
Towards a Universal Two-Qubit Gate with
Self-Assembled InAs Quantum Dot Molecules

by

Colin M. E. Chow

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering)

in The University of Michigan
2015

Doctoral Committee:

Professor Duncan G. Steel, Chair
Assistant Professor Hui Deng
Professor Theodore B. Norris
Associate Professor Vanessa Sih



© Colin M. E. Chow 2015

All Rights Reserved



To

Jing Huang

ii



ACKNOWLEDGEMENTS

My first thanks goes to my thesis advisor, Prof. Duncan Steel, without whom I

would have missed the fascinating subject of quantum physics. I am grateful for the

opportunities he has provided, and the unusual amount of confidence he has in me,

a person with little background in physics. All these years, I have been benefited by

his mentoring in both professional and personal matters.

I would like to thank Prof. Ted Norris, Prof. Hui Deng and Prof. Vanessa Sih

for serving on my dissertation committee. The main idea and motivation for this

work largely come from Prof. Luming Duan and Prof. Lu Sham. I would also like to

thank Zhexuan Gong for the theoretical groundwork he had developed for this work.

Dan Gammon and his team at the Naval Research Lab had not only provided the

samples, but also shared valuable information and experience in the study of quantum

dot molecules. Above all, Allan Bracker and Danny Kim had assisted in tasks ranging

from fixing the samples to interpreting the data.

It was a privilege to be able to learn from highly motivated and talented group

members, especially Bo Sun, John Schaibley and Alex Burgers. The instrumentation

John and Alex pioneered and their continual assistance in the experimental method-

ology have been invaluable in my graduate career. I would also like to thank Cameron

Nelson, Uttam Paudel and Lu Ma for their occasional help and the inspirational con-

versations we had together. In the past two years, I have been honored to be able

to work alongside Aaron Ross. I cannot thank him enough for his dedication to the

project. This work would not have been possible without the help from him.

Finally, I would like to take the opportunity to express my deepest gratitude to

my wife, Jing Huang, for her emotional support and for bearing the distance over the

last few years. It was through her kindness and understanding that I managed to

focus on completing graduate school.

iii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER

I. Modeling Vertically Stacked Self-Assembled Double-Quantum
Dots: Sample Structure and Molecular Wavefunctions . . . . 4

1.1 Sample Structure . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Metal-Semiconductor Junction . . . . . . . . . . . . . . . . . 7
1.3 Confinement of charge carriers in QDs . . . . . . . . . . . . . 8
1.4 Calculating electron envelope wavefunctions using Finite-Difference-

Time-Domain (FDTD) method . . . . . . . . . . . . . . . . . 10
1.5 Bonding and anti-bonding states of a single electron confined

in a QDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Remark on heavy-hole energy states and conclusion . . . . . . 14

II. Electronic and Optical Properties of a QDM: Charge Config-
urations and Optical Resonance Spectra . . . . . . . . . . . . . 16

2.1 Basis states and symbols for charge configurations . . . . . . 16
2.2 Two-electron states: TheH2 block of fermionic Fock space and

Coulomb interaction . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Other examples of charge configurations: Neutral and charged

excitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iv



2.4 Charge stability plateaus and co-tunneling regimes . . . . . . 27
2.5 Optical transitions between two-electron states and doubly-

charged excitons . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 Remarks on neutral exciton and trion transitions, conclusion

and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

III. Optical Pumping in the Two-Electron Configuration: Elec-
tron Spin Preparation in Zero and Nonzero External Mag-
netic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 The “sweet spot” for two electron spin manipulation . . . . . 38
3.2 Optical pumping and state preparation of a singlet-triplet qubit

in zero magnetic field . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Singlet-triplet states in nonzero magnetic fields . . . . . . . . 44
3.4 Two-electron spin preparation via multi-laser optical pumping 50
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

IV. Dynamic Nuclear Spin Polarization and Optical Nuclear Spin
Locking in QDMs: Extended Two-Electron Spin Coherence 56

4.1 Resonance pulling and resonance pushing lineshapes as indica-
tors of electron spin induced DNSP . . . . . . . . . . . . . . . 57

4.2 General mechanism of DNSP in InAs QDs . . . . . . . . . . . 61
4.3 Recovery of dark-state lineshapes by nuclear spin locking: Ex-

tended electron spin coherence . . . . . . . . . . . . . . . . . 65
4.4 Emergence of dark-state dips at singlet transitions: Nuclear

spin narrowing . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . 70

V. Towards a Universal Two-Qubit Gate . . . . . . . . . . . . . . 71

5.1 Raman transitions with picosecond pulses: Single electron spin
rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 An all-optical universal two-qubit gate in a QDM: Basic prin-
ciples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Optical readout of eigenstate populations . . . . . . . . . . . 80
5.4 Proposed experimental demonstration of two-qubit gates . . . 83
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

VI. Summary and Future Directions . . . . . . . . . . . . . . . . . . 86

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . 88

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

v



BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

vi



LIST OF FIGURES

Figure

1.1 Detailed sample structure containing QDM’s used in the modeling.
The sample is fabricated at the US Naval Research Lab. Inset: Di-
mensions of constituent QD’s and the tunneling barrier. . . . . . . . 6

