamine (TAMRA) 

succinimidyl ester was purchased from Life Technologies and used as received. Azido-fluorescein 

was synthesized using a literature protocol.27 A 500 MHz Varian NMR instrument was used for 

all 1H and 19F NMR measurements. 19F spectra were referenced to the 19F signal of internal 
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trichlorofluoromethane using a Ξ of 94.0940110. All MALDI-TOF-MS measurements were 

performed on a Bruker Ultraflex III. 

2.4.1. Synthesis of G5-Ac-MFCO Conjugates (stochastic average).  MFCO-N-

hydroxysuccinimide (0.0062g, 0.0240mmol, 4.4 equiv) was dissolved in dimethyl sulfoxide (1.6 

mL) and added dropwise to a solution of G5 PAMAM dendrimer (0.1554 g, 0.0055 mmol, 1.0 

equiv) in water (34.4 mL). The mixture was stirred at 21 C overnight and purified by centrifuge 

washing twice with 1X PBS and 5 times with deionized water.  Upon lyophilization a white solid 

was obtained (61% yield). The white solid (0.0936 g, 0.0033 mmol, 1.0 equiv) was dissolved in 

anhydrous methanol (17.3 mL), 0.11 mL of triethylamine was added (0.07 mol, 224 equiv) was 

added, and the mixture stirred for 15 minutes.  Acetic anhydride (0.06 mL, 0.60 mmol, 179 equiv) 

was added slowly until the solution turned clear and the mixture was stirred at room temperature 

for 4 hours. The solvent was removed, dissolved in 2.5 mL 1X PBS, and purified using centrifuge 

washing twice with 1X PBS and 5 times with deionized water. Upon lyophilization a white solid 

was obtained (73% yield).  

2.4.2. Synthesis of G5-Ac-TAMRA Conjugates (stochastic average). TAMRA succinimidyl 

ester (0.0102 g, 0.0194 mmol, 3.5 equiv) was dissolved in dimethyl sulfoxide (2.5mL), added 

dropwise to G5 PAMAM dendrimer (0.1520 g, 0.0054 mmol, 1.0 equiv) dissolved in water 

(33.7mL), and stirred at 21 C overnight. The reaction mixture was passed through a sephadex 

column (GE Healthcare protocol) to remove unreacted TAMRA and lyophilized resulting in a 

purple solid (78% yield). The purple solid (0.1178 g, 0.0042 mmol, 1.0 equiv) was dissolved in 

anhydrous methanol (22.4mL), 0.15 mL triethylamine (0.09mol, 224 equiv) was added, and the 

mixture stirred for 15 minutes. Acetic anhydride (0.08mL, 0.8mmol, 179 equiv) was added slowly 

until the solution becomes transparent. The mixture was stirred at 21 C for 4 hours and then 

solvent was removed The sample was re-dissolved in 2.5 mL 1X PBS and purified using centrifuge 

washing twice with 1X PBS and 5 times with deionized water. Upon lyophilization, a purple solid 

was obtained (72% yield).  

2.4.3. Isolation of Precise Ratio G5-Ac-MFCOn (n = 1 – 4). rp-HPLC separation was carried out 

using a Waters Delta 600 HPLC with a C18 silica-based rp-HPLC column (250 x 21.20 mm, 5 μm 

particles) connected to a C18 guard column (50 x 21.20 mm). The mobile phase consisted of a 

linear gradient beginning with 95:5 (v/v) water/acetonitrile mixture and ending with 55:45 (v/v) 

water/acetonitrile over 30 minutes at a flow rate of 16.37 mL/min.  The water/acetonitrile mixture 
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contained 0.10 wt % trifluoroacetic acid (TFA). Elution traces of the dendrimer-ligand conjugate 

were obtained at 210 nm. A concentration of 30 mg/mL per injection was used. The auto sampler 

fractions were 5 seconds long and 120 fractions were collected starting at 9 minutes and 1 second. 

The fractions were then combined to obtain each G5-Ac-MFCOn sample based upon analysis of 

the chromatogram in Origin-Pro.  

2.4.4. General procedure for copper-free click reactions. A 54 mM stock solution of azido-

fluorescein in dimethyl sulfoxide was prepared. Each G5-Ac-MFCOn was dissolved in methanol 

at a concentration of 2 mM based on MFCO. 10 equivalents of azido-fluorescein per each MFCO 

were added and the mixture stirred at 21 C for 48 hours.  Following lyophilization the solid was 

re-dissolved in 2.5 mL 10x PBS, eluted through a sephadex column (GE Healthcare protocol) to 

remove excess azido-fluorescein.  The 3.5 mL total solution was transferred to a 10,000 molecular 

cutoff dialysis bag (10 mL) and dialyzed versus 2 rounds of 1 L nanopure water. Lyophilization 

resulted in an orange solid.  

2.4.5. Isolation of Precise Ratio G5-Ac-TAMRAn (n = 1 – 3, 4+).  General rp-HPLC protocols 

and solvents were identical to those described for above.  A concentration of 25 mg/mL per 

injection was used. The auto sampler fractions were 5 seconds long and 120 fractions are collected 

starting at 10 minutes and 1 second.  The fractions were then combined to obtain each G5-Ac-

TAMRAn sample based upon analysis of the chromatogram in Origin-Pro. 

2.4.6. Analytical reverse-phase Ultra-high Performance Liquid Chromatography (rp-

UPLC).  A Water Acuity system with a C18 silica-based UPLC column (Agilent) was employed 

with a linear gradient mobile phase beginning with 95:5 (v/v) water/acetonitrile and ending with 

55:45 (v/v) water/acetonitrile over 22 minutes at a flow rate of 2.0mL/min. The water/acetonitrile 

mixture contained 0.10 wt % trifluoroacetic acid (TFA).  Elution traces were measured at 210 nm 

(dendrimer) and 491nm (dye).  The instrument was also controlled by Empower 2 software.  

2.4.7. Absorption and Emission Measurements. Fluorescence and UV-Vis measurements were 

taken at a concentration of 0.1 mg/mL using a Fluoromax-4 (slit width 2 nm) and a Shimadzu UV-

1601 UV/vis spectrometer, respectively.  For fluorescein conjugates an excitation of 491 nm and 

emission of 521 nm was employed.  For TAMRA conjugates an excitation of 560 nm and emission 

of 580 nm was employed. 

2.4.8. MALDI-TOF-MS Measurements. Three solutions were prepared: 1) 10 mg/mL dendrimer 

in water 2) 20 mg/mL sinnipinic acid in 1:1 acetonitrile: water and 3) 20 mg/mL sodium 
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trifluoroacetate in water. These were then combined in a ratio of 10:2:1 of matrix:dendrimer:salt 

solution.  The plate was spotted with 1 uL volumes of solution and allowed to dry. At least 100 

scans were averaged per measurement and a smoothing factor of 12 channels was employed. 

2.4.9. Photoluminescence quantum yields (PL)28. PL were recorded on a Fluoromax-4 (slit 

width 2.5 nm) and determined by a comparison method between a standard and sample of equal 

concentration and an excitation wavelength. Fluorescein samples were compared for PL with a 

standard solution of fluorescein in water at pH 11 (excitation 490 nm, PL = 0.70). TAMRA 

samples were compared for PL with a standard solution of Rhodamine-B in ethanol (excitation 

560 nm, PL = 0.70). The solutions were diluted to three sets of concentrations each with 

absorption ranging from 0.02-0.08, to reduce fluorimeter saturation and excimer formation. The 

total area of emission for each sample and standard was calculated by subtracting out the 

background signal and calculating the area in Origin. To obtain the best accuracy, the slope of a 

plot of emission versus absorption was determined and calculated according to equation (1); 

(1)  

where PL is the quantum yield, A is the absorption at the excitation wavelength, F is the total 

integrated emission, and n is the refractive index of the solution, which due to low concentration, 

can be approximated as the refractive index of the solvent.  Subscripts x and s refer to the sample 

and reference, respectively.  

2.4.10. Fluorescence Upconversion Kinetics.29 The sample solution was excited with frequency-

doubled light from a mode-locked Ti-sapphire laser (Tsunami, Spectra Physics). This produces 

pulses of approximately 100 fs duration at a wavelength of 400 nm. Our upconversion apparatus 

also consists of the basic unit of the FOG-100 system (CDP). The polarization of the excitation 

beam for the anisotropy measurements was controlled with a Berek compensator. The sample 

cuvette was of 1 mm thick and was held in a rotating holder to avoid possible photo-degradation 

and other accumulative effects. The horizontally polarized fluorescence emitted from the sample 

was upconverted in a nonlinear crystal of β-barium borate using a pump beam at 800 nm that was 

first passed through a variable delay line. The instrument response function (IRF) was determined 

from the Raman signal of water for 400 nm excitation. Lifetimes were obtained by convoluting 

the decay profile with the instrument response function. Spectral resolution was achieved by 

dispersing the upconverted light in a monochromator and detecting it by using a photo-multiplier 
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tube (Hamamatsu R1527P). The average excitation power was kept at a level below 3 mW to 

reduce excitation beam response. G5-MFCO-Fluorescein-NHAc and fluorescein samples were set 

to an absorption of ~0.4 at 400 nm in a 1 mm rotating sample cell. Fluorescence was collected at 

515 nm, and compared at the 10 and 250 ps time scales. The fluorescence decay curves were then 

analyzed using a bi-exponential fitting procedure in Origin 7.0 (Origin Lab). TAMRA samples 

were not analyzed by fluorescence upconversion techniques due to limitations in the excitation 

wavelength. 
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Chapter 3.  

Generation 3 PAMAM Dendrimer TAMRA Conjugates Containing Precise 

Dye-Dendrimer Ratios 

In collaboration with Prof. Stassi DiMaggio, Dr. Janet Manono, Kristen Davis, Joshua Demuth 

and Prof. Mark M. Banaszak Holl. This Chapter has been submitted to Materials Today (2015).  

 

3.1. Introduction 

Cationic dendrimers have been extensively explored both as vectors for nonviral gene delivery and 

carriers in targeted drug delivery.1-3 In order to image the location of the material in biological 

environments, a fluorescent dye is often conjugated to the dendrimer scaffold; however, the 

Poisson distribution of dye-dendrimer ratios resulting from typical stochastic synthesis 

conditions4-6 gives rise to a range of photophysical and biodistribution properties that limit 

interpretation of these experiments.7   

The experimental problems arising from the distribution of fluorophore to scaffold ratio is widely 

appreciated for polymers.   Many groups have explored strategies to improve the control over 

fluorophore-dendrimer ratios since the relatively lower polydispersity index (PDI) of dendrimers 

and/or synthetic methodologies make this class of scaffold attractive for addressing the 

challenges.7-14  Approaches include dye encapsulation,12-14 employing the core of the dendrimer as 

the dye,11 and convergent synthesis starting with the dye.8,9  All of these approaches have particular 

advantages and limitations.    

In our approach, we have stochastically dye-modified the divergently synthesized, commercially 

available, generation 3 poly(amidoamine) (G3 PAMAM) dendrimer system and employed 

reverse-phase high performance liquid chromatography (rp-HPLC) to separate the resulting 

population into the desired precise ratio dye-dendrimer fractions.4,7,15 Obtaining the precise ratio 

of dye-G3 dendrimer (i.e. 1, 2, or 3 dyes per particle) using this strategy generates all ratios present 

in the typical stochastic mixture, allowing us to get better insight into the properties and biological 

behavior of each ratio.   In a recent review article by Sokolova and Epple on synthetic pathways 

to make nanoparticles fluorescent, conjugating fluorescent dyes to polymer surfaces was touted as 
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being one of the most efficient ways to achieve fluorescence in a nanoparticle due to the ease of 

the synthetic process and high fluorescent yield.16  However, the major disadvantage was the need 

to ensure excess dye is removed as well as the formation of a polydisperse particle population. 7,16 

The desire for a divergent synthesis of a covalently attached fluorescent dye to a polymer platform 

can also be noted in the need for quality cellular delivery materials such as gene delivery agents.  

Recently it has been reported that even slight differences in nanoparticle size and surface charge 

can affect the efficiency and pathway of cellular uptake.17,18 In addition, the transfection 

efficiencies of dendrimers have been shown to correlate inversely with hydrophobicity of their 

surface groups19 while other studies have shown that the conjugation of a hydrophobic fluorophore 

to a dendrimer increased the ability to deliver oligonucleotides to the nucleus of a cell.20  The 

mechanisms for the molecular size fractionation and dye-hydrophobicity effects remain unknown, 

however the ability to further analyze the cellular uptake and biodistribution of the nanoparticle 

would benefit immensely by the introduction of better probes, specifically ones that are precisely 

controlled with respect to size, molecular weight, and numbers of fluorescent markers. 

The isolation and characterization of precise dye-dendrimer ratios (fluorescein and TAMRA) for 

G5 PAMAM dendrimer has already been reported.7  Lower generation dendrimers are also of great 

interest for biological applications because of their reduced cost and, for some applications, 

preferred size.21,22 For controlled photophysical and biodistribution properties, it is important to 

control MW as well dye-dendrimer ratio.23  Defects expected in G3 PAMAM dendrimers include 

trailing generations (G1 and G2) as well as G3-G3 dimer, which give a molecular weight range 

from ~1400 to 14000 Da for the nominally 6909 Da material.24  We now report the semi-

preparative scale purification of commercially available G3-PAMAM dendrimer.   The G3 

monomer (G3m) material was isolated and employed in the synthesis, separation, and 

characterization of G3m containing precise ratios of 5-carboxytetramethylrhodamine dye to 

dendrimer (G3-NH2-TAMRAn where n = 1, 2, 3, and 4+).  The isolated fractions were 

characterized by 1H nuclear magnetic resonance (NMR) spectroscopy, reverse-phase ultrahigh 

performance liquid chromatography (rp-UPLC), matrix-assisted laser desorption-ionization time-

of-flight mass spectrometry (MALDI-TOF-MS), and emission and absorption spectroscopy. 

3.2. Results and Discussion  
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In order to prepare materials with uniform photophysical and hydrophobicity properties, one must 

control both dye-polymer ratio and polymer MW distribution.  For the strategy using the 

divergently synthesized PAMAM polymer described here, the approach must start with 

purification and characterization of the commercial G3 PAMAM scaffold.  Semi-preparative rp-

HPLC reveals 3 major components in the as-received commercial sample: trailing generation G2 

(2 %), G3m (86 %), and G3-G3 dimer (12 %) (Scheme 3.1a).  G2 dimer is also likely present in 

small amounts and is expected to elute along with the G3m fraction (estimated to be < 0.3% of 

G3m peak based on the G3m to G3-G3 dimer ratio).  Purification via dialysis using a membrane 

with a 3,500 kDa cutoff successfully removed the lower MW trailing generations; however, similar 

to the results previously obtained for G5 

PAMAM,25 it does not change the G3m to 

G3-G3 dimer ratio.  We therefore 

employed semi-preparative rp-HPLC to 

isolate each major component.  Fractions 

indicated by the colored bars (trailing 

generation G2 (purple), G3m (red), G3-G3 

dimer (blue) were collected and analyzed 

by rp-UPLC and MALDI-TOF-MS 

(Scheme 3.1b and Figure 3.1). MALDI-

TOF-MS of the isolated fractions shows a 

change in m/z ratio with MW values of 

3550, 6850, and 13100 Da for trailing G2, 

G3m, and G3-G3 dimer, respectively 

(Table B.1).  We confirmed using MALDI-

TOF-MS that the tail on the right side (high 

MW) of the dimer peak consisted only of 

dimer and contained no detectable G3-G3-

G3 trimer.  Thus, the MW distribution is 

~3,500-13,000 for the as-received 

commercial sample.  For the materials used 

in this report, G3 PAMAM purified by 

Scheme 3.1. Isolation of as-received commercial 

G3-NH2 PAMAM dendrimer by semi-

preparative rp-HPLC. a) Semi-preparative rp-

HPLC trace with isolated fractions indicated by 

colored bars. Data obtained by Joshua Demuth. 

b) Analytical rp-UPLC traces for each isolated 

dendrimer fraction:  as-received (black), trailing 

generation G2 (purple), G3 monomer (red), and 

G3-G3 dimer (blue).  Each trace is baseline 

corrected and normalized. 
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dialysis (G3d) has a MW distribution of ~6000 to 14000 Da and the G3m material has a MW 

distribution of approximately 6,000-7,300 Da.  

