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CHAPTER I

Introduction

The purpose of this thesis is to complete the work of Kogan and Miller [KM05b]

in degenerating a Schubert variety into a reduced union of toric subvarieties of the

Gelfand-Tsetlin toric variety. This semi-toric degeneration1 of a Schubert variety is

stated in [KM05b, Theorem 8], however, the proof contained therein is incomplete.

We also obtain as a corollary, semi-toric degenerations of Richardson varieties.

Let Mn denote the space of n × n matrices over the complex numbers, GLn

denote the general linear group of n × n invertible matrices, and B− denote the

Borel subgroup of lower triangular matrices of GLn. Let F`n be the flag variety

of complete flags in Cn. For the permutation w ∈ Sn, the flag variety F`n has

subvarieties Xw and Xw called a Schubert variety and an opposite Schubert variety,

respectively. For permutations u 6 w, let Xw
u denote the Richardson variety defined

as the intersection Xw
u := Xu ∩Xw.

Following [KM05b], we construct the degeneration of F`n as the GIT quotient

B−\\(Mn × A1). In particular, the space Mn × A1 is the total space of Gröbner

degenerations of matrix Schubert varieties studied in [KM05a]. Matrix Schubert

varieties are subvarieties of Mn indexed by permutations and are closely related to

Schubert varieties. For w ∈ Sn, we denote the matrix Schubert variety and opposite
1In a semi-toric degeneration, the irreducible components are toric varieties.

1
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matrix Schubert variety by X̃w and X̃w, respectively.

To describe the relation between the degenerations of a Schubert variety and a

matrix Schubert variety, let

ρ : Mn × A1 −→ N−\\(Mn × A1)

be the quotient map of affine varieties over A1. We denote by ρ0 the specialization

of ρ to the t = 0 fiber. Let X̃w be the flat family degenerating X̃w and Xw :=

ρ(X̃w) be its scheme-theoretic image that is flat over A1 as well. The affine variety

N−\\(Mn × A1) is the multi-cone over B−\\(Mn × A1) so that Xw is the multi-cone

over the degeneration of Xw inside B−\\(Mn × A1). Then,

• the irreducible components of the initial scheme limt→0 X̃w are parametrized by

reduced pipe dreams [KM05a, Theorem B]; so,

• the image under ρ0 of the components of limt→0 X̃w correspond to a union of

faces of the GT-cone parametrized by reduced pipe dreams.

It does not follow from the above two facts that the initial scheme limt→0Xw is equal

to the reduced union of affine toric subvarieties corresponding to faces of the GT-

cone. In general, the fiber of the image may properly contain the image of the fiber

[EH00, pg. 216]. A specific example of this phenomenon in our context is included

in Chapter IV.

The additional ingredient in our proof is the application of Standard Monomial

Theory (SMT) [LS86] to parametrize the lattice points of the GT-cone. In particular,

we show that the SMT basis of a Schubert variety are in bijection with lattice points

of faces of the GT-cone corresponding to reduced pipe dreams.

Similar results have been obtained by [GL96, DY01] for a subset of Schubert

varieties and by [Chi00] for all Schubert varieties. The degeneration of [Cal02] applied
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deep results from Kashiwara-Lusztig’s parametrization of dual canonical basis and

[MG08] degenerated generalized Richardson varieties after [Cal02].

In a recent work of [KST12], the Gelfand-Tsetlin polytope appears in the descrip-

tion of the cohomology ring of the flag variety and a certain union of its faces is

associated with global sections of line bundles Lλ restricted to the Schubert variety

Xw. Our works differ in that for us these results follow as a corollary of flat degener-

ations of Schubert and Richardson varieties. We also show that standard monomials

for Richardson varieties correspond naturally to faces of Gelfand-Tsetlin polytope

indexed by reduced pipe dreams.

This thesis is organized as follows. In Chapter II, we introduce the combinato-

rial objects that encode much of the structure of algebraic varieties that we study.

In Chapter III, we define those algebraic varieties and present the background on

Gröbner degeneration. In Chapter IV, we present the toric degeneration of the flag

variety adapted from [KM05a] and construct an involution that maps the degenera-

tion of a Schubert variety to that of an opposite Schubert variety. We also present

our results on semi-toric degenerations of Schubert varieties localized to the degen-

eration of the opposite big cell. In Chapter V, we apply SMT to conclude that

Richardson varieties degenerate to a reduced union of toric subvarieties indexed by

pairs of reduced pipe dreams.
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The following table summarizes the notation of this thesis.

N nonnegative integers

[a, b] set of integers {a, a+ 1, . . . , b}
[n] set of integers {1, 2, . . . , n}
2[n] power set on [n](

[n]
k

)
set of k-element subsets of n

λ partition λ = (λ1 > λ2 > · · · > λn)

Λ+
n the set of partitions λ with at most n parts

Λ++
n the set of partitions λ such that λ1 > λ2 > · · · > λn

Sn the symmetric group of permutations

SSYT(n) set of semistandard tableaux with entries in [n]

SSYT(n;λ) subset of SSYT(n) consisting of tableaux of shape λ

K±(T ) the left/right key tableau for T

w±(T ) the canonical lift of K±(T )

PDn the set of pipe dreams of rank n

RPw the set of reduced pipe dreams associated with w ∈ Sn
GT(n) the semigroup of integer Gelfand-Tsetlin patterns of rank n

GT(n;λ) subset of GT(n) with shape λ

Pλ Gelfand-Tsetlin polytope of shape λ

Mn the set of n× n matrices over C
GLn the set of invertible matrices of Mn

B− the Borel subgroup of GLn consisting of lower triangular matrices

N− the subgroup of B− consisting of matrices with 1’s on the diagonal

F`n the flag variety of complete flags in Cn

X̃w, Ĩw matrix Schubert variety and Schubert determinantal ideal for w

X̃w, Ĩw opposite matrix Schubert variety and its ideal

Xw, Iw Schubert variety and Schubert ideal for w ∈ Sn
Xw, Iw opposite Schubert variety and opposite Schubert ideal for w ∈ Sn
Xw
u , Iwu Richardson variety Xu ∩Xw and its ideal

inω(·) the initial term with respect to weight ω

Z the generic n× n matrix of indeterminates (zij)

P the set of Plücker variables {pI : I ∈ 2[n]}
P (k) the subset of P consisting of {pI : I ∈

(
[n]
k

)
}

Q the set of degenerated Plücker variables {qI : I ∈ 2[n]}
Q(k) the subset of Q consisting of {qI : I ∈

(
[n]
k

)
}

X the set of indeterminates {xI : I ∈ 2[n]}
X(k) the set of indeterminates {xI : I ∈

(
[n]
k

)
}



CHAPTER II

Combinatorial Background

2.1 Conventions and notation

For integers a and b, let [a, b] denote the interval {a, a + 1, . . . , b} and [n] denote

the initial interval {1, 2, . . . , n}. Let 2[n] denote the power set on [n] and
(

[n]
k

)
denote

the set of k-element subsets of [n].

A partition λ = (λ1, λ2, . . . , λn) is a weakly decreasing sequence of nonnegative

integers λ1 > λ2 > · · · > λn. We identify partitions that differ by trailing zeros, so

for example, (5, 3, 2, 1, 0, 0) is identified with (5, 3, 2, 1). A partition is represented

by its (Young or Ferrers) diagram, which is a left-justified array of boxes (or cells)

with λi boxes in row i. Let Λ+
n denote the set of partition with at most n parts and

Λ++
n denote the subset of Λ+

n consisting of partitions that are strictly decreasing:

λ1 > λ2 > · · · > λn.

Let Sn denote the permutation group on [n] = {1, 2, . . . , n}. We write permu-

tations in one-line notation representing w ∈ Sn as the list w(1)w(2) . . . w(n). Our

convention for multiplying permutations is to read the product as composition of

maps so that (uw)(i) = u(w(i)) for u,w ∈ Sn. As a consequence of this convention,

the product w · (i, j) transposes values in positions i and j so w(i) and w(j), whereas

5
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multiplying (i, j) · w transposes values i and j. For example, in S5

24531 · (2, 5) = 21534 and (2, 5) · 24531 = 54231.

2.2 Permutations

2.2.1 Bruhat order

Let si = (i, i+1) be the adjacent transposition that interchanges i and i+1. As a

Coxeter group, Sn is generated by s1, s2, . . . , sn−1 with relations, s2
i = id, sisj = sjsi

if |i− j| > 1, sisi+1si = si+1sisi+1.

A word of size q is an ordered sequence Q = (sa1 , sa2 , . . . , saq) of adjacent transpo-

sitions of Sn. An ordered subsequence P of Q is called a subword of Q. An inversion

of w is a pair (i, j) ∈ [n]× [n] such that i < j and w(i) > w(j). The length `(w) of a

permutation w ∈ Sn is the number of its inversions. Each permutation w ∈ Sn can

be written as a product of simple transpositions as in w = si1si2 . . . siq . If q is mini-

mal among all such expressions for w, then the word si1si2 . . . siq or (si1 , si2 , . . . , siq)

is called a reduced word for w. The minimal number of generators appearing in a

reduced word for w is equal to the number of inversions of w so q = `(w). The word

Q represents w ∈ Sn if the ordered product of the simple reflection comprising Q is

a reduced word for w and Q contains w if some subsequence of P represents w.

The permutation matrix for w ∈ Sn is the n × n matrix with 1’s in coordinates

(i, w(i)) for i = 1, 2, . . . , n and 0’s elsewhere. For instance, the permutation matrix

for w = 2413 is

[
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

]
.

For k = 1, 2, . . . , n, let Sk × Sn−k ⊆ Sn denote the subgroup of permutations

that preserve the subsets [k] and [k + 1, n]. A permutation w ∈ Sn is called anti-

Grassmannian if it is equal to the maximal length permutation in its coset (Sk ×
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Sn−k)w. More explicitly, the set of anti-Grassmannian for a fixed k is equal to

S(k)
n := {w ∈ Sn : w(1) > w(2) > · · · > w(k) and w(k+1) > w(k+2) > · · · > w(n)}.

These permutations form a system of representatives of the coset space (Sk×Sn−k)\Sn.

Let πk : Sn →
(

[n]
k

)
be the map defined by πk(w) = {w(1), w(2), . . . , w(k)} for

w ∈ Sn. For convenience of notation, we write π for πk when the value of k is clear

from the context. Notice that πk restricts to a bijection of S
(k)
n with

(
[n]
k

)
which is the

way in which we identify anti-Grassmannian permutations with k-element subsets.

Definition II.1. For w ∈ Sn, we define the rank function rw : [n]× [n] −→ Z by

rw(i, j) := #(w[i] ∩ [j]).

Notice that rw(i, j) is equal to the rank of the i × j submatrix on the upper left

corner of the permutation matrix for w or, equivalently, rw(i, j) counts the number

of nonzero entries in the upper left i× j corner of the permutation matrix.

Definition II.2. (Strong) Bruhat order is a partial order on Sn defined by u 6 w for

u,w ∈ Sn if ru(i, j) > rw(i, j) for all i, j. A partial order on
(

[n]
k

)
closely related to

the Bruhat order is given by I 6 J if im 6 jm where I = {i1 > i2 > · · · > ik} and

J = {j1 > j2 > · · · > jk}.

A well-known criterion for comparison in Bruhat order says that u 6 w if and

only if πk(w) 6 πk(w) for all k ∈ [n]. The subword property and chain property are

two fundamental properties of Bruhat order.

Theorem II.3. [BB05, Theorem 2.2.2 (Subword Property)] Let w = sa1sa2 . . . saq be

a reduced expression. Then, u 6 w if and only if there exists a reduced expression

u = sai1sai2 . . . saip where 1 6 i1 6 i2 6 · · · 6 ip 6 q.
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Theorem II.4. [BB05, Theorem 2.2.6 (Chain Property)] If u < w, there exists a

chain u = v0 < v1 < · · · < vk = w such that `(vi) = `(u) + i for i = 1, 2, . . . , k.

Let w0 ∈ Sn be the permutation that sends i 7−→ n− i+ 1 for each i ∈ [n] so that

in one-line notation w0 = n(n− 1) . . . 1. We call w0 the longest permutation, or long

word of Sn. It is characterized by the fact that it is the unique maximal element in

Bruhat order so that w < w0 for all w ∈ Sn \ {w0}.

2.2.2 Demazure product

For the permutation w and adjacent transposition s ∈ Sn, we define the product

w ∗ s ∈ Sn by

(2.1) w ∗ s =


ws if ws > w,

w if ws < w.

Then, define w ∗ v by choosing a reduced expression sa1sa2 . . . sap for v and setting

w ∗ v := (((w ∗ sa1) ∗ sa2) ∗ . . . ) ∗ sap . In particular, if wv is length-additive, then

w ∗ v = wv. It turns out that the product w ∗ v is independent of choice of reduced

word for v. Further background on the Demazure product can be found in [KM05b].

Definition II.5. Let Q = (sa1 , sa2 , . . . , saq) be a word. Then, let Dem(Q) to be the

permutation of Sn defined by Dem(Q) := ((sa1 ∗ sa2) ∗ . . . ) ∗ saq .

The main property of Demazure products used in this thesis is that the Bruhat

order on Demazure products detects reduced subwords of arbitrary words just as

Bruhat order detects reduced subwords of reduced words.

Lemma II.6. [KM05b, Lemma 3.4] Let Q be a word in Sn and let w ∈ Sn. Then,

Dem(Q) > w if and only if Q contains w as a subword.
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2.3 Tableaux

2.3.1 Jeu de taquin

Definition II.7. A semistandard Young tableau 1 is a filling of the boxes of a diagram

by integers so that the rows are weakly decreasing and columns are strictly decreasing.

We call these integers the entries of the tableau. Formally, a semistandard Young

tableau of shape λ is an array of positive integers T = (tij) for i = 1, 2, . . . , n and

j = 1, 2, . . . , λi such that

• rows weakly decrease: ti1 > ti2 > · · · > ti,λi ;

• columns strictly decrease: t1j > t2j > · · · > tλ′j ,j.

Given partitions µ = (µ1, µ2, . . . , µm) and λ = (λ1, λ2, . . . , λn), we write µ ⊆ λ,

and say that λ contains µ, to mean that m 6 n and µi 6 λi for i = 1, 2, . . . ,m. A

skew diagram or skew partition is the diagram obtained by removing a smaller Young

diagram contained in a larger Young diagram after aligning the upper left corners of

the two diagrams. The skew diagram resulting from removing µ from λ is denoted

λ/µ.

Analogously, a skew tableau is a filling of skew diagram with positive integers such

that the filling is strictly decreasing in the columns and weakly decreasing in the

rows. The (possibly skew) partition associated to the diagram of a tableau is called

its shape. When it is necessary to make the distinction, we say that a tableau T has

straight shape if the shape of T is a partition or that T has a skew shape if the shape

of T is a skew partition.

Notation II.8. Let SSYT(n) denote the set of semistandard tableaux with entries

in [n] and SSYT(n;λ) denote the subset of SSYT(n) consisting of tableaux of shape

1Our decreasing convention on the entries of a tableau is the opposite of the usual increasing convention.
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λ, so SSYT(n) =
⊔
λ SSYT(n;λ).

Let λ/µ be a skew shape. An inside corner is a box in the removed diagram µ

such that neither the box directly below nor directly to the right are in µ. Notice

that a skew shape that is not a partition has one or more inside corners. An outside

corner is a box in λ such that neither box below or to the right is in λ. Each

skew tableau determines a unique tableau of straight shape called its rectification

(redressement) which can be obtained by applying jeu de taquin or sliding algorithm.

The sliding algorithm takes a skew tableau S and an inside corner x, which we regard

as an empty box, and successively slides the empty box through the skew tableau by

interchanging the empty box with larger of its neighbors either directly to the right

or directly below. If the entries in the two neighbors are equal, then the empty box

is interchanged with the box below; if only one of the two neighbors is in the skew

tableau, then the empty box is interchanged with that neighboring box.

Locally, a typical step in the sliding algorithm looks like

b
a
−→ a b

•
(a > b), b

a
−→ a

b
(a > b).

This process of interchanging neighbors is repeated until the empty box arrives at an

outside corner, i.e., there are no neighbors to the right nor below. Sliding an inside

corner through a skew tableau as described above results in another skew tableau.

This sliding algorithm is reversible by running the sliding algorithm backwards.

Reverse jeu de taquin or reverse slide takes as input a skew tableau S ′ together with an

outer corner y, and outputs a skew tableau. Reverse sliding a skew tableau results

in another skew tableau and reverse slide and forward slides are inverse operations

on tableaux.

