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CHAPTER I

Introduction

1.1 Background and motivation

The aim of this thesis is to relate the central derivatives of Rankin-Selberg L-

functions to heights of algebraic cycles on varieties related to modular curves. Mo-

tivating our work is the formula of Gross and Zagier, which we now recall.

1.1.1 The Gross-Zagier formula

Let f be a normalized newform of weight 2 and level Γ0pNq. Let K be an

imaginary quadratic field with odd discriminant D, H its Hilbert class field, and

χ : GalpH{Kq Ñ Q̄ˆ a character. The theta series

Θχ “
ÿ

aĂOK

χpaqqNmpaq

attached to χ is a weight 1 modular form, and we can form the Rankin-Selberg con-

volution Lpf, χ, sq :“ Lpf,Θχ, sq. Gross and Zagier assume the Heegner hypothesis:

every prime dividing N splits in K. This forces the sign of the functional equation

for Lpf, χ, sq to be ´1, and hence forces Lpf, χ, sq to vanish at the central point

s “ 1.

On the other hand, the Heegner hypothesis guarantees that there exists a cyclic

N -isogeny φ : A Ñ A1 between two elliptic curves A,A1 both having complex mul-

tiplication by OK . Any such φ determines a point y on the modular curve X0pNq

1
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parameterizing cyclic N -isogenies of elliptic curves. Since φ is defined over H, this

point is H-rational, i.e. y P X0pNqpHq.

Using the Abel-Jacobi map

X0pNq Ñ J0pNq “ Pic0
pX0pNqq

y ÞÑ c :“ rys ´ r8s,

we obtain a point c P J0pNqpHq in the Mordell-Weil group of the Jacobian of X0pNq

over H. As the actions of GalpH{Kq and the Hecke algebra T on J0pNq commute

with each other, we may consider the pf, χq-isotypic component cf,χ P J0pNq b C of

c.

By the Mordell-Weil theorem, J0pNqpHq is a finitely generated abelian group. It

is endowed with a symmetric bilinear pairing

x , yNT : J0pNqpHq ˆ J0pNqpHq Ñ R

called the Néron-Tate height pairing. The associated quadratic form on J0pNqpHqbR

is positive definite, so P P J0pNqpHq is torsion if and only if xP, P yNT “ 0. We extend

this pairing to a Hermitian pairing on J0pNqpHq bC in order to compute the height

of cf,χ.

Theorem I.1 (Gross-Zagier [GZ]). There is an explicit non-zero constant κ “

κpf,Kq such that

L1pf, χ, 1q “ κ ¨ xcf,χ, cf,χyNT.

This formula gives a remarkable connection between the analytic realm of auto-

morphic L-functions and the arithmetic of modular curves. It is also a key ingredient

in the proof of many cases of the Birch and Swinnerton-Dyer conjecture for elliptic
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curves over Q, a geometric conjecture whose statement makes no mention of modular

forms at all.

To state this application of the Gross-Zagier formula, let us assume for simplicity

that f has rational Hecke eigenvalues. Then there is an elliptic curve Ef{Q which

is quotient of J0pNq and such that LpEf , sq “ Lpf, sq. If χ is the trivial character,

then Lpf, χ, sq is nothing other than LpEf{K, sq, the L-function of the elliptic curve

Ef base changed to K. Moreover, we can think of cf,χ “ cf,1 in this case as a point

in Ef pKq. Recall that our assumptions have forced LpEf{K, 1q “ 0. So the Gross-

Zagier formula implies that if L1pEf{K, 1q ‰ 0 (i.e. if the analytic rank of Ef is 1),

then the rank of the group Ef pKq is at least 1. This inequality is exactly as predicted

by the Birch and Swinnerton-Dyer conjecture (BSD), which is the statement that

the algebraic and analytic ranks agree:

rkEf pKq “ ords“1LpEf{K, sq.

In fact, Kolyvagin [Kol] proved that if cf,1 is not torsion, then rkEf pKq “ 1, and so

the BSD conjecture for Ef{K is verified in this case. Moreover, one can “descend”

these results to prove BSD for Ef{Q as well (assuming the analytic rank is less than

or equal to 1) . Since every elliptic curve E{Q is a quotient of J0pNq for some N ,

these arguments apply for all E{Q.

1.1.2 The p-adic formula of Perrin-Riou

There are many variants and generalizations of the Gross-Zagier formula. One of

the earliest variants was a p-adic version due to Perrin-Riou [PR1], in the case where

f is ordinary at p (with respect to some chosen embedding Q̄ Ñ Q̄p). Here, p is a

prime not dividing N and which splits in K. She computes the derivative of a p-

adic L-function Lppf, χ, λq instead of the usual complex Rankin-Selberg L-function.
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Lppf, χ,´q is a Cp-valued p-adic analytic function of characters λ : GalpK8{Kq Ñ

1 ` pZp, where K8 is the unique Z2
p-extension of K. This p-adic L-function is

characterized by an interpolation property of the form

Lppf, χ, ψq
.
“ Lpf, χψ, 1q,

for all finite order characters ψ. Here,
.
“ means equality up to explicit (transcen-

dental) constants, which must be divided out appropriately so that both sides of the

equation are algebraic and the equality of elements of Cp and C can make sense.

Replacing the C-valued Néron-Tate height pairing in her p-adic formula is a height

pairing

x , y`K : J0pNqpHq b Q̄p ˆ J0pNqpHq b Q̄p Ñ Q̄p,

defined by Schneider and Mazur-Tate. This p-adic height pairing depends on a choice

of “arithmetic logarithm”

`K : AˆK{K
ˆ
Ñ Qp,

which we can alternatively view (via class field theory) as a homomorphism `K :

GalpK8{Kq Ñ Qp. In fact, we can write `K “ p´n logp ˝λ for some integer n and

some λ : GalpK8{Kq Ñ 1` pZp. Here logp is Iwasawa’s branch of the logarithm, so

that logpppq “ 0. Then the derivative of Lppf, χ,´q at the trivial character 1 in the

direction of `K is defined as

L1ppf, χ, `K ,1q “ p´n
d

ds
Lppf, χ, λ

s
q

ˇ

ˇ

ˇ

ˇ

s“0

.

Theorem I.2 (Perrin-Riou).

L1ppf, χ, `K ,1q
.
“ xcf,χ, cf,χy`K

Kobayashi [Kob] later proved a similar p-adic formula when f is non-ordinary at

p. This case is more complicated because there are two different p-adic L-functions
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attached to f and the height pairings now depend on a choice of splittings of the

Hodge filtration (whereas there is a canonical choice in the ordinary case).

Perrin-Riou’s formula implies cases of a p-adic version of the BSD conjecture,

which states that (when f has rational coefficients) the rank of Ef pKq should equal

the derivative L1pf, 1, `K ,1q in the cyclotomic direction (i.e. `K “ logp ˝λ, with λ

the cyclotomic character). It is important here that pp,Nq “ 1, otherwise these two

quantities are not necessarily equal, due to exceptional zero phenomena. Also note

that Lppf, χ,1q “ 0 by the interpolation property.

Such p-adic formulas are interesting because they give new ways to prove state-

ments about points on elliptic curves over Q, or, more generally, algebraic cycles on

varieties defined over number fields. Moreover, they have a certain flexibility that the

archimedean formulas lack, in that they are amenable to methods of Iwasawa theory

and techniques of p-adic variation. In fact, p-adic special value formulas are an im-

portant tool in recent proofs of “converse theorems” (e.g. [Sk] and [Zh]) concerning

the usual (archimedean) BSD conjecture.

1.1.3 Higher weight formulas and Heegner cycles

In the 1990’s, the formulas of Gross-Zagier and Perrin-Riou were generalized to

eigenforms f of weight 2r, for any r ě 1. In this case, the Rankin-Selberg L-

function Lpf, χ, sq again vanishes at its central point s “ r. Already in [GZ, §V], it

is attributed to Deligne that the derivative L1pf, χ, rq should be related to heights

of Heegner cycles, which are certain algebraic cycles lying on the Kuga-Sato variety

W2r´2 of dimension 2r ´ 1. This Kuga-Sato variety is a smooth compactification of

the p2r ´ 2q-th power

W 0
2r´2 “ E ˆY pNq ¨ ¨ ¨ ˆY pNq E
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of the universal elliptic curve E Ñ Y pNq fibered over Y pNq (the moduli space of ellip-

tic curves with full level N structure). By work of Deligne and Scholl, the Hecke oper-

ators can be used to construct a projector εf in the ring of algebraic correspondences

of W2r´2, which cuts out a motive Mf (modulo homological equivalence) correspond-

ing to the eigenform f . In particular, there is a subspace of H2r´1
ét pW̄2r´2,Qpprqq

whose L-function equals Lpf, sq, though it is in general necessary to extend the

coefficient field in order to realize this subspace.

The Heegner cycle is a certain algebraic cycle lying in the fiber of

W2r´2 Ñ XpNq

above a point ỹ P XpNq corresponding to an elliptic curve A with EndpAq – OK ;

the fiber above ỹ is isomorphic to A2r´2. Recall D “ DiscpKq, and let

Γ?D “ tpP,
?
DpP qq : P P Au Ă Aˆ A

be the graph of the isogeny
?
D : AÑ A. Then consider the cycle:

Y “ Γr´1?
D
Ă pAˆ Aqr´1

Ă W2r´2.

Roughly speaking, the Heegner cycle Yf,χ is the projection of Y onto the χ-isotypic

part of Mf{H. The cohomology class of Yf,χ in H2r
ét pW̄2r´2,Qpprqqb Q̄p is trivial and

hence Yf,χ lies in the domain of the p-adic Abel-Jacobi map

Φ : CHr
pW2r´2q0 bQ Q̄p Ñ H1

pH,V q bQp Q̄p,

where V “ H2r´1
ét pW̄2r´2,Qpprqq. The special value formulas for higher weight f

are due to Zhang [Z] (for the complex L-function) and Nekovář [N3] (for the p-adic

L-function):
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Theorem I.3 (Zhang). If f has weight 2r and χ is a character of GalpH{Kq, then

L1pf, χ, rq
.
“ xYf,χ, Yf,χyGS.

Theorem I.4 (Nekovář). Let p be a prime split in K and not dividing N , and fix

an embedding ι : Q̄Ñ Q̄p. Suppose f has weight 2r and is ordinary at p with respect

to ι. For any character χ of GalpH{Kq and any choice of arithmetic logarithm `K,

L1ppf, χ, `K ,1q
.
“ xΦpYf,χq,ΦpYf,χ̄qyNek,`K

The C-valued height pairing x , yGS is the one defined by Beilinson [Bei] and uses

the arithmetic intersection theory of Gillet and Soulé [GS]. This pairing is a general-

ization of the Néron-Tate height pairing for polarized abelian varieties. Importantly,

x , yGS is defined on the Chow group CHr
pW2r´2q0 of homologically trivial cycles.1

This is in contrast to the Q̄p-valued height pairing x , yNek constructed by Nekovář

(and generalizing the height pairings of Mazur-Tate and Schneider), which is defined

on the Bloch-Kato subgroup H1
f pH, V q Ă H1pH, V q. It is known that the image of

Φ lies in H1
f pH,V q, in the case of Kuga-Sato varieties. This difference between the

archimedean and p-adic heights makes it more difficult both to prove archimedean

height formulas (as we will explain later) and also to apply them towards general

conjectures on algebraic cycles, as we explain in the next section.

Remark I.5. There is important work of Yuan, Zhang, and Zhang [YZZ], which vastly

generalizes the original Gross-Zagier formula in an orthogonal direction, namely by

relaxing the Heegner hypothesis and other ramification conditions. In this general

case, one relates L1pf, χ, sq (with f having weight 2) to heights of special points on

Shimura curves.
1In fact it is defined only on a subgroup of CHrpW2r´2q0 which is conjecturally equal to all of CHrpW2r´2q0.
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1.1.4 Conjectures of Beilinson-Bloch, Bloch-Kato, and Perrin-Riou

Assume for simplicity that χ is the trivial character 1 and f has rational coeffi-

cients, and write εf for the algebraic correspondence on W2r´2 which cuts out the

motive Mf . The Beilinson-Bloch (BB) conjecture [Bei] is a vast generalization of the

BSD conjecture (whose scope is limited to abelian varieties A over number fields).

The BB conjecture relates the rank of the Chow group of homologically trivial alge-

braic cycles on a smooth projective variety X over a number field (or more generally,

a Chow motive) to the order of vanishing of the L-functions attached to the étale

cohomology of X. For the motive Mf{K, it predicts that

dimQ εfCHr
pW2r´2{Kq0 “ ords“rLpf, χ, sq.

Zhang’s formula verifies one inequality in the BB conjecture when Mf{K has

analytic rank 1: if the order of vanishing equals 1, then the derivative is non-zero

and so the height of the Heeger cycle is non-zero as well. Hence the cycle is non-

torsion and the dimension on the left hand side is at least 1. One would like to use

Kolyvagin’s Euler system methods to show that the dimension is in fact equal to 1,

just as in the weight two case. In fact, Nekovář [N1] was able to apply Kolyvagin’s

techniques in this case, but his result is that if ΦpYf,1q ‰ 0, then dimH1
f pK, εfV q “ 1.

Unfortunately, the Abel-Jacobi map Φ is not known to be injective, so one cannot

use Nekovář’s Euler system result to prove BB in this case.

A related conjecture of Bloch-Kato [BK] predicts that the Abel-Jacobi map in-

duces an isomorphism

Φ̃ : εfCHr
pW2r´2{Kq0 bQ Qp

„
ÝÑ H1

f pK, εfV q,

and moreover that (in agreement with the BB conjecture):

(1.1) dimQp H
1
f pK, εfV q “ ords“rLpf, χ, sq.
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Again, since the injectivity of Φ is not known, Zhang’s result cannot be used to

unconditionally prove (1.1) when L1pf, χ, rq ‰ 0.

This is unfortunate, but we can take solace in the fact that these problems disap-

pear in the p-adic realm. Perrin-Riou [PR3] has formulated a p-adic version of the

Bloch-Kato conjecture (see also [Co, 2.7]), and in this case of good reduction the

prediction is entirely similar:

dimQp H
1
f pK, εfV q “ ordλ“1Lppf, χ, λq,

where the derivatives are taken in the cyclotomic direction, as before. Combining

Theorem I.4 with Nekovář’s results in [N1] immediately yields a proof of this con-

jecture when L1ppf,1,1q ‰ 0.

Remark I.6. There is another application of the original Gross-Zagier formula which

fails to generalize to the higher weight case (in the current state of affairs). Namely, if

the Heegner point cf,1 is non-torsion, then by the non-degeneracy of the Néron-Tate

height pairing, we have L1pf,1, 1q ‰ 0. Using Kolyvagin once more, we conclude

that BSD is true for Ef . This argument does not work in higher weight because the

pairings x , yGS and x , yNek are not known to be non-degenerate. In fact, the non-

degeneracy of p-adic heights is not known even in weight 2, i.e. for abelian varieties,

other than in the CM case [Be].

1.2 Main results

The goal of this thesis is to extend the results of [N3] and [Z] to a larger class

of Rankin-Selberg L-functions, i.e. to a larger class of motives. Specifically, we will

consider motives of the form f b Θχ, where

χ : AˆK{K
ˆ
Ñ Cˆ
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is an unramified Hecke character of infinity type p`, 0q, with 0 ă ` “ 2k ă 2r, and

Θχ “
ÿ

aĂOK

χpaqqNa

is the associated theta series. The conditions on ` guarantee that the Hecke character

χ0 :“ χ´1Nr`k of infinity type pr´ k, r` kq is central critical in the sense of [BDP1,

§4], and that the central value Lpf, χ, r` kq “ Lpf,Θχ, r` kq of the Rankin-Selberg

L-function vanishes, as before. If we take ` “ 0, then χ comes from a character of

GalpH{Kq, so we are back in the situation considered in [N3] and [Z].

Our main result (Theorem I.7) extends Nekovář’s formula to the case ` ą 0 by

relating p-adic heights of generalized Heegner cycles to the derivative of a p-adic

L-function attached to the pair pf, χq. We establish our assumptions and notation

now and in the next subsections describe both the algebraic cycles and the p-adic

L-function needed to state our p-adic formula.

For our p-adic formula, we let p be an odd prime, N ě 3 a positive integer prime

to p, and f “
ř

anq
n a newform of weight 2r ą 2 on X0pNq with a1 “ 1. Fix

embeddings Q̄Ñ C and Q̄Ñ Q̄p once and for all, and suppose that f is ordinary at

p, i.e. the coefficient ap P Q̄p is a p-adic unit. We let K be an imaginary quadratic

field of odd discriminant D such that each prime dividing pN splits in K. As before,

H is the Hilbert class field of K.

1.2.1 Generalized Heegner cycles

Let Y pNq{Q be the modular curve parametrizing elliptic curves with full level N

structure, and let E Ñ Y pNq be the universal elliptic curve with level N structure.

Denote by W “ W2r´2, the canonical non-singular compactification of the p2r ´ 2q-

fold fiber product of E with itself over Y pNq [Sc]. Finally, let A{H be an elliptic

curve with complex multiplication by the full ring of integers OK and good reduction
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at primes above p. We assume further that A is isogenous (over H) to each of its

GalpH{Kq-conjugates Aσ and that Aτ – A, where τ is complex conjugation. Such

an A exists since K has odd discriminant [G, §11]. Set X “ WHˆH A
`, where WH is

the base change to H. The variety X is fibered over the compactified modular curve

XpNqH , the typical geometric fiber being of the form E2r´2 ˆ A`, for some elliptic

curve E.

The p2r ` 2k ´ 1q-dimensional variety X contains a rich supply of generalized

Heegner cycles supported in the fibers of X above Heegner points on X0pNq (we view

X as fibered over X0pNq via XpNq Ñ X0pNq). These cycles were first introduced

by Bertolini, Darmon, and Prasanna in [BDP1]. In Chapter IV, we define certain

cycles εBεY and εB ε̄Y in CHr`k
pXqK which sit in the fiber above a Heegner point on

X0pNqpHq, and which are variants of the generalized Heegner cycles which appear

in [BDP2]. Here, CHr`k
pXqK is the group of codimension r ` k cycles on X with

coefficients in K modulo rational equivalence. In fact, for each ideal a of K, we define

cycles εBεY
a and εB ε̄Y

a in CHr`k
pXqK , each one sitting in the fiber above a Heegner

point. These cycles are replacements for the notion of GalpH{Kq-conjugates of εBεY

and εB ε̄Y (recall that GalpH{Kq – PicpOKq). The latter do not exist as cycles on

X, as X is not (generally) defined over K. In particular, we have εBεY
OK “ εBεY .

The cycles εBεY
a and εB ε̄Y

a are homologically trivial on X (Corollary IV.5), so

they lie in the domain of the p-adic Abel-Jacobi map

Φ : CHr`k
pXq0,K Ñ H1

pH, V q,

where V is the GalpH̄{Hq-representation H2r`2k´1
ét pX̄,Qpqpr ` kq. (See Chapter 5.2

for a definition of Φ.) We will focus on a particular 4-dimensional p-adic represen-

tation Vf,A,`, which is a quotient of V . Vf,A,` is an F -vector space, where F {Qp is

the field obtained by adjoining to Qp the coefficents of f and the coefficients of the
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Hecke character attached to A. As a Galois representation, Vf,A,` is ordinary (Theo-

rem VII.2) and is closely related to the p-adic realization of the motive f bΘχ (see

Chapter IV). After projecting, one obtains a map

Φf : CHr`k
pXq0,K Ñ H1

pH,Vf,A,`q,

which we again call the Abel-Jacobi map. For any ideal a ofK, define zaf “ Φf pεBεY
aq

and z̄af “ Φf pεB ε̄Y
aq. As before we write zf “ zOKf and z̄f “ z̄OKf .

The image of Φf lies in the Bloch-Kato subgroup H1
f pH,Vf,A,`q Ă H1pH, Vf,A,`q

(Theorem IV.6). If we fix a continuous homomorphism `K : AˆK{Kˆ Ñ Qp, then

[N2] provides a symmetric F -linear height pairing

x , y`K : H1
f pH,Vf,A,`q ˆH

1
f pH, Vf,A,`q Ñ F.

We can extend this height pairing Q̄p-linearly to H1
f pH,Vf,A,`qbQ̄p. The cohomology

classes

zAf,χ :“ χpaq´1zaf and zAf,χ̄ :“ χ̄paq´1z̄af

depend only on the class A of a in the class group PicpOKq (Lemma IV.10). Finally,

set h “ #PicpOKq and

zf,χ “
1

h

ÿ

APPicpOKq

zAf,χ and zf,χ̄ “
1

h

ÿ

APPicpOKq

zAf,χ̄,

both being elements of H1
f pH,Vf,A,`qb Q̄p. Our main theorem relates xzf,χ, zf,χ̄y`K to

the derivative of a p-adic L-function which we now describe.

1.2.2 The p-adic L-function

Following [PR1], [N3], and the general construction of Hida, we construct a p-

adic L-function attached to f b Θχ. Recall, if f “
ř

anq
n P MjpΓ0pMq, ψq and

g “
ř

bnq
n PMj1pΓ0pMq, ξq, then the Rankin-Selberg convolution is

Lpf, g, sq “ LMp2s` 2´ j ´ j1, ψξq
ÿ

ně1

anbnn
´s,
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where

LMps, ψξq “
ź

pfflM

`

1´ pψξqppqp´s
˘´1

.

Let K8{K be the Z2
p-extension of K and let Kp be the maximal abelian extension of

K unramified away from p. In Chapter 2, we define a p-adic L-function Lppfbχqpλq,

which is a Q̄p-valued function of continuous characters

λ : GalpK8{Kq Ñ 1` pZp.

The Iwasawa function Lppf b χq is the restriction of an analytic function on

HompGalpKp{Kq,Cˆp q,

which is characterized by the following interpolation property: if

W : GalpKp{Kq Ñ Cˆp

is a finite order character of conductor f, with Nf “ pβ, then

Lppf b χqpWq “ Cf,kWpNqχWpDqτpχWqVppf, χ,WqLpf,ΘχW , r ` kq

with

Cf,k “
2pr ´ k ´ 1q!pr ` k ´ 1q!

p4πq2rαppfqβxf, fyN
,

and where αppfq is the unit root of x2´appfqx`p
2r´1, xf, fyN is the Petersson inner

product, D “
`
?
D
˘

is the different of K, ΘχW is the theta series

ΘχW “
ÿ

pa,fq“1

χWpaqqNa,

τpχWq is the root number for LpΘχW , sq, and

Vppf, χ,Wq “
ź

p|p

ˆ

1´
pχ̄W̄qppq
αppfq

Nppqr´k´1

˙ˆ

1´
pχWqppq
αppfq

Nppqr´k´1

˙

.

Recall we have fixed a continuous homomorphism `K : AˆK{Kˆ Ñ Qp. We define

L1ppf b χ, `K ,1q as in 1.1.2. With these definitions, we can finally state our main

result.
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Theorem I.7. If χ is an unramified Hecke character of K of infinity type p2k, 0q

with 0 ă 2k ă 2r, then

L1ppf b χ, `K ,1q “ p´1qk
ź

p|p

ˆ

1´
χppqpr´k´1

αppfq

˙2 h xzf,χ, zf,χ̄y`K
u2p4|D|qr´k´1

,

where h “ hK is the class number and u “ 1
2
#OˆK.

Remark I.8. When k “ 0 the cycles and the p-adic L-function simplify to those

constructed in [N3], and the main theorem becomes Nekovář’s formula, at least

up to a somewhat controversial sign. It appears that a sign was forgotten in [N3,

II.6.2.3], causing the discrepancy with our formula and with Perrin-Riou’s as well.

Perrin-Riou’s formula [PR1] covers the case k “ 0 and r “ 1.

In the last two chapters of this thesis, we also compute archimedean heights of

generalized Heegner cycles and sketch a proof of a special value formula for the

derivative L1pf, χ, r`kq of the complex L-function. This formula is analogous to the

formula in Theorem I.7 and generalizes Theorem I.3 to Hecke characters of higher

weight. We defer to a separate paper the technical aspects of the proof, and instead

focus on the heart of the computation, which is the computation of the local heights

at the infinite places. One of course needs to compute local heights at finite places

as well, but these computations are essentially identical to our local p-adic height

computations (at places away from p). We refer the reader to Chapter X for a

description of our archimedean results.

1.2.3 Applications

Theorem I.7 implies special cases of Perrin-Riou’s p-adic Bloch-Kato conjecture.

The assumption that A is isogenous to all its GalpH{Kq-conjugates implies that the

Hecke character

ψH : AˆH Ñ Cˆ,
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which is attached to A by the theory of complex multiplication, factors as ψH “

ψ ˝ NmH{K , where ψ is a p1, 0q-Hecke character of K. Assume for simplicity that

χ “ ψ`, and set χH “ ψ`H and GH :“ GalpH̄{Hq. Then the GH-representation Vf,A,`

is the p-adic realization of a Chow motive MpfqHbMpχHq. Here, Mpfq is the motive

over Q attached to f by Deligne, and MpχHq is a motive over H (with coefficients

in K) cutting out a two dimensional piece of the middle degree cohomology of A`.

In fact, the motive MpχHq descends to a motive Mpχq over K with coefficients in

Qpχq. We write Vf,χ for the p-adic realization of MpfqKbMpχq, so that Vf,χ is a GK-

representation whose restriction to GH is isomorphic to Vf,A,`. In fact, Vf,χ – χ‘ χ̄,

where we now think of χ as a Qpχq bQp-valued character of GK . It follows that

LpVf,χ, sq “ Lpf, χ, sqLpf, χ̄, sq “ Lpf, χ, sq2.

The Bloch-Kato conjecture for the motive MpfqK bMpχq over K reads

dimH1
f pK,Vf,χq “ 2 ¨ ords“r`kLpf, χ, sq.

Similarly, Perrin-Riou’s p-adic conjecture [Co, 2.7] [PR3, 4.2.2] reads

(1.2) dimH1
f pK,Vf,χq “ 2 ¨ ordλ“1Lpf, χ, `K , λq,

where `K is the cyclotomic logarithm and the derivatives are taken in the cyclotomic

direction. In Chapter VIII, we deduce the “analytic rank 1” case of Perrin-Riou’s

conjecture by combining our main formula with the results of Elias [E] on Euler

systems for generalized Heegner cycles:

Theorem I.9. If L1ppf b χ, `K ,1q ‰ 0, then p1.2q is true, i.e. Perrin-Riou’s p-adic

Bloch-Kato conjecture holds for the motive MpfqK bMpχq.

Remark I.10. Alternatively, we can think of zf,χ (resp. zf,χ̄) as giving a class in

H1
f pK,Vf b χq (resp. H1

f pK,Vf b χ̄q), and note that LpVf b χ, sq “ Lpf, χ, sq “
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LpVf b χ̄, sq. The Bloch-Kato conjecture for the motive f b χ over K then reads

dimH1
f pK,Vf b χq “ ords“r`kLpf, χ, sq,

and similarly for χ̄ and the p-adic L-functions.

We anticipate that Theorem I.7 can also be used to study the variation of gener-

alized Heegner cycles in p-adic families, in the spirit of [Ca] and [Ho]. Theorem I.7

allows for variation in not just the weight of the modular form f , but in the weight

of the Hecke character χ as well.

1.2.4 Related work

There has been much recent work on the connections between generalized Heeg-

ner cycles and p-adic L-functions. Generalized Heegner cycles were first studied in

[BDP1], where their Abel-Jacobi classes were related to the special value (not the

derivative) of a different Rankin-Selberg p-adic L-function. Brooks [Br] extended

these results to Shimura curves over Q and recently Liu, Zhang, and Zhang proved

a general formula for arbitrary totally real fields [LZZ]. In [D], Disegni computes p-

adic heights of Heegner points on Shimura curves, generalizing the weight 2 formula

of Perrin-Riou for modular curves. Kobayashi [Kob] extended Perrin-Riou’s height

formula to the supersingular case. Our work is the first (as far as we know) to study

p-adic heights of generalized Heegner cycles.

1.2.5 Assumptions

We review all our assumptions and comment on the extent to which they may be

relaxed.

• We have assumed N ě 3 for the sake of exposition. For N ă 3, the proof

should be modified to account for the lack of a fine moduli space and extra
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automorphisms in the local intersection theory. These details are spelled out in

[N3] and pose no new problems.

• We have assumed D is odd, as is traditional in this area. If D is even, various

computations become more complicated, but are presumably not fundamentally

more difficult.

• We have assumed χ is unramified. It should be straightforward to allow for

unramified Hecke characters twisted by finite order ring class field characters.

One does not necessarily expect a special value formula for more general χ, i.e.

if χ|AˆQ
is not a power of the norm, since then χ is not central critical with

respect to f .