 G3-NH2-TAMRAn samples were prepared using both G3d and G3m materials as the starting 

scaffold (Scheme 3.2).  In both cases, G3-NH2-TAMRAn (n = 1, 2a, 2b, 3, 4+) was prepared by 

first performing a stochastic conjugation in which the succinimidyl ester of the TAMRA was 

allowed to react with an amine group on the dendrimer surface to yield an amide bond.  The 

resulting mixtures (G3d-NH2-TAMRA2.2(avg) and G3m-NH2-TAMRA3.8(avg)) were separated using 

semi-preparative rp-HPLC to isolate fractions containing well-defined dye-dendrimer ratios.  The 

composition and purity of the isolated fractions were determined by 1H NMR spectroscopy, 

reinjection onto an analytical rp-UPLC column (Schemes 3.2c & 3.2e), and MALDI-TOF MS 

(Figures 3.2 and Figure B.1). 

Figure 3.1. A stacked plot of MALDI-TOF-MS spectra for G3 PAMAM material fractions: as-

received (black), trailing generation G2 (purple), G3m (red), and G3-G3 dimer (blue). 
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In both the semi-preparative (Schemes 3.2b & 3.2d) and analytical rp-HPLC data (Schemes 3.2c 

and 3.2e) double peaks are observed for orange/green and blue fractions assigned as G3-TAMRA2 

and G3-TAMRA3 ratios, respectively.  Interestingly, double peaks were not observed for either 

scaffold for the material assigned as G3-TAMRA1.  For the material formed using the G3d 

scaffold, we hypothesize that the multiple peaks arise from the presence of regioisomers resulting 

from TAMRA conjugation to different arms on the G3 scaffold (different elution times may occur 

for two TAMRA conjugated to the same major branch as opposed two TAMRA being conjugated 

to different branches) or from the presence of dye conjugated to both G3 monomer and G3-G3 

dimer (different elution times result from the difference in MW between the G3m and G3-G3 

dimer scaffolds).  We have not previously observed such effects when separating G5-Ac-TAMRAn 

or G5-NH2-TAMRAn;
4,7,15 however, the peak width of G3-NH2 is about 1.4 times narrower than 

G5-NH2 due to the approximately four-fold difference in MW between the generations.  The 

Scheme 3.2. Isolation of dendrimer conjugates G3-TAMRAn-NH2 (n = 1, 2a, 2b, 3, 4+) by semi-

preparative rp-HPLC. a) Stochastic conjugation to form G3-TAMRAn-NH2. b) Semi-preparative 

rp-HPLC trace for G3d-TAMRA2.2(avg) material with isolated bands identified.  c) Analytical rp-

UPLC traces for G3d isolated fractions. d) Semi-preparative rp-HPLC trace for G3m-

TAMRA3.8(avg) material with isolated bands identified. e) Analytical rp-UPLC traces for G3m 

isolated fractions.   Analytical rp-UPLC traces are baseline corrected and normalized. All rp-HPLC 

data obtained by Dr. Janet Manono and Kristen Davis.  
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observations that i) the double peaks 

were still observed for the G3m 

scaffold and ii) no peak splitting was 

observed for either scaffold for G3-

TAMRA1 supports the hypothesis 

that the peaking splitting arises from 

the presence of regioisomers.   In 

order to further test the physical 

origin of the peak splitting, we 

isolated fractions n = 2a and n = 2b 

for the G3m scaffold (Scheme 3.2d) 

and characterized them using rp-

UPLC, MALDI-TOF-MS, and 1H 

NMR, absorption, and fluorescence 

spectroscopies.  Although there was a 

difference in retention time in the 

UPLC (Scheme 3.2e), the average 

number of TAMRA as determined by 

1H NMR spectroscopy (2a = 2.0; 2b = 

2.1) and similar MW as measured by 

MALDI-TOF-MS (2a = 7620; 2b = 7650) support the assignment of both peaks as resulting from 

G3m-TAMRA2 material.  As expected for regioisomers, the emission (Figure 3.3a) and absorption 

spectra (Figure 3.3b) for 2a and 2b are somewhat different; however, they are more similar to each 

other than they are to the spectra for G3m-TAMRA1 or G3m-TAMRA3.  The ability to resolve dye 

regioisomers for G3d and G3m because of narrower scaffold MW distribution is consistent with 

ability to resolve the different TAMRA/dendrimer ratios for the G3-NH2-TAMRAn(avg) and G3-

NH2-TAMRA4+  materials by MALDI-TOF-MS (Figures 3.2 and Figure B.1).  By way of contrast, 

the different ratios of G5m-TAMRAn were not resolvable by mass spectroscopy and the 

regioisomers present were not resolved.7  The resolution of the various dye-dendrimer ratios by 

MALDI-TOF-MS provides important new proof that the isolation protocols presented here, and 

Figure 3.2. A stacked plot of MALDI-TOF-MS spectra 

for G3m-NH2-TAMRA3.8(avg) (black) and G3m-NH2-

TAMRAn (n = 1, 2a, 2b, 3, 4+) conjugates.  
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previously published,7 is successful in providing materials with a single dye-dendrimer starting 

from commercially available, divergently synthesized dendrimer material. 

1H NMR spectroscopy measures mean dye-dendrimer ratios and is routinely used to confirm 

stochastic averages for conjugation reactions4,5,7,15,26 as well as to confirm the mean number of 

ligand-dendrimer present for sample fractions isolated using rp-HPLC.4,7,15  The accuracy of this 

approach is limited by the dispersion of dendrimer MW, which generates a variation in number of 

protons present on the dendrimer scaffold.  In order to provide the NMR estimate of the number 

of TAMRA-dendrimer, the number of terminal protons had to be determined for G3d and G3m by 

titration of each scaffold. Titration indicated a mean of 30 and 25 –NH2 end groups for G3d and 

G3m, respectively out of the 32 theoretically possible for G3 PAMAM.  Using approaches 

previously developed to quantify the number of non-exchangeable internal protons present for G5 

PAMAM,5 it was determined that the G3d and G3m material contained means of 466 and 382 of 

such protons, respectively.  These values were employed to determine the mean TAMRA-G3d and 

TAMRA-G3m ratios from 1H NMR spectra. Integration of the TAMRA peaks present in the 

ppm region (9 protons) and the G3 PAMAM peaks from  ppm (466 or 

382 protons) was used to determine the mean values of G3d-TAMRA2.2(avg) and G3m-

TAMRA3.8(avg) for the as-prepared stochastic mixtures.   

Assuming the 25 –NH2 end groups for G3m arise from the presence of missing arm defects,23 and 

using the measured MW of 6850 Da for G3m from MALDI-TOF-MS and NMR integration value, 

a MW of 8423 Da is predicted for G3m-NH2-TAMRA3.8(avg).  The measured MALDI-TOF-MS 

value is 9184 Da, which is within 8% error of the calculated estimate.  A similar analysis for G3d-

NH2-TAMRA2.2(avg) gives a predicted MW of 7780 Da, which is within 9%  of the measured mass 

of 8520 Da.  Analysis of NMR integrations also provided the mean number of TAMRA for each 

isolated fraction and gave ratios of 0.8, 1.9, 2.0, 2.9, and 6.0 for G3m-NH2-TAMRAn (n = 1, 2a, 

2b, 3, and 4+), respectively. (Table B.2).  A similar analysis of the 1H NMR integrations for G3d-

NH2-TAMRAn (n = 1, 2, 3, and 4+) gave ratios of 0.8, 2.4, 3.3, 4.6, respectively (Table B.3).  The 

accuracy of this analysis is limited because each fraction does not contain the full MW distribution 

of the G3m (Scheme 3.1b) or G3d material.  Instead, a subset of the full distribution was obtained 

for each fraction as illustrated in Schemes 3.2b & 3.2d, and thus the assignment of a mean of 466 

(G3d) or 382 (G3m) internal protons for the calculation of the ratio is approximate in each case. 
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The increased number of TAMRA per dendrimer will result in an increase of molecular weight of 

414 Da per dye conjugated. The molecular weight of each G3m-NH2-TAMRAn isolated fraction 

(Scheme 3.2d) (n = 1, 2a, 2b, 3, and 4+) was measured using MALDI-TOF-MS.  The average 

masses were 7190, 7620, 7650, and 7980 Da for n = 1, 2a, 2b, and 3, respectively (Figure 3.2).  

The observed peak-to-peak mass shifts observed for n = 4+ and for G3m-NH2-TAMRA3.8(avg) are 

roughly 420 and 450 Da, respectively in reasonable agreement with varying amount of TAMRA 

present for these two materials.  Similar good agreement of 434 and 420 Da was observed for the 

peak to peak-to-peak mass shifts for n = 4+ and for G3d-NH2-TAMRA2.2(avg) (Figure B.1).  Using 

the MALDI-TOF-MS molecular weight difference between the G3m-TAMRAn (n = 1-3) samples 

and the G3m-PAMAM, it can be estimated that the TAMRA/dendrimer ratios corresponding to 

the n = 1, 2a, 2b, and 3 samples are 0.8, 1.9, 1.9, and 2.7, respectively.  A similar analysis for the 

G3d-TAMRAn (n = 1-3) samples gives TAMRA-dendrimer ratios corresponding to 0.7, 1.8, and 

2.8, respectively.  The use of MALDI-TOF-MS to assign these ratios suffers from the same 

fundamental problem as the NMR analysis.  Assigning the difference of the G3m-TAMRAn and 

G3m mass as resulting from a mass change due to TAMRA conjugation is approximate because 

only a fraction of the G3m molecular weight distribution is obtained during isolation of G3m-

TAMRAn. This means that an indeterminate convolution of the change in G3m mass distribution 

is present in the MALDI-TOF-MS determined ratios.  UPLC does not have the weakness of 

sampling only a fraction of the peak width distribution when assigning the TAMRA-dendrimer 

ratio. In this case, the full MW distribution, albeit a different one than the G3m starting material, 

is included in the analysis. For these reasons, we believe UPLC is the most accurate method for 

determining the TAMRA-dendrimer ratio for these materials. 

Studies were also carried out to examine the impact of the dye to polymer ratio on the absorption 

and emission spectra.  The absorption spectra of G3m-NH2-TAMRAn (n = 1, 2a, 2b, 3, 4+) show 

an increase in intensity at 520 nm and 560 nm (Figure 3.3b). Although these samples are dilute in 

terms of polymer concentration (~10-5 M), the extinction coefficient does not show a linear 

relationship between absorption value and concentration as the conjugated dyes are held in close 

proximity to each other and do not follow Beer’s Law.7,27,28 The absorption spectrum for G3-

TAMRA2-4+ shows the classic pattern intensity observed for J-aggregate TAMRA dimers,27,28 

despite being at a total concentration of dye in solution that is expected to give a monomer 

absorption profile (1.4x10-5 M).  The effective “local dye concentration” for the TAMRA dye held 
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in close proximity on the dendrimer is about 0.3 M for G3-TAMRA2. The observation of the J-

aggregate absorption pattern provides independent confirmation that two or more dye molecules 

are present on the dendrimer.  We also note that the absorption patterns observed for G3m- NH2-

TAMRA3 and G3- NH2-TAMRA4+ samples are not simple additions of monomer and dimer 

spectra and that more complicated absorption processes result when three or more TAMRA are 

held in close proximity (Figure 3.3c and 3.3d).  A similar set of data was obtained for of G3d-NH2-

TAMRAn (n = 1, 2a, 2b, 3, 4+) and is illustrated in Figure B.2. 

The emission spectra centered at 580 nm decrease in intensity with concentration, exhibiting the 

largest degree of quenching as the ratio of dye-polymer increases from 1 to 2 (Figure 3.3a). These 

data indicate that for a stochastic sample the optimal mean value of n for TAMRA dye on G3 

PAMAM to obtain highest degree of average fluorescence is about 1.2 (Figure B.3).  This value is 

Figure 3.3. a) Emission and b) absorption spectra of G3m-TAMRAn-NH2 (n = 1, 2a, 2b, 3, 4+) 

conjugates at 1 x 10-5 M; 1 TAMRA (red), 2a (orange), 2b (green), 3 (blue), 4+ (purple), and 

average (black). c) Absorbance of TAMRA n = 1, 2, and 3 at a concentration of 3 x 10-5 M. d) 

Absorbance of n=3 (blue) and an equimolar mixture of n = 1 and n = 2 (brown).  



 

39 

 

obtained by considering the weighted average of emission for all G3 components of a stochastic 

distribution including n = 0. 

3.3. Conclusions 

In summary, commercially available G3 PAMAM dendrimer was purified by dialysis to remove 

trailing generations (G3d) and by semi-preparative rp-HPLC to remove trailing generations and 

oligomers (G3m). The direct conjugation of TAMRA to G3d and G3m resulted in a stochastic 

mixture that was separated into precise ratios of dye to dendrimer yielding G3-NH2-TAMRAn 

conjugates (n = 1 to 3).   With these materials, we were able to measure the relative absorption and 

emission properties and directly relate these properties to the number of dye per polymer particle.  

Absorption increased with increasing n and emission decreased with increasing n. The absorption 

spectra also showed distinctive TAMRA dimer behavior for dye/dendrimer ratios greater than one. 

1H NMR spectroscopy and MALDI-TOF-MS provided valuable information for characterization 

of TAMRA to dendrimer ratios but were noted to suffer from the need to approximate key values 

employed in the ratio determination.  Therefore, rp-UPLC was determined to be the most reliable 

for determining dye/dendrimer ratio. 

3.4. Experimental Methods 

Biomedical grade Generation 3 PAMAM dendrimer was purchased from Dendritech Inc. and 

purified by dialysis. 5-carboxytetramethylrhodiamine (5-TAMRA) was purchased from Life 

Technologies and used as received. HPLC grade water, HPLC grade acetonitrile, and deuterium 

oxide were purchased from Fisher-Scientific and used as received. A 500 MHz Varian NMR 

instrument and deuterium oxide solvent were used for all 1H NMR measurements.  All MALDI-

TOF-MS measurements were performed using a sinapinic acid/sodium trifluoroacetate matrix on 

a Bruker Autoflex Speed MALDI MS.  