1.2 Energy band diagram for the QDM sample in n-type, electron-tunneling
configuration. EC , EV , and EF denote conduction band-edge, valance
band-edge and Fermi energy levels respectively. Other energies la-
beled above are GaAs electron affinity (χ), metallic work-function
(ϕm), and modified work-function (ϕi) . . . . . . . . . . . . . . . . 8

1.3 A particle in a hypothetical potential well in zero (dashed line) and
nonzero (solid line) electric field in x -direction . . . . . . . . . . . . 9

1.4 Physical dimensions of the QDM used in the calculation of wavefunc-
tions in this chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Bonding and anti-bonding energy levels as a function of applied bias
for the QDM sample described in §1.1. The energies are plotted with
respect to the single-QD ground state energy level of the bottom
QD, E0,B. st denotes tunneling constant with a value of around 0.4
meV taken from the anti-crossing at Vb,2. Inset (i)-(iii): Probabil-
ity amplitudes of the anti-bonding states, Ψ−, at bias Vb,1, Vb,2 and
Vb,3. B and T denote bottom and top QDs respectively. Inset (iv)-
(vi): Probability amplitudes for the bonding states, Ψ+. Inset (vii)-
(ix): Corresponding probability amplitudes along z -direction cutting
through the center of the QDM. Solid blue line: ground (bonding)
state; solid red line: first excited (anti-bonding) state; and solid black
line: conduction band potential. . . . . . . . . . . . . . . . . . . . . 13

vii



2.1 Window diagrams for the representations of charge configurations.
(a) Without considering the spins, numerals in the upper row rep-
resent the number of electrons occupying the bottom QD (left box)
and the top QD (right box), while the corresponding numbers in the
lower row represent heavy-holes. When spins are taken into account,
the numbers are replaced by arrows indicating spin projections. (b)
Symbolic representation for a tunnel-coupled state where the +(-)
sign denotes bonding (anti-bonding) state. . . . . . . . . . . . . . . 17

2.2 Calculated eigen-energies for two electrons confined in a QDM as
a function of applied bias. The energy levels are plotted with E1,2

T

as the reference. In the main plot, only eigen-energies for states
|S1,1〉, |S1,2〉, and the triplets are shown. The original energy levels
are included in the inset where the eigen-energy for state |S2,2〉 can
also be found. Charge configurations in regions away from the anti-
crossing are labeled by window diagrams. . . . . . . . . . . . . . . . 23

2.3 Calculated eigen-energies for a doubly-charged exciton, X 2−, as a
function of applied bias. The energy levels are plotted with E1,2

T as the
reference. Window diagrams indicate spatial charge configurations in
regions away from the anti-crossing. Inset: Original non-tilted plot. 27

2.4 Sketches portraying how band diagram changes with applied bias,
along with charging sequence. Note that different numbers of elec-
trons as well as charge configurations can exist at a given bias. This
figure shows only how the addition of electrons occurs as a function
of bias. (Upper panel: optical excited states; Lower panel: optical
ground states) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Energy level structures of different charge configurations for (a) op-
tical ground states and (b) optical excites states. Regions shaded in
green, red, blue and cyan indicate stability plateaus for neutral, 1e−,
2e− and 3e− configurations for the optical ground states, and X 0,
X 1−, X 2− and X 3−for the optical excited states, respectively. . . . . 29

2.6 Selection rules for optical transitions between the two-electron optical

ground states and the excited states
∣∣∣ξ1,h

1

〉
,
∣∣∣ξ1,h

2

〉
,
∣∣∣ξ1,h

3

〉
and

∣∣∣ξ1,h
4

〉
.

For the selection rules involving
∣∣∣ξ2,h

1

〉
,
∣∣∣ξ2,h

2

〉
,
∣∣∣ξ2,h

3

〉
and

∣∣∣ξ2,h
4

〉
, sim-

ply replace superscripts “1” in the label for the excited states by
“2”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

viii



2.7 (a) Optical transitions between the X 2− configuration and the two-
electron states. Note that only 4 out of 20 possible transitions are
labeled. Red arrows represent x-polarized optical transitions, while
blue arrows denote y-polarization. (b) Resulting resonant energy
structure showing the characteristic “X-pattern”. (c) PL map of a
QDM (QDM-A). The energy of the CW excitation laser is 1.38 eV
(900 nm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 Numerically calculated bias dependent optical resonances for X 0-
neutral QDM, X 1−-single electron, X 2−-two-electron, and X 3−-three-
electron transitions. For the purpose of showing the double X-patterns,
the inter-QD spacing and QD sizes used here are different from those
in previous calculations. . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 X 2−-two-electron optical transition energies versus bias reproduced
from Chapter 2. The energy levels for two-electron and X 2− con-
figurations are shown in the inset, where window diagrams indicate
charge configurations away from the anti-crossings. The sweet spot,
marked by the red circle in the transition map, corresponds to the re-
combination of an electron-hole pair localized in the top QD, leaving
behind two localized electrons, as indicated by the two-sided arrow.
The singlet and triplet transitions are also marked. . . . . . . . . . 39

3.2 PL maps for multiple QDMs illuminated simultaneously with an ex-
citation laser at 1.38 eV (900 nm). Two QDMs with two-electron
stablility plateaus near the sweet spot are identified, marked by red
circles in (a) and (b) for QDM-B and QDM-C, respectively. The
singlet and triplet transitions for each QDM are also indicated. . . . 40