• One should be able to prove similar kinds of formulas when f has odd weight, or

more generally if the nebentypus of f is non-trivial. But there will be restrictions

on both the infinity type of χ and the Dirichlet character attached to χ, again

coming from the condition of central criticality. For example, if f has odd

weight, then χ will necessarily be an infinite order Hecke character.

• It would be worthwhile to relax the condition pN,Dq “ 1, as one could then

consider f with CM by K. The issue is that the p-adic L-function computations

in this case become rather messy (this case was also avoided in [PR1] and [N3]).

• It would also be worthwhile to combine the methods here with the work of

Disegni [D], i.e. to remove the Heegner hypothesis assumed in this paper. His

adelic construction of the p-adic L-function is more amenable to generalization

than our more classical approach, which is one reason why we have not pursued

some of the strengthenings alluded to above.
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• The assumption that p splits in K is important for the proof, but presumably

can be removed a fortiori. This would follow from an argument similar to

[Kob, proof of Theorem 5.9], but requires the archimedean height formula for

generalized Heegner cycles.

• One might try to remove the assumption that f is ordinary, using Kobayashi’s

approach [Kob] in the weight 2 case as a guide. However in higher weight there

are some non-trivial technical issues to deal with in the computation of the local

p-adic heights at places above p.

• Our assumption that Aτ – A implies that the lattice corresponding to A is

2-torsion in the class group. This is convenient for proving the vanishing of

the p-adic height in the anti-cyclotomic direction, and plays no other role in our

proof (in particular, the proof in the interesting case where `K is cyclotomic does

not use this assumption). One should be able to prove the theorem without this

assumption by making use of the functoriality of the height pairing to relate

heights on X to heights on Xτ , but we omit the details. Ultimately, the choice

of auxiliary elliptic curve does not matter much and we should just choose A as

in Remark IV.1.

1.2.6 Sketch of proof

This rough sketch will assume `K is the cyclotomic character, because we show in

IV.13 that both sides of Theorem I.7 vanish when `K is an anticyclotomic logarithm.

We therefore drop `K from the notation. Again to ease notation, we assume PicpOKq

is trivial.

Following Hida, Perrin-Riou, and Nekovář, we construct a p-adic L-function
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Lppf, χ, λq roughly of the form

Lppf, χ, λq “ Lf

ˆ
ż

GalpK8{Kq

λdΨ

˙

.

Here dΨ is a p-adic measure, constructed from Eisenstein and theta measures (mim-

icking the Rankin-Selberg convolution), and valued in p-adic modular forms. The

operator Lf is the composition of Hida’s ordinary projector limjÑ8 U
cpjqpj

p with

a p-adic analogue of taking the Peterson inner product with f . It follows that

L1ppf, χ,1q “ Lf pGq for some p-adic modular form G.

We then want to compare the two p-adic modular forms

G and F “
ÿ

g

xεYg, ε̄YgyNek ¨ g

where the sum is over newforms of level dividing N . In fact, to prove the theorem we

need to show that Lf pGq “ Lf pF q. For m ě 1 and prime to N , the mth coefficient

of F is

ampF q “ xx, Tmx̄yNek,

where x is the projection of ΦpεY q onto H1
f pH,‘gVg,A,`q, i.e. we project onto the

space of all modular forms, not just our chosen eigenform f (and similarly for x̄).

By an argument of Nekovář using Cebotarev’s density theorem, it is enough to

compare mth Fourier coefficients only for those integers m such that there is no ideal

in OK of norm m (this is the condition rApmq “ 0 in [GZ]). This condition amounts

to saying that the cycles Y and TmY do not intersect in the generic fiber. We can

therefore decompose the global p-adic height into a sum of local heights, one for each

finite place of H:

ampF q “ cmpF q ` dmpF q

“
ÿ

v-p

xx, Tmx̄yv `
ÿ

v|p

xx, Tmx̄yv
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Note that p-adic heights do not have a contribution from infinite places of H. Morally

speaking, the local p-adic heights at places above p replace the local archimedean

heights at infinite places (both are very hard to compute in general).

After much computation (representing a large part of this thesis, and building off

the work in [GZ], [PR1], and [N3]), we show that ampGq and cmpF q are “essentially

equal” (i.e. they are equal for the purposes of this sketch). Thus it suffices to show

that

(1.3) Lf

´

ÿ

dmpF qq
m
¯

“ 0.

This part of the argument relies heavily on the fact that p splits in K. The point

is that the local archimedean heights at such primes p are easily seen to vanish (c.f.

[GZ, III]), and so it is not surprising that we still get the equality ampGq “ cmpF q

when we remove the p-adic height contributions from primes above p.

By a clever trick of Perrin-Riou using the norm-coherency of Heegner points, one

reduces the proof of (1.3) to showing that for any place v above p,

lim
jÑ8

@

xf , bpj
D

v
“ 0,

where bpj is the norm of a generalized Heegner cycle of conductor pj defined over the

ring class field of conductor pj, and xf is the f -isotypic component of x. In other

words, we must show that certain height pairings become more and more divisible by

p as we move up the local ring class field tower. We do this in Chapter IX by fixing an

approach suggested in [N3, II.5]. The key new inputs are local class field theory (via

relative Lubin-Tate groups) and comparison isomorphisms in p-adic Hodge theory.

Roughly, we show that certain Galois representations (“mixed extensions”) needed

to compute the local height pairings are crystalline when rApmq “ 0. The key ingre-

dient is Theorem IX.10 which relies on Faltings’ proof of Fontaine’s Ccris conjecture.



21

This theorem (or rather, its proof) is quite general and should be useful for computing

p-adic heights of algebraic cycles sitting on varieties fibered over curves. Returning

to our context, it follows that the height pairing is a logarithm of a norm of unit in

a ring class field. As the ring class field gets larger, the logarithm gets more divisible

by p, and in the limit the height pairing goes to 0.

The remarkable aspect of the general approach outlined above (which is due to

Perrin-Riou) is that it proves a formula for the global p-adic height without ever

actually computing the local heights at p. This suggests that p-adic height formulas

are more accessible than archimedean height formulas, for which explicit and often

messy computations with Green’s functions seem unavoidable (cf. the last chapter of

this thesis). Of course, if this strategy is to work in greater generality (e.g. on higher

dimensional Shimura varieties) then one still needs to prove that the contribution

from local heights at p vanishes. Perrin-Riou’s proof in weight 2 relies heavily on the

fact that the Galois representations at hand are Tate modules of abelian varieties or

1-motives. In higher weight, the proof uses more machinery, and required us to show

that certain less accessible Galois representations are crystalline. Our hope is that

the computations in Chapter IX will encourage further development of the necessary

p-adic Hodge theoretic machinery needed for p-adic height pairings in situations even

more general than ours (where we only consider algebraic cycles lying in fibers over

a curve).

In the final two sections we present computations toward the archimedean special

value formula for f b χ. Since the local archimedean heights at finite places are

essentially already computed in earlier chapters, the crux of the matter is computing

the local heights at infinity and comparing them to the analytic kernel (which we

compute in Chapter X). The Green’s functions and heights at infinity are computed
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in the final Chapter XI. The Green’s functions we construct are eigenfunctions for

the usual weight ˘` Laplacian on the upper half plane, with a simple transformation

property under the diagonal action of SL2pRq. These eigenfunctions might be of inde-

pendent interest. At the end of the section, we sketch how to deduce an archimedean

special value formula, at least assuming the modularity of certain generating series

of height pairings.

1.2.7 Document outline

The proof of Theorem I.7 follows [N3] and [PR1] rather closely. We have therefore

chosen not to dwell long on computations easily adapted to our situation.

We define the p-adic L-function Lppf b χ, λq in Chapter II and show that it

vanishes in the anticyclotomic direction. In Chapter III, we integrate the p-adic

logarithm against the p-adic Rankin-Selberg measure to compute what is essentially

the derivative of Lppf b χq at the trivial character in the cyclotomic direction. In

Chapter IV, we define the generalized Heegner cycles and describe Hecke operators

and p-adic Abel-Jacobi maps attached to the variety X. After proving some prop-

erties of generalized Heegner cycles, we show that the RHS of Theorem I.7 vanishes

when `K is anticyclotomic.

In Chapter V, we recall the definitions of Nekovář’s local p-adic heights. In

Chapter VI we compute the local cyclotomic heights of zf at places v which are

prime to p. In Chapter VII, we prove that Vf,A,` is an ordinary representation. We

complete the proof of the main theorem in Chapter VIII, modulo the results from

Chapter IX. The latter is where we fix a technical issue in the proof in [N3, II.5], to

complete a proof of the vanishing of the contribution coming from local heights at

primes above p.

Chapters X and XI contain the archimedean computations described above.



CHAPTER II

Constructing the p-adic L-function

We fix once and for all an embedding ι : Q̄ Ñ Q̄p. Recall f “
ř

ně1 anq
n P

S2rpΓ0pNqq is a normalized newform which we assume to be ordinary, i.e. ιpapq is a

p-adic unit. As in the introduction, χ : AˆK Ñ Cˆ is an unramified Hecke character

of infinity type p2k, 0q with 0 ă 2k “ ` ă 2r. This means

χpα ¨ x ¨ z8q “ χpxq ¨ z´2k
8 , for all α P Kˆ, z8 P K

ˆ
8.

If a is a prime ideal of OK , then we follow the usual convention and write χpaq

for χpπaq, where πa P K
ˆ
p Ă AˆK is a uniformizer at a. Extending multiplicatively,

we may think of χ as a character of the group of fractional ideals of K satisfying

χpaq “ α2k if a “ pαq is a principal ideal. For more on Hecke characters, see [BDP1,

§4.1].

All that follows will apply to χ of infinity type p0, 2kq with suitable modifications.

In this section, we follow [N3, I.3-5] and define a p-adic L-function attached to the

pair pf, χq which interpolates special values of certain Rankin-Selberg convolutions.

2.1 p-adic measures

We construct the p-adic L-function only in the setting needed for Theorem I.7;

in the notation of [N3], this means that Ω “ 1, N1 “ N2 “ c1 “ c2 “ c “ 1, N3 “

23
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N 1
3 “ N,∆ “ ∆1 “ ∆2 “ |D|,∆3 “ 1, and γ “ γ3 “ 0. We begin by defining theta

measures.

Fix an integer m ě 1 and let Om be the order of conductor m in K. Let a be

proper Om-ideal whose class in PicpOmq is denoted by A. The quadratic form

Qapxq “ Npxq{Npaq,

takes integer values on a. Define the measure ΘA on Zˆp by

(2.1) ΘApapmod pνqq “ χpāq´1
ÿ

xPa
Qapxq”a pmod pνq

x̄`qQapxq.

To keep things from getting unwieldy we have omitted χ from the notation of the

measure. If φ is a function on Z{pνZ with values in a p-adic ring A, then

(2.2) ΘApφq “ χpāq´1
ÿ

xPa

φpQapxqqx̄
`qQapxq “ χpāq´1

ÿ

ně1

φpnqρapn, `qq
n,

where ρapn, `q is the sum
ř

x̄` over all x P a with Qapxq “ n. We have

ρa¨pγqpn, `q “ γ̄`ρapn, `q,

for all γ P Kˆ, so that ΘA is independent of the choice of representative a for the

class A. For a P A,

(2.3) χpāq´1
ÿ

xPa

x̄`qQapxq “ wm
ÿ

a1PA
a1ĂOm

χpa1qqNpa
1q
“ wm

ÿ

ně1

rA,χpnqq
n,

since ` is a multiple of wm (recall χ is unramified). The coefficients rA,χpnq play the

role of (and generalize) the numbers rApmq that appear in [GZ] and [N3].

Proposition II.1. ΘApφq is a cusp form in M``1pΓ1pMq, Aq, with M “ lcmp|D|m2, p2νq.

Proof. It is classical [Og] that
ř

xPa x̄
`qQapxq is a cusp form in M``1pΓ1p|D|m

2qq. It

follows from [Hi, Proposition 1.1] that weighting this form by φ gives a modular form

of the desired level.
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For a fixed integer C prime to N |D|p, define the Eisenstein measures

E1pαpmod pνqqpzq “ E1pz, φα,pν q

EC
1 pαpmod pνqqpzq “ E1pαpmod pνqqpzq ´ CE1pC

´1αpmod pνqqpzq,

where

E1pαpmod pνqqpzq “
1

2
L̃p0, δαq `

ÿ

j¨mą0
j”αpmod pνq

sgnpjqqjm,

with notation as in [N3, I.3.6]. Similarly, we define the convolution measure on Zˆp

ΦC
Apapmod pνqq “

H

»

–

ÿ

αPpZ{|D|pνZqˆ
ξpαqΘApα

2apmod pνqqpzqδr´1´k
1 pEC

1 pαpmod |D|pνqqpNzqq

fi

fl ,

which takes values in M2rpΓ0pN |D|p
8q;χpāq´1p´δZpq, for some δ depending only

on r and k [Hi, Lem. 5.1]. Here, H is holomorphic projection, δr´1´k
1 is Shimura’s

differential operator, and ξ is the quadratic character
`

D
¨

˘

. For the definitions of H

and δr´k´1
1 for p-adic modular forms, see [N3, I.2-3] and [Hi, §5]. We are implicitly

identifying Zp with the ring of integers of Kp for a prime p above p (which is split in

K), so that x` P Zp for all x P a.

Another measure ΨC
A is defined by

ΨC
A “

1

2wm
ΦC

A

ˇ

ˇ

ˇ

ˇ

2r

T p|D|qNp8 ,

where

T p|DqNp8 : M2r pΓ0 pN |D|p
8
q , ¨q ÑM2r pΓ0 pNp

8
q , ¨q

is the trace map, i.e. the adjoint to the operator g ÞÑ |D|r´1g

ˇ

ˇ

ˇ

ˇ

2r

¨

˚

˝

|D| 0

0 1

˛

‹

‚

.

Let Hm{K be the ring class field of conductor m for K. This is an abelian

extension of K, unramified away from m, and corresponds via class field theory
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with the subgroup KˆAˆK,8Ôˆm of AˆK{Kˆ. The global reciprocity map identifies

GalpHm{Kq with the group PicpOmq of invertible Om-ideal classes. For ring class

field characters ρ : GpHm{Kq Ñ Qˆ, define

ΦC
ρ “

ÿ

rAsPPicpOmq

ρprAsq´1ΦC
A,

and similarly for ΨC
ρ .

We define ΨC
f,ρ “ Lf0pΨ

C
ρ q, where Lf0 is Hida’s projector attached to the p-

stabilization

f0 “ fpzq ´
p2r´1

αppfq
fppzq

of f ; recall αppfq is the unique root of x2 ´ apx` p
2r´1 which is a p-adic unit. Intu-

itively, Lf0 is the projection onto the space of ordinary forms, followed by projection

onto “the f0-part” (the p-adic version of taking a Peterson inner product with f0).

See [N3, I.2] for a proper definition and properties. Explicitly, if g PMjpΓ0pNp
µq; Q̄q

with µ ě 1, then

(2.4) Lf0pgq “

ˆ

pj{2´1

αppfq

˙µ´1

C

f τ0

ˇ

ˇ

ˇ

ˇ

j

¨

˚

˝

0 ´1

Npµ 0

˛

‹

‚

, g

G

Npµ

C

f τ0

ˇ

ˇ

ˇ

ˇ

j

¨

˚

˝

0 ´1

Np 0

˛

‹

‚

, f0

G

Np

.

Once more, we define a measure ΨC
f , this time on GalpHp8{Kq ˆ GalpKpµp8q{Kq,

by

ΨC
f pσ pmod pnq, τ pmod pmqq “ Lf0pΨ

C
Apa pmod pmqqq,

where σ corresponds to A and τ corresponds to a P pZ{pmZq˚ under the Artin map.

Finally, as in [N3], we define modified measures Ψ̃C
A, Ψ̃

C
ρ , etc., by replacing T p|D|q

with T p1q in the definition of ΨC
A.
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2.2 Integrating characters against the Rankin-Selberg measure

In this subsection, we integrate finite order characters of the Z2
p-extension of K

against the measures constructed in the previous section and show that they recover

special values of Rankin-Selberg L-functions. This allows us to prove a functional

equation for the (soon to be defined) p-adic L-function. We follow the computations

in [N3, I.5] and [PR2, §4]. Let η denote a character pZ{pνZqˆ Ñ Q̄ˆ. Exactly as in

[PR2, Lemma 7], we compute:

(2.5)

ż

Zˆp
η dΦC

A “
`

1´ CξpCqη̄2
pCq

˘

HrΘApηqpzqδ
r´k´1
1 pE1pNz, φqqs.

Similarly, if ρ is a ring class character with conductor a power of p,

(2.6)

ż

Zˆp
η dΦC

ρ “ wm
`

1´ CξpCqη̄2
pCq

˘

HrΘχpW2
qpzqδr´k´1

1 pE1pNz, φqqs,

where W2 “ ρ ¨ pη ˝Nq, the latter being thought of as a character modulo the ideal

f “ lcmpcond ρ, cond η, pq. We denote by W the primitive character associated to

W2. By definition,

ΘχpW2
qpzq “

ÿ

aĂO
pa,fq“1

W2
paqχpaqqNpaq.

This is a cusp form in S``1

`

|D|NK
Q pfq,

`

D
¨

˘

η2
˘

, since χ is unramified (see [Og] for a

more general result).

The computations of [N3, I.5.3-4] carry over to our situation, except the theta

series transformation law now reads

(2.7) ΘχpW2
qpzq

ˇ

ˇ

ˇ

ˇ

``1

F “

ˆ

D

w

˙

η̄2
pwqΘχpW

2
q

ˇ

ˇ

ˇ

ˇ

``1

¨

˚

˝

0 ´1

|D|pµ 0

˛

‹

‚

,

where F is the involution
¨

˚

˝

0 ´1

N |D|pµ 0

˛

‹

‚

¨

˚

˝

N y

N |D|pµt N

˛

‹

‚



28

with Nxw ´ |D|pµty “ 1. We thus obtain

(2.8)
ż

Zˆp
η dΨC

f,ρ “
`

1´ CξpCqη̄2
pCq

˘

``

D
¨

˘

η2
˘

pNqλNpfq|D|
1{2

p4πiqαppfq´1

ˆ

|D|

p

˙r´1

¨
ΛµpW2q

Λpfq
,

where

Λpfq “

〈
f τ0

ˇ

ˇ

ˇ

ˇ

2r

¨

˚

˝

0 ´1

Np 0

˛

‹

‚

, f0

〉
Np

and

ΛµpW2
q “

pµpr´1{2q

αppfqµ

〈
f τ0 ,Θχ pW2

q

ˇ

ˇ

ˇ

ˇ

``1

¨

˚

˝

0 ´1

|D|pµ 0

˛

‹

‚

δr´k´1
`

E1

`

z, ξη̄2
˘˘

〉
N |D|pµ

,

and λNpfq is the Atkin-Lehner eigenvalue of f . Define τpχWq by the relation

(2.9) ΘχpWq|``1

¨

˚

˝

0 ´1

|D|pβ 0

˛

‹

‚

“ p´1qk`1iτpχWqΘχ̄pW̄q,

with |D|pβ being the level ∆pWq of ΘχpWq. One knows ([M, Thm. 4.3.12]) that

τpχWq P Q̄ˆ, |τpχWq| “ 1, and

ΛpχW , sq “ τpχWqΛpχ̄W̄ , `` 1´ sq,

where

ΛpχW , sq “
`

|D|pβ
˘s{2

p2πq´sΓpsqLpΘχpWq, sq.

Modifying the computations in [PR2, §4], we find that

(2.10) ΛµpW2
q “ p´1qk`1iτpχWq

ÿ

a|p
Npaq“ps

µpaqχpaqWpaqΛµ,s,

with

(2.11) Λµ,s “
pµpr´

1
2q´spk`

1
2q

αppfqµ

〈
f τ0 ,Θχ̄pW̄q

ˇ

ˇ

ˇ

ˇ

``1

¨

˚

˝

px 0

0 1

˛

‹

‚

δr´k´1
pE1pz, ξη̄

2
qq

〉
N |D|pµ



29

and x “ µ´ β ´ s.

Following [PR2, §4.4], we compute:

(2.12)

ΛµpW2
q “ p´1qriτpχWqVppf, χ,Wq

ˆ

pr´1{2

αppfq

˙β
2pr ` k ´ 1q!pr ´ k ´ 1q!

p4πq2r´1
Lpf,Θχ̄pW̄q, r`kq,

where

Vppf, χ,Wq “
ź

p|p

ˆ

1´
pχ̄W̄qppq
αNppqpfq

Nppqr´k´1

˙ˆ

1´
pχWqppq
αNppqpfq

Nppqr´k´1

˙

.

We have used the fact that

(2.13)〈
f τ , gδr´k´1

1 pE1pz, φqq
〉
M
“
p1´ εp´1qqp´1qr´k´1pr ` k ´ 1q!pr ´ k ´ 1q!

p4πq2r´1
Lpf, g, r`kq

for any g P S2k`1pM
1, εq, and where M “M 1N . Equation 2.13 follows from the usual

unfolding trick and the fact [N3, I.1.5.3] that

δr´k´1
1 pE1pz, φqq “

pr ´ k ´ 1q!

p´4πqr´k´1
Er´kpz, φq.

We have also used the following generalization of [PR2, Lemma 23].

Lemma II.2. If g is a modular form whose L-function admits a Euler product ex-

pansion
ś

pGppp
´sq, then

Lpf0, g, r ` kq “ Gp

`

pr´k´1αppfq
´1
˘

Lpf, g, r ` kq.

Finally, we also have [N3, II.5.7]

αppfq
´1
¨ Λpfq “ λNpfqp

1´rHppfqxf, fyN ,

with

Hppfq “

ˆ

1´
p2r´2

αppfq2

˙ˆ

1´
p2r´1

αppfq2

˙

.

Putting all these calculations together, we obtain the following interpolation result.
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Theorem II.3. For finite order characters W “ ρ ¨ pη ˝Nq as above,

ˆ

1´ C

ˆ

D

C

˙

W̄pCq
˙´1 ż

Zˆp
η dΨC

f,ρ “
Lppf, χ,WqVppf, χ,Wq∆pWqr´1{2

αppfqβHppfq
,

where

Lppf, χ,Wq “
ˆ

D

´N

˙

WpNqτpχWqCpr, kqLpf,Θχ̄pW̄q, r ` kq
〈f, f〉N

,

and

Cpr, kq “
2p´1qr´1pr ´ k ´ 1q!pr ` k ´ 1q!

p4πq2r
.

The modified measures Ψ̃C
f,ρ satisfy

ż

Zˆp
η dΨ̃C

f,ρ “ |D|
1´r
pχWqpDq

ż

Zˆp
η dΨC

f,ρ,

where D “
`
?
D
˘

is the different of K.

2.3 Definition of the p-adic L-function

Recall we have fixed an integer C prime to N |D|p.

Definition II.4. For any continuous character φ : GpHp8pµp8q{Kq Ñ Q̄ˆp with

conductor of p-power norm, we define

Lppfbχ, φq “ p´1qr´1Hppfq

ˆ

D

´N

˙ˆ

1´ C

ˆ

D

C

˙

φpCq´1

˙´1 ż

GpHp8 pµp8 q{Kq

φ dΨ̃C
f .

The p-adic L-function Lppf b χqpλq :“ Lppf b χ, λq is a function of characters

λ : GpHp8pµp8q{Kq Ñ p1` pZpq.

Lppf b χq is an Iwasawa function with values in c´1O
{Qpf,χq, where {Qpf, χq is the

p-adic closure (using our fixed embedding Q̄ ãÑ Q̄p) of the field generated by the

coefficients of f and the values of χ, and c P {Qpf, χq is non-zero.
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We can construct analogous measures and an analogous p-adic L-function for χ̄,

which is a Hecke character of infinity type p0, `q. There is a functional equation

relating Lppf b χq to Lppf b χ̄q, which we now describe. First define

Λppf b χqpλq “ λpDN´1
qλpNq1{2Lppf b χqpλq.

Proposition II.5. Λp satisfies the functional equation

Λp pf b χq pλq “

ˆ

D

´N

˙

Λp pf b χ̄q
`

λ´1
˘

.

Proof. It suffices to prove this for all finite order characters W . For such W , the

functional equation for the Rankin-Selberg convolution reads

(2.14) Lpf,Θχ̄pW̄q, r ` kq “
`

D
´N

˘

W̄pNq
τpχWq2

Lpf,ΘχpWq, r ` kq,

so

Lppf, χ,Wq
Lppf, χ̄, W̄q

“WpNq
ˆ

D

´N

˙

.

We also have Vppf, χ̄, W̄q “ Vppf, χ,Wq, so that

Lppf b χqpWq
Lppf b χ̄qpW̄q

“WpNq
ˆ

D

´N

˙

W̄pDq2.

The proposition now follows from a simple computation.

Recall the notation λτ paq “ λpaτ q, where τ P GalpK{Qq is complex conjugation.

Corollary II.6. Suppose
`

D
N

˘

“ 1 and λ is anticyclotomic, i.e. λλτ “ 1. Then

Lppf b χqpλq “ 0.

Proof. From the functional equation and the fact that

Λppf b χqpλq “ Λppf b χ̄qpλ
τ
q,

we obtain

Λppf b χqpλq “ ´Λppf b χqpλ
´τ
q.

Since λ is anticyclotomic, this is equal to ´Λppf b χqpλq.
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Computing the p-adic L-function

This section is devoted to computing the Fourier coefficients of
ş

Zˆp
λ dΨ̃A, where

λ is a continuous function Zˆp Ñ Qp. When `K : AˆK{Kˆ Ñ Qp is a cyclotomic

logarithm, these computations will allow us to relate L1ppf b χ, `K ,1q to heights of

generalized Heegner cycles. We follow the computations in [N3, I.6]; the main added

subtlety is the transformation laws for theta series attached to Hecke characters.

Recall that for each ideal class A P PicpOKq, we defined

ΦC
Apapmod pνqq “

H

»

–

ÿ

αPpZ{|D|pνZqˆ
ξpαqΘApα

2apmod pνqqpzqδr´1´k
1 pEC

1 pαpmod |D|pνqqpNzqq

fi

fl .

For each factorization D “ D1D2 (with the signs normalized so that D1 is a discrim-

inant), we choose integers a, b, c, d and define

W
pνq
D1
“

¨

˚

˝

|D1|a b

N |D|pνc |D1|d

˛

‹

‚

,

so that W
pνq
D1

has determinant |D1|.

Lemma III.1. For W
pνq
D1

as above and α P pZ{|D|pνZqˆ,

ΘA pαpmod pνqq pzq

ˇ

ˇ

ˇ

ˇ

``1

W
pνq
D1
“
|D1|

k

χpD1q
γΘAd´1

1

`

|D1|a
2αpmod pνq

˘

pzq,

32
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where

γ “

ˆ

D1

cpνN

˙ˆ

D2

aNpaq

˙

κpD1q
´1,

and D1 is the ideal of norm |D1| in OK and κpD1q “ 1 if D1 ą 0, otherwise κpD1q “

i.

Remark III.2. Note that the factor |D1|
k

χpD1q
is equal to ˘1, since χ has infinity type

p2k, 0q and D1 is 2-torsion in the class group.

Proof. The proof proceeds as in [PR1, §3.2], but requires some extra Fourier analysis.

We sketch the argument for the convenience of the reader. Fixing an ideal a in the

class of A, we set L “ pνa and let L˚ be the dual lattice with the respect to the

quadratic form Qa “ Nmpxq{Nmpaq. Denote by S “ Sa the symmetric bilinear form

corresponding to Qa, so Sapα, βq “
1

Nmpaq
Trpαβ̄q. For u P L˚, define

Θa,χpu, Lq “ χpāq´1
ÿ

w´uPL
wPL˚

w̄`qQapwq.

For any c P Z, one checks the following relations:

(3.1) Θa,χpu, Lq “
ÿ

w´uPL
wPL˚{cL

Θa,χpw, cLq,

(3.2) Θa,χpu, cLqpc
2zq “ c´`Θa,χpcu, c

2Lqpzq,

and for all a P Z and w P L˚,

(3.3) Θa,χpw, cLq
´

z `
a

c

¯

“ e
´a

c
Qapwq

¯

Θa,χpw, cLq.

We also have

(3.4)

z´p``1qΘa,χpw, cLq

ˆ

´1

z

˙

“ ´ic´2
rL˚ : Ls´1{2

ÿ

yPpcLq˚{cL

e pSapw, yqqΘa,χpy, cLqpzq.
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This follows from the identity

(3.5)

z``1
ÿ

xPL

P px` uqe pQapx` yqzq “ irL˚ : Ls´1{2
ÿ

yPL˚

P pyqe

ˆ

´Qapyq

z

˙

e pSapy, uqq ,

valid for any rank two integral quadratic space pL,Qa, Saq and any polynomial P of

degree ` which is spherical for Qa. See [Wa] for a proof of this version of Poisson

summation.