3.4.1. Isolation of G3 PAMAM monomer (G3m). Semi-Preparative rp-HPLC was performed on 

Waters Delta 600 HPLC system equipped with a Waters 2998 photodiode array detector, a Waters 

2707 autosampler, and Waters Fraction collector III. The instrument was controlled by Empower 

2 software. For analysis of the conjugates, a C18 silica-based RP HPLC column (250 × 10.0 mm, 

300 Ǻ) connected to a C18 guard (10×10 mm) was used. The mobile phase for elution of the 

conjugates was a linear gradient beginning with 95:5 (v/v) water/acetonitrile (ACN) and ending 
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with 55:65 (v/v) water /ACN over 18 min at a flow rate of 12.00 mL/min. Trifluoroacetic acid 

(TFA) at 0.10 wt % concentration in water or ACN was used as a counter ion to make the 

dendrimer surfaces hydrophobic. The conjugates were dissolved in the mobile phase (water with 

0.1% TFA). The injection volume was 910 µL with a sample concentration of approximately 15 

mg/mL. Detection of eluted samples was performed at 210 nm.  

3.4.2. Conjugation of 5-TAMRA to G3 PAMAM dendrimer. 6.35 mL of 5-TAMRA (1 mg/mL 

DMSO) was added dropwise to a solution of G3 PAMAM dendrimer monomer (20.40 mg, 3.0 × 

10--6 mol) in 0.1 M NaHCO3 (8.0 mL) over a period of 2 hrs by a syringe pump. The reaction 

mixture was left stirring at 20 ºC for 24 hrs. The product was purified by Sephadex G-25 column 

eluted with MilliQ water.   The first band collected was dialysed with a 3,500 MWCO membrane 

cassette against MilliQ water for three days, exchanging washes every two hours. The purified 

dendrimer conjugate was lyophilized for three days to yield a red powder material (20.3 mg, 80%). 

3.4.3 Isolation of Precise Dye-Dendrimer Ratios. The rp-HPLC was identical to that described 

above. For isolation of the conjugates, a C5 silica-based rp-HPLC column (250 × 10.0 mm, 300 

Ǻ) connected to a C5 guard (10×10 mm) was used. The mobile phase for elution of the conjugates 

was a linear gradient beginning with 100:0 (v/v) water/acetonitrile (ACN) and ending with 20:80 

(v/v) water/ACN over 30 min at a flow rate of 2.75 mL/min. Trifluoroacetic acid (TFA) at 0.14 wt 

% concentration in water as well as in ACN was used as a counter ion to make the dendrimer 

surfaces hydrophobic. The conjugates were dissolved in the mobile phase (90:10 water/ACN). The 

injection volume was 500 µL with a sample concentration of approximately 5 mg/mL, and the 

detection of eluted samples was performed at 210 and 547 nm.  

3.4.4 Analytical rp-UPLC. An analytical Waters Acquity UPLC (C18 silica-based column) 

controlled by Empower 2 software was employed to analyze G3-TAMRA conjugates for purity. 

A linear gradient mobile phase was employed beginning with 95:5 (v/v) water/acetonitrile and 

ending with 55:45 (v/v) water/acetonitrile over 22 minutes at a flow rate of 2.0 mL/min. 

Trifluoroacetic acid (TFA) at 0.14 wt % concentration in water as well as in ACN was used as a 

counter ion to make the dendrimer surfaces hydrophobic. The injection volume was 3 µL with a 

sample concentration of approximately 1 mg/mL, and the detection of eluted samples was 

performed at 210 nm. 
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3.4.5. Emission Measurements. Fluorescence measurements were taken at a concentration of 1.0 

x 10-5 M using a Fluoromax-4 spectrometer. Excitation of 520 nm and emission of 580 nm was 

used with a slit width of 2 nm for all measurements taken. 

3.4.6. Absorption Measurements. A Shimadzu UV-1601 UV/vis spectrometer was used for all 

absorption measurements. Studies used a concentration of 1.0 x 10-5 M solution and slit width of 

2.0 nm. 
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4.1. Introduction 

Cationic polymers are employed for a variety of biological applications involving transport of the 

polymer into cells including transfection agents for oligonucleotides, antibacterial agents, and drug 

delivery agents.1-5 In order to probe the uptake and cellular localization properties, the polymer is 

often modified with fluorescent dye.6  In this case, it is important to understand how the presence 

of dye modifies the behavior of the polymer.  Such dye-modified polymers are also of interest as 

models for the biodistribution behavior of the polymer when it is modified with multiple 

hydrophobic moieties, such as targeting agents or drugs.  Dye-polymer conjugates are often 

complex mixtures.  Dye conjugated to a large excess of reactive sites on the polymer will result in 

a Poisson distribution of dye-polymer particle ratios that is superimposed on the molecular weight 

(MW) distribution of the base polymer.7, 8 Materials containing a large degree of dispersion in both 

MW and hydrophobicity per particle are expected to exhibit a range of biological uptake and 

distribution behavior.9-12  An additional complication is the impact of dye conjugation,   

specifically the impact that the localization of multiple dyes on a given polymer particle has on the 

photophysical properties of the dye. This high effective concentration of dye can result in 

substantial differences in both fluorescence intensity and lifetime per polymer particle.6, 13, 14 Given 

the importance of dye-conjugates to probing the mechanisms of cationic polymers as antibacterial 

agents and as vectors for gene and drug delivery, we have explored the ways in which employing 

distributions of dye-conjugates impacts interpretations of cell uptake and localization for 

polycationic polymers. 
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The generation of systematically varied dye-polymer ratios for a cationic polymer is a challenging 

problem.  Most commonly, a mean variation in dye-polymer ratio is achieved under stochastic 

reaction conditions that generates a statistical distribution of ratios and a mixture of hydrophobic 

and photophysical properties.  The distribution of ratios is quite broad with substantial overlap of 

materials for different means, making comparisons between different conjugate averages difficult 

to interpret.  Table 4.1 provides an illustrative example for the case of stochastic conjugates 

containing an average of 1-4 dyes for generation 5 poly(amidoamine) (G5 PAMAM) dendrimer.  

For these cases, the population of the mean percentage varies between about 1/5th and 1/3rd of the 

total material.   

In order to prepare a set of cationic polymer samples containing a uniform dye-polymer ratio across 

all particles in the sample, it is necessary to decouple the number of dyes per particle from the 

particle MW. This is synthetically challenging since a large polymer particle will generally have 

more functional attachment sites, and therefore have a statistically greater chance of multiple dye 

conjugation.  We achieved the decoupling of conjugation number from MW by separating a 

stochastic mixture of TAMRA dye conjugates based on the differential hydrophobicity imparted 

to each dendrimer particle by the presence of dye. In this study, we report the semi-preparative 

reverse-phase high performance liquid chromatography (rp-HPLC) fractionation of the stochastic 

mixture of dye:dendrimer ratios in G5-NH2-TAMRA1.5(avg) into samples containing a single dye-

dendrimer ratio (n = 1-4) as well as a sample containing n >5: G5-NH2-TAMRAn (n = 1 - 4, 5+).  

Characterization of the precise dye-dendrimer ratio fractions was carried out by analytical reverse-

 Percentage of each dye:dendrimer ratio 

Avg n 0 1 2 3 4 5 6 7 8 9 10 

1 36.6 37.0 18.5 6.1 1.5 0.3 0.1 - - - - 

2 13.2 27.1 27.4 18.2 9.0 3.5 1.1 0.3 0.1 - - 

3 4.7 14.7 22.5 22.8 17.1 10.1 5.0 2.0 0.7 0.2 0.1 

4 1.7 7.0 14.5 19.8 20.0 16.0 10.5 5.9 2.8 1.2 0.5 

Table 4.1.  Statistical conjugation heterogeneity for a G5 PAMAM (G5-dyen) containing 93 arms 

and 1-4 conjugated dyes. For each value of n, the percentage for the mean value is highlighted in 

bold. 
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phase ultrahigh performance liquid chromatography (rp-UPLC), 1H NMR spectroscopy, and 

MALDI-TOF mass spectrometry.   

With this new set of precise ratio dye conjugates available, the following implicit and explicit 

hypotheses were tested that underlie previous literature studies employing mixtures containing 

stochastic distributions of dye-polymer ratios:  

H1) Uptake of cationic polymers can be quantified by measuring the change in mean fluorescence 

of cells using flow cytometry.   

H2) The components of a stochastic distribution of dye-polymer ratios have a similar collective 

trend in terms of environmental lifetime response, so the mixture can be used to probe internal 

cellular environments. 

H3) The changes in environment-based lifetime response are large as compared to difference in 

lifetime response associated with differences in dye-polymer ratio. 

The three hypotheses were tested by measuring the uptake, fluorescence emission, and 

fluorescence lifetime of G5-NH2-TAMRAn (n = 1 - 4, 5+, 1.5avg) in HEK293A cells using flow 

cytometry, fluorimetry, and fluorescence lifetime imaging microscopy (FLIM).  In addition, 

fluorescence emission and lifetime control experiments were performed in aqueous solutions with 

controlled pH, ionic strength, and biomolecule concentration to test the impacts of these conditions 

on the fluorescence properties. We show that contrary to the expectations of H1, mean fluorescence 

is a poor measure for comparing the relative cellular uptake of differing dye-polymer ratios.  FLIM 

studies of the dye-conjugates taken up into the HEK293A cells suggest the fluorescence lifetime 

response to the cellular environment is very sensitive to the dye-polymer ratio, raising concerns 

about H2 and H3. These studies indicate caution should be exercised when interpreting FLIM data 

for stochastic dye mixtures in biological systems. Biological systems have the capacity for 

fractionating a sample,9-12, 15 much like an HPLC column, prior to the fluorescence measurement. 

For such a system, this study indicates that it is critical to know the dye-polymer ratio dependent 

properties of the material being measured in order to accurately compare fluorescence intensities 

or to make use of differences in fluorescence lifetime. 

4.2. Results and Discussion 

The importance of cationic polymers for biological applications has led to a number of recent 

studies addressing the use of dye conjugates.  Mier et al. studied the stochastic conjugation of 

multiple dyes including fluorescein, rhodamine, coumarin, and dansyl to PAMAM dendrimers.16 



 

46 

 

With the exception of dansyl, they found that fluorescence intensity decreased as the mean number 

of dyes per dendrimer increased. The intensity decrease was attributed to a combination of a small 

Stokes shift leading to quenching and the high effective concentration that results from multiple 

dyes conjugated to the same polymer core.  By way of contrast, in dansyl-modified PAMAM 

materials, fluorescence increased with increasing dye-dendrimer ratio, presumably due to the large 

Stokes shift of 195 nm.  Schroeder et al. examined Cy3 and Cy5 dye optical properties conjugated 

to generation 5 (G5) PAMAM or G6 PAMAM dendrimer in order to create a new set of materials 

for biological imaging with enhanced stability and increased accuracy in single molecule 

imaging.17 Dendrimer mixtures with an average of 8 Cy5 dyes gave slower photobleaching 

compared to free dye with a 6 to 10 fold increase in photobleaching lifetime value for the G5 

PAMAM conjugates. The dendrimer conjugates with an average of 14 Cy5 dyes on G6 PAMAM 

showed a ~17 fold increase in photobleaching lifetime value. The mean conjugation numbers 

employed in this case generate mixtures with <0.5% of the material having zero or one dye.  This 

eliminates the most dramatic difference in effective local concentration and the related variation 

in photophysical properties that occurs when the dye-polymer ratio changes from 1 to 2.  Wagner 

et al. employed stochastically prepared G3 PAMAM dendrimer conjugated to a mean of 1 Alexa 

Fluor 555 dye to quantify the rate constant of dendrimer uptake in Caplan-1 cells.18 Interestingly, 

reverse-phase high performance liquid chromatography (rp-HPLC) did not resolve different 

species as being present in this case, although separation has been achieved for other dye ligands.14 

In this study, an effective mass transfer coefficient was determined for the mixture of dye-

dendrimer ratios present in the sample.  Many additional studies addressing the uptake of 

polycationic polymer-dye conjugates have been discussed in a series of comprehensive reviews.6  

These studies are of broad interest because the level of hydrophobicity is known to alter a 

polymer’s ability to permeate cell membranes,19 as well as impact transfection efficiency,20-24 

biodistribution,15 and pharmacokinetics.25, 26  Colocalization of polymer-fluorophore conjugates 

based on surface functionality17, 27 has also been shown.  In all cases, the presence of broad 

conjugation heterogeneity in the stochastic mixtures of polymer-dye conjugates has prevented a 

detailed understanding of what fraction or fractions of the conjugates are providing the desired 

biological activity. 

In order to focus this study on the impact of dye conjugation heterogeneity, it was necessary to 

employ a cationic polymer that contained a minimal MW distribution while remaining convenient 
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for generating a systematic change in the dye-polymer ratio.  In addition, the polymer MW must 

be large enough to accommodate a number of dyes and still maintain good water solubility for all 

dye-polymer ratios.  We selected G5 PAMAM dendrimer as this material is readily available 

commercially, has excellent water solubility, and has a sufficiently large MW (theoretically 28,826 

Da) to maintain solubility upon conjugation with multiple dyes.  In addition, we have developed 

rp-HPLC protocols that remove all of the trailing generations (G1-G4; 1,430 to 14,215 Da MW) 

as well as the dimer, trimer, and tetramer oligomers (~50,000 to 120,000 Da range) typically 

present in G5 PAMAM dendrimer.28 The purified G5 PAMAM material obtained from the rp-

HPLC purification has an average of 93 primary amine terminal arms per particle (as compared to 

the theoretical 128 arms), a Mn of 25,130 Da, and a Mw of 27,140 Da (Mn/Mw = 1.08).  The full 

mass range of the isolated monomer G5 PAMAM material was 21,000 to 30,000 Da. 

Direct conjugation of TAMRA to 

G5 PAMAM dendrimer results in 

a Poisson distribution of 

dye:dendrimer ratios (Scheme 

4.1a). The material was separated 

using semi-preparative rp-HPLC 

(Scheme 4.1b) into fractions 

containing precise dye:dendrimer 

ratios (n = 1-4) as well as a sample 

where n ≥ 5. The isolated fractions 

were reinjected into an analytical 

UPLC to determine purity 

(Scheme 4.1c) and further 

characterized using 1H NMR 

spectroscopy, emission and 

absorption measurements, 

MALDI-TOF-MS, and 

fluorescence lifetime imaging 

microscopy (FLIM).  

Scheme 4.1. Synthesis, isolation, and characterization of 

G5-NH2-TAMRAn ( n = 0, 1, 2, 3 , 4, 5+, 1.5avg) samples. 

a) Stochastic conjugation of TAMRA to G5 PAMAM 

dendrimer b) Isolation of G5-NH2-TAMRAn employing 

semi-preparative rp-HPLC c) Reinjection of combined 

fractions on analytical rp-UPLC to determine purity. n = 

1.5avg (black), 0 (red), 1 (orange), 2 (yellow), 3 (green), 4 

(blue), and 5+ (purple). 