3.3 Selection rules for the two-electron subspace S1,2 with circularly po-
larized light and zero applied magnetic field. ωs and ωt denote reso-
nant frequencies of the singlet and triplet transitions, respectively. . 42

3.4 Absorption maps of QDM-B showing the effects of optical pumping
and re-pump. (a) Differential absorption of the probe laser is di-
minished in the stability plateau of the singlet-triplet optical ground
states, indicated by the green shaded region. Red shaded areas cen-
tered at 0.48 V and 0.6 V are co-tunneling regimes. (b) The absorp-
tion signal for the singlet transition within the stability plateau is
restored by the application of a pump laser on resonance with the
triplet transition, as shown in the energy level diagram in (c). (d)
Recovery of triplet absorption signal within the stability plateau fol-
lowing the optical pumping scheme as shown in (e). Similar effects
of optical pumping and re-pump are observed in QDM-C. . . . . . . 43

ix



3.5 (a) Fan diagram showing the energy levels of the singlet-triplet ground
states and the optical excited states in an external magnetic field in
Faraday geometry. All six dipole allowed optical transitions are in-
dicated, along with the degenerate transitions collectively labeled by
the Roman numerals (iii) and (iv) for σ+ and σ− transitions, respec-
tively. (b) Magnetic field dependent absorption spectra of QDM-B
for σ+ and σ−-polarized probes in the co-tunneling regime (0.6 V).
The spectra are offset for clarity. . . . . . . . . . . . . . . . . . . . . 46

3.6 The eight-level system and selection rules for optical transitions in a
transverse magnetic field (Voigt geometry). For brevity, the primes
in the optical ground states are dropped from now on. All transition
energies are labeled according to the corresponding ground and ex-
cited states, given in numerical subscripts. Degeneracies ω25 = ω37,
ω26 = ω38, ω35 = ω47 and ω36 = ω48 are also indicated. Blue and red
solid lines represent vertical and horizontal polarizations, respectively. 48

3.7 Magnetic field dependent absorption spectra for (a) QDM-B and (b)
QDM-C in the co-tunneling regimes of respective QDMs, with all
eight resonances marked. The spectra are offset for clarity. The
vertically polarized resonances in (a) appear to be degenerate at low
magnetic fields due to mutual cancellation of electron and hole g-
factors in the Zeeman splitting given by 1

2
µBBz |ge,⊥ + 3gh,⊥|. The

resonance peaks of these transitions become resolved at much higher
magnetic fields of at least 3 T. . . . . . . . . . . . . . . . . . . . . 49

3.8 (a) Pump configuration for initialization to the singlet state via pop-
ulation pumping. Blue and red arrows represent vertically polarized
pump lasers and horizontally polarized scanning probe, respectively.
Green solid circle indicates the target state, in this case the singlet
state. (b) Differential absorption spectra obtained by scanning the
probe laser across all eight resonances, as indicated by vertical dash
lines. Solid circles show the data taken with the pump lasers set
to ω25 = ω37 and ω36 = ω48 transitions. The realization of singlet
state initialization is suggested by the absence of signal at ω47 = ω35

and ω26 = ω38. Measurements are repeated with one of the pump
lasers blocked (hollow circles and triangles), resulting in diminished
absorption signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

x



3.9 All six possible configurations for dual laser optical pumping and
their resulting absorption spectra. Panel (a) & (b): Initialization
to the singlet state. The absence of signal at the triplet resonances
signifies high-fidelity spin preparation of the singlet state. Pump
configurations giving rise to these spectra are given in the boxes to the
right, where solid arrows represent pump lasers while dashed arrows
the probe. Vertically polarized light is color coded in blue while
horizontally polarized light in red. Panel (c) & (d): Initialization to
|T+〉 state. Panel (e) & (f): Initialization to |T−〉 state. . . . . . . . 52

3.10 Truth table for the process of dual laser optical initialization. Columns
color-coded in blue, red and green correspond to initialization to the
singlet, |T+〉 and |T−〉, respectively. Here, the fidelity for the initial-
ization process for each case is given by the diagonal elements, from
which the values of 0.98, 0.90 and 0.94 are obtained for the singlet,
|T+〉 and |T−〉, respectively. . . . . . . . . . . . . . . . . . . . . . . . 53

3.11 (a) Pump configuration for spin preparation of |T0〉 state using four
CW lasers. The population is confined to the |S〉-|T0〉 subspace due
to Pump 1 and Pump 2. By virtue of CPT driven by Pump 2 and
Pump 3 on one side and Pump 1 and Pump 4 on the other, a coherent
superposition of |S〉 and |T0〉 is formed. If Pump 3 and Pump 4 are
made arbitrary strong, the system is essentially prepared in |T0〉 state.
(b) Calculated ground state populations as a function of Pump 1 Rabi
frequency in units of radiative decay rate, γ. Rabi frequencies used
here are 0.1γ, 2γ and 2γ for Pump 2, Pump 3 and Pump 4, respectively. 54