Notation II.9. Let S be a skew tableau with inside corner x and outside corner y.
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We write jdtx(S) to denote the skew tableau obtained by sliding x through S and

jdty(S) to denote the skew tableau resulting from reverse sliding y through S.

Given a skew tableau S, the sliding algorithm can successively be applied until

there are no inside corners; the result is a tableau of straight shape. It is a funda-

mental result from tableaux theory that this resulting tableau is independent of all

intermediate choices of inside corners. It follows that there exists a unique straight-

shaped tableau that can be computed from S by applying any sequence of jeu de

taquin slides. We call this resulting tableau of straight shape, the rectification of S

and write rect(S).

The following example illustrates how a sequence of slides can be applied to the

skew tableau S = 4 2 2
2
1

3 2
2

to obtain its rectification rect(S):

(2.2)

4 2 2
2
1

3 2
2

→ 4 2 2
2

2 1
3
2

→ 4 2 2
2

3 2 1
2

→ 4 2 2
2 2

3 1
2

→ 4 2 2
3 2 2
2 1

→ 4 2 2 2
3 2
2 1

→ 4 2 2 2 2
3 1
2

.

2.3.2 Key tableaux

Key tableaux were introduced in [LS90] as a combinatorial tool for understanding

certain bases of global sections of line bundles called standard monomials (Chap-

ter V). Our account follow that of [FL94, Ful97] in applying jeu de taquin to compute

keys. See [Ful97] for the proofs of facts cited here, and [RS95] for a parallel account

from the persepective of the Plactic monoid.

A skew tableau is called frank if its column heights are a permutation of the

column heights of its rectification. For example, the first, second, third, sixth, and

seventh skew tableaux in (2.2) are frank.
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Proposition II.10. [Ful97, Appendix A] Let T be a tableau of shape λ and ν/µ be

a skew diagram whose column heights are a permutation of the column heights of λ.

Then, there exists a unique skew tableau S on ν/µ that rectifies to T . In other words,

there exists a unique frank skew tableau S of given skew shape that rectifies to T .

In fact, the proof in [Ful97] implies that the entries of S depend only on the

ordered heights of its columns. For a given permutation of column heights, the most

compact frank skew tableau is obtained by aligning each successive pair of columns at

the top if the left column is longer or at the bottom if the right column is longer. The

S of Proposition II.10 for any other skew shape with these ordered column heights

is obtained by shifting the columns of the compact form further apart. For example,

for T = 4 4 3 3
3 2 2
1

and column heights (2, 3, 2, 1), S = 4 3 3
4 2 2
3 1

is in compact form and

S ′ = 3
4 3
2 2

4 1
3

is another franks skew tableau rectifying to T . We will usually write

frank skew tableaux in their compact form.

When T has two columns finding S is relatively easy: reverse slide the empty

boxes at the bottom of the second column. For example,

T = 5 4
3 2
2
1

−→ 5 4
3
2 2
1

−→ 5 4
3

2 2
1

−→ 4
5 3
2 2
1

−→ 4
5 3
2 2
1

−→ 4
5 3
2 2

1

−→ 4
5 3
2 2

1

−→ 4
3

5 2
2 1

= S.

We call this process or its inverse (forward sliding the empty boxes at the top of

the first column) on adjacent columns, an elementary move. It follows that we can

find all frank skew tableau S rectifying to a given tableau T by successively applying

elementary moves to adjacent columns. Independence of the result from intermediate

choices is a consequence of the the fact that entries of S are already determined by

ordered column heights. In fact, this method of computing frank skew tableaux

implies additional properties for the left-most and right-most columns.
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Corollary II.11. For a given fixed rectification T , the entries of the left-most column

of S are determined by the height of that column and an analogous claim holds true

for the right-most column.

So for a given column length c of T , it makes sense to talk about the left-most

and right-most columns of S of height c. Let Lc and Rc denote the sets of elements

in the left-most and respectively, right-most columns of S.

Corollary II.12. If c < d, then Lc ⊂ Ld and Rc ⊂ Rd.

Definition II.13. A tableau is called a key, or a key tableau if the jth column contains

that of the (j + 1)st column for all j. For a tableau T , let left and right key of T

be the tableaux of identical shape as T whose columns of height c consists of the

elements of Lc and Rc, respectively. We write K−(T ) and K+(T ) to denote the left

and right key, respectively.

Example II.14. We apply a sequence of elementary moves to T = 5 4 3
4 1
2

to see that

5 3
4 4
2 1 //

5
3

4 4 1
2

��5 4 3
4 1
2

@@

��

5
4 3

4 2 1

3
5 4 1
4
2 //

5 3
4 1

4 2

@@

so K−(T ) = 5 4 4
4 2
2

and K+(T ) = 5 3 3
3 1
1

.
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A decreasing chain C1 ⊇ C2 ⊇ · · · ⊇ C` of subsets of [n] determines two permu-

tation in Sn with the one being “minimal” and the other “maximal.” The minimal

lift in one-line notation is obtained by listing the elements of C` in increasing order

followed by the elements of C` \ C`−1 in increasing order and so forth, until finally

one lists the elements of [n] \ C` in increasing order. Similarly, the maximal lift is

obtained by listing the elements in decreasing order.

Definition II.15. For T ∈ SSYT(n), we define the canonical lift w−(T ) of K−(T ) to

be the permutation obtained as the minimal lift of {Lc} and similarly, we define the

canonical lift w+(T ) of K+(T ) to be the permutation obtained as the maximal lift of

{Rc}. For T = 5 4 3
4 1
2

as in the above example, w−(T ) = 42513 and w+(T ) = 31542.

2.4 Pipe dreams

Reduced pipe dreams index the monomials of a Schubert polynomial generaliza-

tion the role of semistandard Young tableaux for a Schur polynomial. For further

background, see [MS05, Chapter 16] and [KM05a, BB93].

Definition II.16. A pipe dream of rank n is a tiling of a n × n square diagram by

crosses “ ” and elbows “ .” Let PD(n) denote the set of pipe dreams of size n.

We only consider pipe dreams that are subsets of the pipe dream D0 ⊆ [n]× [n] that

has crosses in the triangular region strictly above the main antidiagonal ((i, j) ∈ D0

if i+ j 6 n) and elbow joints elsewhere. Consequently, our pipe dreams always fit

inside the staircase shape (n, n− 1, . . . , 1).

We often identify a pipe dream with its crossing tiles and consider a pipe dream

as a subset of [n] × [n] consisting of the coordinates of its crossing tiles. Similarly,

when we draw pipe dreams, we often do not draw elbows for ease of notation.
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Example II.17. The pipe dreams with n = 5 corresponding to {(2, 1), (2, 2), (2, 3), (3, 1), (3, 2)}

and {(1, 2), (2, 1), (2, 2), (3, 1)} are

(2.3)

+ + +
+ +

1 2 3 4 5
1
5
4
2
3

+
+ +
+

1 2 3 4 5
1
4
2
3
5

We label the pipe entering the diagram horizontally by its exit column. Reading

the labels on pipes from top to bottom yields a permutation in one-line notation.

Let perm(D) denote the resulting permutation for pipe dream D; the pipe entering

through row i exits through column perm(D)(i). The permutations for pipe dreams

in (2.3) are 15423 and 14235.

We call a pipe dream reduced if each pair of pipes crosses at most once. For

instance, the first pipe dream in (2.3) is reduced but the second is not.

Definition II.18. For w ∈ Sn, let RPw denote the set of reduced pipe dreams such

that perm(D) = w for all D ∈ RPw. So for every pipe dream in RPw, the pipe

entering row i exits the diagram through column w(i).

For example, RP2143 consists of three reduced pipe dreams:

1 2 3 4
2
1
4
3

1 2 3 4
2
1
4
3

1 2 3 4
2
1
4
3

For a pipe dream D ∈ PD(n), let Q(D) be the word obtained from D by reading a

crossing tile in position (i, j) as the adjacent transposition si+j−1, where the reading

order is from right to left in each row starting from top row and ending with the

bottom row. For example, the words associated with the two pipe dreams in (2.3)
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are s4s3s2s4s3 = 15423 and s2s3s2s3 = 14235. In particular, the pipe dream D0

corresponds to the word

Q(D0) = (sn−1sn−2 . . . s1)(sn−1sn−2 . . . s2) . . . (sn−1sn−2)(sn−1),

which is the triangular form of the long word w0 = n(n − 1) . . . 1. Moreover, since

we only consider pipe dreams that are subsets of D0, we may think of pipe dreams

as subwords of Q(D0).

Lemma II.19. [KM05a, Lemma 1.4.5] Let D ∈ PD(n) be a pipe dream. Then,

the product of Q(D) equals the permutation perm(D). Furthermore, the number of

crossing tiles in D is at least `(perm(D)) with equality if and only if D is a reduced

pipe dream in RPperm(D).

So a reduced pipe dream D ∈ RPw corresponds to a reduced subword of w0 and

perm(D) is equal to the product of Q(D).

Definition II.20. Let D ∈ PD(n) be a pipe dream. We define Dem(D) to be the

Demazure product of Q(D).

As a consequence of Lemma II.19, if D ∈ RPw is reduced, then Dem(D) =

perm(D) = w, whereas if D ∈ PD(n) is not reduced, then Dem(D) > perm(D) by

Lemma II.6.

+ + + +

+ + +

+ +

+

1 2 3 4 5

5

4

3

2

1

Figure 2.1: D0 for w0 = 654321
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2.5 Gelfand-Tsetlin polytope

Definition II.21. A Gelfand-Tsetlin pattern (GT-pattern) of rank n is a triangular

array Γ = (γi,j)i+j6n+1 such that γi,j > γi,j+1 > γi+1,j. We typically represent a

GT-pattern Γ as

γ1,1 > γ1,2 > · · · > γ1,n

>

>

>

> · · · >

γ2,1 > γ2,2 > · · ·

>

> · · · >
... > · · ·

>

>

γn,1

We denote the semigroup of integer GT-patterns by GT(n). We define the shape

of an integer GT-pattern Γ ∈ GT(n) to be the partition λ = (γ1,1, γ2,1, . . . , γn,1),

which is the first column of Γ. For a given partition λ = (λ1 > λ2 > · · · > λn), let

GT(n;λ) denote the subset of GT-patterns in GT(n) with shape λ.

Definition II.22. Let Pλ ⊆ R(n2) be the lattice polytope defined as the convex hull

of integer Gelfand-Tsetlin patterns of shape λ called the Gelfand-Tsetlin polytope

(GT-polytope). The lattice points of Pλ are integer GT-patters of GT(n;λ).

GT-polytope is normal meaning that if dm ∈ dPλ ∩ Z(n2) then m ∈ Pλ ∩ Z(n2) for

all d > 1. So normality means that Pλ has enough lattice points to generate the

lattice points in all integer multiples of Pλ. Faces of normal polytopes are normal as

well.

GT-patterns were introduced in [GC50] to index a basis of irreducible represen-

tations of GLn compatible with decomposition into irreducible representations for

subgroups GLk 6 GLn for k = 1, 2, . . . , n.
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There exists a well-known bijection between integer GT-patterns of rank n and

tableaux with entries in [n] preserving shapes. For partitions λ = (λ1 > λ2 > · · · >

λ`) and µ = (µ1 > µ2 > · · · > µm), we write λ D µ if ` > m and λ1 > µ1 >

λ2 > · · · > λm > µm > λm+1 > · · · > λ`). To describe the bijection GT(n;λ) −→

SSYT(n;λ), we consider Γ ∈ GT(n;λ) as a interlaced sequence of partitions λ =

λ(1) D λ(2) D · · · D λ(n) where λ(j) is equal to the jth column of Γ. Then, map Γ to

the tableau of shape λ such that the boxes of the skew shape λ(j)/λ(j+1) are labeled

j. The defining conditions of a Gelfand-Tsetlin pattern imply that λ(j)/λ(j+1) is a

horizontal strip so the above map results in a semistandard tableau.

For the inverse map SSYT(n;λ) −→ GT(n;λ), send T ∈ SSYT(n;λ) to the se-

quence of partitions

(2.4) λ = λ(1) ⊇ λ(2) ⊇ · · · ⊇ λ(n)

where each λ(j) for j = 1, 2, . . . , n is the shape of the sub-tableau of T consisting of

those boxes containing entries from the set [j, n]. Semistandardness of T is equivalent

to λ(j)/λ(j+1) being a horizontal strip for j = 1, 2, . . . , n− 1 so the partitions in (2.4)

are interlaced. We denote the GT-pattern equivalent to this chain of partitions,

Γ(T ). For example,

T = 5 4 3

4 1

2

←→ 3 3 3 2 1

2 1 1 1

1 1 0

0 0

0

= Γ

where (3, 2, 1, 0, 0) D (3, 1, 1, 0) D (3, 1, 0) D (2, 1) D (1) is the nested sequence of

partitions.



CHAPTER III

Geometric Background

3.1 Richardson varieties

Let GLn be the general linear group of invertible matrices in Mn and B− be the

Borel subgroup of GLn of lower-left triangular matrices. Let {e1, e2, . . . , en} denote

the standard basis for Cn.

Definition III.1. A complete flag, or flag F• = (F1 ⊂ F2 ⊂ · · · ⊂ Fn) is an increasing

sequence of subspaces of Cn such that Fi has dimension i for i = 1, 2, . . . , n. For

w ∈ Sn, the coordinate flag wE• is defined as

wE• := span{ew(1)} ⊂ span{ew(1), ew(2)} ⊂ · · · ⊂ span{ew(1), ew(2), . . . , ew(n)}.

In particular, we call E• := 1E•, the forward flag and Ẽ• := w0E•, the opposite, or

backward flag.

Definition III.2. Flag variety F`n is the set of complete flags in Cn. We also identify

F`n with the homogeneous space B− \GLn by the right GLn-equivariant map that

sends B−g to F• where Fi of F• is given by the span of the first i-rows of the matrix

g ∈ GLn.

Definition III.3. We define the Schubert cell X◦w ⊆ F`n as the set

X◦w := {F• ∈ F`n : rank(Fi → Ej) = rw(i, j) for 1 6 i, j 6 n}

19
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where rw is the rank function defined in Section 2.2.1 and the linear map Fi → Ej

is the restriction of the linear projection Cn −� Ej.

We define the Schubert variety Xw := X◦w as the closure of the Schubert cell X◦w

in F`n. As a set,

Xw = {F• ∈ F`n : rank(Fi → Ej) 6 rw(i, j) for 1 6 i, j 6 n}.

The coordinate flag wE• is a point in X◦w and vE• is a point in Xw if v > w.

Both sets, X◦w and Xw have codimension `(w) in F`n. There are well-known cell

decompositions,

F`n =
⊔
w∈Sn

X◦w, Xw =
⊔
v>w

X◦v .

Similarly, we define the opposite Schubert cell by

(Xw)◦ := {F• ∈ F`n : rank(Fi → Ẽj) = rw0w(i, j) for 1 6 i, j 6 n}

and the opposite Schubert variety by

Xw := {F• ∈ F`n : rank(Fi → Ẽj) 6 rw0w(i, j) for 1 6 i, j 6 n}.

We can reinterpret the above definitions from the perspective of the homogeneous

space B− \GLn. Let g be an invertible matrix and F• be the flag determined by

the row spans of g. Then, the flag F• is in X◦w (respectively, Xw) if and only if,

for all 1 6 i, j 6 n, the rank of the upper-left i × j-submatrix of g is the same as

(respectively, less than or equal to) the rank of the corresponding submatrix of the

permutation matrix for w. Similarly, F• is in (Xw)◦ (respectively, Xw) if the ranks

of the upper-right submatrices of g are equal to (respectively, less than or equal to)

those of w.

Definition III.4. For u,w ∈ Sn, Richardson variety is defined as the intersection,

Xw
u = Xu ∩Xw and (Xw

u )◦ = X◦u ∩ (Xw)◦.
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The varieties Xw
u and (Xw

u )◦ are nonempty if and only if u 6 w, in which case

both varieties have dimension `(w) − `(u) and Xw
u is reduced and irreducible. The

coordinate flag vE• is a point in Xw
u if and only if u 6 v 6 w.

We refer to [Ful97, RS97, Man01] and [Bri05] for further background on the ge-

ometry and combinatorics of flag and Schubert varieties.

3.2 Matrix Schubert varieties

Let Mn be the variety of n×n matrices over C and Z = (zij) be a generic matrix

of indeterminates though occasionally Z will denote an element of Mn. We write

C[Z] for the polynomial ring over C with indeterminates zij, 1 6 i, j 6 n so that

Mn = Spec(C[Z]).