 

48 

 

Analytical UPLC provides the most sensitive measure of the number of dyes present per dendrimer 

particle.14   The shift resulting from the addition of each dye to the dendrimer scaffold for the first 

two dyes is substantially larger than the breadth of the peak resulting from the MW distribution of 

the G5 PAMAM dendrimer (Scheme 4.1c).  As the number of dyes increases, the incremental 

value of the hydrophobicity induced shift decreases. The UPLC method detects the dye-dendrimer 

particle ratio induced shifts in the context of the full defect structure of the polymer, which 

generates the observed peak width.14  The number of dyes measured for each fraction G5-NH2-

TAMRAn are n = 0.0, 1.0, 2.0, 3.0, 4.0, and an average of 6.8 dye-dendrimer for the n ≥ 5 fraction 

(Table C.1). The average number of TAMRA dyes per dendrimer was also assessed using 1H NMR 

spectroscopy by comparing the integration of the TAMRA protons to the integration of the internal 

protons in the G5 PAMAM dendrimer (1,210 protons).7, 29 The averages of n = 0.0, 0.9, 1.8, 3.3, 

4.5, and 6.9 are in reasonable agreement with the UPLC data. The NMR values are less reliable 

than the UPLC values because a) the isolated fraction does not fully represent the material used to 

determine the internal proton count of 1,210, thus introducing error into the comparison of the 

integrated ratios and b) we are determining the ratio by comparing a small number of TAMRA 

protons to a large number of dendrimer protons.  MALDI-TOF-MS was also used to characterize 

each isolated fraction (Table C.1, Figure C.1).  A trend towards higher mass was observed as n 

increased from 1 to 4 as well as for 5+; however, obtaining dye-dendrimer ratios from such data 

is inaccurate because we are sampling a different subfraction of the entire MW distribution for 

each G5-NH2-TAMRAn (see the HPLC separation in Scheme 4.1b).  The impact of the differential 

subfractionation is highlighted by the 300 Da decrease observed when comparing G5-NH2-

TAMRA0 to G5-NH2-TAMRA1.  In our previous work discussing the synthesis of related dye-

dendrimer conjugates, we compared the relative ability of UPLC, 1H NMR spectroscopy, and 

MALDI-TOF-MS data to assign dye-dendrimer ratios in detail.14  

The impact of the dye:dendrimer ratio on photophysical properties was assessed using a 

combination of FLIM and absorption and emission spectroscopies (Figure 4.1).  The absorption 

and emission spectra were obtained for 0.1 mg/mL G5-NH2-TAMRAn solutions in water, which 

corresponds to roughly 3-4 µM solutions.  As expected for this concentration of dye, the absorption 

spectrum for G5-NH2-TAMRA1 exhibited a single maximum at 560 nm.14, 30 Although the total 

solution concentration for dye in G5-NH2-TAMRA2 was still micromolar, the absorption now 

showed the classic two peak pattern, at 525 and 560 nm, typically associated with formation of 
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TAMRA dimers in highly 

concentrated solutions.30  This 

pattern provided additional 

evidence for the absence of n ≥ 2 

materials in the sample assigned as 

G5-NH2-TAMRA1.  In addition, 

the relative intensity ratio of the 

525 and 560 nm peaks indicated 

little if any n = 1 material was 

present in the G5-NH2-TAMRA2 

sample. The two peaks remained 

present, and the 525 nm peak grew 

in relative intensity as n increased.  

For all these samples, the local 

concentration of dye, which is 

restricted on each dendrimer 

particle to a hydrodynamic sphere 

of 3.1 nm radius,31 was on the 

order of 10 M.  The impact of the 

dye:dendrimer ratio was also 

observed in the fluorescence spectra taken in water.  The most fluorescent material, as a function 

of dendrimer concentration, is G5-NH2-TAMRA1.  It had roughly twice the fluorescence emission 

of G5-NH2-TAMRA2, which had twice as much dye, and three times the fluorescence emission of 

G5-NH2-TAMRA4, which had four times as much dye. G5-NH2-TAMRA1 also had roughly twice 

the fluorescence emission of stochastically prepared G5-NH2-TAMRA1.5(avg), which consisted of 

n = 0, 1, 2, 3, 4 ,5 in percentages of 22, 34, 25, 13, 5, and 1%, respectively.  The impact of n is 

further demonstrated in the FLIM analysis.  The fluorescence lifetime for free TAMRA in water 

(0.2 µM) was measured to be 2.5  0.1 ns and a similar lifetime value for G5-NH2-TAMRA1 (0.2 

µM) was obtained of 2.3  0.2 ns.  In all cases, increased dye-dendrimer ratios resulted in a 

decreased lifetime value as compared to G5-NH2-TAMRA1.  The change was not linear, and G5-

NH2-TAMRA3 had a lower lifetime value (1.5  0.1 ns) than the G5-NH2-TAMRA4 (1.7  0.1 ns) 

Figure 4.1. a) Fluorescence lifetime values (data obtained 

with Sriram Vaidyanathan), b) absorption spectra, and c) 

emission spectra of 0.1 mg/mL G5-NH2-TAMRAn ( n = 0, 

1, 2, 3, 4, 5+, 1.5avg) in aqueous solution.  A significant 

decrease in lifetime value (denoted by *) was observed for 

samples with n > 1 as compared to free TAMRA dye (pink) 

and G5-NH2-TAMRA1. The absorption increases while 

the emission decreases with increasing n.   



 

50 

 

(Figure 4.1). Additional unexpected trends in lifetime values occurred when using the samples for 

cellular uptake and in biological environment modeling studies (vida infra). Fluorescence lifetime 

values for all samples in water, as well as for aqueous solutions with controlled ionic strength and 

biomolecule concentration, are provided in Table C.2.  

Fluorophore-polymer ratio has been reported to influence biological behavior;22, 24 however, the 

mechanism of these effects has been obscured by stochastic distributions of dye-dendrimer ratios.  

In this study, we focus on the real and apparent impacts of dye-dendrimer ratio on cellular uptake.  

As a model system, we employed mean fluorescence as measured by flow cytometry to quantify 

uptake in HEK293A cells.  Cells were exposed to 0.5 µM G5-NH2-TAMRAn (n = 1 - 4, 5+, 1.5avg) 

for 3 hours at 37 °C and mean fluorescence was determined by measurement of 10,000 cells 

(Figure 4.2).  The raw mean fluorescence data exhibited the largest mean value for G5-NH2-

TAMRA1 and the magnitude continued to decrease with increasing dye-dendrimer ratio; however, 

our independent measures of the fluorescence intensity of the conjugates (Figure 4.1) indicated 

that an accurate assessment of dendrimer uptake required a correction for the relative degree of 

fluorescence intensity for each conjugate.   

In order to determine the correction factors, we measured the absorbance, emission, and lifetime 

characteristics of 0.1 mg/mL (3.5 M) G5-NH2-TAMRAn (n = 1, 2, 3, 4, 5+, 1.5avg) solutions in a 

variety of aqueous solutions to model potential interactions from both salt and biomolecules.  The 

measurements were performed in aqueous solution (Figure 4.1), NaCl, PBS, and undiluted fetal 

bovine serum (FBS).  We also 

included controls containing bovine 

serum albumin (BSA) and glucose in 

water (at concentrations present in our 

FBS control) to independently 

evaluate the impact of these two 

components.  Ficoll was used as a 

control for biomolecule crowding 

effects.  The impact of interaction with 

negatively charged macromolecules 

was modeled using 1:1 and 1:10 N:P 

ratios of both plasmid DNA (pDNA)  

Figure 4.2. Flow cytometry of one repeat for the G5-

NH2-TAMRAn (n = 0, 1, 2, 3, 4, 5+, 1.5avg) samples 

showing cell count versus fluorescence intensity. 
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and antisense DNA (asDNA) (N is the number of dendrimer primary amines and P is the number 

of DNA phosphates).  Lastly, we employed HEK293A cell lysate at 100,000 cells per mL as a 

final, comprehensive control solution (Figures C.2 and C.3).  The cell lysate was prepared by 

osmotically lysing cells followed by sonication.  This lysate contains all of the cell lipids and 

protein and is detergent free, and thus differs from conventional lysates.  For all conditions studied, 

G5-NH2-TAMRA1 exhibited the most intense fluorescence emission.  In order to compare the 

emission intensities for the various conjugates under a given model condition, we defined the 

brightest emission of G5-NH2-TAMRA1 as 1 and determined the relative fraction of emission for 

the remaining conjugates (Table 4.2).  The overall trend was a decrease in emission with increasing 

dye-dendrimer ratio.  The overall magnitude of the non-quenched fluorescence varied greatly with 

the addition of the second dye (G5-NH2-TAMRA2), ranging from 93% for ficoll to 42% for PBS.   

When considering just the G5-NH2-TAMRAn (n = 1, 2, 3, 4) fluorescence, the change in intensity 

as a function of n was monotonic; however, when the more complex n = 1.5avg and n = 5+ samples 

were considered, multiple deviations in the monotonic trend were associated with both samples.  

The origins of this complex fluorescence emission behavior are not clear.  The data show the 

difficulty in extrapolating behavior for such heterogeneous mixtures of conjugated fluorophores.  

Fluorescence lifetime measurements for G5-NH2-TAMRA1 (2.3 ± 0.2 ns) and TAMRA (2.5 ± 0.1 

 
Fluorescence Ratios for Control Solutions of 200 µM G5-NH2-

TAMRAn 

 water PBS NaCl  BSA ficoll pDNA FBS asDNA 

G5-(TAMRA)1.5avg-NH2 0.54 0.53 0.7 0.69 0.93 0.59 0.54 0.77 

G5-(TAMRA)0-NH2 - - - - - - - - 

G5-(TAMRA)1-NH2 1  1  1  1  1  1  1  1  

G5-(TAMRA)2-NH2 0.53 0.42 0.45 0.83 0.93 0.81 0.72 0.77 

G5-(TAMRA)3-NH2 0.43 0.24 0.27 0.57 0.59 0.44 0.43 0.47 

G5-(TAMRA)4-NH2 0.34 0.17 0.17 0.42 0.33 0.25 0.29 0.44 

G5-(TAMRA)5+-NH2 0.22 0.18 0.21 0.42 0.51 0.2 0.26 0.31 

Table 4.2. Fluorescence emission intensity characterization summary for G5-NH2-TAMRAn 

material.  For each condition the intensity for G5-NH2-TAMRA1 is defined as 1 and the fractional 

intensity observed for each n = 2, 3, 4, 5+ and 1.5avg is indicated. 
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ns) in water were essentially identical, and lifetimes decreased, as expected for the decrease in 

emission intensity, as a function of n.  Based on these studies, we employed the fluorescence 

correction factors determined from aqueous solution, FBS solution (which also matched trends 

observed for the cell-based lifetime studies, vida infra), and cell lysate in order to correct the mean 

fluorescence values obtained from flow cytometry. 

Application of the fluorescence emission correction factors (Table 4.2) to the mean fluorescence 

data obtained from flow cytometry (Figure 4.2) resulted in the trends in mean fluorescence 

illustrated in Figure 4.3.  For each correction factor, the data for G5-NH2-TAMRA1 (G5-T1) was 

normalized to the intensity observed for raw emission data.  All three corrections trend in the same 

Figure 4.3. Uptake and binding of G5-NH2-TAMRAn as measured by flow cytometry after 3 

hours of incubation with HEK293A cells. The bar graphs illustrate the uptake trend as measured 

by raw mean fluorescence data and the trends after correction using relative fluorescence 

emission in aqueous solution, FBS solution, and cell lysate.  All correction factors are 

summarized in Table 4.2 from the data shown in Figures 4.1c, C.2, and C.3.   Significance for 

differences in G5-NH2-TAMRAn fluorescence intensity (denoted by *) as compared to G5-NH2 

–TAMRA1 intensity was assessed using a Games-Howell analysis. 

 



 

53 

 

direction and indicate that the uptake of the n ≥ 2 conjugates is significantly underestimated when 

only raw mean fluorescence data is considered.  Indeed, the data indicate that uptake does not 

decrease as a function of n as implied by comparison of the raw mean fluorescence intensities. 

Rather, n ≥ 2 conjugates give greater uptake than does the n = 1 conjugate.  These data also suggest 

that studies with dye conjugates overestimate the uptake rates of dye-free G5 PAMAM dendrimer 

into cells, although the rates may be a reasonable estimate for dendrimer containing other moieties 

of similar hydrophobicity, such as drugs.  Lastly, these data indicate that the use of raw mean 

fluorescence data to quantify dye uptake in vivo using stochastic dye-dendrimer, or more generally 

dye-polymer, conjugates can lead to errors of at least a factor of 3-5 if the biological fractionation 

effects on the materials are unknown.    

The G5-NH2-TAMRAn (n = 1, 2, 3, 4, 5+, and 1.5avg) conjugates varied in terms of fluorescence 

intensity as a function of n (Figures 4.1-4.3).  The variation of intensity with n indicates that 

interpreting the uptake of materials into the cell using relative brightness in the confocal 

fluorescence images will not give reliable results (Figure 4.4).  In this case, HEK293A cells were 

treated with 1 µM G5-NH2-TAMRAn (n = 1, 2, 3, 4, 5+, and 1.5avg) conjugates for 3 hours.  All 

Figure 4.4. Confocal Microscopy Images of HEK293A cells incubated for three hours with a) 

PBS only b) G5-NH2 c) G5-NH2-TAMRA1 d) G5-NH2-TAMRA2 e) G5-NH2-TAMRA3 f) G5-

NH2-TAMRA4 g) G5-NH2-TAMRA5+ h) G5-NH2-TAMRA1.5avg.  TAMRA fluorescence is shown 

in green.  The fluorescence deriving from DAPI-stained cell nuclei is shown in blue.  Images were 

obtained with a 40x oil immersion objective. The same set of image locations is presented in 

Figure 4.5 using FLIM.  Scale bar is 100 m. Data obtained by Sriram Vaidyanathan. 
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treated cells exhibited a punctate distribution of fluorophore uptake (TAMRA = green), which was 

in general agreement with the flow cytometry data (Figures 4.2 & 4.3).  The mixtures G5-NH2-

TAMRA5+ (Figure 4.4g) and G5-NH2-TAMRA1.5avg (Figure 4.4h) were expected to contain 

fluorescent particles with intensity levels varying by up to a factor of 5.  Therefore, even within a 

given cell or field of cells, relative intensity variation may not be correlated with extent of uptake. 

FLIM offers an alternative method of fluorescence image contrast that is generally insensitive to 

intensity-based artifacts.  In addition, the fluorescence lifetimes measured are sensitive to the 

microenvironment including pH, ion concentration, and molecular association.32 FLIM images 

were obtained for the same locations as the confocal microscopy data presented in Figure 4.4.  The 

Figure 4.5. FLIM images of HEK293A cells incubated for three hours with a) PBS only b) G5-

NH2 c) G5-NH2-TAMRA1 d) G5-NH2-TAMRA2 e) G5-NH2-TAMRA3 f) G5-NH2-TAMRA4 g) 

G5-NH2-TAMRA5+ h) G5-NH2-TAMRA1.5avg. j) Color code for FLIM images.  k) Histograms of 

fluorescence lifetimes for FLIM images.  Images were obtained with a 40x oil immersion objective.   

The same set of image locations is presented in Figure 4.4 using confocal fluorescence microscopy. 

