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CHAPTER I

Introduction

1.1 Background and motivation

The aim of this thesis is to relate the central derivatives of Rankin-Selberg L-
functions to heights of algebraic cycles on varieties related to modular curves. Mo-

tivating our work is the formula of Gross and Zagier, which we now recall.

1.1.1 The Gross-Zagier formula

Let f be a normalized newform of weight 2 and level I'((/N). Let K be an
imaginary quadratic field with odd discriminant D, H its Hilbert class field, and

x : Gal(H/K) — Q* a character. The theta series

Oy = D, x(a)g™®

acOg

attached to x is a weight 1 modular form, and we can form the Rankin-Selberg con-
volution L(f,x,s) := L(f,©,,s). Gross and Zagier assume the Heegner hypothesis:
every prime dividing N splits in K. This forces the sign of the functional equation
for L(f,x,s) to be —1, and hence forces L(f,x,s) to vanish at the central point
s=1.

On the other hand, the Heegner hypothesis guarantees that there exists a cyclic
N-isogeny ¢ : A — A’ between two elliptic curves A, A" both having complex mul-

tiplication by O. Any such ¢ determines a point y on the modular curve Xy(N)



parameterizing cyclic N-isogenies of elliptic curves. Since ¢ is defined over H, this
point is H-rational, i.e. y € Xo(N)(H).

Using the Abel-Jacobi map
Xo(N) — Jo(N) = Pic®(Xo(N))

y = c:= [yl =[],
we obtain a point ¢ € Jo(N)(H) in the Mordell-Weil group of the Jacobian of X,(N)
over H. As the actions of Gal(H/K) and the Hecke algebra T on Jy(/N) commute
with each other, we may consider the (f, x)-isotypic component ¢y, € Jo(N)® C of
c.
By the Mordell-Weil theorem, Jo(N)(H) is a finitely generated abelian group. It

is endowed with a symmetric bilinear pairing
Gonr 2 Jo(N)(H) x Jo(N)(H) — R

called the Néron-Tate height pairing. The associated quadratic form on Jo(N)(H)QR
is positive definite, so P € Jo(N)(H) is torsion if and only if (P, P)xt = 0. We extend
this pairing to a Hermitian pairing on Jo(/N)(H)® C in order to compute the height

of ¢y y.

Theorem 1.1 (Gross-Zagier [GZ]). There is an explicit non-zero constant k =

k(f, K) such that
L/(fv X 1) =K <Cf,xa Cf,X>NT-
This formula gives a remarkable connection between the analytic realm of auto-

morphic L-functions and the arithmetic of modular curves. It is also a key ingredient

in the proof of many cases of the Birch and Swinnerton-Dyer conjecture for elliptic



curves over Q, a geometric conjecture whose statement makes no mention of modular
forms at all.

To state this application of the Gross-Zagier formula, let us assume for simplicity
that f has rational Hecke eigenvalues. Then there is an elliptic curve E;/Q which
is quotient of Jy(IV) and such that L(Ey,s) = L(f,s). If x is the trivial character,
then L(f, x, s) is nothing other than L(E;/K, s), the L-function of the elliptic curve
E; base changed to K. Moreover, we can think of ¢, = ¢4 in this case as a point
in E¢(K). Recall that our assumptions have forced L(E;/K,1) = 0. So the Gross-
Zagier formula implies that if L'(E;/K,1) # 0 (i.e. if the analytic rank of E is 1),
then the rank of the group E¢(K) is at least 1. This inequality is exactly as predicted
by the Birch and Swinnerton-Dyer conjecture (BSD), which is the statement that

the algebraic and analytic ranks agree:
rk Ef(K) = ords_1 L(Ef/K, s).

In fact, Kolyvagin [Kol] proved that if ¢ ; is not torsion, then rk E¢(K) = 1, and so
the BSD conjecture for E¢/K is verified in this case. Moreover, one can “descend”
these results to prove BSD for E;/Q as well (assuming the analytic rank is less than
or equal to 1) . Since every elliptic curve E/Q is a quotient of Jy(N) for some N,

these arguments apply for all E/Q.

1.1.2 The p-adic formula of Perrin-Riou

There are many variants and generalizations of the Gross-Zagier formula. One of
the earliest variants was a p-adic version due to Perrin-Riou [PR1], in the case where
f is ordinary at p (with respect to some chosen embedding Q — @p). Here, p is a
prime not dividing N and which splits in K. She computes the derivative of a p-

adic L-function L,(f, x, A) instead of the usual complex Rankin-Selberg L-function.



L,(f,x,—) is a Cp-valued p-adic analytic function of characters A : Gal(K,,/K) —
1 + pZ,, where K, is the unique Zg-extension of K. This p-adic L-function is

characterized by an interpolation property of the form

LP(f?Xaw) = L(fv X¢7 1)7

for all finite order characters 1. Here, = means equality up to explicit (transcen-
dental) constants, which must be divided out appropriately so that both sides of the
equation are algebraic and the equality of elements of C, and C can make sense.

Replacing the C-valued Néron-Tate height pairing in her p-adic formula is a height
pairing

(e Jo(N)H) @ Q, x Jo(N)(H) © Q, — Q,
defined by Schneider and Mazur-Tate. This p-adic height pairing depends on a choice
of “arithmetic logarithm”
Ut A /K™ — Qy,

which we can alternatively view (via class field theory) as a homomorphism ff :
Gal(Ky/K) — Q. In fact, we can write g = p~"log, o) for some integer n and
some A : Gal(Ky/K) — 1+ pZ,. Here log, is Iwasawa’s branch of the logarithm, so

that log,(p) = 0. Then the derivative of L,(f, x,—) at the trivial character 1 in the

direction of ¢ is defined as

—-n d s
L;;(f7X7€K7I]-> =p %Lp<f7X7>‘ )

Theorem 1.2 (Perrin-Riou).

Ly(fsx: Cres 1) = g e

Kobayashi [Kob]| later proved a similar p-adic formula when f is non-ordinary at

p. This case is more complicated because there are two different p-adic L-functions



attached to f and the height pairings now depend on a choice of splittings of the
Hodge filtration (whereas there is a canonical choice in the ordinary case).

Perrin-Riou’s formula implies cases of a p-adic version of the BSD conjecture,
which states that (when f has rational coefficients) the rank of E;(K’) should equal
the derivative L'(f,1,/k,1) in the cyclotomic direction (i.e. £x = log, o), with A
the cyclotomic character). It is important here that (p, N) = 1, otherwise these two
quantities are not necessarily equal, due to exceptional zero phenomena. Also note
that L,(f, x, 1) = 0 by the interpolation property.

Such p-adic formulas are interesting because they give new ways to prove state-
ments about points on elliptic curves over Q, or, more generally, algebraic cycles on
varieties defined over number fields. Moreover, they have a certain flexibility that the
archimedean formulas lack, in that they are amenable to methods of Iwasawa theory
and techniques of p-adic variation. In fact, p-adic special value formulas are an im-
portant tool in recent proofs of “converse theorems” (e.g. [Sk] and [Zh]) concerning

the usual (archimedean) BSD conjecture.

1.1.3 Higher weight formulas and Heegner cycles

In the 1990’s, the formulas of Gross-Zagier and Perrin-Riou were generalized to
eigenforms f of weight 2r, for any » > 1. In this case, the Rankin-Selberg L-
function L(f,x,s) again vanishes at its central point s = r. Already in [GZ, §V], it
is attributed to Deligne that the derivative L'(f, x,r) should be related to heights
of Heegner cycles, which are certain algebraic cycles lying on the Kuga-Sato variety
Wa,_o of dimension 2r — 1. This Kuga-Sato variety is a smooth compactification of
the (2r — 2)-th power

W2O'r—2 =& XY(N) s XY(N) E



of the universal elliptic curve £ — Y (V) fibered over Y (NN) (the moduli space of ellip-
tic curves with full level NV structure). By work of Deligne and Scholl, the Hecke oper-
ators can be used to construct a projector € in the ring of algebraic correspondences
of Wy, _o, which cuts out a motive My (modulo homological equivalence) correspond-
ing to the eigenform f. In particular, there is a subspace of HZ ~(Wa,_ o, Q,(1))
whose L-function equals L(f,s), though it is in general necessary to extend the
coeflicient field in order to realize this subspace.

The Heegner cycle is a certain algebraic cycle lying in the fiber of
War 5 — X(N)

above a point § € X(N) corresponding to an elliptic curve A with End(A) = Ok;

the fiber above § is isomorphic to A2 2. Recall D = Disc(K), and let
I'5={PVDP):PecAlcAxA
be the graph of the isogeny v/D : A — A. Then consider the cycle:

Y = F:"/_Bl c (Ax A c Wy,

Roughly speaking, the Heegner cycle Y} , is the projection of Y onto the y-isotypic
part of M;/H. The cohomology class of Y7, in HZ (Wa,_s, Q,(r)) ®Q, is trivial and

hence Y}, lies in the domain of the p-adic Abel-Jacobi map
® : CH (War_2)o ®q Q, — H'(H,V) ®q, Qy,

where V' = HZ '(Wa_2,Q,(r)). The special value formulas for higher weight f
are due to Zhang [Z] (for the complex L-function) and Nekovai [N3] (for the p-adic

L-function):



Theorem 1.3 (Zhang). If f has weight 2r and x is a character of Gal(H/K), then

L/(f7 X T) = <Yf,xu Yf,X>GS-

Theorem 1.4 (Nekovar). Let p be a prime split in K and not dividing N, and fix
an embedding v - Q — @p. Suppose f has weight 2r and is ordinary at p with respect

to v. For any character x of Gal(H/K) and any choice of arithmetic logarithm (,

L(fix,lk, 1) = @Yy ), @(Yix) DNek

The C-valued height pairing (, )gs is the one defined by Beilinson [Bei] and uses
the arithmetic intersection theory of Gillet and Soulé [GS]. This pairing is a general-
ization of the Néron-Tate height pairing for polarized abelian varieties. Importantly,
{, das is defined on the Chow group CH"(Ws,_3)o of homologically trivial cycles.!
This is in contrast to the @p—valued height pairing {, )nex constructed by Nekovar
(and generalizing the height pairings of Mazur-Tate and Schneider), which is defined
on the Bloch-Kato subgroup H}(H,V) < H'(H,V). Tt is known that the image of
® lies in H;(H,V), in the case of Kuga-Sato varieties. This difference between the
archimedean and p-adic heights makes it more difficult both to prove archimedean
height formulas (as we will explain later) and also to apply them towards general

conjectures on algebraic cycles, as we explain in the next section.

Remark 1.5. There is important work of Yuan, Zhang, and Zhang [YZZ], which vastly
generalizes the original Gross-Zagier formula in an orthogonal direction, namely by
relaxing the Heegner hypothesis and other ramification conditions. In this general
case, one relates L'(f,x,s) (with f having weight 2) to heights of special points on

Shimura curves.

Mn fact it is defined only on a subgroup of CH" (Wayr_2)o which is conjecturally equal to all of CH" (W2,_2)0.



1.1.4 Conjectures of Beilinson-Bloch, Bloch-Kato, and Perrin-Riou

Assume for simplicity that yx is the trivial character 1 and f has rational coeffi-
cients, and write €; for the algebraic correspondence on Wy,_» which cuts out the
motive M. The Beilinson-Bloch (BB) conjecture [Bei] is a vast generalization of the
BSD conjecture (whose scope is limited to abelian varieties A over number fields).
The BB conjecture relates the rank of the Chow group of homologically trivial alge-
braic cycles on a smooth projective variety X over a number field (or more generally,
a Chow motive) to the order of vanishing of the L-functions attached to the étale

cohomology of X. For the motive My/K, it predicts that
dimg €;CH"(Wy,_o/K)o = ords—. L(f, X, 5).

Zhang’s formula verifies one inequality in the BB conjecture when My/K has
analytic rank 1: if the order of vanishing equals 1, then the derivative is non-zero
and so the height of the Heeger cycle is non-zero as well. Hence the cycle is non-
torsion and the dimension on the left hand side is at least 1. One would like to use
Kolyvagin’s Euler system methods to show that the dimension is in fact equal to 1,
just as in the weight two case. In fact, Nekovaf [N1] was able to apply Kolyvagin’s
techniques in this case, but his result is that if ®(Y},) # 0, then dim H} (K, e;,V) = 1.
Unfortunately, the Abel-Jacobi map ® is not known to be injective, so one cannot
use Nekovar’s Euler system result to prove BB in this case.

A related conjecture of Bloch-Kato [BK]| predicts that the Abel-Jacobi map in-

duces an isomorphism
® ;e CH" (Woy—2/K)o ®@q Q) —> H}(K,efV),
and moreover that (in agreement with the BB conjecture):

(1.1) dimg, H}(K, efV) = ords—. L(f, X, 5).



Again, since the injectivity of ® is not known, Zhang’s result cannot be used to
unconditionally prove (1.1) when L'(f, x,r) # 0.

This is unfortunate, but we can take solace in the fact that these problems disap-
pear in the p-adic realm. Perrin-Riou [PR3] has formulated a p-adic version of the
Bloch-Kato conjecture (see also [Co, 2.7]), and in this case of good reduction the

prediction is entirely similar:
dimg, H}(K, e;V) = ordr_1 L, (f, X, A),

where the derivatives are taken in the cyclotomic direction, as before. Combining
Theorem 1.4 with Nekovai’s results in [N1] immediately yields a proof of this con-

jecture when L) (f,1,1) # 0.

Remark 1.6. There is another application of the original Gross-Zagier formula which
fails to generalize to the higher weight case (in the current state of affairs). Namely, if
the Heegner point cy 4 is non-torsion, then by the non-degeneracy of the Néron-Tate
height pairing, we have L'(f,1,1) # 0. Using Kolyvagin once more, we conclude
that BSD is true for E;. This argument does not work in higher weight because the
pairings {, Ygs and {, )nex are not known to be non-degenerate. In fact, the non-
degeneracy of p-adic heights is not known even in weight 2, i.e. for abelian varieties,

other than in the CM case [Be].

1.2 Main results

The goal of this thesis is to extend the results of [N3] and [Z] to a larger class
of Rankin-Selberg L-functions, i.e. to a larger class of motives. Specifically, we will

consider motives of the form f ® ©,, where

X AL/K* —C*
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is an unramified Hecke character of infinity type (¢,0), with 0 < ¢ = 2k < 2r, and

Oy = Z x(a)g™*

acO
is the associated theta series. The conditions on ¢ guarantee that the Hecke character
Xo := X "N"* of infinity type (r — k,r + k) is central critical in the sense of [BDP1,
§4], and that the central value L(f, x,r + k) = L(f, Oy, + k) of the Rankin-Selberg
L-function vanishes, as before. If we take ¢ = 0, then y comes from a character of
Gal(H/K), so we are back in the situation considered in [N3]| and [Z].

Our main result (Theorem 1.7) extends Nekovai’s formula to the case ¢ > 0 by
relating p-adic heights of generalized Heegner cycles to the derivative of a p-adic
L-function attached to the pair (f,x). We establish our assumptions and notation
now and in the next subsections describe both the algebraic cycles and the p-adic
L-function needed to state our p-adic formula.

For our p-adic formula, we let p be an odd prime, N > 3 a positive integer prime
to p, and f = > a,q" a newform of weight 2r > 2 on Xy(N) with a; = 1. Fix
embeddings Q — C and Q — @, once and for all, and suppose that f is ordinary at
p, i.e. the coefficient a, € @p is a p-adic unit. We let K be an imaginary quadratic
field of odd discriminant D such that each prime dividing p/N splits in K. As before,

H is the Hilbert class field of K.

1.2.1 Generalized Heegner cycles

Let Y (N)/Q be the modular curve parametrizing elliptic curves with full level N
structure, and let & — Y (NN) be the universal elliptic curve with level N structure.
Denote by W = W, 5, the canonical non-singular compactification of the (2r — 2)-
fold fiber product of £ with itself over Y(NN) [Sc|]. Finally, let A/H be an elliptic

curve with complex multiplication by the full ring of integers O and good reduction
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at primes above p. We assume further that A is isogenous (over H) to each of its
Gal(H/K)-conjugates A and that A™ = A, where 7 is complex conjugation. Such
an A exists since K has odd discriminant [G, §11]. Set X = Wy x i A%, where Wy is
the base change to H. The variety X is fibered over the compactified modular curve
X(N)y, the typical geometric fiber being of the form E?"~2 x A, for some elliptic
curve .

The (2r + 2k — 1)-dimensional variety X contains a rich supply of generalized
Heegner cycles supported in the fibers of X above Heegner points on Xo(N) (we view
X as fibered over Xy(N) via X(N) — X(N)). These cycles were first introduced
by Bertolini, Darmon, and Prasanna in [BDP1]. In Chapter IV, we define certain
cycles egeY and egéeY in CH ¥ (X)), which sit in the fiber above a Heegner point on
Xo(N)(H), and which are variants of the generalized Heegner cycles which appear
in [BDP2]. Here, CH""*(X)g is the group of codimension r + k cycles on X with
coefficients in K modulo rational equivalence. In fact, for each ideal a of K, we define
cycles egeY® and egeY® in CHT+k(X)K, each one sitting in the fiber above a Heegner
point. These cycles are replacements for the notion of Gal(H /K')-conjugates of egeY’
and eg€Y (recall that Gal(H/K) = Pic(Ok)). The latter do not exist as cycles on
X, as X is not (generally) defined over K. In particular, we have egeY % = egeY’.

The cycles egeY® and egéY® are homologically trivial on X (Corollary IV.5), so

they lie in the domain of the p-adic Abel-Jacobi map
®: CH (X))o — H'(H,V),

where V is the Gal(H /H)-representation H2r "2*=1(X Q,)(r + k). (See Chapter 5.2
for a definition of ®.) We will focus on a particular 4-dimensional p-adic represen-
tation V4., which is a quotient of V. Vj 4, is an F-vector space, where F/Q, is

the field obtained by adjoining to Q, the coefficents of f and the coefficients of the
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Hecke character attached to A. As a Galois representation, V7 4, is ordinary (Theo-
rem VIL.2) and is closely related to the p-adic realization of the motive f ® ©, (see

Chapter IV). After projecting, one obtains a map
®p: CH™™(X)ox — H'(H, Vi au),

which we again call the Abel-Jacobi map. For any ideal a of K, define 2§ = ®;(epeY™®)

and 2§ = ®(ep€Y’?). As before we write z; = Z?K and zy = 2](?’{.
The image of ® lies in the Bloch-Kato subgroup H(H,Vja.) < H'(H,Vfay)
(Theorem IV.6). If we fix a continuous homomorphism (x : Ay /K* — Q,, then

[N2] provides a symmetric F-linear height pairing
e Hi(H, Viag) x Hy(H, Vag) — F.

We can extend this height pairing Q,-linearly to H}(H ,V.40)®Q,. The cohomology
classes

Zﬁx = x(a)'zf and =z
depend only on the class A of a in the class group Pic(Ok) (Lemma IV.10). Finally,

set h = #Pic(Ok) and

1 1
Zfx = T z;f}x and zfy = 7 Z z;f}x,
AGPiC(OK) AEPiC(OK)

both being elements of H}(H, Vy 4.,) ®Q,. Our main theorem relates (zy,y, zfx )¢, t0

the derivative of a p-adic L-function which we now describe.

1.2.2 The p-adic L-function

Following [PR1], [N3], and the general construction of Hida, we construct a p-
adic L-function attached to f ® ©,. Recall, if f = > a,q¢" € M;(I'oy(M),v) and

g =2b,qg" € Mj(Io(M),), then the Rankin-Selberg convolution is

L(f,9,8) = La(2s +2 = j — j/,€) ) anban™>,

n=1
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where

Ls(s,v€) = [ (1= &)™) "

pIM
Let K./K be the Z2-extension of K and let K, be the maximal abelian extension of

K unramified away from p. In Chapter 2, we define a p-adic L-function L,(f®x)(\),

which is a @p—valued function of continuous characters
A Gal(Ky/K) — 1+ pZ,.
The Iwasawa function L,(f ® x) is the restriction of an analytic function on
Hom(Gal(K,/K),C,),
which is characterized by the following interpolation property: if
W Gal(K,/K) - C)
is a finite order character of conductor f, with Nj = p?, then
Ly(f ® x)(W) = CraW(N)XW(D)r (WV)V, (f, X, W)L(f, Oy 7 + k)
with
2(r —k—D!(r +k—1)!

(4m)2rap (f)CF w7

and where a,(f) is the unit root of z2 —a,(f)z +p* 1, {f, f)n is the Petersson inner

Crr =

product, D = (\/5) is the different of K, Oy is the theta series

@W = Z X_W<a)qNa7
(a,f):l

7(xW) is the root number for L(O,,y, s), and

V) (p) k-1 OV)(P) greyr—k—1
%(faX?W) = I N(p)r I N(p) :
1’;[ ( ap(f) ) < ap(f) >

Recall we have fixed a continuous homomorphism ¢ : Ax/K* — Q,. We define
L,(f ® x, 4k, 1) as in 1.1.2. With these definitions, we can finally state our main

result.
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Theorem 1.7. If x is an unramified Hecke character of K of infinity type (2k,0)

with 0 < 2k < 2r, then

L;(f®X>€K7 ]l) = <_1>k1_[

plp

(1 _ X(P)pr_k_1>2 h <z 21000,
ap(f) u2(4|D|)r—-1’

where h = hy is the class number and u = #O.

Remark 1.8. When k£ = 0 the cycles and the p-adic L-function simplify to those
constructed in [N3], and the main theorem becomes Nekovai’s formula, at least
up to a somewhat controversial sign. It appears that a sign was forgotten in [N3,
I1.6.2.3], causing the discrepancy with our formula and with Perrin-Riou’s as well.

Perrin-Riou’s formula [PR1] covers the case k = 0 and r = 1.

In the last two chapters of this thesis, we also compute archimedean heights of
generalized Heegner cycles and sketch a proof of a special value formula for the
derivative L'(f, x,r + k) of the complex L-function. This formula is analogous to the
formula in Theorem 1.7 and generalizes Theorem 1.3 to Hecke characters of higher
weight. We defer to a separate paper the technical aspects of the proof, and instead
focus on the heart of the computation, which is the computation of the local heights
at the infinite places. One of course needs to compute local heights at finite places
as well, but these computations are essentially identical to our local p-adic height
computations (at places away from p). We refer the reader to Chapter X for a

description of our archimedean results.

1.2.3 Applications

Theorem 1.7 implies special cases of Perrin-Riou’s p-adic Bloch-Kato conjecture.
The assumption that A is isogenous to all its Gal(H/K)-conjugates implies that the
Hecke character

@/}HZA;IHCX,
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which is attached to A by the theory of complex multiplication, factors as ¥y =
Y o Nmp/i, where ¢ is a (1,0)-Hecke character of K. Assume for simplicity that
x = ¢, and set xg = ¥4 and Gy := Gal(H/H). Then the G g-representation V; 4
is the p-adic realization of a Chow motive M (f)y®M (xp). Here, M(f) is the motive
over Q attached to f by Deligne, and M (xpy) is a motive over H (with coefficients
in K) cutting out a two dimensional piece of the middle degree cohomology of A
In fact, the motive M (xpy) descends to a motive M (x) over K with coefficients in
Q(x). We write V;, for the p-adic realization of M (f)x®M (x), so that V, is a Gk-
representation whose restriction to Gy is isomorphic to Vi 4. In fact, Vy, = x® X,

where we now think of y as a Q(x) ® Q,-valued character of Gk. It follows that
L(Viyx:8) = L(f, X, $)L(f. X, 8) = L(f, x, 8)*.
The Bloch-Kato conjecture for the motive M (f)x ® M(x) over K reads
dim H(K, Vi) = 2 ordy_r e L(f, X0 9).
Similarly, Perrin-Riou’s p-adic conjecture [Co, 2.7] [PR3, 4.2.2] reads
(1.2) dim H}(K, Viy) = 2-ordao1 L(f, x, lxs A),

where (k is the cyclotomic logarithm and the derivatives are taken in the cyclotomic
direction. In Chapter VIII, we deduce the “analytic rank 1”7 case of Perrin-Riou’s
conjecture by combining our main formula with the results of Elias [E] on Euler

systems for generalized Heegner cycles:

Theorem 1.9. If L,(f ® x,{x, 1) # 0, then (1.2) is true, i.e. Perrin-Riou’s p-adic

Bloch-Kato conjecture holds for the motive M (f)x & M(x).