Now write

W
pνq
D1
“ H

¨

˚

˝

|D1| 0

0 1

˛

‹

‚

with H P SL2pZq. Exactly as in [PR1], we use the relations above to compute

Θa,χpαpmod pνqq

ˇ

ˇ

ˇ

ˇ

``1

H “ γ|D1|
´1{2

ÿ

uPa{L
Qapuq”αpmod pνq

ÿ

wPL˚{L

w`auPD´1
1 pra

Θa,χpw,Lq

so that

Θa,χpαpmod pνqq

ˇ

ˇ

ˇ

ˇ

``1

W
pνq
D1
“ γ|D1|

kχpāq´1
ÿ

wPD´1
1 a

Q
aD´1

1
pwq”|D1|a2αpmod prq

w̄`q
Q

aD´1
1
pwq

“
|D1|

k

χpD1q
γΘaD´1

1 ,χ

`

|D1|a
2αpmod pνq

˘

pzq,

as desired.

For any function λ on pZ{pνZqˆ, we define hD1pλq as in [N3, I.6.3], so that

ż

Zˆp
λ dΨ̃A “

1

2w

ÿ

D“D1¨D2

ÿ

jPZ{|D1|Z

hD1pλq

ˇ

ˇ

ˇ

ˇ

2r

¨

˚

˝

1 j

0 |D1|

˛

‹

‚

.

The Fourier coefficient computation in [N3, I.6.5] remains valid, except one needs to

use the following proposition in place of [N3, I.1.9]:
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Proposition III.3. Let f “
ř

ně1 apnqq
n be a cusp form of weight ``1 “ 2k`1, and

g “
ř

ně0 bpnqq
n a holomorphic modular form of weight one. Then Hpfδr´k´1

1 pgqq “

ř

ně1 cpnqq
n with

cpnq “
p´1qr´k´1

`

2r´2
r´k´1

˘ nr´k´1
ÿ

i`j“n

apiqbpjqHr´k´1,k

ˆ

i´ j

i` j

˙

,

where

Hm,kptq “
1

2m ¨ pm` 2kq!

ˆ

d

dt

˙m`2k

rpt2 ´ 1qmpt´ 1q2ks

Proof. From [N3, I.1.2.4, I.1.3.2], we have

cpnq “
pr ´ k ´ 1q!

p´4πqr´k´1
¨
p4πnq2r´1

p2r ´ 2q!

ÿ

i`j“n

apiqbpjq

ż 8

0

pr´k´1p4πjyqe
´4πnyyr`k´1dy,

where

pmpxq “
m
ÿ

a“0

ˆ

m

a

˙

p´xqa

a!
.

The integral is evaluated using the following lemma.

Lemma III.4. Let m, k ě 0. Then

ż 8

0

pmp4πjyqe
´4πpi`jqyym`2kdy “

pm` 2kq!

p4πpi` jqqm`2k`1
Hm,k

ˆ

i´ j

i` j

˙

Proof. Evaluating the elementary integrals, we find that the left hand side is equal

to

m!

p4πpi` jqqm`2k`1
Gm,k

ˆ

j

i` j

˙

.

where

Gm,kptq “
m
ÿ

a“0

p´1qa
pm` 2k ` aq!

pa!q2pm´ aq!
ta.

It therefore suffices to prove the identity

(3.6) Gm,kptq “
pm` 2kq!

m!
Hm,kp1´ 2tq.
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This is proved by showing that both sides satisfy the same defining recurrence relation

(and base cases). Indeed, one can check directly that for m ě 1:

pm` 1q2pm` kqGm`1,kptq “

(3.7)

p2m` 2k ` 1qrm2
`m` 2km` k ´ pm` kqp2m` 2k ` 2qtsGm,kptq

´ pm` k ` 1qpm` 2kq2Gm´1,kptq.

That the right hand side of (3.6) satisfies the same recurrence relation amounts

to the well known recurrence relation for the Jacobi polynomials

P pα,βqn ptq “
p´1qn

2nn!
p1´ tq´αp1` tq´β

dn

dtn
“

p1´ tqαp1` tqβp1´ t2qn
‰

.

Indeed, we have

Hm,kptq “ 22k
¨ P

p0,´2kq
m`2k ptqp1` tq

´2k,

and one checks that the recurrence relation

2pn` 1qpn` β ` 1qp2n` βqP
p0,βq
n`1 ptq “

p2n` β ` 1qrp2n` β ` 2qp2n` βqt´ β2
sP p0,βqn ptq

´ 2npn` βqp2n` β ` 2qP
p0,βq
n´1 ptq

translates (using n “ m` 2k and β “ ´2k) into the recurrence (3.7) for the polyno-

mials pm`2kq!
m!

Hm,kp1´ 2tq.

Finally, to prove the proposition, we simply plug in m “ r´k´1 into the previous

lemma and simplify our above expression for cpnq.

Recall that for any ideal class A, we have defined

rA,χpjq “
ÿ

aPA
aĂO

Npaq“j

χpaq.
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Putting together Lemma III.1, Proposition 11.6, and the manipulation of symbols in

[N3, I.6.5], we obtain

am

˜

ż

Zˆp
λdΨ̃A

¸

“
p´1qr´k´1

`

2r´2
r´k´1

˘ mr´k´1

ˆ

D

´N

˙

ÿ

D“D1D2

ˆ

D2

Na

˙

χpD1q
´1

ÿ

j`nN“|D1|m
pp,jq“1

ÿ

d|n
pp,dq“1

rAD´1
1 ,χpjq

ˆ

D2

´dN

˙ˆ

D1

|D2|n{d

˙

λ

ˆ

m|D1| ´ nN

|D1|d2

˙

ˆHr´k´1,k

ˆ

1´
2nN

m|D1|

˙

.

Lemma III.5.

rAD´1
1 ,χpjq “ χpD2q

´1rA,χpj|D2|q.

Proof. Since D1 is 2-torsion in the class group, the left hand side equals rAD1,χpjq.

The lemma now follows from the definitions once one notes that b ÞÑ bD2 is a

bijection from integral ideals of norm j in AD1 to integral ideals of norm j|D2| in

AD.

Using the lemma and also the change of variables employed in [N3], we obtain our

version of [N3, Proposition 6.6].

Proposition III.6. If p|m, then

am

˜

ż

Zˆp
λdΨ̃A

¸

“
p´1qr´1

`

2r´2
r´k´1

˘mr´k´1

ˆ

D

´N

˙

|D|´k
ÿ

1ďnďm|D|
N

pp,nq“1

rA,χpm|D| ´ nNq

ˆHr´k´1,k

ˆ

1´
2nN

m|D|

˙

ÿ

d|n

εApn, dqλ

ˆ

m|D| ´ nN

|D|
¨
d2

n2

˙

.

where εApn, dq “ 0 if pd, n{d, |D|q ą 1, otherwise

εApn, dq “

ˆ

D1

d

˙ˆ

D2

´nN{d

˙ˆ

D2

NpAq

˙

,

where pd, |D|q “ |D2| and D “ D1D2.
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Proof. The proof is as in [N3]. We have also used the fact that χpDq “ Dk to get

the extra factor of |D|´k and the correct sign (recall that D is negative!).

Corollary III.7. If
`

D
N

˘

“ 1 and p|m, then

am

˜

ż

Zˆp
logp dΨ̃A

¸

“

p´1qr
`

2r´2
r´k´1

˘mr´k´1
|D|´k

ÿ

1ďnďm|D|
N

pp,nq“1

rA,χpm|D| ´ nNqσApnqHr´k´1,k

ˆ

1´
2nN

m|D|

˙

,

with

σApnq “
ÿ

d|n

εApn, dq logp

´ n

d2

¯

.

Proof. As in [PR1].



CHAPTER IV

Generalized Heegner cycles

In the previous section we computed Fourier coefficients of p-adic modular forms

closely related to the derivative of Lppf, χq at the trivial character and in the cyclo-

tomic direction. We expect similar looking expressions to appear as the sum of local

heights of certain cycles, with the sum varying over the finite places of H which are

prime to p.

These cycles should come from the motive attached to f b Θχ. Since Θχ has

weight 2k ` 1, work of Deligne and Scholl provides a motive inside the cohomology

of a Kuga-Sato variety which is the fiber product of 2k ´ 1 copies of the universal

elliptic curve over X1p|D|q. Instead of using this motive, we work with a closely

related motive, which we describe now.

We fix an elliptic curve A{H with the following properties:

1. EndHpAq “ OK .

2. A has good reduction at primes above p.

3. A is isogenous to each of its GalpH{Kq-conjugates.

4. Aτ – A, where τ is complex conjugation.

39
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Remark IV.1. Since D is odd, we may even choose such an A with the added feature

that ψ2
A is an unramified Hecke character of type (2,0) (see [R]). In that case, ψ2k

A

differs from χ by a character of GalpH{Kq, so this is perhaps the most natural choice

of A, given χ. In general, ψ2k
A χ

´1 is a finite order Hecke character.

We will use a two-dimensional submotive of A2k whose `-adic realizations are

isomorphic to those of the Deligne-Scholl motive for Θψ2k
A

(see [BDP2]).

From Property (3), A is isogenous to Aσ over H for each σ P G :“ GalpH{Kq.

If σ corresponds to an ideal class ras P PicpOKq via the Artin map, then one such

isogeny φa : A Ñ Aσ is given by A Ñ A{Aras, at least if a is integral. A different

choice of integral ideal a1 P ras gives an isomorphic elliptic curve over H, and the

maps φa and φa1 will differ by endomorphisms of A and Aσ.

As in the introduction, let Y pNq{Q be the modular curve parametrizing elliptic

curves with full level N structure, and let E Ñ Y pNq be the universal elliptic curve

with level N structure. The canonical non-singular compactification of the p2r´ 2q-

fold fiber product

E ˆY pNq ¨ ¨ ¨ ˆY pNq E ,

will be denoted by W “ W2r´2 [Sc]; W is a variety over Q. The map W Ñ XpNq

to the compactified modular curve has geometric fibers (over non-cuspidal points) of

the form E2r´2, for some elliptic curve E. We set

X “ Xr,N,k “ WH ˆ A
2k,

where WH is the base change to H. Recall the curve X0pNq{Q, the coarse moduli

space of generalized elliptic curves with a cyclic subgroup of order N . X0pNq is the

quotient ofXpNq by the action of the standard Borel subgroupB Ă GL2 pZ{NZq {t˘1u.

The computations of the Fourier coefficients in the previous section suggest that
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we consider the following generalized Heegner cycle on X. Fix a Heegner point

y P Y0pNqpHq represented by a cyclic N -isogeny A Ñ A1, for some elliptic curve

A1{H with CM by OK . Such an isogeny exists since each prime dividing N splits

in K. Also let ỹ be a closed point of Y pNqH over y. The fiber Eỹ of the universal

elliptic curve E Ñ Y pNq above the point ỹ is isomorphic to AF , where F Ą H is the

residue field of ỹ. Let

∆ Ă Eỹ ˆ AF – AF ˆ AF

be the diagonal, and we write Γ?D Ă EỹˆEỹ for the graph of
?
D P EndpEỹq – OK .

We define

Y “ Γr´1´k?
D

ˆ∆2k
Ă Xỹ – A2r´2

F ˆ A2k
F ,

so that Y P CHk`r
pXF q. Here Xỹ is the fiber of the natural projection X Ñ XpNq

above the point ỹ.

Since X is not defined over Q, we need to find cycles to play the role of GalpH{Kq-

conjugates of Y . For each σ P GalpH{Kq we have a corresponding ideal class A. For

each integral ideal a P A, define the cycle Y a as follows:

Y a
“ Γr´k´1?

D
ˆ
`

Γtφa
˘2k
Ă pAa

F ˆ A
a
F q

r´k´1
ˆ pAa

F ˆ AF q
2k
“ Xỹσ Ă XF .

Here, Γtφa is the transpose of Γφa , the graph of φa : A Ñ Aa. The cycle Y a P

CHk`r
pXF q is not independent of the class of a in PicpOKq, but certain expressions

involving Y a will be independent of the class of a. Note that Y “ Y OK .

Remark IV.2. Alternatively, we could have worked with a variety over K whose

complex points are

W pCq ˆ
ž

σPGalpH{Kq

AσpCq,

and which does have an action of GalpH{Kq. In some ways this is a more natural

variety to work with (and we expect a similar height formula holds), but we found
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the height computations to be simpler on our X

4.1 Projectors

Next we define a projector ε P Corr0
pX,XqK so that εY a lies in the group

CHr`k
pXF q0,K of homologically trivial pr ` kq-cycles with coefficients in K. Here,

Corr0
pX,XqK is the ring of degree 0 correspondences with coefficients in K. For

definitions and conventions concerning motives, correspondences, and projectors see

[BDP2, §2].

The projector is defined as ε “ εX “ εW ε`. Here, εW is the pullback to X of

the Deligne-Scholl projector ε̃W P QrAutpW qs which projects onto the subspace of

H2r´1pW q coming from modular forms of weight 2r (see e.g. [BDP1, §2]). The second

factor ε` is the pullback to X of the projector

ε` “

ˆ

?
D ` r

?
Ds

2
?
D

˙b`

˝

ˆ

1´ r´1s

2

˙b`

P Corr0
pA`, A`qK ,

denoted by the same symbol. The projector ε1 P Corr0
pA,AqK projects onto the 1-

dimensional Qp-subspace VpA of H1pĀ,Qpq – VpA. Here, p is the prime of K above

p which is determined by our chosen embedding KãÑQ̄p and

VpA “

˜

lim
ÐÝ
n

Arpns

¸

bZp Qp

is the p-adic Tate module of A. Hence, on the p-adic realization of the motive MA`,K ,

ε` projects onto the 1-dimensional Qp-subspace of

H1
étpĀ,Qpq

b2k
pkq Ă H2k

ét pĀ
2k,Qppkqq

corresponding (after dualization and twist) to pVpAq
b2k. See Chapter VII and [BDP2,

§1.2] for more details.
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We also make use of the projectors

ε̄` “

ˆ

?
D ´ r

?
Ds

2
?
D

˙b`

˝

ˆ

1´ r´1s

2

˙b`

P Corr0
pA`, A`qK

and κ` “ ε` ` ε̄`. The first projects onto Vp̄A
b` and the latter onto VpA

b` ‘ Vp̄A
b`.

Set ε̄ “ εW ε̄` and ε1 “ εWκ`.

Remark IV.3. For this remark, suppose that χ “ ψ`, where ψ is the p1, 0q-Hecke

character attached to A by the theory of complex multiplication. Recall that this

means the GH-action on H1pĀ,Qpqp1q is given by the pKbQpq
ˆ-values Galois char-

acter ψH “ ψ ˝NmH{K . If we write χH “ ψ`H , then the motive MpχHq over H (with

coefficients in K) from Section 1.2.3 is defined by the triple pA2k, κ`, kq.

We explain how to descend this to a motive over K with coefficients in Qpχq

(this a modification of a construction from an earlier draft of [BDP2]). Let eK and

ēK be the idempotents in K bK corresponding to the first and second projections

KbK – KˆK Ñ K. For each σ P GalpH{Kq choose an ideal a Ă OK corresponding

to σ under the Artin map and define

Γpσq :“ eK ¨ pφa ˆ ¨ ¨ ¨ ˆ φaq b χpaq
´1
P Hom

`

A`, pA`qσ
˘

bQ Qpχq

Γ̄pσq :“ ēK ¨ pφa ˆ ¨ ¨ ¨ ˆ φaq b χ̄paq
´1
P Hom

`

A`, pA`qσ
˘

bQ Qpχq.

Since χpγaq “ γ`χpaq and φγa “ γφa, these definitions are independent of the choice

of a. Moreover,

Γpστq “ Γpσqτ ˝ Γpτq

and similarly for Γ̄. We set

Λpσq “ κ` ˝ pΓpσq ` Γ̄pσqq ˝ κσ` P Corr0
pA`, pAσq`qQ bQ Qpχq.

Then the collection tΛpσquσ gives descent data for the motive MpχHqbQpχq, hence
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determines a motive Mpχq over K with coefficients in Qpχq. The p-adic realization

of Mpχq is χ‘ χ̄ where χ is now thought of as a Qpχq bQp-valued character of GK .

Returning to the general situation, we define the sheaf L “ j˚B on XpNq, where

B “ Sym2r´2
pR1f˚Qpqpr ´ 1q b κ`H

2k
ét pĀ

2k,Qppkqq,

and j : Y pNq ãÑ XpNq and f : E Ñ Y pNq are the natural maps.

From now on we drop the subscript ‘ét’ from all cohomology groups and set

Z̄ “ Z ˆSpec k Spec k̄ for any variety defined over a field k. We also use the notation

VK “ V bK, for any abelian group V .

Theorem IV.4. There is a canonical isomorphism

H1
pX̄pNq,Lp1qq „ÝÑ ε1H2r`2k´1

pX̄,Qpqpr ` kq “ ε1H˚
pX̄,Qpqpr ` kq.

Proof. See [N3, II.2.4] and [BDP1, Prop. 2.4].

Corollary IV.5. The cycles εY a and ε̄Y a are homologically trivial on XF , i.e. they

lie in the domain of the p-adic Abel-Jacobi map

Φ : CHr`k
pXF q0,K Ñ H1

pF,H2r`2k´1
pX̄,Qppr ` kqqq.

Proof. By the theorem, ε1Y a is in the kernel of the map

CHr`k
pXF qK Ñ H2r`2k

pX̄F ,Qppr ` kqq,

i.e. it is homologically trivial. Moreover, ε “ εε1 and ε̄ “ ε̄ε1. Since Abel-Jacobi maps

commute with algebraic correspondences, it follows that εY a and ε̄Y a are homologi-

cally trivial as well.
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4.2 Bloch-Kato Selmer groups

Let F be a finite extension of Q` (` a prime, possibly equal to p) and let V be

a continuous p-adic representation of GF :“ GalpF̄ {F q. Recall that V is said to be

unramified if the inertia subgroup IF Ă GF acts trivially on V . If ` “ p, then V is

crystalline if

dimF0pV bQp Bcrisq
GF “ dimQp V,

where F0 is the maximal unramified extension of Qp contained in F and Bcris is

Fontaine’s ring of crystalline periods.

The Bloch-Kato subgroup H1
f pF, V q Ă H1pF, V q is then defined to be the kernel

of

H1
pF, V q Ñ H1

pF, V bBcrisq.

For more details and some examples, see [BK] or [N2, 1.12 and 2.1.4]. If ` ‰ p (resp.

` “ p) and V is unramified (resp. crystalline), then H1
f pF, V q “ Ext1

pQp, V q in

the category of unramified (resp. crystalline) representations of GF . In other words,

H1
f pF, V q classifies isomorphism classes of extensions which are themselves unramified

(resp. crystalline). If instead F is a number field, then H1
f pF, V q is defined to be the

set of classes in H1pF, V q which restrict to classes in H1
f pFv, V q for all finite primes

v of F .

The Bloch-Kato Selmer group plays an important role in the general theory of

p-adic heights of homologically trivial algebraic cycles on a smooth projective variety

X{F defined over a number field F . Indeed, Nekovář’s p-adic height pairing is only

defined on H1
f pF, V q, and not on the Chow group CHj

pXq0 of homologically trivial

cycles of codimension j. Here V “ H2j´1pX̄,Qppjqq. This is compatible with the

Bloch-Kato conjecture [BK], which asserts (among other, much deeper statements)
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that the image of the Abel-Jacobi map

Φ : CHj
pXq0 Ñ H1

pF, V q

is contained in H1
f pF, V q. The next couple of results follow [N3, II.2] and verify this

aspect of the Bloch-Kato conjecture in our situation, allowing us to consider p-adic

heights of generalized Heegner cycles. We also give a more concrete description of

the Abel-Jacobi images of generalized Heegner cycles in terms of local systems on

the modular curve.

Denote by bpY aq the cohomology class of εpȲ aq in the fiber X̄ỹ, so that bpY aq lies

in

ε1H2r`2k´2
`

X̄ỹσ ,Qppr ` k ´ 1q
˘GpF̄ {F q „

ÝÑ H0
`

ỹσ,B
˘GpF̄ {F q

,

where again

B “ Sym2r´2
pR1f˚Qpqpr ´ 1q b κ`H

2k
`

Ā2k,Qppkq
˘

,

the sheaf on Y pNq. The isomorphism above follows from proper base change, Lemma

1.8 of [BDP1], and the Kunneth formula. Similarly, let b̄pY aq be the class of ε̄Ȳ a.

For the next result, let j : Y pNq Ñ XpNq be the inclusion.

Theorem IV.6. Set V “ H2r`2k´1pX̄,Qppr ` kqq.

1. V is a crystalline representation of GalpH̄v{Hvq for all v|p.

2. The Abel-Jacobi images za “ ΦpεY aq, z̄a “ Φpε̄Y aq P H1pF, V q lie in the subspace

H1
f pF, V q .

3. The element za, thought of as an extension of p-adic Galois representations, can

be obtained as the pull back of

0 Ñ H1
pXpNq, j˚Bqp1q Ñ H1

pXpNq ´ ỹσ, j˚Bqp1q Ñ H0
pỹσ,Bq Ñ 0
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by the map Qp Ñ H0
`

ỹσ,B
˘

sending 1 to bpY aq, and similarly for z̄a. In

particular, za and z̄a only depend on bpY aq and b̄pY aq respectively.

Proof. (1) follows from Faltings’ theorem [F] and the fact that X has good reduction

at primes above p. (2) is a general result due to Nekovář (Niziol also gave a proof),

see [N4, Theorem 3.1]. To apply the result one needs to know the weight-monodromy

conjecture for X (also known as the purity conjecture). But this conjecture is known

for W and A`, so it holds for X as well [N4, 3.2]. We note that (2) is ultimately a

local statement at each place v of H, and for v|p, the approach taken in the proof

of Theorem IX.10 below gives an alternate proof of this local statement. Statement

(3) can be proved exactly as in [N3, II.2.4].

Definition IV.7. If F {H is a field extension, then a Tate vector is an element in

H0pȳ0,BqGalpF̄ {F q for some y0 P Y pNqpF q. A Tate cycle is a formal finite sum of Tate

vectors over F . The group of Tate cycles is denoted ZpY pNq, F q.

Let π : XpNq Ñ X0pNq “ XpNq{B be the quotient map, and as in [N3], define

εB “ p#Bq
´1

ř

gPB g, which acts on XpNq and its cohomology. Set A “ pπ˚BqB,

apY aq “ εBbpY
aq, and āpY aq “ εB b̄pY

aq. We define the group ZpY0pNq, F q of Tate

cycles on Y0pNq exactly as for Y pNq, but with B replaced by A . Let j0 : Y0pNq Ñ

X0pNq be the inclusion. Note that apY aq is an element of ZpY pNq, Hq, not just

ZpY pNq, F q.

Proposition IV.8. The element

ΦpεBεY
a
q P H1

´

H,H1
´

X0pNq, pj0q˚A
¯

p1q
¯

,

thought of as an extension of p-adic Galois representations, can be obtained as the

pull back of

0 Ñ H1
´

X0pNq, j˚A
¯

p1q Ñ H1
´

X0pNq ´ ȳ
σ, j˚A

¯

p1q Ñ H0
pȳσ,A q Ñ 0
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by the map Qp Ñ H0 pyσ,A q sending 1 to apY aq. In particular, ΦpεBεY
aq only

depends on apY aq. Similarly, ΦpεB ε̄Y
aq depends only on āpY aq.

In fact, for any field F {H one can define a map

ΦT : ZpY0pNq, F q Ñ H1
pF,H1

pX̄0pNq, j0˚A qp1qq,

by pulling back the appropriate exact sequence as above. We then have ΦpεBεY
aq “

ΦT papY
aqq and ΦpεB ε̄Y

aq “ ΦT pāY
aq. For more detail, see [N3, II.2.6].

4.3 Hecke operators

The Hecke operators on W2r´2 from [N3] pull back to give Hecke operators Tm

on X. The Tm are correspondences on X; they act on Chow groups and cohomol-

ogy groups and commute with Abel-Jacobi maps. To describe the action of the

Hecke algebra T on Tate vectors, we need to say what Tm does to an element of

H0pȳ0,A qGpF̄ {F q for an arbitrary point y0 P X0pNqpF q, F an extension of H. Such

an element is represented by a triple pE,C, bq where E is an elliptic curve, C is a

subgroup of order N , and

b P Symw
pH1

pĒ,Qpqqpr ´ 1q b κ`H
2k
pĀ,Qpqpkq.

As the Hecke operators are defined via base change from those on W2r´2, we have:

TmpE,C, bq “
ÿ

λ:EÑE1
degpλq“m

pE 1, λpCq, pλw ˆ idq˚pbqq,

where we are using the map λw ˆ id : Ew ˆ A` Ñ E 1w ˆ A`.

Now set Vr,A,` “ εBε
1V “ H1pX0pNq, pj0q˚A qp1q, a subrepresentation of V . Then

za :“ ΦpεBεY
aq lands in the Bloch-Kato subspace H1

f pH,Vr,A,`q Ă H1pH,Vr,A,`q, by

Proposition IV.6. For any newform f P S2rpΓ0pNqq, we let Vf,A,` be the f -isotypic
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component of Vr,A,` with respect to the action of T. By this, we mean

Vf,A,` “ Vf bQppfq κ`H
2k
pĀ,QppkqqQppfq,

where Vf Ă Vr,A,0 is the Galois representation (with coefficients in the p-adic field

Qppfq) attached to f (see e.g. [N3, II.2.11]).

Consider the f -isotypic Abel-Jacobi map

Φf : CHr`k
pXq0,K Ñ H1

f pH,Vf,A,`q,

and set zaf “ Φf pεBεY
aq and z̄af “ Φf pεB ε̄Y

aq.

As is shown in Chapter VII, the p-adic representation Vf,A,` is ordinary and sat-

isfies Vf,A,` – V ˚f,A,`p1q. The results of [N2] therefore give a symmetric pairing

x , y`K : H1
f pH,Vf,A,`q ˆH

1
f pH,Vf,A,`q Ñ Qppfq,

depending on a choice of logarithm `H : AˆH{Hˆ Ñ Qp and the canonical splitting

of the local Hodge filtrations at places v of H above p. We will always assume

`H “ `K ˝ NmH{K for some `K : AˆK{Kˆ Ñ Qp, which explains the notation above.

We sometimes omit the dependence on `K in the notation, if a choice has been

fixed. If a, b P ZpY0pNq, F q are two Tate cycles, then we will write xa, by`K for

xΦT paq,ΦT pbqy`K .

4.4 Properties of generalized Heegner cycles

Here we collect some facts about generalized Heegner cycles and their correspond-

ing cohomology classes. We first recall the intersection theory on products of elliptic

curves; see [N3, II.3] for proofs.

Let E,E 1, E2 be elliptic curves over an algbraically closed field k of characteristic

not p, and set

H i
pY q “ H i

étpY,Qpq “

˜

lim
ÐÝ
n

H i
étpY,Z{pnZq

¸

bZp Qp
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for any variety Y {k. A pair pα, βq of isogenies α P HompE2, Eq and β P HompE2, E 1q,

determines a cycle

Γα,β “ pα, βq˚p1q P CH1
pE ˆ E 1q,

where pα, βq˚ : CH0
pE2q Ñ CH1

pE ˆ E 1q is the push forward. The image of Γα,β

under the cycle class map CH1
pE ˆE 1q Ñ H2pE ˆE 1qp1q will be denoted by rΓα,βs.

Also let Xα,β be the projection of rΓα,βs to H1pEq bH1pE 1qp1q, i.e.

Xα,β “ rΓα,βs ´ degpαqh´ degpβqv,

where h is the horizontal class rΓ1,0s and v is the vertical class rΓ0,1s. If α P

HompE,E 1q, we write Γα and Xα for Γ1,α and X1,α, respectively. If β P HompE 1, Eq

we write Γtβ and X t
β for Γβ,1 and Xβ,1, respectively. Finally, let

p , q : H2
pE ˆ E 1qp1q ˆH2

pE ˆ E 1qp1q Ñ Qp,

be the non-degenerate cup product pairing.

Proposition IV.9. With notation as above,

1. The map

HompE2, Eq ˆ HompE2, E 1q Ñ H1
pEq bH1

pE 1qp1q

given by pα, βq ÞÑ Xα,β is biadditive.

2. The map HompE,E 1q Ñ H1pEq ˆ H1pE 1qp1q given by α ÞÑ Xα is an injective

group homomorphism.