Definition III.5. Matrix Schubert variety X̃w is the subvariety of Mn defined by

X̃w = {Z ∈Mn : rank(Zi×j) 6 rw(i, j) for 1 6 i, j 6 n}

where Zi×j denotes the upper-left i× j submatrix of Z and rw is the rank function

for w.

Matrix Schubert varieties and their defining ideals were introduced in [Ful92]

though in a slightly different language from ours.

Definition III.6. Let the Schubert determinantal ideal Ĩw be the ideal generated by

the minors of Zi×j of size 1 + rw(i, j) for 1 6 i, j 6 n. Notice that the polynomials

of Ĩw carve out X̃w from Mn.

Schubert determinantal ideals are known to be prime so the ideals Ĩw and I(X̃w)

coincide. See [Ful92, KM05a, MS05] for further details on various algebraic and

geometric properties of matrix Schubert varieties and Schubert determinantal ideals.
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For example, five of the six matrix Schubert varieties for n = 3 are linear sub-

spaces:

Ĩ123 = 0, X̃132 = M3

Ĩ213 = 〈z11〉, X̃213 = {Z ∈M3 : z11 = 0}

Ĩ231 = 〈z11, z12〉, X̃231 = {Z ∈M3 : z11 = z12 = 0}

Ĩ312 = 〈z11, z21〉, X̃312 = {Z ∈M3 : z11 = z21 = 0}

Ĩ321 = 〈z11, z12, z21〉, X̃321 = {Z ∈M3 : z11 = z12 = z21 = 0}.

For the remaining permutation w = 132,

Ĩ132 = 〈z11z22 − z12z21〉, X̃132 = {Z ∈M3 : rank(Z2×2) 6 1},

that defines the set of matrices whose upper-left 2× 2 block is singular.

3.3 Gröbner degeneration

Gröbner bases and their analogues for subalgebras allow us to degenerate in-

teresting but “complicated” rings to simpler objects defined by monomials, hence

accessible through combinatorial methods. Geometrically, Gröbner bases degener-

ate varieties into schemes defined by monomial ideals. Their subalgebra analogues

degenerate parametrically presented varieties into toric varieties. Our references for

the material presented here are [BC03, Stu96] and [Eis95, Chapter 15].

3.3.1 Gröbner/SAGBI bases

Let S := C[z1, z2, . . . , zm] be the polynomial ring in m indeterminates. The mono-

mials in S are denoted za := za11 z
a2
2 . . . zamm ; we at times identify monomials with lat-

tice points in Nm by identifying za with a = (a1, a2, . . . , am) in Nm, where N denotes

the set of non-negative integers.
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A total order < on the monomials in S is a term order if z0 = 1 is the unique

minimal element and za < zb implies that za ·zc < zb ·zc for all c ∈ Nm. Most widely

used examples of term orders include the lexicographic order, graded lexicographic

order, and graded reverse lexicographic order.

Given a term order < and a nonzero polynomial f =
∑

a caz
a in S, we define the

initial term of f with respect to < to be the term caz
a of f such that za′ < za for all

za′ ’s in the support of f that are distinct from za. Let in<(f) denote the initial term

of f .

Definition III.7. Let I be an ideal of S. Define the initial ideal of I with respect to

< to be the monomial ideal,

in<(I) := 〈in<(f) : f ∈ I〉.

We note with emphasis that in<(I) is not usually generated by the initial terms

of a minimal generating set for I. Monomials that do not lie in in<(I) are called

standard monomials.

Definition III.8. A finite subset G< = {g1, g2, . . . , gs} of I is called a Gröbner basis

for I with respect to <, if in<(I) = 〈in<(g1), in<(g2), . . . , in<(gs)〉.

Let R be a finitely generated subalgebra of S. Fix a term order < on S. Define

the initial algebra in<(R) as the C-vector space spanned by in<(f) for f ∈ R.

Definition III.9. A finite subset S< of R is called a SAGBI basis of R with respect

to <, if in<(R) is generated as a C-algebra by in<(f) for f ∈ S. The term SAGBI is

the acronym for “Subalgebra Analog to Gröbner Bases for Ideals.”

The initial algebra in<(R) need not be finitely generated so that there is no finite

SAGBI basis for R with respect to <. On the other hand, if in<(R) is finitely
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generated, then so is R, in which case R is generated as a C-algebra over a SAGBI

basis.

There are number of algorithms for computation of Gröbner and SAGBI bases

with the most well-known being Buchberger’s algorithm which takes as input a set

of generators for I and outputs a Gröbner basis.

3.3.2 Flat families

To present the deformation of initial ideals and algebras we generalize the notions

of initial objects with respect to term orders to initial objects with respect to weights.

Then, we display a construction of a flat family connecting the original objects to

their initial counterparts.

Let ω = (ω1, ω2, . . . , ωm) be a non-negative vector in Rm>0 called a weight vector.

For a nonzero f =
∑

a caz
a ∈ S, we define the initial term inω(f) to be the sum of

terms caz
a supported on f for which ω ·a := ω1a1 +ω2a2 + · · ·+ωmam is minimized.

Also, define ω(f) to be the minimum value of ω · a as a varies over the support of f .

Let S = C[z1, z2, . . . , zm] as in the previous section with term order <. Let I be

an ideal of S and R be a finitely generated subalgebra of S.

Definition III.10. Define the initial ideal inω(I) with respect to ω to be the ideal

generated by all initial terms so that

inω(I) := 〈inω(f) : f ∈ I〉.

A finite subset Gω = {g1, g2, . . . , gs} of I is called a Gröbner basis for I with

respect to ω if inω(I) = 〈inω(g1), inω(g2), . . . , inω(gs)〉.

Definition III.11. Define the initial algebra inω(R) with respect to ω as the C-

vector space spanned by inω(f) for f ∈ R. If inω(R) is finitely generated, a finite set
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Sω = {f1, f2, . . . , fs} is called a SAGBI basis for R with respect to ω, if inω(R) is

generated by {inω(f1), inω(f2), . . . , inω(fs)} as a C-algebra.

Note that inω(I) as defined above may not be a monomial ideal; however, it is when

ω is chosen sufficiently generically, eliminating ties among monomials. Moreover,

given ω ∈ Rm> such that inω(I) is a monomial ideal, we can define a new term order

<ω such that inω(I) = in<ω(I) [Stu96, Corollary 1.10]. Conversely, given an ideal,

or subalgebra and a term order, there exists a weight vector such that the initial

ideal, or initial algebra with respect to the term order can be realized in terms of the

weight vector.

Proposition III.12. [BC03, Proposition 3.8] If in<(R) is finitely generated as a

C-algebra, then there exists an integral weight ω ∈ Nm such that in<(R) = inω(R)

and in<(I) = inω(I).

Fix an ideal I ⊆ S and weight vector ω ∈ Rn>0. We define the set C[ω] ⊆ Rn>0 by

C[ω] := {ω′ ∈ Rn>0 : inω(I) = inω′(I)},

which is known to be a relative interior of a polyhedral cone inside Rm>0 [Stu96,

Proposition 2.3].

Lemma III.13. Let I be homogeneous and Gω = {g1, g2, . . . , gs} be a Gröbner basis

of I with respect to ω. Then, {ω′ ∈ Rn>0 : inω′(g) = inω(g) for g ∈ Gω} ⊆ C[ω].

Proof. Suppose ω′ ∈ Rn>0 such that inω′(g) = inω(g) for g ∈ Gω. Then, inω(I) ⊆

inω′(I) since inω(I) is generated by inω(g1), inω(g2), . . . , inω(gs). But by flatness of

passage from an ideal to its initial ideal, the Hilbert series of S/ inω(I) and S/ inω′(I)

are the same. So the inclusion, inω(I) ⊆ inω′(I) implies equality as in inω(I) =

inω′(I).
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In the ensuing discussion, we assume that the weight vectors are integral.

Informally, the flat family of algebras degenerating an ideal to its initial ideal can

be described as follows. For each t ∈ C∗, there is an automorphism of S that sends xi

to tωixi. Let It be the image of I under this automorphism. Notice that for t ∈ C∗,

all of the rings S/It are isomorphic to S/I, but as t approaches 0, the initial terms

of polynomials in It become dominant. Therefore, in the limit, the fiber over t = 0

is equal to S/ inω(I).

To make the above description more precise, for nonzero polynomial f =
∑

a cax
a ∈

S, we define

f̃ := t−ω(f)
∑
a

ca t
ω·a xa ∈ S[t].

By definition of ω(f), f̃ is equal to inω(f) plus t times a polynomial in S[t].

Definition III.14. Let I be an ideal of S. We define the ideal I of S[t] by I :=

〈f̃ ∈ S[t] : f ∈ I〉. Let Gω = {g1, g2, . . . , gs} be a Gröbner basis of I. Then, it is not

difficult to show that I = 〈g̃1, g̃2, . . . , g̃s〉.

The following theorem is fundamental to the degeneration of I to inω(I).

Theorem III.15. [Eis95, Theorem 15.17] Let I be an ideal of S. The C[t]-algebra

S[t]/I is free and, thus flat as a C[t]-module. Furthermore,

S[t]/I ⊗C[t] C[t, t−1] ∼= (S/I)[t, t−1],

S[t]/I ⊗C[t] C[t]/〈t〉 ∼= S/ inω(I).

It follows that S[t]/I is a flat family over C[t] whose fiber over t = 0 is S/ inω(I),

and fibers over t ∈ C∗ is S/I.

Geometrically, Theorem III.15 says that Spec(S[t]/I) ⊆ Am × A1 is a flat family

over A1. Moreover, if I is homogeneous, then so is I with respect to the usual
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N-grading of S, hence

Proj(S[t]/I) ⊆ Pm−1 × A1

is a flat family over A1. By construction the fiber over each t ∈ C∗ is Spec(S/I),

or Proj(S/I) while the fiber over t = 0 is Spec(S/ inω(I)) or Proj(S/ inω(I)), re-

spectively. We call this flat degeneration from an affine or projective scheme to the

scheme determined by the initial ideal a Gröbner degeneration.

Given a subalgebra with a finite SAGBI basis, we can similarly construct a flat

family degenerating the subalgebra to its initial algebra, which we call a SAGBI

degeneration. Let Sω be a SAGBI basis for R ⊆ S with respect to ω ∈ Nm.

Let A := C[x1, x2, . . . , xs] be the polynomial ring in s indeterminates and ω′ :=

(ω(f1), . . . , ω(fs)) ∈ Ns be the weight vector on A.

Let R be the subalgebra of S[t] generated by deformations of elements of the

SAGBI basis as elements of S so that

R := C[t][f̃ : f ∈ R].

Let I be an ideal of R and I be the ideal of R defined by

I := 〈f̃ ∈ R : f ∈ I〉.

Lemma III.16. [BC03, Lemma 2.2] Let ϕ : A[t] −→ R/I be the C[t]-algebra map

defined by ϕ(xi) = f̃i. By restricting ϕ to the fibers over t = 1 and t = 0, there

are maps ϕ1 : A −→ R/I and ϕ0 : A −→ inω(R)/ inω(I) defined by ϕ1(xi) = fi and

ϕ0(xi) = inω(fi). Then,

inω′(ker(ϕ1)) = ker(ϕ0).

We write J for the ideal ker(ϕ1) ⊆ A and J for the ideal of A[t] obtained

through deformation of J with respect to ω′ ∈ Ns. Notice that A[t]/J ∼= R/I
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and A/ inω′(J) ∼= inω(R)/ inω(I) since {f1, f2, . . . , fs} form a SAGBI basis for R and

A/J ∼= R/I by definition of J . We may then apply Theorem III.15 to obtain the

following.

Corollary III.17. The algebra R/I is flat as a C[t]-module and

R/I ⊗C[t] C[t, t−1] ∼= (R/I)[t, t−1]

R/I ⊗C[t] C[t]/〈t〉 ∼= inω(R)/ inω(I).

It follows that R/I is a flat family over C[t] whose fiber over t = 0 is inω(R)/ inω(I)

and a fiber over t ∈ C∗ is R/I.

Notation III.18. Our notations for Gröbner and SAGBI degenerations are as fol-

lows. Let X be a flat family over A1 degenerating either an ideal I ⊆ S, in which

case X corresponds to I ⊆ S[t], or a subalgebra R ⊆ S, in which case X corresponds

to R ⊆ S[t]. We write limt→0X , inω(X), or X0 to denote the fiber of X over t = 0.

In the Gröbner case, let limt→0 I denote inω(I) and in the SAGBI case, limt→0R

denotes inω(R).

3.3.3 Gröbner degeneration of matrix Schubert varieties

A term order 6 on C[Z] is called antidiagonal if the initial term of every minor

of the generic matrix Z is its antidiagonal term. Let ∆I,J(Z) be the determinant of

the square submatrix Z whose rows are indexed by I = {i1 > i2 > · · · > ik} and

columns by J = {j1 > j2 > · · · > jk} so that

∆I,J(Z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

zik,jk zik,jk−1
. . . zik,j1

zik−1,jk zik−1,jk−1
. . . zik−1,j1

...
. . .

...

zi1,jk zi1,jk−1
. . . zi1,j1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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and

in6(∆I,J(Z)) = (−1)(
k
2)zik,j1zik−1,j2 . . . zi1,jk .

Examples of antidiagonal term orders include:

• the reverse lexicographic term order that winds its way from the northwest

corner to the southeast corner so that z11 > z12 > · · · > z1n > z21 > · · · > znn;

and

• the lexicographic term order that winds its way from northeast corner to the

southwest corner so that z1n > · · · > znn > · · · > z2n > z11 > · · · > zn1.

Definition III.19. Fix a vertex set Q = {1, 2, . . . ,m}. Simplicial complexes on Q

are in bijection with squarefree monomial ideals of S = C[z1, z2, . . . , zm] through the

correspondence that associates a simplicial complex ∆ to its Stanley-Reisner ideal,

I∆ := 〈
∏
i∈F

zi : F /∈ ∆〉

so that S/I∆ =
⊕

supp(a)∈∆C·za. Geometrically, the Stanley-Reisner scheme, Spec(S/I∆)

is the reduced union of coordinate planes corresponding to the faces of ∆:

Spec(S/I∆) =
⋃
F∈∆

AF .

Theorem III.20. [KM05a, Theorem B] The minors of size 1 + rw(i, j) in Zi×j, for

1 6 i, j 6 n, form a Gröbner basis for Ĩw for any antidiagonal term order. Moreover,

in6(Ĩw) is the Stanley-Reisner ideal of a simplicial complex whose facets correspond

to reduced pipe dreams D ∈ RPw so that

(3.1) in6(Ĩw) =
⋂

D∈RPw

〈zij : (i, j) ∈ D〉.

For D ∈ RPw, let LD denote the coordinate subspace of Mn spanned by the co-

ordinates zij such that (i, j) /∈ D, hence I(LD) = 〈zij : (i, j) ∈ D〉. As a consequence
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of Theorem III.20, the irreducible components of in6(X̃w) are given by

in6(X̃w) =
⋃

D∈RPw

LD.

Example III.21. The matrix Schubert variety X̃2143 is the set of 4 × 4 matrices

Z = (zij) whose upper-left entry is zero, and whose upper-left 3× 3 block has rank

at most two. The ideal of X̃2143 consists of the determinants

Ĩ2143 =
〈
z11,

∣∣∣ z11 z12 z13z21 z22 z23
z31 z32 z33

∣∣∣〉 = 〈z11,−z13z22z31 + . . . 〉

which has the initial ideal

in6(Ĩ2143) = 〈z11,−z13z22z31〉 = 〈z11, z13〉 ∩ 〈z11, z22〉 ∩ 〈z11, z31〉

= I(L11,13) ∩ I(L11,22) ∩ I(L11,31).

On the geometry side, X̃2143 Gröbner degenerates to a union of three coordinate

subspaces L11,13, L11,22, and L11,31 with ideals 〈z11, z13〉, 〈z11, z22〉, and 〈z11, z31〉, re-

spectively. Pictorially, we represent the subspaces L11,13, L11,22, and L11,31 as subsets

〈z11, z13〉 = , 〈z11, z22〉 = , 〈z11, z31〉 =

1 2 3 4

2

1

4

3 ,

1 2 3 4

2

1

4

3 ,

1 2 3 4

2

1

4

3



CHAPTER IV

Toric degeneration

In Section 4.1, we present the toric degeneration of the flag variety, then in Sec-

tion 4.2 we construct an involution on the degeneration that maps Schubert varieties

to opposite Schubert varieties. In Section 4.3, we examine the relation between the

degeneration of a matrix Schubert variety and that of a Schubert variety.