Remark 1.10. Alternatively, we can think of z;, (resp. zy) as giving a class in

H{(K,V; ® x) (vesp. Hi(K,V; ® X)), and note that L(V; ® x,s) = L(f,x,s) =
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L(Vy ® X, s). The Bloch-Kato conjecture for the motive f ® x over K then reads
dim H} (K, V; @ x) = ords—r it L(f, X, 5),

and similarly for y and the p-adic L-functions.

We anticipate that Theorem 1.7 can also be used to study the variation of gener-
alized Heegner cycles in p-adic families, in the spirit of [Ca] and [Ho|]. Theorem 1.7
allows for variation in not just the weight of the modular form f, but in the weight

of the Hecke character x as well.

1.2.4 Related work

There has been much recent work on the connections between generalized Heeg-
ner cycles and p-adic L-functions. Generalized Heegner cycles were first studied in
[BDP1], where their Abel-Jacobi classes were related to the special value (not the
derivative) of a different Rankin-Selberg p-adic L-function. Brooks [Br] extended
these results to Shimura curves over Q and recently Liu, Zhang, and Zhang proved
a general formula for arbitrary totally real fields [LZZ]. In [D], Disegni computes p-
adic heights of Heegner points on Shimura curves, generalizing the weight 2 formula
of Perrin-Riou for modular curves. Kobayashi [Kob] extended Perrin-Riou’s height
formula to the supersingular case. Our work is the first (as far as we know) to study

p-adic heights of generalized Heegner cycles.

1.2.5 Assumptions

We review all our assumptions and comment on the extent to which they may be

relaxed.

e We have assumed N > 3 for the sake of exposition. For N < 3, the proof

should be modified to account for the lack of a fine moduli space and extra
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automorphisms in the local intersection theory. These details are spelled out in

[N3] and pose no new problems.

We have assumed D is odd, as is traditional in this area. If D is even, various
computations become more complicated, but are presumably not fundamentally

more difficult.

We have assumed y is unramified. It should be straightforward to allow for
unramified Hecke characters twisted by finite order ring class field characters.
One does not necessarily expect a special value formula for more general y, i.e.
if x| A is not a power of the norm, since then x is not central critical with

respect to f.

One should be able to prove similar kinds of formulas when f has odd weight, or
more generally if the nebentypus of f is non-trivial. But there will be restrictions
on both the infinity type of y and the Dirichlet character attached to x, again
coming from the condition of central criticality. For example, if f has odd

weight, then y will necessarily be an infinite order Hecke character.

It would be worthwhile to relax the condition (N, D) = 1, as one could then
consider f with CM by K. The issue is that the p-adic L-function computations

in this case become rather messy (this case was also avoided in [PR1] and [N3]).

It would also be worthwhile to combine the methods here with the work of
Disegni [D], i.e. to remove the Heegner hypothesis assumed in this paper. His
adelic construction of the p-adic L-function is more amenable to generalization
than our more classical approach, which is one reason why we have not pursued

some of the strengthenings alluded to above.



18

e The assumption that p splits in K is important for the proof, but presumably
can be removed a fortiori. This would follow from an argument similar to
[Kob, proof of Theorem 5.9], but requires the archimedean height formula for

generalized Heegner cycles.

e One might try to remove the assumption that f is ordinary, using Kobayashi’s
approach [Kob] in the weight 2 case as a guide. However in higher weight there
are some non-trivial technical issues to deal with in the computation of the local

p-adic heights at places above p.

e Our assumption that A” =~ A implies that the lattice corresponding to A is
2-torsion in the class group. This is convenient for proving the vanishing of
the p-adic height in the anti-cyclotomic direction, and plays no other role in our
proof (in particular, the proof in the interesting case where {f is cyclotomic does
not use this assumption). One should be able to prove the theorem without this
assumption by making use of the functoriality of the height pairing to relate
heights on X to heights on X7, but we omit the details. Ultimately, the choice
of auxiliary elliptic curve does not matter much and we should just choose A as

in Remark IV.1.

1.2.6 Sketch of proof

This rough sketch will assume £ is the cyclotomic character, because we show in
IV.13 that both sides of Theorem 1.7 vanish when /x is an anticyclotomic logarithm.
We therefore drop /x from the notation. Again to ease notation, we assume Pic(Of)
is trivial.

Following Hida, Perrin-Riou, and Nekovaf, we construct a p-adic L-function
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L,(f,x, ) roughly of the form

nrn-n ([ ).
Gal(Ky/K)

Here dV is a p-adic measure, constructed from Eisenstein and theta measures (mim-
icking the Rankin-Selberg convolution), and valued in p-adic modular forms. The
operator Ly is the composition of Hida’s ordinary projector lim;_, Uﬁ(j)p " with
a p-adic analogue of taking the Peterson inner product with f. It follows that
L,(f,x,1) = Ly(G) for some p-adic modular form G.

We then want to compare the two p-adic modular forms
G and F =) (Vg & nek - g
g

where the sum is over newforms of level dividing N. In fact, to prove the theorem we
need to show that L;(G) = Ly(F). For m > 1 and prime to N, the mth coefficient

of Fis
U (F) = {x, T,y T )Nek,

where z is the projection of ®(eY’) onto H(H,®,Vya.), i.e. we project onto the
space of all modular forms, not just our chosen eigenform f (and similarly for z).

By an argument of Nekovai using Cebotarev’s density theorem, it is enough to
compare mth Fourier coefficients only for those integers m such that there is no ideal
in Ok of norm m (this is the condition r4(m) = 0 in [GZ]). This condition amounts
to saying that the cycles Y and T7,,Y do not intersect in the generic fiber. We can
therefore decompose the global p-adic height into a sum of local heights, one for each

finite place of H:

=@, Ty + D Xw, Ty

vip vlp
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Note that p-adic heights do not have a contribution from infinite places of H. Morally
speaking, the local p-adic heights at places above p replace the local archimedean
heights at infinite places (both are very hard to compute in general).

After much computation (representing a large part of this thesis, and building off
the work in [GZ], [PR1], and [N3]), we show that a,,(G) and ¢,,(F) are “essentially
equal” (i.e. they are equal for the purposes of this sketch). Thus it suffices to show

that

(1.3) L, (Z dm(F)qm> —0.

This part of the argument relies heavily on the fact that p splits in K. The point
is that the local archimedean heights at such primes p are easily seen to vanish (c.f.
|GZ, I11]), and so it is not surprising that we still get the equality a,,(G) = ¢ (F)
when we remove the p-adic height contributions from primes above p.

By a clever trick of Perrin-Riou using the norm-coherency of Heegner points, one

reduces the proof of (1.3) to showing that for any place v above p,

lim <xf, bpj>v =0,

o0
where b, is the norm of a generalized Heegner cycle of conductor p’ defined over the
ring class field of conductor p/, and z; is the f-isotypic component of z. In other
words, we must show that certain height pairings become more and more divisible by
p as we move up the local ring class field tower. We do this in Chapter IX by fixing an
approach suggested in [N3, I1.5]. The key new inputs are local class field theory (via
relative Lubin-Tate groups) and comparison isomorphisms in p-adic Hodge theory.
Roughly, we show that certain Galois representations (“mixed extensions”) needed
to compute the local height pairings are crystalline when r4(m) = 0. The key ingre-

dient is Theorem IX.10 which relies on Faltings’ proof of Fontaine’s C,;s conjecture.
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This theorem (or rather, its proof) is quite general and should be useful for computing
p-adic heights of algebraic cycles sitting on varieties fibered over curves. Returning
to our context, it follows that the height pairing is a logarithm of a norm of unit in
a ring class field. As the ring class field gets larger, the logarithm gets more divisible
by p, and in the limit the height pairing goes to 0.

The remarkable aspect of the general approach outlined above (which is due to
Perrin-Riou) is that it proves a formula for the global p-adic height without ever
actually computing the local heights at p. This suggests that p-adic height formulas
are more accessible than archimedean height formulas, for which explicit and often
messy computations with Green’s functions seem unavoidable (cf. the last chapter of
this thesis). Of course, if this strategy is to work in greater generality (e.g. on higher
dimensional Shimura varieties) then one still needs to prove that the contribution
from local heights at p vanishes. Perrin-Riou’s proof in weight 2 relies heavily on the
fact that the Galois representations at hand are Tate modules of abelian varieties or
1-motives. In higher weight, the proof uses more machinery, and required us to show
that certain less accessible Galois representations are crystalline. Our hope is that
the computations in Chapter IX will encourage further development of the necessary
p-adic Hodge theoretic machinery needed for p-adic height pairings in situations even
more general than ours (where we only consider algebraic cycles lying in fibers over
a curve).

In the final two sections we present computations toward the archimedean special
value formula for f ® y. Since the local archimedean heights at finite places are
essentially already computed in earlier chapters, the crux of the matter is computing
the local heights at infinity and comparing them to the analytic kernel (which we

compute in Chapter X). The Green’s functions and heights at infinity are computed



22

in the final Chapter XI. The Green’s functions we construct are eigenfunctions for
the usual weight +¢ Laplacian on the upper half plane, with a simple transformation
property under the diagonal action of SLy(R). These eigenfunctions might be of inde-
pendent interest. At the end of the section, we sketch how to deduce an archimedean
special value formula, at least assuming the modularity of certain generating series
of height pairings.

1.2.7 Document outline

The proof of Theorem 1.7 follows [N3] and [PR1] rather closely. We have therefore
chosen not to dwell long on computations easily adapted to our situation.

We define the p-adic L-function L,(f ® x,A) in Chapter II and show that it
vanishes in the anticyclotomic direction. In Chapter III, we integrate the p-adic
logarithm against the p-adic Rankin-Selberg measure to compute what is essentially
the derivative of L,(f ® x) at the trivial character in the cyclotomic direction. In
Chapter IV, we define the generalized Heegner cycles and describe Hecke operators
and p-adic Abel-Jacobi maps attached to the variety X. After proving some prop-
erties of generalized Heegner cycles, we show that the RHS of Theorem 1.7 vanishes
when (k is anticyclotomic.

In Chapter V, we recall the definitions of Nekovai’s local p-adic heights. In
Chapter VI we compute the local cyclotomic heights of z; at places v which are
prime to p. In Chapter VII, we prove that V} 4, is an ordinary representation. We
complete the proof of the main theorem in Chapter VIII, modulo the results from
Chapter IX. The latter is where we fix a technical issue in the proof in [N3, I1.5], to
complete a proof of the vanishing of the contribution coming from local heights at
primes above p.

Chapters X and XI contain the archimedean computations described above.



CHAPTER II

Constructing the p-adic L-function

We fix once and for all an embedding ¢ : Q@ — @Q,. Recall f = D1 nq" €
Sor(Io(N)) is a normalized newform which we assume to be ordinary, i.e. t(a,) is a
p-adic unit. As in the introduction, x : Aj; — C* is an unramified Hecke character

of infinity type (2k,0) with 0 < 2k = ¢ < 2r. This means
xla -z 20) = x(x) - 22, forallae KX 2z, € K.

If a is a prime ideal of Ok, then we follow the usual convention and write x(a)
for x(m,), where m, € K < Ak is a uniformizer at a. Extending multiplicatively,
we may think of x as a character of the group of fractional ideals of K satisfying
x(a) = o®* if a = () is a principal ideal. For more on Hecke characters, see [BDP1,
§4.1].

All that follows will apply to x of infinity type (0, 2k) with suitable modifications.
In this section, we follow [N3, 1.3-5] and define a p-adic L-function attached to the

pair (f, x) which interpolates special values of certain Rankin-Selberg convolutions.

2.1 p-adic measures

We construct the p-adic L-function only in the setting needed for Theorem 1.7;

in the notation of [N3], this means that Q = 1, N = Ny =¢; = =¢c=1,N3 =

23
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N, =N,A=A; =Ay=|D|,A3 =1, and 7 = 73 = 0. We begin by defining theta
measures.
Fix an integer m > 1 and let O,, be the order of conductor m in K. Let a be

proper O,,-ideal whose class in Pic(QO,,) is denoted by A. The quadratic form

Qa(2) = N(z)/N(a),

takes integer values on a. Define the measure © 4 on Z; by

(2.1) Oala(modp”)) = x(@~" >z
Qa(x)zﬁe(?nod pY)
To keep things from getting unwieldy we have omitted x from the notation of the

measure. If ¢ is a function on Z/p”Z with values in a p-adic ring A, then

(22)  O4(¢) = x(@) ' D (Qu(2))T ™ = x(8) " D] d(n)pa(n, O)g

TEQ n=1

where pq(n, £) is the sum > z¢ over all z € a with Q4(z) = n. We have

pa-(’y) (n7 ‘e) = f_ngu(na g)a

for all v € K*, so that ©_4 is independent of the choice of representative a for the

class A. For a e A,

(2.3) er Q@) — gy, Z x(a)gN) = w,, Z rax(n)q",

TEQ adeA n=1
o' cOm

since £ is a multiple of w,, (recall x is unramified). The coefficients 74, (n) play the

role of (and generalize) the numbers r 4(m) that appear in [GZ] and [N3].
Proposition I1.1. © 4(¢) is a cusp form in My, (T1(M), A), with M = lem(|D|m?, p*).

Proof. 1t is classical [Og] that > _ 7°q9® is a cusp form in M1 (T1(]Dm?)). Tt
follows from [Hi, Proposition 1.1] that weighting this form by ¢ gives a modular form

of the desired level. O



25

For a fixed integer C' prime to N|D|p, define the Eisenstein measures

Ey(a(mod p¥))(2) = Ei(2, Papw)
EY (a(mod p"))(2) = Ei(a(mod p))(z) — CE(C™ a(mod p*))(2),

where

Fy(a(mod p)(:) = 5 10,8) + Y] sen(i)a’™,

7 m>0
j=a(mod p¥)

with notation as in [N3, 1.3.6]. Similarly, we define the convolution measure on Z)

4 (a(mod p")) =

H Y, &@)Ba(a’a(mod p*))(2)87 " H(EF (a(mod [DIp))(N2)) |
ae(Z/|D|pr Z)*

which takes values in My, (Do(N|D[p®); x(a) 'p~°Z,), for some § depending only
on r and k [Hi, Lem. 5.1]. Here, H is holomorphic projection, 87 '~* is Shimura’s
differential operator, and & is the quadratic character (2) For the definitions of H
and 6] %! for p-adic modular forms, see [N3, 1.2-3] and [Hi, §5]. We are implicitly
identifying Z, with the ring of integers of K|, for a prime p above p (which is split in
K), so that z‘ € Z, for all z € a.

Another measure U9 is defined by

where
T (ID)np= + M, (Lo (N|D[p™) , ) — Ma, (Lo (Np”), )
D[ 0

is the trace map, i.e. the adjoint to the operator g — |D|""!g
x\ 0 1

Let H,,/K be the ring class field of conductor m for K. This is an abelian

extension of K, unramified away from m, and corresponds via class field theory
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with the subgroup K XAIX@O@% of A /K*. The global reciprocity map identifies
Gal(H,,/K) with the group Pic(O,,) of invertible O,,-ideal classes. For ring class
field characters p : G(H,,/K) — Q" , define
o= > p([A)TeY,
[A]€Pic(Om)
and similarly for \prc.

We define WG = = L, (), where Ly, is Hida’s projector attached to the p-

stabilization
2r—1

ap(f)

of f; recall a,(f) is the unique root of 2% — a,z + p

fo=f(2)—

f(pz)

?r=1 which is a p-adic unit. Intu-

itively, Ly, is the projection onto the space of ordinary forms, followed by projection
onto “the fyp-part” (the p-adic version of taking a Peterson inner product with fy).

See [N3, 1.2] for a proper definition and properties. Explicitly, if g € M;(To(Np*); Q)

0 -1
g
J Np* 0

pj/2—1 K Now
(2.0 Lo = ( 3

0 -1
7f0
I\ Np O

Np

with p > 1, then

Once more, we define a measure ¥¢, this time on Gal(Hy»/K) x Gal(K (p,2)/K),
by

U (o (mod p"), 7 (mod p™)) = Ly, (¥ (a (mod p™))),
where o corresponds to A and 7 corresponds to a € (Z/p™7Z)* under the Artin map.

Finally, as in [N3], we define modified measures \i/i, \I~fg7 etc., by replacing .7 (|D])

with 7 (1) in the definition of ¥.
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2.2 Integrating characters against the Rankin-Selberg measure

In this subsection, we integrate finite order characters of the Zg—extension of K
against the measures constructed in the previous section and show that they recover
special values of Rankin-Selberg L-functions. This allows us to prove a functional
equation for the (soon to be defined) p-adic L-function. We follow the computations
in [N3, L5] and [PR2, §4]. Let 5 denote a character (Z/p*Z)* — Q*. Exactly as in

[PR2, Lemma 7], we compute:

25) | da§ = (1-CEOP(O) HOAMEIT ! (Bi(N=0)]

P

Similarly, if p is a ring class character with conductor a power of p,
20) | 04 = w, (1 - CEOMP(C) HIOW)(5 ! (E(N2 ),
Zy
where W” = p - (n o IN), the latter being thought of as a character modulo the ideal
f = lem(cond p, cond 1, p). We denote by W the primitive character associated to

W’. By definition,

O,W")(2) = > W'(a)x(a)gN®.
acO
(a,f)=1

This is a cusp form in Sei1 (|DING (§), (£) n?), since x is unramified (see [Og] for a
more general result).
The computations of [N3, 1.5.3-4] carry over to our situation, except the theta

series transformation law now reads

= (B)rwewn| |

w

(2.7) 0, (W")(2)

<1\ [Dlpr 0
where % is the involution
0 —1 N Y

N|Dl|p* 0 N|D|p"t N
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with Nxw — |D|ptty = 1. We thus obtain

(2.8)
s (272 (VAN (D™ A,V
I e E S B
where
0 -1
-l (¢ )
2r Np 0 .
and
pr=1/2) 0 -1\ .
MOV = \ 15 O V) 5 (B (2, 67%)) ,
op(f 1\ |Dlp* 0

N|D|p+

and Ay(f) is the Atkin-Lehner eigenvalue of f. Define 7(xW) by the relation

0 -1 _
(2.9) O W)lgsa = (=) Hr (V)6 (W),

with |D|p® being the level A(W) of ©,(W). One knows ([M, Thm. 4.3.12]) that
(W) € Q%, [r(xW)| = 1, and
AW, ) = TOOW)A(OWV, L+ 1 — s),

where

AW, s) = (IDIp?)*2 (27)*T(s) L(O, (W), 9).

Modifying the computations in [PR2, §4], we find that

(2.10) Ay W) = (=1 iz (W) D pla)x(@)WV(a)A .,
N(gﬁps
with
p“(Tfé)fs@Jr% _ px ko1 5
(2.11) Ay, f3:©x(W) "B (2,677))
O‘p(f)“ 0+1 0 1
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and x =pu—f( —s.

Following [PR2, §4.4], we compute:

(2.12)
r=1/2\ 7 T —Hl{r—k—1)! _
M) = i) (2 ) 2 RS e v, )
where
_ B ) (p) r—k—1 o) (p) r—k—1
Vel W) = 1,;[ (1 @N<p)(f)N(p) ) <1 OéN(p)(f)N@) )
We have used the fact that
(2.13)
(a0t B o), = S O R R gy

for any g € Sor11(M’,€), and where M = M’'N. Equation 2.13 follows from the usual

unfolding trick and the fact [N3, 1.1.5.3] that

(r—k-— 1)!ET,k(z, o).

(Hikil(El(zv(b)) = W

We have also used the following generalization of [PR2, Lemma 23].

Lemma I1.2. If g is a modular form whose L-function admits a Fuler product ex-

pansion [ [, G,(p~*), then

L(fo,g.m+ k) =G, (p" " o (f)") L(f, 9,7 + k).

Finally, we also have [N3, I1.5.7]

()™ M) = An ()" Hy ()L P,

H,(f) = (1—%) (1_%)'

Putting all these calculations together, we obtain the following interpolation result.

with
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Theorem I1.3. For finite order characters W = p - (no N) as above,

DY wiey) _ L(f o WV(fx WAW) 2
<1 c (5) w<c>> | RETS il x 1) |
where
Ly(fix; W) = (%) W(N)T(xW)C(r, k)L(f’ @<X(V;)];r + k;)7
and

2(=1)""Yr—k—=D!(r+k—1)!
(4m)r :

C(r k) =

The modified measures \TJ? , satisfy

| na¥s, = 1pP-TowiD) | gavg,,
Zy Zy

P P

where D = (\/ﬁ) is the different of K.

2.3 Definition of the p-adic L-function

Recall we have fixed an integer C' prime to N|D|p.

Definition II.4. For any continuous character ¢ : G(Hpe(pp=)/K) — @; with

conductor of p-power norm, we define

Liseve = om0 () (1-¢(2) o) oo 45

The p-adic L-function L,(f ® x)(A) := L,(f ® x, A) is a function of characters

A G(Hye (pp ) [ K) — (1 + py).

e —

L,(f ® x) is an Iwasawa function with values in c_IOQT where Q(f,x) is the

x)’
p-adic closure (using our fixed embedding Q — @,) of the field generated by the

—_—

coefficients of f and the values of x, and ¢ € Q(f, x) is non-zero.
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We can construct analogous measures and an analogous p-adic L-function for y,
which is a Hecke character of infinity type (0,¢). There is a functional equation

relating L,(f ® x) to L,(f ® x), which we now describe. First define
Ap(F®X)(N) = ADNTHAN) 2L, (f ® x)(N).

Proposition I1.5. A, satisfies the functional equation

D N r—
LTV W = (Z5) M e ().
Proof. 1t suffices to prove this for all finite order characters WW. For such W, the

functional equation for the Rankin-Selberg convolution reads

(ZF) W)

(2.14) L(f,0;(W),r + k) = V) L(f,6,(W),r + k),

SO

LU W) D
‘Cp(f75(vw) - W<N) <_N) '

We also have V,(f, x, W) = V,(f, x, W), so that

Lp(f®X)(W> . £ A 2
Ly(f®x) (W) W) ( ) WD)

The proposition now follows from a simple computation. ]

Recall the notation A7 (a) = A(a”), where 7 € Gal(K/Q) is complex conjugation.

Corollary I1.6. Suppose (%) = 1 and X s anticyclotomic, i.e. A" = 1. Then
Lp(f ®@x)(A) = 0.
Proof. From the functional equation and the fact that
Ap(f @X)(A) = Ap(f @ X) (A7),
we obtain

Ap(f@X)N) = —Ap(F®X)(ATT).

Since A is anticyclotomic, this is equal to —A,(f ® x)(A). O



CHAPTER III

Computing the p-adic L-function

This section is devoted to computing the Fourier coefficients of Szg Ad¥ 4, where
A is a continuous function Z) — Q,. When flx : A /K* — Q, is a cyclotomic
logarithm, these computations will allow us to relate L, (f ® x,{x, 1) to heights of
generalized Heegner cycles. We follow the computations in [N3, 1.6]; the main added
subtlety is the transformation laws for theta series attached to Hecke characters.

Recall that for each ideal class A € Pic(Ok), we defined
4 (a(mod p")) =

H Y, E@Ba(a’a(mod p*))(2)87 " (ET (a(mod [D[p"))(Nz))
oc(z/ Dl )

For each factorization D = DD, (with the signs normalized so that D; is a discrim-

inant), we choose integers a, b, ¢, d and define

\D1|a b
e - |
N[Dlp"c |Dild

so that Wg’l) has determinant |D;|.