4.1 Resonance pulling and pushing lineshapes in spin triplet manifold.
(a) Pump configuration for |T−〉 state preparation. Here thick solid
arrows represent the pumps while dashed arrow the probe. Polariza-
tions of the optical fields are indicated by red and blue for horizon-
tal and vertical, respectively. (b) Following the pumping scheme in
(a), the upper panel shows the absorption spectrum of a vertically
polarized probe laser scanned in forward (increasing in frequency)
direction, while the lower panel in backward direction. The spectra
show hysteresis with respect to scan direction and resonance pulling
behavior due to DNSP. Inset: Ideal CPT lineshape with a dark-state
dip. (c) Pump configuration for |T+〉 state preparation. (d) Absorp-
tion spectra showing resonance pushing behavior with a horizontally
polarized probe. In both pump configurations, the spin state of the
optically excited trion, determined by the heavy-hole spin, remains
the same. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

xi



4.2 (a) and (c) Optical spin preparation of |T−〉 and |T+〉 states, respec-
tively, using alternative pump configurations. (b) and (d) Corre-
sponding high-resolution probe absorption spectra showing that, de-
spite the difference in pump configurations and resulting heavy-hole
spins, the observed behavior is qualitatively similar to that shown in
Fig. 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 A schematic illustration of the mechanism of DNSP showing the feed-
back between optical pumping induced NSP and NSP induced Over-
hauser shift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Nuclear spin locking and the recovery of dark state lineshapes. (a)
and (c) Pump configurations similar to those shown in Fig. 4.2(a)
and (c), except with the addition of Pump 3 at ω26 for case (a)
and ω48 for case (c). (b) and (d) Corresponding absorption spectra
showing dark-state profiles for the probe scanning across transitions
ω26 and ω48, respectively. Solid circles in the plots represent averaged
data points obtained from a series of 7 scans and the error bars show
standard deviations. Red solid lines are theoretical fits obtained from
solving the eight-level master equation. . . . . . . . . . . . . . . . 66

4.5 |S〉-|T+〉 coherence and Overhauser field narrowing. (a) Pump config-
uration for the preparation of a coherent |S〉-|T+〉 superposition. (b)
Probe absorption spectra showing the emergence of dark-state dips
at ω18 transition following the application of Pump 3. The spectra
are taken with nominal Pump 3 intensities of 0 µW, 0.5 µW and 2.0
µW, corresponding to Rabi frequencies of about 0 MHz, 200 MHz
and 400 MHz respectively. (c) Nuclear field distributions used in the
numerical model for fitting the spectra in (b). (d) A schematic il-
lustration explaining the disappearence of the dark-state dip due to
averaging for the case without nuclear spin locking (Pump 3 blocked).
The black curve is the weighted average of multiple colored curves
(5 of them are shown) according to the intrinsic Overhauser field
distribution (red dotted line in (c)). . . . . . . . . . . . . . . . . . 68

4.6 Dark-state dips at ω15 and ω18. (a) The pump configuration here
is similar to that shown in Fig. 4.5(a), but the probe is scanned
across a wider range covering both singlet transitions. (b) Probe ab-
sorption spectra showing the emergence of dark-state dips at both
singlet transitions, along with numerical fits. The Rabi frequency
associated with Pump 3 is about 560 MHz. (c) Nuclear field distri-
butions used in the numerical model for fitting the spectra in (b). (d)
Comparison between spectra calculated from different combinations
of dehonerence times and Overhauser field distributions. Here, the
thermal value of decoherence time is assumed to be 2.5 ns[1, 2, 3]. . 69

xii



5.1 (a) Pulse sequence for implementing a CNOT gate using square pulses
with pulse widths of 2 ps. Jex and δg are assumed to be 120 µeV
and 40 µeV, respectively. (b) Calculated truth table, i. e., state
populations following the pulse sequence shown in (a) for each input
eigenstates. Numbers in parenthesis are the populations of an ideal
CNOT gate. Note that the singlet-triplet basis is used. . . . . . . . 80

5.2 A schematic illustration of horizontally polarized spontaneous emis-
sions following a vertically polarized excitation pulse on resonance
with ω25. Solid arrows represent excitation paths while wavy arrows
spontaneous emission channels. Note that vertically polarized spon-
taneous emission channels are not shown as the emission is assumed
to be blocked by a polarizer after the sample for the purpose of exci-
tation beam rejection. . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Timing diagram for the processes of initialization, gate control and
readout of the two-qubit states. Here, the excitation lasers are con-
figured to initialize the system to the |T0〉 state, while the readout is
intended for the singlet state. The frequencies of the excitation lasers
are similar to the configuration shown Fig. 3.11. . . . . . . . . . . 84

A.1 Potential, V (r), of the double-QD in z -direction . . . . . . . . . . . 92

A.2 Probability densities, |Ψ|2, for (a) ground state and (b) first ex-
cited state of QDM. The QDs are in the shape of truncated cones
with a 3 nm height and a 20 nm base diameter, with a 6 nm inter-
QD separation. Wavefunctions are numerically calculated by solving
the Schrödinger equation for the double-QD potential using Finite-
Difference-Time-Domain(FDTD) method. . . . . . . . . . . . . . . 96

A.3 Eigen-energies of the QDM from exact solutions (solid lines) and the
MOT (dashed lines) as a function of (a) inter-QD separation, d, at
Vf = 0 and (b) electric field, F, in z -direction at a fixed d = 9 nm . 97

E.1 Pump configuration for nuclear spin locking identical to that in Fig.
4.4(a). Reproduced here for convenience. . . . . . . . . . . . . . . . 111