3. If E “ E 1, then Xα,β “ Xβα̂ and pXα, Xβq “ ´Trpαβ̂q for all α, β P EndpEq.

Here, Tr : EndpEq Ñ Z is the map α ÞÑ α ` α̂.
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It is convenient to think of H1pEq as VpE
˚ “ HompVpE,Qpq, where VpE “ TpEb

Qp is the p-adic Tate module. The Weil pairing

VpE ˆ VpE Ñ Qpp1q

gives identifications VpE
˚p1q – VpE and

Ź2 VpE – Qpp1q. We then have the follow-

ing diagram of isomorphisms

pVpE b VpEq p´1q ÝÝÝÑ
`

Sym2VpE ‘
Ź2 VpE

˘

p´1q ÝÝÝÑ Sym2VpEp´1q ‘Qp
§

§

đ
δ

§

§

đ

VpE
˚ b VpE ÝÝÝÑ EndpVpEq ÝÝÝÑ End0pVpEq ‘Qp

One checks that δ identifies Sym2VpEp´1q with the space End0pVpEq of traceless

endomorphisms of VpE. Now suppose that E has complex multiplication by OK and

that p “ pp̄ splits in K. Then

VpE “ VpE ‘ Vp̄E,

where Vp “ lim
ÐÝ

Erpns b Qp and Vp̄ “ lim
ÐÝ

Erp̄ns b Qp. Let x˚ and y˚ be a basis

for VpE and Vp̄E respectively, and let x, y be the dual basis of H1pEq arising from

the Weil pairing. Since the Weil pairing is non-degenerate, we may assume that

epx˚, y˚q “ 1 P Qp.

If α P EndpEq, then the class Xα P H
1pEq b H1pEqp1q, when thought of as an

element of EndpVpEq via the isomorphisms above, is simply the map V α : VpE Ñ

VpE induced on Tate modules. Thus, X1 “ λpx b y ´ y b xq for some λ P Qp.

Recall that one can compute the intersection pairing on H1pEqb2 in terms of the cup

product on H1pEq:

pab b, cb dq “ ´paY cqpbY dq.

Since pX1, X1q “ ´2, we conclude that λ “ 1. Next we claim that

(4.1) X?D “ ˘
?
Dpxb y ` y b xq.
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To prove this, it suffices to show that V
?
D acts on Vp by

?
D and on Vp̄ by ´

?
D.

Indeed, under the identifications

H1
pEq bH1

pEqp1q – VpE
˚
b VpE

˚
p1q – VpE

˚
b VpE – EndpVpEq,

xb y corresponds to the element f P EndpVpq such that fpax˚` by˚q “ ax˚ whereas

y b x corresponds to g P EndpVpq such that gpax˚ ` by˚q “ ´by˚.

To understand how V
?
D acts on Vp, write pn “ pnZ ` b`

?
D

2
Z for some b, c P Z

such that b2´ 4pnc “ D, which is possible because p splits in K. For P P Erpns, one

has pb`
?
DqpP q “ 0, so

?
DpP q “ ´bP . Since b ” ˘

?
D (mod pnq, it follows upon

taking a limit that pV
?
Dqpx˚q “ ˘

?
Dx˚. Since we can write p̄n “ pnZ ` b´

?
D

2
Z,

we also have pV
?
Dqpy˚q “ ¯

?
Dy˚, and this proves the claim. Hence

Xγ “ γpxb yq ´ γ̄py b xq P H1
pEq bH1

pEqp1q,

for all γ P OK ãÑ EndpEq.

Finally, note that the projector ε1 P Corr0
pE,EqK defined earlier acts on H1pEq

as projection onto Vp.

Proposition IV.10. Let a Ă OK be an ideal and A P PicpOKq its ideal class. Then

the elements

zAf,χ “ χpaq´1zaf and zAf,χ̄ “ χ̄paq´1z̄af

in H1
f pH, Vf,A,`qQ̄p depend only on A P PicpOKq.

Proof. To prove the proposition for zAf,χ, we wish to relate zaf to z
apγq
f for some γ P OK

and some integral ideal a. The contribution to zaf from one of the “generalized”

components Γtφa Ă Aa ˆ A is εXφa,1, where Xφa,1 P H
1pĀa,Qpq b H1pĀ,Qpq is the

class of

Γtφa ´ degpφaqh´ v P CH1
pAa

ˆ Aq,
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as above. Let x, y be a basis of H1pĀ,Qpq such that

Xγ,1 “ γ̄pxb yq ´ γpy b xq P H1
pĀ,Qpq bH

1
pĀ,Qpq,

for all γ P OK . Let xa, ya be the basis of H1pĀa,Qpq corresponding to x, y under the

isomorphism φ˚a : H1pĀa,Qpq Ñ H1pĀ,Qpq. One checks that

pφa ˆ idq˚pXφa,1q “ degpφaqX1,1

and so

Xφa,1 “ degpφaq pxa b y ´ ya b xq .

Similarly,

Xφapγq,1 “ Xγφa,1 “ degpφaq pγ̄pxa b yq ´ γpya b xqq .

Since the projector ε kills y, we find that εXγφa,1 “ γεXφa,1. In the components

which come purely from the Kuga-Sato variety W2r´2, the two cycles Y a and Y apγq

are identical – they both have the form εΓr´k´1?
D

. Taking the tensor product of the

` “generalized” components and the r ´ k ´ 1 Kuga-Sato components, we conclude

that

z
apγq
f “ γ`zaf ,

as desired. The proof for zAf,χ̄ is similar: since z̄af is defined using ε̄ instead of ε, the

extra factor of γ̄` which pops out is accounted for by the factor χ̄paq´1.

Lemma IV.11. For any ideal classes A,B, C P PicpOKq, we have

@

zAf,χ, z
B
f,χ̄

D

“
@

zAC
f,χ, z

BC
f,χ̄

D

Proof. It suffices to prove
@

zid
f,χ, z

B
f,χ̄

D

“
@

zAf,χ, z
BA
f,χ̄

D

for all A,B P PicpOKq. Equiva-

lently, we must show

(4.2) Nmpaq`
@

zOKf , z̄bf
D

“
@

zaf , z̄
ba
f

D

,
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for all integral ideals a and b. Let σ P GalpK̄{Kq restrict to an element of GalpH{Kq

which corresponds to a under the Artin map. Consider the homomorphisms of Chow

groups

σ : CH˚pW ˆ A`qK Ñ CH˚pW ˆ pAσq`qK

and

ξ “ pidˆ φ`aq
˚ : CH˚pW ˆ pAσq`qK Ñ CH˚pW ˆ A`qK .

After identifying Aσ with Aa, one checks that pξ ˝ σqpY bq “ Y ab. Indeed, since a

and b are integral, the graph of φσb : Aσ Ñ pAbqσ can be identified with the graph

of the projection map φ : A{Aras Ñ A{Arabs (first note the two isogenies have the

same kernel and then use the main theorem of complex multiplication). The latter

is pulled back to Γφab by pid ˆ φaq
˚. It follows that pξ ˝ σqpY bq “ Y ab, and the

identity therefore holds for the corresponding cohomology classes. On cohomology,

σ and ξ are isomorphisms, so (4.2) follows from the functoriality of p-adic heights

[N2, Theorem 4.11]. We are using the fact that
´

φ̂`a

¯˚

is adjoint to
`

φ`a
˘˚

under the

pairing given by Poincaré duality, and that deg φa “ Nmpaq.

The goal now is to compute xzf,χ, zf,χ̄y, where

zf,χ “
1

h

ÿ

APPicpOKq

zAf,χ and zf,χ̄ “
1

h

ÿ

APPicpOKq

zAf,χ̄.

Here, we have extended the p-adic height Q̄p-linearly.

Let τ P GalpH{Qq be a lift of the generator of GalpK{Qq. As A and W are defined

over R, τ acts on X “ W ˆ A` and its cohomology.

Lemma IV.12. Let n Ă OK be the ideal of norm N corresponding to the Heegner

point y P X0pNq, and let p´1qrεf be the sign of the functional equation for Lpf, sq.

Then

τpzAf,χq “ p´1qr´k´1εfχpnqN
´kz

A´1rn̄s
f,χ̄
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and

τpzAf,χ̄q “ p´1qr´k´1εf χ̄pnqN
´kz

A´1rn̄s
f,χ .

Proof. Let W 0
j pNq be the Kuga-Sato variety over X0pNq, i.e. the quotient of Wj by

the action of the Borel subgroup B. Recall the map WN : W 0
j Ñ W 0

j which sends a

point P P Ēj in the fiber above a diagram φ : E Ñ E{Erns to the point φjpP q in the

fiber above the diagram φ̂ : E{Erns Ñ E{ErN s. Meanwhile, complex conjugation

sends the Heegner point Aa Ñ Aa{Aarns to the Heegner point Aā Ñ Aā{Aārn̄s. Thus

on a generalized component of our cycle, we have

pWN ˆ idq˚pXφān̄,1q “ NXφā,1 “ NτpXφa,1q,

where these objects are thought of as Chow cycles on X which are supported on the

fiber of X above pỹqστ . Since τ takes VpA to Vp̄A, we even have

pWN ˆ idq˚pε̄1Xφān̄,1q “ Nε̄1Xφā,1 “ Nτpε1Xφa,1q.

On the purely Kuga-Sato components, one computes [N1, 6.2]

W ˚
NpX

?
Dq “ NX?D “ ´NτpX

?
Dq,

where the X?D in the equation above are supported on ỹFrobpān̄q, ỹFrobpāq, and ỹFrobpaq

respectively.

On the other hand, pWN ˆ idq2 “ rN s ˆ id, where rN s : W 0
2r´2 Ñ W 0

2r´2 is

multiplication by N in each fiber. On cycles and cohomology, rN s ˆ id acts as

multiplication by N2r´2. Since WN commutes with the Hecke operators, we see that

pWN ˆ idq acts as multiplication by ˘N r´1 on the f -isotypic part of cohomology,

and this sign is well known to equal εf . Putting things together, we obtain

τpzaf q “
p´1qr´k´1pWN ˆ idq˚pz̄ān̄f q

N2k`r´k´1
“
p´1qr´k´1εf z̄

ān̄
f

Nk
,
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from which the first identity in the lemma follows. The proof of the second identity

is entirely analogous.

Theorem IV.13. If `K : AˆK{Kˆ Ñ Qp is anticyclotomic, i.e. `K ˝τ |K “ ´`K, then

xzf,χ, zf,χ̄y`K “ 0.

In particular, Theorem I.7 holds for such `K.

Proof. From the previous lemma we have

τpzf,χq “ p´1qr´k´1εfχpnqN
´kzf,χ̄

and

τpzf,χ̄q “ p´1qr´k´1εf χ̄pnqN
´kzf,χ.

Thus

xzf,χ, zf,χ̄y`K “ xτpzf,χq, τpzf,χ̄qy`K˝τ “ xzf,χ̄, zf,χy´`K “ ´xzf,χ, zf,χ̄y`K ,

which proves the vanishing. Theorem I.7 now follows from Corollary II.6.

Since any logarithm `K can be decomposed into a sum of a cyclotomic and an

anticyclotomic logarithm, it now suffices to prove Theorem I.7 for cyclotomic `K , i.e.

we may assume `K “ `K ˝ τ |K . By Lemma IV.11 we have

(4.3) xzf,χ, zf,χ̄y “
@

zOKf,χ , zf,χ̄
D

“
1

h

ÿ

APPicpOKq

@

zf , z
A
f,χ̄

D

.

The height x , y can be written as a sum of local heights:

xx, yy “
ÿ

v

xx, yyv,

where v varies over the finite places of H. These local heights are defined in general

in [N2] and computed explicitly for cyclotomic `K in [N3, Proposition II.2.16] in a
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situation similar to ours. In the next chapter we recall the definition of the local

heights, and in the following chapter we compute the local heights xzf , z
A
f,χ̄yv for

finite places v of H not dividing p. The contribution from local heights at places v|p

will be treated in Chapter IX.



CHAPTER V

p-adic height pairings

5.1 Definition of local height pairings

In this section we recall the definition of the local p-adic heights pairings, at least

in the cases that will concern us later. For more details, see [N2, §4] and [N3, II.1].

Let F Ą H be a number field and set V “ H2r`2k´1
ét pX̄,Qppr`kqq, thought of as a

representation ofGF :“ GalpF̄ {F q. By Poincaré duality, we have V – V ˚p1q. We will

recall the definition of heights for the representation V ; heights for the representation

Vf,A,` (which, after enlarging the coefficient field a bit, is a subrepresentation) are

defined similarly.

To define Nekovář’s global bilinear p-adic height pairing

x , y : H1
f pF, V q ˆH

1
f pF, V q Ñ Qp

one needs two pieces of data:

• A continuous homomoprhism `F : AˆF {Fˆ Ñ Qp, which we choose to view as

collection of maps `v : Fˆv Ñ Qp satisfying
ř

v `vpaq “ 0 for a P Fˆ.

• For each place v|p of F , a Qp-linear splitting of the Hodge filtration

0 Ñ F 0DRpVvq Ñ DRpVvq Ñ DRpVvq{F
0
Ñ 0,

58
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where Vv is the restriction of V to a representation of GFv , and

DRpVvq “
`

V bQp BdR

˘GFv .

By [F], we have an identification

DRpVvq – H2r`2k´1
dR pX bF Fv{Fvq,

under which the filtration F iDRpVvq on DRpVvq (coming from the grading on BdR)

is identified with the usual Hodge filtration (up to twist).

This pairing decomposes into a sum of local pairings, one for each finite place of

F :

x , y “
ÿ

v

x , yv.

More precisely, suppose a, b P H1
f pF, V q are Selmer classes. The class a corresponds

to an extension

0 Ñ V Ñ Ea Ñ Qp Ñ 0,

and dualizing the extension corresponding to b, we get

0 Ñ Qpp1q Ñ E˚b p1q Ñ V Ñ 0.

As a consequence of the fact that H1
f pFv, V q annihilates H1

f pFv, V
˚p1qq via local

duality, one may choose a “mixed extension” E fitting in the commutative diagram



60

0 0
§

§

đ

§

§

đ

0 ÝÝÝÑ Qpp1q ÝÝÝÑ E˚b p1q ÝÝÝÑ V ÝÝÝÑ 0
›

›

›

§

§

đ

§

§

đ

0 ÝÝÝÑ Qpp1q ÝÝÝÑ E ÝÝÝÑ Ea ÝÝÝÑ 0
§

§

đ

§

§

đ
h

Qp Qp
§

§

đ

§

§

đ

0 0,

This choice of E is not unique, but we fix one such E (which we stress is a

representation of GF ). The local height pairings to be defined depend on this choice

of global mixed extension. However, the global pairing (i.e. the sum of the local

pairings) will be independent of the choice of E.

Proposition V.1. If v does not divide p, then H1pFv, V q “ 0.

Proof. This is an easy application of local duality and the local Euler characteristic

formula, once we know that H0pFv, V q “ 0. If X has good reduction at v, the latter

follows from the Riemann hypothesis over finite fields, proved by Deligne. In general,

this follows from the weight-monodromy conjecture of Deligne, see e.g. [J, Corollary

4.3]. As mentioned earlier, this conjecture is known for Kuga-Sato and abelian

varieties and is stable under products, so it holds for our generalized Kuga-Sato X

as well.

If v is a place of F not dividing p, then by the previous proposition, the restriction

of the class rEas to H1
f pFv, V q is trivial. Hence, if we consider the diagram above

in the category of GFv -representations, we may choose a splitting s : Qp Ñ Ea of

the map h. Pulling back the middle row of the diagram by s, gives a short exact
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sequence

0 Ñ Qpp1q Ñ Uv Ñ Qp Ñ 0

of GFv -representations, i.e. a class in H1pFv,Qpp1qq – Fˆv b̂Qp. The local height at

v is then defined to be

xa, byv “ `vprUvsq.

If v is a place of F above p, then we will define the local height at v under the

assumption that the mixed extension E is crystalline at v. In general one does not

expect to E to be crystalline, even if (as in our situation) V , Ea and Eb are all

crystalline. But this will turn out to be enough for our purposes. First we consider

the exact sequence

0 Ñ H1
f pFv,Qpp1qq

j
ÝÑ H1

f pFv, E
˚
b p1qq Ñ H1

f pFv, V q Ñ 0,

obtained from the top row in the mixed extension diagram above. On the other

hand, our choice of splitting of the Hodge filtration at v gives rise to a splitting

rv : H1
f pFv, E

˚
b p1qq Ñ H1

f pFv,Qpp1qq of the map j above. We refer to [N2] for

more details on this splitting; its definition is actually not important to us, only its

existence. Since Ev (the restriction of E to a GFv -representation) is crystalline, it

determines a class rEvs in H1
f pFv, E

˚
b p1qq, coming from the short exact sequence in

the central column in the mixed extension diagram. The local height pairing at v is

then defined to be

xa, byv “ `vprvprEvsqq,

where we are thinking of rv as landing in

H1
f pFv,Qpp1qq – OˆFvb̂Qp Ă Fˆv b̂Qp.
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5.2 Mixed extensions attached to algebraic cycles

Now we consider the case where a and b are images of homologically trivial alge-

braic cycles under the p-adic Abel-Jacobi map. In this case, there is a natural choice

for the global mixed extension E. For more details see [N2, §5].

We first recall a definition of the p-adic Abel-Jacobi map

Φ : CH2r`2k´1
pXq0 Ñ H1

pF, V q.

Suppose a “ ΦprY sq, for some homologically trivial cycle Y representing a class in

CH2r`2k´1
pXq0. We write |Ȳ | for the (geometric) support of Y , and assume that |Ȳ |

is smooth for simplicity. Then the Gysin long exact sequence reads

0 Ñ V Ñ H2r`2k´1
ét pX̄´|Ȳ |,Qppr`kqq Ñ H2r`2k

|Ȳ |
pX̄,Qppr`kqq

cl
Ñ H2r`2k

ét pX̄,Qppr`kqq.

Note that H2r`2k
|Ȳ |

pX̄,Qppr`kqq – H0p|Ȳ |,Qpq and the map cl is the usual cycle class

map. Since Y is homologically trivial, we can pull back this sequence along the map

Qp Ñ H2r`2k
|Ȳ |

pX̄,Qppr ` kqq which sends 1 to the class of Y . We get

0 ÝÑ V ÝÑ Ea ÝÑ Qp ÝÑ 0
›

›

›

§

§

đ

§

§

đ

§

§

đ

0 ÝÑ V ÝÑ H2k`2r´1
ét pX̄ ´ |Ȳ |,Qppr ` kqq ÝÑ H0p|Ȳ |,Qpq ÝÑ H2k`2r

ét pX̄,Qppr ` kqq,

and ΦprY sq “ rEas “ a. Thus, we may realize Ea as a subspace of

H2k`2r´1
ét pX̄ ´ |Ȳ |,Qppr ` kqq.

Dually, if b “ ΦprZsq, then we may realize Eb as a quotient of

H2k`2r´1
ét pX̄ rel |Z̄|,Qppr ` kqq.

Here we are using relative cohomology, which in this case is simply cohomology with

compact support along |Z̄|.

Now assume that Y and Z are disjoint.
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Remark V.2. If we start only with the classes rY s and rZs, then we may use the

moving lemma to arrange for Y and Z to be disjoint. However, in our height com-

putations we do not want to use the moving lemma because we need a very explicit

description of the cycles.

Using the Gysin sequence again (this time for the variety X̄ ´ |Ȳ | relative to the

subscheme |Z̄|), one can check that we may choose the mixed extension E to be a

subquotient of cohomology with partial compact support along the boundary:

H2r`2k´1
ét pX̄ ´ |Ȳ | rel |Z|,Qppr ` kqq.

Similarly, suppose the classes a, b P H1
f pF, V q are images of Tate cycles a1, b1 P

ZpY0pNq, F q (recall these were introduced in Chapter 4.2), and suppose a1 and b1

are supported on finite disjoint sets of points S, T Ă X0pNq. Then to compute

xΦT pa
1q,ΦT pb

1qy, we may use use a mixed extension coming from the cohomology of

X0pNq with coefficients in the local system A from the previous chapter. Specifically,

we may choose E to be a subquotient of the representation

H1
étpX̄0pNq ´ S̄ rel T̄ , j0˚A qp1q.

Finally, we remark that these constructions work integrally as well, i.e. we can

work with Zp-coefficients instead of Qp-coefficients. One subtlety in the integral

setting is that a cycle might be homologically trivial when we use Qp-coefficients

only because its cycle class in H2r`2k
ét pX̄,Zppr ` kqq is torsion (but possibly non-

zero). Therefore, naively copying the definition of the Abel-Jacobi map in the integral

setting does not quite work. Instead, one can apply the Abel-Jacobi map to a multiple

of the cycle (killing the torsion), and then proceed as before.

The point in working integrally is that then one can hope to show that xa, byv “

`vprvprEvsqq with rvprEvsq an element of OˆFvb̂Zp (which is just the pro-p part of OˆFv)
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instead of OˆFvb̂Qp. When we take into account the torsion subtlety from before, we

get an element of p´nOˆFvb̂Zp, for some n which is independent of the cycle chosen.

This will eventually allow us to measure how divisible by p the quantity xa, byv is.

For the definitions in the integral setting and for more details, see [N3, II.1.9].



CHAPTER VI

Local p-adic heights at primes away from p

Our ultimate goal is to compute
@

zf , z
A
f,χ̄

D

`K
when `K : AˆK{Kˆ Ñ Qp is cyclo-

tomic, i.e. `K ˝ τ “ `K . Since such a homomorphism is unique up to scaling, we

may assume that `K “ logp ˝λ, where λ : GpK8{Kq Ñ 1 ` pZp is the cyclotomic

character and logp is Iwasawa’s p-adic logarithm. We may write λ “ λ̃ ˝N, where

λ̃ : Zˆp Ñ 1 ` pZp is given by λ̃pxq “ xxy´1. Here, xxy “ xω´1pxq, where ω is the

Teichmuller character.

We maintain the following notations and assumptions for the rest of this section.

Fix an ideal class A and an integer m ě 1, and suppose that there are no integral

ideals in A of norm m, i.e. rApmq “ 0. Choose an integral representative a P A

and let σ P GalpH{Kq correspond to A under the Artin map. Write x “ apY q and

x̄a “ āpY aq for the two Tate vectors supported at the points y and yσ in X0pNqpHq,

as in Proposition IV.8. Let v be a finite place of H not dividing p and set F “ Hv.

Write Λ for the ring of integers in F ur, the maximal unramified extension of F , and

let F “ F̄` be the residue field of Λ. Write X0pNq Ñ Spec Z for the integral model of

X0pNq constructed in [KM], and let X0pNqΛ be the base change to Spec Λ. Finally,

write i : Y0pNq ˆQ F
ur ãÑ X0pNqΛ for the inclusion.

Now suppose a, b are elements of ZpY0pNq, F
urq supported at points ya ‰ yb of

65
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X0pNqpF
urq of good reduction. Let y

a
and y

b
be the Zariski closure of the points

ya and yb in X0pNqΛ and let a and b be extensions of a and b to H0py
a
, i˚A q and

H0py
b
, i˚A q respectively. If y

a
and y

b
have common special fiber z (so z corresponds

to an elliptic curve E{F̄), then define

pa, bqv “ pya ¨ ybqz ¨ paz, bzq,

where py
a
¨ y

b
qz is the usual local intersection number on the arithmetic surface

X0pNqΛ and paz, bzq is the intersection pairing on the cohomology of E2r´2 ˆ A`F,

where AF is the reduction of AF̄ .

Remark VI.1. Note that while A may not have good reduction at v, it has potential

good reduction. We can therefore identify H i
étpAF̄ ,Qpq and H i

étpAF,Qpq as vector

spaces, but not as GalpF̄ {F q-representations. Since the ensuing intersection theoretic

computations can be performed over an algebraic closure, this is enough for our

purposes.

Our assumption that rApmq “ 0 implies that the Tate vectors x and Tmx̄
a have

disjoint support. The goal of this chapter is to compute xx, Tmx̄
ayv explicitly. Since

the two Tate vectors have disjoint support, we may used the natural choice of mixed

extension E (discussed in Chapter 5.2) in order to perform these calculations. By

[ST], we may assume that these cycles are supported at points of X0pNqΛ which are

represented by elliptic curves with good reduction. The following proposition gives

a way to compute the local heights purely in terms of Tate cycles. This technique of

computing heights of cycles on higher dimensional varieties using a local system on

a curve is the key to the entire computation. The idea goes back to work of Deligne,

Beilinson, Brylinski, and Scholl, among others.
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Proposition VI.2. With notation and assumptions as above, we have

(6.1) xx, Tmx̄
a
yv “ ´px, Tmx̄

a
qv logppNvq,

Proof. The proof is exactly as in [N3, II.2.16 and II.4.5]. In our case, one uses that

H2pX0pNq, i˚A p1qq “ 0. This follows from the fact that if

A 1
“
`

π˚Sym2r´2
pR1f˚Qpqpr ´ 1q

˘B
,

then A “ A 1 bW , where W is a trivial two-dimensional local system, and

H2pX0pNq, i˚A
1q “ 0 [KM, 14.5.5.1].

Recall that over Λ, the sections y and yσ correspond to cyclic isogenies of degree

N . We will confuse the two notions, so that the notation HomΛpy
σ, yq makes sense.

See [N3] and [C1] for details.

Proposition VI.3. Suppose v is a finite prime of H not divisible by p. If m ě 1 is

prime to N and satisfies rApmq “ 0, then

px, Tmx̄
a
qv “

1

2
mr´k´1

ÿ

ně1

ÿ

g

´

ε̄
´

Xbr´k´1

g
?
Dg´1 bX

b`

gφa

¯

, ε
´

Xbr´k´1?
D

bXb`
1

¯¯

,

where the sum is over g P HomΛ{πnpy
σ, yq of degree m. The intersection pairing on

the right takes place in the cohomology of E2r´2 ˆ A`F, where E – AF is the elliptic

curve over F corresponding to the special fiber y
s

of y.

Proof. The proof builds on that of [N3, II.4.12], so we only mention what is new to

our setting. We write m as m “ m0q
t where q is the rational prime below v (this is

what Nekovář calls `). In the notation of [N3], we need to compute the special fiber

of xagpjq, where g P HomΛpy
σ, yσ

g
q is an isogeny of degree m0. There is no harm in

assuming r “ k ` 1, because the description of the purely Kuga-Sato components
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of xagpjq (i.e. coming from factors of the cycle Y a of the form Γ?D Ă Ea ˆ Ea) is

handled in [N3].

Assume now that q is inert in K and t is even. In this case the special fiber pyqs

is supersingular, and the special fiber pxagqs of the Tate vector is represented by the

pair
´

pyσ
g
qs, ε̄

`

Xb`
gφa,1

˘

¯

.

This follows from the definition of the Hecke operators and the following fact: if

g : E Ñ E 1 is an isogeny and φ : AÑ E is an isogeny, then

pg ˆ idq
˚
pΓtφq “ Γtgφ P CH1

pE 1 ˆ Aq.

Since any isogeny h P HomΛ{πnpy
σ
g
, yq of degree qt on the special fiber y

s
– pyσ

g
qs is

of the form qt{2h0, with h0 of degree 1, we find that, assuming y and yσ
g
pjq intersect,

pxagpjqqs is represented by

´

pyσ
g
qs, ε̄

´

Xb`
qt{2gφa,1

¯¯

“

´

y
s
, ε̄
´

Xb`
h0qt{2gφa,1

¯¯

“

´

y
s
, ε̄
`

Xb`
hgφa,1

˘

¯

“

´

y
s
, ε̄
´

Xb`

hgφa

¯¯

,

as desired. The proof when t is odd or when q is ramified is similar. If q is split in

K, then both sides of the equation are 0, as is shown in [GZ].

When v lies over a non-split prime, EndΛ{πpyq “ EndpEq is an order R in a

quaternion algebra B and we can make the double sum on the right hand side more

explicit. To do this, we follow [GZ] and identify HomΛ{πpy
σ, yq with Ra by sending a

map g to b “ gφa. The reduction of endomorphisms induces an embedding K ãÑ B,

which in turn determines a canonical decomposition B “ K‘Kj. Thus every b P B

can be written as b “ α ` βj with α, β P K. Recall also that the reduced norm on

B is additive with respect to this decomposition, i.e. Npbq “ Npαq `Npβjq.
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Proposition VI.4. If gφa “ b “ α ` βj P EndpEq, then

´

ε̄pXr´k´1

g
?
Dg´1 bX

b`
b̄
q, εpXbr´k´1?

D
bXb`

1 q

¯

“
p4Dqr´k´1

`

2r´2
r´k´1

˘ ᾱ2kHr´k´1,k

ˆ

1´
2Npβjq

Npbq

˙

,

where

Hm,kptq “
1

2m ¨ pm` 2kq!