Lemma III.1. For W,(jyl) as above and o € (Z)|D|p*Z)™,

k
O(atmod ) ()] WE) = 12000 0 (D1 latainod ) (),

£+1
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where

7= (o) (i) 2

and Dy is the ideal of norm |Dy| in Ok and k(Dy) = 1 if Dy > 0, otherwise k(Dq) =
1.

|D1|*

Remark 111.2. Note that the factor
x(D1

is equal to +1, since y has infinity type

~

(2k,0) and D is 2-torsion in the class group.

Proof. The proof proceeds as in [PR1, §3.2], but requires some extra Fourier analysis.
We sketch the argument for the convenience of the reader. Fixing an ideal a in the
class of A, we set L = p”a and let L* be the dual lattice with the respect to the
quadratic form @, = Nm(z)/Nm(a). Denote by S = S, the symmetric bilinear form

corresponding to (g, so Sy(a, ) = Nri(a) Tr(afB). For u e L*, define

Ouy(u, L) = x(@)" > g™,
w—u€eL
weL*

For any c € Z, one checks the following relations:

(3.1) Oax(u, L) = > Ogy(w,cl),
wuéz:?fL
(3.2) O (u,cL)(c?2) = ¢ *O4, (cu, AL)(2),

and for all a € Z and w € L*,

(3.3) O (w, cL) (z n 9) —e (—Qa(w)> O (w, cL).

C

We also have

(3.4)

z_(Hl)@a,X(w,CL) <_—1) = —ic_Q[L* : L]_1/2 Z e (Sa(w,y)) Oay(y,cL)(2).

o ye(cL)*/cL
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This follows from the identity
(3.5)
41T Pl e @ulo+)2) = 175 L1 3 Plde (=2 ) (s,

el yeL* o
valid for any rank two integral quadratic space (L, Qq, Sy;) and any polynomial P of
degree ¢ which is spherical for Q,. See [Wa] for a proof of this version of Poisson
summation.

Now write

) D] 0

Wy =H
0 1

with H € SLy(Z). Exactly as in [PR1], we use the relations above to compute

Ouy(a(mod p¥))| H = y|Dy| V2 Z Z Oux(w, L)

41 uea/L wel*/L
Qa(u)=a(mod p¥) w-&-aueDflpTa

so that
v v =\ — — Qa - (w)
Oux(a(mod p))| W} = 4| Di[*x(a)™! N alq
£+l weDfla
Quprt (w)=|D1a?a(mod pT)
|D1 |k v
- my@w;l,x (|D1|a2a(modp )) (2),

as desired. O

For any function A on (Z/p*Z)*, we define hp, (\) as in [N3, 1.6.3], so that

Ly

M=o Y S e ()

J X
Zp D=D1-Ds jeZ/|D:1|Z 2\ 0 |Dy|

The Fourier coefficient computation in [N3, 1.6.5] remains valid, except one needs to

use the following proposition in place of [N3, 1.1.9]:
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Proposition IT1.3. Let f = >, _, a(n)q" be a cusp form of weight {+1 = 2k+1, and

n=1

g =250 b(n)q" a holomorphic modular form of weight one. Then H(f67 " (g)) =

2@1 c(n)q"™ with

() = CV i >, aldb() Hypovi (?_‘7:),

(r—k—l) i+j=n L+ J

where

Hoal) = g () L8~ 07— D]

Proof. From [N3, 1.1.2.4, 1.1.3.2], we have

0

= ii;wlztkl—)l' | (é:n_) ;>! 2. alibi) fo Pr-pr(dmjy)e” ™y dy,

i+j=n

S (m) (=)
= \a al
The integral is evaluated using the following lemma.

Lemma I11.4. Let m,k > 0. Then

x " + 2k)! i—J
- 47 —Am(i+7)y m+2kd _ (m Hm
L pm(4mjy)e y Y= T g gy ik {755

Proof. Evaluating the elementary integrals, we find that the left hand side is equal

to

m! G J
(47 (i + §))mr2k+1 mk i+7)"
where

& m+2k:—|—a) u

It therefore suffices to prove the identity

(3.6) Gon(t) = T2 o,

m)!
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This is proved by showing that both sides satisfy the same defining recurrence relation

(and base cases). Indeed, one can check directly that for m > 1:
(3.7)
(m+1)*(m + k) Grin(t) =
(2m + 2k + 1)[m* + m + 2km + k — (m + k)(2m + 2k + 2)t]G i (t)

— (m A+ k4 1)(m + 2k)2C1x(0).

That the right hand side of (3.6) satisfies the same recurrence relation amounts
to the well known recurrence relation for the Jacobi polynomials

pedgy = EU a4 Wﬂ%

[(1—t)*(1+8)°(1—)"].

Indeed, we have
Hyugo(t) = 2 PLR0 (01 4+ 6) 7%,

and one checks that the recurrence relation

2n+1)(n+ B+ 1)2n + BRIV (1) =
(2n + B+ D)[(2n + B+ 2)(2n + B)t — B2 PO (1)

—2n(n+ B)(2n + B+ 2)P) (1)

translates (using n = m + 2k and 8 = —2k) into the recurrence (3.7) for the polyno-

mials "2 (1 — 28). 0

m!

Finally, to prove the proposition, we simply plug in m = r—k—1 into the previous

lemma and simplify our above expression for ¢(n). O

Recall that for any ideal class A, we have defined

rax(i) = Y, x(a).

ac A
acO
N(a)=j
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Putting together Lemma III.1, Proposition 11.6, and the manipulation of symbols in
N3, 1.6.5], we obtain

(J ) S (), 3, (B3

j+nN=|Dyi|lm
(pg)=1

3 v () () (™)

(pd)
2nN
H,_;_ 1——).
) ; M( m|D1|>

Lemma III1.5.

rap;t (1) = X(D2) " rax (7| Dal)-

Proof. Since D, is 2-torsion in the class group, the left hand side equals rap, 1 (j)-
The lemma now follows from the definitions once one notes that b — bD, is a

bijection from integral ideals of norm j in AD; to integral ideals of norm j|Ds| in

AD. ]

Using the lemma and also the change of variables employed in [N3], we obtain our

version of [N3, Proposition 6.6].

Proposition II1.6. If p|m, then

an ( [ Adﬁu) - %m (55) 1P 2 ranmipl - o

r—k—1 m| D]
1<n< ™Dl
)=1

<n

(p,
2niN m|D| — nN d?
H( |D|) Al 9 ( o n_>

3 /

where e4(n,d) = 0 if (d,n/d,|D|) > 1, otherwise

ea(n, d) = (%) (_f]\i/d) (Nl()jt))’

where (d,|D|) = |Ds| and D = Dy Ds,.
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Proof. The proof is as in [N3]. We have also used the fact that x(D) = D* to get

the extra factor of | D|=* and the correct sign (recall that D is negative!). O

Corollary IIL.7. If (£) =1 and p|m, then

Al

—1)" 2nN
CL i pp Y ran(m|D| = nN)oa(n) Hy 1 <1— p D’),
(r—kz—l) 1<ng ol
=1

X
P

log,, A0 A) =

(p:n)
with
n
oa(n) = ZGA(H, d)log, (ﬁ) :
dn

Proof. As in [PR1]. O



CHAPTER IV

Generalized Heegner cycles

In the previous section we computed Fourier coefficients of p-adic modular forms
closely related to the derivative of L,(f, x) at the trivial character and in the cyclo-
tomic direction. We expect similar looking expressions to appear as the sum of local
heights of certain cycles, with the sum varying over the finite places of H which are
prime to p.

These cycles should come from the motive attached to f ® ©,. Since O, has
weight 2k + 1, work of Deligne and Scholl provides a motive inside the cohomology
of a Kuga-Sato variety which is the fiber product of 2k — 1 copies of the universal
elliptic curve over X;(|D|). Instead of using this motive, we work with a closely
related motive, which we describe now.

We fix an elliptic curve A/H with the following properties:
1. Endy(A) = Ok.

2. A has good reduction at primes above p.

3. A is isogenous to each of its Gal(H /K )-conjugates.

4. A™ =~ A, where 7 is complex conjugation.

39
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Remark TV.1. Since D is odd, we may even choose such an A with the added feature
that ¢ is an unramified Hecke character of type (2,0) (see [R]). In that case, 1%
differs from y by a character of Gal(H/K), so this is perhaps the most natural choice

of A, given x. In general, 1¥%¥x~! is a finite order Hecke character.

We will use a two-dimensional submotive of A% whose (-adic realizations are
isomorphic to those of the Deligne-Scholl motive for © (see [BDP2]).

From Property (3), A is isogenous to A% over H for each o € G := Gal(H/K).
If o corresponds to an ideal class [a] € Pic(Ok) via the Artin map, then one such
isogeny ¢, : A — A° is given by A — A/A[a], at least if a is integral. A different
choice of integral ideal a’ € [a] gives an isomorphic elliptic curve over H, and the
maps ¢, and ¢ will differ by endomorphisms of A and A°.

As in the introduction, let Y (N)/Q be the modular curve parametrizing elliptic
curves with full level N structure, and let £ — Y (N) be the universal elliptic curve
with level N structure. The canonical non-singular compactification of the (2r — 2)-

fold fiber product

) XY (N) ** XY(N) £,
will be denoted by W = W, _5 [Sc]; W is a variety over Q. The map W — X (N)
to the compactified modular curve has geometric fibers (over non-cuspidal points) of

the form E?"~2, for some elliptic curve E. We set
X =X, nr=Wpgx A%,

where Wy is the base change to H. Recall the curve Xy(N)/Q, the coarse moduli
space of generalized elliptic curves with a cyclic subgroup of order N. Xy(V) is the
quotient of X () by the action of the standard Borel subgroup B < GLy (Z/NZ) /{£1}.

The computations of the Fourier coefficients in the previous section suggest that
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we consider the following generalized Heegner cycle on X. Fix a Heegner point
y € Yo(N)(H) represented by a cyclic N-isogeny A — A’, for some elliptic curve
A'/H with CM by Ok. Such an isogeny exists since each prime dividing N splits
in K. Also let § be a closed point of Y (N)y over y. The fiber E; of the universal
elliptic curve & — Y (V) above the point ¢ is isomorphic to Ar, where F' > H is the
residue field of g. Let

ACE@XAFQAFXAF

be the diagonal, and we write I' /5 = Ej; x Ej for the graph of v/D € End(Ej) = Ok.
We define

Y =TT 78 x A% ¢ Xy = AT 2 x AT,

so that Y € CH**"(Xf). Here Xj is the fiber of the natural projection X — X (N)
above the point ¥.

Since X is not defined over Q, we need to find cycles to play the role of Gal(H/K)-
conjugates of Y. For each o € Gal(H/K) we have a corresponding ideal class A. For

each integral ideal a € A, define the cycle Y* as follows:

YO = DA (T )™ = (A% = A (A5 x Ap)™ = Xy < X

Here, Ffﬁu is the transpose of I'y,, the graph of ¢, : A — A% The cycle Y* €
CH*""(X) is not independent of the class of a in Pic(Of), but certain expressions

involving Y* will be independent of the class of a. Note that Y = YO«

Remark TV.2. Alternatively, we could have worked with a variety over K whose

complex points are

wE)x ] 40,

oeGal(H/K)

and which does have an action of Gal(H/K). In some ways this is a more natural

variety to work with (and we expect a similar height formula holds), but we found
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the height computations to be simpler on our X

4.1 Projectors

Next we define a projector ¢ € Corr®(X, X)g so that €Y® lies in the group
CH™*(Xr)o.x of homologically trivial (r 4 k)-cycles with coefficients in /K. Here,
Corr’(X, X)x is the ring of degree 0 correspondences with coefficients in K. For
definitions and conventions concerning motives, correspondences, and projectors see
[BDP2, §2].

The projector is defined as € = ex = eye,. Here, €y is the pullback to X of
the Deligne-Scholl projector €y € Q[Aut(WW')] which projects onto the subspace of
H?~Y(W) coming from modular forms of weight 2r (see e.g. [BDP1, §2]). The second
factor ¢, is the pullback to X of the projector

2
denoted by the same symbol. The projector €; € Corr’(A, A)k projects onto the 1-
dimensional Q,-subspace V, A of Hi(A,Q,) = V,A. Here, p is the prime of K above

p which is determined by our chosen embedding K@, and

VpA = (@A[pn]> ®Zp Qp

is the p-adic Tate module of A. Hence, on the p-adic realization of the motive M ¢ g,

€¢ projects onto the 1-dimensional Q,-subspace of
Hét(Aan)®2k(k) < Hgtk(A%’ Qy(k))

corresponding (after dualization and twist) to (V,A)®*. See Chapter VII and [BDP2,

§1.2] for more details.
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We also make use of the projectors

2

and ky = ¢y + €. The first projects onto V;,AW and the latter onto VpAW @ V;—,A®e.
Set € = ey €y and € = epky.

Remark IV.3. For this remark, suppose that y = 9 where v is the (1,0)-Hecke
character attached to A by the theory of complex multiplication. Recall that this
means the Gg-action on H'(A, Q,)(1) is given by the (K ® Q,)*-values Galois char-
acter ¥y = 1o Nmy k. If we write xy = %, then the motive M (xy) over H (with
coefficients in K) from Section 1.2.3 is defined by the triple (A%, ky, k).

We explain how to descend this to a motive over K with coefficients in Q(y)
(this a modification of a construction from an earlier draft of [BDP2]). Let ex and
ex be the idempotents in K ® K corresponding to the first and second projections
K®K =~ KxK — K. Foreach 0 € Gal(H/K) choose an ideal a = Ok corresponding

to o under the Artin map and define

[(0) :=ex - (¢a x -+ X ¢a) @ x(a) " € Hom (A*, (A9)7) ®g Q(x)

[(0) = éx - (da x -+ % ¢a) @ X(a) " € Hom (A", (A9)7) ®¢ Q(x)-

Since x(va) = v*x(a) and ¢, = ¢, these definitions are independent of the choice
of a. Moreover,

[(o1) =T(0)" o T'(7)

and similarly for I'. We set

A(0) = kg0 (D(0) + T(0)) o £7 € Corr® (A", (A7) )g ®g Q(x)-

Then the collection {A(0)}, gives descent data for the motive M (xp) ® Q(x), hence
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determines a motive M (x) over K with coefficients in Q(x). The p-adic realization

of M(x) is x ® X where x is now thought of as a Q(x) ® Q,-valued character of G.

Returning to the general situation, we define the sheaf £ = j,% on X(N), where
% = Sym™ (R Q) (r — 1) @ ke Hi (A7, Qp(K)),

and j : Y(N) — X(N) and f: £ — Y(N) are the natural maps.
From now on we drop the subscript ‘ét’ from all cohomology groups and set
Z=17 X Spec k OPEC k for any variety defined over a field k. We also use the notation

Vk =V ® K, for any abelian group V.
Theorem IV.4. There is a canonical isomorphism
HY(X(N), £(1)) = ¢H 71X, Q,)(r + k) = ¢H*(X, Q,)(r + k).
Proof. See [N3, 11.2.4] and [BDP1, Prop. 2.4]. O

Corollary 1V.5. The cycles €Y'® and €Y'® are homologically trivial on Xpg, i.e. they

lie in the domain of the p-adic Abel-Jacobi map
® : CH™ " (Xp)ox — H'(F, H " 1(X,Q,(r + k))).
Proof. By the theorem, €'Y® is in the kernel of the map
CH™ (X ) — H 2 (Xp, Q,(r + k),

i.e. it is homologically trivial. Moreover, € = e’ and € = €¢’. Since Abel-Jacobi maps
commute with algebraic correspondences, it follows that €¢Y* and €Y® are homologi-

cally trivial as well. O
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4.2 Bloch-Kato Selmer groups

Let F' be a finite extension of Q, (¢ a prime, possibly equal to p) and let V' be
a continuous p-adic representation of G := Gal(F/F). Recall that V is said to be
unramified if the inertia subgroup Ir < Gp acts trivially on V. If ¢ = p, then V is
crystalline if

dimp, (V ®q, Beris) " = dimg, V,

where [ is the maximal unramified extension of Q, contained in F' and B is
Fontaine’s ring of crystalline periods.

The Bloch-Kato subgroup H(F,V) c H'(F,V) is then defined to be the kernel
of

Hl(F, V) — Hl(F,V®Bcris)~

For more details and some examples, see [BK] or [N2, 1.12 and 2.1.4]. If ¢ # p (resp.
¢ = p) and V is unramified (resp. crystalline), then H(F,V) = Ext'(Q,,V) in
the category of unramified (resp. crystalline) representations of Gp. In other words,
H } (F, V) classifies isomorphism classes of extensions which are themselves unramified
(resp. crystalline). If instead F' is a number field, then H}(F, V) is defined to be the
set of classes in H'(F, V') which restrict to classes in H(F,,V') for all finite primes
v of F.

The Bloch-Kato Selmer group plays an important role in the general theory of
p-adic heights of homologically trivial algebraic cycles on a smooth projective variety
X /F defined over a number field F'. Indeed, Nekovéi’s p-adic height pairing is only
defined on H}(F V), and not on the Chow group CH?(X), of homologically trivial
cycles of codimension j. Here V = H¥~}(X,Q,(j)). This is compatible with the

Bloch-Kato conjecture [BK], which asserts (among other, much deeper statements)
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that the image of the Abel-Jacobi map
®: CH (X)y — H'(F,V)

is contained in H;(F, V). The next couple of results follow [N3, II.2] and verify this
aspect of the Bloch-Kato conjecture in our situation, allowing us to consider p-adic
heights of generalized Heegner cycles. We also give a more concrete description of
the Abel-Jacobi images of generalized Heegner cycles in terms of local systems on
the modular curve.

Denote by b(Y*®) the cohomology class of €(Y*) in the fiber X, so that b(Y®) lies
in

6/H2r+2k72 (Xg"'7@p(r k- 1))G(F’/F) o~ HO (g_g’ %)G(F/F) :

where again
B = Sym” (R f,Q,)(r — 1) ® ke H™ (A%, Q,(K)) ,

the sheaf on Y(IV). The isomorphism above follows from proper base change, Lemma
1.8 of [BDP1], and the Kunneth formula. Similarly, let b(Y®) be the class of €Y°.

For the next result, let j : Y/(N) — X (N) be the inclusion.
Theorem IV.6. Set V = H* 21X Q,(r + k)).
1. V is a crystalline representation of Gal(H,/H,) for all v|p.

2. The Abel-Jacobi images z2* = ®(eY?), z2* = ®(eY®) € H(F, V) lie in the subspace

H}(F,V).

3. The element 2%, thought of as an extension of p-adic Galois representations, can

be obtained as the pull back of

0 — H'(X(N),jxB)(1) > H (X(N) — 57, j.2)(1) — H (57, B) — 0
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by the map Q, — H° (?, 95’) sending 1 to b(Y®), and similarly for z*. In

particular, z* and z* only depend on b(Y®) and b(Y*®) respectively.
Proof. (1) follows from Faltings’ theorem [F] and the fact that X has good reduction
at primes above p. (2) is a general result due to Nekovar (Niziol also gave a proof),
see [N4, Theorem 3.1]. To apply the result one needs to know the weight-monodromy
conjecture for X (also known as the purity conjecture). But this conjecture is known
for W and A*, so it holds for X as well [N4, 3.2]. We note that (2) is ultimately a
local statement at each place v of H, and for v|p, the approach taken in the proof

of Theorem IX.10 below gives an alternate proof of this local statement. Statement

(3) can be proved exactly as in [N3, I1.2.4]. O

Definition IV.7. If F'//H is a field extension, then a Tate vector is an element in

HO(5jo, B)S¥E/E) for some yo € Y(N)(F). A Tate cycle is a formal finite sum of Tate

vectors over F'. The group of Tate cycles is denoted Z(Y (N), F).

Let 7 : X(N) — Xo(N) = X(N)/B be the quotient map, and as in [N3], define
ep = (#B)' Xep g, which acts on X(N) and its cohomology. Set & = (m.%)",
a(Y®) = egb(Y*), and a(Y?) = egb(Y*). We define the group Z(Yy(N), F) of Tate
cycles on Yy(N) exactly as for Y(N), but with 2 replaced by <. Let jo : Yo(N) —
Xo(N) be the inclusion. Note that a(Y®) is an element of Z(Y(N), H), not just
Z(Y(N),F).

Proposition IV.8. The element

D(epeY®) e H' (H H' (W (jo)*sz%) (1)> :

thought of as an extension of p-adic Galois representations, can be obtained as the

pull back of

0— H' (Xo(N), jos? ) (1) = H' (Xo(N) = 77 jus? ) (1) = H(5", /) = 0
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by the map Q, — H°(y°, ) sending 1 to a(Y*). In particular, ®(epeY®) only

depends on a(Y*®). Similarly, ®(epeY®) depends only on a(Y*®).

In fact, for any field F//H one can define a map
Cr : Z(Yo(N), F) — H'(F, H'(Xo(N), jo/)(1)),

by pulling back the appropriate exact sequence as above. We then have ®(egeY®) =

Or(a(Y?)) and P(epeY®) = ¢p(aY®). For more detail, see [N3, 11.2.6].

4.3 Hecke operators

The Hecke operators on Wy, 5 from [N3] pull back to give Hecke operators T,
on X. The T, are correspondences on X; they act on Chow groups and cohomol-
ogy groups and commute with Abel-Jacobi maps. To describe the action of the
Hecke algebra T on Tate vectors, we need to say what T, does to an element of
H(go, 7 )¢F/T) for an arbitrary point yo € Xo(N)(F), F an extension of H. Such
an element is represented by a triple (E,C,b) where E is an elliptic curve, C is a

subgroup of order N, and
be Sym”(H'(E,Qp))(r — 1) ® ke H™ (A, Q,) (k).
As the Hecke operators are defined via base change from those on Ws,_5, we have:

T(E,C.0) = > (B, ANC), (X" x id). (b)),
NE—>E'
deg(A)=m

where we are using the map \* x id : B x A* — B x A’
Now set Va0 = ege'V = H (Xo(N), (jo)«=)(1), a subrepresentation of V. Then
2% 1= ®(epeY®) lands in the Bloch-Kato subspace H(H,V,a¢) © H'(H,V, ay), by

Proposition IV.6. For any newform f € Sy (I'o(N)), we let V4, be the f-isotypic
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component of V, 4, with respect to the action of T. By this, we mean

Viae = V;®q,p) kel (A, Qp(k))a, ),
where V; < V; 4 is the Galois representation (with coefficients in the p-adic field

Q,(f)) attached to f (see e.g. [N3, 11.2.11]).

Consider the f-isotypic Abel-Jacobi map
Oy CH ™ (X)ox — H{(H,Vya0),

and set 2§ = @y(epeY?) and 2} = ®(epeY™).
As is shown in Chapter VII, the p-adic representation V} 4, is ordinary and sat-

isfies Vi a0 = V{4 ,(1). The results of [N2] therefore give a symmetric pairing

(e Hi(H, Viag) x Hy(H, Viae) = Qp(f),

depending on a choice of logarithm ¢y : AY;/H* — Q, and the canonical splitting
of the local Hodge filtrations at places v of H above p. We will always assume
(g = lg o Nmp i for some lg : A /K* — Qp, which explains the notation above.
We sometimes omit the dependence on fk in the notation, if a choice has been

fixed. If a,b € Z(Yo(N), F) are two Tate cycles, then we will write {a,b), for
(®r(a), ®r(b)),, -

4.4 Properties of generalized Heegner cycles

Here we collect some facts about generalized Heegner cycles and their correspond-
ing cohomology classes. We first recall the intersection theory on products of elliptic
curves; see [N3, 11.3] for proofs.

Let E, E’, E” be elliptic curves over an algbraically closed field k of characteristic

not p, and set

n

H'(Y) = Hy (Y, Q) = (l@ H, (Y, Z/p”Z)> ®z, Qp
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for any variety Y /k. A pair (a, 8) of isogenies &« € Hom(E”, F) and 8 € Hom(E", E'),
determines a cycle

o = (a, 8)«(1) € CHY(E x E),

where (a, 8), : CH°(E") — CH'(E x E') is the push forward. The image of T, 4
under the cycle class map CH'(E x E') — H%(E x E')(1) will be denoted by [, ].