E.2 (a) Contour plot showing error-squares from the |T−〉 transition line-
shape fits calculated by varying the values of Γr and Γg. The model
for the corresponding pump configuration is discussed in this ap-
pendix. (b) Contour plot of the error-squares for the |T+〉 case,
showing the absence of a converging best-fit value for the parame-
ter Γg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

xiii



LIST OF TABLES

Table

1.1 Band parameters inferred from Ref. [4]. . . . . . . . . . . . . . . . . 11

1.2 Effective masses for electron and heavy-hole from Ref. [4] and [5]. . 11

2.1 Character table and irreducible decompositions for C2v point group.
σy represents mirror reflection in the xz-plane, while σx in the yz-plane. 31

E.1 Physical parameters of the QDM used in this study. . . . . . . . . . 115

E.2 Parameters used to produce the fitting curves in Fig. 4.4(b) and
(d). All values are in units of µeV. Here, δi denotes detuning from
corresponding transition. . . . . . . . . . . . . . . . . . . . . . . . . 115

xiv



LIST OF APPENDICES

Appendix

A. Comparison between Molecular Orbital Theory and Exact Solution in
QDMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

B. Solving Schrödinger Equations With FDTD Method . . . . . . . . . . 98

C. Basic Fermionic Algebra . . . . . . . . . . . . . . . . . . . . . . . . . 102

D. Schrieffer-Wolff Transformation in DNSP . . . . . . . . . . . . . . . . 106

E. Modeling QDM-Field Interaction of the 8-Level System . . . . . . . . 111

F. Estimate of the Intrinsic Overhauser Field Distribution . . . . . . . . 116

xv



ABSTRACT

Towards a Universal Two-Qubit Gate with Self-Assembled InAs Quantum Dot
Molecules

by

Colin M. E. Chow

Chair: Duncan G. Steel

Recent studies in self-assembled InAs quantum dots (QDs) for applications in quan-

tum information processing have demonstrated initialization, readout and long deco-

herence time of an electron spin confined in a single QD. These arguably fulfill three

out of the five DiVincenzo criteria[6] for the physical implementation of quantum

computation. The task of tackling the two remaining criteria, however, inevitably

leads to the requirement of coupling between two electron spin qubits. Based on

recent developments in vertically stacked self-assembled InAs quantum dot molecules

(QDMs), several advancements in the optical manipulation of two-electron spin states

have been made. These include the observation of a long spin decoherence time and

the demonstration of optical spin rotation of a single qubit defined by the singlet and

the triplet states of two electrons confined in a QDM[7, 8]. As a continuation of these

studies towards a full two-qubit system, this thesis addresses one of the remaining

DiVincenzo criteria concerning a universal set of quantum gates. The physical plat-

form for two-qubit gates is provided by two electrons confined in the QDM where the

Coulomb exchange interaction gives rise to the singlet and triplet manifolds. This

system was first developed and characterized, including a demonstration of entangle-

ment, by Dan Gammon and his group at the Naval Research Laboratory[9, 10, 7].

This thesis begins by developing a unified model based on a single-band-effective-

mass Hamiltonian that describes the energy level structure and optical properties, as

well as charge stability regions in the presence of an applied bias. In a transverse

magnetic field, an eight-level system consisting of four singlet-triplet spin states, four

optical excited states and twelve dipole allowed transitions arises. Spin initialization

xvi



via multi-laser optical pumping is demonstrated with near unity fidelity for three of

the spin states, while the remaining one can be achieved by coherent optical pump-

ing using four CW lasers. The effects of dynamic nuclear spin polarization (DNSP)

arising from the coupling between the electrons and the surrounding nuclei is evident

in the frequency pulling and pushing lineshapes in absorption profiles. This thesis

shows that the optical nuclear spin locking that was demonstrated in a single QD

earlier[11] is effective in QDMs, yielding a long spin decoherence time of about 1 µs.

Spectroscopic evidence suggests that this is accompanied by the first evidence of a

narrowing in the Overhauser field distribution. The results reveal that stabilization of

nuclear spin polarization in both QDs is achieved by optical manipulations in the top

QD, demonstrating the effect of non-local nuclear spin locking. Finally, it is shown

theoretically that pulsed excitation results in single spin rotation and in conjunction

with the Coulomb exchange interaction, provides the ingredients for a universal two-

qubit gate. A feasible experimental demonstration of the two-qubit gate is proposed,

along with the methodology for the population readout of individual spin states.
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INTRODUCTION

Decades of progress in the study of semiconductor quantum dots (QD) has estab-

lished the system’s applicability in quantum information and quantum computation.

In particular, recent achievements in self-assembled InAs/GaAs QDs have included

robust spin initialization[12, 13, 14, 15], readout[16, 17] and coherent control[18, 19,

20, 21]. Together with the observation of a long electron spin coherence[11, 22], these

conceivably satisfy three out of the five DiVincenzo criteria for the physical imple-

mentation of quantum computation[6]. With two remaining criteria to be fulfilled, i.

e., scalability and a universal set of gates, the main challenge of this system lies in

controlling the interactions between two QDs, which is crucial for universal quantum

gate operations and in scaling up the QDs towards a full-fledged quantum processor.