4.1 Toric degeneration of the flag variety

In this section, we present a toric degeneration of F`n that is a slight modification

of [KM05b]. We define a deformation of the action of B− on Mn to a fiberwise action

ofB− on the familyMn×A1. We, then, identify the GIT quotient X = B−\\(Mn×A1)

as the flat family degenerating F`n. Lastly, in Section 4.1.4 we identify the Gröbner

limit X0 as the projective toric variety of the Gelfand-Tsetlin polytope.

4.1.1 Degeneration of Borel group action

Definition IV.1. Let ω = (ωij) be the n× n matrix whose entries are

ωij =


(
n+2−i−j

2

)
if i+ j < n+ 1,

0 if i+ j > n+ 1.

Notice that the entries of ω strictly above the main antidiagonal are triangular num-

bers and all other entries are zero.

31
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For example, for n = 5,

ω =



10 6 3 1 0

6 3 1 0 0

3 1 0 0 0

1 0 0 0 0

0 0 0 0 0


.

We fix this definition of ω for the remainder of this thesis.

Given t ∈ C∗, we define t̃ := (t̃1, t̃2, . . . , t̃n) to be the element of (GLn)n where each

t̃j := diag(tω1j , tω2j , . . . , tωnj) for j = 1, 2, . . . , n. Let B− × C∗ −→ (GLn)n × A1 be

the embedding given by (b, t) 7−→ (t̃−1
1 bt̃1, t̃

−1
2 bt̃2, . . . , t̃

−1
n bt̃n, t) for b = (bij) ∈ B−and

t ∈ C∗. For example, for n = 5, (b, t) ∈ B− × C∗ is mapped to( b11 0 0 0 0
t4b21 b22 0 0 0
t7b31 t3b32 b33 0 0
t9b41 t5b42 t2b43 b44 0
t10b51 t6b52 t3b53 tb54 b55

,
 b11 0 0 0 0
t3b21 b22 0 0 0
t5b31 t2b32 b33 0 0
t6b41 t3b42 tb43 b44 0
t6b51 t3b52 tb53 b54 b55

,
 b11 0 0 0 0
t2b21 b22 0 0 0
t3b31 tb32 b33 0 0
t3b41 tb42 b43 b44 0
t3b51 tb52 b53 b54 b55

,
 b11 0 0 0 0
tb21 b22 0 0 0
tb31 b32 b33 0 0
tb41 b42 b43 b44 0
tb51 b52 b53 b54 b55

,
 b11 0 0 0 0
b21 b22 0 0 0
b31 b32 b33 0 0
b41 b42 b43 b44 0
b51 b52 b53 b54 b55

, t).
Definition IV.2. Let (B−)∗ be the family over C∗ defined as the image of B−×C∗

inside (GLn)n×A1 and B− be the family over A1 defined as the closure, B− := (B−)∗

in (GLn)n × A1.

Lemma IV.3. [KM05b, Lemma 2] There is an isomorphism B− × A1 −→ B− over

A1 that extends B− × C∗
∼=−→ (B−)∗ over t = 0.

The fiber of B− over t = 0, denoted B−0 , consists of sequences (b1, b2, . . . , bn) ∈

(B−)n where bn ∈ B− and bj, for j = 1, 2, . . . , n − 1, is obtained from bn by setting

to 0 all entries in columns 1, 2, . . . , n − j that are strictly below the main diagonal.

For example, for n = 5, the elements of B−0 look like b11 0 0 0 0
0 b22 0 0 0
0 0 b33 0 0
0 0 0 b44 0
0 0 0 0 b55

,
 b11 0 0 0 0

0 b22 0 0 0
0 0 b33 0 0
0 0 0 b44 0
0 0 0 b54 b55

,
 b11 0 0 0 0

0 b22 0 0 0
0 0 b33 0 0
0 0 b43 b44 0
0 0 b53 b54 b55

,
 b11 0 0 0 0

0 b22 0 0 0
0 b32 b33 0 0
0 b42 b43 b44 0
0 b52 b53 b54 b55

,
 b11 0 0 0 0
b21 b22 0 0 0
b31 b32 b33 0 0
b41 b42 b43 b44 0
b51 b52 b53 b54 b55

 .
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There is a (GLn)n-action onMn by column-wise matrix multiplication: if Z1, Z2, . . . , Zn

are the columns of Z ∈Mn, then g = (g1, g2, . . . , gn) ∈ (GLn)n acts on Z by

(4.1) g · Z = (g1, g2, . . . , gn) ·
[
Z1 Z2 . . . Zn

]
=

[
g1Z1 g2Z2 . . . gnZn

]
.

The family B− considered as a subset of (GLn)n × A1 acts fiberwise on Mn × A1

through (4.1). Furthermore, Lemma IV.3 allows us to view the fiberwise action of

B− as a single action of B− on the total space Mn × A1.

The actions of B− on all fibers Mn×{t} for t ∈ C∗ are isomorphic in the sense that

the map (Z, 1) 7−→ (t̃−1 · Z, t) is a B−-equivariant isomorphism between Mn × {1}

with Mn × {t}.

4.1.2 SAGBI basis of the Plücker algebra

Recall that Z = (zij) denotes the generic n× n matrix of indeterminates.

Definition IV.4. For a subset I ⊆ [n] of size k, let ∆I(Z) ∈ C[Z] be the minor

∆I(Z) whose columns are indexed by the set I and rows 1, 2, . . . , k. We define the

Plücker variable pI by

pI := ∆I(Z) =

∣∣∣∣∣∣
z1,ik z1,ik−1

... z1,i1
z2,ik z2,ik−1

... z2,i1
...

...
...

zk,ik zk,ik−1
... zk,i1

∣∣∣∣∣∣ .
We call the subalgebra C[pI : I ∈ 2[n]] of C[Z] generated by the 2n − 1 Plücker

variables, the Plücker algebra.

For notational convenience, we write P := {pI : I ∈ 2[n]} and P (k) := {pI : I ∈(
[n]
k

)
} for k = 1, 2, . . . , n. Then, the Plücker algebra can be written as

C[P ] = C[P (1)]⊗ C[P (2)]⊗ · · · ⊗ C[P (n)].

We degenerate the Plücker algebra C[P ] ⊆ C[Z] by considering the matrix ω as a

weight vector on the coordinate ring C[Z] of Mn, weighing each variable zij by ωij.
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While ω may not induce an antidiagonal term order on C[Z], the following lemma

implies that for the purpose of degenerating matrix Schubert varieties ω is sufficient.

Lemma IV.5. If all of the variables dividing the antidiagonal term of ∆I,J(Z) ∈

C[Z] are on or above the main antidiagonal of Z, then the unique monomial in

∆I,J(Z) with the lowest weight is its antidiagonal term.

Proof. Let I = {i1 > i2 > · · · > ik} and J = {j1 > j2 > · · · > jk} be subsets of

[n] such that im + jk−m+1 6 n + 1 for m = 1, 2, . . . , k. Then, ∆I,J(Z) is a signed

sum of monomials
∏k

m=1 zim,jw(m)
for w ∈ Sk. Let w ∈ Sk be such that the weight of∏k

m=1 zim,jw(m)
is minimized; so

∑k
m=1 ωim,jw(m)

<
∑k

m=1 ωim,jw(m)
for all w ∈ Sk.

To prove that w = w0, suppose s is the largest integer such that w(s) 6= k+ 1− s.

Let t be the integer in [k] such that w(t) = k+1−s. Let w′ = w ·(s, t) so that w′(s) =

w(t) = k+ 1− s and w′(t) = w(s). To compare the weight of
∏k

m=1 zim,jw′(m)
against

that of
∏k

m=1 zim,jw(m)
it suffices to compare ωis,jw′(s) +ωit,jw′(t) against ωis,jw(s)

+ωit,jw(t)

since the two monomials only differ by factors of zis,jw′(s)zit,jw′(t) and zis,jw(s)
zit,jw(t)

.

Indeed,

ωis,jw′(s) + ωit,jw′(t) < ωis,jw(s)
+ ωit,jw(t)

since the coordinates (is, jw′(s)), (it, jw′(t)), (is, jw(s)), and (it, jw(t)) form a square in

ω thought of as a matrix while ωis,jw(s)
> 0 and ωit,w(t) = 0. Therefore, w = w0 and

the antidiagonal term in ∆I,J(Z) is the unique monomial with the lowest weight.

Definition IV.6. Let ωI :=
∑k

s=1 ωs,is so that ωI is equal to the weight of the

antidiagonal term in pI . We define the degenerated Plücker variable qI ∈ C[t][Z] by

qI := p̃I = t−ωI∆I(t̃ · Z)

where t̃·Z = (tωijzij). We call the C[t]-subalgebra generated by the 2n−1 degenerated

Plücker variables C[t]
[
qI : I ∈ 2[n]

]
, the degenerated Plücker algebra.
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Again for notational convenience, let Q := {qI : I ∈ 2[n]} and Q(k) := {qI : I ∈(
[n]
k

)
} for k = 1, 2, . . . , n, so that the degenerated Plücker algebra can be written as

C[t][Q] = C[Q(1)]⊗ C[Q(2)]⊗ · · · ⊗ C[Q(n)]⊗ C[t].

Definition IV.7. Let N− be the normal subgroup of B− consisting of lower trian-

gular matrices with 1’s on the diagonal. We call N−, the maximal unipotent subgroup

of GLn:

N− =





1 0 . . . 0

b21 1 . . . 0

...
...

. . .
...

bn1 bn2 . . . 1




.

The Borel subgroup B− is equal to the product1 TN− where T ∼= (C∗)n is the

n-dimensional torus of GLn consisting of diagonal matrices.

Theorem IV.8. [KM05b, Theorem 5] The ring of N−-invariant functions on Mn is

the Plücker algebra and the Plücker variables form a SAGBI basis for any diagonal

or antidiagonal term order.

Notice that the N−-action on Mn through (B−)1 coincides with matrix multipli-

cation. The generators of C[Z]N
−

were known to classical invariant theory wherein

the Plücker algebra was called the algebra of primary covariants.

Recall from the previous section our degeneration of the action of B− on Mn to

an action on Mn×A1. Let Z̃ = (z̃ij) be a n× n matrix of indeterminates defined by

Z̃ := t̃ · Z. To see that the variable qI is N−-invariant, notice that for u ∈ N−,

u · qI = t−ωI∆I(u
−1
∆ Z̃) = t−ωI∆I(Z̃) = qI

1More precisely, B− is the semi-direct product, T oN−.
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where u−1
∆ denotes the element (u−1, u−1, . . . , u−1) ∈ (GLn)n. Therefore, the degen-

erated Plücker algebra is a subalgebra of the N -invariant ring of C[t][Z]. As a matter

of fact, the qI ’s generate the invariant ring, C[t][Z]N
−

.

Theorem IV.9. [KM05b, Theorem 5] The C[t]-algebra of N−-invariant functions

on Mn × A1 is the degenerated Plücker algebra.

4.1.3 Toric degeneration

Let C[t][X] := C[t][xI : I ∈ 2[n]] be the polynomial ring in 2n − 1 variables over

C[t] such that

C[t][X] = C[X(1)]⊗ C[X(2)]⊗ · · · ⊗ C[X(n)]⊗ C[t]

where X(k) :=
{
xI : I ∈

(
[n]
k

)}
for k = 1, 2, . . . , n. Let ϕ : C[t][X] −→ C[t][Q] be the

map of C[t]-algebras defined by ϕ(xI) = qI . By restricting ϕ to the fiber over t = 1,

we obtain the map ϕ1 : C[X] −→ C[P ] that presents the Plücker algebra C[P ] as a

quotient of the polynomial ring C[X].

To define a multigrading on C[X], recall that Λ+
n denotes the set of partitions

with at most n parts and Λ++
n denotes the subset of Λ+

n consisting of partitions

λ = (λ1, λ2, . . . , λn) such that λ1 > λ2 > · · · > λn. Let $k ∈ Λ+ be the integer

vector defined by $k := (1, . . . , 1︸ ︷︷ ︸
k times

, 0, . . . , 0︸ ︷︷ ︸
n−k times

) for k = 1, 2, . . . , n.

We define a multigrading on C[X] by Λ+
n by setting deg(xI) = $k for I ∈

(
[n]
k

)
so

that

C[X] =
⊕
λ∈Λ+

n

C[X]λ.

Let I := ker(ϕ1) and notice that I is homogeneous with respect to this multigrading

since I is generated by homogeneous elements (called Garnir elements; see, Sec-
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tion 4.2) so that

C[P ] =
⊕
λ∈Λ+

n

C[P ]λ.

Definition IV.10. Let ρ := (n − 1, n − 2, . . . , 1, 0) ∈ Λ++
n be the sum ρ = $1 +

$2 + · · ·+$n−1. We define the Geometric Invariant Theory (GIT) quotient of Mn by

B− as the Proj of the subring of N−-invariant functions on Mn in degrees that are

multiples of ρ. More precisely,

B−\\Mn := Proj

(⊕
d>0

C[P ]dρ

)
.

Notice that the decomposition

C[X]dρ = C[X(1)]d$1 ⊗ C[X(2)]d$2 ⊗ · · · ⊗ C[X(n)]d$n

implies that Proj
(⊕

d>0C[X]dρ
)

is the Segre product
∏n

k=1 Proj(C[X(k)]) =
∏n

k=1 P(nk)−1.

So Definition IV.10 defines B−\\Mn as a subscheme of a product of projective spaces.

More importantly, B−\\Mn is equal to the Plücker embedding of F`n into
∏n

k=1 P(nk)−1.

Remark IV.11. Notice that $1, $2, . . . , $n generate Λ+
n as a semigroup such that a

partition λ ∈ Λ+
n can be written as a unique linear combination of them, hence Λ+

n
∼=

Nn. To a partition λ ∈ Λ+
n , we can associate the integer vector a = (a1, a2, . . . , an) ∈

Nn defined by a := (λ1−λ2, . . . , λn−1−λn, λn) so that λ = a1$1 +a2$2 + · · ·+an$n.

Definition IV.10 works equally well with any λ ∈ Λ++
n in place of ρ. The only

difference is that the embedding with respect to λ composes the above Segre product

with ak-uple Veronese embedding of P([n]
k )−1.

The rings C[t][X] and C[t][Q] are similarly multigraded by Λ+
n by setting

deg(xI) = $k, deg(qI) = $k

for I ∈
(

[n]
k

)
, and deg(t) = 0. Let I := ker(ϕ) and notice that I is homogeneous

since it is a deformation of I.
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Definition IV.12. The GIT quotient B−\\(Mn×A1) is the Proj of the C[t]-algebra

of N−-invariant functions on Mn × A1 generated in degree ρ where ρ := (n− 1, n−

2, . . . , 1, 0) ∈ Λ++
n . Let X be the family over A1 = Spec(C[t]) defined by

X := B−\\(Mn × A1) = Proj

(⊕
d>0

C[t][Q]dρ

)
.

Notice that X is a subscheme of Proj
(⊕

d>0C[t][X]dρ
)

=
∏n

k=1 P(nk)−1 × A1 and

that Corollary III.17 implies that X −→ A1 is a flat family. Remark IV.11 also

applies in this case.

4.1.4 Gelfand-Tsetlin toric variety

We show that the zero fiber

X0 = Proj

(⊕
d>0

inω(C[P ])dλ

)

for λ ∈ Λ++
n is the toric variety of the GT-polytope Pλ. Our reference for toric

varieties is [CLS11].

Definition IV.13. Let P ⊆ RN be a full dimensional lattice polytope and let the

cone of P be defined by

C(P) := Cone(P × {1}) ⊆ RN × R.

The key feature of this cone is that dP is the “slice” of C(P) at height d, from

which it follows that the lattice points m ∈ dP ∩ ZN corresponds to points (m, d) ∈

C(P) ∩ (ZN × Z).

Definition IV.14. Let SP be the subring of C[ZN × Z] = C[x±1
1 , x±1

2 , . . . , x±1
N , t±1]

defined by

SP := C[C(P) ∩ (ZN × Z)] =
⊕

d>0,m∈dP∩ZN
C · xmtd.
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Notice that SP is the semigroup algebra of the cone C(P) = Cone(P×{1}) ⊆ RN×R.

There is a N-grading on SP defined by deg(xmtd) = d. We define XP := Proj(SP) to

be the toric variety of P .

Notice that if P is normal, as is the case with GT-polytopes, then SP is generated

in degree one, so that XP is a subscheme of a projective space.