Also let X, 5 be the projection of [T, 5] to H'(E) @ H'(E')(1), i.e.

Xap = [Tap] — deg(a)h — deg(B)v,

where h is the horizontal class [I'1o] and v is the vertical class [['g1]. If a €
Hom(E, E'), we write I, and X, for I'y , and X ,, respectively. If 5 € Hom(£', E)

we write I'y and X} for T'g; and Xp ), respectively. Finally, let
(,): H*(E x E')(1) x H*(E x E')(1) - Q,,
be the non-degenerate cup product pairing.

Proposition IV.9. With notation as above,

1. The map

Hom(E",E) x Hom(E",E") — H(E)® H'(E')(1)
given by (o, B) — X, is biadditive.

2. The map Hom(E,E') — HY(E) x H'(E')(1) given by a — X, is an injective

group homomorphism.
3. If E=F', then Xo5 = Xga and (Xo, X5) = —Tr(af) for all o, f € End(E).

Here, Tr : End(F) — Z is the map a — a + Q.
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It is convenient to think of H'(FE) as V,E* = Hom(V,E,Q,), where V,E = T,F®
Qy is the p-adic Tate module. The Weil pairing
VoE x VE — Q1)

gives identifications V, E*(1) = V, E and A\*V,E = Q,(1). We then have the follow-

ing diagram of isomorphisms

(ME®V,E) (1) —— (Sym’V,E@ A*V,E) (-1) —— Sym’V,E(-1) ®Q,

l |
V,E*QV,E —— End(V, E) —— Endo(V,E)®Q,
One checks that § identifies Sym®V,, E(—1) with the space Endy(V,E) of traceless

endomorphisms of V,E/. Now suppose that E has complex multiplication by O and
that p = pp splits in K. Then

VWE=WEOVE,
where V, = lim E[p"] ® Q, and V; = lim E[p"] ® Q,. Let z* and y* be a basis
for V,E and Vi E respectively, and let z,y be the dual basis of H'(E) arising from
the Weil pairing. Since the Weil pairing is non-degenerate, we may assume that
e(z*,y*) = 1€ Q,.

If « € End(F), then the class X, € H'(F) ® H'(E)(1), when thought of as an
element of End(V,E) via the isomorphisms above, is simply the map Vo : V,E —
V,E induced on Tate modules. Thus, X; = ANz ®y — y ® x) for some A € Q,.
Recall that one can compute the intersection pairing on H'(E)®? in terms of the cup
product on H*(E):

(a®b,c®d) =—(avuc)bud).

Since (X1, X;) = —2, we conclude that A = 1. Next we claim that

(4.1) X/5=+VDr®y+y®u).
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To prove this, it suffices to show that V/D acts on Vi by v/D and on Vs by —+/D.

Indeed, under the identifications
HYE)® H'(E)(1) = V,E*®@ V,E*(1) = V,E* ® V,E =~ End(V, E),

x®y corresponds to the element f € End(V},) such that f(az* + by*) = az* whereas
y ® x corresponds to ¢g € End(V,) such that g(az* + by*) = —by*.

To understand how V+/D acts on Ve, write p" = p"Z + %EZ for some b,c € Z
such that b*> — 4p"c = D, which is possible because p splits in K. For P € E[p"], one
has (b++/D)(P) = 0, so v/D(P) = —bP. Since b = ++/D (mod p"), it follows upon
taking a limit that (Vv/D)(z*) = +v/Dx*. Since we can write p* = p"Z + %BZ,

we also have (V+/D)(y*) = F+/Dy*, and this proves the claim. Hence
Xy =1 ®y) - y®x) e H(E)® H'(E)(1),

for all v € Ox — End(FE).
Finally, note that the projector ¢; € Corr’(E, E)x defined earlier acts on H'(F)

as projection onto Vj.

Proposition IV.10. Let a < Ok be an ideal and A € Pic(Ok) its ideal class. Then

the elements

in Hi(H,Vya4)g, depend only on A € Pic(Ok).

Proof. To prove the proposition for 27 , we wish to relate z§ to z;h) for some v € Ok
and some integral ideal a. The contribution to z§ from one of the “generalized”
components I, < A% x Ais eXy, 1, where X4 1 € H'(A*,Q,) ® H'(A,Q,) is the
class of

Iy, — deg(¢a)h —v e CH'(A® x A),
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as above. Let z,y be a basis of H'(A,Q,) such that
Xy =@ ®y) —1(y®z) e H(A,Q,) @ H'(4,Q,),

for all v € Ok. Let x4, y, be the basis of H*(A®% Q,) corresponding to z,y under the

isomorphism ¢¥ : H'(A®, Q,) — H'(A,Q,). One checks that

(¢a x 1d)*(Xg,1) = deg(¢a) X1

and so
Xpo1 = deg(da) (7 ®Y — Yo ® ) -
Similarly,

Xd)a('y)»l = Xypa1 = deg(da) (V(2a ®Y) — V(e @ 7)) -

Since the projector € kills y, we find that eX, 4,1 = 7€X4,1. In the components
which come purely from the Kuga-Sato variety W,_s, the two cycles Y* and Y0
are identical — they both have the form eF:/_Ek_l. Taking the tensor product of the

¢ “generalized” components and the » — k — 1 Kuga-Sato components, we conclude

that

;(7) _ ’}/ZZ;,

as desired. The proof for Z}L}X is similar: since z} is defined using € instead of €, the

extra factor of 4* which pops out is accounted for by the factor y(a)~!. O

Lemma IV.11. For any ideal classes A, B,C € Pic(Ok), we have

<fo7 fo> <Zf X’ fo

Proof. 1t suffices to prove <fo> Zf,>‘<> = <zﬁx, fo> for all A, B € Pic(Ok). Equiva-

lently, we must show

(4.2) Nm(a)* <Z?K, Z?> = (2}, 2;1“
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for all integral ideals a and b. Let o € Gal(K/K) restrict to an element of Gal(H/K)
which corresponds to a under the Artin map. Consider the homomorphisms of Chow
groups

o: CH*(W x A)x — CH*(W x (A%))g
and
€= (id x ¢)* : CH*(W x (A%)7)c — CH*(W x A”).

After identifying A° with A% one checks that (£ o 0)(Y") = Y. Indeed, since a
and b are integral, the graph of ¢ : A7 — (A®)? can be identified with the graph
of the projection map ¢ : A/A[a] — A/A[ab] (first note the two isogenies have the
same kernel and then use the main theorem of complex multiplication). The latter
is pulled back to T'y,, by (id x ¢4)*. It follows that (£ o 0)(Y®) = Y, and the
identity therefore holds for the corresponding cohomology classes. On cohomology,
o and & are isomorphisms, so (4.2) follows from the functoriality of p-adic heights
N2, Theorem 4.11]. We are using the fact that <gz§fl>* is adjoint to (gbﬁ)* under the

pairing given by Poincaré duality, and that deg ¢, = Nm(a). O]

The goal now is to compute (zf,, zf ), Where

1 1
A A
x =3 E 25, and  zpg=— 255

AePic(Ok) AePic(Ok)

Here, we have extended the p-adic height @p—linearly.
Let 7 € Gal(H /Q) be a lift of the generator of Gal(K/Q). As A and W are defined

over R, 7 acts on X = W x A’ and its cohomology.
Lemma IV.12. Let n € Ok be the ideal of norm N corresponding to the Heegner

point y € Xo(N), and let (—1)"¢s be the sign of the functional equation for L(f,s).

Then
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and
_ —1
() = (1) e ()N F2 T

Proof. Let W(N) be the Kuga-Sato variety over Xo(N), i.e. the quotient of W by
the action of the Borel subgroup B. Recall the map Wy : Wo — Wo which sends a
point P € E’ in the fiber above a diagram ¢ : E — E/E[n] to the point ¢’(P) in the
fiber above the diagram ¢ : E/E[n] — E/E[N]. Meanwhile, complex conjugation
sends the Heegner point A* — A%/A%n] to the Heegner point A* — A®/A%[n]. Thus

on a generalized component of our cycle, we have
(WN x id>*(X¢af-71) = NX(i’a,l = NT(X%J)’

where these objects are thought of as Chow cycles on X which are supported on the

fiber of X above (¢)?". Since 7 takes V,A to VA, we even have
(WN X id)*(EIXanﬁ,l) = N€1X¢)a’1 = NT(Ele)u’l).
On the purely Kuga-Sato components, one computes [N1, 6.2]

W;\}(X\/B) = NX\/B = *N’T(X\/E),

~Frob(an) yFrob ~Frob(a

where the X /5 in the equation above are supported on y , and y

respectively.

On the other hand, (Wy x id)? = [N] x id, where [N] : W3 _, — W3 _, is
multiplication by N in each fiber. On cycles and cohomology, [N] x id acts as
multiplication by N?"~2. Since Wy commutes with the Hecke operators, we see that
(Wy x id) acts as multiplication by £N""! on the f-isotypic part of cohomology,

and this sign is well known to equal €;. Putting things together, we obtain

(_1)r—k—l(WN % ld)*(zjﬁcﬁ) _ (_1)r—k—l€f2]ﬁcﬁ

T(Z;) - N2k+r—k—1 - Nk ?
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from which the first identity in the lemma follows. The proof of the second identity

is entirely analogous. O
Theorem IV.13. If (x : A}, /K* — Q, is anticyclotomic, i.e. {xoT|x = —lk, then
G Zrx)te = 0-

In particular, Theorem 1.7 holds for such (k.

Proof. From the previous lemma we have

T(zpy) = (=1) " lepx (N 25

and
T(zx) = (1) ()N zpy
Thus
Croo 21000 = T TEE D tcor = Fro 2000 0 = — Foo 2700 »
which proves the vanishing. Theorem 1.7 now follows from Corollary II.6. O

Since any logarithm ¢y can be decomposed into a sum of a cyclotomic and an
anticyclotomic logarithm, it now suffices to prove Theorem 1.7 for cyclotomic /, i.e.
we may assume (g = (g o 7|. By Lemma IV.11 we have

1
(@] A
(4.3) Zixo 2550 = {Zpms2tx) = 7 PR CIR Y
AEPIC(OK)

The height (,) can be written as a sum of local heights:

(@, y) =Y (& Y,

where v varies over the finite places of H. These local heights are defined in general

in [N2] and computed explicitly for cyclotomic ¢ in [N3, Proposition I1.2.16] in a



o7

situation similar to ours. In the next chapter we recall the definition of the local
heights, and in the following chapter we compute the local heights (z, z;f&% for
finite places v of H not dividing p. The contribution from local heights at places v|p

will be treated in Chapter IX.



CHAPTER V

p-adic height pairings

5.1 Definition of local height pairings

In this section we recall the definition of the local p-adic heights pairings, at least
in the cases that will concern us later. For more details, see [N2, §4] and [N3, II.1].

Let F' 5 H be a number field and set V = HZ 2*"*(X Q,(r +k)), thought of as a
representation of G := Gal(F'/F). By Poincaré duality, we have V = V*(1). We will
recall the definition of heights for the representation V'; heights for the representation
Vi ae (which, after enlarging the coefficient field a bit, is a subrepresentation) are
defined similarly.

To define Nekovai’s global bilinear p-adic height pairing
Gy H}(F, V) x H}(F, V) —Q,
one needs two pieces of data:

e A continuous homomoprhism ¢ : AL /F* — Q,, which we choose to view as

collection of maps ¢, : F, — Q, satisfying >, ¢,(a) =0 for a € F'*.

e For each place v|p of F, a Q,-linear splitting of the Hodge filtration

0 — F'DR(V,) — DR(V,) — DR(V,)/F° — 0,

58
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where V,, is the restriction of V' to a representation of G, , and

DR(V,) = (V ®q, Bar)

By [F], we have an identification
DR(V,) = Hitt* Y (X ®r F,/F,),

under which the filtration F*DR(V,) on DR(V,) (coming from the grading on Bgg)
is identified with the usual Hodge filtration (up to twist).

This pairing decomposes into a sum of local pairings, one for each finite place of
F:

<v>:Z<7>v'

More precisely, suppose a,b e H }(F , V') are Selmer classes. The class a corresponds

to an extension

O—>V—>Ea—>Qp—>O’

and dualizing the extension corresponding to b, we get
0—Qy(1) - E;(1) -V —0.

As a consequence of the fact that Hj(F,, V) annihilates H}(F,, V*(1)) via local

duality, one may choose a “mixed extension” E fitting in the commutative diagram
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0 0
0 — Q,(1) —— Ej(1) V 0
0 — Q1) — E E, 0
h
Qp —_— Qp
0 0,

This choice of E is not unique, but we fix one such E (which we stress is a
representation of Gr). The local height pairings to be defined depend on this choice
of global mixed extension. However, the global pairing (i.e. the sum of the local

pairings) will be independent of the choice of E.
Proposition V.1. If v does not divide p, then H'(F,,V) = 0.

Proof. This is an easy application of local duality and the local Euler characteristic
formula, once we know that H°(F,, V) = 0. If X has good reduction at v, the latter
follows from the Riemann hypothesis over finite fields, proved by Deligne. In general,
this follows from the weight-monodromy conjecture of Deligne, see e.g. [J, Corollary
4.3].  As mentioned earlier, this conjecture is known for Kuga-Sato and abelian
varieties and is stable under products, so it holds for our generalized Kuga-Sato X

as well. O

If v is a place of F' not dividing p, then by the previous proposition, the restriction
of the class [E,] to H;(F,,V) is trivial. Hence, if we consider the diagram above
in the category of G, -representations, we may choose a splitting s : Q, — £, of

the map h. Pulling back the middle row of the diagram by s, gives a short exact
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sequence

of Gp,-representations, i.e. a class in H'(F,,Q,(1)) =~ FX®Q,. The local height at

v 1s then defined to be
<a7 b>v = Ev([Uv])~

If v is a place of F' above p, then we will define the local height at v under the
assumption that the mixed extension F is crystalline at v. In general one does not
expect to E to be crystalline, even if (as in our situation) V, E, and E, are all
crystalline. But this will turn out to be enough for our purposes. First we consider

the exact sequence
0 — Hi(F,,Q,(1)) > H(F,, Ef(1)) — H}(F,,V) — 0,

obtained from the top row in the mixed extension diagram above. On the other
hand, our choice of splitting of the Hodge filtration at v gives rise to a splitting
ro + Hi(Fy, Ef(1)) — Hj(F,,Qy(1)) of the map j above. We refer to [N2] for
more details on this splitting; its definition is actually not important to us, only its
existence. Since FE, (the restriction of F to a Gp,-representation) is crystalline, it
determines a class [E,] in H;(F,, Ef(1)), coming from the short exact sequence in
the central column in the mixed extension diagram. The local height pairing at v is

then defined to be

<CL, b>v = gv(rv([EvD)a

where we are thinking of r, as landing in

Hj(F,, Qy(1)) = O5,0Q, « Fy®Q,.
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5.2 Mixed extensions attached to algebraic cycles

Now we consider the case where a and b are images of homologically trivial alge-
braic cycles under the p-adic Abel-Jacobi map. In this case, there is a natural choice
for the global mixed extension F. For more details see [N2, §5].

We first recall a definition of the p-adic Abel-Jacobi map
d : CH* ™ 1(X)y — HY(F,V).

Suppose a = ®([Y]), for some homologically trivial cycle Y representing a class in
CH? 271 X)y. We write |Y| for the (geometric) support of Y, and assume that |Y|

is smooth for simplicity. Then the Gysin long exact sequence reads

r - v \/ r ¥ cl r \
0=V — HZ X —|Y],Qpr4k) — Hg (X, Qpr+k)) = HEH(X, Qpr+k)).

Note that H|2}§|+2k()_(, Q,(r+k)) =~ H°(|Y],Q,) and the map cl is the usual cycle class

map. Since Y is homologically trivial, we can pull back this sequence along the map

Q, — H‘QY’T%(X, Qp(r + k)) which sends 1 to the class of Y. We get

00—V — E, - Q - 0

| | | l

0=V - HéthHT_l(X — Y, Qy(r + k) — H(Y],Q,) — HgtkHT(Xa@p(T +k)),
and ®([Y]) = [E.] = a. Thus, we may realize F, as a subspace of

HE X = Y], Qp(r + K))-
Dually, if b = ®([Z]), then we may realize E, as a quotient of
H Y (X rel | Z), Qu(r + k).

Here we are using relative cohomology, which in this case is simply cohomology with
compact support along |Z].

Now assume that Y and Z are disjoint.
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Remark V.2. If we start only with the classes [Y] and [Z], then we may use the
moving lemma to arrange for Y and Z to be disjoint. However, in our height com-
putations we do not want to use the moving lemma because we need a very explicit

description of the cycles.

Using the Gysin sequence again (this time for the variety X — |Y| relative to the
subscheme |Z]), one can check that we may choose the mixed extension E to be a

subquotient of cohomology with partial compact support along the boundary:
HZP2 X — |V el | Z], Qu(r + K)).

Similarly, suppose the classes a,b € H}(F, V') are images of Tate cycles a/, b €
Z(Yo(N), F) (recall these were introduced in Chapter 4.2), and suppose a’ and b’
are supported on finite disjoint sets of points S,T < Xy(/N). Then to compute
(Pr(a"), (b)), we may use use a mixed extension coming from the cohomology of
Xo(N) with coefficients in the local system .27 from the previous chapter. Specifically,

we may choose E to be a subquotient of the representation
Helt(XO(N) — g rel T,jo*%)(l)

Finally, we remark that these constructions work integrally as well, i.e. we can
work with Z,-coefficients instead of Q,-coefficients. One subtlety in the integral
setting is that a cycle might be homologically trivial when we use Q,-coefficients
only because its cycle class in H2"**(X,Z,(r + k)) is torsion (but possibly non-
zero). Therefore, naively copying the definition of the Abel-Jacobi map in the integral
setting does not quite work. Instead, one can apply the Abel-Jacobi map to a multiple
of the cycle (killing the torsion), and then proceed as before.

The point in working integrally is that then one can hope to show that {a,b), =

Cy(ry([Ey])) with 7, ([E,]) an element of OF & Z,, (which is just the pro-p part of O3, )
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instead of O ®Q,. When we take into account the torsion subtlety from before, we
get an element of p*”OEJ@ Z,, for some n which is independent of the cycle chosen.
This will eventually allow us to measure how divisible by p the quantity {a,b), is.

For the definitions in the integral setting and for more details, see [N3, I1.1.9].



CHAPTER VI

Local p-adic heights at primes away from p

Our ultimate goal is to compute (z, z]“f}>2> e when (g : A /K* — Q, is cyclo-
tomic, i.e. £ o7 = fk. Since such a homomorphism is unique up to scaling, we
may assume that (g = log, o), where A : G(Ky/K) — 1 + pZ, is the cyclotomic
character and log, is Iwasawa’s p-adic logarithm. We may write A = Ao N, where
A Zy — 1+ pZ, is given by Az) = (z)~!. Here, (z) = zw ' (z), where w is the
Teichmuller character.

We maintain the following notations and assumptions for the rest of this section.
Fix an ideal class A and an integer m > 1, and suppose that there are no integral
ideals in A of norm m, i.e. r4(m) = 0. Choose an integral representative a € A
and let 0 € Gal(H/K) correspond to A under the Artin map. Write z = a(Y) and
z* = a(Y") for the two Tate vectors supported at the points y and y? in Xo(N)(H),
as in Proposition IV.8. Let v be a finite place of H not dividing p and set F' = H,.
Write A for the ring of integers in ™", the maximal unramified extension of F', and
let F = IF; be the residue field of A. Write X,(N) — Spec Z for the integral model of
Xo(NN) constructed in [KM], and let X ;(N)a be the base change to Spec A. Finally,
write i : Yo(IV) xg F™ < X(N)a for the inclusion.

Now suppose a,b are elements of Z(Yy(N), F"™) supported at points y, # y, of

65
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Xo(N)(F) of good reduction. Let y and y, be the Zariski closure of the points
Yo and y, in X (N)x and let a and b be extensions of a and b to Ho(ga,i*sz%) and
H° (gb, i+ ) respectively. If Y, and Y, have common special fiber z (so z corresponds

to an elliptic curve E/F), then define

(a,0)0 = (y, - y,)= (., b.),

where (ga : yb)z is the usual local intersection number on the arithmetic surface

Xo(N)a and (a,,b,) is the intersection pairing on the cohomology of E* =2 x Af,

2,0,
where Ap is the reduction of Ap.

Remark VI.1. Note that while A may not have good reduction at v, it has potential
good reduction. We can therefore identify HZ (Ar, Q,) and HE (Ap,Q,) as vector
spaces, but not as Gal(F/F)-representations. Since the ensuing intersection theoretic
computations can be performed over an algebraic closure, this is enough for our

purposes.

Our assumption that r4(m) = 0 implies that the Tate vectors « and T,,z% have
disjoint support. The goal of this chapter is to compute {z, T,,z%), explicitly. Since
the two Tate vectors have disjoint support, we may used the natural choice of mixed
extension E (discussed in Chapter 5.2) in order to perform these calculations. By
[ST], we may assume that these cycles are supported at points of Xy(/N)a which are
represented by elliptic curves with good reduction. The following proposition gives
a way to compute the local heights purely in terms of Tate cycles. This technique of
computing heights of cycles on higher dimensional varieties using a local system on
a curve is the key to the entire computation. The idea goes back to work of Deligne,

Beilinson, Brylinski, and Scholl, among others.



67

Proposition VI1.2. With notation and assumptions as above, we have
(6.1) (x,T,z%), = — (z,T,,z%), logp(Nv),

Proof. The proof is exactly as in [N3, 11.2.16 and I1.4.5]. In our case, one uses that

H?*(X,(N), i, (1)) = 0. This follows from the fact that if
o' = (mSym® (R £,Q,)(r —1))”

then o/ = &/’ ® W, where W is a trivial two-dimensional local system, and

H*(X,(N), i) = 0 [KM, 14.5.5.1]. 0

Recall that over A, the sections y and y” correspond to cyclic isogenies of degree
N. We will confuse the two notions, so that the notation Homu(y?,y) makes sense.

See [N3] and [C1] for details.

Proposition VI.3. Suppose v is a finite prime of H not divisible by p. If m > 1 is
prime to N and satisfies r 4(m) = 0, then
r k—1 Rr—k 1 (14 Rr—k—1 (14
(@, Tz, 212( e(XE e XS e (X9 @ X ))
n=1 g
where the sum is over g € Homp - (y?,y) of degree m. The intersection pairing on
the right takes place in the cohomology of E* =2 x A%, where E =~ Ay is the elliptic

curve over F corresponding to the special fiber Y, of y.

Proof. The proof builds on that of [N3, 11.4.12], so we only mention what is new to
our setting. We write m as m = mgq" where ¢ is the rational prime below v (this is
what Nekovér calls ). In the notation of [N3], we need to compute the special fiber
of z§(j), where g € HomA(g",gg) is an isogeny of degree mg. There is no harm in

assuming r = k + 1, because the description of the purely Kuga-Sato components
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of zg(j) (i.e. coming from factors of the cycle Y'* of the form I' 5 < E® x E?) is
handled in [N3].

Assume now that ¢ is inert in K and ¢ is even. In this case the special fiber (y),
is supersingular, and the special fiber (gg)s of the Tate vector is represented by the
pair

(wee (X))

This follows from the definition of the Hecke operators and the following fact: if

g: E — E'is an isogeny and ¢ : A — E is an isogeny, then
(g xid), (T) =T%, € CH'(E" x A).