The schemes for realizing a universal quantum gate using electron or hole spins

in QDs can be classified into two paradigms. The first is by forging a communica-

tion link between two distant QDs through a “flying qubit”, which, in most designs,

is encoded in the polarization state of a single photon. In the light of these pro-

posals, the entanglement between a photon and a QD-confined electron spin has

been demonstrated[23, 24, 25]. To enhance the photon mediated interaction be-

tween two isolated QDs, some proposals call for placing the QDs inside optical

cavities[26, 27, 28, 29]. Recent developments in line with this approach have in-

cluded the observation of the coupling between a QD-confined electron spin and the

optical field in a photonic crystal cavity[30]. Nonetheless, it remains a considerable

technological challenge to couple two QD-confined electron spins via optical field.

This is primarily due to the inhomogeneity in spatial positions and optical transition

frequencies associated with the Stranski-Krastanov growth of self-assembled QDs.

The second paradigm is the “hard-wiring” of two or more QDs by positioning them

in close proximity, forming a so-called quantum dot molecule (QDM). By virtue of

tunneling, the wavefunctions of the charge carriers are delocalized and their inter-

action herein is governed by the Coulomb coupling. In view of recent developments

in vertically coupled QDMs, several schemes for implementing two qubit operations

have been proposed[31, 32, 33]. Compared to the first paradigm, the “hard-wiring”
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approach does not seem to possess as many engineering complications as those as-

sociated with optical cavities. Besides, fast gate speed in the order of 10 GHz[33],

based on the strength of the Coulomb exchange interaction, can be achieved and is

largely tunable by the design of the QDMs. Nonetheless, unlike in gate-defined QDs,

implementation of a universal two-qubit gate using self-assembled InAs QDMs is not

straightforward. Due to the high speed required, electrical gating of the primary

coupling mechanism, i.e., Coulomb exchange interaction, becomes impractical. As a

result, the implementation of two-qubit gate operations in the computational basis is

usually challenging in this system. Therefore, as will be discussed later in this thesis,

it is more convenient to use the eigenstates of the system consisting of spin singlet

and triplet states for quantum gate operations. Fortunately, this does not degrade

the importance of self-assembled InAs QDs for quantum computation since the two

bases are simply related by a unitary transformation.

It is to be emphasized that the two paradigms described above are equally im-

portant. A combination of both approaches in an integrated framework has been

proposed as a scalable architecture for quantum computation by Jones et al[34]. As

the performance of this scheme critically depends on the capability of the QDMs

to execute a universal set of gate operations, an experimental demonstration of this

capability is of paramount importance. In any case, a successful realization of a uni-

versal two-qubit gate is significant in its own right because it allows self-assembled

InAs QDs to satisfy yet another DiVincenzo criterion. This alone might pave the way

for many other applications such as small-scale quantum simulators.

The focus of this thesis is on the “hard-wiring” approach using a vertically stacked,

self-assembled InAs QDM. Ever since the seminal paper by Bayer et al.[35], optically

active QDMs have been extensively studied in laser spectroscopy. While a major-

ity of the studies are devoted to the identification of different optical transitions in

photoluminescence (PL)[36, 37, 38, 39, 40, 9, 41, 42], some advancements in coher-

ent optical manipulation have included the demonstration of a long spin decoherence

time[8] and spin rotation[7] of a single qubit defined by the singlet and the triplet

states of two electrons confined in a QDM. Nonetheless, the analyses and modeling of

the energy level structures of QDMs have thus far been ad hoc and fragmented. One

of the objectives of this thesis is to provide a holistic model for the energy level stuc-

tures of QDMs, particularly, those of the two-electron configuration. With the goal

of demonstrating a universal two-qubit gate in mind, this work is presented accord-

ing to a typical engineering methodology, beginning with the design and modeling of

the sample. After laying down the conceptual groundworks, more and more phys-
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ical models are added during the course of this thesis, culminating in a theoretical

description of a feasible demonstration of a universal two-qubit gate.

In accordance with the ideology mentioned above, Chapter 1 introduces the sample

structure used in this thesis, along with some design concerns. A numerical modeling

method is discussed and from its result, the bonding and anti-bonding molecular

states are revealed. Chapter 2 attempts to provide a framework for the analysis of

bias dependent photoluminescence spectra, where the complexity of the energy level

structure is shown to be arising from the Coulomb interaction between charge carriers.

This Chapter begins with an introduction to charge configurations in a QDM, followed

by the incorporation of Coulomb interaction in the calculation of the energy levels,

using the two-electron charge configuration as an example. Some important concepts

such as the charge stability plateau and the co-tunneling regime are explained using

numerically obtained energy levels of different charge configurations. Finally, the

optical transitions for the two-electron configuration are shown, from which the origin

of the striking “X-patterns” in photoluminescence spectra are revealed.

In Chapter 3 and beyond, the focus is on the two-electron configuration, since

it will eventually serve as the basis for two-qubit operations. The reasoning behind

the choice of the operating bias, henceforth known as the “sweet spot”, is laid out

in Chapter 3. Also given here are the derivations of the optical transition selection

rules in nonzero applied magnetic fields. The most important result from Chapter 3 is

the eight-level system which will serve as the physical model in subsequent chapters.

With the aid of the eight-level model, initialization of the two-electron spin states

is accomplished via the process of multi-laser optical pumping and the results are

reported at the end of Chapter 3.

Chapter 4 strives to work around a seeming obstacle posed by the hyperfine in-

teraction between the electrons and the nuclear ensemble, which gives rise to bizarre

lineshapes in the absorption spectra. Nonetheless, it will be shown that with optical

nuclear spin locking, the detrimental effects of nuclear spin fluctuations can be sup-

pressed. Analysis of the resulting dark-state lineshapes reveals long spin coherence

among all four spin states.