Lemma IV.15. [KM05b, Proposition 7] The inital algebra inω(C[P ]) is isomorphic

to C[GT(n)] as multigraded semigroup rings so that inω(C[P ])λ ∼= C[GT(n;λ)] =

C[GT(n)]λ for λ ∈ Λ+
n .

Proof. Let φ : Zn2 −→ Z(n2) be the linear map defined by φ(a)ij = γij = ai,j +ai,j+1 +

· · ·+ai,n−i+1 and ψ : Z(n2) −→ Zn2
be the map defined by ψ(Γ)ij = aij = γi,j+1−γi,j.

Then, the isomorphism is given by considering the exponent vectors of monomials

in inω(C[P ]) as a subset of Zn2
and checking that φ and ψ are inverses identifying

exponent vectors with GT-patterns. See [KM05b] for further details.

It now follows from Lemma IV.15 that X0 is the toric variety XPλ .

Subvarieties of XPλ are torus orbit closures that correspond to faces of Pλ by the

toric orbit-cone correspondence; each face Q of Pλ corresponds to a toric subvariety

of XPλ isomorphic to XQ.

4.2 Involution on the degeneration

While so far we have indexed the variables xI , pI , and qI by subsets of [n], in

this section we index variables by finite strings in the alphabet [n]∗. Given integers

n > i1 > i2 > · · · > ik > 1, we define xi1i2···ik := x{i1,i2,...,ik}, pi1i2···ik := p{i1,i2,...,ik},

and qi1···ik := q{i1,i2,...,ik}. For an arbitrary string i1i2 . . . ik, we define xi1i2···ik , pi1i2···ik ,

and qi1···ik to be alternating in the k-tuple (i1, i2, . . . , ik), so for example, x21 = −x12

and x11 = 0.



40

Recall the surjection ϕ : C[t][X] −→ C[t][Q] defined by ϕ(xI) = qI for I ⊆ [n].

In the ensuing discussion, we index the sets X,P, and Q by finite substrings of [n]∗.

Let ϕ1 : C[X] −→ C[P ] and ϕ0 : C[X] −→ inω(C[P ]) be the restriction of ϕ to fibers

over t = 1 and t = 0 so that ϕ1(xi) = pi and ϕ0(xi) = inω(pi). In particular, ker(ϕ1)

is called the ideal of Plücker relations whose generators are described as follows.

Notation IV.16. Let s and t be positive integers satisfying n > s > t andA,B,C,D,

and E be subsets that partition [n]. If we denote the cardinalities of the sets

A,B,C,D, and E by a, b, c, d, and e, respectively, then they satisfy

a+ b+ 2c+ e = s+ t,

and c+ e > s+ 1.

Let E = {k1 > k2 > · · · > ke} and E1 = {kt−b−c+1 > · · · > ke} and E2 = {k1 > · · · >

kt−b−c} be sets that further partition E into E1 tE2. For each w ∈ Se, we define the

ordered strings w(E1) and w(E2) by

w(E1) := kw(t−b−c+1)kw(t−b−c+2) . . . kw(e),

and w(E2) := kw(1)kw(2) . . . kw(t−b−c).

Definition IV.17. For subsets A,B,C,D,E1, E2 satisfying the conditions above,

let R(A,B,C,D,E1, E2) be the element of ker(ϕ1) defined by

R(A,B,C,D,E1, E2) :=
∑
w∈Se

(−1)wxACw(E1) xBCw(E2).

We call such elements of ker(ϕ1), Garnir elements. The fact that the ideal of Plücker

relations is generated by Garnir elements is well-known; see, for example, [MS05,

Theorem 14.6] for a Gröbner basis consisting of Garnir elements.
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Example IV.18. For n = 7,

R(6, ∅, 3, 7, 21, 54) = 4(x6321x354 − x6351x324 − x6341x352 + x6342x351 − x6325x314 + x6354x321)

= 4(x6321x543 + x6531x432 − x6431x532 + x6432x531 − x6532x431 + x6543x321)

where elements of E1 and E2 in the first line are boldfaced.

Let w be the permutation of Se that realizes the minimum of ωACw(E1) +ωBCw(E2)

as w varies over Se. For each w ∈ Se, let µ(A,B,C,D,E1, E2;w) be the integer

defined by

µ(A,B,C,D,E1, E2;w) := ωACw(E1) + ωBCw(E2) − ωACw(E1) − ωBCw(E2).

We define a degenerated Garnir element R̃(A,B,C,D,E1, E2) ∈ C[t][X] by

R̃(A,B,C,D,E1, E2) :=
∑
w∈Se

(−1)wtµ(A,B,C,D,E1,E2;w)xACw(E1) xBCw(E2),

which is the deformation of R(A,B,C,D,E1, E2) with respect to weight vector ω′

obtained from ω as in Lemma III.16.

Definition IV.19. Let I be the ideal of C[t][X] corresponding to a flat family de-

forming ker(ϕ1) ⊆ C[X] with respect to ω′ so that ker(ϕ) = I. Let J be the ideal of

C[t][X] generated by degenerated Garnir relations so that J = 〈R̃(A,B,C,D,E1, E2)〉.

We observe that J ⊆ I.

Notice that for τ ∈ C∗, the fibers of C[t][X]/I and C[t][X]/J over (t − τ) are

equal:

C[t][X]

I
⊗C[t]

C[t]

(t− τ)
∼=
C[t][X]

J
⊗C[t]

C[t]

(t− τ)
.

The flat family I is equal to the saturation of J with respect to t so that I = 〈J :

t∞〉 :=
⋃
k>0〈J : tk〉.
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Let K and Kc be pairwise distinct finite strings in the alphabet [n]∗ such that

Kc considered as a subset of [n] is equal to the complement of K in [n] though

not necessarily in strictly decreasing order. Let εK,Kc ∈ {±1} denote the sign of

the permutation in Sn that rearranges the concatenation of K and Kc in decreasing

order from n to 1.

Definition IV.20. Let τ̃ : C[t][X] −→ C[t][X] be the C[t]-algebra map 2 defined by

τ̃(xI) = εI,Ic xIc for finite string I in the alphabet [n]∗.

Notice that εK,Kc εKc,K = (−1)k(n−k), so τ̃ is a “signed” involution of C[t][X]. In

the remainder of this section, we prove the following proposition.

Proposition IV.21. The involution τ̃ preserves I so that τ̃ induces the involution

τ : C[t][Q] −→ C[t][Q] as in the following diagram:

C[t][X] τ̃ //

ϕ
����

C[t][X]

ϕ
����

C[t][Q] τ
// C[t][Q].

Notice that to prove that τ̃(I) = I, it suffices to show that τ̃(J ) = J . Indeed,

if f ∈ I then tNf ∈ J for some N � 0. Then, observe that tN τ̃(f) = τ̃(tNf) ∈ J

so that τ̃(f) ∈ I. We will return to discussing Proposition IV.21 after the following

lemma.

Lemma IV.22. Let A,B,C,D,E1, and E2 be as in Notation IV.16. Then,

µ(A,B,C,D,E1, E2;w) = µ(A,B,D,C,E1, E2;w)

for all w ∈ Se.

Proof. For notational convenience, we write I := A∪C∪w(E1), J := B∪C∪w(E2),

I ′ := A∪C∪w(E1), and J ′ := B∪C∪w(E2). Notice that in terms of these notations,

µ(A,B,C,D,E1, E2;w) can be rewritten as ωI′ + ωJ ′ − ωI − ωJ .
2The map τ̃ is motivated by the Hodge star operator, ∗ :

∧k Cn −→ ∧n−k Cn.
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We claim that

(4.2) ωI′ + ωJ ′ − ωI − ωJ = ωI′c + ωJ ′c − ωIc − ωJc .

Indeed, we first observe that we may replace ωij =
(
n+2−i−j

2

)
with ωij = ij, since

in evaluating ωI′ + ωJ ′ − ωI − ωJ , the contribution from terms other than ij in the

definition,

ωij =

(
n+ 2− i− j

2

)
=

1

2
(n+ 2)(n+ 1)− 1

2
(2n+ 3)(i+ j) +

1

2
(i2 + j2) + ij,

cancel.

For a subset K of [n], we define posK : [n] −→ [n] by

posK(i) :=


#{k ∈ K : k > i} if i ∈ K

0 otherwise.

Notice that if i ∈ K, then posK(i) records the position of i in K listed in decreasing

order. Then,

ωI =
s∑

k=1

k · ik =
n∑
i=1

posI(i) · i.

Let pos(I, J, I ′, J ′; i) denote the difference,

pos(I, J, I ′, J ′; i) := posI′(i) + posJ ′(i)− posI(i)− posJ(i).

Observe that (4.2) is implied by the stronger assertion that

(4.3) pos(I, J, I ′J ′; i) = pos(Ic, J c, I ′
c
, J ′

c
; i)

for i = 1, 2, . . . , n. We proceed to prove (4.3) by induction on #(I ∩ J) + #(Ic ∩ J c).

If #(I ∩ J) = #(Ic ∩ J c) = 0, then the pairs (I, J) and (I ′, J ′) partition [n] and

I = J c, J = Ic, I ′ = J ′c, and J ′ = I ′c, which in turn implies (4.3). Next, suppose

that #(I ∩ J) + #(Ic ∩ J c) > 0, and notice that we may assume that #(Ic ∩ J c) > 0
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by interchanging I with J c and J with Ic, if necessary. Let k be an element of I ∩J .

Then, pos(I, J, I ′, J ′; k) = 0 since the pair (I ′, J ′) reshuffles the elements of (I, J).

On the other hand, pos(Ic, J c, I ′c, J ′c; k) = 0 since k is not an element of Ic, J c, I ′c,

or J ′c.

To evaluate (4.3) for i 6= k, let K↓ be the subset obtained from the set K ⊆ [n]

containing k by omitting k then decreasing by 1 those entries in K greater than

k, while keeping constant those entries less than k. We consider K↓ as a subset of

[n− 1] so that Kc
↓ = [n− 1] \K↓. For example, for n = 6, k = 4, K = 6431, so that

Kc = 52, K↓ = 531 and Kc
↓ = 642.

Since k in I ∩ J is omitted in passing from I and J to I↓ and J↓, #(I↓ ∩ J↓) =

#(I ∩J)−1. Also #(Ic↓ ∩J c↓) = #(Ic∩J c) since there is a bijection from Ic∩J c −→

Ic↓ ∩ J c↓ that maps i 7−→ i − 1 for i > k and i 7−→ i for i < k. So we may apply the

induction hypothesis to see that pos(I↓, J↓, I
′
↓, J

′
↓; i) = pos(Ic↓, J

c
↓ , I
′
↓
c, J ′↓

c; i) for all

i = 1, 2, . . . , n.

We consider (4.3) when i < k. Indeed, notice that posK(i) = posK↓(i) + 1 if

i ∈ K, hence i ∈ K↓ as well, and posK(i) = posK↓(i) = 0 if i /∈ K. It follows

that pos(I, J, I ′, J ′; i) = pos(I↓, J↓, I
′
↓, J

′
↓; i). Also, the relative positions of i in Kc

and Kc
↓ are the same, hence posKc(i) = posKc

↓
(i). These observations imply that

pos(Ic, J c, I ′c, J ′c; i) = pos(Ic↓, J
c
↓ , I
′
↓
c, J ′↓

c; i), and combining the above with the in-

duction hypothesis implies (4.3).

We next consider the case i > k. Observe that posK(i) = posK↓(i−1) implies that

pos(I, J, I ′, J ′; i) = pos(I↓, J↓, I
′
↓, J

′
↓; i − 1) and posKc(i) = posKc

↓
(i − 1) implies that

pos(Ic, J c, I ′c, J ′c; i) = pos(Ic↓, J
c
↓ , I
′
↓
c, J ′↓

c; i− 1). The induction hypothesis combined

with these observations imply (4.3).

Let w′ := arg minu∈Se ωADu(E1) + ωBDu(E2) and C := ωADw(E1) + ωBDw(E2) −
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ωADw′(E1) − ωBDw′(E2). Notice that C is a nonnegative integer independent of w.

To see that (4.2) implies the lemma, observe that

µ(A,B,C,D,E1, E2;w) = ωI′ + ωJ ′ − ωI − ωJ

= ωI′c + ωJ ′c − ωIc − ωJc

= µ(A,B,D,C,E1, E2;w)− C

Specialize the above equation to w = w′ to see that C = 0 and the lemma follows.

Proof. (Proposition IV.21) Recall that it suffices to show that τ̃(J ) = J . Indeed,

notice that

τ̃(R̃(A,B,C,D,E1, E2;w)) =
∑
w∈Se

(−1)wtµ(A,B,C,D,E1,E2;w)τ̃(xACw(E1)) τ̃(xBCw(E2))

=
∑
w∈Se

εACw(E1),BDw(E2) εBCw(E2),ADw(E1)

(−1)wtµ(A,B,C,D,E1,E2;w)xBDw(E2)xADw(E1).

To see that

εACE1,BDE2 εBCE2,ADE1 = εACw(E1),BDw(E2) εBCw(E2),ADw(E1)

for all w ∈ Se, observe that εACw(E1),BDw(E2) = (−1)wεACE1,BDE2 and εBCw(E2),ADw(E1) =

(−1)wεBCE2,ADE1 . Then, apply Lemma IV.22 to see that

τ̃(R̃(A,B,C,D,E1, E2;w)) = ±
∑
w∈Se

(−1)wtµ(A,B,C,D,E1,E2;w)xADw(E1) xBDw(E2)

= ±
∑
w∈Se

(−1)wtµ(A,B,D,C,E1,E2;w) xADw(E1)xBDw(E2)

= ±R(A,B,D,C,E1, E2) ∈ J

where the sign is equal to εACE1,BDE2 εBCE2,ADE1 .
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4.3 Matrix Schubert variety and Schubert variety together

In this section, we state the main theorem of this thesis as Theorem IV.26 and

following [KM05b] examine the relation between the degeneration of a matrix Schu-

bert variety and that of a Schubert variety. Example IV.27 highlights the gap in the

proof of [KM05b] and Section 4.3.2 motivates our application of Standard Monomial

Theory in Chapter V. In Section 4.3.3, we present the semi-toric degeneration of a

Schubert variety localized to affine open subsets.

4.3.1 Relating the two degenerations

Let ρ : Mn × A1 −→ N−\\(Mn × A1) be the quotient map dual to the inclusion

ρ# : Spec(C[t][Z]N
−

) = Spec(C[t][Q]) ↪−→ Spec(C[t][Z]).

We think of N−\\(Mn × A1) as the multi-cone over B−\\(Mn × A1). Recall from

Section 3.3.3, the Schubert determinantal ideal Ĩw in C[Z] and let Ĩw be the ideal

of C[t][Z] defined as the deformation of Ĩw by ω. The combination of Lemma III.13

and Lemma IV.5 implies that Ĩw degenerates Ĩw as described in Theorem III.20.

Definition IV.23. Let Iw be the ideal of C[P ] defined by Iw := Ĩw ∩ C[P ] called

the Schubert ideal. It is the ideal of the Schubert variety Xw inside the Plücker

algebra. The Schubert ideal Iw is generated by Plücker variables pI ∈ C[P (k)] such

that πk(w) 
 I for k = 1, 2, . . . , n [RS97, Theorem 4].

Definition IV.24. Let Xw be the scheme-theoretic image Xw := ρ(X̃w) inN−\\(Mn×

A1). Let Iw := Ĩw ∩C[t][Q] be the ideal corresponding to Xw. Notice that Iw is the

deformation of Iw as in Lemma III.16.

Notation IV.25. Let X̃w,t denote the fiber of X̃w over t ∈ C and similarly, Xw,t for

a fiber of Xw.
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For a reduced pipe dream D ∈ RPw, let

• LD be the coordinate subspace of Mn consisting of matrices whose coordinates

zij are zero for (i, j) ∈ D. Recall that LD is an irreducible component of

inω(X̃w);

• FD be the face of the GT-polytope defined by setting γi,j = γi+1,j for each

(i, j) ∈ D; and

• XFD be the toric subvariety of the Gelfand-Tsetlin toric variety associated with

face FD.

Our main theorem is as follows.

Theorem IV.26. The family X = B−\\(Mn × A1) induces a flat degeneration of

Schubert variety Xw to a reduced union
⋃
D∈RPw XFD of toric subvarieties of the

Gelfand-Tsetlin toric variety XPλ.