Since any isogeny h € Homy /rn (g‘;, y) of degree ¢' on the special fiber Yy, = (gg) is
of the form ¢'/?hg, with hg of degree 1, we find that, assuming y and QZ (7) intersect,

(22

o = 4 = 4 = 0 — Y
()0 (XFhnn)) = (0 (Kirngn)) = (1 (560 = (7 (3555))

as desired. The proof when ¢ is odd or when ¢ is ramified is similar. If ¢ is split in

(7))s is represented by

K, then both sides of the equation are 0, as is shown in [GZ]. ]

When v lies over a non-split prime, Enda/x(y) = End(E) is an order R in a
quaternion algebra B and we can make the double sum on the right hand side more
explicit. To do this, we follow [GZ] and identify Homy (3, y) with Ra by sending a
map g to b = g¢p,. The reduction of endomorphisms induces an embedding K — B,
which in turn determines a canonical decomposition B = K @ Kj. Thus every b € B
can be written as b = a + 7 with o, 8 € K. Recall also that the reduced norm on

B is additive with respect to this decomposition, i.e. N(b) = N(«) + N(57).
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Proposition VI1.4. If gp, = b=« + fj € End(E), then

e (4D) k1 2N(5j)
% 1 ®X?e)> = W&%Hrkl,k (1 — N(b; > :

(X750 ® X), e(X

where

Hosl®) = gy () 1= D=1

Proof. Recall from Chapter 4.4 that we have chosen a basis 2*, y* of V,E/, and a dual
basis z, y of H'(E) such that 2* € V,E, y* € VzE, and (z*,y*) = 1. We have already
seen that X, = ar ® y — ay ® x. Since vj = j7 for all v € K, Vj (the map induced

by j on V,E) swaps V,E and V5E. So we can write

for some u,v € Q, such that uv = N(j) = —j2. It follows that
Xp=ax®y—ay®z+ fuy @y — frr @ x.

Next note that gv/Dg~' = bv/Db~'. We write bv/Db~' = ~ + §j, so that v =

%(N(&) —N(p5j)) and 0 = ’1\212?)5046. Thus X, /5,1 already lies in Sym’H'(E),

=

and hence (working now in the symmetric algebra)

2v/D

W(@x — Buy)(ay + Box),

€X, ypg-1 = 272y + Suy? — dva? =

since € acts as Scholl’s projector ey on the purely Kuga-Sato components.
The cohomology classes X7 in the statement of the proposition are on ‘mixed’
components, i.e. they live in H'(E) ® H'(E'), where E comes from a Kuga-Sato
component and E’ (which is abstractly isomorphic to E) comes from the factor A*.

Thus

X;=az®y —ay®a — Buy @y + frr @/,
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and €Xj = (az — fuy)y’, since € acts trivially on H'(E) and kills the basis vector 2’
in H'(E’). Using these observations together with the compatibility of the projectors

with the multiplication in the appropriate symmetric algebras, we compute

< (Xr E—1 ®X®Z) e(X%_k_l@)X?e))

_ ((Q’yscy v duy? — 622 Lax — Buy)® @ y**, (2v/Day) F" 1y2k®x/2k)

AD r—k—1 B

_ (N(b)> (y/%7 :L’/Qk) (( ﬁuy)”rk_l(ozy + Bvx)r—k—17xr—k—1yr+k—1>
AD r—k—1

_ <N(b)> (y/Qk;, CL,/2k)(yr—k—ler+k;—17l,r—k—lyrﬂc—l) .C

4D r—k—1

- N b( 7’—k)—1 2r—2 -G,

( ) (rfkfl)
where C is the coefficient of the monomial y"~*~'2"+*=1 in

(6 — Buy)™*ay + Boxy 1.

The pairings in the second to last line are the natural ones on Sym?* H'(E’) and
Sym* ~2H'(E) induced from the pairings on the full tensor algebras. For example,

Sym* 2 H'(E) has a natural pairing coming from the cup product (, ) on H'(E):

2r—2

2 _2 2 H/UleO"L

0€So,_o 1=1

(V1 ® - ®Ugr_g) X (W ® -+ ®War_g) —

In particular, (z%°, 2°y?) = 0 unless a = d and b = ¢, and

1
ab apabl fa+b
(Iy’yx)_(a—i-b)!_(a

We have also used that on Sym* ?H'(E) ® Sym** H'(E’) we have

(L®u,w® z) = (u,w)(v, 2).

To compute the value of C, note that in general, the coefficient of 22 in

(az + b)™ "% (cx + d)™
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is equal to a**(ad — bc)™ H,y, 1, (222). This is proved using the method of [Z, 3.3.3].

Applying this to the situation at hand, we find that

C=a**NOb)" " *'H,_ ;14 (1 - 21;%7 )) :

Plugging this in, we obtain the desired expression for the pairing on the special

fiber. O
For each prime ¢, define (z, T;,2%)q = 35,,(x, T;nZ")y.

Proposition VI.5. Assume that (m,N) =1, r4(m) = 0. Then

X(@)7 Y @ T =

q#p

(4|D|m)r_k_1 2nN
— UQW Z UA(”)TA,X (m|D] —nN) Hy 51— W ,

r—k—1 m|D|

0<"<T

with o 4(n) defined as in Corollary I11.7.

Proof. This type of sum arises from Proposition VI.3 exactly as in [N3, I1.4.17] and
[GZ], so we omit the details. The main new feature here is that each b = a+ (j € Ra
of degree m is weighted by a*, by the previous proposition. Thus the numbers 7 4(5),
with j = m|D| — nN, and which in [N3, I1.4.17] are simply counting the number of
such b, become non-trivial sums of the form

> al

ccOk
[(]=A"'D
Nin(e)=j

Here, a € 97 'a and ¢ = (a)da™! (see [GZ, p. 265]). Rewriting this sum, we obtain

o1y x(@) o _ x(a) x@ o
Z Y(cad™!) = <. 2 x(c) = == Z x(e) = =57 rax(d)-
CCOK X D) CCOK Dk CCOK Dk
[(]=A"ID [c]=A"1D [c]=A
Nm(c)=j Nm(c)=j Nm(c)=j
Multiplying by x(a)™!, we get the desired result. O
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We define
=
b 2nN
Bgl _ mr k—1 nz_ll T.A,X(m’D‘ — nN)O'A(n)Hr_k_]_,k <1 — m‘D’)
(pn)=1
o
2nN
C:n _ mrfkfl nzl T‘ij(m|D‘ — nN)aA(n)HT,k,Lk (1 — W)

Up to a constant, the B, appear as coefficients of the derivative of the p-adic L-
function defined earlier (this will follow from Corollary II1.7) and C¢, contributes to
the height of our generalized Heegner cycle, as we have just seen. Just as in [N3,
1.6.7], we wish to relate the BY, to the C7,.

Let U, be the operator defined by C7, — C7, and similarly for By,. For a prime

p of K above p, we write g, for Frob(p) € Gal(H/K). We will also let o, be the

operator C%, — Cp,".

Proposition VI.6. Suppose p > 2 is a prime which splits in K and that x is an

unramified Hecke character of K of infinity type (¢,0) with { = 2k. Then

H (Up - pr_k_IX(ﬁ)Upf Co = (U;,l — p%_QU;) By
plp

Proof. The proof follows [PR1, Proposition 3.20], which is the case r = 1 and ¢ =
k = 0. We first generalize [PR1, Lemma 3.11] and write down relations between the

various 7.4, (—).

Lemma VL7. Set ry. (t) =0 if t € Q\N. For all integers m > 0, we have
17 a5 (mp) + 1 ax(m/p) = X(P)7ap,x (1) + X ()75, ().
2. 1 ax(mp?) + p*ra (m/p®) = X(P*)7ap2.5 (1) + X ()7 452, (1) if Pl
3. 7 ax(mp®) = pray(m) = x(pP)rap (M) + X(0*)7 452, (m) if (p,m) = 1.

4. If n = nop" with p | ng, then o4(n) = (t+ 1)oat(no), where ous = o apt = 0 4pt.
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5. 0 402(n) = o4(n) for any ideal b.

Proof. Note that every integral ideal a in A of norm mp is either of the form a’p with
a’ € Ap of norm m or it is of the form a’p with a’ € Ap of norm m. Moreover, an
ideal of norm mp which can be written as such a product in two ways is necessarily
the product of an integral ideal in A of norm m/p with (p). The first claim now

follows from the fact that

rax(t) =, x(a),
acO
ac A
N(a)=t
and that x((p)) = p’. Parts (2) and (3) follow formally from (1). (4) is proven in

[PR1] and (5) is clear from the definition. O

Going back to the proof of Proposition VI.6, the left hand side is equal to

Copn =201 (X(B)Coah + X(R)Cih )
+ p? Y (X(ﬁ)QCUUf +4p'Cy e + X(P)CUW)

mp mp?

— 2pP TR (X (B)Cotr + X (p)Co) + 'V CY

In the following we write v(p) for the p-adic valuation of an integer n, and n = nop*®.
For the sake of brevity we also set r4(u,v) = 7.4, (u|D|—vN) for integers u and v and
H(z) = Hy——1(x). Then by repeated usage of the previous lemma, the expression
above is equal to

m|D|/N

>, () + 1)(mp*) 1 M(n),

n=1
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where M (n) equals

2nN
* v(n Hl1l—- ——
rA(mp”, n)0 Aum)(10) D)

2nN
= 2[ra(mp’,pn) + p'ra (mp*,n/p) | o441 (n0) H <1 B W>

p*ra(m,n/p*) + 4p'r a(mp?,n) if pln

+ TA(mp47p2n> + X
3p‘r a(mp®, n) ifpfn
2nN
v(n H{l-——
<t (12505 )

2nN
— ot 2 ¢ v(n H{1-
D [TA(mp ,pn) +p TA<m7n/p)] T A )+1<n0> ( mp|D|)

2nN
+ p%rA(m, N)0 A () (n0) H (1 — mT‘LD|) )

Grouping in terms of the ng which arise in this sum, we can rewrite this as

Z ZJA,t(nO)Ata

(no,p)=1 t

where A; equals

t—1 ift>1
(mp4)7"’k’17’A(mp4,ptn0) t+1—2t+ H <1

2n0ptN)
0 ift=20

mp*| D]

Alt+1)—2t ift>1

+ (mp?) P e a(mp?, plng) | —2(t +2) + x
3 ift=0
2nop' N
H|1-
" ( m192|D|)
2nop' N
+m T (myping) [t + 3 =2t +2) +t+ 1] H (1 — :fﬁ)’ ) .

So A; = 0 unless t = 0, and we conclude that the left hand side in Proposition VI.6

is equal to (U, — p*2U})By,, as desired. O



CHAPTER VII

Ordinary representations

The contributions to the p-adic height (zf, z7\.) coming from places v|p will even-
tually be shown to vanish. The proof is as in [N3, IL.5] (though see Chapter IX).
An important input to Nekovai’s approach is that the local p-adic Galois represen-
tation V; attached to f is ordinary. We recall this notion and prove that the Galois

representation V4, = V; ® rcH (A%, Q,)(k) is ordinary as well.

Definition VII.1. Let F' be a finite extension of Q,. A p-adic Galois representation
V of Gg = Gal(F/F) is ordinary if it admits a decreasing filtration by subrepresen-
tations

- FVo Py 5.
such that |JF'V =V, (F'V = 0, and for each i, F*'V/F™"'V = A,(i), with A;

unramified.

Recall we have defined ¢ = ey Ky, with

|5 (5 Y

Theorem VIL.2. Let f € Sy (Ig(N)) be an ordinary newform and let Vi be the

2-dimensional p-adic Galois representation associated to f by Deligne. Let A/H be

an elliptic curve with CM by Ok and assume p splits in K and A has good reduction

7
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at primes above p. For any { = 2k > 0, set W = r,H*(A*, Q,)(k). Then for any
place v of H above p, Viay = Vy @ W is an ordinary p-adic Galois representations

of Gal(H,/H,).

Proof. First we recall that V; is ordinary. Indeed, Wiles [Wi] proves that the action

of the decomposition group D, on V; is given by

€1 *
0 €9
2r—1

with €5 unramified. Since, det V5 is x we have e = ;' 270", Thus, the filtration

cyc
FV, =V; o F'WV; = F" Wy = ¢, o FV; =0,

shows that V}; is an ordinary Gal(Q,/Q,)-representation and hence an ordinary
Gal(H,/H,)-representation as well. Next we describe the ordinary filtration on (a

Tate twist of) W.

Proposition VIL.3. Write (p) = pp as ideals in K. Then the p-adic representation

M = keH, (AY,Q,)(0) of Gal(H,/H,) has an ordinary filtration
FM =M >F'M=F'M>F*'M=0.

Proof. The theory of complex multiplication associates to A an algebraic Hecke char-
acter ¢ : A, — K> of type Nm : H* — K* such that for any uniformizer 7, at a
place v not dividing p or the conductor of A, ¢(m,) € K =~ End(A) is a lift of the

Frobenius morphism of the reduction A, at v. The composition
Nm
tp: Ay — Ag = (K®Q)”
agrees with ¢ on H*, giving a continuous map

P =t AR/ H - (K ®Q,)".
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Since the target is totally disconnected, this factors through a map
p: Gy — (K®Q,)".

By construction of the Hecke character (and the Chebotarev density theorem), the
action of Gal(H/H) on the rank 1 (K®Q,)-module T, A®Q, is given by the character

p. Since p splits in K, we have
(K®Q,) =K, ®K; =Q, ®Q,.

Now write p = p, @ pp, where p, and p; are the characters obtained by projecting
p onto K and K.
Lemma VIL4. Let Xcye : Gal(H,/H,) — Q) denote the cyclotomic character and

consider p, and ps as representations of Gal(H,/H,). Then pyps = Xeye and pg is

unramified.

Proof. The non-degeneracy of the Weil pairing shows that /\2 T,A =~ Z,(1). It then
follows from the previous discussion that pyp; = Xeye. That pp is unramified follows
from the fact that t;(H,) = 1 and v is prime to the conductor of . Indeed, the
conductor of A is the square of the conductor of ¢ [G], and A has good reduction at

D. [

Remark VIL5. Let A/Op be the Néron model of A/H. Since A[p"] is étale, it
follows that the p-adic Tate module V5 A is unramified at v. We can therefore identify

pp = VA and p; = V5A. One can also see this from the computation in equation 4.1.

Lemma VIL.6. As Gal(H,/H,)-representations,

Hi(A,Qp)(1) = py @ pp
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and

M = keHy (A", Q)(0) = p, @ p5.

Proof. The first claim follows from the fact that 7,4 ® Q, =~ H}(A,Q,)(1). Fix an
embedding ¢ : End(A)— K, which by our choices, induces an embedding End(A4)—Q,.
By the definition of p, p, is the subspace of H}(A,Q,)(1) on which o € End(A) acts
by t(c), whereas on pg, o acts as i(a). The second statement now follows from the

Kunneth formula and the definition of «,. O

Now set FOM = M, F*M = F'M = 4, and F**'M = 0. By the lemmas above,

this gives an ordinary filtration of M and proves the proposition. O

Now to prove the theorem. We have specified ordinary filtrations F*V; and F*'M

above. A simple check shows that

Fi(V;@M) = > F'V;®F'M

pHq=i

is an ordinary filtration on V; @ M. Since Vyap = V;@W = (V;® M )(—Fk) and Tate

twisting preserves ordinarity, this proves Vy 4 is ordinary. O]

Remark VIL.7. Another way to obtain the ordinary filtration on M is to use the fact
that M is isomorphic to the p-adic realization of the motive Mng attached to the
modular form 6, of weight £ + 1. Since A has ordinary reduction at p, 6, is an
ordinary modular form, and it follows that 6, is ordinary as well. We may therefore

apply Wiles’ theorem again to obtain an ordinary filtration on W.
Proposition VIL.8. The Gal(H/H) representation Vya, = V;QW satisfies Via(l) =
Vf7A’£.

Proof. Recall that V(1) = V}, so we need to show that W* =~ W. This follows from

the two lemmas above. ]



CHAPTER VIII

Proof of Theorems 1.7 and 1.9

Let T be the Hecke algebra of level N, i.e. the Q-algebra generated by the action
of the Hecke operators T, ((m, N) = 1) on Sy(I'¢(IV)). In what follows, normalized
primitive forms fz € S, (I'g(N)) (i.e. fz is a newform of some level dividing NV) will
be indexed by the corresponding Q-algebra homomorphism 3 : T — Q. We let 8, be

the homomorphism corresponding to our chosen newform f. If A € Pic(Ok), then

Fyp:= Z<Zﬁ7xv Zé>‘<>fﬁ
B

is a cusp form in Sy, (I'o(N); Q,(x)). Indeed, for (m, N) = 1, we have

X@)am(Fa) = > (25, 2)B8(T) = (2, T2 = (&, T,,2% € Qy,
B

because the Hecke operators are self-adjoint with respect to the height pairing. If

r4(m) = 0, then we have the decomposition
am(FA) = an + dfn
where

g, = Xx(@) D @, Tz, dg, = x(8) 7D (@, Tua®,,

vfp v|p

and the sums are over finite places of H.

79
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Both sides of the equation in Theorem 1.7 depend linearly on a choice of arithmetic
logarithm ¢ : A /K* — Q,. By Theorem IV.13, it suffices to proves the main
theorem for cyclotomic lk, i.e. g = {xoT. As cyclotomic logarithms are unique up
to scalar we only need to consider the case £ = fg o N. Thus, {f = log, oA, where
A G(Ky/K) — 1+ pZ, is the cyclotomic character. As before, we write A = AoN,
where A : ZX — 1+ pZ, is given by A\(z) = (z)~".

By definition,

d
L;J(f®Xa 1[) = %Lp(f@)Xv )‘S)

s=0

Also by definition,

L) -y (S) (- () ve) [ g,
D\ + - .
— (=1 H —C = | x> Xdv§ |,
o (1-e(g)im@) [ v,

where C' is an arbitrary integer prime to N|D|p. The measure qf}?’m is given by:
W§, 1 (o(mod p*), 7(mod p™)) = Ly, (VG 1 (a(mod p™)))

where a corresponds to the restriction of 7 under the Artin map and o corresponds

to [A] € Pic(Opn). We therefore have

L) = i (1-0(Z) @) | ¥ )L;<x>-8d@il

AGPiC(OK

Using log{z) = log x, we compute

(Ge @) o)
(o) [ f o
(o) s

d

ds
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The integral §,. AU vanishes because by Corollary 116, L,(f ® x)(\) = 0 for all
anticyclotomic A, in particular for A = 1. Or more simply, it vanishes by the inter-
polation property of L, and the vanishing of L(f, x,r + k).

If we set
G = (-1 | log, ¥ e Mar(To(NP*) Q1)

then using the identity

JX Aa) d¥S = J Aa) —C (g) MO %) dW 4,

P P

we obtain

L(f@x.1) = —Hy(f) >, Lp(Go):

0eG(H/K)

Define the operator

F = H 7" k—1 (p)ag)Z.
plp

Putting together Corollary III.7 and Propositions VI.5 and V1.6, we obtain

Proposition VIIL.1. If p|m, (m,N) =1 and r4(m) = 0, then

el F = (=)D ta, (Gy)

(U4 o p2T72U§) )

p

We define the p-adic modular form

H, = F4|F + (=1)*@|D)) "+ 12G,

4 2772
(Up -b Up) :
By construction, when p|m, (m, N) = 1 and r4(m) = 0, we have
am(Hy) = d3,|F = x (@)™ ) (@, TaZ)| F.
vlp
Proposition VIIIL.2. Define the operator

F = (Up - UP)(UPJP - p2r_2)<Up - Uﬁ)(Upaﬁ - PQT_Q)'

Then Ly (H,|F") =
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Proof. The proof should be exactly as in [N3, I1.5.10], however the proof given there
is not correct. In the next section we explain how to modify Nekovai’s argument to
prove the desired vanishing. For our purposes in this section, the important point is
that this modified proof goes through if we replace the representation Vy 40 = V7 (i.e.
the ¢ = 0 case which Nekovar considers) with our representation Vya, = Vy @ W,
where W corresponds to a trivial local system. Indeed, the proof works “on the
curve” and essentially ignores the local system. The only inputs specific to the
local system are two representation-theoretic conditions: it suffices to know that the
representation Vy 4 is ordinary and crystalline. These follow from Theorems VII.2

and IV.6, respectively. O
It follows that

Ly, (FalFF) = (—1)*1 (4D ~"a2Ly, (GG

(U1 — 202 J-“’) .
Since Ly, o U, = a,(f)Ly,, we can remove F' from the equation above; we may
divide out the extra factors that arise as they are non-zero by the Weil conjectures.
Summing this formula over ¢ € Gal(H/K), we obtain
el 2
O[T M2) % ey
plp p oeGal(H/K)

2r—2

(DD R, () (1 -£ f)Q) L(f @ 1)

Note that the operators o, and op (in the definition of F) permute the various

(z¢, z}‘}>_<> as A ranges through the class group. So after summing over Gal(H/K),
these operators have no effect and therefore do not show up in the Euler product in

the left hand side.! By Hida’s computation [N3, 1.2.4.2]:

(1 . (f(—f)) — Hy(F)L(f),

IThis is unlike what happens in [N3]. The difference stems from the fact that we inserted the Hecke character
into the definition of the measures defining the p-adic L-function.
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so we obtain

(1 B X(p)p’"k1>2 . acpic(0x) 2t Fh)
[0

Li7@xD = (=" H p(f) (4] D[)r—F1u?

plp

By equation (4.3), this equals

o PN W 2
(=1) H(l o (F) ) (@D 12

plp

and proves Theorem 1.7.

Proof of Theorem 1.9. We now assume x = 1 as in Section 1.2.3. Recall that the co-
homology classes zy and Zy live in H;(H, Vj a.). Recall also V4 is the 4-dimensional
p-adic realization of the motive M (f)y ® M (xy) over H with coefficients in Q(f).
Using Remark IV.3, we have a motive M(f)x ® M(x) over K with coefficients in
Q(f, x) descending M (f)y ® M (xm) ® Q(x). The p-adic realization of this motive
over K is what we called V.

Thus we may think of the classes zy and z; in Hj(H,Vj ) = H'(H,V},). Define

Z]If = corpy/k(2y) and 2}( = corp/k(Zy)
in H}(K, vax)'
Lemma VIII.3.
resH/K(z]If) = hzs, and resH/K(Zf) = hzfx.

Proof. Note that there is a natural action of Gal(H/K) on H*(H,V;,), since Vj,
is a Gg-representation. Since res o cor = Nm, it suffices to show that for each
o€ Gal(H/K), 2§ = 27, and 2§ = 27\, where A corresponds to o under the Artin

map. Recall that
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for any ideal a in the class of A.
To prove 2§ = Z}‘}X, we first describe explicitly the action of Gal(K/K) on the
subspace €Vy ¢ < V} 4, after identifying the spaces V4, and Vy,. For each o €

Gal(K/K), we have maps

_ O'* o — 71¢£* _
e HY (AL, Q,) 2> e HY(AT ,Q,) X%, ¢, gt (A", Q,),

which induces an action of Gx on €Vi 4, = V; @ eH (AY, Q,(k)). By definition of
M (x), this agrees with the action of Gk on V;,. Now the argument in the proof of

Lemma [V.11 shows that 2§ = z;f}x. A similar argument works for z7. m

By Lemma VIIL3, resy k(2f,) = hzypy and vesy i (2f) = hzgg. It follows that

(8.1) 2 ) = D 2r0m -

Now assume that L) (f®x, {x, 1) # 0. By Theorem 1.7 and (8.1), the cohomology
classes sz and fo are non-zero, giving two independent elements of H}(K Vix)-
This proves one inequality in Perrin-Riou’s conjecture (1.2). The other inequality
follows from recent work of Elias [E| constructing an Euler system of generalized
Heegner classes and extending the methods of Kolyvagin and Nekovaf in [N1] to our

setting. O



CHAPTER IX

Local p-adic heights at primes above p

The purpose of this chapter is to fix the proof of [N3, I11.5.10] on which both
Nekovai’s Theorem A and our main theorem rely. In the first two subsections we
gather some facts about relative Lubin-Tate groups and ring class field towers, and
in 9.3 we explain how to modify the proof in [N3]. We have isolated and fixed only
the two parts of [N3, IL.5] with a serious mistake, instead of rewriting the entire

argument of that section.

9.1 Relative Lubin-Tate groups

The reference for this material is [dS, §1].