ˆ

d

dt

˙m`2k

rpt2 ´ 1qmpt´ 1q2ks.

Proof. Recall from Chapter 4.4 that we have chosen a basis x˚, y˚ of VpE, and a dual

basis x, y of H1pEq such that x˚ P VpE, y˚ P Vp̄E, and px˚, y˚q “ 1. We have already

seen that Xα “ αxb y ´ ᾱy b x. Since γj “ jγ̄ for all γ P K, V j (the map induced

by j on VpE) swaps VpE and Vp̄E. So we can write

V j “

¨

˚

˝

0 u

v 0

˛

‹

‚

for some u, v P Qp such that uv “ Npjq “ ´j2. It follows that

Xb “ αxb y ´ ᾱy b x` βuy b y ´ β̄vxb x.

Next note that g
?
Dg´1 “ b

?
Db´1. We write b

?
Db´1 “ γ ` δj, so that γ “

?
D

Npbq
pNpαq ´Npβjqq and δ “ ´2

?
D

Npbq
αβ. Thus Xg

?
Dg´1 already lies in Sym2H1pEq,

and hence (working now in the symmetric algebra)

ε̄Xg
?
Dg´1 “ 2γxy ` δuy2

´ δ̄vx2
“

2
?
D

Npbq
pᾱx´ βuyqpαy ` β̄vxq,

since ε̄ acts as Scholl’s projector εW on the purely Kuga-Sato components.

The cohomology classes Xb̄ in the statement of the proposition are on ‘mixed’

components, i.e. they live in H1pEq b H1pE 1q, where E comes from a Kuga-Sato

component and E 1 (which is abstractly isomorphic to E) comes from the factor A`.

Thus

Xb̄ “ ᾱxb y1 ´ αy b x1 ´ βuy b y1 ` β̄vxb x1,
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and ε̄Xb̄ “ pᾱx´ βuyqy
1, since ε̄ acts trivially on H1pEq and kills the basis vector x1

in H1pE 1q. Using these observations together with the compatibility of the projectors

with the multiplication in the appropriate symmetric algebras, we compute

´

ε̄pXr´k´1

g
?
Dg´1 bX

b`
b̄
q, εpXbr´k´1?

D
bXb`

1 q

¯

“

´

p2γxy ` δuy2
´ δ̄x2

q
r´k´1

pᾱx´ βuyq2k b y12k, p2
?
Dxyqr´k´1y2k

b x12k
¯

“

ˆ

4D

Npbq

˙r´k´1

py12k, x12kq
`

pᾱx´ βuyqr`k´1
pαy ` β̄vxqr´k´1, xr´k´1yr`k´1

˘

“

ˆ

4D

Npbq

˙r´k´1

py12k, x12kqpyr´k´1xr`k´1, xr´k´1yr`k´1
q ¨ C

“
p4Dqr´k´1

Npbqr´k´1
`

2r´2
r´k´1

˘ ¨ C,

where C is the coefficient of the monomial yr´k´1xr`k´1 in

pᾱx´ βuyqr`k´1
pαy ` β̄vxqr´k´1.

The pairings in the second to last line are the natural ones on Sym2kH1pE 1q and

Sym2r´2H1pEq induced from the pairings on the full tensor algebras. For example,

Sym2r´2H1pEq has a natural pairing coming from the cup product p , q on H1pEq:

pv1 b ¨ ¨ ¨ b v2r´2q ˆ pw1 b ¨ ¨ ¨ b w2r´2q ÞÑ
1

p2r ´ 2q!

ÿ

σPS2r´2

2r´2
ź

i“1

pvi, wσpiqq.

In particular, pxayb, xcydq “ 0 unless a “ d and b “ c, and

pxayb, yaxbq “
a!b!

pa` bq!
“

ˆ

a` b

a

˙´1

.

We have also used that on Sym2r´2H1pEq b Sym2kH1pE 1q we have

pub v, w b zq “ pu,wqpv, zq.

To compute the value of C, note that in general, the coefficient of xm`2k in

pax` bqm`2k
pcx` dqm
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is equal to a2kpad´ bcqmHm,k

`

ad`bc
ad´bc

˘

. This is proved using the method of [Z, 3.3.3].

Applying this to the situation at hand, we find that

C “ ᾱ2kNpbqr´k´1Hr´k´1,k

ˆ

1´
2Npβjq

Npbq

˙

.

Plugging this in, we obtain the desired expression for the pairing on the special

fiber.

For each prime q, define xx, Tmx̄
ayq “

ř

v|qxx, Tmx̄
ayv.

Proposition VI.5. Assume that pm,Nq “ 1, rApmq “ 0. Then

χpāq´1
ÿ

q‰p

xx, Tmx̄
a
yq “

´ u2 p4|D|mq
r´k´1

Dk ¨
`

2r´2
r´k´1

˘

ÿ

0ănăm|D|
N

σApnqrA,χ pm|D| ´ nNqHr´k´1,k

ˆ

1´
2nN

m|D|

˙

,

with σApnq defined as in Corollary III.7.

Proof. This type of sum arises from Proposition VI.3 exactly as in [N3, II.4.17] and

[GZ], so we omit the details. The main new feature here is that each b “ α`βj P Ra

of degree m is weighted by ᾱ`, by the previous proposition. Thus the numbers rApjq,

with j “ m|D| ´ nN , and which in [N3, II.4.17] are simply counting the number of

such b, become non-trivial sums of the form

ÿ

cĂOK
rcs“A´1D
Nmpcq“j

ᾱ`.

Here, α P d´1a and c “ pαqda´1 (see [GZ, p. 265]). Rewriting this sum, we obtain

ÿ

cĂOK
rcs“A´1D
Nmpcq“j

χ̄pcad´1
q “

χpāq

χpdq
¨

ÿ

cĂOK
rcs“A´1D
Nmpcq“j

χpc̄q “
χpāq

Dk
¨

ÿ

cĂOK
rcs“A

Nmpcq“j

χpcq “
χpāq

Dk
rA,χpjq.

Multiplying by χpāq´1, we get the desired result.
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We define

Bσ
m “ mr´k´1

m|D|
N
ÿ

n“1
pp,nq“1

rA,χpm|D| ´ nNqσApnqHr´k´1,k

ˆ

1´
2nN

m|D|

˙

Cσ
m “ mr´k´1

m|D|
N
ÿ

n“1

rA,χpm|D| ´ nNqσApnqHr´k´1,k

ˆ

1´
2nN

m|D|

˙

Up to a constant, the Bσ
m appear as coefficients of the derivative of the p-adic L-

function defined earlier (this will follow from Corollary III.7) and Cσ
m contributes to

the height of our generalized Heegner cycle, as we have just seen. Just as in [N3,

I.6.7], we wish to relate the Bσ
m to the Cσ

m.

Let Up be the operator defined by Cσ
m ÞÑ Cσ

mp and similarly for Bσ
m. For a prime

p of K above p, we write σp for Frobppq P GalpH{Kq. We will also let σp be the

operator Cσ
m ÞÑ C

σσp
m .

Proposition VI.6. Suppose p ą 2 is a prime which splits in K and that χ is an

unramified Hecke character of K of infinity type p`, 0q with ` “ 2k. Then

ź

p|p

`

Up ´ p
r´k´1χpp̄qσp

˘2
Cσ
m “

`

U4
p ´ p

2r´2U2
p

˘

Bσ
m.

Proof. The proof follows [PR1, Proposition 3.20], which is the case r “ 1 and ` “

k “ 0. We first generalize [PR1, Lemma 3.11] and write down relations between the

various rA,χp´q.

Lemma VI.7. Set rA,χptq “ 0 if t P QzN. For all integers m ą 0, we have

1. rA,χpmpq ` p
`rA,χpm{pq “ χpp̄qrAp,χpmq ` χppqrAp̄,χpmq.

2. rA,χpmp
2q ` p2`rA,χpm{p

2q “ χpp̄2qrAp2,χpmq ` χpp
2qrAp̄2,χpmq if p|m.

3. rA,χpmp
2q ´ p`rA,χpmq “ χpp̄2qrAp2,χpmq ` χpp

2qrAp̄2,χpmq if pp,mq “ 1.

4. If n “ n0p
t with p ffl n0, then σApnq “ pt` 1qσA,tpn0q, where σA,t “ σApt “ σAp̄t .
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5. σAb2pnq “ σApnq for any ideal b.

Proof. Note that every integral ideal a in A of norm mp is either of the form a1p with

a1 P Ap̄ of norm m or it is of the form a1p̄ with a1 P Ap of norm m. Moreover, an

ideal of norm mp which can be written as such a product in two ways is necessarily

the product of an integral ideal in A of norm m{p with ppq. The first claim now

follows from the fact that

rA,χptq “
ÿ

aĂO
aPA

Npaq“t

χpaq,

and that χpppqq “ p`. Parts (2) and (3) follow formally from (1). (4) is proven in

[PR1] and (5) is clear from the definition.

Going back to the proof of Proposition VI.6, the left hand side is equal to

Cσ
mp4 ´ 2pr´k´1

´

χpp̄qC
σσp
mp3 ` χppqC

σσp̄
mp3

¯

` p2pr´k´1q
´

χpp̄q2C
σσp2

mp2 ` 4p`Cσ
mp2 ` χppqC

σσp̄2

mp2

¯

´ 2p3pr´k´1q``
`

χpp̄qCσσp
mp ` χppqC

σσp̄
mp

˘

` p4pr´1qCσ
m.

In the following we write vppq for the p-adic valuation of an integer n, and n “ n0p
vppq.

For the sake of brevity we also set rApu, vq “ rA,χpu|D|´vNq for integers u and v and

Hpxq “ Hr´k´1,kpxq. Then by repeated usage of the previous lemma, the expression

above is equal to
m|D|{N
ÿ

n“1

pvpnq ` 1qpmp4
q
r´k´1Mpnq,
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where Mpnq equals

rApmp
4, nqσA,vpnqpn0qH

ˆ

1´
2nN

mp4|D|

˙

´ 2
“

rApmp
4, pnq ` p`rA

`

mp2, n{p
˘‰

σA,vpnq`1pn0qH

ˆ

1´
2nN

mp3|D|

˙

`

»

—

—

—

–

rApmp
4, p2nq `

$

’

’

’

&

’

’

’

%

p2`rA pm,n{p
2q ` 4p`rApmp

2, nq if p|n

3p`rApmp
2, nq if p ffl n

fi

ffi

ffi

ffi

fl

ˆ

ˆ σA,vpnqpn0qH

ˆ

1´
2nN

mp2|D|

˙

´ 2p`
“

rApmp
2, pnq ` p`rApm,n{pq

‰

σA,vpnq`1pn0qH

ˆ

1´
2nN

mp|D|

˙

` p2`rApm,nqσA,vpnqpn0qH

ˆ

1´
2nN

m|D|

˙

.

Grouping in terms of the n0 which arise in this sum, we can rewrite this as

ÿ

pn0,pq“1

ÿ

t

σA,tpn0qAt,

where At equals

pmp4
q
r´k´1rApmp

4, ptn0q

»

—

—

—

–

t` 1´ 2t`

$

’

’

’

&

’

’

’

%

t´ 1 if t ě 1

0 if t “ 0

fi

ffi

ffi

ffi

fl

H

ˆ

1´
2n0p

tN

mp4|D|

˙

` pmp2
q
r´k´1p2r´2rApmp

2, ptn0q

»

—

—

—

–

´2pt` 2q `

$

’

’

’

&

’

’

’

%

4pt` 1q ´ 2t if t ě 1

3 if t “ 0

fi

ffi

ffi

ffi

fl

ˆ

ˆH

ˆ

1´
2n0p

tN

mp2|D|

˙

`mr´k´1p4r´4rApm, p
tn0q rt` 3´ 2pt` 2q ` t` 1sH

ˆ

1´
2n0p

tN

m|D|

˙

.

So At “ 0 unless t “ 0, and we conclude that the left hand side in Proposition VI.6

is equal to pU4
p ´ p

2r´2U2
p qB

σ
m, as desired.



CHAPTER VII

Ordinary representations

The contributions to the p-adic height xzf , z
A
f,χ̄y coming from places v|p will even-

tually be shown to vanish. The proof is as in [N3, II.5] (though see Chapter IX).

An important input to Nekovář’s approach is that the local p-adic Galois represen-

tation Vf attached to f is ordinary. We recall this notion and prove that the Galois

representation Vf,A,` “ Vf b κ`H
`pĀ`,Qpqpkq is ordinary as well.

Definition VII.1. Let F be a finite extension of Qp. A p-adic Galois representation

V of GF “ GalpF̄ {F q is ordinary if it admits a decreasing filtration by subrepresen-

tations

¨ ¨ ¨F iV Ą F i`1V Ą ¨ ¨ ¨

such that
Ť

F iV “ V ,
Ş

F iV “ 0, and for each i, F iV {F i`1V “ Aipiq, with Ai

unramified.

Recall we have defined ε1 “ εWκ`, with

κ` “

«

ˆ

?
D ` r

?
Ds

2
?
D

˙b`

`

ˆ

?
D ´ r

?
Ds

2
?
D

˙b`
ff

˝

ˆ

1´ r´1s

2

˙b`

.

Theorem VII.2. Let f P S2rpΓ0pNqq be an ordinary newform and let Vf be the

2-dimensional p-adic Galois representation associated to f by Deligne. Let A{H be

an elliptic curve with CM by OK and assume p splits in K and A has good reduction

75
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at primes above p. For any ` “ 2k ě 0, set W “ κ`H
`pĀ`,Qpqpkq. Then for any

place v of H above p, Vf,A,` “ Vf bW is an ordinary p-adic Galois representations

of GalpH̄v{Hvq.

Proof. First we recall that Vf is ordinary. Indeed, Wiles [Wi] proves that the action

of the decomposition group Dp on Vf is given by

¨

˚

˝

ε1 ˚

0 ε2

˛

‹

‚

with ε2 unramified. Since, detVf is χ2r´1
cyc , we have ε1 “ ε´1

2 χ2r´1
cyc . Thus, the filtration

F 0Vf “ Vf Ą F 1Vf “ F 2r´1Vf “ ε1 Ą F 2rVf “ 0,

shows that Vf is an ordinary GalpQ̄p{Qpq-representation and hence an ordinary

GalpH̄v{Hvq-representation as well. Next we describe the ordinary filtration on (a

Tate twist of) W .

Proposition VII.3. Write ppq “ pp̄ as ideals in K. Then the p-adic representation

M “ κ`H
`
étpĀ

`,Qpqp`q of GalpH̄v{Hvq has an ordinary filtration

F 0M “M Ą F 1M “ F `M Ą F ``1M “ 0.

Proof. The theory of complex multiplication associates to A an algebraic Hecke char-

acter ψ : AˆH Ñ Kˆ of type Nm : Hˆ Ñ Kˆ such that for any uniformizer πv at a

place v not dividing p or the conductor of A, ψpπvq P K – EndpAq is a lift of the

Frobenius morphism of the reduction Av at v. The composition

tp : AˆH
Nm
ÝÑ AˆK Ñ pK bQpq

ˆ

agrees with ψ on Hˆ, giving a continuous map

ρ1 “ ψt´1
p : AˆH{H

ˆ
Ñ pK bQpq

ˆ.
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Since the target is totally disconnected, this factors through a map

ρ : Gab
H Ñ pK bQpq

ˆ.

By construction of the Hecke character (and the Chebotarev density theorem), the

action of GalpH̄{Hq on the rank 1 pKbQpq-module TpAbQp is given by the character

ρ. Since p splits in K, we have

pK bQpq
ˆ
– Kˆ

p ‘K
ˆ
p̄ “ Qˆp ‘Qˆp .

Now write ρ “ ρp‘ ρp̄, where ρp and ρp̄ are the characters obtained by projecting

ρ onto Kˆ
p and Kˆ

p̄ .

Lemma VII.4. Let χcyc : GalpH̄v{Hvq Ñ Qˆp denote the cyclotomic character and

consider ρp and ρp̄ as representations of GalpH̄v{Hvq. Then ρpρp̄ “ χcyc and ρp̄ is

unramified.

Proof. The non-degeneracy of the Weil pairing shows that
Ź2 TpA – Zpp1q. It then

follows from the previous discussion that ρpρp̄ “ χcyc. That ρp̄ is unramified follows

from the fact that tp̄pHvq “ 1 and v is prime to the conductor of ψ. Indeed, the

conductor of A is the square of the conductor of ψ [G], and A has good reduction at

p.

Remark VII.5. Let A{OH be the Néron model of A{H. Since Arp̄ns is étale, it

follows that the p̄-adic Tate module Vp̄A is unramified at v. We can therefore identify

ρp – VpA and ρp̄ “ Vp̄A. One can also see this from the computation in equation 4.1.

Lemma VII.6. As GalpH̄v{Hvq-representations,

H1
étpĀ,Qpqp1q – ρp ‘ ρp̄



78

and

M “ κ`H
`
étpĀ

`,Qpqp`q – ρ`p ‘ ρ
`
p̄.

Proof. The first claim follows from the fact that TpA bQp – H1
étpĀ,Qpqp1q. Fix an

embedding ι : EndpAqãÑK, which by our choices, induces an embedding EndpAqãÑQp.

By the definition of ρ, ρp is the subspace of H1
étpĀ,Qpqp1q on which α P EndpAq acts

by ιpαq, whereas on ρp̄, α acts as ῑpαq. The second statement now follows from the

Kunneth formula and the definition of κ`.

Now set F 0M “M , F 1M “ F `M “ ψ`, and F ``1M “ 0. By the lemmas above,

this gives an ordinary filtration of M and proves the proposition.

Now to prove the theorem. We have specified ordinary filtrations F iVf and F iM

above. A simple check shows that

F i
pVf bMq “

ÿ

p`q“i

F pVf b F
qM

is an ordinary filtration on Vf bM . Since Vf,A,` “ Vf bW “ pVf bMqp´kq and Tate

twisting preserves ordinarity, this proves Vf,A,` is ordinary.

Remark VII.7. Another way to obtain the ordinary filtration on M is to use the fact

that M is isomorphic to the p-adic realization of the motive Mθ
ψ`

attached to the

modular form θψ` of weight ` ` 1. Since A has ordinary reduction at p, θψ is an

ordinary modular form, and it follows that θψ` is ordinary as well. We may therefore

apply Wiles’ theorem again to obtain an ordinary filtration on W .

Proposition VII.8. The GalpH̄{Hq representation Vf,A,` “ VfbW satisfies V ˚f,A,`p1q –

Vf,A,`.

Proof. Recall that V ˚f p1q – Vf , so we need to show that W ˚ – W . This follows from

the two lemmas above.



CHAPTER VIII

Proof of Theorems I.7 and I.9

Let T be the Hecke algebra of level N , i.e. the Q-algebra generated by the action

of the Hecke operators Tm (pm,Nq “ 1) on S2pΓ0pNqq. In what follows, normalized

primitive forms fβ P S2rpΓ0pNqq (i.e. fβ is a newform of some level dividing N) will

be indexed by the corresponding Q-algebra homomorphism β : TÑ Q̄. We let β0 be

the homomorphism corresponding to our chosen newform f . If A P PicpOKq, then

FA :“
ÿ

β

xzβ,χ, z
A
β,χ̄yfβ

is a cusp form in S2rpΓ0pNq;Qppχqq. Indeed, for pm,Nq “ 1, we have

χpāqampFAq “
ÿ

β

xzβ, z̄
a
βyβpTmq “ xz, Tmz̄

a
y “ xx, Tmx̄

a
y P Qp,

because the Hecke operators are self-adjoint with respect to the height pairing. If

rApmq “ 0, then we have the decomposition

ampFAq “ cσm ` d
σ
m

where

cσm “ χpāq´1
ÿ

vfflp

xx, Tmx̄
a
yv, dσm “ χpāq´1

ÿ

v|p

xx, Tmx̄
a
yv,

and the sums are over finite places of H.
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Both sides of the equation in Theorem I.7 depend linearly on a choice of arithmetic

logarithm `K : AˆK{Kˆ Ñ Qp. By Theorem IV.13, it suffices to proves the main

theorem for cyclotomic `K , i.e. `K “ `K ˝ τ . As cyclotomic logarithms are unique up

to scalar we only need to consider the case `K “ `Q ˝N. Thus, `K “ logp ˝λ, where

λ : GpK8{Kq Ñ 1` pZp is the cyclotomic character. As before, we write λ “ λ̃ ˝N,

where λ̃ : Zˆp Ñ 1` pZp is given by λ̃pxq “ xxy´1.

By definition,

L1ppf b χ,1q “
d

ds
Lppf b χ, λ

s
q

ˇ

ˇ

ˇ

ˇ

s“0

.

Also by definition,

Lppf b χ, λ
s
q “ p´1qr´1Hppfq

ˆ

D

´N

˙ˆ

1´ C

ˆ

D

C

˙

λspCq´1

˙´1 ż

GpHp8 pµp8 q{Kq

λsdΨ̃C
f,1,1

“ p´1qrHppfq

ˆ

1´ C

ˆ

D

C

˙

λ̃´2s
pCq

˙´1 ż

GpHp8 pµp8 q{Kq

λsdΨ̃C
f,1,1,

where C is an arbitrary integer prime to N |D|p. The measure Ψ̃C
f,1,1 is given by:

Ψ̃C
f,1,1pσpmod pnq, τpmod pmqq “ Lf0pΨ̃

C
A,1papmod pmqqq

where a corresponds to the restriction of τ under the Artin map and σ corresponds

to rAs P PicpOpnq. We therefore have

Lppfbχqpλ
s
q “ p´1qrHppfq

ˆ

1´ C

ˆ

D

C

˙

xCy2s
˙´1

Lf0

»

–

ÿ

APPicpOKq

ż

Zˆp
xxy´sdΨ̃C

A,1

fi

fl .

Using logxxy “ log x, we compute

d

ds

ˇ

ˇ

ˇ

ˇ

s“0

˜

ˆ

1´ C

ˆ

D

C

˙

xCy2s
˙´1 ż

Zˆp
xxy´sdΨ̃C

A

¸

“

ˆ

1´ C

ˆ

D

C

˙˙´1 ż

Zˆp
log x dΨ̃C

A ` p˚q

ż

Zˆp
dΨ̃C

A

“

ˆ

1´ C

ˆ

D

C

˙˙´1 ż

Zˆp
log x dΨ̃C

A
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The integral
ş

Zˆp
dΨ̃C

A vanishes because by Corollary II.6, Lppf b χqpλq “ 0 for all

anticyclotomic λ, in particular for λ “ 1. Or more simply, it vanishes by the inter-

polation property of Lp and the vanishing of Lpf, χ, r ` kq.

If we set

Gσ “ p´1qr
ż

Zˆp
logp dΨ̃A P M̄2rpΓ0pNp

8
q;Qppχqq,

then using the identity

ż

Zˆp
λpαq dΨ̃C

A “

ż

Zˆp
λpαq ´ C

ˆ

D

C

˙

λpC´2αq dΨ̃A,

we obtain

L1ppf b χ,1q “ ´Hppfq
ÿ

σPGpH{Kq

Lf0pGσq.

Define the operator

F “
ź

p|p

`

Up ´ p
r´k´1χppqσp̄

˘2
.

Putting together Corollary III.7 and Propositions VI.5 and VI.6, we obtain

Proposition VIII.1. If p|m, pm,Nq “ 1 and rApmq “ 0, then

cσm|F “ p´1qk`1
p4|D|qr´k´1u2ampGσq

ˇ

ˇ

ˇ

ˇ

`

U4
p ´ p

2r´2U2
p

˘

.

We define the p-adic modular form

Hσ “ FA|F ` p´1qkp4|D|qr´k´1u2Gσ

ˇ

ˇ

ˇ

ˇ

`

U4
p ´ p

2r´2U2
p

˘

.

By construction, when p|m, pm,Nq “ 1 and rApmq “ 0, we have

ampHσq “ dσm|F “ χpāq´1
ÿ

v|p

xx, Tmx̄
a
yv|F .

Proposition VIII.2. Define the operator

F 1 “ pUp ´ σpqpUpσp ´ p2r´2
qpUp ´ σp̄qpUpσp̄ ´ p

2r´2
q.

Then Lf0pHσ|F 1q “ 0.
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Proof. The proof should be exactly as in [N3, II.5.10], however the proof given there

is not correct. In the next section we explain how to modify Nekovář’s argument to

prove the desired vanishing. For our purposes in this section, the important point is

that this modified proof goes through if we replace the representation Vf,A,0 “ Vf (i.e.

the ` “ 0 case which Nekovář considers) with our representation Vf,A,` “ Vf bW ,

where W corresponds to a trivial local system. Indeed, the proof works “on the

curve” and essentially ignores the local system. The only inputs specific to the

local system are two representation-theoretic conditions: it suffices to know that the

representation Vf,A,` is ordinary and crystalline. These follow from Theorems VII.2

and IV.6, respectively.

It follows that

Lf0 pFA|FF 1q “ p´1qk`1
p4|D|qr´k´1u2Lf0

ˆ

Gσ

ˇ

ˇ

ˇ

ˇ

`

U4
p ´ p

2r´2U2
p

˘

F 1
˙

.

Since Lf0 ˝ Up “ αppfqLf0 , we can remove F 1 from the equation above; we may

divide out the extra factors that arise as they are non-zero by the Weil conjectures.

Summing this formula over σ P GalpH{Kq, we obtain

Lf0pfq
ź

p|p

ˆ

1´
χppqpr´k´1

αppfq

˙2
ÿ

σPGalpH{Kq

xzf , z
A
f,χ̄y

“ p´1qkp4|D|qr´k´1u2Hppfq
´1

ˆ

1´
p2r´2

αppfq2

˙

L1ppf b χ,1q.

Note that the operators σp and σp̄ (in the definition of F) permute the various

xzf , z
A
f,χ̄y as A ranges through the class group. So after summing over GalpH{Kq,

these operators have no effect and therefore do not show up in the Euler product in

the left hand side.1 By Hida’s computation [N3, I.2.4.2]:

ˆ

1´
p2r´2

αppfq2

˙

“ HppfqLf0pfq,

1This is unlike what happens in [N3]. The difference stems from the fact that we inserted the Hecke character
into the definition of the measures defining the p-adic L-function.
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so we obtain

L1ppf b χ,1q “ p´1qk
ź

p|p

ˆ

1´
χppqpr´k´1

αppfq

˙2
ř

APPicpOKqxzf , z
A
f,χ̄y

p4|D|qr´k´1u2
.

By equation (4.3), this equals

p´1qk
ź

p|p

ˆ

1´
χppqpr´k´1

αppfq

˙2
hxzf,χ, zf,χ̄y

p4|D|qr´k´1u2

and proves Theorem I.7.

Proof of Theorem I.9. We now assume χ “ ψ` as in Section 1.2.3. Recall that the co-

homology classes zf and z̄f live inH1
f pH,Vf,A,`q. Recall also Vf,A,` is the 4-dimensional

p-adic realization of the motive MpfqH bMpχHq over H with coefficients in Qpfq.

Using Remark IV.3, we have a motive MpfqK bMpχq over K with coefficients in

Qpf, χq descending MpfqH bMpχHq b Qpχq. The p-adic realization of this motive

over K is what we called Vf,χ.

Thus we may think of the classes zf and z̄f in H1
f pH,Vf,A,`q – H1pH, Vf,χq. Define

zKf “ corH{Kpzf q and z̄Kf “ corH{Kpz̄f q

in H1
f pK,Vf,χq.

Lemma VIII.3.

resH{Kpz
K
f q “ hzf,χ and resH{Kpz̄

K
f q “ hzf,χ̄.

Proof. Note that there is a natural action of GalpH{Kq on H1pH,Vf,χq, since Vf,χ

is a GK-representation. Since res ˝ cor “ Nm, it suffices to show that for each

σ P GalpH{Kq, zσf “ zAf,χ and z̄σf “ zAf,χ̄, where A corresponds to σ under the Artin

map. Recall that

zAf,χ “ χpaq´1Φf pεBεY
a
q and zAf,χ̄ “ χpāq´1Φf pεB ε̄Y

a
q ,
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for any ideal a in the class of A.

To prove zσf “ zAf,χ, we first describe explicitly the action of GalpK̄{Kq on the

subspace εVf,A,` Ă Vf,A,` after identifying the spaces Vf,A,` and Vf,χ. For each σ P

GalpK̄{Kq, we have maps

ε`H
`
pĀ`,Qpq

σ˚
ÝÑ εσ`H

`
pAσ

`
,Qpq

χpaq´1φ`˚a
ÝÝÝÝÝÝÑ ε`H

`
pĀ`,Qpq,

which induces an action of GK on εVf,A,` “ Vf b εH`pĀ`,Qppkqq. By definition of

Mpχq, this agrees with the action of GK on Vf,χ. Now the argument in the proof of

Lemma IV.11 shows that zσf “ zAf,χ. A similar argument works for z̄σf .