The eight-level model developed earlier is expanded in Chapter 5 to include pulsed

excitation, of which the result gives rise to single spin rotations. This and the Coulomb

exchange interaction become the ingredients for a universal two-qubit gate. The issue

of spin readout is also discussed here. Finally, a proposed experimental protocol for

the demonstration of a universal two-qubit gate is outlined. This thesis concludes

with Chapter 6 in which a brief summary and some future directions are given.
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CHAPTER I

Modeling Vertically Stacked Self-Assembled

Double-Quantum Dots: Sample Structure and

Molecular Wavefunctions

Vertically stacked quantum dots (QDs) in III-V semiconductors were first re-

ported by Goldstein et al.[43] in 1985. It is interesting to note that much efforts had

been paid back then to the removal of these unwanted “crystallographic defects” in

the studies of strained-layer-superlattices. To date, the optical properties of these

vertically stacked QDs have been extensively examined for potential applications in

quantum information and quantum computation. Although more than two stacked

QD layers have been fabricated, most theoretical and experimental studies to date

are limited to two QDs. Earlier optical studies of coupled double QDs, however, are

performed not on self-assembled stacked QDs, but on QDs fabricated by cleaved edge

overgrowth[44], where molecular behavior is first reported. The double-QDs are of-

ten regarded as analogous to bound hydrogen atoms in a hydrogen molecule[45, 44].

For this reason, the double-QDs are also known as quantum dot molecules (QDMs).

However, one should not take this analogy seriously because molecular behaviors of

double-QDs arise only under certain conditions. Due to the tunability of the engi-

neering parameters of double-QDs, their behaviors range from atomic to molecular.

Nonetheless, following the popularity of the term, QDM in the following text refers to

vertically stacked double-QDs, regardless of the presence or absence of molecular-like

states.

In most theoretical models[46, 45, 47] of the QDMs, “molecular” wavefunctions

are generated from wavefunctions of individual QDs. The overlap of these single-QD

wavefunctions in the barrier between the two QDs forms bonding or anti-bonding

molecular states, analogous to the standard molecular orbital theory (MOT), also

known as the linear-combination-of-atomic-orbitals (LCAO) method. One can also
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obtain molecular wavefunctions outside the framework of MOT by solving the Schrödinger

equation corresponding to the double potential well of the QDM directly. A compar-

ison between the calculation results from these two models is given in Appendix A

where a brief introduction to the MOT in the context of QDMs is also provided. The

choice of method is arbitrary but in the face of constraint in computing resources,

one method may be preferable to the other depending on the distance between the

QDs, also discussed in Appendix A.

Experimentally, molecular characteristics have been observed in photolumines-

cence (PL) spectra of QDMs[48, 38, 39, 40, 9, 42, 10, 49]. Despite the availability

of theoretical models described above, the models presented in the analyses of these

spectra are mostly phenomenological and to some extent based on the simplest form

of the MOT. Simple matrices are used to represent the Hamiltonian for the behavior

of a charge carrier confined in the QDM. Single-QD energies and interaction matrix

elements for inter-QD couplings are numerically fitted in ways such that the models

approximate the observed energy level structure. While mathematically convenient,

these models lack intuitive physical pictures of the interactions between QDs. Besides,

if one were to design a QDM system suited for a particular application, one needs

to estimate the eigen-energies and interaction matrix elements beforehand. This is

where phenomenological models have limited use. As an attempt to paint a more

physically accurate picture and to establish a simple QDM design methodology, this

chapter presents an alternative modeling technique based on calculated single charge

wavefunctions obtained from numerically solving the Schrödinger equation concerning

the QDM. To set the stage for this endeavor, let us first review some basic principles

of the sample structure in which the QDMs are embeded.

1.1 Sample Structure

The QDM sample structure used in this work is shown in Fig. 1.1. Fabrication of

the sample begins with the epitaxial growth of an n-doped (∼1015 cm−3 Si) gallium

arsenide (GaAs) buffer layer on an n-type GaAs substrate, serving as the electron

reservoir, followed by a 40-nm-thick intrinsic GaAs. Due to lattice mismatch, the

growth of subsequent indium arsenide (InAs) on the intrinsic GaAs layer is charac-

terized by Stranski-Krastanov process where nano-scaled islands spontaneously form

on a thin wetting layer of InAs. The hemispherical tops of the InAs islands are trun-

cated by using indium-flush technique to create QDs of desired thickness. A tunneling
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Figure 1.1: Detailed sample structure containing QDM’s used in the modeling. The
sample is fabricated at the US Naval Research Lab. Inset: Dimensions of
constituent QD’s and the tunneling barrier.

barrier comprised of GaAs and Al0.3Ga0.7As is then epitaxially grown on the first QD

layer. By varying the thickness of the Al0.3Ga0.7As layer and the relative abundance of

Al atoms, one can adjust the inter-QD tunneling strength and the quantum-confined

Stark shift.

Due to lattice deformation caused by the first QD layer, one would expect a strong

correlation in the lateral positions of the QDs in the second layer with that of the first.

In fact, the strain field created by the first-layer QDs (stressor) forms nucleation sites

for the second-layer QDs[50] and results in self-aligned vertically-stacked double-QDs.