The two objects central to the argument of [KM05b] are Xw,0 = ρ(X̃w)0 corre-

sponding to inω(Iw) and ρ0(X̃w,0) corresponding to inω(Ĩw) ∩ inω(C[P ]). Kogan and

Miller assume that these two objects are equal; however, in general, given a fam-

ily of morphisms of schemes over a parameter space, the fiber of the image may

properly contain the image of the fiber (see, [EH00, pg. 216]). Indeed, it is not

difficult to see that inω(I) is a subset of in(Ĩ) ∩ inω(C[P ]) for ideals, Ĩ ⊆ C[Z] and

I = Ĩ ∩ C[P ]. The following example, however, shows that inω(I) can be a proper

subset of inω(Ĩ)∩ inω(C[P ]) where Ĩ is an opposite Schubert determinantal ideal and

I is an opposite Schubert ideal.

Example IV.27. For n = 3, the degenerated Plücker algebra is

C[t][q1, q2, q3, q12, q13, q23, q123] ⊆ C[t][z11, z12, z13, z21, z22, z23, z31, z32, z33]
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where q1 = z11, q2 = z12, q3 = z13, q12 = tz11z22 − z12z21, q13 = t2z11z23 − z13z21,

q23 = tz12z23 − z13z22, q123 = t3z11z22z33 − t3z11z23z32 − t2z12z21z33 + tz12z23z31 +

tz13z21z32− z13z22z31. The equation tq1q23− q2q13 + q3q12 = 0 generates the relations

of C[t][Q], hence

C[t][x1, x2, x3, x12, x13, x23, x123]

〈tx1x23 − x2x13 + x3x12〉
∼= C[t][q1, q2, q3, q12, q13, q23, q123].

Consider the opposite Schubert variety X231 ⊆ F`3 along with its ideal I231 = 〈p3〉

and the opposite matrix Schubert variety X̃231 along with its ideal Ĩ231 = 〈z13〉·C[Z].

Notice that Ĩ231 = 〈z13〉 · C[t][Z] while I231 = Ĩ231 ∩ C[t][Q] = 〈q3〉. We show that

inω(I231) is a proper subset of inω(Ĩ231) ∩ inω(C[P ]) by displaying an element of

inω(Ĩ231) ∩ inω(C[P ]) that is not contained in inω(I231).

Clearly, inω(p23) = −z13z22 is an element of inω(Ĩ231) ∩ inω(C[P ]) = 〈inω(p3)〉 ·

inω(C[P ]). Suppose inω(p32) is also an element of inω(I231) implying that inω(p32)

is divisible by inω(p3) as elements of inω(C[P ]). Then, inω(p32)/inω(p3) = −z22

implying that z22 is an element of inω(C[P ]), which is absurd since monic monomials

of inω(C[P ]) corresponds to GT-patterns.

Therefore, while inω(Iw) is a subset of inω(Ĩw) ∩ inω(C[P ]), it requires further

justification to conclude that two ideals are equal. To identify the image of inω(Ĩw)∩

inω(C[P ]) in C[GT(n)], we introduce the following definitions.

Definition IV.28. Let RPw be the subset of GT-patterns defined by

RPw :=
⋃

D∈RPw

{Γ ∈ GT(n) : γi,j = γi,j+1 for (i, j) ∈ D}.

For λ ∈ Λ+
n , let RPw(λ) be the subset of RPw consisting of patterns of shape λ.

Let C{RPw} denote the subspace of C[GT(n)] spanned by GT-patterns in RPw and

similarly define C{RPw(λ)} as a subspace spanned by patterns of RPw with shape λ.
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Definition IV.29. Let Aw be the subset of GT-patterns defined by

Aw :=
⋂

D∈RPw

{Γ ∈ GT(n) : γi,j > γi,j+1 for (i, j) ∈ D}.

The set Aw is an ideal of the semigroup GT(n), so 〈Aw〉 := C{Aw} is an ideal of

C[GT(n)].

Since

inω(Ĩw) ∩ inω(C[P ]) =
⋂

D∈RPw

〈zi,j : (i, j) ∈ D〉 ∩ inω(C[P ])

and the image of 〈zi,j : (i, j) ∈ D〉 ∩ inω(C[P ]) for D ∈ RPw in C[GT(n)] is spanned

by {Γ ∈ GT(n) : γi,j > γi,j+1 for (i, j) ∈ D}, we have that

C[GT(n)]

inω(Ĩw) ∩ inω(C[P ])
∼=
C[GT(n)]

〈Aw〉
= C{RPw}.

So the equality of inω(Ĩw) ∩ inω(C[P ]) and inω(Iw) implies Theorem IV.26.

4.3.2 Why more machinery?

Recall from Definition IV.23 that the Schubert ideal Iw is generated by Plücker

variables. The following examples show, however, that the ideal 〈Aw〉 ∼= inω(Ĩw) ∩

inω(C[P ]) can have generators that are the initial terms of products of Plücker vari-

ables. Such examples show that 〈Aw〉 does not inherit the property of having simple

generators from Iw and indicate the need for a more systematic way of parametrizing

elements of 〈Aw〉.

Example IV.30. The Schubert ideal I1342 is generated by 〈p21, p321, p421〉 so that

inω(p21), inω(p321), and inω(p421) are elements of 〈A1342〉. Since q321q4 − q421q3 +

tq431q2− t3q432q1 = 0 as a Garnir element and q321 and q421 ∈ I1342, q431q2− t2q432q1 ∈

I1342. Therefore, inω(p431) · inω(p2) ∈ 〈A1342〉. As a matter of fact,

〈A1342〉 = 〈inω(p21), inω(p321), inω(p421), inω(p431) · inω(p2)〉.
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In fact, Example IV.30 is a special case of the next example.

Example IV.31. Let n = 2d+ 2 and w = 12̂3 . . . (2d+ 2)2 ∈ S2d+2. We claim that

inω(pI1pI2 . . . pId+1
) for sets I1, I2, . . . , Id+1 described in Figure 4.1 is an element of

〈Aw〉 indivisible by any inω(pI) ∈ 〈Aw〉.

# of elements elements
I1 2d + 1 2d + 2, 2d + 1, . . . , 3, 1
I2 2d− 1 2d + 2, 2d + 1, . . . , 5, 2

...
Im 2d− 2m + 3 2d + 2, 2d + 1, . . . , 2m + 1,m

...
Id+1 1 d + 1

Figure 4.1: A generator for 〈Aw〉 for w = 12̂3 . . . (2d + 2)

There exists a Garnir element,

q...321q...4 . . . qd+1 − q...421q...3 . . . qd+1 + tq...431q...2 . . . qd+1 − t3q...432q...1 . . . qd+1 = 0.

Since q...321, q...421 ∈ Iw, the relation q...431q...2 . . . qd+1− t2q...432q...1 . . . qd+1 ∈ Iw, hence

inω(pI1pI2 . . . pId+1
) is an element of 〈Aw〉.

We think of sets I1, I2, . . . , Id+1 as the column entries of the tableau,

T =

2d+2 2d+2 . . . 2d+2 2d+2 d+1

2d+1 2d+1 . . . 2d+1 2d+1

2d 2d . . . 2d d

...
...

...

4 2

3

1
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with the corresponding GT-pattern,

Γ(T ) =

d+1 d+1 . . . d+1 d d . . . d

d d d d d

d d d d−1 d−1

...
...

...

2 2 2 2 2

2 2 1 1

1 1 1

1 0

0

It is not difficult to see that Γ(T ) has a unique factorization into
∏d+1

k=1 inω(pIk), say

by the method of [PPS10, Section 5], so our claim follows.

4.3.3 Inside the opposite big cell

In this section, we localize Theorem IV.26 to an open subset. Then, Theo-

rem IV.34 says that a Schubert variety intersected with the open subset degener-

ates into a reduced union of toric subvarieties of the affine toric variety obtained by

localizing the Gelfand-Tsetlin toric variety at a vertex.

Definition IV.32. Let V(qnqn,n−1 . . . q[n]) denote the closed subscheme of Mn × A1

defined by 〈qn, qn,n−1, . . . , q[n]〉 of C[t][Q]. Let U be the multiplicative subset of C[t][Q]

generated by
{
qn, qn,n−1, . . . , q[n]

}
. Let G be the open subscheme of Mn×A1 defined

by

G := (Mn × A1) \ V(qnqn,n−1 . . . q[n]) = Spec(C[t][Q][U−1]).

It is not difficult to see by Buchberger’s algorithm that {pn, pn,n−1, . . . , p[n]} is a

Gröbner basis for 〈pn, pn,n−1, . . . , p[n]〉. Flatness is local so G is a flat family over

A1. Notice that G1 is the subset of GLn consisting of matrices that have a LU-
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decomposition (Gaussian decomposition). We may then think of G ⊆ Mn × A1 as a

deformation of G1.

Definition IV.33. Let N−\\G be the affine GIT quotient defined by

N−\\G := Spec(C[t][Z][U−1]N
−

) = Spec(C[t][Q][U−1])

where C[t][Z][U−1]N
−

= C[t][Q][U−1] since U consists of N−-invariants.

For notational convenience, we denote the restriction ρ|G : G −→ N−\\G by ρ

and similarly denote the restriction ρ0|G0 : G0 −→ (N−\\G)0 by ρ0. Let U0 be the

multiplicative subset of inω(C[P ]) generated by {inω(pn), inω(pn,n−1), . . . , inω(p[n])}.

Theorem IV.34. The t = 0 fiber of the image of X̃w under ρ : G −→ N\\G is equal

to the image of t = 0 fiber of (X̃w ∩ G)0 under ρ0 : G0 −→ (N−\\G)0. Equivalently,

inω(Iw · C[P ])[U−1
0 ] = inω(Ĩw · C[Z])[U−1

0 ] ∩ inω(C[P ])[U−1
0 ].

To prove the above theorem, we will extend the LU-decomposition of G1 to all of

G.

Definition IV.35. Let N− := N− × A1 and A := w0B
− × A1 be trivial fami-

lies over A1. Let X = (xij)i>j be the matrix of indeterminates arranged in strictly

lower-triangular form and Y = (ykl)k+l6n+1 be the matrix of indeterminates ykl ar-

ranged as an upper-left triangular matrix. Then, N− = Spec(C[t][X]) and A =

Spec(C[t][Y ][V −1]) where V is the multiplicative subset of C[t][Y ] generated by

{y1,n, y2,n−1, . . . , yn,1}.

Remark IV.36. We apologize for the abuse of notation for X in the above definition.

Our current definition for X is local to the current section.

The following lemma says that the space G factors over A1 as the product of N−

and A.
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Lemma IV.37. Let µ : N−×A1 A −→ G be the map defined by the B−-action on A

considered as a subset of Mn × A1. Then, µ is an isomorphism.

Proof. Let X ′ := (x′ij) be the n× n matrices of indeterminates given by

x′ij =



xij if i > j,

1 if i = j,

0 if i < j.

Define the C[t]-algebra map µ# : C[t][Z][U−1] −→ C[t][X, Y ][V −1] by

(4.4) µ#(zij) =
n∑
k=1

tωkj−ωijx′ikykj.

We can encode µ# more succinctly using matrix multiplication as

(4.5) µ#(Z̃) = X ′Ỹ .

For I = {n, n− 1, . . . , n− k + 1},

µ#(qI) = t−ωI∆I(µ
#(Z̃)) = t−ωI∆I(X

′Ỹ ) = t−ωI∆I(Ỹ )

= (−1)(
k
2)yk,n−k+1yk−1,n−k+2 . . . y1,n (4.6)

which is a unit in C[t][X, Y ][V −1] so (4.4) determine a map from C[t][Z][U−1]. Notice

that in (4.6) we used the fact that ∆I(X
′Ỹ ) = ∆I(Ỹ ) which follows from the fact

that X ′ is lower triangular so X ′Ỹ has the same top-justified row span as Ỹ .

Let ν# : C[t][X, Y ][V −1] −→ C[t][Z][U−1] be the C[t]-algebra map defined by

ν#(xij) = (−1)(
j+1
2 ) ∆[j−1]∪{i},[n]\[j](Z̃)

y1,ny2,n−1 . . . yj,n−j+1

,

ν#(ykl) = θ#(ykl).

Notice that µ#◦ν# = Id is a sufficient condition for µ and ν to be inverses because it

implies that µ# is a surjective map between integral domains of equal Krull dimension
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n2 + 1 so is an isomorphism. Indeed,

µ# ◦ ν#(y1l) = µ#(ql) = µ#(z1l) = y1l

and for k > 1,

µ# ◦ ν#(ykl) = µ#

(
(−1)1+k qn,n−1,...,n−k+2,l

qn,n−1,...,n−k+2

)
= (−1)1+kt−ωkl

∆n,n−1,...,n−k+2,l(µ
#(Z̃))

∆n,n−1,...,n−k+2(µ#(Z̃))

= (−1)1+kt−ωkl
∆n,n−1,...,n−k+2,l(X

′Ỹ )

∆n,n−1,...,n−k+2(X ′Ỹ )

= (−1)1+kt−ωkl
∆n,n−1,...,n−k+2,l(Ỹ )

∆n,n−1,...,n−k+2(Ỹ )
. (4.7)

We expand ∆n,n−1,...,n−k+2,l(Ỹ ) along the kth-row of Ỹ to find that

∆n,n−1,...,n−k+2,l(Ỹ ) = (−1)1+ktωklykl∆n,n−1,...,n−k+2(Ỹ ).

It follows from substituting the above equation into (4.7) that

µ# ◦ ν#(ykl) = ykl.

Before we show by direct computation that µ# ◦ ν#(xij) = xij, we make the

following auxiliary computation. Multiply both sides of (4.5) on the right by w0,

which flips columns left-to-right, then observe that Ỹ w0 is invertible as an element

of Matn×n(C[t][X, Y ][V −1]) since both Ỹ and w0 are invertible. Solving for X,

(4.8) X = µ#(Z̃)w0(Ỹ w0)−1.

Let i > j and apply ∆[j−1]∪{i},[j](·) to both sides of (4.8) to see that

xij = ∆[j−1]∪{i},[j](X) = ∆[j−1]∪{i},[j](µ
#(Z̃)w0(Ỹ w0)−1)

=
∆[j−1]∪{i},[j](µ

#(Z̃)w0)

y1,ny2,n−1 . . . yj,n−j+1

= (−1)(
j+1
2 ) ∆[j−1]∪{i},[n]\[j](µ

#(Z̃))

y1,ny2,n−1 . . . yj,n−j+1

(4.9)

where in passing from the first line to the second we used the fact that (Ỹ w0)−1

is upper-triangular with y−1
1,n, y

−1
2,n−1, · · · , y−1

n,1 (ω1,n = ω2,n−1 = · · · = ωn,1 = 0) on



55

the diagonal and that right multiplication by upper-triangular matrices “sweeps”

through columns from left to right. It now follows from (4.9) and µ# ◦ ν#(ykl) = ykl

that

µ# ◦ ν#(xij) = (−1)(
j+1
2 ) ∆[j−1]∪{i},[n]\[j](µ

#(Z̃))

µ# ◦ ν#(y1,ny2,n−1 . . . yj,n−j+1)

= (−1)(
j+1
2 ) ∆[j−1]∪{i},[n]\[j](µ

#(Z̃))

y1,ny2,n−1 . . . yj,n−j+1

= xij.

Factoring as in the above lemma means that the quotient N−1\G is isomorphic

to A. In fact, we next show that N−\\G is isomorphic to A, hence N−\\G = N−\G.

Let ι# : C[t][Z][U−1] −� C[t][Y ][V −1] be the surjection defined by

ι#(zij) =


yij if i+ j 6 n+ 1,

0 otherwise

corresponding to the inclusion ι : A ↪−→ G.

Lemma IV.38. Let θ : N−\\G −→ A be the map corresponding to the C[t]-algebra

map θ# : C[t][Y ][V −1] −→ C[t][Q][U−1] defined by

θ#(ykl) =


ql if k = 1,

(−1)1+k qn,n−1,...,n−k+2,l

qn,n−1,...,n−k+2
if k > 1.

Then, θ is an isomorphism and is inverse to ρ ◦ ι : A −→ N−\\G.