By Lemma VIII.3, resH{Kpz
K
f,χq “ hzf,χ and resH{Kpz̄

K
f q “ hzf,χ̄. It follows that

(8.1)
@

zKf , z̄
K
f

D

K
“ h xzf,χ, zf,χ̄yH .

Now assume that L1ppfbχ, `K ,1q ‰ 0. By Theorem I.7 and (8.1), the cohomology

classes zKf and z̄Kf are non-zero, giving two independent elements of H1
f pK,Vf,χq.

This proves one inequality in Perrin-Riou’s conjecture (1.2). The other inequality

follows from recent work of Elias [E] constructing an Euler system of generalized

Heegner classes and extending the methods of Kolyvagin and Nekovář in [N1] to our

setting.



CHAPTER IX

Local p-adic heights at primes above p

The purpose of this chapter is to fix the proof of [N3, II.5.10] on which both

Nekovář’s Theorem A and our main theorem rely. In the first two subsections we

gather some facts about relative Lubin-Tate groups and ring class field towers, and

in 9.3 we explain how to modify the proof in [N3]. We have isolated and fixed only

the two parts of [N3, II.5] with a serious mistake, instead of rewriting the entire

argument of that section.

9.1 Relative Lubin-Tate groups

The reference for this material is [dS, §1].

Let F {Qp be a finite extension and let L be the unramified extension of K of

degree δ ě 1. Write mF and mL for the maximal ideals in OF and OL and write q

for the cardinality of OF {mF . We let φ : L Ñ L be the Frobenius automorphism

lifting xÑ xq and normalize the valuation on F so that a uniformizer has valuation

1. Let ξ P F be an element of valuation δ and let f P OLrrXss be such that

fpXq “ $X `OpX2
q and fpXq ” Xq mod mL,

where $ P OL satisfies NmL{F p$q “ ξ. Note that $ exists and is a uniformizer,

since NmL{F pL
ˆq is the set of elements in Fˆ with valuation in δZ.

85



86

Theorem IX.1 (de Shalit). There is a unique one dimensional formal group law

Ff P OLrrX, Y ss for which f is a lift of Frobenius, i.e. for which f P HompFf , F
φ
f q.

Ff comes equipped with an isomorphism OF – EndpFf q denoted a ÞÑ rasf , and the

isomorphism class of Ff{OL depends only on ξ and not on the choice of f .

Remark IX.2. This extends the well known construction of Lubin and Tate in the

case δ “ 1.

Now let M be the valuation ideal of Cp and let Mf the M -valued points of Ff .

For each n ě 0, the mn
F -torsion points of Ff are by definition

W n
f “ tω PMf : rasf pωq “ 0 for all a P mn

F u

Proposition IX.3. For each n ě 1, set Lnξ “ LpW n
f q. Then

1. Lnξ is a totally ramified extension of L of degree pq ´ 1qqn´1 and is abelian over

F .

2. There is a canonical isomorphism pOF {mn
F q
ˆ – GalpLnξ {Lq given by u ÞÑ σu,

where σupωq “ ru
´1sf pωq for ω P W n

f .

3. Both the field Lnξ and the isomorphism above are independent of the choice of

f .

4. The map u ÞÑ σu is compatible with the local Artin map rF : Fˆ Ñ GalpF ab{F q.

5. The field Lnξ corresponds to the subgroup ξZ ¨ p1`mn
F q Ă Fˆ via local class field

theory.

Writing Lξ “
Ť

n L
n
ξ , we see that GalpLξ{Lq – OˆF and the group of universal

norms in Fˆ coming from Lξ is ξZ. Moreover, we have an isomorphism GalpLξ{Lq Ñ

OˆF who’s inverse is rF |OˆF
composed with the restriction GalpF ab{F q Ñ GalpLξ{F q.
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9.2 Relative Lubin-Tate groups and ring class field towers

Now let v be a place of H above p and above the prime p of K. For each j ě 1,

write Hj,w for the completion of the ring class field Hpj of conductor pj at the unique

place w “ wpjq above v. In particular, H0,v “ Hv. If δ is the order of p in PicpOKq,

then Hv is the unramified extension of Kp – Qp of degree δ. Since p splits in

K, Hj,w{Hv is totally ramified of degree pp ´ 1qpj´1{u, where recall u “ #OˆK{2.

Moreover, GalpHj,w{Hvq is cyclic and Hj,w is abelian over Qp. We call H8 “
Ť

j Hj,w

the local ring class field tower; it contains the anticyclotomic Zp-extension of Kp. To

ease notation and to recall the notation of the previous section, we write L “ Hv.

Proposition IX.4. Write pδ “ pπq for some π P OK. Then H8 is contained in

the field Lξ attached to the Lubin-Tate group relative to the extension L{Qp with

parameter ξ “ π{π̄ in Kp – Qp. If OˆK “ t˘1u, then H8 “ Lξ.

Remark IX.5. Note that there are other natural Lubin-Tate groups relative to L{Qp

coming from the class field theory of K, namely the formal groups of elliptic curves

with complex multiplication by OK . These formal groups will have different param-

eters however, as can be seen from the discussion in [dS, II.1.10].

Proof. By p5q of Proposition IX.3, it is enough to prove that H8 is the subfield of

Qab
p corresponding to the subgroup pπ{π̄qZ ¨ µ2

K under local class field theory. First

we show that pπ{π̄q is norm from every Hj,w. Using the compatibility between local

and global reciprocity maps, this will follow if the idele (with non-trivial entry in the

p slot)

p. . . 1 , 1 , π{π̄ , 1, 1 , . . .q P AˆK

is in the kernel of the reciprocity map

rj : AˆK{K
ˆ
Ñ GalpKab

{Kq Ñ GalpHpj{Kq,
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for each j. Since the kernel of rj is KˆAˆK,8Ôˆpj , it is enough to show that

p. . . 1{π , 1{π , 1{π̄ , 1{π , 1{π , . . .q P Ôˆ
pj
.

This is clear at all primes away from p since π is a unit at those places. At p, it

amounts to showing that p1{π̄, 1{πq P KpˆKp̄ lands in the diagonal copy of Zp under

the identification Kp ˆKp̄ – Qp ˆQp, and this is also clear.

Since L{Qp is unramified of degree δ and ξ “ π{π̄ has valuation δ, it remains to

prove that the only units in Qp which are universal norms for the tower H8{Qp are

those in µ2
K . But by the same argument as above, the only way α P Zˆp can be a

norm from every Hj,w is if αζ “ ζ̄ for some global unit ζ P K. But then ζ is a root

of unity and α “ ζ´1ζ̄ “ ζ´2, so α is in µ2
K . Conversely, it’s clear that each ζ P µ2

K

is a universal norm.

Remark IX.6. Since we are assuming K has odd discriminant, the equality H8 “ Lξ

holds unless K “ Qpµ3q. For ease of exposition we will assume K ‰ Qpµ3q for

the rest of this chapter; the modifications needed for the case K “ Qpµ3q are easy

enough.

We will need one more technical fact about the relative Lubin-Tate group Ff

cutting out H8. Let χξ : GalpL̄{Lq Ñ Zˆp , be the character giving the Galois action

on the torsion points of Ff . We let Qppχξq denote the 1-dimensional Qp-vector

space endowed with the action of GalpL̄{Lq determined by χξ, and we denote by

DcrispQppχξqq the usual filtered φ-module contravariantly attached to the GalpL̄{Lq-

representation Qppχξq by Fontaine.

Proposition IX.7. The representation Qppχξq is crystalline and the frobenius map

on the 1-dimensional L-vector space DcrispQppχξqq is given by multiplication by ξ.
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Proof. This is presumably well known, but with a lack of reference we will verify this

fact using [C2, Prop. B.4]. There it is shown that Qppχξq is crystalline if and only if

there exists a homomorphism of tori χ1 : Lˆ Ñ Qˆp which agrees with the restriction

of χξ ˝ rL to OˆL . In that case, frobenius on DcrispQppχξqq is given by multiplication

by χξprLp$qq ¨ χ
1p$q´1, where $ is any uniformizer of L.1 Combining (2) and (4) of

Proposition IX.3 with the commutativity of the following diagram

Lˆ
rL

ÝÝÝÑ GalpLab{Lq

Nm

§

§

đ

§

§

đ

res

Qˆp
rQp
ÝÝÝÑ GalpQab

p {Qpq,

we see that χ1 “ Nm´1 gives such a homomorphism, so the crystallinity follows.

Note that by construction χξ : GalpLab{Lq Ñ Zˆp factors through a character

χ̃ξ : GalpQab
p {Lq Ñ Zˆp .

So if we choose $ to be such that NmL{Qpp$q “ ξ, then

χξprLp$qq “ χ̃ξprQppNmp$qqq

“ χ̃ξprQppξqq “ 1.

Thus, the frobenius is given by multiplication by χ1p$q´1 “ NmL{Qpp$q “ ξ.

9.3 Local heights at p in ring class field towers

The proofs of both [N3, II.5.6] and [N3, II.5.10] mistakenly assert that Hj,w con-

tains the j-th layer of the cyclotomic Zp-extension of Qp (as opposed to the anticy-

clotomic Zp-extension). This issue first arises in the proofs of [N3, II.5.9] and [N3,

II.5.10]. We explain now how to adjust the proof of [N3, II.5.10]; similar adjustments

may be used to fix the proof of [N3, II.5.9]. The adjustments we make are still in the

1Note that we are using the contravariant Dcris, whereas [C2] uses the covariant version.
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spirit of Nekovář’s original argument, but we will use some deep results from p-adic

Hodge theory to carry the argument through.

Recall the setting of [N3, II.5.10]: x is the Tate vector corresponding to our

(generalized) Heegner cycle εBεY , and V “ H1
étpX̄0pNq, j0˚Aqp1q. We have the Tate

cycle

xf “
ÿ

mPS

cf,mTmx P ZpY0pNq, Hq bQp L,

a certain linear combination (with coefficients cf,m living in a large enough field L)

of Tmx such that

ΦT pxf q “ zf P H
1
f pH, V q bQp L.

Moreover, each m P S satisfies pm, pNq “ 1 and rpmq “ 0, where rpmq is the number

of ideals in K of norm m. To fix the proof of [N3, II.5.10], we prove the following

vanishing result for local heights at primes v of H above p.

Theorem IX.8. For each j ě 1, let hσj P Zf pY0pNq, Hj,wq be a Tate vector supported

on a point yj P Y0pNq corresponding to an elliptic curve Ej such that EndpEjq is the

order in OK of index pj. Then

lim
jÑ8

xxf , NHj,w{Hvph
σ
j qyv “ 0.

Proof. Recall that Ej is a quotient of an elliptic curve E with CM by OK by a (cyclic)

subgroup of order pj which does not contain either the canonical subgroup Erps or

its dual Erp̄s. By the compatibility of local heights with norms [N3, II.1.9.1], we

have

(9.1)
@

xf , NHj,w{Hvph
σ
j q
D

v,`v
“
@

xf , h
σ
j

D

w,`w
,

where `w “ `v ˝NHj,w{Hv . Recall that we are assuming now that `K “ logp ˝λ, where

λ : GalpK8{Kq Ñ 1 ` pZp is the cyclotomic character. Thus the local component
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`v : Hˆ
v Ñ Qp of `K is `v “ logp ˝NHv{Qp , and

`w “ logp ˝NHj,w{Qp .

We have seen that the ring class field tower H8 is cut out by a relative Lubin-Tate

group. In fact, it follows from the results in the previous sections that Hj,w “ Ljξ,

where L “ Hv and ξ “ π{π̄ as before. Let E be the mixed extension used to compute

the height pairing of xf and hσj , chosen as in Chapter 5.2, and let Ew be its restriction

to the decomposition group at w. Assume that

Ew is a crystalline representation of GalpH̄j,w{Hj,wq.

Then by definition of the local height (see Chapter 5.1), we have

@

xf , h
σ
j

D

w,`w
“ `wprwprEwsqq

“ logp
`

NHj,w{QpprwprEwsqq
˘

.

where rwprEwsq is an element of {OˆHj,w bZp Qp. In fact, the ordinarity of f allows

Nekovář to “bound denominators”; i.e. he shows

p´dj
@

xf , h
σ
j

D

w,`w
P logp

´

NHj,w{Qp

´

{OˆHj,w
¯¯

.

for some integer dj. Indeed, see the proofs in [N3, II.1.10, II.5.10] and note that

H1
f pHv,w,Zpp1qq “ {OˆHj,w . Moreover, the dj are uniformly bounded as j varies

(Nekovář’s proof of this fact does not quite work, but we fix this issue in Propo-

sition IX.14). Let us write d “ supj dj. By Proposition IX.3, we have

p´d
@

xf , h
σ
j

D

w,`w
P logpp1` p

jZpq Ă pjZp.

The theorem would then follow upon taking the limit as j Ñ 8.

It therefore remains to show that Ew is crystalline. First we need a lemma.
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Lemma IX.9. Let m P S and j be as above. Then the supports of Tmx and bσpj are

disjoint on the generic and special fibers of the integral model X of X0pNq.

Proof. Let z P Y0pNqpQ̄pq be in the support of Tmx and let y be the Heegner point

supporting the Tate cycle x. Thinking of these points as elliptic curves via the

moduli interpretation, there is an isogeny φ : y Ñ z of degree prime to p since

pp,mq “ 1. Recall p splits in K, so that y has ordinary reduction ys at v. Since

Endpyq – OK – Endpysq, y is a Serre-Tate canonical lift of ys. As φ induces an

isomorphism of p-divisible groups, z is also a canonical lift of its reduction. On

the other hand, the curve Ej supporting hσj has CM by a non-maximal order of p-

power index in OK and is therefore not a canonical lift of its reduction. Indeed, the

reduction of Ej is an elliptic curve with CM by the full ring OK as it obtained by

successive quotients of ys by either the kernel of Frobenius or Verschiebung. This

shows that Tmx and bσpj have disjoint support in the generic fiber.

By [GZ, III.4.3], the divisors Tmny and yτ are disjoint in the generic fiber, for any

τ P GalpH{Kq. Since all points in the support of these divisors are canonical lifts,

the divisors must not intersect in the special fiber either. But we saw above that

the special fiber of Ej is a Galois conjugate of the reduction of y, so Ej and Tmy are

disjoint on the special fiber as well.

Next we note that Tmx is a sum
ř

di, where each di is supported on a single closed

point S of Y0pNq{Hj,w. Using norm compatibility once more and base changing to

an extension F{Hj,w which splits S, we may assume that S P Y0pNqpFq.

It then suffices to show that the mixed extension E 1w corresponding to di and hσj

is crystalline. Recall from Chapter V that this mixed extension is a subquotient of

H1
pX̄0pNq ´ S̄ rel T̄ , j0˚Aqp1q,
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where T “ yj is the point supporting hσj . So it is enough to show that this cohomology

group is itself crystalline. Finally, this follows from combining the previous lemma

with the following result.

Theorem IX.10. Suppose F is a finite extension of Qp and let S, T P Y0pNqpFq

be points with non-cuspidal reduction and which do not intersect in the special fiber.

Then H1pX̄0pNq ´ S̄ rel T̄ , j0˚Aqp1q is a crystalline representation of GF.

Remark IX.11. Suppose F is a p-adic field and X{SpecOF is a smooth projective

variety of relative dimension 2k ´ 1. If Y, Z Ă X are two (smooth) subvarieties of

codimension k which do not intersect on the special fiber, then one expects that

H2k´1pX̄F ´ ȲF rel Z̄F ,Qppkqq is a crystalline representation of GF . The theorem

above proves this for cycles sitting in fibers of a map X Ñ C to a curve, but the

method of proof does not seem to apply in the general case.

Proof. Write V “ H1pX̄0pNq´S̄ rel T, j0˚Aqp1q. The sketch of the proof is as follows.

Faltings’ comparison isomorphism [F] identifies DcrispVq with the crystalline analogue

of V, which we will refer to (in this sketch) as H1
crispX´S rel T, j0˚Aq. The dimension

of V is determined by the standard exact sequences

(9.2) 0 Ñ H0
pT̄ , j0˚Aqp1q Ñ VÑ H1

pX̄ ´ S̄, j0˚Aqp1q Ñ 0

0 Ñ H1
pX̄, j0˚Aqp1q Ñ H1

pX̄ ´ S̄, j0˚Aqp1q Ñ H0
pS̄, j0˚Aq Ñ 0

Similar exact sequences should hold in the crystalline theory (i.e. with H1 replaced

by H1
cris everywhere) since S and T reduce to distinct points on the special fiber.

Using the known crystallinity of H1pX̄, j0˚Aqp1q, H0pT̄ , j0˚Aqp1q, and H0pS̄, j0˚Aq

(the latter two because the fibers of X Ñ XpNq above S and T have good reduction),

we conclude that

dimQp V “ dimF0 H
1
crispX ´ S rel T, j0˚Aq,
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i.e. that V is crystalline. To turn this sketch into a proof, we need to say explicitly

what H1
crispX ´ S rel T, j0˚Aq is. Note that the usual crystalline cohomology is not

a good candidate because it is not usually finite dimensional unless the variety is

smooth and projective.

Let us describe in more detail the comparison isomorphism which we invoked

above. The main result of [F] concerns the cohomology of a smooth projective

variety with trivial coefficients. In our setting, however, we deal with cohomology

of an affine variety with partial support along the boundary and with non-trivial

coefficients. The proof of the comparison isomorphism in this more complicated

situation is sketched briefly in [F] as well, but we follow the exposition [Ol], where

the modifications we need are explained explicitly and in detail.

Let R be the ring of integers of F and set V “ Spec pRq. Let X{V be a smooth

projective curve and let S, T P XpV q be two rational sections which we think of as

divisors on X. We assume that S and T do not intersect, even on the closed fiber.

Set D “ S Y T and Xo “ X ´D. The divisor D defines a log structure MX on X

and we let pY,MY q be the closed fiber of pX,MXq. We use the log-convergent topos

ppY,MY q{V qconv to define the ‘crystalline’ analogue of V. There is an isocrystal JS

on ppY,MY q{V qconv which is étale locally defined by the ideal sheaf of S; see [Ol, §13]

for its precise definition and for more regarding the convergent topos.

Theorem IX.12 (Faltings, Olsson). Let L be a crystalline sheaf on Xo
F associated

to a filtered isocrystal pF, ϕF , F ilFq. Then there is an isomorphism

(9.3) BcrispV̄ q bF H
1
pppY,MY q{V qconv, F b JSq Ñ BcrispV̄ q bQp H

1
pX̄ ´ S̄ rel T̄ , Lq.

As L “ j0˚A is crystalline [F, 6.3], we may apply this theorem in our situation.

Taking Galois invariants, we conclude that DcrispVq “ H1pppY,MY q{V qconv, F b JSq.
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To complete the proof of Theorem IX.10, it would be enough to know that the con-

vergent cohomology group DcrispVq sits in exact sequences analogous to the standard

Gysin sequences (9.2). These sequences hold in any cohomology theory satisfying the

Bloch-Ogus axioms, but unfortunately convergent cohomology is not known to sat-

isfy these axioms. On the other hand, rigid cohomology does satisfy the Bloch-Ogus

axioms [P]. So we apply Shiho’s log convergent-rigid comparison isomorphism [Sh,

2.4.4] to identify DcrispVq with H1
rigpY ´ Ss rel Ts, j

:Eq, for a certain overconvergent

isocrystal j:E which is the analogue of j0˚A on the special fiber. Here Ss and Ts are

the points on the special fiber. We have similar identifications with rigid cohomology

for each term appearing in the sequences (9.2), and the corresponding short exact

sequences of rigid cohomology groups are exact. The crystallinity of V now follows

from dimension counting.

Remark IX.13. Theorem IX.8 has two components: first one must bound denomina-

tors and then one shows that the heights go to 0 p-adically. In the argument above,

the ordinarity of f was the crucial input needed to bound denominators. We briefly

explain the modifications need to fix the proof of [N3, II.5.9], where one pairs Heeg-

ner cycles of p-power conductor with cycles in the kernel of the local Abel-Jacobi

map (the analogue of principal divisors in weight 2). The fact that these cycles

are Abel-Jacobi trivial allows us to make a “bounded denominators” argument even

without an ordinarity assumption; see [N3, II.1.9]. To kill the p-adic height, we fur-

ther note that the particular AJ-trivial cycles in the proof of II.5.9 are again linear

combinations of various Tnx, with rpnq “ 0. This lets us invoke Lemme IX.9 and

Theorem IX.10, as before.

As we alluded to in the proof of Theorem IX.8, the proof of [N3, II.5.11] again

assumes (incorrectly) that H8 contains the cyclotomic Zp-extension of Qp. To fix
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the proof there, it is enough to prove the following proposition.

Proposition IX.14. Let V be the Galois representation H1
étpX̄0pNq, j0˚Aqp1q at-

tached to weight 2r cusp forms. Writing H8 for
Ť

j Hj,w, we have H0pH8, V q “ 0.

Proof. We follow Nekovář’s approach, but instead of using the cyclotomic character

we use the character χξ coming from the relative Lubin-Tate group attached to H8,

defined above. By Proposition IX.7, the GQp-representation Qppχξq is crystalline and

the frobenius on DcrispQppχξqq is given by multiplication by ξ, where ξ is defined in

Proposition IX.4.

Since V is Hodge-Tate, there is an inclusion of GalpH8{Hvq-representations

H0
pH8, V q Ă ‘jPZH

0
pHv, V pχ

j
ξqqpχ

´j
ξ q.

Indeed, H0pH8, V q has an action by GalpH8{Hq which we can break up into isotypic

parts indexed by characters χsξ, with s P Zp. But of these characters, the only ones

which are Hodge-Tate are those with s P Z, so we obtain the inclusion above.

So it suffices to show that for each j, H0pHv, V pχ
j
ξqqpχ

´j
ξ q “ 0. Tensoring the

inclusion Qp Ñ Bf“1
cris by V pχjξq, taking invariants, and then twisting the resulting

filtered frobenius modules by χ´jξ , we obtain

H0
pHv, V pχ

j
ξqqpχ

´j
ξ q Ă DcrispV q

f“ξ´j

As an element of C, ξ has absolute value 1. Since V appears in the odd degree

cohomology of the Kuga-Sato variety, [KM] implies that DcrispV q
f“ξ´j vanishes and

the proposition follows.

Finally, for completeness, we explain how Proposition IX.14 is used in the proof

of Proposition VIII.2. Let X be the (generalized) Kuga-Sato variety over Hv and let
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T be the image of the map

H2r`2k´1
pX̄,Zppr ` kqq Ñ V “ H2r`2k´1

pX̄,Qppr ` kqq.

Proposition IX.14 is used to infer the following fact, whose proof was left to the

reader in [N3].

Proposition IX.15. The numbers #H1pHj,w, T qtors are bounded as j Ñ 8.

Proof. From the short exact sequence

0 Ñ T Ñ V Ñ V {T Ñ 0,

we have

pV {T qGj Ñ H1
pGj, T q Ñ H1

pGj, V q Ñ 0,

where Gj “ GalpH̄j,w{Hj,wq. As H1pGj, V q is torsion-free, we see that pV {T qGj maps

surjectively onto H1pGj, T qtors. An element of order pa in pV {T qGj is of the form

p´at for some t P T not divisible by p in T . We then have σt´ t P paT for all σ P Gj.

As V {T – pQp{Zpqn for some integer n, it suffices to show that a is bounded as we

vary over all elements of pV {T qGj and all j.

Suppose these a are not bounded. Then we can find a sequence ti P T such

that ti R pT and such that σti ´ ti P p
apiqT for all σ P G8 :“ GalpH̄{H8q. Here,

apiq is a non-decreasing sequence going to infinity with i. Since T is compact we

may replace ti with a convergent subsequence, and define t “ lim ti. We claim that

t P H0pH8, V q. Indeed, for any i we have

σt´ t “ σpt´ tiq ´ pt´ tiq ` σti ´ ti.

For any n ą 0, we can choose i large enough so that pt´ tiq P p
nT and σti´ ti P p

nT ,

showing that σt “ t. By Proposition IX.14, t “ 0, which contradicts the fact that

t “ lim ti and ti R pT .



CHAPTER X

Complex L-functions

In the previous section we completed the proof of the p-adic Gross-Zagier formula

for a weight 2r ordinary modular form f together with an unramified Hecke character

χ of type p2k, 0q with k ă r. Of course, one expects an archimedean version of this

formula, directly generalizing the original Gross-Zagier formula and Zhang’s higher

weight formula [Z], both of which concern the case k “ 0. Zhang’s archimedean for-

mula relates the central derivative of the complex L-function Lpf, χ, sq to archimedean

heights of Heegner cycles. The C-valued height pairing he uses is Beilinson’s height

pairing on homologically trivial algebraic cycles [Bei], which can be computed using

the arithmetic intersection theory of Gillet and Soulé [GS].

In the remaining two sections, we sketch a proof of the archimedean version of

Theorem I.7. In this first section, we compute the Fourier coefficients of the modular

form which represents the linear functional f ÞÑ L1Apf, χ, sq on the space of newforms

of weight 2k. One wishes to relate these coefficients to height pairings roughly of the

form xε1Y, Tmε
1Y ayGS (see Chapter IV for the definition of the projector ε1). These

pairings decompose into local heights at both finite and infinite places. The local

heights at finite places more or less agree with the our p-adic local height compu-

tations at places away from p (Proposition VI.5). Indeed they are both computed
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by arithmetic intersection theory. Moreover, these contributions are seen to match

up with the first term in the expression for the Fourier coefficient computation (see

Proposition X.8). It therefore remains to compute local heights of generalized Heeg-

ner cycles at archimedean places, which is what we do in the next and last section.

The local heights at infinity will ultimately match up with the remaining terms in

the Fourier coefficient expression.

Our computations build off the work of [GZ] on the analytic side and the approach

of [Br] (and, to a lesser degree, [Z]) for the height computations. We therefore switch

our notation to match with those papers. So for the rest of this document, we let

f P S2kpΓ0pNqq be a newform and χ an unramified Hecke character of K with infinite

type p2t, 0q and 0 ă t ă k. We also set ` “ 2t for occasional notational convenience.

Let A{H be an elliptic curve (chosen as in Chapter IV) over the Hilbert class field

H of K with CM by OK . For convenience, we choose an embedding H Ñ C so that

the base change AC is isomorphic to C{OK . As before, we assume all primes dividing

N split in K and that the discriminant D of K is odd. Let X “ W2k´2 ˆA
2t be the

generalized Kuga-Sato variety, defined over H and fibered over the modular curve

XpNq parameterizing elliptic curves with full level N structure.

For each ideal a Ă OK , we have constructed in Chapter IV generalized Heegner

cycles εBεY
a Ă X and εB ε̄Y

a (with coefficients in K) sitting in fibers above Heegner

points in X0pNqpHq. These are homologically trivial cycles of codimension k ` t in

X. For any ideal class A, define

ZA “ χpaq´1εB ε̄Y
a and Z̄A “ χpāq´1εB ε̄Y

a,

where a is any choice of integral ideal in the class A. We have extended coefficients

of our Chow groups to Kpχq. Like in [Z], the cycle ZA is a formal sum
ř

Q Y0 of

identical copies of a certain symmetrized algebraic cycle Y0 in the fiber of the variety
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X over the point Q in XpNq. The sum is over points Q in the preimage of a Heegner

point on X0pNq. For A “ rOKs, we just write Z and Z̄. We also define

HmpAq “ xZ ` Z̄, TmpZA ` Z̄AqyGS.

On the other hand, for each ideal class A P PicpOKq we consider the Dirichlet

series

LApf, χ, sq “
ÿ

pn,NDq“1

ˆ

D

n

˙

n´2s`2k`2t´1
ÿ

mě1

af pmqrA,χpmqm
´s.

Here, rA,χpmq “
ř

a χpaq, the sum being over integral ideals in A of norm m. As

usual, we write rApmq for rA,1pmq, the number of integral ideals in A of norm m.

Following the methods of Gross and Zagier [GZ], we show that LApf, χ, sq has

analytical continuation to all of C and satisfies a functional equation when s is

replaced by 2k ` 2t ´ s. By our assumption on the primes dividing N and on the

weights of f and χ, LApf, χ, sq vanishes at the central point s “ k ` t. Moreover we

will show that there exists a gA “
ř

mě1 ampAqqm P Snew
2k pΓ0pNqq representing the

linear functional

f ÞÑ
p2k ´ 2q!

a

|D|Dt

24k´1π2k
L1Apf, χ, r ` kq,

on Snew
2k pΓ0pNqq.