Data obtained by Sriram Vaidyanathan. 
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G5-NH2-TAMRA1.5avg treated sample (Figure 4.5h) gave an average lifetime of 0.7 ± 0.2 ns   which 

is significantly lower than the 1.9 ± 0.1 ns obtained for aqueous solution.  This value is also 

substantially lower than observed for all other samples with the exception of G5-NH2-TAMRA4.  

The G5-NH2-TAMRA1 treated cells exhibited uniformly higher lifetimes of 1.8 ± 0.5 ns (Figure 

4.5c), which itself was substantially lower than the 2.3 ± 0.2 ns observed in aqueous solution.  

Despite the fact that the G5-NH2-TAMRA1.5avg sample contained 34% G5-NH2-TAMRA1, the 1.8 

ns lifetimes associated with T1 material did not appear in the cell images (Figure 4.5h).  The G5-

NH2-TAMRA5+ treated cells also exhibited amongst the highest lifetime value with an average of 

1.6 ± 0.6 ns.  Surprisingly, this value was greater than the average values observed for G5-NH2-

TAMRAn (n = 2, 3, 4), as well as for the G5-NH2-TAMRA5+ aqueous value of 1.2 ± 0.1 ns.  Images 

of individual cells measured using a 40x oil objective with an additional optical zoom of 6.25x are 

provided in Figure C.4.  The lifetimes in the zoomed images show a similar trend as the non-

zoomed images. The zoomed-in images highlight the punctate distribution of the G5-TAMRA 

within cells. Further experiments with markers for cellular organelles are needed to determine if 

samples with different dye-dendrimer ratios are transported to different organelles.  The 

observation that most of the samples exhibited dynamic quenching in the cell, resulting from 

possible environmental differences such as pH, ionic strength, or biomolecule interactions, was 

expected.  It was surprising that the G5-NH2-TAMRA1.5avg treated cells did not show the full range 

of lifetimes represented by the dye-dendrimer ratios present and that the lifetime of G5-NH2-

TAMRA5+ increased in cells, indicating a reduction in dynamic quenching.  

In order to gain a greater understanding of how these changes in lifetime varied as a function of n, 

a series of control experiments were carried out.  Fluorescence lifetimes were measured for 

solutions of G5-NH2-TAMRAn (n = 1, 2, 3, 4, 5+, and 1.5avg) in cell lysate, 1X PBS, 137 mM 

NaCl, 0.3 mM BSA, 7.0 mM glucose, 0.001 mM ficoll, and undiluted fetal bovine serum (FBS) 

(Figure 4.6).  Additional lifetime measurements were made for aqueous solutions using pH 3 and 

5 buffers and for aggregates of G5-NH2-TAMRAn (n = 1, 2, 3, 4, 5+, and 1.5avg) generated by 

mixing with anionic oligonucleotides (both plasmid and antisense DNA) (Figures C.5 and C.6).  

The undiluted FBS was used to generate a high concentration of biomolecules comparable to that 

found in the cellular environment.  The concentrations of NaCl, BSA, and glucose were set to the 

levels of the FBS control.  Ficoll was set at 5 equiv per dendrimer.  1x PBS is a standard buffer 
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system with an overall salt concentration similar to blood and the same NaCl concentration as the 

FBS. 

The FBS control best matched the cell FLIM data as it gave both the increase in dynamic 

quenching (lower lifetime) of the G5-NH2-TAMRA1 material and the decrease in dynamic 

quenching (higher lifetime) observed for G5-NH2-TAMRA5+ (Figure 4.6).  In order to understand 

how the components of FBS might lead to these lifetime changes, solutions were tested containing 

salt (PBS, NaCl) and biomolecule components (BSA, glucose) as well as a ficoll.  The results point 

to a complex mixture of static and dynamic quenching mechanisms present in the G5-NH2-

TAMRAn conjugates.  For G5-NH2-TAMRA1, NaCl and PBS alone or the presence of ficoll did 

not generate a significant change in fluorescence lifetime; however, both BSA and glucose did 

Figure 4.6. Fluorescence lifetime measurements of G5-NH2-TAMRAn (n = 0, 1, 2, 3, 4, 5+, 

1.5avg) in aqueous solution under various conditions.  Cy3 and TAMRA dyes in water were used 

as calibration standards.  See Table C.2 for summary of numerical values. Data obtained with 

Sriram Vaidyanathan. 
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cause a change.  For G5-NH2-TAMRA5+, NaCl, PBS, BSA, and ficoll all caused a significant 

increase in fluorescence lifetime, although glucose did not.  For both G5-NH2-TAMRAn (n = 2, 

3), little change in fluorescence lifetime was observed for any simple controls, although cell lysate 

caused a significant increase in lifetime for n =3.  For G5-NH2-TAMRA4, all conditions but FBS 

and cell lysate were observed to decrease lifetime.  Since fluorescence lifetime is also known to 

change for a fluorophore based on pH,33 the conjugates were also measured in pH =3, 5, and 7 

aqueous buffers. Treatment of G5-NH2-TAMRA1 with pH 3 and 5 buffers caused no change in 

lifetime, whereas both buffers resulted in an increase in lifetime for G5-NH2-TAMRA5+ (Figure 

C.5).  No clear lifetime trends were observed for the impact of aggregate formation induced by 

plasmid and antisense DNA, although a decrease in lifetime for G5-NH2-TAMRA1 and an increase 

in lifetime for G5-NH2-TAMRA5+ were again observed (Figure C.6).  These observations can be 

compared to the measurements of TAMRA fluorescence lifetime of 2.28 ± 0.01 ns in buffer and 

2.48 ± 0.01 ns on a DNA aptamer.34  

The cell FLIM data can be rationalized in part based upon the control experiments.  The most 

surprising result, the increase of fluorescence lifetime for G5-NH2-TAMRA5+ in HEK293A cells, 

was reproduced under a variety of control conditions.  This behavior may result from a dye-dye 

static quenching interaction present in a fraction of the G5-NH2-TAMRA5+ sample.  Upon addition 

of salt and biomolecules, the dye-dye interactions may be broken up leading to a lifting of the 

static quenching and the observation of a new, longer lifetime value.  In addition, the salt and 

biomolecule interaction with the dye may change the nature of the dynamic quenching that leads 

to the 1.2 ± 0.1 ns lifetime in aqueous solution, which could also lead to an increase in observed 

lifetime.  This balancing of effects only appears operative for n  5 dyes per G5 PAMAM 

dendrimer.   

Many previous studies have demonstrated that the punctate G5 PAMAM dendrimer distribution 

in cells arise from localization into endosomes and lysomes;35 however, the control data for pH 

effects (Figure C.5) does not explain the decrease in lifetimes observed in the FLIM images 

(Figures 4.5 and C.4.).  Based on our series of control experiments, it appears that changes in ionic 

strength or interactions with other biomolecules present in the endosomes or lysomes are more 

likely causes of the decreased fluorescence lifetimes for these dye-dendrimer conjugates in the 

HEK293A cells. 

4.3. Conclusions 
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G5-NH2-TAMRAn (n=1-4, 5+, 1.5avg) samples have been synthesized and characterized by UPLC, 

1H NMR, and MALDI-TOF-MS.  The absorbance, fluorescence emission, and fluorescence 

lifetime properties have been measured in aqueous solution as well as in a variety of biologically 

relevant control conditions.  By preparing this set of dye-dendrimer conjugates with well-defined 

dye-dendrimer ratios, we hope to elucidate the behaviors of the stochastic mixtures of dye-

dendrimer ratios typically employed to understand cationic polymer uptake and localization.   

During the course of this study we showed that dendrimer uptake varied as a function of n.   In 

addition, knowledge of how fluorescence intensity for G5-NH2-TAMRAn varies as a function of 

n is required for properly understanding the relative degree of uptake.  These observations raise 

the greatest concerns for studies in which a stochastic mixture can be “separated” by the interaction 

with the biological systems, i.e. exhibit a hydrophobic dependency on biodistribution,15, 19, 25, 26 

and when biological tissues are evaluated for uptake by fluorescence without knowledge of the 

fraction of the dye-polymer conjugate present.  Thus, for materials containing stochastic dye-

polymer distributions, hypothesis (H1) that the uptake of cationic polymer can be quantified by 

the change in mean fluorescence of cells should be used with caution.   For low Stokes shift dyes 

similar to TAMRA and fluorescein, H1 is not valid. 

The FLIM studies of G5-NH2-TAMRAn resulted in a surprising set of lifetime images.  In 

particular, the observation of both decreasing and increasing lifetimes for a given environmental 

condition as a function of n was not expected.  In addition, the magnitudes of changes seen as a 

function of n for a given control environment was similar to the magnitude of change observed for 

constant n as a function of changing the environment.  This indicates the interpretations of 

fluorescence lifetimes as resulting from changes in biological environment must be approached 

with great caution for stochastic dye-polymer conjugates, particularly if biological fractionation of 

the samples has taken place.  In contrast to the initial hypothesis (H2), the components of a 

stochastic distribution of dye-polymer ratios do not have a similar collective trend in terms of 

environmental lifetime response.  Furthermore, with respect to H3, variation in dye-polymer ratio 

is found to have a similar magnitude of impact on fluorescence lifetime as changes in the biological 

environment. 

Upon testing the three hypotheses, it is clear that caution needs to be taken when using dye-

polymer mixtures to determine cellular uptake and fluorescence lifetime. One good solution for 

achieving linear intensity profiles is the use of large Stokes shift dyes, as discussed by Mier et al.16  
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The strategy of using a stochastic mixture that contains very little of zero dye and one dye on the 

polymer, as delineated by Schroeder et al., can also provide a solution.17  However, many 

scientifically and technologically important dyes (i.e. TAMRA, fluorescein, AlexaFluors, etc.) 

have small Stokes shifts, and dye substitution is not always a favorable option.  Since dye-polymer 

ratio impacts biodistribution and function,9-12, 15-17, 19-27 creation of a high mean stochastic ratio is 

not a general solution to the problem.  In these cases, either direct synthesis of precise dye-polymer 

materials36-38 or physical separation to obtain precise dye:polymer ratios7, 8, 14, 29 is needed for 

quantitative uptake or lifetime studies. 

4.4. Experimental Methods 

Biomedical grade G5 PAMAM dendrimer was purchased from Dendritech Inc. and purified using 

rp-HPLC to give a molecular weight fraction free of trailing generations (G1-G4) as well as G5 

dimers and higher oligomers.28 Trifluoroacetic acid, HPLC grade water, GE PD-10 Sephadex 

columns, and HPLC grade acetonitrile were purchased from Fisher-Scientific and used as received. 

5-carboxy tetramethylrhodamine succinimydyl ester (TAMRA) was purchased from Life 

Technologies. A 500 MHz Varian NMR instrument was used for all 1H and 19F NMR 

measurements. All MALDI-TOF MS measurements were performed on a Bruker Ultraflex III with 

sinapinic acid matrix (Sigma Aldrich) and sodium trifluoroacetate (Fischer Scientific) salt sample 

preparation. Serum-free DMEM (SFM) from life technologies was employed for cell culture of 

HEK293A cells, which were obtained from ATCC. Complete medium was made by adding 50 mL 

of fetal bovine serum (FBS) and 5 mL 100× of penicillin−streptomycin to 500 mL of SFM. 

4.4.1. Conjugation of TAMRA to G5 PAMAM Dendrimer. TAMRA (0.0121 g, 0.023 mmol, 

4.5 equiv) was dissolved in dimethyl sulfoxide (3.0 mL) and added dropwise to a stirred solution 

of G5 PAMAM dendrimer (0.1390 g, 0.0050 mmol, 1.0 equiv) dissolved in water (30.0 mL).  The 

mixture was stirred at 20 °C overnight and purified using a GE PD-10 sephadex column. A pink 

solid was obtained after removal of solvent (75% yield). The product was characterized using 1H 

NMR, UV-Vis absorption and fluorescence spectroscopy, analytical rp-UPLC, and MALDI-TOF 

MS. 

4.4.2. Isolation of Material Containing Precise TAMRA-Dendrimer Ratios. Semi-preparative 

rp-HPLC isolation was carried out on a Waters Delta 600 HPLC. For analysis of the dendrimer 

and conjugates, a C18 silica-based rp-HPLC column (250 x 21.20 mm, 10μm particles) connected 

to a C18 guard column (50 x 21.20 mm) was used. The mobile phase for elution of the conjugates 
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was a linear gradient beginning with 95:5 (v/v) water/acetonitrile and ending with 65:35 (v/v) 

water/acetonitrile over 28 minutes at a flow rate of 12.00 mL/min. Trifluoroacetic acid (TFA) at 

0.10 wt % concentration in both water and acetonitrile was used as a counter ion to make the 

dendrimer surfaces hydrophobic. Elution traces of the dendrimer-ligand conjugate were obtained 

at 210 nm. A concentration of 24 mg/mL per injection was used.  120 fractions of 6 seconds 

duration were collected starting at 9 minutes and 30 seconds. Selection of fractions for combination 

to yield the precise TAMRA:dendrimer ratios was based upon analysis of the chromatogram in 

Origin-Pro. Each isolated combination of fractions was reinjected onto an analytical UPLC to 

determine purity of the sample.  1H NMR spectra are provided in Figure S8. 

4.4.3. Analytical reverse phase Ultra Performance Liquid Chromatography (rp-UPLC).  

Purity of G5-NH2-TAMRAn materials was assessed at 210 nm (dendrimer absorption wavelength) 

using a Waters Acquity UPLC system controlled by Empower 2 software. A C18 silica-based 

column (Phenomenex) was employed with a mobile phase linear gradient beginning with 95:5 

(v/v) water/acetonitrile and ending with 55:45 (v/v) water/acetonitrile over 17 minutes at a flow 

rate of 3.0 mL/min. Trifluoroacetic acid (TFA) at 0.14 wt % concentration in water and acetonitrile 

was used as a counter ion to make the dendrimer surfaces hydrophobic.   

4.4.4. Absorption and Emission Measurements. Fluorescence (Fluoromax-4) and UV-Vis 

(Shimadzu UV-1601) measurements were taken at a concentration of 0.1 mg/mL. For all 

measurements, the concentration of the solutions were 0.1 mg/mL and within an error of ±0.02. 

For the fluorescence measurements an excitation of 530 nm and emission of 580 nm were used 

with a slit width of 2 nm.  

4.4.5. MALDI-TOF-MS Measurements. Three solutions were prepared: 1) 10 mg/mL dendrimer 

in water 2) 20 mg/mL sinapinic acid in 1:1 (v/v) acetonitrile: water and 3) 20 mg/mL sodium 

trifluoroacetate in water. These were then combined in a ratio of 10:2:1 of matrix:dendrimer:salt 

solution.  The plate was spotted with 1 µL volumes of solution and allowed to dry. At least 100 

scans were averaged per measurement and a smoothing factor of 12 channels was employed. 

4.4.6. Cell Culture Materials.  DMEM high glucose with sodium pyruvate and glutamine (Life 

Technologies Inc) was the base media. Complete media was made by adding 50 mL of FBS, 5 mL 

of Non-essential Amino Acids (Thermo Scientific) and 5 mL of penicillin-streptomycin to 500 mL 

DMEM. PBS (1X) without Ca2+ and Mg2+ was obtained from Life Technologies.  Cells were 
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maintained at 37 °C with 5% CO2 in a humidified atmosphere and subcultured by trypsinization 

(Life Technologies). 