Proof. It suffices to show that θ# and ι# ◦ρ# are inverses. Let Ỹ = (ỹij) be the n×n

matrix of indeterminates defined by

ỹij =


tωijyij if i+ j 6 n+ 1

0 otherwise.
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Then,

(ι# ◦ ρ#) ◦ θ#(ykl) = (−1)1+k ι
#(qn,n−1,...,n−k+2,l)

ι#(qn,n−1,...,n−k+2)

= (−1)1+k t
−ωn,n−1,...,n−k+2,l∆n,n−1,...,n−k+2,l(Ỹ )

t−ωn,n−1,...,n−k+2∆n,n−1,...,n−k+2(Ỹ )

= (−1)1+kt−ωkl
∆n,n−1,...,n−k+2,l(Ỹ )

∆n,n−1,...,n−k+2(Ỹ )
.(4.10)

Expand ∆n,n−1,...,n−k+2,l(Ỹ ) along the kth row to see that

(4.11) ∆n,n−1,...,n−k+2,l(Ỹ ) = (−1)1+ktωklykl ∆n,n−1,...,n−k+2(Ỹ ).

We substitute (4.11) into (4.10) to see that (ι# ◦ ρ#) ◦ θ#(ykl) = ykl. It follows that

ι# ◦ρ# is a surjective map of integral domains of equal Krull dimension
(
n+1

2

)
+ 1, so

ι# ◦ ρ# is an isomorphism, which in turn implies that θ# is an isomorphism inverse

to ι# ◦ ρ#.

Lemma IV.39. The ideal Ĩw·C[t][Z][U−1] is generated by elements of Iw·C[t][Q][U−1].

Proof. Let I and J be subsets of [n] such that qI,J ∈ Ĩw. Recall (4.5) to see that

µ#(qI,J) = µ#(t−ωI,J∆I,J(Z̃)) = t−ωI,J∆I,J(µ#(Z̃))

= t−ωI,J∆I,J(XỸ ) =
∑
I′6I

t−ωI,JfI′(X) ∆I′,J(Ỹ ) (4.12)

where fI′(X) ∈ C[xij]i>j. Applying ν# to both sides of (4.12),

qI,J = (ν# ◦ µ#)(qI,J) =
∑
I′6I

tωI,J (ν# ◦ fI′)(X) ν#(∆I′,J(Ỹ )) (4.13)

and notice that ν#(∆I′,J(Ỹ )) ∈ C[t][Q][U−1]. Furthermore, to see that ν#(∆I′,J(Ỹ ))

is generated by elements of Ĩw ·C[t][Z][U−1], substitute in Ỹ = X−1µ#(Z̃) from (4.5)

so that

ν#(∆I′,J(Ỹ )) = ν#(∆I′,J(X−1µ#(Z̃))) =
∑
I′′6I′

ν#(fI′′(X
−1) ∆I′′,J(Z̃)
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where fI′′(X
−1) ∈ C[X] as X 7−→ X−1 is algebraic (det(X) = 1). Now, notice that

∆I′′,J(Z̃) ∈ Ĩw · C[t][Z][U−1] since the rank condition making qI,J an element of Ĩw

implies that all degenerated minors qK,L such that K 6 I and L 6 J is an element

of Ĩw. Therefore, ν#(∆I′,J(Ỹ )) ∈ C[t][Q][U−1]∩ Ĩw ·C[t][Z][U−1] = Iw ·C[t][Q][U−1]

and (4.13) now implies the lemma.

We now turn to the proof of Theorem IV.34.

Proof. To prove that

inω(Iw · C[t][Q][U−1]) = inω(Ĩw · C[t][Z])[U−1
0 ] ∩ inω(C[t][Q])[U−1

0 ],

it suffices to show that the right-hand side is included in the left-hand side. Indeed,

let f0 ∈ inω(Ĩw · C[t][Z])[U−1
0 ] ∩ inω(C[t][Q])[U−1

0 ] and f ∈ Ĩw · C[t][Z][U−1] be such

that inω(f) = f0. We show that (θ# ◦ ι#)(f) is an element of Iw · C[t][Q][U−1] such

that inω((θ# ◦ ι#)(f)) = f0 where the maps are

C[t][Z][U−1]
ι#

vvvv
C[t][Y ][V −1]

θ#
// C[t][Q][U−1].
5 U

ρ#
hh

It follows from Lemma IV.39 that there exists ai ∈ Iw · C[t][Q][U−1] and bi ∈

C[t][Z][U−1] such that f =
∑

i aibi. Then,

(θ# ◦ ι#)(f) =
∑
i

(θ# ◦ ι#)(ai) · (θ# ◦ ι#)(bi) =
∑
i

ai (θ
# ◦ ι#)(bi)

where (θ# ◦ ι#)(ai) = ai by Lemma IV.38. It follows that (θ# ◦ ι#)(f) ∈ Iw ·

C[t][Q][U−1].

To see that inω((θ# ◦ ι#)(f)) = f0, let f ′ ∈ C[t][Q][U−1] be another lift of f0.

Notice that (θ# ◦ ι#)(f ′) = f ′ by Lemma IV.38, so that

inω((θ# ◦ ι#)(f ′)) = inω(f ′) = f0
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on the one hand, and

inω((θ# ◦ ι#)(f ′)) = (θ#
0 ◦ ι

#
0 )(f0) = inω((θ# ◦ ι#)(f))

on the other. It follows that inω((θ# ◦ ι#)(f)) = f0 so (θ# ◦ ι#)(f) is an element of

Iw · C[t][Q][U−1] that realizes f0 as an element of in(Iw · C[t][Q])[U−1
0 ].



CHAPTER V

Standard Monomial Theory

In this chapter, which is the core of this thesis, we present a complete proof of

Theorem IV.26 by applying Standard Monomial Theory. In Section 5.1, we discuss

the relevant background on Standard Monomial Theory. In Section 5.2, we show that

standard monomials parametrize lattice points on RC-faces of the Gelfand-Tsetlin

cone. In Section 5.2.3, we deduce a semi-toric degeneration of a Richardson variety

as a further application of standard monomials and the involution constructed in

Section 4.2.

5.1 Standard Monomial Theory

5.1.1 Standard monomials and defining chains

Consider the Grassmannian of k-planes in Cn embedded in P(nk)−1 via its Plücker

embedding. The Hodge-Young basis [Hod43] of the homogeneous coordinate ring of

this embedding consists of products of Plücker variables called standard monomials.

Standard monomials reflect the Schubert geometry of the Grassmannian in the sense

that standard monomials not only restrict to a basis of the homogeneous coordi-

nate ring of a Schubert variety, but do so by either vanishing or remaining linearly

independent.

Standard Monomial Theory (SMT) [LS86] generalizes Hodge’s basis to flag varieties

59
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and their Schubert varieties. Our reference for SMT are [RS97, Ses85] and [BL03,

LL03] for its applications to Richardson varieties.

To a partition λ = (λ1, λ2, . . . , λn) we can associate a line bundle Lλ over F`n

as follows. Let a = (a1, a2, . . . , an) ∈ Nn be the integer vector defined by a :=

(λ1 − λ2, . . . , λn−1 − λn, λn). Recall the Plücker embedding of F`n = B−\\Mn inside∏n
k=1 Pk :=

∏n
k=1 P(nk)−1 and let Lk, for k = 1, 2, . . . , n, be the line bundle on F`n

defined as the pullback of OPk(1) through the composition F`n ↪−→
∏

k Pk −� Pk.

Definition V.1. Let Lλ be the line bundle on F`n defined by

Lλ := L⊗ann ⊗ L⊗an−1

n−1 ⊗ · · · ⊗ L⊗a11 .

The n-tuple λ = (λ1, λ2, . . . , λn) is the multidegree of sections in H0(F`n,Lλ).

Notice that we can consider Plücker variables pI ’s as sections of H0(F`n,L|I|) as

the pullback of homogeneous coordinate functions xI ’s from the |I|th-projective space

in the Plücker embedding.

Definition V.2. Let T ∈ SSYT(n;λ) and I1, I2, . . . , Iλ1 be the columns of T indexed

from left to right. We define the monomial pT ∈ H0(F`n,Lλ) as the (tensor) product

of sections corresponding to the columns of T :

pT := pI1pI2 . . . pIλ1 =

λ1∏
k=1

pIk .

We say that pT is a standard monomial on F`n.

Remark V.3. Notice that standard monomials of SMT correspond to semistandard

tableaux rather than standard tableaux. This is because the notion of standard

tableaux is already reserved for the set of tableaux associated with the representation

theory of the symmetric group.
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That standard monomials form a basis of H0(F`n,Lλ) was known to [You01].

Notice that it identifies the section ring
⊕

d>0H
0(F`n,Ldλ) with the homogeneous

coordinate ring
⊕

d>0C[P ]dλ. We define SMT basis for a Schubert variety Xw (Defi-

nition V.6) as a subset of standard monomials on F`n so that the standard monomial

basis of H0(F`n,Lλ) restricts to the SMT basis of H0(Xw,Lλ|Xw). The following ex-

ample shows, however, that restricting standard monomials to a Schubert variety

may create linear dependencies among non-vanishing standard monomials. Note

this is in contrast to Hodge’s standard monomials on the Grassmannian that either

vanish or restrict to standard monomials of a Schubert variety.

Example V.4. Let T1 = 3 1
2 and T2 = 3 2

1 . Consider the restriction of pT1 and

pT2 to X132 ⊆ F`3. Plücker variables satisfy p21p3 − p31p2 + p32p1 = 0 on F`3 while

p21 = 0 on X132, therefore pT1 |X132 = pT2 |X132 on X132. So pT1 and pT2 are part of a

basis for H0(F`3,L(1,1,0)), but become linearly dependent when restricted to X132.

To define standard monomials, standard on a Schubert variety recall the map πk :

Sn −→
(

[n]
k

)
from Section 2.2.1 which sends w ∈ Sn to πk(w) = {w(1), w(2), . . . , w(n)} ∈(

[n]
k

)
.

Definition V.5. A lift for the tableau T ∈ SSYT(n;λ) is a sequence w = (w1, w2, . . . , wλ1)

of elements in Sn such that πλ′j(wj) = Ij for j = 1, 2, . . . , λ1. A lift w = (w1, w2, . . . , wλ1)

for T is called a defining chain for T if w is linearly ordered with respect to Bruhat

order, i.e., w1 > w2 > · · · > wλ1 .

As a matter of fact, it can be shown that a tableau T is semistandard if and only

if T admits a defining chain.

Definition V.6. The monomial pT associated to a tableau T ∈ SSYT(n, λ) is

called standard on Xw
u if there exists defining chains w = (w1, w2, . . . , wλ1) and
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w′ = (w′1, w
′
2, . . . , w

′
λ1

) for T such that w > w1 and w′λ1 > u. We also say that

T is standard on Xw
u to mean that pT in standard.

Example V.7. The tableau T2 = 3 2
1 has a unique defining chain (312, 213) and

X213 is the only Schubert variety (excluding X123 = F`3) on which pT2 is stan-

dard. The tableau T1 = 3 1
2 has four different defining chains (321, 132), (321, 123),

(231, 132), (231, 123). Recall from Example V.4 that pT1|X132 = pT2|X132 , so the notion

of standardness on X132 can be understood as making a choice between monomials

pT1 and pT2 whose restrictions give the same function.

Notation V.8. For u,w ∈ Sn, let SMw
u denote the set of tableaux standard on Xw

u

and SMw
u (λ) denote the subset of SMw

u consisting of tableaux of shape λ. We write

SMu for SMw0
u and SMw for SMw

id, and similarly, SMu(λ) for SMw0
u (λ) and SMw(λ) for

SMw
id(λ).

We have seen that lifts and defining chains for a tableau T ∈ SSYT(n;λ) are in

general not unique. For a given tableau T , however, we can define a partial order on

the set of defining chains such that there exists a unique minimal defining chain and

a unique maximal defining chain.

Lemma V.9. [Ses85] Let T ∈ SSYT(n;λ) be a tableau. There exists a unique

minimal defining chain w− = (w−1 , w
−
2 , . . . , w

−
λ1

) and maximal defining chain w+ =

(w+
1 , w

+
2 , . . . , w

+
λ1

) for T , such that if w = (w1, w2, . . . , wλ1) is any defining chain for

T then w+
j > wj > w−j for j = 1, 2, . . . , λ1.

5.1.2 Defining chains and key tableaux

It follows from Lemma V.9 that T is standard on Xw
u if and only if w > w−1 and

w+
λ1
> u. Consequently, it would be desirable to have a computational method of

obtaining the maximal and minimal defining chains of a given tableau T . In fact,
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the notions of right and left key tableaux (Section 2.3.2) were introduced for this

purpose [LS88, LS90].

Notation V.10. For a nonempty partition λ = (λ1, λ2, . . . , λn), let λ∗ be the parti-

tion defined by λ∗ = (λ1 − λn, λ1 − λn−1, . . . , λ1 − λ2, 0), called the dual partition of

λ.

Definition V.11. Let T ∈ SSYT(n;λ) be a tableau of shape λ such that I1, I2, . . . ,

Iλ1 are the columns of T from left to right. Let ∗T be a filling of shape λ∗ such

that the columns of ∗T are Icλ1 = [n] \ Iλ1 , Icλ1−1 = [n] \ Iλ1−1, . . . , I
c
1 = [n] \ I1 from

left to right. If we arrange this filling of ∗T to be decreasing in the columns, then

∗T is a semistandard tableau as observed in [Ava08, Proposition 2]. We call ∗T the

complement of T .

Define the involution ∗ : SSYT(n;λ) −→ SSYT(n;λ∗) by sending a tableau T to

its complement tableau ∗T .

Lemma V.12. [LS90, RS97] Let T ∈ SSYT(n;λ) and let T J denote the tableau con-

sisting of columns of T labeled by J for subsets J of [λ1]. Let w+ and w− be defining

chains for T as in Lemma V.9. Then, w+
j = w+(T [j]) and w−j = w−(T [λ1]\[j−1]) for

j = 1, 2, . . . , λ1.

Proof. The maximal defining chain half of the lemma is [RS97, Lemma 8]. By [Ava08,

Theorem 8], the complement of the right key of T is the left key of the complement

of T . Therefore, K−(T ) = ∗K+(∗T ), which in turn implies that

(5.1) w−(T ) = w+(∗T )w0.

We deduce the minimal defining chain half of the lemma from (5.1). Assume without

loss of generality that λn = 0 by replacing T by ∗T if necessary and applying (5.1).
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Let u+ = (u+
1 , u

+
2 , . . . , u

+
λ1

) be the maximal defining chain for ∗T so that u+
j =

w+((∗T )[j]) where T [j] denotes the tableau consisting of the first j columns of T .

The sequence (u+)∗ := (u+
λ1
w0, u

+
λ1−1w0, . . . , u

+
1 w0) is the minimal defining chain for

T because right multiplication by w0 reverses strings representing permutations in

one-line notation and minimal for T since u+ is maximal for ∗T . We may now apply

(5.1) to see that

w−j = u+
λ1−j+1w0 = w+((∗T )[λ1−j+1])w0 = w−(T [λ1]\[j−1])

as was to be shown.

In particular, w+
λ1

= w+(T ) and w−1 = w−(T ) so that our criteria for determining

whether T is standard on Xw
u can be rephrased as follows.

Proposition V.13. (SMT for Richardson varieties) A tableau T is standard on Xw
u

if and only if w+(T ) > u and w > w−(T ).

Finally, the following theorem is fundamental to SMT.

Theorem V.14. [LL03, Theorem 34] Let λ ∈ Λ+
n be a partition with at most n parts

and Xw
u be a Richardson variety in F`n. Then, the standard monomials, standard

on Xw
u of multidegree dλ form a basis for H0(Xw

u ,Ldλ) for d > 1.

5.2 Pipe dreams and SMT

In this section, which is the core of our proof of Theorem IV.26, and therefore this

thesis, we show that Standard Monomials, standard on a Schubert variety correspond

to lattice points on RC-faces of GT-polytope. The proof of this correspondence is

in Section 5.2.2 where we show that canonical lifts of key tableaux and Demazure

products of pipe dreams are equal. In Section 4.2, we deduce Corollary V.26 for

Richardson varieties from Theorem IV.26.
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5.2.1 Schubert varieties

Recall that inω(C[P ]) ∼= C[GT(n)] as semigroup rings and that 〈Aw〉 is the image

of inω(Ĩw)∩ inω(C[P ]) under this isomorphism. We also have the graded vector space

C{RPw} =
⊕

λ∈Λ+
n
C[RPw]λ =

⊕
λ∈Λ+

n
C{RPw(λ)} that is the subspace of C[GT(n)]

spanned by monomials corresponding to faces of the GT-cone associated with reduced

pipe dreams in RPw. See, Section 4.3 for details.

The inclusion of inω(Iw) inside inω(Ĩw) ∩ inω(C[P ]) induces the surjection

inω(C[P ])

inω(Iw)
−� inω(C[P ])

in(Ĩw) ∩ inω(C[P ])
=
C[GT(n)]

〈Aw〉
.