Our goal is to sketch a proof of the following result:

Theorem X.1. Set u “ #OˆK{2 as before. Then for m ě 1 such that pm,Nq “ 1

and rApmq “ 0, we have

HmpAq `HmpĀq “
u2p4|D|qk´t´1

`

2k´2
k´t´1

˘

`

ampAq ` ampĀq
˘

.

Remark X.2. Assume for simplicity that the class number of K is 1. Then we would

ultimately like to prove

(10.1) xYf,χ, Yf,χyGS
.
“ L1pf, χ, r ` kq,
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where Yf,χ is the f -isotypic component of Z`Z̄ “ εBε
1Y . If one knew the modularity

of the generating series
ř

xZ ` Z̄, TmpZ ` Z̄qyGS q
m, then (10.1) would follow from

Theorem X.1 via a standard argument. Even without knowing the modularity, we

can still deduce the formula (10.1) with some extra work (much like what is done in

[Z]); we will explain this in a separate paper. See also the end of Section 11.3.

Remark X.3. We call the proof of Theorem X.1 a “sketch” because we will leave out

some details of the proof. For example we will at some point assume t ă k´ 1. The

extremal case t “ k ´ 1 (where there are the same number of Kuga-Sato factors as

powers of A in the variety X) is a more delicate computation from an analytic point

of view, and we wish to avoid technical issues of convergence in this sketch.

10.1 Functional equational and preliminary special value formulas

In this section we prove the functional equation and analytic continuation of

LApf, χ, sq and compute the coefficients ampAq from the introduction. These com-

putations follow [GZ, §IV] closely and we retain the notation there. Let εpnq “
`

D
n

˘

be the quadratic character attached to K and set LpNqps, εq “
ř

pn,Nq“1 εpnqn
´s, so

that

LApf, χ, sq “ LpNqp2s´ 2k ´ 2t` 1, εq
ÿ

ně1

af pnqrA,χpnqn
´s.

If we set ` “ 2t, then the theta series

θApzq “
ÿ

ně1

rA,χpnqq
n
“

1

wχpāq

ÿ

xPa

x̄`qQapxq.

is in S``1pΓ0pDq, εq. Here w is the number of units in OK , a is any ideal in A and

Qapxq “ Nmpxq{Nmpaq. By the Rankin-Selberg method, we have
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Γps` 2k ´ 1q

p4πqs`2k´1

ÿ

ně1

af pnqrA,χpnq

ns`2k´1
“

ż 8

0

ÿ

ně1

af pnqrA,χpnqe
´4πnyys`2k´2dy

“

ż 8

0

ż 1

0

fpx` iyqθĀpzqpx` iyqdxy
s`2k´2dy

“

ĳ

Γ8zH

fpzqθĀpzqy
s`2k dxdy

y2

Here, Ā is the class A´1 of ā. It follows that

Γps` 2k ´ 1q

p4πqs`2k´1
LApf, χ, s` 2k´ 1q “ pf, θĀEs̄qΓ0pMq :“

ĳ

Y0pMq

fpzqθĀpzqEs̄pzqy
2k dxdy

y2
,

where M “ N |D| and Espzq is the weight p2k ´ 2t´ 1q Eisenstein series

Espzq “ EM,ε,2k´2t´1,spzq

“ LpNqp2s` 2k ´ 2t´ 1, εq
ÿ

Γ8zΓ0pMq

εpdq

pcz ` dq2k´2t´1

ys

|cz ` d|2s

“
1

2

ÿ

c,dPZ
M |c

pd,Mq“1

εpdq

pcz ` dq2k´2t´1

ys

|cz ` d|2s
.

Note that the weight of the Eisenstein series is at least 1, with equality if and only

if t “ k ´ 1. In this case we need to be careful about convergence, as in [GZ].

We define E
p1q
s pzq just as Espzq but with M replaced by 1, i.e.

Ep1qs pzq “
1

2

ÿ

c,dPZ
D|c

εpdq

pcz ` dq2k´2t´1

ys

|cz ` d|2s
.

Then

Φ̃spzq “ TrNDN pθĀpzqE
p1q
s pNzqq

is a non-homolorphic modular form of weight 2k and level N such that

(10.2) p4πq´s´2k`1N sΓps` 2k ´ 1qLApf, χ, s` 2k ´ 1q “ pf, Φ̃s̄q

To make notation simpler, we define `1 “ 2k ´ 2t.
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Proposition X.4. Suppose γ “

¨

˚

˝

a b

c d

˛

‹

‚

P SL2pZq with pc,Dq “ |D2| and D1¨D2 “

D and δi “ |Di|. Then

Ep1qs |`1´1 γ “ εD1pcqεD2pdδ1qδ
´s´`1`1
1 EpD1q

s

ˆ

z ` c˚d

δ1

˙

.

θA|``1 γ “
εD1pc{δ2qεD2pdqχD1¨D2pAq

κpD1qδ
1
2
1 χpd1q

θAD1

ˆ

z ` c˚d

δ1

˙

.

Here, κpD1q is 1 or i, depending on whether D1 ą 0 or D1 ă 0, and D is the ideal

class of d1.

Proof. The first formula follows from (2.2) in [GZ]. To prove the theta series transfor-

mation law we follow the arguments in [GZ, IV.2.3] and assume that c “ δ2. Setting

ζ “ ´1{cpcz ` dq, we have

θA

ˆ

az ` b

cz ` d

˙

“ θA

´a

c
` ζ

¯

“
1

χpāqw

ÿ

λPa

x̄`e
´

Qapλqp
a

c
` ζq

¯

“
1

χpāqw

ÿ

λPa{ad2

ecpaQapλqq
ÿ

µPad2

pλ` µq`epQapλ` µqζq.

Poisson summation for any fractional ideal b reads [T]

ÿ

µPb

pλ` µq`epNpλ` µqzq “
i

z2k`1

δ´1{2

Npbq

ÿ

νPb´1d´1

ν`e

ˆ

´
Npνq

z

˙

epTrpλνqq.

Setting A “ Nmpaq, we therefore have

θA|``1γ “ θA

ˆ

az ` b

cz ` d

˙

pcz ` dq´`´1

“
ip´cAq``1

wχpāqδ1{2Aδ2

ÿ

λPa{ad2

ecpaQapλqq
ÿ

νPa´1d´1
2 d´1

ν`epANpνqcpcz ` dqqepTrpλνqq

“
´i

wχpāqδ1{2

ÿ

νPa´1d´1
1

CpνqpνAq`e

ˆ

ANpνq

ˆ

z `
d

c

˙˙

,

with

Cpνq “
ÿ

λPa{ad2

ec paQapλqq ecpTrpλνqq.
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Evaluating Cpνq as in [GZ], we conclude

θA|``1γ “
´iκpD2q

δ
1{2
1 wχpāq

εD2pdqχD1¨D2pAq
ÿ

νPa´1d´1
1

pνAq`e

ˆ

ANpνq

ˆ

z `
d

c

˙˙

“
´iκpD2q

δ
1{2
1 w

εD2pdqχD1¨D2pAqχpaq
ÿ

νPā´1d´1
1

ν̄`e

ˆ

NpνqNpd1q

Npā´1q

ˆ

z ` c˚d

δ1

˙˙

“
εD2pdqχD1¨D2pAq
δ

1{2
1 χpd1qκpD1q

θAD1

ˆ

z ` c˚d

δ1

˙

.

In the last line we have used the fact that d̄1 “ d1; in particular D1 “ D´1
1 .

It follows from this proposition that

Ep1qs pNzqθĀpzq|2kγ “
ε1pNqχD1¨D2pĀq

κpD1qχpd1qδ
s``1´

1
2

1

EpD1q
s

ˆ

N
z ` c˚d

δ1

˙

θĀD1

ˆ

z ` c˚d

δ1

˙

.

Next note that when δ2 divides n, the nth coefficient of θĀD1
pδ2zq “ θĀD2

pδ2zq is

equal to the nth coefficient of χpd2q
´1θĀpzq. Thus, following [GZ, p. 276], we have

Φ̃spzq “ D´tEspNzqθĀpzq|U|D| ,

where

Espzq “
ÿ

D1¨D2

εD1pNqχD1¨D2pĀq
κpD1q|D1|

s``1´
3
2

EpD1q
s p|D2|zq,

is as is [GZ], except with weight `1 ´ 1 instead of 2k ´ 1.

The fourier coefficients of Espzq are computed in [GZ, IV.3], giving us the following

result.

Corollary X.5. For each r P Z in the range 0 ď r ď k ´ t´ 1, we have

Φ̃´rpzq “ D´t
8
ÿ

m“0

ÿ

0ďnďmδ
N

en,rpyqrĀ,χpmδ ´ nNqe
2πimz

where

e0,k´t´1pyq “

„

Lp1, εq ´ εpNq

?
π

δ
Lp0, εq



pNyq1´k`t

en,rpyq “ p´1qk´t´rεpNq
2π
?
δ
pNyqr´`1`2pk´t,r

ˆ

4πNny

δ

˙

ÿ

d|n

εApn, dqd
2r´`1`2

for n ą 0.
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For each A P PicpOKq, the completed L-function is defined to be

L˚Apf, χ, sq “ p2πq
´2sN sδsΓpsqΓps´ 2tqLApf, χ, sq.

Theorem X.6. L˚Apf, χ, sq satisfies the functional equation

L˚Apf, χ, sq “ ´εpNqL
˚
Apf, χ, 2k ` 2t´ sq

Proof. Let Espzq “
ř

nPZ espn, yqepnxq be the Fourier expansion of Espzq, and set

e˚s pn, yq “ π´sδsΓps` 2k ´ 2t´ 1qespn, yq.

Then the functional equation follows from (10.2) and the formula

e˚s pn, yq “ ´εpNqe
˚
2´2k`2t´spn, yq,

which is proved in [GZ, §IV.4]. Indeed, we compute

L˚Apf, χ, sq “ π´sN2k´1δsΓpsqpf, Φ̃s̄´2k`1q

and so

L˚Apf, χ, 2k ` 2t´ sq “ πs´2k´2tN2k´1δ2k`2t´sΓp2k ´ sqpf, Φ̃1`2t´s̄q

“ ´εpNqπ´sN2k´1δsΓps´ 2tqpf, Φ̃s̄´2k`1q

“ ´εpNqL˚Apf, χ, sq.

Proposition X.7. There is a non-holomorphic modular form Φ̃ P M̃2kpΓ0pNqq such

that

L1Apf, χ, k ` tq “
22k`2t`1πk`t`1

pk ` t´ 1q!
a

|D|Dt
pf, Φ̃q,
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and the Fourier expansion of Φ̃ is

Φ̃pzq “
8
ÿ

m“8

»

–´
ÿ

0ănďmδ
N

σ1ApnqrĀ,χpmδ ´Nnqpk´t´1

ˆ

rπnNy

δ

˙

`
h

u
rĀ,χpmq

ˆ

log y `
Γ1

Γ
puq ` logNδ ´ log π ` 2

L1

L
p1, εq

˙

´

8
ÿ

n“1

σApnqrĀ,χpmδ ` nNqqk´t´1

ˆ

4πnNy

δ

˙

ff

y1´k`te2πimz.

Here,

pm´1pzq “
m´1
ÿ

j“0

ˆ

m´ 1

j

˙

p´zqj

j!
, qm´1pzq “

ż 8

1

px´ 1qm´1

xm
e´xzdx

Next we wish to prove a version of the previous proposition, but with Φ̃ replaced

by a holomorphic modular form of weight 2k. When k´ t ą 1, Φ̃ satisfies the growth

conditions needed to apply holomorphic projection [GZ, IV.5.1].

Proposition X.8. Suppose k ´ t ą 1. Then

L1Apf, χ, k ` tq “
24k´1π2k

p2k ´ 2q!
a

|D|Dt
pf,

ÿ

ampAqqmq,

where
ř

ampAqqm is a holomorphic cusp form of weight 2k and level N with coeffi-

cients:

ampAq “ mk´t´1

»

–´
ÿ

0ănďmδ
N

σ1ApnqrĀ,χpmδ ´NnqHk´t´1,t

ˆ

1´
2nN

m|D|

˙

`
h

u
rĀ,χpmq

ˆ

Γ1

Γ
pk ` tq `

Γ1

Γ
pk ´ tq ` log

N |D|

4π2m
` 2

L1

L
p1, εq

˙

´

8
ÿ

n“1

σApnqrĀ,χpmδ ` nNqQk,t

ˆ

1`
2nN

m|D|

˙

ff

.

Here we have defined

Hm,tpzq “
1

2m ¨ pm` 2tq!

ˆ

d

dz

˙m`2t

rpz2
´ 1qmpz ´ 1q2ts

Qk,tpzq “

ż 8

´8

22tdw

pz `
?
z2 ´ 1 coshwqk´tpz ` 1`

?
z2 ´ 1ewq2t



107

Proof. The proof is as in [GZ, Theorem IV.5.8], so we will not go through the details.

Instead of using the identity in the second equation on [GZ, p. 293], one uses Lemma

III.4.

Remark X.9. Extra care needs to be taken when performing holomorphic projection

in the case t “ k´ 1. This is the source of serious complications in the weight 2 case

(i.e. k “ 1, t “ 0) of [GZ, IV.6]. We will not go into the details here and will assume

t ă k ´ 1 for the remainder of the paper.



CHAPTER XI

Archimedean Heights

In this chapter we compute the local heights of generalized Heegner cycles at

the infinite places of H. In the last section, we relate these heights to the Fourier

coefficients computed in the previous section and finish the proof of Theorem X.1.

We also deduce an archimedean version of Theorem I.7, under the assumption that

a certain geometrically defined q-expansion is a modular form.

11.1 Generalities on height pairings

Let X be a smooth projective variety of dimension n over a number field F .

Beilinson and Gillet-Soulé define a global height pairing

x , yGS : CHj
pXq0 ˆ CHn`1´j

pXq0 Ñ R

between homologically trivial algebraic cycles (modulo rational equivalence) of arith-

metically complementary codimensions. This pairing decomposes into a sum of local

heights

x , yGS “
ÿ

v

x , yv,

108
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where the sum is over all places of F , including the archimedean ones.1 The local

heights are only defined for algebraic cycles with disjoint support, so one may need

to use the moving lemma for the decomposition above to make sense. There are

several ways to define these local height pairings; we refer to [Bei], [GS], [M], and [Z]

for details.

Remark XI.1. The global height pairing is actually defined on a group a priori smaller

than CHj
pXq0, though conjecturally they should coincide [Bei, Remark 4.0.1]. It

will not matter for our purposes, as generalized Heegner cycles are contained in both

groups.

In our situation, X “ W2k´2 ˆA
` is fibered over the curve XpNq, and the gener-

alized Heegner cycles, whose height we wish to compute, are finite formal sums
ř

Zi

of cycles Zi supported in the fiber of g : X Ñ XpNq over points xi P XpNq. These Zi

are of codimension k` t on the 2k`2t´1 dimensional variety X, so they are of mid-

dle arithmetic dimension and can be paired against each other. Brylinski [Br] gives a

formula for the local height pairings x , yv of such fibral cycles, in terms of local sys-

tems. For the finite places v, he uses the p-adic local systems R2k`2t´2g˚Qppk` t´1q

for a prime p such that v - p (and with appropriate adjustments at the cusp). His

formula is exactly the same as our formula in Proposition 6.1, for the p-adic heights

at places v not above p (but with log replacing logp). Indeed he proves that the local

height can be described in terms of intersection theory on the arithmetic surface

XpNqZ and geometric intersection on the special fiber of g´1pxiq.
2

For archimedean v, Brylinski gives an analogous formula for the local height x , yv

in terms of the local system R2k`2t´2g˚Qpk ` t ´ 1q over XpNqC (from now on,

1Our notation for local heights unfortunately does not distinguish between p-adic and archimedean versions. This
should not cause too much confusion, especially because there is no archimedean component to the p-adic height.
Moreover, at finite places v not above p, the p-adic and archimedean heights are in some sense “the same” (see
below).

2In fact, Nekovář’s proof of Proposition 6.1 is based in part off the proof in [Br].
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we view all varieties and maps over C). More specifically, the cycles Zi determine

Hodge classes vi in H2k`2t´2pXi,Qq, where Xi is the fiber of g above xi. This Betti

cohomology group is the fiber at xi of R2k`2t´2g˚Qpk`t´1q. The latter local system

is in fact a polarized variation of Hodge structures of weight 0; the polarization comes

from the cup product in each fiber (note that algebraic cycles in the same fiber are

now of complementary codimension in the geometric sense).

In fact, Brylinski defines height pairings attached to any polarized variation of

Hodge structures over a smooth complex curve C˚. He even allows degenerating

variation of Hodge structures, which we will need to handle the cusps on XpNq. To

state this properly, let V be a Q-local system on a smooth curve C˚, underlying a

polarized variation of Hodge structures pV , F pV q of weight 0. There is a canonical

way to extend V to a vector bundle V̄ on the compactification C of C˚ (i.e. it is

characterized by certain properties) [Br, §1].

Definition XI.2. A Hodge vector vx at x P C˚ is an element vx P Vx which belongs

to F 0Vx (so of type p0, 0q). The group of Hodge vectors at x is written HdgpV qx.

Definition XI.3. A Hodge cycle is an element of HdgpV q :“ ‘xPC˚HdgpV qx.

Remark XI.4. Brylinski defines Hodge vectors for any x P C, but we will not bother,

as our generalized Heegner cycles avoid the cusps.

To define Brylinski’s height pairing, we need the notion of a Green’s kernel at-

tached to V . Let us write V̄0,R for the C8 vector bundle of sections of V̄ which are

real and of type p0, 0q. Also write p1, p2 for the projections C ˆ C Ñ C.

Proposition XI.5 ([Br]). If V has no non-zero global sections, then there exists a

unique C8-section G of Hompp´1
1 V̄0,R, p

´1
2 V̄0,Rq over the complement of the diagonal

∆C in C ˆ C such that
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1. l2G “ 0, where l2 is the Laplacian l attached to V in the second variable.

2. Gpx, yq ´ log |zpxq ´ zpyq| is bounded near any point pa, aq of ∆C, if z is a local

coordinate on C near a.

The section G is called the Green’s kernel for V on C. Brylinski then defines a

height pairing x v1, v2 yBr for any pair v1 “
ř

x v1,x and v2 “
ř

x v2,x P HdgpV q of

Hodge cycles with disjoint support as:

xv1, v2yBr “
ÿ

x,y

pGpx, yqpv1,xq, v2,yq.

Here, the pairing p , q is the given polarization in the fiber of V̄0,R at y.

The following result states that we may use Brylinski’s pairing to compute Beilin-

son’s archimedean local height when the two cycles are in distinct fibers of a map to

a curve:

Theorem XI.6. Suppose X is a complex variety of dimension 2n`1 and we are given

a projective morphism g̃ : X Ñ C which restricts to a smooth map g : g̃´1pC˚q Ñ

C˚. Suppose Z1 and Z2 are homologically trivial cycles on X of codimension n` 1,

supported in disjoint non-cuspidal fibers of g. Also suppose X,C,Zi are defined over

a number field F with a given embedding v : F Ñ C. Then

xZ1, Z2yv “ xv1, v2yBr,

where v1 and v2 are the corresponding Hodge cycles in the stalks of V “ R2ng˚Qpnq.

Here, the Brylinski pairing is with respect to the polarization on V which is the cup

product pairing on each fiber.

Proof. A proof is sketched at the very end of [Br].
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11.2 Local heights at infinity for generalized Heegner cycles

Let us return to our situation, where X “ W2k´2 ˆA
2t and g̃ : X Ñ XpNq is the

usual map. Write X0 “ g̃´1pY pNqq and write g : X0 Ñ Y pNq for the restriction.

We wish to pair the generalized Heegner cycles defined in Chapter IV, so we consider

the local system

W “ Sym2k´2R1f˚Qpk ´ 1q b κ`H
2t
pA2t,Qqptq,

where f : E Ñ Y pNq is the universal elliptic curve and where κ` is the projector

defined in Chapter IV. The factor κ`H
2tpA2t,Qqptq is a constant local system, with

Hodge structure of weight 0 and type pt,´tq ` p´t, tq. As W is a summand of

R2k`2t´2g˚Qpk ` t ´ 1q, it inherits the structure of polarized variation of Hodge

structures and we may use Theorem XI.6 to compute local heights of generalized

Heegner cycles using the Green’s kernel attached to W .

This was done by Brylinski himself for classical Heegner cycles, i.e. when t “ 0

[Br, §3]. We will build on his computations, so we begin by recalling notation. Let

E “ R2 be the standard representation of G “ GL2pRq`, with basis u1 and u2.

Let K “ Cˆ be the stabilizer of i in G acting on the upper half plane h. Then

E “ G ˆK E, is a G-equivariant vector bundle on h. The holomorphic subbundle

F 1E is generated by the holomorphic section zu1 ` u2, where z is a coordinate on

h. E is polarized by the skew symmetric form p , q : E ˆ E Ñ Rp´1q such that

pu1, u2q “ ´1{2πi. The associated hermitian form satisfies

xzu1 ` u2, zu1 ` u2y “ 2y

xzu1 ` u2, z̄u1 ` u2y “ 0

xz̄u1 ` u2, z̄u1 ` u2y “ 2y,
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where as usual z “ x` iy. Recall that zu1 ` u2 P E 1,0
z and z̄u1 ` u2 P E 0,1

z .

The usual local system for weight 2k modular forms on Y pNq is obtained by

considering the representation Vp “ Sym2p
pEqppq of G, where p “ k ´ 1. The

corresponding polarized variation of Hodge structures on h is Vp “ Sym2p
pE qppq,

and is pure of weight 0. The sections

vn “

`

2p
n

˘1{2

p2yqpp2πiqp
¨ pzu1 ` u2q

n
pz̄u1 ` u2q

2p´n

for 0 ď n ď 2p form a C8-basis of Vp and each vn is of pure type p´p ` n, p ´ nq.

Moreover, this basis is orthonormal with respect to the Hermitian pairing on Vp

obtained from the pairing x , y on E in the usual way.

Recall that to define the cycle εBεY in Chapter IV, we chose a Heegner point

corresponding to the elliptic curve A. We fix a value τ0 P h corresponding to this

chosen Heegner point on X0pNq. Denote by R2 the trivial two dimensional repre-

sentation of G with basis te1, e2u. Then we can realize the constant Hodge structure

κ`H
2tpA2t,Qqptq as coming from the G-representation R2 and we can suggestively

write a basis of sections as

(11.1) µ0 “
1

p2y0q
tp2πiqt

pτ̄0e1 ` e2q
2t

µ2t “
1

p2y0q
tp2πiqt

pτ0e1 ` e2q
2t,

of type p´t, tq and pt,´tq respectively. Moreover, this basis is again orthonormal

with respect to the Hermitian pairing coming from the polarization on W .

Let W “ Wp,t be the polarized variation of structure associated to Vp b R2, so

that W is its underlying local system. The sections

wn,j “ vn b µj
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with 0 ď n ď 2p and j “ 0, 2t, form a basis of W . Each wn,j is pure of type

p´p´ t`n` j, p` t´n´ jq. The C8-subbundle W0,R of real p0, 0q-vectors has rank

2, with basis wp`t,0 and wp´t,2t. One sees from the definitions of the projectors (see

Chapter IV and also Lemma XI.19 below) that the Abel-Jacobi image of the cycle

εY can be identified with a section in the fiber Wτ0 which is a multiple of wp´t,2t.

Similarly, the Abel-Jacobi image of ε̄Y is a multiple of wp`t,0.

The vector bundle Wp,t is endowed with a Gauss-Manin connection D. To compute

heights of generalized Heegner cycles, we must first find a Green’s kernel, i.e. a

sufficiently nice function G on hˆh which is harmonic with respect to the Laplacian

lD “ 2 lD1 acting on the second variable. The following lemma identifies the

restriction of the Laplacian operator lD1 to the vectors of type p0, 0q.

Lemma XI.7. Let F be a C8 function on h. Set w´ “ y´t ¨ wp´t,2t and w` “

yt ¨ wp`t,0. Then

lD

`

F ¨ w˘
˘

“
1

2

„

∆` pk ˘ t´ 1qpk ¯ tq ˘ 4ity
B

Bz̄



F ¨ w˘,

where the ˘ signs should be taken consistently, and where ∆ “ ´4y2 B2

BzBz̄
is the usual

Laplacian.3

Proof. First consider w´. Recall the decomposition [Br, §3]

lD1 “ BB
˚
` B

˚
B ` ∇̄1

`

∇̄1
˘˚
`
`

∇̄1
˘˚ ∇̄1.

As B˚ and
`

∇̄1
˘˚

kill 0-forms, we have

lD1pFw
´
q “ pB

˚
B `

`

∇̄1
˘˚ ∇̄1qpFw´q.

3Note that there is a sign error in the statement of [Br, Lemma 3.2], which is the special case t “ 0.



115

If κ “ p4πiqp
`

2p
n

˘´1{2
, then

κBpFw´q “
BF

Bz
y´p´tpzu1 ` u2q

p´t
pz̄u1 ` u2q

p`tdz b µ2t

´
p` t

2i
Fy´p´t´1

pzu1 ` u2q
p´t
pz̄u1 ` u2q

p`tdz b µ2t

` pp´ tqFy´p´tu1pzu1 ` u2q
p´t´1

pz̄u1 ` u2q
p`tdz b µ2t.

Since u1 “ p2iyq
´1pzu1`u2´pz̄u1`u2qq, we obtain by taking the p0, 0q component:

BpFw´q “
BF

Bz
dz b w´ ´

t

iy
Fdz b w´.

Recall that by definition B˚ “ ´ ˚ B̄˚, where ˚ is the Hodge ˚-operator. We recall

how to compute the Hodge ˚-operator with respect to a metric g, and for a general

basis e1, ¨ ¨ ¨ , en. If gij “ xei, ejy, then

˚ : ei1 ^ ¨ ¨ ¨ ^ eik ÞÑ
ÿ

J 1

p´1qσpI
1,J 1q

detpgiai1bq?
det g

ej11 ^ ¨ ¨ ¨ ^ ej1r´k ,

the sum varying over sets J 1 of complementary length to the initial indexing set

I “ ti1, ¨ ¨ ¨ , iku, and I 1 “ rns´J 1. To compute the Hodge ˚-operator in our situation,

we use the usual Poincaré metric on h for which xdx, dxy “ y2 “ xdy, dyy. So we

have ˚dx “ dy, ˚dy “ ´dx, and ˚pdx^ dyq “ y2.

We can now compute

B
˚

ˆ

BF

Bz
dz b w´

˙

“ ´ ˚ B̄ ˚
BF

Bz
dz b w´

“ ´ ˚ B̄
BF

Bz
p´idzq b w´

“ i ˚
B2F

Bz̄Bz
dz̄ ^ dz b w´

“ 2i2 ˚
B2F

Bz̄Bz
dx^ dy b w´

“ ´2y2 B
2F

Bz̄Bz
¨ w´.
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We have tacitly used the fact that xwp´t,2t, wp´t,2ty “ 1. Similarly,

B
˚

ˆ

t

iy
Fdz ¨ w´

˙

“ ´ ˚ B̄ ˚
t

iy
Fdz b w´

“ ˚B̄
t

y
Fdz b w´

“ ˚t

ˆ

BF

Bz̄
y´1

´
iF

2y2

˙

dz̄dz b w´

“

ˆ

2ity
BF

Bz̄
` tF

˙

¨ w´.

On the other hand, we also have:

p
`

∇̄1
˘˚ ∇̄1qpFw´q “

`

∇̄1
˘˚

ˆ

κF
p` t

2i
y´p´t´1

pzu1 ` u2q
p´t`1

pz̄u1 ` u2q
p`t´1dz̄ b µ2t

˙

“ ´ ˚∇1 ˚
ˆ

κF
p` t

2i
y´p´t´1

pzu1 ` u2q
p´t`1

pz̄u1 ` u2q
p`t´1dz̄ b µ2t

˙

“ ´ ˚∇1κF pp` tq
2

y´p´t´1
pzu1 ` u2q

p´t`1
pz̄u1 ` u2q

p`t´1dz̄ b µ2t

“ ´ ˚
κF pp` tqpp´ t` 1q

2p2iyq
y´p´t´1

pzu1 ` u2q
p´t
pz̄u1 ` u2q

p`tdzdz̄ b µ2t

“
1

2
κF pp` tqpp´ t` 1qy´p´tpzu1 ` u2q

p´t
pz̄u1 ` u2q

p`t
b µ2t

“
1

2
F pp` tqpp´ t` 1q ¨ w´.

The incorrect sign in [Br, Lemma 3.2] presumably comes from a misapplication of

the formula ∇1pαsq “ p´1qpα^∇psq, if α is a p-form and s is a section of the vector

bundle. Putting everything together proves the lemma for w´. The result for w`

follows by a similar computation, replacing t with ´t in the appropriate places.