4.4.7. Measurement of G5-NH2-TAMRAn Binding and Uptake in HEK293A cells using Flow 

Cytometry. HEK 293 A cells were seeded in 12 well plates (Fisher Scientific, 3.8 cm2) at a density 

of 150,000 cells per well in 1 mL of complete DMEM and incubated overnight at 37 °C with 5% 

CO2. The complete media was removed prior to incubation with G5-NH2-TAMRAn.  The cells 

were then rinsed with 1 mL of PBS, followed by addition of 0.8 mL of SFM. The cells were 

incubated for three hours at 37 C with 0.5 M G5-NH2-TAMRAn (n = 0-4, 5+, 1.5avg) (~5.0 µL 

volume of 2 mg/mL solution added to each well).  Each treatment was run in triplicate, and 4 

independent biological repeats were performed. After incubation with G5-NH2-TAMRAn 

material, the HEK293A cells were rinsed with PBS and harvested for flow cytometry by 

trypsinization. Trypsinization was performed by incubation with 200 µL of trypsin for 2 minutes 

at 37 ºC. After 2 minutes, 0.8 mL cold PBS was added to each well to inhibit the trypsin, and the 

suspensions were then centrifuged for 5 minutes at 2000 rpm. Cell pellets were resuspended in 400 

μL of PBS. Cell fluorescence was measured using a BD C6 Accuri flow cytometer by collecting 

10,000 events per sample. The cells were excited using a 488 nm laser and emission at the 585 ± 

20 nm region was measured. Differences were determined according to a post hoc Games-Howell 

test using predictive analytics SPSS software. This statistical test was chosen because it does not 

assume equal variance, which we deemed most relevant for comparing multiple biological 

replicates of HEK 293A cells (* used in figures indicates a p value  < 0.05).  

4.4.8. Cell Preparation for Confocal and Fluorescence Lifetime Microscopy. HEK 293 A cells 

were seeded in 2 well confocal chambers (Nunc Labtek II, 4 cm2) at a density of  50,000 cells per 

well in 1.5 mL of complete DMEM and incubated overnight at 37 °C with 5% CO2. The complete 

media was removed prior to incubation with G5-NH2-TAMRAn.  The cells were then rinsed with 

1 mL of PBS, followed by addition of 0.5 mL serum free DMEM. Cells were incubated with 1 μM 

G5 TAMRA in serum free DMEM for 3 hours. The cells were then rinsed with PBS three times 

and fixed using 2% paraformaldehyde. The fixed cells were rinsed 3 times with PBS, two drops 

of prolong gold solution containing DAPI was added, and a 1.5 thickness coverslip was placed on 

each sample. 

4.4.9. Confocal Fluorescence Microscopy. Confocal microscopy was performed using Leica SP5 

inverted confocal microscope using a 40x oil immersion objective. The section thickness was set 
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at 1 μm. The excitation wavelength used was 555 nm, and the emission from 585 nm to 700 nm 

was measured.  

4.4.10. Time Domain Fluorescence Lifetime Imaging Microscopy (FLIM) of G5-NH2-

TAMRAn in HEK 293A Cells using a Multi Photon Laser.  Lifetime imaging for HEK293A 

cells was performed using a LEICA inverted SP5 confocal microscope in the multiphoton mode. 

The source was a Mai-Tai laser with a 20 MHz frequency. The excitation wavelength was 850 nm 

with 2.2 W power. A PMT detector and TCSPC counter were used to measure lifetime.  Images 

shown were taken at approximately mid-cell height by first taking an image in the x-z plane and 

using the DAPI signal to estimate cell heights (about 8 μm for the HEK293A cells).  The z position 

was then set to this value, and the x-y plane images shown in Figure 5 were obtained.  Taking 

images too near the confocal chamber or coverslip surface induced low lifetime artifacts.  

Measurements were taken until a maximum of 1000 photons were measured for each pixel. The 

lifetime histograms and exponential fitting were performed using Symphotime software 

(Picoquant Inc).  The FLIM images of cells presented here show the average lifetime per pixel 

calculated using the FastFLIM algorithm in Symphotime. For solution lifetimes, single 

exponential lifetimes were used. It has been reported that the lifetime of TAMRA changes with 

temperature.39 In our experiments, the MP laser could heat samples and change lifetimes. To test 

for this, the lifetimes for free TAMRA and G5-NH2-TAMRA1 were measured using two sequential 

four minute scans (the average time to image a field of cells) to test if heating during image 

acquisition was affecting measured lifetime values.  For free TAMRA, the sequentially measured 

lifetime values were 2.37 and 2.36 ns.  For G5-NH2-TAMRA1 , the values were 2.46 and 2.40 ns. 

These results indicate that change in lifetime due to temperature is not a cause for concern in our 

study.  

4.4.11. Fluorescence Lifetime Imaging Microscopy (FLIM) Measurement of G5-NH2-

TAMRAn lifetime using Single Photon Laser Excitation. Lifetime imaging in solution was 

performed using an Olympus IX-81 time resolved confocal microscope using avalanche 

photodiodes. The source was a SC-400-6-PP supercontinuum laser with 20 MHz frequency. The 

excitation wavelength was 530 nm with 6.0 W power. An APD detector and TCSPC counter were 

used to measure lifetime. The lifetime histograms and exponential fitting were performed using 

ALBA software. Single exponential fitting was performed to obtain solution lifetimes.  The mean 

fluorescence intensity and fluorescence lifetime of each sample was measured. One-way ANOVA 
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followed by Games-Howell post hoc analysis was performed to test if the means were significantly 

different.  

4.4.12. Solution Conditions to Measure Control Fluorescence Lifetimes in FLIM. Control 

measurements in water, 1X PBS, undiluted FBS (Thermo Fisher Scientific), NaCl (137mM), BSA 

(23 mg/mL), glucose (1.25 mg/mL), and ficoll (60 mg/mL) were performed using 200 µM G5-

NH2-TAMRAn. Polyplex solutions were mixed at an N:P of 10:1 and 1:1 at a concentration of 500 

nM G5-NH2-TAMRAn based on published protocols.40  

4.4.13. Preparation of Cell Lysate. HEK 293A cell lysate was prepared by washing a confluent 

plate of cells with 1X PBS. The cells were then treated with 2 mL trypsin for 2 min at 37° C.  The 

trypsinization was stopped by adding 8 mL of complete DMEM. The cells were triturated and 

counted using a hemocytometer. The cells were centrifuged at 1400 g for 2 min and the supernatant 

was removed. The cells were then suspended in DI water such that there were 5 million cells per 

mL and sonicated in a bath sonicator for 15 min. The absence of intact cells was checked using a 

light microscope. For use in experiments, the lysate was diluted to 100,000 cells/mL. This protocol 

was used rather than typical cell lysate protocols in order to avoid detergents, which interfere with 

fluorescence lifetime solution measurements, and to include all cell lipid. 
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Chapter 5.  

Controlling the Double Distribution on a G5 PAMAM Dendrimer 
 

5.1. Introduction 

A large interest in polymer theranostic materials has come about because of a multivalent 

polymer’s ability to easily have multiple copies of small molecules such as drugs, imaging agents, 

and targeting ligands conjugated to it.1-5 A theranostic is a material with the ability to both treat 

(therapeutic) and diagnose (diagnostic) a disease.6-8 A multivalent polymer as a theranostic has the 

potential to provide a higher drug payload and achieve optimal imaging conditions9-12 while 

specifically targeting the intended diseased cell/tissue. This targeting allows for healthy cells to be 

unharmed and reduces negative side effects.13-15  

However, the conjugation of one small molecule to a multivalent polymer leads to a mixture of 

different ratios of small molecule to polymer.16-18 The different ratios of small molecules to the 

polymer leads to differing toxicity, solubility, pharmacokinetics, and biodistribution for each ratio 

in biological applications.17,19,20 The mixture of varying ratios of a small molecule to a polymer 

with many reactive sites is normally well approximated by a Poisson distribution.16 Heterogeneity 

in the sample will also worsen with each small molecule conjugation, meaning more than one 

small molecule conjugation to the polymer will create a larger distribution.17 For instance, in a 

general example of the synthesis of a polymer theranostic with 3 targeting ligands, 4 fluorescent 

dyes, and 5 therapeutic drugs, the resulting distribution is the multiplication of each individual 

Poisson distribution. In the case of attaching 3 targeting ligands, the ratio of 3 targeting ligands to 

the polymer represents 22.7 % of the entire sample from one conjugation. Conjugating an average 

of 4 fluorescent dyes results in only 4.5 % of the entire sample having the desired targeting ligand 

and fluorescent dye ratio. Once the third conjugation of an average of 5 therapeutic drugs is 

considered, only 0.8 % of the entire sample has the desired average of all three small molecules. 

This equates to about 1 out of every 250 particles is the desired theranostic material. Having such 

a large variety of ratios of targeting ligands, drugs, and dyes leads to a variety of different 

biological behaviors. Deciphering which ratios of materials are responsible for each biological 

behavior observed is impossible with such a large distribution of materials. 
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Several synthetic strategies have been attempted in order to decrease the heterogeneity of small 

molecules on the polymer in order to better understand the optimal ratio of small molecules to 

polymer to obtain desired biological behaviors of a theranostic.21-30 These polymer platforms 

include using dendrons and convergent dendrimer synthesis,21-23 fluorescent core dendrimers,25-27 

and using high averages to avoid the largest hydrophobicity differences in the sample.30 Another 

strategy developed by the Banaszak Holl lab uses a divergent dendrimer platform and the isolation 

of precise ratios of a small molecule on the polymer by semi-preparative reverse-phase high 

performance liquid chromatography (rp-HPLC).28,29 Isolating precise ratios of small molecules on 

a generation 5 poly(amidoamine) (G5 PAMAM) dendrimer has been demonstrated for both fully 

acetylated (neutral) and amine terminated (cationic) dendrimers.28,29,31,32 The isolation of a precise 

ratio of fluorophores on an amine terminated dendrimer provides the opportunity for further 

conjugations of drugs or targeting ligands while still maintaining a precise ratio of fluorophores 

on a per particle level. 

The conjugation of a monofluorinated cyclooctyne (MFCO) “click” ligand onto a G5-NH2-

TAMRA1 and G5-NH2-TAMRA2 is reported. The material was fully acetylated to obtain G5-

NHAc-TAMRAm-MFCOn (m = 1, 2) and these materials were isolated by rp-HPLC. Obtaining 

precise ratios of MFCO was attempted for n = 1 - 4 and was characterized by 1H NMR, 19F NMR, 

MALDI-TOF-MS, and rp-UPLC. The MFCO linker provides a systematic ratio change on the 

dendrimer in order to conjugate on drugs or targeting ligands that are azide functionalized to a 

dendrimer with a precise ratio of fluorophores. The advantages and challenges of this particular 

double conjugation strategy are discussed. Other strategies to control the double distribution are 

also discussed as a potential way to control multiple ratios of small molecules on a polymer for 

theranostic applications.  

5.2. Results and Discussion  

A polymer with multiple reaction sites conjugated with a low average of small molecules under 

ideal reaction conditions (high stirring, dilute concentrations, and aiming for a low average of 

small molecules to polymer) will yield a Poisson distribution of small molecule-polymer ratios.  

The Poisson distribution can be resolved into individual ratios of small molecules to polymer using 

semi preparative rp-HPLC. The isolation has been proven to be successful using generation 5 

poly(amidoamine) G5 PAMAM dendrimers and multiple small molecules, including “click” 

chemistry ligands and rhodamine dye (TAMRA) derivatives.28,29,32 The resolved distribution is 
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isolated into each individual ratio as shown by the ultra-performance liquid chromatography 

(UPLC) trace indicating only one peak in each sample after isolation. The isolation of different 

ratios of TAMRA to G5 PAMAM dendrimer has been successful for both fully acetylated and 

amine terminated dendrimer materials.29,31 The fully acetylated materials do not have an ability to 

be further functionalized, but the amine terminated precise ratio material can be used for second 

ligand conjugation. The second conjugation would result in another Poisson distribution.  

 Using amine terminated G5 PAMAM 

dendrimer conjugates with precise ratios 

of m=1 and m=2 of TAMRA dye, 

MFCO-N-hydroxysuccinimide ester 

(MFCO) was conjugated to the 

remaining primary amines by EDC/NHS 

coupling (Figure 5.1). Upon conjugation 

and full acetylation of the G5-

TAMRAm-MFCOn material, a 

distribution was observed by rp-HPLC 

(Figure 5.2). Since the starting material for both isolations was one single peak before conjugation, 

the presence of multiple resolved peaks indicates a successful conjugation of the MFCO linker to 

precise dye-dendrimer material. The ratio of MFCO to G5-NHAc-TAMRAm results in a retention 

Figure 5.1. Conjugation of G5-NH2-TAMRAm 

(m=1,2) with a monofluorinated cyclooctyne 

(MFCO) ligand and subsequent full acetylation.  

Figure 5.2. rp-HPLC isolation of a) G5-NHAc-TAMRAm=1-MFCOn and b) G5-NHAc-

TAMRAm=2-MFCOn. For m=1, n=0 (red), n=1 (orange), n=2 (green), n=3 (blue), n=4 (violet), 

and n=5+ (purple). For m=2, n=0 (orange), n=1 (yellow), n=2 (green), n=3 (blue), n=4+ (purple). 
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time shift in the HPLC chromatogram taken at 210 nm (absorption wavelength of the dendrimer). 

Individual fractions were collected and recombined as shown by the colored bars in Figure 5.2a 

and Figure 5.2b chromatograms. Figure 5.2a is the chromatogram of the G5-NHAc-TAMRA1-

MFCOn case, and Figure 5.2b is the chromatogram for the G5-NHAc-TAMRA2-MFCOm material.  

In order to ensure that there was still a 

precise ratio of TAMRA to dendrimer, 

fluorescence emission spectra were taken 

for the m=1 and n=1-3 materials G5-

NHAc-TAMRAm-MFCOn materials 

(Figure 5.3). At the same dendrimer 

concentration, all materials show the 

similar emission intensity, proving that 

the same ratio of TAMRA was present on 

all MFCO samples. However, this 

measurement does not help determine the 

ratio of MFCO linkers on the G5 

PAMAM material, nor does it determine 

the homogeneity of MFCO-dendrimer 

ratio for each sample. 

 1H NMR spectroscopy and 19F NMR spectroscopy were attempted for all the samples isolated to 

determine ratios of MFCO and TAMRA on the G5-NHAc-TAMRAm-MFCOn material. While 

proton NMR suffers from signal to noise issues when attempting to determine ratios of small 

molecules to dendrimer, typically the integrated ratio is close to the desired ratio.29,32 The G5-

NHAc-TAMRA1-MFCOn materials still retain approximately 1 TAMRA per dendrimer material 

after the second conjugation and isolation, 0.7-1.1 for all m by 1H NMR (Table 5.1). In order to 

determine the ratio of MFCO to G5, 19F NMR can be used. The MFCO small molecule proton 

peaks are in close proximity to the dendrimer peaks, and therefore, integration of these small 

molecules to determine ratio would be inaccurate. Using 19F NMR has been used previously to 

determine ratio of MFCO on a dendrimer.29 In these samples, however, the fluorine signal was not 

large enough in order to measure the ratio of MFCO to G5 PAMAM. Only the n = 5+ sample 

Figure 5.3. Fluorescence emission at 0.1mg/mL 

for G5-NHAc-TAMRA1-MFCOn materials. All 

samples show similar fluorescence emission for 

m=1 and n=1, 2, and 3. 
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produces a fluorine signal. All other ratios did not have any fluorine signal in the m=1 samples, 

and therefore, a ratio of MFCO could be determined. 