Recall that C[GT(n)]/〈Aw〉 and C{RPw} are identified as graded vector spaces, so in

fact, the above surjection implies that

(5.2)
inω(C[P ])

inω(Iw)
−� C[RPw]

as graded vector spaces. In terms of dimension count, (5.2) implies that

(5.3) #{pT ∈ C[P ] : T ∈ SSYT(n;λ) is standard on Xw} = #SMw(λ) > #RPw(λ)

where dimC (inω(C[P ])/inω(Iw)) = #SMw(λ) by flatness of the degeneration from

C[P ]/Iw to inω(C[P ])/inω(Iw).

In the next section, we prove that #SMw(λ) = #RPw(λ) from which it follows

that the surjection in (5.2) is, in fact, an isomorphism. This isomorphism proves

that inω(Ĩw) ∩ inω(C[P ]) = inω(Iw) which is sufficient for Theorem IV.26.

5.2.2 Combinatorial lemmas

In this section, we prove the following proposition.

Proposition V.15. Let T be a tableau and Γ(T ) be the corresponding GT-pattern.

Then, pT is standard on Xw if and only if Γ(T ) is in RPw.
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Before discussing the proof of Proposition V.15, we observe that the proposi-

tion implies that #SMw(λ) = #RPw(λ) as follows. By (5.3), it suffices to show

that #SMw(λ) 6 #RPw(λ) and as a consequence of Proposition V.15, the map

Γ : SSYT(n) −→ GT(n) restricts to an injective map of SMw into RPw preserving

shapes as in

SMw� _

��

� � // RPw� _

��
SSYT(n) // GT(n)

Therefore, #SMw(λ) 6 #RPw(λ) as desired.

Proposition V.15 follows as an immediate consequence of Lemma V.19 combined

with Lemma V.20. The next set of definitions provide a way to interpret GT-patterns,

or equivalently tableaux as non-reduced pipe dreams.

Definition V.16. Let D be the map from skew tableaux with entries in [n] to pipe

dreams of rank n defined by

(5.4) S = (sij) 7−→ D(S) := D0 \ {(i, sij) ∈ [n]× [n] : i+ sij 6 n}.

For skew tableaux S with entries in [n], let Q(S) := Q(D(S)) denote the word read

from the pipe dream D(S) and Dem(S) := Dem(Q(S)), the Demazure product of

Q(S).

For example,

S =

5

4 4 3

2 1

7−→ D(S) =

so Q(S) = (s4, s4, s3) and Dem(S) = s4 ∗ s4 ∗ s3 = s4 ∗ s3 = 12534.
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Definition V.17. Let D′ : GT(n) −→ PD(n) be the map defined by

Γ = (γij) 7−→ D′(Γ) := {(i, j) ∈ [n]× [n] : γi,j = γi,j+1}.

In words, D′(Γ) is a pipe dream, possibly non-reduced, obtained by converting hori-

zontal equalities in a GT-pattern into crossing tiles. For Γ ∈ GT(n), let Q′(Γ) denote

the word read from D′(Γ) ∈ PD(n) and Dem′(Γ) denote the Demazure product of

Q′(Γ).

Remark V.18. The map D restricts to tableaux with straight shape as the composi-

tion SSYT(n)
Γ−→ GT(n)

D′−→ PDn so identifying SSYT(n) and GT(n), D′|SSYT(n) =

D. Henceforth, we will only use the notation D(•) and similarly write Q(•) and

Dem(•) instead of Q′(•) and Dem′(•).

For example, for T = 3 2
2 such that Γ(T ) =

2 2 1
1 1
0

,

D(Γ(T )) =

+

+

so that Q(Γ(T )) = (s1, s2) and Dem(Γ(T )) = s1 ∗ s2 = s1s2 = 231.

The following lemma provides a Bruhat-order criterion for determining whether

a given GT-pattern is contained in an RC-face.

Lemma V.19. Let Γ ∈ GT(n). Then, Γ ∈ RPw if and only if Dem(Γ) > w.

Proof. The word Q(Γ) converts equations defining RC-faces into adjacent transpo-

sitions. Consequently, Γ ∈ RPw if and only if w is a subword of Q(Γ). Applying

Lemma II.6, w is a subword of Q(Γ) if and only if Dem(Γ) > w.

The next lemma states that the left-hand side and the the right-hand side of

Figure 5.1 commute.
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GT(n)

D

zz

SSYT(n)//Γoo

K+

%%
PD(n)

Dem
))

Key(n)

w+

tt
Sn

Figure 5.1: Maps in Lemma V.20

Lemma V.20. Let T ∈ SSYT(n;λ) where λ ∈ Λ++
n . Then, Dem(T ) = w+(T ).

Proof. The tableau T has columns of all possible heights since λ1 > λ2 > · · · > λn.

For each column height k = 1, 2, . . . , n, let

(5.5) S
(k)
0 −→ S

(k)
1 −→ . . . −→ S(k)

m

be the sequence of skew tableaux beginning with the tableau S
(k)
0 := T and ending

with the skew tableau S(k) := S
(k)
m whose right-most column has height equal to k.

Consecutive pairs of tableaux in (5.5) are related by jdt such that S
(k)
j = jdt

j
(S

(k)
j−1),

for j = 1, 2, . . . ,m, where the empty boxes that are used in reverse-slides are schemat-

ically labelled in order in Figure 5.2.

t11 t12 t13 t14 t15 t16 t17 t18 t19

t21 t22 t23 t24 t25 3 5 . . .m−1

t31 t32 t33 1 2 4 6 . . . m

t41

Figure 5.2: Reverse slide order for (5.5) with k = 3

For example, for T =
5 4 3
4 1
2

,

S
(2)
0 =

5 4 3
4 1
2

−→ S
(2)
1 =

5 3
4 4
2 1

and

S
(3)
0 =

5 4 3
4 1
2

−→ S
(3)
1 =

5 3
4 4
2 1

−→ S
(3)
2 =

5
4 4 3
2 1

−→ S
(3)
3 =

5
4 3

4 2 1
.
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The ordering of empty boxes in reverse jdt slides is made to resemble the sequence

of elementary moves of Section 2.3.2. Such sequence of elementary moves for the

above example is

5 4 3
4 1
2

−→
5 3

4 4
2 1

−→
5
3

4 4 1
2

.

Consequently, the right-most column of S(k) is equal to the column of K+(T ) of

height k.

We claim that the Demazure products of skew tableaux in (5.5) satisfy

(5.6) Dem(T )[k] = Dem(S
(k)
1 )[k] = · · · = Dem(S(k))[k],

but isolate further discussion of (5.6) to Lemma V.21. We show that (5.6) implies

that Dem(T ) = w+(T ). Indeed, let s1 > s2 > · · · > sk be the entries of the rightmost

column of S(k). Then, for 1 6 j 6 k, the first sj entries on the jth row of D(S(k))

are a sequence of sj − 1, tiles and a tile for the sth
j entry. Therefore, the first

k-rows of D(S(k)) look like

D(S(k)) =

1 . . . sk . . . s2 . . . s1

s1 · · · · · · · · ·
s2 · · · · · ·
...

...

sk

Notice that the sub-pipe dream formed by the first k-pipes is reduced so that

Dem(S(k))[k] = {sk, sk−1, . . . , s1}. Since the height k column of K+(T ) is equal to

the right-most column of S(k), it then follows from (5.6) that Dem(T )[k] = w+(T )[k],

for k = 1, 2, . . . , n.

Lemma V.21. Let S
(k)
0 −→ S

(k)
1 −→ . . . −→ S

(k)
m be the sequence of skew tableaux

from (5.5). Then, Dem(S
(k)
0 )[k] = Dem(S

(k)
1 )[k] = · · · = Dem(S(k))[k].
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Proof. To compute the Demazure product of a non-reduced pipe dream, we itera-

tively reduce the number of crossing tiles until the pipe dream is reduced. Each

reduction step in this process corresponds to the relation si ∗ si = si for some

i = 1, 2, . . . , n− 1. For example,

 

represents the computation s3 ∗ s2 ∗ s3 ∗ s2 = s2 ∗ s3 ∗ (s2 ∗ s2) = s2 ∗ s3 ∗ s2. We show

that reverse slides connecting T to S(k) preserves initial k-terms of Dem(S
(k)
0 ).

Locally, a reverse slide is applied to a b
x where a > b. We may assume without

loss of generality that x > a > b, since the reverse slide a b
x  a b

x does not

affect the image under D. So the next reverse slide is a b
x  b

x a .

Case 1: x > a > b. The partial pipe dream mapped from a b
x is

b a x

 

b a x

(5.7)

where in passing from the left to the right, we have reduced a double crossing of

pipes into a single crossing. The partial pipe dream mapped from b
x a is

b a x

 

b a x

(5.8)

The pipe dreams in (5.7) and (5.8) have the same pipe connectivity, so their De-

mazure products are equal.

Case 2: x = a > b. The pipe dream mapped from a b
x is

b a = x
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whereas b
x a maps to

b a = x

 

b a = x

The two pipe dreams are the same.

Case 3: x > a = b. The map D sends a b
x to

b = a x

 

b = a x

whereas b
x a maps to

b = a x

The two pipe dreams are the same.

In the remaining cases, one or both entries x are b are not elements of the skew

tableaux. We label the cases to indicate similarities, so Case 1 is similar to Case 1’.

In the next two cases, a is the left-most column so the reverse slide is a b  b
a .

Case 1’: a > b. The skew tableau a b maps to

b a

 

b a

whereas b
a maps to

b a

 

b a

Demazure products of the two pipe dreams are the same.
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Case 3’: a = b. The skew tableau a b maps to

b = a

 

b = a

whereas b
a maps to

b = a

Demazure products of the two pipe dreams are the same.

In the remaining three cases, pipes in rows r− 1 and r are interchanged. Reverse

slide, however, progresses monotonically towards the Northwest corner so that r 6 k

preserving the initial k-terms of the Demazure product.

In the next two cases, the skew tableau a is the right-most column of a skew

tableau and the reverse slide we consider is a
x  x a .

Case 4: x > a. The skew tableau a
x maps to

a x

r−1 . . .

r . . .

 

a x

r−1 . . .

r . . .

and x a maps to

a x

r−1 . . .

r . . .

Demazure products of the two pipe dreams are different since pipes r − 1 and r are

switched. Nonetheless, the initial k-terms of the two Demazure products are the

same.

Case 5: x = a. The skew tableau a
x maps to

a = x

r−1 . . .

r . . .
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whereas x a maps to

a = x

r−1 . . .

r . . .

Initial k-terms of Demazure products are preserved by reverse slide as before.

Case 4’: In this case, the reverse slide is a  a where in both skew tableaux, a is

the only entry in its row. The skew tableau a maps to

a

r−1 . . .

r . . .

 

a

r−1 . . .

r . . .

whereas a maps to

a

r−1 . . .

r . . .

Initial k-terms of Demazure products are preserved.

Now, the proposition follows from the two lemmas.

Proof. (Proposition V.15) Combine Lemma V.19 and Lemma V.20.

5.2.3 Richardson varieties

In this section, we deduce an analogue of Theorem IV.26 for Richardson varieties

by applying the involution of Section 4.2 and SMT.

Definition V.22. Let RPw be the subset of GT(n) defined by

RPw :=
⋃

D∈RPww0

{Γ ∈ GT(n) : γn−i−j+2,j = γn−i−j+1,j+1 for (i, j) ∈ D}.

We call the elements of RPw the lattice points of opposite RC-faces for w of the GT-

cone. Let RPwu := RPu ∩ RPw and call its elements the lattice points of Richardson

faces for Xw
u .
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Definition V.23. Let Iwu := Iu + Iw where Iu is a Schubert ideal and Iw is an

opposite Schubert ideal. By [LL03, Theorem 16], Iwu is the ideal of the Richardson

variety Xw
u in C[F`n] = C[P ].

Definition V.24. For the tuple of reduced pipe dreams (E,D) ∈ RPu × RPww0 ,

let

• FD be the face of the GT-polytope defined by setting γn−i−j+2,j = γn−i−j+1,j+1

for each (i, j) ∈ D.

• FDE be the face of the GT-polytope defined by FDE := FE ∩ FD.

We call FD an opposite Schubert face and FDE a Richardson face of the GT-polytope.

Lemma V.25. Let τ : C[t][Q] −→ C[t][Q] be the signed involution constructed in

Section 4.2. Then, τ1(SMww0) = SMw and τ0(RPww0) = RPw.

Proof. For the first statement, notice that τ1(pT ) = ±p∗T for T ∈ SSYT(n) so it

suffices to show that if T is standard on Xww0 then ∗T is standard on Xw. Indeed,

w+(T ) > ww0 is equivalent to w−(∗T ) 6 w by (5.1). Hence, T ∈ SMww0 if and only

if ∗T ∈ SMw.

For the second statement, we claim that τ0 maps Γ ∈ GT(n) to Γ′ = (γ′i,j) defined

by

(5.9) γ′i,j = γ1,1 − γn−i−j+2,j.

To verify the claim, identify Γ ∈ GT(n) with the monomial inω(pT ) for T ∈ SSYT(n)

and observe that τ0(inω(pT )) = inω(p∗T ). It is not difficult to see that τ0(inω(pI)) =

inω(p[n]\I) corresponds to the GT-pattern obtained by (5.9). Hence, inω(p∗T ) corre-

sponds to GT-pattern obtained by (5.9) as well.
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Then,

τ0(RPww0) =
⋃

D∈RPww0

{τ0(Γ) ∈ GT(n) : γi,j = γi,j+1 for (i, j) ∈ D}

=
⋃

D∈RPww0

{Γ′ ∈ GT(n) : γ′n−i−j+2,j = γ′n−i−j+1,j+1 for (i, j) ∈ D}

= RPw.

Geometrically, Lemma V.25 says that Xw = τ(Xww0) and the opposite Schubert

variety Xw degenerates to the reduced union of toric subvarieties
⋃
D∈RPww0

XFD .

Next, as a further application of SMT, we show that the components of a degeneration

of a Richardson variety correspond to Richardson faces.

Corollary V.26. The family X = B−\\(Mn × A1) induces a flat degeneration of

Richardson variety Xw
u to a reduced union

⋃
(E,D)∈RPu×RPww0

XFDE of toric subvari-

eties of the Gelfand-Tsetlin toric variety XPλ.

Proof. The inclusion of inω(Iu) + inω(Iw) into inω(Iwu ) imply that inω(Xw
u ) is a sub-

scheme of the (scheme-theoretic) intersection inω(Xu) ∩ inω(Xw) and induces the

surjection

(5.10)
inω(C[P ])

inω(Iu) + inω(Iw)
−� inω(C[P ])

inω(Iwu )
.

Lemma V.25 implies that C{RPw} ∼= inω(C[P ])/inω(Iw) as graded vector spaces

so that

(5.11) C{RPwu } = C{RPu ∩ RPw} ∼=
inω(C[P ])

inω(Iu) + inω(Iw)
.

Notice that #RPwu = #SMw
u since #RPu = #SMu and #RPw = #SMw. Now,

counting dimensions in (5.10) and (5.11) implies that the map in (5.10) is an isomor-

phism.
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Université de Grenoble, Annales de l’Institut Fourier 5 (2001), no. 1, 1525–1538.

[EH00] David Eisenbud and Joe Harris, The geometry of schemes, Graduate Texts in Mathemat-
ics, vol. 197, Springer-Verlag, New York, 2000.

[Eis95] David Eisenbud, Commutative algebra, with a view toward algebraic geometry, Graduate
Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995.

[FL94] William Fulton and Alain Lascoux, A Pieri formula in the Grothendieck ring of a flag
bundle, Duke Mathematical Journal 76 (1994), no. 3, 711–729.

[Ful92] William Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal formu-
las, Duke Mathematical Journal 65 (1992), no. 3, 381–420.

[Ful97] , Young tableaux, with applications to representation theory and geometry, London
Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge,
1997.

[GC50] I. M. Gelfand and M. L. Cetlin, Finite-dimensional representations of the group of uni-
modular matrices, Doklady Akademiia Nauk SSSR 71 (1950), 825–828.



78

[GL96] N. Gonciulea and V. Lakshmibai, Degenerations of flag and Schubert varieties to toric
varieties, Transformation Groups 1 (1996), no. 3, 215–248.

[Hod43] W. V. D. Hodge, Some enumerative results in the theory of forms, Mathematical Pro-
ceedings of the Cambridge Philosophical Society 39 (1943), 22–30.
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