Now let z “ x` iy and z1 “ x1 ` iy1 be parameters on hˆ h and define

gpz, z1q “ ´Qk,t

ˆ

1`
|z ´ z1|2

2yy1

˙

,

where Qk,tpzq is as in Proposition X.8. We also define

µ´pz, z1q “ gpz, z1q

ˆ

z̄ ´ z1

2iy

˙`

.
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µ`pz, z1q “ gpz, z1q

ˆ

z ´ z̄1

2iy1

˙`

.

As gpz, z1q is a function of the hyperbolic distance between z and z1, it is invariant

under SL2pRq. A quick computation then shows that

µ´pγz, γz1q “ µ´pz, z1qjpγ, zq`jpγ, z1q´`

µ`pγz, γz1q “ µ`pz, z1qjpγ, zq´`jpγ, z1q`

for γ P SL2pRq and where jpγ, zq “ cz` d, as usual. On the other hand, the sections

w˘ are themselves not SL2pRq-invariant, but instead satisfy

(11.2) w´pγzq “ jpγ, zq`pγ ¨ w´pzqq

w`pγzq “ jpγ, zq´`pγ ¨ w̄`pzqq.

It follows that the section

µ´pz, z1q ¨ rw´pzq ÞÑ w´pz1qs

µ`pz, z1q ¨ rw`pzq ÞÑ w`pz1qs

of the vector bundle

Hompp´1
1 W̄0,R, p

´1
2 W̄0,Rq

on h˚ˆh˚ is invariant under the diagonal action of SL2pRq. Here, W̄ is the canonical

extension of W “ Wp,t to the compactification h˚ and the pi are the projection maps.

Therefore

G˘k,t,Npz, z
1
q :“

ÿ

γPΓpNq

µ˘pz, γz1q ¨ rw˘pzq ÞÑ w˘pγz1qs

each descend to a section of the descended bundle Hompp´1
1 W̄0,R, p

´1
2 W̄0,Rq on XpNqˆ

XpNq (assuming they converge). We define

Gk,t,Npz, z
1
q “ G´k,t,Npz, z

1
q `G`k,t,Npz, z

1
q.
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We wish to show that Gpz, z1q :“ Gk,t,Npz, z
1q is a Green’s kernel for the variation

of Hodge structure Wp,t on XpNq and hence can be used to compute the local height

pairing of Hodge cycles in different fibers. Specifically, if w1 and w2 are two sections

of W̄0,R at points z1 and z2 of XpNq, then the local height pairing xw1, w2yv (at an

infinite place v of H) is given by

(11.3) xGpz1, z2qpw1q, w2yz2 ,

where x , yz2 is the Hermitian pairing from before on the fiber above z2.4 Recall from

Proposition XI.5 that the Green’s kernel is characterized as the section of the rank

4 vector bundle

Hompp´1
1 W̄0,R, p

´1
2 W̄0,Rq

on XpNqˆXpNq, which is killed by the Laplacian lD acting on the second variable

and which has logarithmic poles along the diagonal. Thus, by Lemma XI.7, we want

to show that for both choices of sign, G˘pz, z1q, as a function in the second variable,

is an eigenfunction for the weight ˘` Laplacian

∆˘` “ ∆˘ 2i`y
B

Bz̄
,

with eigenvalue ´pk ˘ t´ 1qpk ¯ tq.

Remark XI.8. Unlike ∆, the operators ∆˘` are not SL2pRq invariant. But to check

that G˘pz, z1q is an eigenfunction for ∆˘`, it still suffices to check that µ˘pz, z1q is

an eigenfunction with eigenvalue independent of z. Indeed, simply use the fact that

we may also write G˘pz, z1q “
ř

γ µ
˘pγz, z1q ¨ rw˘pγzq ÞÑ w˘pz1qs.

We will need a few facts from the theory of special functions; a general reference

is [BE1, BE2]. First we recall the usual hypergeometric function (for |z| ă 1 and

4The Hermitian pairing agrees with the pairing p , q when both are restricted to real vectors of type p0, 0q. We
consider the Hermitian extension of this pairing because the projectors ε and ε̄ do not preserve the space of real
vectors of type p0, 0q, and also to handle scalars such as χpaq.
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c ą 0)

F pa, b, c; zq “
8
ÿ

n“0

paqnpbqn
pcqn

zn

n!
,

where

paqn “

$

’

’

’

&

’

’

’

%

1 n “ 0

apa` 1q ¨ ¨ ¨ pa` n´ 1q n ą 0

is the rising Pochhammer symbol. The hypergeometric function satisfied various

transformation laws which will be useful for us. For example, there is Euler’s trans-

formation law

(11.4) F pa, b, c; zq “ p1´ zqc´a´bF pc´ a, c´ b, c; zq.

and the Pfaff transformation

(11.5) F pa, b, c; zq “ p1´ zq´bF

ˆ

b, c´ a, c;
z

z ´ 1

˙

.

Our interest in hypergeometric functions stems from the fact that they are so-

lutions to second order differential equations. A special family of hypergeometric

functions called Jacobi functions of the second kind (depending on parameters n, α

and β) are defined as follows:

Qpα,βqn pxq “

2n`α`βΓpn` α ` 1qΓpn` β ` 1q

Γp2n` α ` β ` 2qpx´ 1qn`α`1px` 1qβ
F

ˆ

n` 1, n` α ` 1, 2n` α ` β ` 2;
2

1´ x

˙

.

The function Q
pα,βq
n is a solution to the differential equation

(11.6) p1´ x2
qy2 ` rβ ´ α ´ pα ` β ` 2qxsy1 ` npn` α ` β ` 1qy “ 0,

and has the following integral representation [BE2, p. 172]:

(11.7) Qpα,βqn pxq “
2´n´1

px´ 1qαpx` 1qβ

ż 1

´1

p1` uqn`βp1´ uqn`αdu

px´ uqn`1
.
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In the special case where α “ β “ 0, the function Q
p0,0q
k´1 is a Legendre function of

the second kind, from which the Green’s kernel for intersections of classical Heegner

cycles of “weight” 2k is constructed [GZ, Z]. It is very natural then that our can-

didate Green’s kernel Gk,t,Npz, z
1q for the intersection of generalized Heegner cycles

of “weight” p2k, 2tq is in fact built out of the Jacobi functions Q
p0,2tq
k´t´1, as the next

lemma shows.

Lemma XI.9. We have Qk,tpzq “ 2Q
p0,2tq
k´t´1pzq and so

Qk,tpzq “
Γpk ´ tqΓpk ` tq

Γp2kq

ˆ

2

z ´ 1

˙k´tˆ
2

z ` 1

˙2t

F

ˆ

k ´ t, k ´ t, 2k,
2

1´ z

˙

.

Proof. It is not hard (cf. [GZ, p. 293]) to rewrite Qk,tpzq as

Qk,tpzq “ 2k`t
ż 8

0

vk´t´1dv

pv ` 1qk´t pvpz ´ 1q ` z ` 1qk`t

and via the change of variable v “ 1`u
1´u

, we eventually get

2t´k`1

ż 1

´1

p1` uqk´t´1p1´ uqk`t´1du

pz ´ uqk`t
.

Using the integral representation (11.7) for Q
pα,βq
n , this is equal to

2``1

p1` zq`
Q
p0,´`q
k`t´1pzq.

Applying Euler’s transformation law (11.4) to the hypergeometric definition ofQ
p0,´2tq
k`t´1 ,

we find that the latter is equal to 2Q
p0,2tq
k´t´1pzq, as desired.

Corollary XI.10. Qk,tpzq satisfies the differential equation

p1´ z2
qQ2pzq ` r`´ p`` 2qzsQ1pzq ` pk ´ t´ 1qpk ` tqQpzq “ 0.

Proof. Use (11.6).
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Proposition XI.11. For each fixed z P h, the function µ˘pz, z1q satisfies pas a

function of z1q

∆˘`pµpz, z
1
qq “ λ˘ ¨ µ˘pz, z1q,

with λ˘ “ ´pk ˘ t´ 1qpk ¯ tq.

Proof. This is a long computation, which ultimately boils down to Corollary XI.10.

For the reader wishing to verify this on his or her own, we record the useful formulas:

if s “ 1` |z´z1|2

2yy1
, then

Bs

Bz̄1
“
z1 ´ z

2yy1
`
s´ 1

2iy1
,

4y12
B2s

Bz1Bz̄1
“ 2s,

and

4y12
ˆ

Bs

Bz̄1

˙ˆ

Bs

Bz1

˙

“ s2
´ 1.

Next we address the convergence of the functions G˘pz, z1q defined earlier.

Proposition XI.12. For all integers 0 ă t ă k ´ 1, the sums

G˘k,t,Npz, z
1
q “

ÿ

γPΓ

µ˘pz, γz1q ¨ rw˘pzq ÞÑ w˘pγz1qs

converges uniformly on compact subsets of h2 ´ tpz, z1q : z P Γz1u.

Proof. The proof is similar to [H, Prop. 6.2].

It follows from Proposition XI.11, that G˘pz, z1q is an eigenfunction for the weight

˘` Laplacian ∆´` with eigenvalue ´pk ˘ t´ 1qpk ¯ tq. To prove that Gpz, z1q is the

Green’s kernel attached to Wp,t, it remains to understand its behavior along the

diagonal of Y pNq ˆ Y pNq and also at the cusps. In this direction, we have the

following lemmas.



122

Lemma XI.13. As the real parameter sÑ 1 from above,

Qk,tpsq “ ´ logps´ 1q `Op1q.

Proof. We have the well known asymptotic

F pa, b, a` b, sq “ ´
1

Bpa, bq
logp1´ sq `Op1q,

where Bpa, bq “ ΓpaqΓpbq
Γpa`bq

, and where s is approaching 1 from below. Then as s Ñ 1

from above,

Qpsq “
2k`tBpk ´ t, k ` tq

ps´ 1qk´tp1` sq2t
F

ˆ

k ´ t, k ´ t, 2k,
2

1´ s

˙

“
2k`tBpk ´ t, k ` tq

ps´ 1qk´tps` 1q2t
¨

ˆ

s´ 1

s` 1

˙k´t

F

ˆ

k ´ t, k ` t, 2k,
2

1` s

˙

“ ´ log

ˆ

s´ 1

s` 1

˙

`Op1q

“ ´ logps´ 1q `Op1q,

where we have used (11.5) in the second equality.

Corollary XI.14. G˘k,t,Npz, z
1q “ log |z ´ z1|2 `Op1q as z1 approaches z.

Proof. We should clarify what this even means, as Gk,t,Npz, z
1q is a section of the

vector bundle Hompp´1
1 W̄0,R, p

´1
2 W̄0,Rq, not a scalar quantity. But by choosing the

sections w˘, we have trivialized this bundle, so the statement of the corollary should

be taken to mean

pµ˘pz, z1q ´ log |z ´ z1|2q ¨ rw˘pzq ÞÑ w˘pz1qs

is bounded as z Ñ z1. This follows from the previous lemma and the fact that

limz1Ñzpz̄ ´ z
1q “ ´2iy.

Next we analyze the behavior of the Green’s kernel at the cusps.
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Proposition XI.15. For z in a neighborhood of a cusp γ8, the function

Impγzqp´tGpz, z1q

is C8.

Proof. We omit the proof, which is rather technical. One can proceed as in [H,

§6].

It follows from Propositions XI.11, XI.14, and XI.15 that Gpz, z1q satisfies all

the properties characterizing the Green’s kernel. By the formalism in [Br, §2], we

conclude:

Theorem XI.16. Write z1 “ x1` iy1 and z2 “ x2` iy2. Then for z1 R ΓpNqz2, the

local archimedean height pairing at infinity is given by

xw´pz1q, w
´
pz2qyBr “

1

p2iy1y2q
`

ÿ

γPΓpNq

gpz1, γz2qpz̄1 ´ γz2q
`jpγ, z2q

`.

xw`pz1q, w
`
pz2qyBr “

1

p2iq`

ÿ

γPΓpNq

gpz1, γz2qpz1 ´ γz̄2q
`jpγ, z̄2q

`,

where

gpz, z1q “ ´Qk,t

ˆ

1`
|z ´ z1|2

2yy1

˙

.

Proof. Now that we have identified the Green’s kernel, this follows from equation

(11.3) and the fact that xw´pz2q, w
´pz2qyz2 “ y´2t

2 “ y´`2 , while xw`pz2q, w
`pz2qyz2 “

y`2.

To compute heights of generalized Heegner cycles in the corresponding local sys-

tem on X0pNq instead of XpNq, we will follow [Z] and identify our generalized Heeg-

ner cycles ZA and Z̄A at a point P P X0pNq with the sum of the same cohomology

class over the preimages Q P XpNq of P (this is the purpose of the projector εB in

the definition of the classes ZA and Z̄A at the beginning of Chapter X). In fact, we
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can define the local height pairing in the same way for X0pNq simply by summing

over Γ0pNq instead of ΓpNq above. Also, as all of our vector bundles come equipped

with a GL2pRq-action, it makes sense to apply Hecke operators to sections such as

w˘. This action agrees with the geometric action of Hecke operators on algebraic

cycles, defined in Chapter IV.

Proposition XI.17. Assume m ě 1 and Let z1, z2 be points of h such that the z1

and Tmz2 have disjoint support on X0pNq. Then

xw´pz1q, Tmw
´
pz2qyBr “

mp´t

p2iy1y2q
`

ÿ

γPRN
det γ“m

gpz1, γz2qpz̄1 ´ γz2q
`jpγ, z2q

`,

xw`pz1q, Tmw
`
pz2qyBr “

mp´t

p2iq`

ÿ

γPRN
det γ“m

gpz1, γz2qpz1 ´ γz̄2q
`jpγ, z̄2q

`,

where RN “

¨

˚

˝

Z Z

NZ Z

˛

‹

‚

and p “ k ´ 1.

Proof. We prove only the first formula as the proof of the second is similar. Let the

variable γ2 range through a set of representatives of ΓpNqzRN of determinant m, and

let γ1 range through a set of representatives of Γ. Then γ “ γ1γ2 ranges through the
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set of elements in RN of determinant m. Then we compute:

@

w´pz1q, Tmw
´
pz2q

D

Br
“
ÿ

γ2

@

w´pz1q, γ2 ¨ w
´
pz2q

D

Br

“
ÿ

γ2

B

w´pz1q,
mp`t

jpγ2, z2q
`
w´pγz2q

F

Br

“ mp`t
ÿ

γ2

jpγ2, z̄2q
´`
xwpz1q, wpγ2z2qyBr

“ mp`t
ÿ

γ2

jpγ2, z̄2q
´` 1

p2iy1Impγ2z2qq
`

ÿ

γ1

gpz1, γz2qpz̄1 ´ γz2q
`jpγ1, γ2z2q

`

“
mp`t

p2iy1y2q
`m`

ÿ

γ2

jpγ2, z2q
` 1

p2iy1y2q
`

ÿ

γ1

gpz1, γz2qpz̄1 ´ γz2q
`jpγ1, γ2z2q

`

“
mp´t

p2iy1y2q
`

ÿ

γ

gpz1, γz2qpz̄1 ´ γz2q
`jpγ, z2q

`.

Now we specialize to the case where z1 “ τ1 and z2 “ τ2 correspond to Heegner

points on X0pNq with CM by OK . Recall from [GZ, §2] that Z ` τiZ “ a´1
i for

some OK-ideal ai Ă OK . If Ai ą 0 and Bi are integers such that τi “
´Bi`

?
D

2Ai
, then

Ai “ Nmpaiq. We have already fixed a Heegner point τ0 P h corresponding to our

choice of CM elliptic curve A isomorphic to C{OK over C. To simplify computations,

we choose τ0 “
´1`

?
D

2
, so that the corresponding lattice a0 is OK (one can check

that the results do not depend on this choice).

Note that if τ P h is a Heegner point, and aτ the corresponding lattice, then

aγτ “ jpγ, τqaτ , for γ P SL2pZq. By (11.2), χpaτ q
´1w´pτq and χpaτ qw

`pτq descend

to well-defined cohomology classes in the fiber above the corresponding point of

XpNq and hence a class in the local system on XpNq and X0pNq as well.

Proposition XI.18. Let τ1, τ2 P X0pNq be two Heegner points as above and suppose
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τ1 and Tmτ2 are disjoint on X0pNq. Then

B

w´pτ1q

χpa1q
, Tm

w´pτ2q

χpa2q

F

Br

“
p´1qt2`mp´t

|D|`
χpā1a2q

ÿ

γPRmN

gpτ1, γτ2qαpγ, τ1, τ2q
`,

B

w`pτ1q

y2t
1 χpa1q

, Tm
w`pτ2q

y2t
2 χpa2q

F

Br

“
p´1qt2`mp´t

|D|`
χpa1ā2q

ÿ

γPRmN

gpτ1, γτ2qαpγ, τ̄1, τ̄2q
`,

where αpγ, τ1, τ2q “ cτ̄1τ2 ` dτ̄1 ´ aτ2 ´ b and Rm
N “ tγ P RN : det γ “ mu.

Proof. This follows from the previous proposition. Note that y1 “
a

|D|{2A1 and

y2 “
?
D{2A2. Also χpāiqχpaiq “ χpNmpaiqq “ Nmpaiq

` “ A`i .

Lemma XI.19. For τ “ x ` iy P h, let Aτ be the elliptic curve C{a´1
τ . Then the

class of the generalized Heegner cycle εY aτ in εH2r`2k
dR pA2k´2

τ ˆ A2t,Cq is

˘
2p´t

a

|D|
p´t

`

2p
p´t

˘1{2
yt0 ¨ w

´
pτq.

Proof. Set a “ aτ . The generalized Heegner cycle is constructed from graphs of

isogenies. We may work factor by factor and compute the cycle class of the (adjusted)

graph of the isogeny
?
D on Aτ ˆ Aτ and the graph of φ “ φ̂a : Aτ “ Aa Ñ A on

Aτ ˆA. This is the de Rham analogue of the p-adic computations we did in Section

4.4, so we will use the notation X?D and X1,φ “ Xφ for the adjusted graphs (recall

that Xφ is the projection of the graph of the φ onto the orthogonal complement of

the horizontal and vertical fibers, i.e. onto H1 bH1).

Recall that if C Ă Aa ˆ A is an algebraic cycle, then its de Rham cohomology

class is represented by a differential form ω satisfying

ż

C

η “

ż

AaˆA

η ^ ω,

for all η P H2
dRpA

a ˆ A,Cq. In the case of Xφ, one computes that its cycle class is

represented by the differential form

Nmpaq

2iy0

pdz1dz̄2 ´ dz̄1dz2q,
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where dz1 is the pullback of the usual holomorphic differential form on C{a´1 “ Aτ

and dz2 is the differential form on A “ C{OK . The factor of Nmpaq comes from

the fact that the dual of φa : C{OK Ñ C{a´1 is given by the map C{a´1 Ñ C{OK

which is multiplication by Nmpaq on the underlying complex vector spaces. Note

also
ş

A
dzdz̄ “ ´2iy0. The effect of the projector ε is to kill the dz̄2 terms.

Similarly, one finds that the class of X?D on Aτ ˆ Aτ is

˘

a

|D|

2y
pdz1dz̄2 ` dz̄1dz2q.

Note that the effect of the projector ε on these purely Kuga-Sato components was to

force the cycle to lie in Sym2H1pAτ q, which is why we look at X?D and not simply

the graph of
?
D.

The differential form dz on C{a´1 “ C{pZ ` τZq is given by τu1 ` u2 and dz̄ is

τ̄u1 ` u2. So each of the 2t factors of the form εXφ contribute

´Nmpaqp2iy0q
´1
pτ̄u1 ` u2qpτ0e1 ` e2q

to the class of εY a and each of the p´ t factors of X?D contribute

˘

a

|D|

y
pτu1 ` u2qpτ̄u1 ` u2q.

Now just compare these computations with the definition of w´pτq “ y´twp´t,2tpτq.

For any ideal class A, recall from the previous section that we write ZA and Z̄A

for the generalized Heegner cycles χpaq´1εBεY
a and χpāq´1εB ε̄Y

a. When A “ rOKs,

we just write Z or Z̄. Since y0 “
?
D{2, the previous lemma and proposition show

that

(11.8) xZA1 , TmZA2yBr “
p4m|D|qp´t

Dt
`

2p
p´t

˘ χpā1a2q
ÿ

γPRmN

gpτ1, γτ2qαpγ, τ1, τ2q
`,
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@

Z̄A1 , TmZ̄A2

D

Br
“
p4m|D|qp´t

Dt
`

2p
p´t

˘ χpa1ā2q
ÿ

γPRmN

gpτ1, γτ2qαpγ, τ̄1, τ̄2q
`,

for τ1 and τ2 such that raτis “ Ai.

Now let x , y8 “
ř

v|8x , yv be the sum of the local heights on X “ W ˆ A` over

all the infinite places v of H. In other words, x , yv is the pairing x , yBr applied to the

base change Xv{C of X to C using the embedding H Ñ C corresponding to v (we

are using Theorem XI.6 here). We extend these height pairings to algebraic cycles

with coefficients in Qpχq, the field generated by the values of χ.

The next result gives the final expression for the local heights at infinity.

Proposition XI.20. Let A be an ideal class in K and assume rApmq “ 0. Then

xZ, TmZAy8 “ ´
p4m|D|qp´t

Dt
`

2p
p´t

˘ u2
8
ÿ

n“1

σApnqrĀ,χpm|D| ` nNqQk,t

ˆ

1`
2nN

m|D|

˙

,

@

Z̄, TmZ̄A
D

8
“ ´

p4m|D|qp´t

Dt
`

2p
p´t

˘ u2
8
ÿ

n“1

σĀpnqrA,χpm|D| ` nNqQk,t

ˆ

1`
2nN

m|D|

˙

,

and

@

Z, TmZ̄A
D

8
“ 0 “

@

Z̄, TmZA
D

8

Remark XI.21. Notice that rĀ,χ appears in the first formula, whereas rA,χ appears

in the second.

Proof. As usual, the assumption rApmq “ 0 implies that Z and TmZA are supported

on fibers above a disjoint set of points of X0pNq. The final equation follows from the

fact that w´ and w` are orthogonal to each other. We next prove the first formula

and omit a proof of the second, as it is similar.

One difficulty here is that X “ W ˆ A` is defined only over H, so the complex

varieties Xv will be non-isomorphic as v ranges over the archimedean places of H.

We could redo the computations on the new variety (where we would have to replace
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the base point τ0 by a Galois conjugate). Alternatively, one can show (similar to the

proof of Lemma IV.11) that

(11.9) xZ, TmZAyv “ xZB, TmZBAyBr,

where B is the ideal class corresponding to v (i.e. B is the class of the lattice attached

to the base change Av of A to C). Since the archimedean places of H are in bijection

with the class group, the proposition now follows from (11.8), (11.9), and the proof

of [GZ, II.3.17, IV.4.6]. Note that our αpγ, τ1, τ2q “ cτ̄1τ2 ` dτ̄1 ´ aτ2 ´ b is not the

same as the α defined in [GZ, II.3.6], but they have the same norm; their α is just

αpγ, τ2, τ1q. Further note that αpγ, τ1, τ2q is an element of ā´1, where a “ a1ā2, as

in [GZ], and the value of gpτ1, γτ2q depends only on the norm of αpγ, τ1, τ2q. Since

ras “ A, we have

rĀ,χpjq “ χpāq
ÿ

xPā´1

Nmpxq“j{Nmpaq

x`,

which explains the appearance of rĀ,χ in the sum.

11.3 Sketch of proof of Theorem X.1

Following [GZ] and [Z], we might expect for any m prime to N a formula of the

form

(11.10) xZ ` Z̄, TmpZA ` Z̄Aq yGS
.
“ ampAq,

where ampAq is the Fourier coefficient from Proposition X.8. This formula would

ideally hold for any m with pm,Nq “ 1 and A such that rApmq “ 0. The constant

implicit in the notation
.
“ should be independent of m and A.

We break up the height pairing above into four different terms, each of which can

be decomposed into a sum of local heights. For example, we have

xZ, TmZAyGS “ xZ, TmZAyfin ` xZ, TmZAy8,
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where we have decomposed into the sum of local heights at finite places and the sum

of local heights at infinity.

By Proposition X.8

ampAq “ ´mk´t´1
ÿ

0ănďmδ
N

σ1ApnqrĀ,χpmδ ´NnqHk´t´1,t

ˆ

1´
2nN

m|D|

˙

´mk´t´1
8
ÿ

n“1

σApnqrĀ,χpmδ ` nNqQk,t

ˆ

1`
2nN

m|D|

˙

.

Write

ampAq “ a1
mpAq ` a2

mpAq,

where a1
mpAq is the sum with Hk´t´1,t and a2

mpAq is the sum with Qk,t.

By Proposition XI.20, we have

(11.11) xZ, TmZAy8 “
u2p4|D|qp´t

Dt ¨
`

2p
p´t

˘ a2
mpAq.

Similarly, we have

(11.12) xZ̄, TmZ̄Ay8 “
u2p4|D|qp´t

Dt ¨
`

2p
p´t

˘ a2
mpĀq.

Note that it is Ā in the right hand side and not A.

On the other hand, xZ, TmZ̄Ayfin can be computed exactly as in Chapter VI, since

local heights at places above ` not equal to p (for the p-adic heights) or 8 (for the

archimedean heights) are determined by intersection on the special fiber. One sees

from a calculation entirely similar to Proposition VI.5 that

xZ, TmZ̄Ayfin “
u2p4|D|qp´t

Dt ¨
`

2p
p´t

˘ a1
mpĀq.

(Note that there is a notation clash here: the function σApnq in VI.5 is the p-adic

analogue of what is called σ1Apnq above.) Similarly,

xZ̄, TmZAyfin “
u2p4|D|qp´t

Dt ¨
`

2p
p´t

˘ a1
mpAq.
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One can either compute this directly as before, or note that

@

Z̄, TmZA
D

fin
“
@

TmZ, Z̄Ā
D

fin

“
@

Z, TmZ̄Ā
D

fin

.
“ a1

mpAq.

The first equality here is proved much as in Lemma IV.11.

Finally, the terms xZ, TmZ̄Ay8, xZ̄, TmZAy8, xZ, TmZAyfin, and xZ̄, TmZ̄Ayfin are

immediately seen to vanish by orthogonality. For the heights at infinity, this is

Proposition XI.20. For the heights at the finite primes, this is ultimately because

the cup product pairing on H1pAq is alternating (see the proof of Proposition VI.5).

Recall we defined HmpAq “ xZ ` Z̄, TmpZA ` Z̄Aq yGS. From the four equations

above, we cannot expect (11.10) to hold unless A “ Ā. In general, we can only hope

for:

(11.13) HmpAq `HmpĀq
.
“ ampAq ` ampĀq,

which is the desired equality in Theorem X.1. And indeed, this follows from the four

formulas above applied to both A and Ā.

Equation (11.13) is already remarkable in that it relates archimedean heights of

generalized Heegner cycles to Fourier coefficients of a certain modular form encoding

the central derivatives of Rankin-Selberg L-functions. As was indicated earlier, if we

assume that the generating series

FA ` FĀ :“
ÿ

mě1

pHmpAq `HmpĀqqqm

is a modular form of weight 2k and level N , then one deduces that FA ` FĀ equals

gA ` gĀ, up to addition of an old form (recall, gA “
ř

ampAqqm). This follows by a

lemma of Nekovář [N3, II.5.7], which says that knowing the mth Fourier coefficients
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of a modular form for all m (prime to N) such that rApmq “ 0 in fact determines the

modular form up to the addition of an old form. From the equality of these modular

forms, one deduces (similar to the argument in [GZ], though there is a bit more work

to do in our setting) a formula relating L1pf, χ, k ` tq “
ř

A L
1
Apf, χ, k ` tq to the

height of the f -isotypic component of the algebraic cycle
ř

ApZA ` Z̄Aq.

Unfortunately, it is not known (at least to us) that the generating series above is

modular. To unconditionally prove the desired formula

(11.14) L1pf, χ, k ` tq
.
“

C

ÿ

A
pZA ` Z̄Aq,

ÿ

A
pZA ` Z̄Aq

G

GS

,

one can instead follow the approach of [Z] in the case t “ 0. This requires proving the

equality (11.13) in the more delicate situation where Z and TmZA have intersecting

supports (i.e., the case rApmq ‰ 0, but m still prime to N). One then needs to

compare the Hecke action on the space of generalized Heegner cycles with the usual

Hecke action on the space of modular forms. Zhang’s approach for computing self-

intersections fits nicely into the framework of Brylinski that we have used here, so

we can use this approach in our situation as well. We plan to explain this in detail

and complete the proof of (11.14) in a separate paper.
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