For the m = 2 material after the rp-HPLC isolation, the G5-NHAc-TAMRA2-MFCOn material has 

TAMRA averages of 8.2, 3.6, 2.9, 12.5, and 2.4 for n = 0-3, 4+.  The material should have had 

approximately 2 TAMRAs per dendrimer particle, so the number of TAMRAs per dendrimer 

particle cannot be defined as approximately the same for all n ratios isolated. The reason for the 

drastic difference in TAMRA ratio is unknown since the starting material had a precise ratio of 2 

TAMRAs per dendrimer particle. The 19F NMR spectra of m = 2 samples were concentrated 

enough to see a fluorine signal from the MFCO linker for all n ratios. The ratios determined by 

NMR, however, are not consistent with the predicted ratios as determined by UPLC retention time 

(Figure 5.4). For m = 0-3, 4+, the MFCO ratios are 0.0, 1.0, 2.1, 0.6, and 8.9 as determined by 19F 

NMR peak areas.29 While m = 0, 1, 2, and 4+ are consistent with the increased HPLC retention 

time, the m = 3 sample decreases in ratio as measured by 19F NMR from unknown reasons. Because 

of the signal to noise issues between polymer and small molecules and inconsistencies in signal in 

both proton and fluorine NMR integrations for all samples, another analytical technique must be 

used in order to determine accurate 

ratios of MFCO to G5 PAMAM. 

Analytical UPLC chromatograms 

were obtained in order to determine 

peak shape and purity of both the m 

=1 and m = 2 rp-HPLC isolations 

(Figure 5.4). There is an increase in 

retention time with increasing ratio of 

MFCO. However, the peak shape 

does not resemble typical 

conjugations of a small molecule to a 

G5 PAMAM dendrimer. The 

observed peak purity has also 

decreased compared to typical 

isolated materials with one 

conjugation. All isolated materials 

Figure 5.4. rp-UPLC reinjection of isolated materials to 

determine purity. a) m=1, n=0 (red), n=1 (orange), n=2 

(green), n=3 (blue), n=4 (violet), and n=5+ (purple). b) 

m=2, n=0 (orange), n=1 (yellow), n=2 (green), n=3 (blue), 

n=4+ (purple). 
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have at least 2 peaks at varying ratios in any one sample. This is due to the poor resolution and 

lack of baseline resolution between each ratio. Overlapping peaks result in multiple ratios of 

MFCO being isolated out together. Typical one conjugation isolations have the ability to isolate 

out with over 95% purity ratios of n=1-4 to the dendrimer. While the samples are not as pure as a 

single isolation, all MFCO ratio materials isolated show a difference in retention time, and have 

an ability to observe the purity and identify the ratio of MFCO linkers by this technique.  

MALDI-TOF-MS was taken for all samples (Figure 5.5). The width of the molecular weight 

distribution of the G5 PAMAM polymer ranges from ~21,000 to 28,000 g/mol. Therefore, the 

difference in molecular weight from the MFCO linker (286 g/mol) is smaller than the molecular 

weight distribution of the dendrimer material and cannot accurately determine the number of 

ligands present on each polymer particle. As shown in Figure 5.5 (and Table 5.1), the molecular 

weight obtained from MALDI-TOF-MS does not show an increase of 286 g/mol for each ratio. It 

does not even show a general increase in molecular weight. For example going from a theoretical 

ratio of n = 2 to n = 3 MFCO linkers on the G5-NHAc-TAMRA1-MFCOn material, the m/z ratio 

decreases from 33,500 g/mol to 33,100 g/mol. The breadth of the molecular weight distribution of 

Figure 5.5. MALDI-TOF-MS spectra of precise ratio samples for G5-NHAc-TAMRAm-

MFCOn a) m=1 and b) m=2. For m=1, n=0 (red), n=1 (orange), n=2 (green), n=3 (blue), n=4 

(violet), and n=5+ (purple). For m=2, n=0 (orange), n=1 (yellow), n=2 (green), n=3 (blue), 

n=4+ (purple). 
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the G5 PAMAM limits the accuracy for one isolation as shown in Chapters 2 and 4, and the 

accuracy only worsens with the second isolation. Rp-UPLC is the best analytical technique to 

determine purity and ratio of the samples compared to MALDI-TOF-MS, 1H NMR, and 19F NMR 

for the double conjugation materials. 

  
ave # 

TAMRA 
Fluorine Signal 

Ratio 
m/z MALDI 

max 

G5-NHAc-TAMRA1-MFCO0 1 0 33,000 

G5-NHAc-TAMRA1-MFCO1 0.8 0 33,500 

G5-NHAc-TAMRA1-MFCO2 1.1 0 33,100 

G5-NHAc-TAMRA1-MFCO3 1 0 35,000 

G5-NHAc-TAMRA1-MFCO4 0.9 0 31,600 

G5-NHAc-TAMRA1-MFCO5+ 0.7 
1375 

30,000 
(raw intensity) 

G5-NHAc-TAMRA2-MFCO0 8.2 0 29,700 

G5-NHAc-TAMRA2-MFCO1 3.6 1.0 (set) 29,700 

G5-NHAc-TAMRA2-MFCO2 2.9 2.1 30,400 

G5-NHAc-TAMRA2-MFCO3 12.5 0.6 27,800 

G5-NHAc-TAMRA2-MFCO4+ 2.4 8.9 29,600 

 

 

5.3. Conclusions 

A double Poisson distribution of ligands is a major issue in developing polymer theranostic 

materials. A way to attempt to control both ratios of dyes and targeting agents/drugs on a polymer 

is to deconvolute the ratio of ligands from the molecular weight distribution of the polymer. This 

has been done using a G5 PAMAM dendrimer polymer platform. It has been shown that isolation 

of G5-NH2-TAMRAm for m=1 and m=2 materials have the ability to be further functionalized with 

a second conjugation of the “click” ligand MFCO. However, due to lack of characterization and 

low yield, it was not definitively proven that precise ratios of TAMRA and MFCO were obtained 

on a G5 PAMAM dendrimer from rp-HPLC isolations. The HPLC isolation technique shows great 

Table 5.1. Characterization summary for G5-NHAc-TAMRAn-MFCOm material. 
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promise for the one conjugation materials,29,31,32 but the lack of yield with the current system does 

not allow for significant amounts of materials to be obtained for the second conjugation isolation. 

New strategies must be attempted if the current rp-HPLC isolation methods are to be used. One 

way to obtain precise ratios of both dye and targeting agent/drug is to synthesize one small 

molecule that is both fluorescent and targeting/therapeutic. The fluorescence targeting/therapeutic 

molecule can be functionalized with an azide or alkyne in order to obtain precise ratios of 

fluorophore and targeting agent/drug on the dendrimer. This method is currently being explored 

for a fluorescent targeting molecules using a coumarin-azide dye conjugated to folic acid. The 

conjugation of the folic acid to the coumarin will allow for targeting of cancer tissue that 

overexpresses the folate receptor. The material also has an azide which can be clicked onto G5-

NHAc-MFCOn material to provide fluorescence. The method of clicking onto G5-NHAc-MFCOn 

material has already proven to be a successful method to obtain precise ratios of a small molecule 

to a dendrimer.28,29 The small molecule synthesis strategy is limited because it does not allow to 

keep one ratio of dye while systematically altering the targeting agent or drug ratio on the 

dendrimer. Since it is known that the fluorophore ratio has an impact on the dendrimer’s biological 

and photophysical behavior,31 it would be ideal to develop a strategy which allows for a single 

ratio of fluorophore while altering the targeting agent or drug ratio. 

A second strategy in order to overcome the first strategy’s major obstacle is to use click chemistry 

functionalized dendrons. A G3 bis MPA azide dendron can be purchased from Polymer Factory 

which has 4 hydroxy surface groups and an azide at the focal point. The 4 surface groups can be 

functionalized with one dye and 1.0, 2.0, or 3.0 equivalents of a targeting agent or drug. A 

distribution will not occur in the dendron case due to the low number of reactive sites. The dendron 

can then be clicked to G5-NHAc-MFCOm material. The dendron-dendrimer strategy provides an 

opportunity to determine how the ratio of increasing targeting agents and drugs alters the 

polymer’s behavior without the typical convolution of changing fluorophore ratio as well. 

5.4. Experimental Methods 

Biomedical grade G5 PAMAM dendrimer was purchased from Dendritech Inc. and purified using 

rp-HPLC to give a molecular weight fraction free of trailing generations (G1-G4) as well as G5 

dimers and higher oligomers.33 Trifluoroacetic acid, HPLC grade water, GE PD-10 Sephadex 

columns, and HPLC grade acetonitrile were purchased from Fisher-Scientific and used as received. 

5-carboxy tetramethylrhodamine succinimydyl ester (TAMRA) was purchased from Life 
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Technologies. A 700 MHz Varian NMR instrument was used for all 1H NMR measurements and 

a 500MHz Varian NMR instrument was used for all 19F NMR measurements. All MALDI-TOF 

MS measurements were performed on a Bruker Ultraflex III with sinapinic acid matrix (Sigma 

Aldrich) and sodium trifluoroacetate (Fischer Scientific) salt sample preparation. A Water Acuity 

system with a C18 silica-based UPLC column (Agilent) was employed for all rp-UPLC 

measurements. Conjugation and isolation of precise ratios of G5-NH2-TAMRAn were prepared 

and obtained using previous published protocols.31 

5.4.1. Conjugation of MFCO to G5-NH2-TAMRAm. In a 25 mL round bottom flask covered in 

aluminum foil, the G5-NH2-TAMRAn (31.6mg, 1.1x10-3 mmol, 1.0 equiv) material was dissolved 

in 7.10 mL of water. In another vial, MFCO-N-hydroxysuccinimide (0.9 mg, 2.2x10-3 mmol, 2.0 

equiv) was dissolved in 0.22 mL of acetonitrile. The MFCO solution was added dropwise to the 

dendrimer solution with the solution stirring rapidly. The solution stirred in the dark at 25 ◦C 

overnight. The solvent was removed, and the solid was redissolved in 3.0 mL of water. The 

solution was transferred to a 10,000 MW cutoff Slide-A-Lyzer dialysis cassette. The solution was 

dialyzed in the dark through 8 rounds of water for purification. The solvent was removed via 

lyophilization. A pink solid was obtained at 67% yield. 

5.4.2. Full Acetylation of G5-NH2-TAMRAm-MFCOn. In a 25mL round bottom flask covered 

in aluminum foil, the G5-NH2-TAMRAn-MFCOm was dissolved in 3.8 mL of methanol. 0.01 mL 

of acetic anhydride and 0.02 mL of trimethylamine was added to the round bottom flask, and the 

solution stirred for 4 hours 25 ◦C. The methanol was removed by a rotor evaporator, and the solid 

was redissolved in 3 mL of water. The solution was transferred to a 10,000 MW cutoff Slide-A-

Lyzer dialysis cassette. The solution was dialyzed in the dark through 8 rounds of water for 

purification. The solvent was removed via lyophilization. A pink solid was obtained at 87% yield. 

5.4.3 Isolation of G5-NHAc-TAMRAm-MFCOn. Semi-preparative rp-HPLC isolation was 

carried out on a Waters Delta 600 HPLC. For analysis of the dendrimer and conjugates, a C18 

silica-based rp-HPLC column (250 x 21.20 mm, 10μm particles) connected to a C18 guard column 

(50 x 21.20 mm) was used. The mobile phase for elution of the conjugates was a linear gradient 

beginning with 95:5 (v/v) water/acetonitrile and ending with 65:35 (v/v) water/acetonitrile over 28 

minutes at a flow rate of 12.00 mL/min. Trifluoroacetic acid (TFA) at 0.10 wt % concentration in 

both water and acetonitrile was used as a counter ion to make the dendrimer surfaces hydrophobic. 

Elution traces of the dendrimer-ligand conjugate were obtained at 210 nm. 120 fractions of 6 
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seconds duration were collected starting at 10 minutes. Selection of fractions for combination to 

yield the precise MFCO:TAMRAn-dendrimer ratios was based upon analysis of the chromatogram 

in Origin-Pro. Each isolated combination of fractions was reinjected onto an analytical UPLC to 

determine purity of the sample.   

5.4.4. Analytical reverse-phase Ultra-high Performance Liquid Chromatography (rp-

UPLC).  A linear gradient mobile phase beginning with 95:5 (v/v) water/acetonitrile and ending 

with 55:45 (v/v) water/acetonitrile over 22 minutes at a flow rate of 2.0mL/min was used. The 

water/acetonitrile mixture contained 0.10 wt % trifluoroacetic acid (TFA).  Elution traces were 

measured at 210 nm (dendrimer).  The instrument was also controlled by Empower 2 software.  

5.4.5. Emission Measurements. Fluorescence (Fluoromax-4) measurements were taken at a 

concentration of 0.1 mg/mL. For all measurements, the concentration of the solutions were 0.1 

mg/mL and within an error of ±0.02. For the fluorescence measurements an excitation of 530 nm 

and emission of 580 nm were used with a slit width of 2 nm.  

5.4.6. MALDI-TOF-MS Measurements. Two solutions were prepared: 1) 1 mg/mL dendrimer 

in water and 2) 10 mg/mL DHB in 1:1 (v/v) acetonitrile: water. These were then combined in a 

ratio of 10:1 of matrix:dendrimer solution.  The plate was spotted with 1 µL volumes of solution 

and allowed to dry. At least 100 scans were averaged per measurement. 
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Chapter 6.  