Let F//Q, be a finite extension and let L be the unramified extension of K of
degree 0 = 1. Write mp and my, for the maximal ideals in O and Of, and write ¢
for the cardinality of Op/mp. We let ¢ : L — L be the Frobenius automorphism
lifting # — 29 and normalize the valuation on F' so that a uniformizer has valuation

1. Let £ € F be an element of valuation 6 and let f € Op[[X]] be such that
f(X)=wX +0(X?) and f(X)= XYmodmy,

where w € O, satisfies Nmy p(w) = . Note that w exists and is a uniformizer,

since Nmy (L) is the set of elements in /' with valuation in §Z.
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Theorem IX.1 (de Shalit). There is a unique one dimensional formal group law
Fy e OL[[X,Y]] for which f is a lift of Frobenius, i.e. for which f € Hom(Ff,FJ‘f)).
F; comes equipped with an isomorphism Op =~ End(F}f) denoted a — [a]f, and the

isomorphism class of Fy/Oy, depends only on & and not on the choice of f.

Remark 1X.2. This extends the well known construction of Lubin and Tate in the

case 0 = 1.

Now let M be the valuation ideal of C, and let M the M-valued points of F.

For each n > 0, the m%-torsion points of Fy are by definition
Wi ={we M;: [a]s(w) =0 forall aemp}
Proposition IX.3. For eachn > 1, set Ly = L(W}'). Then

1. Lg is a totally ramified extension of L of degree (g —1)g" ! and is abelian over

F.

l

2. There is a canonical isomorphism (Op/mp)* = Gal(L}/L) given by u — o,

where 0,(w) = [u™'];(w) for we W}.

3. Both the field Ly and the isomorphism above are independent of the choice of

f.
4. The map u — o, is compatible with the local Artin map rp : F* — Gal(F®*/F).

5. The field Lg corresponds to the subgroup 2. (1 +mh) < F* wia local class field

theory.

Writing Le = (J, L{, we see that Gal(L¢/L) = Op and the group of universal
norms in F'* coming from L is £€2. Moreover, we have an isomorphism Gal(L¢/L) —

Op who's inverse is rp[ox composed with the restriction Gal(F*/F) — Gal(L¢/F).
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9.2 Relative Lubin-Tate groups and ring class field towers

Now let v be a place of H above p and above the prime p of K. For each j > 1,
write Hj,, for the completion of the ring class field H,; of conductor p’ at the unique
place w = w(j) above v. In particular, Hy, = H,. If ¢ is the order of p in Pic(Ok),
then H, is the unramified extension of K, = Q, of degree 6. Since p splits in
K, Hj,/H, is totally ramified of degree (p — 1)p’~!/u, where recall u = #0Oj/2.
Moreover, Gal(H,,,/H,) is cyclic and H;,, is abelian over Q,. We call H,, = Uj Hj.,
the local ring class field tower; it contains the anticyclotomic Z,-extension of K. To

ease notation and to recall the notation of the previous section, we write L = H,,.

Proposition I1X.4. Write p° = () for some m € Og. Then H,, is contained in
the field L¢ attached to the Lubin-Tate group relative to the extension L/Q, with

parameter § = /7 in K, = Q,. If O = {£1}, then Hy, = L.

Remark 1X.5. Note that there are other natural Lubin-Tate groups relative to L/Q,
coming from the class field theory of K, namely the formal groups of elliptic curves
with complex multiplication by Og. These formal groups will have different param-

eters however, as can be seen from the discussion in [dS, I1.1.10].

Proof. By (5) of Proposition 1X.3, it is enough to prove that Hy, is the subfield of
Q&P corresponding to the subgroup (m/7)” -y under local class field theory. First
we show that (7/7) is norm from every H,,. Using the compatibility between local
and global reciprocity maps, this will follow if the idele (with non-trivial entry in the
p slot)

(..1,1,7/7,1,1,...)e Ay

is in the kernel of the reciprocity map

i AR /K* — Gal(K™/K) — Gal(H,; /K),
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for each j. Since the kernel of r; is K XAIXQOO@;J-, it is enough to show that
(.. 1m, m,1/7, x, 1m,...) e OF.

This is clear at all primes away from p since 7 is a unit at those places. At p, it
amounts to showing that (1/7,1/7) € K, x Kj lands in the diagonal copy of Z, under
the identification K, x Kz = Q, x Q,, and this is also clear.

Since L/Q, is unramified of degree § and £ = 7/7 has valuation J, it remains to
prove that the only units in Q, which are universal norms for the tower Hy,/Q, are
those in p%. But by the same argument as above, the only way « € Z, can be a
norm from every Hj,, is if a¢ = { for some global unit ¢ € K. But then ( is a root
of unity and o = (71¢ = (72, so a is in p%. Conversely, it’s clear that each ¢ € u%

is a universal norm. O

Remark IX.6. Since we are assuming K has odd discriminant, the equality H,, = L¢
holds unless K = Q(u3). For ease of exposition we will assume K # Q(us) for
the rest of this chapter; the modifications needed for the case K = Q(u3) are easy

enough.

We will need one more technical fact about the relative Lubin-Tate group F
cutting out Hy,. Let x¢ : Gal(L/L) — ZX, be the character giving the Galois action
on the torsion points of Fy. We let Q,(x¢) denote the 1-dimensional Q,-vector
space endowed with the action of Gal(L/L) determined by x¢, and we denote by
Deris(Qp(xe)) the usual filtered ¢-module contravariantly attached to the Gal(L/L)-

representation Q,(x¢) by Fontaine.

Proposition IX.7. The representation Q,(x¢) is crystalline and the frobenius map

on the 1-dimensional L-vector space Deyis(Qp(xe)) is given by multiplication by &.
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Proof. This is presumably well known, but with a lack of reference we will verify this
fact using [C2, Prop. B.4]. There it is shown that Q,(x¢) is crystalline if and only if
there exists a homomorphism of tori x" : L* — Q' which agrees with the restriction
of x¢ ory to Of. In that case, frobenius on Deis(Q,(xe)) is given by multiplication
by xe(rr(@)) - x'(w) !, where @ is any uniformizer of L.! Combining (2) and (4) of

Proposition 1X.3 with the commutativity of the following diagram

L* s Gal(L*/L)

ij l
QF —- Gal(Q/Q,),

we see that ¥’ = Nm™' gives such a homomorphism, so the crystallinity follows.

Note that by construction x¢ : Gal(L**/L) — Z, factors through a character
Xe : Gal(Q2*/L) — Z.
So if we choose @ to be such that Nmy g, () = £, then

Xe(ro(@)) = Xe(rg,(Nm(w)))

Thus, the frobenius is given by multiplication by x/(w) ™' = Nmy g, (w) = &. O

9.3 Local heights at p in ring class field towers

The proofs of both [N3, I1.5.6] and [N3, I1.5.10] mistakenly assert that H;,, con-
tains the j-th layer of the cyclotomic Z,-extension of Q, (as opposed to the anticy-
clotomic Z,-extension). This issue first arises in the proofs of [N3, I1.5.9] and [N3,
11.5.10]. We explain now how to adjust the proof of [N3, I1.5.10]; similar adjustments

may be used to fix the proof of [N3, I1.5.9]. The adjustments we make are still in the

INote that we are using the contravariant Dc.is, whereas [C2] uses the covariant version.
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spirit of Nekovai’s original argument, but we will use some deep results from p-adic
Hodge theory to carry the argument through.

Recall the setting of [N3, I1.5.10]: z is the Tate vector corresponding to our
(generalized) Heegner cycle egeY, and V = HJ (Xo(N), jos.A)(1). We have the Tate
cycle

Tp = Z crmTmr € Z(Yo(N), H) ®q, L,

mesS

a certain linear combination (with coeflicients ¢y, living in a large enough field L)
of T,,x such that

(I)T(.Tf) =Zy € H}(H, V) ®Qp L.

Moreover, each m € S satisfies (m,pN) = 1 and r(m) = 0, where r(m) is the number
of ideals in K of norm m. To fix the proof of [N3, 11.5.10], we prove the following

vanishing result for local heights at primes v of H above p.

Theorem IX.8. For each j = 1, let h € Z;(Yo(N), Hj ) be a Tate vector supported
on a point y; € Yo(N) corresponding to an elliptic curve E; such that End(E}) is the

order in Ok of index p’. Then
jlglc}o@f, Ny, ym, (h))w = 0.

Proof. Recall that E; is a quotient of an elliptic curve £ with CM by O by a (cyclic)
subgroup of order p/ which does not contain either the canonical subgroup E[p] or
its dual E[p]. By the compatibility of local heights with norms [N3, 11.1.9.1], we

have

(91) <'rf7 NHj,u;/Hv<h?)>v7év = <.Tf, h?>w,éw )

where ¢,, = ¢, o N H,;./H,- Recall that we are assuming now that U = log,, o\, where

A Gal(Ky/K) — 1+ pZ, is the cyclotomic character. Thus the local component
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l,: HY — Q, of ly is £, = log, 0Ny, g,, and
Ew = 1ng ONHj,w/@P'

We have seen that the ring class field tower H, is cut out by a relative Lubin-Tate
group. In fact, it follows from the results in the previous sections that H;,, = Lé,
where L = H, and £ = /7 as before. Let E be the mixed extension used to compute
the height pairing of 2y and h{, chosen as in Chapter 5.2, and let F, be its restriction

to the decomposition group at w. Assume that

E,, is a crystalline representation of Gal(H;,,/H; ).

Then by definition of the local height (see Chapter 5.1), we have

()0, = bu(ru([Eul))

= 1og, (Nu; /0, (rw([Ew]))) -

o —

where 7, ([Ey]) is an element of O ®z, Q,. In fact, the ordinarity of f allows

Nekovar to “bound denominators”; i.e. he shows

P {ap ), € log, (NHJ.M 1y (o;,j,w)) .

for some integer d;. Indeed, see the proofs in [N3, II.1.10, II1.5.10] and note that

H(Hyw, 7y(1)) = Oy, .- Moreover, the d; are uniformly bounded as j varies
(Nekovéi’s proof of this fact does not quite work, but we fix this issue in Propo-

sition IX.14). Let us write d = sup; d;. By Proposition IX.3, we have

pay, h§>w7£w elog,(1+p'Z,) € P'Z,.

The theorem would then follow upon taking the limit as j — oo.

It therefore remains to show that FE,, is crystalline. First we need a lemma.
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Lemma IX.9. Let m € S and j be as above. Then the supports of T,,x and b;j are

disjoint on the generic and special fibers of the integral model X of Xo(N).

Proof. Let z € Yo(N)(Q,) be in the support of T}, and let y be the Heegner point
supporting the Tate cycle x. Thinking of these points as elliptic curves via the
moduli interpretation, there is an isogeny ¢ : y — 2z of degree prime to p since
(p,m) = 1. Recall p splits in K, so that y has ordinary reduction y, at v. Since
End(y) = Og =~ End(ys), vy is a Serre-Tate canonical lift of y;. As ¢ induces an
isomorphism of p-divisible groups, z is also a canonical lift of its reduction. On
the other hand, the curve F; supporting i has CM by a non-maximal order of p-
power index in Ok and is therefore not a canonical lift of its reduction. Indeed, the
reduction of E; is an elliptic curve with CM by the full ring Ok as it obtained by
successive quotients of ys by either the kernel of Frobenius or Verschiebung. This
shows that T,z and b;]- have disjoint support in the generic fiber.

By [GZ, 111.4.3], the divisors T,,,y and y™ are disjoint in the generic fiber, for any
7 € Gal(H/K). Since all points in the support of these divisors are canonical lifts,
the divisors must not intersect in the special fiber either. But we saw above that
the special fiber of £} is a Galois conjugate of the reduction of y, so E; and T,y are

disjoint on the special fiber as well. m

Next we note that T,z is a sum ) d;, where each d; is supported on a single closed
point S of Y5(N)/H;j,,. Using norm compatibility once more and base changing to
an extension F/H;,, which splits S, we may assume that S € Yo(NV)(F).

It then suffices to show that the mixed extension Ej, corresponding to d; and hJ

is crystalline. Recall from Chapter V that this mixed extension is a subquotient of

H'(Xo(N) = S rel T jo. A)(1),
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where T' = y; is the point supporting h7. So it is enough to show that this cohomology
group is itself crystalline. Finally, this follows from combining the previous lemma

with the following result. O]

Theorem IX.10. Suppose F is a finite extension of Q, and let S,T € Yo(N)(F)
be points with non-cuspidal reduction and which do not intersect in the special fiber.

Then H*(Xo(N) — Srel T, jox A)(1) is a crystalline representation of Gy.

Remark IX.11. Suppose F' is a p-adic field and X /Spec OF is a smooth projective
variety of relative dimension 2k — 1. If Y, Z < X are two (smooth) subvarieties of
codimension k£ which do not intersect on the special fiber, then one expects that
H*Y(Xp — Yprel Zp,Q,(k)) is a crystalline representation of Gr. The theorem
above proves this for cycles sitting in fibers of a map X — C to a curve, but the

method of proof does not seem to apply in the general case.

Proof. Write V = H*(Xy(N)—S rel T, jo..A)(1). The sketch of the proof is as follows.
Faltings’ comparison isomorphism [F] identifies De,is(V) with the crystalline analogue

of V, which we will refer to (in this sketch) as H}

cris

(X —Srel T, joxA). The dimension

of V is determined by the standard exact sequences
(9.2) 0 — HYT, jo. A)(1) > V — HY (X — S, jox A)(1) — 0
0 — H'(X, joxA)(1) = H'(X = 5, joxA) (1) = H(S, jorA) — 0
Similar exact sequences should hold in the crystalline theory (i.e. with H' replaced

by H}

cris

everywhere) since S and T reduce to distinct points on the special fiber.
Using the known crystallinity of H(X, jo«.A)(1), H(T, joxA)(1), and H°(S, jos.A)
(the latter two because the fibers of X — X (V) above S and T" have good reduction),

we conclude that

(X — Srel T, jo. A),

cris

dimg, V = dimp, H.
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i.e. that V is crystalline. To turn this sketch into a proof, we need to say explicitly

what H!

cris

(X — Srel T, josA) is. Note that the usual crystalline cohomology is not
a good candidate because it is not usually finite dimensional unless the variety is
smooth and projective.

Let us describe in more detail the comparison isomorphism which we invoked
above. The main result of [F] concerns the cohomology of a smooth projective
variety with trivial coefficients. In our setting, however, we deal with cohomology
of an affine variety with partial support along the boundary and with non-trivial
coefficients. The proof of the comparison isomorphism in this more complicated
situation is sketched briefly in [F] as well, but we follow the exposition [Ol], where
the modifications we need are explained explicitly and in detail.

Let R be the ring of integers of F and set V' = Spec (R). Let X/V be a smooth
projective curve and let S, T € X (V') be two rational sections which we think of as
divisors on X. We assume that S and T do not intersect, even on the closed fiber.
Set D =SuT and X° =X — D. The divisor D defines a log structure Mx on X
and we let (Y, My) be the closed fiber of (X, Mx). We use the log-convergent topos
(Y, My)/V )cony to define the ‘crystalline’ analogue of V. There is an isocrystal Jg
on ((Y, My)/V)eony which is étale locally defined by the ideal sheaf of S; see [Ol, §13]

for its precise definition and for more regarding the convergent topos.

Theorem IX.12 (Faltings, Olsson). Let L be a crystalline sheaf on X2 associated

to a filtered isocrystal (F,op, Filg). Then there is an isomorphism
(9.3) Beris(V) @¢ H (Y, My)/V)eonys F ® Js) — Beris(V) ®aq, HY(X — SrelT, L).

As L = jo.A is crystalline [F, 6.3], we may apply this theorem in our situation.

Taking Galois invariants, we conclude that Deis(V) = H (Y, My)/V)conv, F ® Js).
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To complete the proof of Theorem IX.10, it would be enough to know that the con-
vergent cohomology group D.,s(V) sits in exact sequences analogous to the standard
Gysin sequences (9.2). These sequences hold in any cohomology theory satisfying the
Bloch-Ogus axioms, but unfortunately convergent cohomology is not known to sat-
isfy these axioms. On the other hand, rigid cohomology does satisfy the Bloch-Ogus
axioms [P]. So we apply Shiho’s log convergent-rigid comparison isomorphism [Sh,

2.4.4] to identify Ds(V) with H}

(Y — Sgrel Ty, §1€), for a certain overconvergent
isocrystal j1€ which is the analogue of jy..4 on the special fiber. Here S, and T are
the points on the special fiber. We have similar identifications with rigid cohomology
for each term appearing in the sequences (9.2), and the corresponding short exact

sequences of rigid cohomology groups are exact. The crystallinity of V now follows

from dimension counting. O

Remark 1X.13. Theorem IX.8 has two components: first one must bound denomina-
tors and then one shows that the heights go to 0 p-adically. In the argument above,
the ordinarity of f was the crucial input needed to bound denominators. We briefly
explain the modifications need to fix the proof of [N3, I1.5.9], where one pairs Heeg-
ner cycles of p-power conductor with cycles in the kernel of the local Abel-Jacobi
map (the analogue of principal divisors in weight 2). The fact that these cycles
are Abel-Jacobi trivial allows us to make a “bounded denominators” argument even
without an ordinarity assumption; see [N3, I11.1.9]. To kill the p-adic height, we fur-
ther note that the particular AJ-trivial cycles in the proof of I1.5.9 are again linear
combinations of various T,,x, with r(n) = 0. This lets us invoke Lemme IX.9 and

Theorem IX.10, as before.

As we alluded to in the proof of Theorem IX.8, the proof of [N3, I1.5.11] again

assumes (incorrectly) that H,, contains the cyclotomic Z,-extension of Q,. To fix
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the proof there, it is enough to prove the following proposition.

Proposition IX.14. Let V be the Galois representation HY(Xo(N), jowA)(1) at-

tached to weight 2r cusp forms. Writing Hy, for \J; Hjw, we have H°(Hy,, V) =0.

Proof. We follow Nekovai’s approach, but instead of using the cyclotomic character
we use the character x¢ coming from the relative Lubin-Tate group attached to Hy,
defined above. By Proposition IX.7, the G, -representation Q,(xe) is crystalline and
the frobenius on Deis(Q,(x¢)) is given by multiplication by &, where £ is defined in
Proposition 1X.4.

Since V' is Hodge-Tate, there is an inclusion of Gal(H/H,)-representations
H°(Hy, V) € @jenH(H,, V() (xg)-

Indeed, H°(H,, V) has an action by Gal(H.,/H) which we can break up into isotypic
parts indexed by characters x¢, with s € Z,. But of these characters, the only ones
which are Hodge-Tate are those with s € Z, so we obtain the inclusion above.

So it suffices to show that for each j, HO(HU,V(XZ))(X?) = 0. Tensoring the

inclusion Q, — B! by V(Xé), taking invariants, and then twisting the resulting

filtered frobenius modules by ng , we obtain
HO(H,, V(i) (xg”) € Denio(V) =5

As an element of C, £ has absolute value 1. Since V appears in the odd degree
cohomology of the Kuga-Sato variety, [KM] implies that Dess(V)=¢" vanishes and

the proposition follows. O

Finally, for completeness, we explain how Proposition 1X.14 is used in the proof

of Proposition VIII.2. Let X be the (generalized) Kuga-Sato variety over H, and let
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T be the image of the map
HY P UX  Zy(r + k) = V = H"PF X, Q,(r + k).

Proposition 1X.14 is used to infer the following fact, whose proof was left to the

reader in [N3].
Proposition IX.15. The numbers #H'(H; ., T)ors are bounded as j — 0.

Proof. From the short exact sequence
0->T—->V->V/T -0,

we have
(V/T)% — HY(G;,T) - H'(G;,V) =0,

where G; = Gal(H;,/H;w). As H'(G;,V) is torsion-free, we see that (V/T')% maps
surjectively onto H'(G;, T)iors. An element of order p® in (V/T)% is of the form
p~“t for some ¢t € T' not divisible by p in T'. We then have ot — ¢ € p®T for all 0 € Gj.
As V)T = (Q,/Z,)" for some integer n, it suffices to show that a is bounded as we
vary over all elements of (V/T)% and all j.

Suppose these a are not bounded. Then we can find a sequence t; € T such
that t; ¢ pT and such that ot; — t; € p®@T for all 0 € G, := Gal(H/H,). Here,
a(i) is a non-decreasing sequence going to infinity with 7. Since T is compact we

may replace t; with a convergent subsequence, and define t = lim¢;. We claim that

t e H°(Hy,, V). Indeed, for any i we have
ot —t = ot —t;) — (t—t;) + ot; — ;.

For any n > 0, we can choose i large enough so that (t —¢;) € p"T and ot; —t; € p"T,
showing that ot = t. By Proposition 1X.14, ¢ = 0, which contradicts the fact that

t =limt; and t; ¢ pT. O



CHAPTER X

Complex L-functions

In the previous section we completed the proof of the p-adic Gross-Zagier formula
for a weight 27 ordinary modular form f together with an unramified Hecke character
x of type (2k,0) with & < r. Of course, one expects an archimedean version of this
formula, directly generalizing the original Gross-Zagier formula and Zhang’s higher
weight formula [Z], both of which concern the case k = 0. Zhang’s archimedean for-
mula relates the central derivative of the complex L-function L(f, x, s) to archimedean
heights of Heegner cycles. The C-valued height pairing he uses is Beilinson’s height
pairing on homologically trivial algebraic cycles [Bei], which can be computed using
the arithmetic intersection theory of Gillet and Soulé [GS].

In the remaining two sections, we sketch a proof of the archimedean version of
Theorem L.7. In this first section, we compute the Fourier coefficients of the modular
form which represents the linear functional f — L'((f, x, s) on the space of newforms
of weight 2k. One wishes to relate these coefficients to height pairings roughly of the
form (€'Y, T,,€ Y*)gs (see Chapter IV for the definition of the projector €'). These
pairings decompose into local heights at both finite and infinite places. The local
heights at finite places more or less agree with the our p-adic local height compu-

tations at places away from p (Proposition VI.5). Indeed they are both computed
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by arithmetic intersection theory. Moreover, these contributions are seen to match
up with the first term in the expression for the Fourier coefficient computation (see
Proposition X.8). It therefore remains to compute local heights of generalized Heeg-
ner cycles at archimedean places, which is what we do in the next and last section.
The local heights at infinity will ultimately match up with the remaining terms in
the Fourier coefficient expression.

Our computations build off the work of [GZ] on the analytic side and the approach
of [Br] (and, to a lesser degree, [Z]) for the height computations. We therefore switch
our notation to match with those papers. So for the rest of this document, we let
f € Sox(T'o(N)) be a newform and y an unramified Hecke character of K with infinite
type (2,0) and 0 < ¢t < k. We also set ¢ = 2t for occasional notational convenience.

Let A/H be an elliptic curve (chosen as in Chapter IV) over the Hilbert class field
H of K with CM by Ok. For convenience, we choose an embedding H — C so that
the base change Ac is isomorphic to C/Of. As before, we assume all primes dividing
N split in K and that the discriminant D of K is odd. Let X = Wa,_o x A% be the
generalized Kuga-Sato variety, defined over H and fibered over the modular curve
X (N) parameterizing elliptic curves with full level N structure.