Conclusions and Future Outlook 

 

6.1 Summary of Work and Future Directions 

Multivalent polymers are materials of interest for many biological and biomedical applications, 

including the development of novel imaging agents and theranostics.1,2 Imaging agents provide an 

ability to noninvasively explore disease pathways,3 and theranostic materials have the capability 

to both detect and treat a disease. Multivalent polymers can have multiple copies of both an 

imaging agent and a therapeutic attached in order to achieve a high drug load for therapeutic 

capabilities and high sensitivity for imaging agents. With the ability to easily tune the number of 

small molecules attached, as well as the size, surface functionality, and structure of the polymer, 

these multivalent materials have the potential to create even more effective imaging agents and 

theranostics for the biomedical field.4,5 Despite this promise, there are two major obstacles to 

obtaining an ideal polymer imaging agent or theranostic device: 1) the internal molecular weight 

distribution of the polymer and 2) the distribution of ratios of small molecules attached to the 

polymer.6 

Overcoming the distribution of different ratios of small molecules, such as fluorophores, targeting 

agents, and drugs has been a major synthetic challenge in the development of multivalent polymers 

for the biomedical field.7,8 The large distribution in the degree of hydrophobicity on a polymer can 

cause a variety of different biological behaviors.6,9,10 The distribution of fluorophores on a polymer 

has the complication of a large difference in hydrophobicity and also a large difference in local 

fluorophore concentration. The difference in fluorophore concentration on a polymer can lead to 

a change in photophysical effects of the fluorophore.11-13 While many efforts have been put forth 

to synthesize multivalent polymers with a controlled number of fluorophores,14-18 no previous 

studies have shown the ability to synthesize, characterize, and determine the photophysical and 

biological properties of a multivalent polymer with a systematically varied fluorophore  polymer 

ratio. 
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Precise fluorophore-polymer ratios have been obtained for G3 and G5 PAMAM dendrimers by 

semi-preparative reverse phase high performance liquid chromatography (semi-prep rp-

HPLC).19,20 PAMAM dendrimers were chosen as the polymer platform due to their narrow 

molecular weight distribution as compared to other polymers of their size. A semi-prep rp-HPLC 

method has also been developed in order to separate out small and large molecular weight defects 

from the desired G3 and G5 PAMAM monomer material and achieves an even smaller molecular 

weight distribution of the starting polymer.21 Two strategies were employed to obtain precise 

ratios, by either direct conjugation of the fluorophore to the dendrimer or by isolating precise ratios 

of click ligands and further functionalizing with a click functionalized fluorophore. Precise ratios 

of TAMRA dye were obtained on both fully acetylated G5 PAMAM and amine terminated G3 and 

G5 PAMAM dendrimers. All precise ratio materials have shown a difference in fluorescence 

emission intensity, proving that more fluorophores do not provide more fluorescence intensity. 

Differences in biological behavior have been observed with the addition of fluorophores onto 

multivalent polymers at different ratios.12,22-25 However, the materials used to observe biological 

behaviors in past studies have distributions in them, so the exact ratio, or ratios, responsible for 

the observed difference has been unknown. The amine terminated G5 PAMAM precise ratio 

TAMRA materials were used in HEK 293A cells to determine fluorophore ratio effects on cellular 

uptake and intracellular fluorescence lifetime. The cell uptake was shown to increase with 

increasing ratio of TAMRA. The increased cellular uptake conclusion was only obtained after 

“correcting” for the difference in fluorescence intensity of the ratios at the same concentration. 

The incorrect conclusion of less uptake with increasing TAMRA ratio would have been determined 

if the fluorescence correction was not taken into account. The fluorescence lifetime differences 

were consistent with environmental changes, indicating that the materials may be in different 

environmental conditions within a cell. 

Since the precise ratio of fluorophore to polymer has shown to have photophysical and biological 

differences based on the ratio, this control must be taken into account when developing materials 

for diagnostics and therapeutics. An attempt to control both the fluorophore ratio and a targeting 

ligand/therapeutic has been shown in this thesis. However an inability to appropriately scale the 

reaction and isolation prevents adequate characterization of material with more than one precise 

ratio. Without the characterization, the material could not be further functionalized with a drug or 

targeting ligand. Since Chapter 5 was not able to successfully prove the isolation of precise ratios 
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for 2 different small molecules on a polymer, another strategy must be attempted in order to obtain 

precise ratios of both a fluorophore and a targeting agent or drug. One strategy with the ability to 

be scaled using the current methods of rp-HPLC isolation include synthesizing a fluorescent 

targeting ligand or fluorescent drug with an azide functionality to conjugate to precise ratios of a 

click ligand on a G5 PAMAM dendrimer. Another strategy includes conjugating an azide 

functionalized dendron with dyes and targeting ligands/drugs to precise ratios of a click ligand on 

a G5 PAMAM dendrimer.  

The synthesis, photophysical characterization, and biological application of PAMAM dendrimers 

containing precise fluorophore-polymer ratios has been presented. The precise ratio materials have 

allowed for a better understanding of the dependence of photophysical properties on fluorophore-

polymer ratio as well as the impact of the related changes in hydrophobicity on biological behavior.  

Using controlled ratios of TAMRA on a G5 PAMAM dendrimer, it was observed that more than 

2 hydrophobic molecules on a hydrophilic polymer increases the amount of cellular uptake. The 

controlled ratios of TAMRA on a G5 PAMAM dendrimer also showed that the fluorescence 

lifetime of the fluorophore changes due to both ratio and environment. The change in lifetime 

based on ratio is roughly similar in magnitude to the environmental changes. Overall, using precise 

ratios of fluorophores on a polymer has provided a new understanding of fluorescence properties, 

such as fluorescence emission and lifetime, and cellular uptake based on hydrophobicity ratio, 

proving there is a need to control the number of hydrophobic small molecules on a polymer in 

polymer imaging agent and theranostic development. 
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Appendix A.  

Isolation and Characterization of Precise Dye-Dendrimer Ratios 

Supplemental Information 

Table A.1. Characterization of precisely defined G5-Ac-TAMRAn (n = 1 – 3, 3+). 

# 

TAMRA 

dyes per 

G5 

Yield 

(mg) 

% Yield 

(determined 

by theoretical 

Poisson 

Distribution) 

% 

Separation 

Yield (by 

mass of 

material 

placed on 

column) 

% Yield 

(total 

mass 

from 

starting 

materials) 

UPLC 

Average 

1H 

NMR 

Ratio 

MALDI-

TOF-MS 

(g/mol) 

1 11.7 40 15 7 1 0.7 28800 

2 6.9 43 9 4 2 1.6 29600 

3 2.1 36 3 1 3 3.1 31000 

3+ 2.5 >95  3 2 5.1 4.4 32300 

 

Table A.2. Characterization of precisely defined G5-Ac-FCn (n = 1 – 4). 

# Fluorescein 

Dyes per G5 

% 

Yield 

1H NMR 

Average 

UPLC 

Average 

19F NMR 

Ratio 

MALDI-TOF-MS 

(g/mol) 

1 55 1.2 0.9 0.8 28,300 

2 57 1.8 1.5 1.6 29,900 

3 48  3.3 2.7 2.9 30,600 

4 51  3.0 3.5 4 (Set) 30,800 

 

Table A.3. Optical properties of precisely defined G5-Ac-FCn (n = 1 – 4).  Extinction coefficients 

and quantum yield values calculated on per particle basis. Quantum Yield by Joseph C. Furgal. 

# Fluorescein Dyes 

per G5 ε (M-1cm-1) 

Fluorescence 

Ratio 

Quantum 

Yield 

1 5.40E+05 1.0 (Set) 0.21 

2 1.00E+06 1.5 0.20 

3 1.20E+06 1.5 0.13 

4 7.00E+06 1.3 0.14 
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Table A.4. Optical Properties of precisely defined G5-Ac-TAMRAn (n = 1 – 3, 3+). Quantum 

Yield by Joseph C. Furgal. 

# TAMRA 

Dyes per G5 

Fluorescence 

Ratio 

Quantum 

Yield 

1  1.0 (Set) 0.14 

2 0.7  0.06 

3 0.6  0.04 

3+ 0.5  0.04 

 

Figure A.1. 19F NMR spectra (DMSO-d6) of pre and post-click materials for the small molecule 

MFCO and MFCO-Fluorescein. 

 

Figure A.2. 19F NMR (1:1 DMSO-d6:D2O) spectra of the addition of G5 PAMAM dendrimer to 

the post clicked small molecule material. 
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Figure A.3. MALDI-TOF-MS spectra for a) G5-Ac-FCn (n = 1 – 4) and b) G5-Ac-TAMRAn (n = 

1-3, 3+).    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.4. MALDI-TOF-MS spectra for G5-NH2 PAMAM Dendrimer. 
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Appendix B.  

Generation 3 PAMAM Dendrimer TAMRA Conjugates Containing Precise 

Dye-Dendrimer Ratios Supplemental Information 

Table B.1. MALDI-TOF-MS summary of G3-NH2 samples from Scheme 3.1a. 

G3-NH2 Sample Average MW m/z Ratio 

Trailing Generation G2 (Purple) 3550 

G3 Monomer (Red) 6850 

G3-G3 Dimer (Blue) 13100 

 

Table B.2. Summary of G3m-TAMRAn samples from Scheme 3.2d. 

  

Yield 

(mg) 

Average 

MW 

from m/z 

Ratio 

Fluorescence 

Ratio 

Avg Number 

of Dyes 

Proton NMR 

G3m-(TAMRA)3.8(AVG)-NH2 - - 0.07 3.8 

G3m-(TAMRA)1-NH2 2.61 7190 1.00 (defined) 0.8 

G3m-(TAMRA)2a-NH2 2.93 7620 0.26 1.9 

G3m-(TAMRA)2b-NH2 0.94 7650 0.17 2.0 

G3m-(TAMRA)3-NH2 6.70 7980 0.07 2.9 

G3m-(TAMRA)4+-NH2 8.15 - 0.01 6.0 

 

Table B.3. Summary of G3d-TAMRAn samples from Scheme 3.2b. 

  
Yield 

(mg) 

MW 

from m/z  

Ratio Fluorescence Ratio 

Avg Number 

of Dyes 

Proton NMR 

G3d-(TAMRA)2.2(AVG)-NH2 - - 0.63 2.2 

G3d-(TAMRA)1-NH2 1.69 7180 1.00 (defined) 0.8 

G3d-(TAMRA)2-NH2 0.59 7610 0.21 2.4 

G3d-(TAMRA)3-NH2 1.72 8050 0.12 3.4 

G3d-(TAMRA)4+-NH2 0.42 - 0.07 4.6 
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Figure B.1. A stacked plot of MALDI-TOF-MS spectra for G3d-NH2-TAMRA2.2(avg) (black) and 

G3d-NH2-TAMRAn (n = 1, 2, 3, 4+) conjugates from Scheme 3.2b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.2. a) Absorption and b) emission spectra of G3d-TAMRAn-NH2 (n = 1, 2, 3, 4+) 

conjugates from Scheme 3.2b at 1 x 10-5 M; 1 TAMRA (red), 2 (orange), 3 (blue), 4+ (purple), and 

average (dashed black). c) Absorbance of TAMRA n=1, 2, and 3 at a concentration of 3 x 10-5 M, 

and the absorbance traces of d) n=3 (blue) and an equimolar mixture of n=1 and n=2 (black).  
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Figure B.3. Theoretical Fluorescence of Stochastic Samples of G3 PAMAM Dendrimer TAMRA 

Conjugates Based on Precise Ratio Sample Fluorescence Measurements at 0.1mg/mL. 
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Appendix C.  

Fluorophore-Dendrimer Ratio Impacts Cellular Uptake and Intracellular 

Fluorescence Lifetime Supplemental Information 

 

Table C.1. Characterization summary for G5-NH2-TAMRAn material. 

 

  

Yield 

(mg) 

MALDI-

TOF-MS 

m/z ratio 

% Yield 
Equivalents 

of TFA 

Average Number of Dyes 

UPLC 
Proton 

NMR 

G5-

(TAMRA)1.5(AVG)-

NH2 

121.0 27500 86 0.32 1.5 5.9 

G5-NH2-

(TAMRA)0 
1.0 24600 27* 0.79 0.0 0.0 

G5-NH2-

(TAMRA)1 
5.2 24300 21* 0.05 1.0 0.9 

G5-NH2-

(TAMRA)2 
2.5 25900 28* 0.20 2.0 1.8 

G5-NH2-

(TAMRA)3 
3.5 26400 23* 5.24 3.0 3.3 

G5-NH2-

(TAMRA)4 
4.6 26800 23* 5.90 4.0 4.5 

G5-NH2-

(TAMRA)5+ 
15.3 28900 23* 1.35 6.8 6.9 

* % Yield calculated based on fractional amount of each species present in G5-NH2-(TAMRA)1.5AVG 

as determined by peak fitting the rp-UPLC trace. 
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Table C.2. Fluorescence lifetime for solutions that mimic cell conditions.  All values are in ns 

with standard deviations obtained from at least three independent measurements given in 

parentheses.  The data corresponds to Figures 4.1 and 4.6. Data taken with Sriram Vaidyanathan. 

 

  water FBS PBS NaCl ficoll BSA glucos

e 

DCS 

Cy3  0.61 

(0.04) 

- - - - - - - 

TAMRA 2.46 

(0.04) 

- - - - - - - 

G5T1.5avg 1.92 

(0.12) 

2.5 

(0.08) 

2.24 

(0.04) 

2.35 

(0.03) 

2.32 

(0.01) 

2.21 

(0.08) 

1.87 

(0.04) 

2.51 

(0.03) 

G5T1 2.32 

(0.15) 

1.71 

(0.08) 

2.18 

(0.05) 

2.22 

(0.02) 

2.12 

(0.04) 

1.92 

(0.08) 

1.81 

(0.06) 

1.86 

(0.04) 

G5T2 1.78 

(0.11) 

1.77 

(0.05) 

1.66 

(0.01) 

1.66 

(0.07) 

1.59 

(0.07) 

1.82 

(0.11) 

1.62 

(0.03) 

1.88 

(0.11) 

G5T3 1.51 

(0.03) 

1.56 

(0.11) 

1.6 

(0.03) 

1.58 

(0.06) 

1.56 

(0.05) 

1.5 

(0.03) 

1.42 

(0.06) 

1.82 

(0.13) 

G5T4 1.70 

(0.05) 

1.72 

(0.14) 

1.48 

(0.04) 

1.43 

(0.04) 

1.4 

(0.02) 

1.45 

(0.16) 
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Figure C.1. MALDI-TOF-MS spectra of G5-NH2-TAMRAn materials.  Numbers for m/z ratios 

for each sample are reported in Table C.1. 
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Figure C.2. Fluorescence emission intensities of 0.1 mg/mL samples of G5-NH2-TAMRAn (n=1, 

2, 3, 4, 5+, and 1.5avg) for the various control solutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.3. Fluorescence emission spectra of G5-NH2-TAMRAn in solution with various controls 

in comparison to materials in aqueous solution. PBS, FBS, NaCl, DNA, BSA, and ficoll show 

similar fluorescence intensity ratios to those obtained in water (Figure 4.1c). n=1 (orange), n=2 

(yellow), n=3 (green), n=4 (blue), n=5+ (purple), and n=1.5avg (black).  
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Figure C.4. FLIM images of HEK293A cells from Figure 4.5 with a) G5-NH2-TAMRA1 b) G5-

NH2-TAMRA2 c) G5-NH2-TAMRA3 d) G5-NH2-TAMRA4 e) G5-NH2-TAMRA5+ f) G5-NH2-

TAMRA1.5(avg) after an incubation of 3 hours (40x objective, 6.5 zoom).  The images are lifetime 

color coded with high to low lifetimes going from red (2.0 ns) to blue (0.5 ns).  All samples show 

more intense fluorescence in punctate spots.  Scale bar is 20 m. Data taken by Sriram 

Vaidyanathan. 

 

     

 

 

 

 

 

 

 

 

 

Figure C.5. Solution fluorescence lifetime controls for cell data comparing aqueous fluorescence 

lifetimes to lifetimes of materials in buffers at a pH = 3 and pH = 5. Data taken with Sriram 

Vaidyanathan. 
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Figure C.6. Fluorescence lifetime of G5-NH2-TAMRAn:DNA polyplexes in aqueous solution. 

Data taken with Sriram Vaidyanathan. 

  

   
  

 

 

 

 

 

 

 

 

 

 

 

 

 