For each ideal a = Ok, we have constructed in Chapter IV generalized Heegner
cycles egeY® © X and egéY® (with coefficients in K) sitting in fibers above Heegner
points in Xo(N)(H). These are homologically trivial cycles of codimension k + ¢ in

X. For any ideal class A, define
Z4=x(a)tegeY® and Z4 = x(a) lepeY",

where a is any choice of integral ideal in the class A. We have extended coefficients
of our Chow groups to K(x). Like in [Z], the cycle Z4 is a formal sum ., Yy of

identical copies of a certain symmetrized algebraic cycle Yy in the fiber of the variety
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X over the point @ in X (N). The sum is over points () in the preimage of a Heegner

point on Xo(N). For A = [Ok], we just write Z and Z. We also define
Hm(.A) = <Z + Z,Tm(ZA + ZA)>GS-

On the other hand, for each ideal class A € Pic(Of) we consider the Dirichlet

series

Lalfxs) = Y (9) PR S ) ()

n
(n,ND)=1 m>1

Here, 74,(m) = >, x(a), the sum being over integral ideals in A of norm m. As
usual, we write r4(m) for r41(m), the number of integral ideals in A of norm m.
Following the methods of Gross and Zagier [GZ], we show that L4(f,x,s) has
analytical continuation to all of C and satisfies a functional equation when s is
replaced by 2k + 2t — s. By our assumption on the primes dividing N and on the
weights of f and x, La(f, x,s) vanishes at the central point s = k + ¢t. Moreover we
will show that there exists a g4 = >;,o1 am(A)g™ € Sz (I'o(NV)) representing the

linear functional

(2k — 2)!\/|D|D*
f k | L/

94k—172k alfixsr +k),

on Sz (To(N)).

Our goal is to sketch a proof of the following result:

Theorem X.1. Set u = #O/2 as before. Then for m = 1 such that (m,N) =1
and r4(m) = 0, we have

u2 (4‘D‘)k—t—l
()

Remark X.2. Assume for simplicity that the class number of K is 1. Then we would

Hon(A) + Hy(A) = (am(A) + an(A)).

ultimately like to prove

(101) <Yf,xa Yf,x>GS = L/(fa X, T+ k)a
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where Y7, is the f-isotypic component of Z+Z = eg€’'Y. If one knew the modularity
of the generating series Y{Z + Z,T,,(Z + Z))as ¢™, then (10.1) would follow from
Theorem X.1 via a standard argument. Even without knowing the modularity, we
can still deduce the formula (10.1) with some extra work (much like what is done in

[Z]); we will explain this in a separate paper. See also the end of Section 11.3.

Remark X.3. We call the proof of Theorem X.1 a “sketch” because we will leave out
some details of the proof. For example we will at some point assume t < k — 1. The
extremal case t = k — 1 (where there are the same number of Kuga-Sato factors as
powers of A in the variety X) is a more delicate computation from an analytic point

of view, and we wish to avoid technical issues of convergence in this sketch.

10.1 Functional equational and preliminary special value formulas

In this section we prove the functional equation and analytic continuation of
LA(f,x,s) and compute the coefficients a,,(.A) from the introduction. These com-
putations follow [GZ, §IV] closely and we retain the notation there. Let e(n) = (£)

be the quadratic character attached to K and set LN (s,¢) = 2Nyt €(n)n7%, so

that

La(f,x,s) = LW (25 — 2k — 2t + 1,¢) Z ap(n)ra,(n)n=>.

n=1
If we set ¢ = 2t, then the theta series
1
Oa(z) = > ray(n)g" = — zlg@a@).
,;1 * wx(a) &

is in Sp11(Io(D),€). Here w is the number of units in Ok, a is any ideal in A and

Qq.(z) = Nm(z)/Nm(a). By the Rankin-Selberg method, we have
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[(s+2k—1) n)ray(n oy s+ 2k—2
(4rr)s+2h—1 Z ns+2k 1 J Z ap(n)ray(n Yyt dy

n=1 n=1

J f flz +iy)01(2)(x + zy)dxys+2k_2dy

f f o+ drdy
y2

Here, A is the class A~! of a. It follows that

['(s+2k—1)

dxd
(47T)S+2k_1 L.A(fv X, 8+ 2k — 1) (f QAE Lo(M ff Z)y2k y

y2

where M = N|D| and E,(z) is the weight (2k — 2t — 1) Eisenstein series

Ey(2) = Enepr—2t—1,5(2)

d) y
—L™M@2s+2k -2t 1) > el
) 2k—2t—1 2s
PoTaa) (cz +d) lcz + d|

s

S

_ 1 D e(d) y
2k—2t—1 25"
2 (cz + d)?k=2t=1 ez + d
Mle
(d,M)=1

Note that the weight of the Eisenstein series is at least 1, with equality if and only
if ¢ = k — 1. In this case we need to be careful about convergence, as in [GZ].

We define Egl)(z) just as Es(z) but with M replaced by 1, i.e.

S

EO(z) - 1 D €(d) y

e (cz + d)2k=2=1 ez + d|?s
Dlc

Then

y(2) = Ty (0a4(2) B (N 2))

S

is a non-homolorphic modular form of weight 2k and level N such that
(10.2) (Am) " 2N (s 4+ 2k — D)L A(f, X, 5 + 2k — 1) = (f, ®5)

To make notation simpler, we define ¢, = 2k — 2t.
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a b
Proposition X.4. Suppose v = € SLy(Z) with (¢, D) = |Ds| and Dy-Dy =

c d
D and §; = |D;|. Then

—s5— zZ+ c*d
E§1)|21—1’Y = ep, (¢)ep, (d67)0; Z1+1ES(D1) ( > .

01
€Dy (0/52)6D2 (d)XD1'D2 (A) z+c'd
0A|f+1 7 - 1 Q.A'Dl 5 .
K(D1)of x(01) !

Here, k(Dy) is 1 or i, depending on whether Dy > 0 or Dy < 0, and D is the ideal

class of 0;.

Proof. The first formula follows from (2.2) in [GZ]. To prove the theta series transfor-
mation law we follow the arguments in [GZ, IV.2.3] and assume that ¢ = d,. Setting

¢ = —1/c(cz + d), we have

() =0 (5 9) = w2 (@0 +0)

_ DT ee(aQa(N) D1 (N + 1) e(Qa(A + p)0).

X(ﬁ)w AEa/ada HEAD2

—_

Poisson summation for any fractional ideal b reads [T

- ; 5—1/2 N
2()\ + ) e(NO+ p)2) = #N(b) 2 Ve <—¥> e(Tr(\v)).
peb veb—1o-1
Setting A = Nm(a), we therefore have
b
Oaler1y =04 <Z§id> (cz+d)™!
i(—cA {+1
= —w;(@j(;l)/g 10, D1 oe(aQa(N) DY) Ve(AN()e(ez + d))e(Tr(Mv))
AEa/ad2 Vea—lagla—l

with

Clv)= D e(aQu(N) eo(Tr(Av)).

A€a/ady
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Evaluating C(v) as in [GZ], we conclude

k(D d
Oaleray = #GDg(d)XDl Dy (A) Z (vA)‘e <AN(1/) (z + —))
51 (@) c
—it(Do) _, (N@)N(@1) (z+c*d
5%/2 €D2( )XD1 Do (.A)X(Cl) Veazla_l ve N(a_l) 51
_ eny(d)XD, D, (A)Q (z + c*d)
5%/2X(01)’<3(D1) ' 01
In the last line we have used the fact that 9; = 9y; in particular D; = Dy L ]

It follows from this proposition that
N)Xp,.p,(A * *
BONEA( )y = LAY o (ELCD g (2200,
K(D1)x(01)0; ! !
Next note that when &, divides n, the nth coefficient of 0 z1p, (622) = 0 1p,(022) is

equal to the nth coefficient of x(92)7'6 4(2). Thus, following [GZ, p. 276], we have
®(2) = D'E(N2)04() s

where

1 N 12 A
ez = Y L0l po ),
D1-Do K(D1)| D1 2

is as is [GZ], except with weight ¢; — 1 instead of 2k — 1.

The fourier coefficients of £ (z) are computed in [GZ, IV.3], giving us the following

result.

Corollary X.5. For each r € Z in the range 0 <r < k —t — 1, we have

d_.(z) =D Z Z enr (Y7 4, (M6 — nN)e*™"

where

e —t—1(y) = [L(l, €) — e(N)\/T%L(O, e)] (Ny)l_k+t

27 4T Nn
En,r (y) = <_1>k_t_T€(N)_(Ny)r_ﬁl—i_zpk—t,r ( y> Z E_A(TL, d)dQT_el-i_Q
dln

NG 5

forn > 0.
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For each A € Pic(Ok), the completed L-function is defined to be
Li(f,x,8) = (2m) 7 N*6°"T(s)T(s — 2t) La(f, X, 9).
Theorem X.6. L*(f, x,s) satisfies the functional equation
LA(fx,8) = —e(N)LA(f, x, 2k + 2t — s)
Proof. Let £,(2) = 3, .7 es(n, y)e(nx) be the Fourier expansion of £(2), and set
ex(n,y) =7 0°T (s + 2k — 2t — 1)es(n,y).
Then the functional equation follows from (10.2) and the formula

e;(n,y) = —e(N)e3_pias(n,y),
which is proved in [GZ, §IV 4]. Indeed, we compute
Li(f,x,8) = 7 *N* 71T (s)(f, Ps-anr1)
and so
LA(f, X, 2k + 2t — 5) = pe R N2RELG2R 22D (0 — ) (f, @140 5)

= _G(N)W_SN%_l(SSF(S —2t)(f, é§—2k+1)

= —e(N)LA(f X, 8)-
O

Proposition X.7. There is a non-holomorphic modular form ® € My, (To(N)) such

that
92k+2t+1 k141
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and the Fourier expansion of ® is

= o , roniN

b= Y |- X oklmaymd - N ()
r %

T 4 (m) (logy + F(u) +1log N§ — logm + 23(1, e))

S _ 47TnNy 1—k+t 2mwimz
- Z oa(n)r g, (mé + nN)qr—¢—1 5 Y e2mimz

n=1

Here,

Pna(2) = mZ (" e R

z
J! 1 ™

Next we wish to prove a version of the previous proposition, but with ® replaced
by a holomorphic modular form of weight 2k. When k—t > 1, ® satisfies the growth

conditions needed to apply holomorphic projection [GZ, IV.5.1].

Proposition X.8. Suppose k —t > 1. Then

24k—1ﬂ.2k:

(2k — 2)14/|D| D! (f; Z am(A)g"),

Li(fox, k+1t) =

where Y a,, (A)g™ is a holomorphic cusp form of weight 2k and level N with coeffi-

cients:
2nN
am(A) =mF 7| — oa(n)rz (md — Nn)Hy_y14 (1 — e
5 X ’ m|D|
0<n<%
h I I N|D| L
+ arAx(m) (F(k +t) + F(k —t) + log T + 23(1,e)>
= 2nN
_ nZ_:IUA(n)rAX(md + nN)Qk.+ (1 + —m]D|> .

Here we have defined

Ho?) = o (4 )m (2= )7z — 1]

2m - (m + 2t)! \ dz

© 22t dw
Qral2) = f o (2 +1/22 — Teoshw)k—t(z + 1 + /22 — lew)2
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Proof. The proof is as in [GZ, Theorem IV.5.8], so we will not go through the details.
Instead of using the identity in the second equation on [GZ, p. 293], one uses Lemma

I11.4. [l

Remark X.9. Extra care needs to be taken when performing holomorphic projection
in the case t = k — 1. This is the source of serious complications in the weight 2 case
(i.e. k =1,t =0) of [GZ, IV.6]. We will not go into the details here and will assume

t < k — 1 for the remainder of the paper.



CHAPTER XI

Archimedean Heights

In this chapter we compute the local heights of generalized Heegner cycles at
the infinite places of H. In the last section, we relate these heights to the Fourier
coefficients computed in the previous section and finish the proof of Theorem X.1.
We also deduce an archimedean version of Theorem 1.7, under the assumption that

a certain geometrically defined g-expansion is a modular form.

11.1 Generalities on height pairings

Let X be a smooth projective variety of dimension n over a number field F'.

Beilinson and Gillet-Soulé define a global height pairing
(;Yas : CH(X)o x CH™'7(X)y — R

between homologically trivial algebraic cycles (modulo rational equivalence) of arith-
metically complementary codimensions. This pairing decomposes into a sum of local

heights
<7 >GS = Z<7 >v7

108
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where the sum is over all places of F, including the archimedean ones.! The local
heights are only defined for algebraic cycles with disjoint support, so one may need
to use the moving lemma for the decomposition above to make sense. There are
several ways to define these local height pairings; we refer to [Bei], [GS], [M], and [Z]

for details.

Remark X1.1. The global height pairing is actually defined on a group a priori smaller
than CH’(X)y, though conjecturally they should coincide [Bei, Remark 4.0.1]. It
will not matter for our purposes, as generalized Heegner cycles are contained in both

groups.

In our situation, X = Wa,_» x A’ is fibered over the curve X (IV), and the gener-
alized Heegner cycles, whose height we wish to compute, are finite formal sums )] Z;
of cycles Z; supported in the fiber of g : X — X () over points x; € X(N). These Z;
are of codimension k +t on the 2k 4+ 2t — 1 dimensional variety X, so they are of mid-
dle arithmetic dimension and can be paired against each other. Brylinski [Br| gives a
formula for the local height pairings (, ), of such fibral cycles, in terms of local sys-
tems. For the finite places v, he uses the p-adic local systems R**%=2¢, Q,(k+t—1)
for a prime p such that v t p (and with appropriate adjustments at the cusp). His
formula is exactly the same as our formula in Proposition 6.1, for the p-adic heights
at places v not above p (but with log replacing log, ). Indeed he proves that the local
height can be described in terms of intersection theory on the arithmetic surface
X (N)z and geometric intersection on the special fiber of g7!(x;).2

For archimedean v, Brylinski gives an analogous formula for the local height {, ),

in terms of the local system R*%272g.Q(k + ¢t — 1) over X(N)¢ (from now on,

LOur notation for local heights unfortunately does not distinguish between p-adic and archimedean versions. This
should not cause too much confusion, especially because there is no archimedean component to the p-adic height.
Moreover, at finite places v not above p, the p-adic and archimedean heights are in some sense “the same” (see
below).

2In fact, Nekovai’s proof of Proposition 6.1 is based in part off the proof in [Br].
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we view all varieties and maps over C). More specifically, the cycles Z; determine
Hodge classes v; in H**272(X; Q), where X, is the fiber of g above z;. This Betti
cohomology group is the fiber at z; of R?*+2-2g,Q(k+t—1). The latter local system
is in fact a polarized variation of Hodge structures of weight 0; the polarization comes
from the cup product in each fiber (note that algebraic cycles in the same fiber are
now of complementary codimension in the geometric sense).

In fact, Brylinski defines height pairings attached to any polarized variation of
Hodge structures over a smooth complex curve C*. He even allows degenerating
variation of Hodge structures, which we will need to handle the cusps on X (N). To
state this properly, let V' be a Q-local system on a smooth curve C*, underlying a
polarized variation of Hodge structures (¥, FP¥) of weight 0. There is a canonical
way to extend ¥ to a vector bundle ¥ on the compactification C' of C* (i.e. it is

characterized by certain properties) [Br, §1].

Definition XI.2. A Hodge vector v, at x € C* is an element v, € V,, which belongs

to FO¥, (so of type (0,0)). The group of Hodge vectors at z is written Hdg(V),..
Definition XI.3. A Hodge cycle is an element of Hdg(V') := ®,cc+Hdg(V),.

Remark XI.4. Brylinski defines Hodge vectors for any = € ', but we will not bother,

as our generalized Heegner cycles avoid the cusps.

To define Brylinski’s height pairing, we need the notion of a Green’s kernel at-
tached to V. Let us write %,R for the C*® vector bundle of sections of ¥ which are

real and of type (0,0). Also write py, po for the projections C' x C' — C.

Proposition XI1.5 ([Br]). If V' has no non-zero global sections, then there exists a
unique C*-section G of Hom(p; ' Yo, p; ' Yor) over the complement of the diagonal

Ac in C x C such that
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1. [1G = 0, where [ is the Laplacian [] attached to V' in the second variable.

2. G(z,y) —log|z(z) — z(y)| is bounded near any point (a,a) of Ac, if z is a local

coordinate on C' near a.

The section G is called the Green’s kernel for V on C'. Brylinski then defines a
height pairing {vq,vs ), for any pair v; = > vy, and v, = > vs, € Hdg(V) of
Hodge cycles with disjoint support as:

(v1,V9)py = Z(G(m, Y)(V12), Vay)-

x7y

Here, the pairing (, ) is the given polarization in the fiber of ”//_OR at y.
The following result states that we may use Brylinski’s pairing to compute Beilin-
son’s archimedean local height when the two cycles are in distinct fibers of a map to

a curve:

Theorem XI.6. Suppose X is a complex variety of dimension 2n+1 and we are given
a projective morphism g : X — C which restricts to a smooth map g : g~ (C*) —
C*. Suppose Z1 and Zy are homologically trivial cycles on X of codimension n + 1,
supported in disjoint non-cuspidal fibers of g. Also suppose X, C, Z; are defined over

a number field F' with a given embedding v : F' — C. Then

<Zl7 ZQ>1) = <Ul7 U2>Br>

where vy and vy are the corresponding Hodge cycles in the stalks of V = R*"g,Q(n).
Here, the Brylinski pairing is with respect to the polarization on V' which is the cup

product pairing on each fiber.

Proof. A proof is sketched at the very end of [Br]. O
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11.2 Local heights at infinity for generalized Heegner cycles

Let us return to our situation, where X = Wy, 5 x A% and g : X — X(N) is the
usual map. Write X° = g71(Y(NV)) and write g : X° — Y(N) for the restriction.
We wish to pair the generalized Heegner cycles defined in Chapter IV, so we consider

the local system
W = SymZk_lef*Q(k: . 1) ® /igHQt(AQt, Q)(t),

where f : £ — Y(INV) is the universal elliptic curve and where x, is the projector
defined in Chapter IV. The factor x,H?*'(A%*,Q)(t) is a constant local system, with
Hodge structure of weight 0 and type (t,—t) + (—t,t). As W is a summand of
R#+2=2g Q(k + t — 1), it inherits the structure of polarized variation of Hodge
structures and we may use Theorem XI.6 to compute local heights of generalized
Heegner cycles using the Green’s kernel attached to W.

This was done by Brylinski himself for classical Heegner cycles, i.e. when ¢ = 0
[Br, §3]. We will build on his computations, so we begin by recalling notation. Let
E = R? be the standard representation of G = GLy(R)*, with basis u; and us.
Let K = C* be the stabilizer of 7 in G acting on the upper half plane h. Then
& = G xX F, is a G-equivariant vector bundle on h. The holomorphic subbundle
F1& is generated by the holomorphic section zu; + us, where z is a coordinate on
h. E is polarized by the skew symmetric form (, ) : F x E — R(—1) such that

(u1,us) = —1/2mi. The associated hermitian form satisfies
(zuy + ug, zuy + ugy = 2y

(zuy + ug, Zug + ugy = 0

(Zuy + ug, Zuy + ug) = 2y,
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where as usual z = z + iy. Recall that zu; + uy € & and Zuy + ug € EXL.

The usual local system for weight 2k modular forms on Y (N) is obtained by
considering the representation V, = Sym*(E)(p) of G, where p = k — 1. The
corresponding polarized variation of Hodge structures on h is ¥, = Sym*(&)(p),
and is pure of weight 0. The sections
(0"

n

(2y)r(2mi)P

2p—n

Uy = (zuy + ug)"(Zuy + ug)

for 0 < n < 2p form a C*-basis of ¥, and each v, is of pure type (—p + n,p — n).
Moreover, this basis is orthonormal with respect to the Hermitian pairing on %,
obtained from the pairing (, ) on E in the usual way.

Recall that to define the cycle egeY in Chapter IV, we chose a Heegner point
corresponding to the elliptic curve A. We fix a value 7y € h corresponding to this
chosen Heegner point on Xy(N). Denote by R? the trivial two dimensional repre-
sentation of G with basis {e;, e2}. Then we can realize the constant Hodge structure
keH?' (A% Q)(t) as coming from the G-representation R? and we can suggestively

write a basis of sections as

(11.1)

- - 2t
Mo = (2yo)t(2ﬂ'i)t (7’061 + 62) )

of type (—t,t) and (¢, —t) respectively. Moreover, this basis is again orthonormal
with respect to the Hermitian pairing coming from the polarization on W.
Let # = #,; be the polarized variation of structure associated to V, ® R?, so

that W is its underlying local system. The sections
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with 0 < n < 2p and j = 0,2¢, form a basis of #'. Each w,; is pure of type
(—p—t+n+j,p+t—n—7j). The C*-subbundle #{r of real (0,0)-vectors has rank
2, with basis w,4s0 and wy,_¢ 9. One sees from the definitions of the projectors (see
Chapter IV and also Lemma XI.19 below) that the Abel-Jacobi image of the cycle
€Y can be identified with a section in the fiber %, which is a multiple of w,_; .
Similarly, the Abel-Jacobi image of €Y is a multiple of w44 0.

The vector bundle %, ; is endowed with a Gauss-Manin connection D. To compute
heights of generalized Heegner cycles, we must first find a Green’s kernel, i.e. a
sufficiently nice function G on h x h which is harmonic with respect to the Laplacian
(Op = 2[Jp acting on the second variable. The following lemma identifies the

restriction of the Laplacian operator []p to the vectors of type (0,0).

Lemma XI.7. Let F be a C* function on b. Set w™ =y~ w49 and wt =

y' - wpiro. Then

1
Op (F - w?F) =5[A+(k:irt—l)(k$t)i4itya—i]F-wi,

62

5o 1S the usual

where the + signs should be taken consistently, and where A = —4y?

Laplacian.?

Proof. First consider w~. Recall the decomposition [Br, §3]
O = 0% + %0+ V' (V)" + (V)" 7.
As 0* and (v’ )* kill O-forms, we have

O (Fw™) = (0% 0+ (V)" V') (Fuw™).

3Note that there is a sign error in the statement of [Br, Lemma 3.2], which is the special case t = 0.
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If kK = (4mi)? (25)71/2, then

oF

RO(Fw™) = Ey’p’t(zul + )P (Zuy + ug)P T dz @
+1
— p2z’ Fy P77 w4 ug)P 7 (Zuy + ug)P i dz @ pioy

+ (p— ) Fy P 'uy (zuy + u2)p_t_1(2u1 +u2)P T dz @ pros.

Since u; = (2iy) ' (zuy +ug — (Zuy + uz)), we obtain by taking the (0,0) component:

O(Fw™) = aa—};dz@w_ - %Fdz@w_.

Recall that by definition 0* = — * 0%, where * is the Hodge #-operator. We recall
how to compute the Hodge -operator with respect to a metric g, and for a general

basis ey, -+, e,. If g;; = {e;, e;), then

)det(giai’)
TN N A e

\/m N1 Jr—1?

1o
% eil A A 6ik —> Z(_1>0(17J
T

the sum varying over sets J’ of complementary length to the initial indexing set
I ={iy, - ,ix},and I’ = [n]—J". To compute the Hodge =-operator in our situation,
we use the usual Poincaré metric on b for which {dx,dr) = y* = {(dy,dy). So we
have *dx = dy, *dy = —dx, and =(dx A dy) = y*.

We can now compute

o* a—Fdz®w_ = —*g*a—Fdz@)w_
0z 0z

= — x aaa—F(—idz) ®uw™

zZ

OF

" 9702

, O°F

Z0z
O2F

0z0z

dZ Adz@uw™

=1

=2 dr A dy @ w™
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We have tacitly used the fact that (wp_¢ 9, wp—r9:) = 1. Similarly,

o* (iFdz-w‘) = —*5*%Fdz®w_

vy
_t -
=+x0-Fdz Q@ w
Y
OF _, iF\ _ )

F
= (2ityaa—z + tF) SwT.

On the other hand, we also have:

L . ¢
(V) V)(Fw™) = (V) (“F%y_p_t_l(zul +u2)’ ™ (Fur + up)P TN Z @ M2t>

+t
— —xV (/{Fp2—iy_p_t_1(zu1 + ug )P (Zuy + )P dZ ® ,uzt>

KF(p+1t) i1

= —xV 5 (zuy + ug)P" 1 (Zuy + up)P T dZ @ g
F tiip—t+1
= — % r <p +2<)2<p ) + )y*p*tfl(zul + ug)p*t(iul + UQ)ertdZdZ ® Mot
y

1
= 5/@F(p + ) (p—t+ Dy P (zur + uz)? " (Zuy + up)’ ™ ® paoy
1
= 5F(p+t)(p—t+ 1) -w™.
The incorrect sign in [Br, Lemma 3.2] presumably comes from a misapplication of
the formula V'(as) = (—=1)?a A V(s), if o is a p-form and s is a section of the vector

bundle. Putting everything together proves the lemma for w~. The result for w*

follows by a similar computation, replacing ¢ with —¢ in the appropriate places. [

Now let z = x + iy and 2’ = 2/ + i3/ be parameters on h x h and define

ERs
o) = ~Qua (14 520,

where Q:(z) is as in Proposition X.8. We also define

u(%5)=g@&5(2_%){

21y
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W) = ol (5 )

21y
As g(z, 2') is a function of the hyperbolic distance between z and 2, it is invariant

under SLy(R). A quick computation then shows that

I (727 72/) =W (Zv Zl)] (77 Z)ZJ (77 Z/)_g

vz, v?) = w2, 2)j(y, 2) "5y, 2)

for v € SLy(R) and where j(v, z) = ¢z +d, as usual. On the other hand, the sections

w* are themselves not SLy(R)-invariant, but instead satisfy
(11.2) w(y2) = j(7,2)" (v - w(2))

wt(vz) = j(y,2) (v - w*(2)).
It follows that the section
p(z,2) - [w(2) = w (2)]
p(z,2) - [wh(2) = w' ()]
of the vector bundle
H0m<pl_1%,R7p2_l%,R)

on h* x h* is invariant under the diagonal action of SLy(R). Here, # is the canonical
extension of #* = #,,, to the compactification h* and the p; are the projection maps.

Therefore

Gion(z2) = ), 1F(z,97) - [w*(z) = w(32)]
¥el'(N)

each descend to a section of the descended bundle Hom (p; % r, p; * #or) on X (N) x

X(N) (assuming they converge). We define

Gran(z,2) = Gy n(2,2) + Gy v (2,2).
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We wish to show that G(z,2) := Gr:n(2,2') is a Green’s kernel for the variation
of Hodge structure #,,; on X (V) and hence can be used to compute the local height
pairing of Hodge cycles in different fibers. Specifically, if w; and wy are two sections
of #yr at points z; and z, of X(N), then the local height pairing (w;,ws), (at an

infinite place v of H) is given by
(11.3) (G(z1,22)(w1), Wa)s,,

where (, )., is the Hermitian pairing from before on the fiber above 2,.* Recall from
Proposition XI.5 that the Green’s kernel is characterized as the section of the rank
4 vector bundle

Hom (p; ' Wor, p; #or)

on X(N) x X(N), which is killed by the Laplacian [Jp acting on the second variable
and which has logarithmic poles along the diagonal. Thus, by Lemma XI.7, we want
to show that for both choices of sign, G*(z, 2’), as a function in the second variable,

is an eigenfunction for the weight +¢ Laplacian

Ayg=A+ QiEy%,

with eigenvalue —(k £t —1)(k F1).
Remark X1.8. Unlike A, the operators A4, are not SLy(R) invariant. But to check
that G*(z, 2’) is an eigenfunction for AL, it still suffices to check that p*(z,2’) is
an eigenfunction with eigenvalue independent of z. Indeed, simply use the fact that
we may also write G*(z,2') = X p*(y2,2) - [w*(vz) = w(¥)].

We will need a few facts from the theory of special functions; a general reference

is [BE1, BE2]. First we recall the usual hypergeometric function (for |z| < 1 and

4The Hermitian pairing agrees with the pairing (, ) when both are restricted to real vectors of type (0,0). We
consider the Hermitian extension of this pairing because the projectors € and € do not preserve the space of real
vectors of type (0,0), and also to handle scalars such as x/(a).
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c>0)

where

ala+1)---(a+n—-1) n>0
is the rising Pochhammer symbol. The hypergeometric function satisfied various
transformation laws which will be useful for us. For example, there is Euler’s trans-

formation law
(11.4) F(a,b,c;2) = (1 —2) " F(c—a,c—b,c; 2).

and the Pfaff transformation

(11.5) zm%aq@:(y—@4F<@c—@c : ).

21
Our interest in hypergeometric functions stems from the fact that they are so-
lutions to second order differential equations. A special family of hypergeometric
functions called Jacobi functions of the second kind (depending on parameters n, «

and f3) are defined as follows:

QP (@) =
20t P+ a+ 1)I'(n+ B+ 1)
I'2n+a+ f+2)(x — 1)ntetl(z 4 1)8

2
F(n+1,n+a+1,2n—|—a+5+2;1—).
—x

The function Q%a’ﬁ ) is a solution to the differential equation

(11.6) (1= +[B—a—(a+B+2)z]y +nn+a+ B+ 1)y =0,

and has the following integral representation [BE2, p. 172]:

1 1 w)" A1 — w)"du
(11.7) Q7 (x) = (z — 12)a(x +1)8 J;l —~ )(x —(i)"H) :
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In the special case where o = 8 = 0, the function Q,(CO_’(? is a Legendre function of
the second kind, from which the Green’s kernel for intersections of classical Heegner
cycles of “weight” 2k is constructed [GZ, Z]. It is very natural then that our can-
didate Green’s kernel Gy y(z, 2) for the intersection of generalized Heegner cycles
of “weight” (2k,2t) is in fact built out of the Jacobi functions Qgﬁ?h as the next

lemma shows.

Lemma XI.9. We have Qp+(2) = 2Q,(€0_’2tt_)1(z) and so

Qre(2) = Lk _Ft();f()k i) <Z f 1)]” (Z i 1>2tF (k: —t, k—t, 2k, &) .

Proof. 1t is not hard (cf. [GZ, p. 293]) to rewrite Qx(2) as

0 Uk_t_ldv
Qre(z) = 2k+tf o k+t
o W+ 1Dk t(w(z—1)4+2+1)

and via the change of variable v = }J_F—Z, we eventually get

2t,k-+1 J*l (1 4 u)kftfl(l . u)kthfldu
_1 (Z _ u)k‘—i—t '

Using the integral representation (11.7) for Q,(f"ﬁ ), this is equal to

2€+1

m@;ﬁ?a (2).

Applying Euler’s transformation law (11.4) to the hypergeometric definition of Q,ﬁi?,

we find that the latter is equal to 2@,&0_’?1(2), as desired. ]

Corollary XI.10. Qy+(2) satisfies the differential equation

(1-2)Q"(2) + [l — (£ +2)2]Q'(2) + (k—t — 1)(k + )Q(z) = 0.

Proof. Use (11.6). O
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Proposition XI.11. For each fivzed z € b, the function u*(z,2') satisfies (as a
function of z')
Aif(u(zaz/)) =\t 'ﬂi(za Z/)>

with \* = —(k + ¢ — 1)(k T 1).

Proof. This is a long computation, which ultimately boils down to Corollary XI.10.

For the reader wishing to verify this on his or her own, we record the useful formulas:

222

ifs=1+ ST then
ds 2 —=z L5 1
oz 2y 24y
0%s
4y =2
Vovor —
and

0s 0s
/2 i e _ 2
4y (82/) (82’) s -1

Next we address the convergence of the functions G*(z, z’) defined earlier.

Proposition XI1.12. For all integers 0 <t < k — 1, the sums

Giin(z2) = Dt (2,72) - [w*(2) = w*(72)]

vyel’

converges uniformly on compact subsets of h? — {(z,2') : z € T'2'}.
Proof. The proof is similar to [H, Prop. 6.2]. ]

It follows from Proposition XI.11, that G¥(z, z’) is an eigenfunction for the weight
+¢ Laplacian A_, with eigenvalue —(k +¢ — 1)(k F t). To prove that G(z,2’) is the
Green’s kernel attached to W,,, it remains to understand its behavior along the
diagonal of Y(N) x Y(IN) and also at the cusps. In this direction, we have the

following lemmas.
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Lemma XI.13. As the real parameter s — 1 from above,

Qri(s) = —log(s — 1) + O(1).

Proof. We have the well known asymptotic

1
B(a,b)

F(a,b,a +b,s) = — log(1 —s) + O(1),

where B(a,b) = Fr((aa)i%), and where s is approaching 1 from below. Then as s — 1

from above,

2Bk —t,k +1t) L 2
Q(s) = PR =TT F (k bk —t, 2k, — S)
(K
)

2k+tB —tk+t) [(s—1\"" 2
= : Flk—t k+1t 2k ——
—1)Ft(s+ 1)% (s+1) ( P ’1+s>

(i) s

= —log(s — 1) + O(1),

where we have used (11.5) in the second equality. ]
Corollary XI.14. G, y(2,2') =log|z — 2> + O(1) as 2’ approaches z.

Proof. We should clarify what this even means, as Gy n(z,2') is a section of the
vector bundle Hom(pfl%,R,IE 17/_(),R), not a scalar quantity. But by choosing the
sections w*, we have trivialized this bundle, so the statement of the corollary should

be taken to mean

(1t (2, 2) —log |z = 2']%) - [w* (2) > w* ()]

is bounded as z — Zz’. This follows from the previous lemma and the fact that

lim,,.(z — 2') = —2iy. O

Next we analyze the behavior of the Green’s kernel at the cusps.
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Proposition XI.15. For z in a neighborhood of a cusp yoo, the function
Im(y2)"'G(z, 2')
is C®.
Proof. We omit the proof, which is rather technical. Ome can proceed as in [H,
§6]. 0

It follows from Propositions XI.11, XI.14, and XI.15 that G(z,z’) satisfies all
the properties characterizing the Green’s kernel. By the formalism in [Br, §2|, we

conclude:

Theorem XI1.16. Write zy = x1 + 1y; and zo = xo +iys. Then for zy ¢ I'(N)z,, the

local archimedean height pairing at infinity is given by

1 _ .
7 Z 9(217’722)(21—722)3‘7(%22)8-

W) e = Gy 2

<w+<zl>,w+<22>>gr=@ S gl 2) (1 — 1) (3, 2,
Y¥el'(N)

where

/ |Z _ 2/|2
- 1 .
o) = ~Qui (14 52
Proof. Now that we have identified the Green’s kernel, this follows from equation
(11.3) and the fact that (w™(22), w™ (22))z, = Y5 > = y5 *, while (w* (25), w* (22))., =

Yo- O

To compute heights of generalized Heegner cycles in the corresponding local sys-
tem on Xo(N) instead of X (N), we will follow [Z] and identify our generalized Heeg-
ner cycles Z4 and Z4 at a point P € Xy(N) with the sum of the same cohomology
class over the preimages ) € X (V) of P (this is the purpose of the projector g in

the definition of the classes Z4 and Z4 at the beginning of Chapter X). In fact, we
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can define the local height pairing in the same way for Xo(/N) simply by summing

over I'g(NV) instead of I'(N) above. Also, as all of our vector bundles come equipped

with a GLy(R)-action, it makes sense to apply Hecke operators to sections such as
+

w*. This action agrees with the geometric action of Hecke operators on algebraic

cycles, defined in Chapter IV.

Proposition XI1.17. Assume m = 1 and Let 2y, z5 be points of b such that the z

and T,z have disjoint support on Xo(N). Then

W (o), Tt (22 = oo S g, v22) (1 — v22) 3, 2"
w (21), Tpw™ (22))Br = 75— 9(21,722) (21 — 722) 5 (7, 22)",
1 2)/B (22y1yg)z S 1 2 1 2 2
det y=m
+ + mP~! s Vi(~ 7,)¢
(w™(z1), Tnw™ (22))r = [ Z 9(z1,722) (1 —722)°5 (7, 22)",
YERN
det y=m
Z 7
where Ry = andp=Fk—1.
NZ Z

Proof. We prove only the first formula as the proof of the second is similar. Let the
variable 7, range through a set of representatives of I'(IV)\ Ry of determinant m, and

let v, range through a set of representatives of I'. Then vy = 7, ranges through the
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set of elements in Ry of determinant m. Then we compute:

<w_(z1), me_(zQ)>Br = Z<w_(zl),72 : w_(22)>Br

p+t

B ),

= mPt! Zj(72, Z) " (w(z1), w(y222) g,

Y2

1
= p+t y = ) Z
m gj(%,zz) (21yﬂm(7222 EZQ 21,7v22)(Z1 — Y22) ](%,7222)
mp+t | Z
"~ 2iyiye)'m! 2‘7 2 22)’ (2iy1y2)"° Zg 21,722) (21— 722) 5 (715 7222)
mpP~t . ,
~ Qi) Zg 21,722) (21— 722) 5 (7, 22)"

]

Now we specialize to the case where z; = 7 and 29 = 7 correspond to Heegner
points on Xy(N) with CM by Of. Recall from [GZ, §2] that Z + 1,Z = a; ' for
some Og-ideal a; € Ok. If A; > 0 and B; are integers such that 7; = B J”ﬁ , then
A; = Nm(a;). We have already fixed a Heegner point 7y € h corresponding to our
choice of CM elliptic curve A isomorphic to C/Of over C. To simplify computations,

#ﬁ, so that the corresponding lattice ag is Ok (one can check

we choose 19 =
that the results do not depend on this choice).

Note that if 7 € b is a Heegner point, and a, the corresponding lattice, then
a,, = j(v,7)a,, for v € SLy(Z). By (11.2), x(a;)*w™(7) and x(a,)w" () descend

to well-defined cohomology classes in the fiber above the corresponding point of

X (N) and hence a class in the local system on X (N) and X((N) as well.

Proposition XI1.18. Let 71,75 € Xo(N) be two Heegner points as above and suppose
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71 and Ty, are disjoint on Xo(N). Then

<u))<_(it71—1)>’Tml;_(((:;2)) >Br - %X(alaz) Z 9(71777'2)04(%7'1,7'2)3,

YERT}

w* (1) w+(72)> (—1)t2tmp—t ) o
A T ppe xlma T, YT2) Y, T, T2)
<y%tx(a1) y3'x(a2) /. o X(waz) 2, 9 m)a(y, 7, 7)

YERR}

where a7y, T, T2) = ¢niTe + dTy —ate — b and R} = {y € Ry : dety = m}.

Proof. This follows from the previous proposition. Note that y; = /|D|/2A; and

y2 = V'D/2A5. Also x(a;)x(a;) = x(Nm(a;)) = Nm(a;)* = Af. O

Lemma XI.19. For 7 = x + iy € b, let A, be the elliptic curve C/a=t. Then the

class of the generalized Heegner cycle €Y in eHﬁﬁ”%Aﬁ’“” x A% C) is

2-y/D

ey

Proof. Set a = a,. The generalized Heegner cycle is constructed from graphs of
isogenies. We may work factor by factor and compute the cycle class of the (adjusted)
graph of the isogeny v/D on A, x A, and the graph of ¢ = (ﬁu A= A" Aon
A, x A. This is the de Rham analogue of the p-adic computations we did in Section
4.4, so we will use the notation X 5 and X; 4 = Xy for the adjusted graphs (recall
that X, is the projection of the graph of the ¢ onto the orthogonal complement of
the horizontal and vertical fibers, i.e. onto H' ® H*).

Recall that if C' € A® x A is an algebraic cycle, then its de Rham cohomology

class is represented by a differential form w satisfying

[EE
C A%x A

for all n € Hiz (A" x A,C). In the case of X, one computes that its cycle class is
represented by the differential form

Nm(a)
22’3/0

(ledZQ — d21d22)7
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where dz; is the pullback of the usual holomorphic differential form on C/a~! = A,

and dzy is the differential form on A = C/Of. The factor of Nm(a) comes from
the fact that the dual of ¢, : C/Ox — C/a™! is given by the map C/a~! — C/Oxk
which is multiplication by Nm(a) on the underlying complex vector spaces. Note
also SA dzdz = —2iyy. The effect of the projector € is to kill the dz; terms.

Similarly, one finds that the class of X 5 on A, x A, is

i@(
2y

ledZQ + dileQ) .

Note that the effect of the projector € on these purely Kuga-Sato components was to
force the cycle to lie in Sym?H'(A,), which is why we look at X /b and not simply
the graph of v/D.

The differential form dz on C/a~! = C/(Z + 7Z) is given by Tu; + ug and dz is

Tuy + uz. So each of the 2t factors of the form eX, contribute
—Nm(a)(2iyo) " (Fuy + ug)(Toe1 + €2)

to the class of €Y and each of the p — ¢ factors of X 5 contribute

V1Dl

Y

(Tuy + ug)(Tuy + us).

Now just compare these computations with the definition of w™(7) =y wp_t 2 (7).

]

For any ideal class A, recall from the previous section that we write Z4 and Z4
for the generalized Heegner cycles y(a) 'egeY® and x(a) 'epeY®. When A = [Ok],
we just write Z or Z. Since 1y = \/5/2, the previous lemma and proposition show

that

4m|D|)P~t
ﬁX(ﬂl%) Z g(r, ym)a(y, 7, 7)",

(11.8) (Zay, TnZay)g, = 2
Dt (pft) YERY



128

4m|DJ)P~t _ o
#X(al%) Z g(r,ym)aly, 71, 7)",
Dt( p)

p—t YERY;

Zar, TnZ s )y, =

for 7 and 75 such that [a,,] = A,.

Now let (, )oo = 25,,(s )» be the sum of the local heights on X = W x A* over
all the infinite places v of H. In other words, {, ), is the pairing {, ), applied to the
base change X,/C of X to C using the embedding H — C corresponding to v (we
are using Theorem XI.6 here). We extend these height pairings to algebraic cycles
with coefficients in Q(x), the field generated by the values of .

The next result gives the final expression for the local heights at infinity.

Proposition X1.20. Let A be an ideal class in K and assume r4(m) = 0. Then

4mD -t = QnN
— n=1
_ (4m|D| L 2nN
<Z,TmZA>OO= 7 UQ;U n)ray(m|D] + nN)Qp. +m|D| ,

and

(Z.TZs), = 0={Z.TnZs),

Remark X1.21. Notice that r g, appears in the first formula, whereas r 4, appears

in the second.

Proof. As usual, the assumption r4(m) = 0 implies that Z and T,,Z 4 are supported
on fibers above a disjoint set of points of Xy(/V). The final equation follows from the
fact that w™ and w™ are orthogonal to each other. We next prove the first formula
and omit a proof of the second, as it is similar.

One difficulty here is that X = W x A’ is defined only over H, so the complex
varieties X, will be non-isomorphic as v ranges over the archimedean places of H.

We could redo the computations on the new variety (where we would have to replace
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the base point 7y by a Galois conjugate). Alternatively, one can show (similar to the

proof of Lemma IV.11) that
(119) <Z> TmZ.A>v = <ZBa TmZBA>Br>

where B is the ideal class corresponding to v (i.e. B is the class of the lattice attached
to the base change A, of A to C). Since the archimedean places of H are in bijection
with the class group, the proposition now follows from (11.8), (11.9), and the proof
of [GZ, 11.3.17, IV.4.6]. Note that our a(y, 7, 72) = ¢7i79 + d7y — aty — b is not the
same as the « defined in [GZ, 11.3.6], but they have the same norm; their « is just

! where a = aja,, as

a(v, Ty, 71). Further note that a(~v, 7, 7) is an element of a~
in [GZ], and the value of g(7y,v72) depends only on the norm of «a(vy, 7, 7). Since
[a] = A, we have

Tﬂ,x(j) = X(a) Z xé’
xea !
Nm(z)=3/Nm(a)

which explains the appearance of 74, in the sum. O

11.3 Sketch of proof of Theorem X.1

Following [GZ] and [Z], we might expect for any m prime to N a formula of the

form
(11.10) (Z+Z, Tu(Za+ Za) as = am(A),

where a,,(A) is the Fourier coefficient from Proposition X.8. This formula would
ideally hold for any m with (m, N) = 1 and A such that r4(m) = 0. The constant
implicit in the notation = should be independent of m and A.

We break up the height pairing above into four different terms, each of which can

be decomposed into a sum of local heights. For example, we have

<Z, TmZA>GS = <Z7 TmZA>ﬁn + <Z, TmZA>007
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where we have decomposed into the sum of local heights at finite places and the sum
of local heights at infinity.

By Proposition X.8

A (A) = —mF71 Z oly(n)rg,(méd — Nn)Hy_—1, (1 — 2nN>

0<n<%‘5 m’D|
- 2nN
—mktt Z oA(n)r 1, (M0 +nN)Qpy (1 + —D|> :
n=1 m

Write

am(A) = a’,(A) + a2, (A),

m m

where a! (A) is the sum with Hy_; 1, and a?,(A) is the sum with Q.

By Proposition XI.20, we have

u?(4|D|)P~t
(11.11) (2, TnZayso = D(t‘|—(|22,)ai(v4)-
p—t
Similarly, we have
_ _ u?(4|D|)P~ -
(11.12) (Z,TnZa)w = D(t_|—(|233)a3n(~'4)-
p—t

Note that it is A in the right hand side and not A.
On the other hand, (Z, T}, Z 4)a, can be computed exactly as in Chapter VI, since

local heights at places above ¢ not equal to p (for the p-adic heights) or co (for the

archimedean heights) are determined by intersection on the special fiber. One sees

from a calculation entirely similar to Proposition VI.5 that

u(4| D]y

D (%)

p—t

(Z, T Z A )gn = al (A).

(Note that there is a notation clash here: the function o 4(n) in VL5 is the p-adic

analogue of what is called ¢/4(n) above.) Similarly,

w(4[D)P*
—2am A .
-2y A

p—t

(Z,TrnZA)in =
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One can either compute this directly as before, or note that

<Z7 TmZA>ﬁn - <TmZ’ Zj>ﬁn

= <Z7 Tm Zj>ﬁn

The first equality here is proved much as in Lemma IV.11.

Finally, the terms (Z, T;,Z 1), {Z, TinZ 1), {Z, TrnZ 1)gn, and {(Z,T,,Z A g are
immediately seen to vanish by orthogonality. For the heights at infinity, this is
Proposition XI.20. For the heights at the finite primes, this is ultimately because
the cup product pairing on H'(A) is alternating (see the proof of Proposition VL5).

Recall we defined H,,(A) = (Z + Z, T;,(Za + Z4) das. From the four equations
above, we cannot expect (11.10) to hold unless A = A. In general, we can only hope

for:

(11.13) H,(A) + H,(A) = a,(A) + a,(A),

which is the desired equality in Theorem X.1. And indeed, this follows from the four
formulas above applied to both A and A.

Equation (11.13) is already remarkable in that it relates archimedean heights of
generalized Heegner cycles to Fourier coefficients of a certain modular form encoding
the central derivatives of Rankin-Selberg L-functions. As was indicated earlier, if we

assume that the generating series

Fu+Fg:= Y (Hy(A) + Hy(A)g"

m=1

is a modular form of weight 2k and level N, then one deduces that F 4 + F ;1 equals
ga + g, up to addition of an old form (recall, g4 = > a,,(A)¢™). This follows by a

lemma of Nekovér [N3, I1.5.7], which says that knowing the mth Fourier coefficients
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of a modular form for all m (prime to N) such that r4(m) = 0 in fact determines the
modular form up to the addition of an old form. From the equality of these modular
forms, one deduces (similar to the argument in [GZ], though there is a bit more work
to do in our setting) a formula relating L'(f, x,k +t) = >, L4(f, x, k + t) to the
height of the f-isotypic component of the algebraic cycle >, ,(Z4 + Z4).

Unfortunately, it is not known (at least to us) that the generating series above is
modular. To unconditionally prove the desired formula

(11.14) L'(fx, k+1t) = <2(ZA+ZA),Z(ZA+ZA)> :
A GS

A

one can instead follow the approach of [Z] in the case t = 0. This requires proving the
equality (11.13) in the more delicate situation where Z and T,,Z 4 have intersecting
supports (i.e., the case r4(m) # 0, but m still prime to N). One then needs to
compare the Hecke action on the space of generalized Heegner cycles with the usual
Hecke action on the space of modular forms. Zhang’s approach for computing self-
intersections fits nicely into the framework of Brylinski that we have used here, so
we can use this approach in our situation as well. We plan to explain this in detail

and complete the proof of (11.14) in a separate paper.
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