These QD complexes are capped by 280-nm-thick intrinsic GaAs. A 25-nm-thick layer

of Al0.3Ga0.7As is then grown as a current blocker to reduce the flow of charge carriers.

This is then followed by a 5-nm-thick titanium layer that forms the metal gate of a

Schottky diode. The aluminum mask with lithographically patterned apertures (v1

to 10 µm in diameter) provides isolation of single QDM for laser excitation.

For the QDM considered in this work, the top QD is made thicker than the bottom

QD. This causes electron and hole confinement energies of the top QD lower than

that of the bottom QD. As a result, the optical transition frequency associated with

the top QD (hence the red-QD) is red-shifted from that of the bottom QD (hence the

blue-QD). With this arrangement, it is possible to tune the electron energy levels of

the two QDs into resonance by applying a moderate gate bias. This is known as the

electron-tunneling configuration. The opposite, i. e. the hole-tunneling configuration
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can be achieved by making the bottom QD thicker than the top QD or by using a

p-type substrate[37, 9, 10].

1.2 Metal-Semiconductor Junction

An important feature of the sample structure is the Schottky contact formed

between the titanium and GaAs layers which allows us to control the electric field

across the sample. As will be seen later in this chapter, the Schottky contact provides

the means to tune the quantum confinement energies of the QDs relative to the

Fermi level and to each other. The theory of metal-semiconductor junction had been

discussed in most solid-state electronics textbooks in the framework of Schottky-Mott

relationship (for examples, see [51, 52, 53]). However, the picture is a little more

complicated here due to the intrinsic GaAs and Al0.3Ga0.7As layers. Fortunately, for

most quantum related studies of these self-assembled QDMs, the device is normally

placed in an optical cryostat with the operating temperature set to around 5 K.

Under this condition, the intrinsic layers can be assumed to behave like insulators.

The resulting metal-insulator-semiconductor (MIS) structure is also widely discussed

in the textbooks.

For intrinsic GaAs at 5 K, the Fermi energy lies close to the mid-gap level. There-

fore, in thermal equilibrium, with the assumption of the absence of surface states at

the metal-GaAs interface, the Fermi level of the metal is pinned to the mid-gap of

the intrinsic GaAs. This gives rise to the “modified” work-function of the metal, ϕi,

which is the energy required to excite an electron from the metal to the conduction

band of the insulator, in this case the intrinsic GaAs. For the highly doped GaAs

layer, however, the Joyce-Dixon approximation[54] can be used to estimate the posi-

tion of the Fermi level. With a dopant concentration of 1015 cm−3, the Fermi level lies

in between the donor level and the conduction band edge at 5 K. Since the ionization

energy of the dopant is only about 6 meV, the Fermi level in the n-GaAs layer can

then be assumed to lie close to the conduction band edge. The resulting energy band

diagram is given in Fig. 1.2. Also shown in the figure is the built-in potential, Vbi, of

the Schottky diode, which is estimated to be 1
e

(
Eg
2

+ ∆EC

)
= 1.04 V, where Eg is

the GaAs bandgap and ∆EC is the GaAs=Al0.3Ga0.7As conduction band offset. The

validity of this estimate is corroborated by the measured I-V curve of the sample and

the onset of dense, high-intensity emission lines in bias-dependent PL.

7



Figure 1.2: Energy band diagram for the QDM sample in n-type, electron-tunneling
configuration. EC , EV , and EF denote conduction band-edge, valance
band-edge and Fermi energy levels respectively. Other energies labeled
above are GaAs electron affinity (χ), metallic work-function (ϕm), and
modified work-function (ϕi)

1.3 Confinement of charge carriers in QDs

By applying a bias voltage across the sample, the positions of the potential en-

ergies of InAs QDs relative to the Fermi level can be controlled. Confined states for

conduction band electrons in the QDs can exist as long as these potentials lie below

the Fermi level. However, the existence of confined states for holes is ambiguous from

the valence band structure shown in Fig. 1.2. For the n-type-electron-tunneling con-

figuration as shown above, a hole can only be created in the QDs by photo-excitation

of an electron-hole pair. One would then expect the hole to tunnel through the in-

trinsic GaAs barrier towards the metal contact, leaving behind the electron. This

scenario contradicts the photoluminescence (PL) results in which quantum confined

electron-hole recombination is measured.

Solution to this dilemma lies in the tunneling rate of the hole. To estimate the

tunneling rate, consider a hypothetical potential well as shown in Fig. 1.3. E0 is

the ground state energy level for a charged particle confined in the square potential

8



x

��

���

���������	
���	��	����	�������	��������	�����

���������	
���	��	�������	�������	��������	�����

���

Figure 1.3: A particle in a hypothetical potential well in zero (dashed line) and
nonzero (solid line) electric field in x -direction

well represented by the dashed line. When subjected to an electric field, F, in x -

direction, the potential well is tilted as shown by the solid line. At the operating

temperature of 5 K, thermally activated escape of carrier can be ignored and the

lost of carrier is largely due to tunneling[55]. An order-of-magnitude estimate of the

tunneling rate, rt, can be found using one dimensional Wentzel–Kramers–Brillouin

(WKB) approximation, which gives[56]

rt =
π~

2m∗hh
2
QD

exp

(
−4

3

√
2m∗h∆E

3/2
t

e~F

)
(1.1)

where hQD is the QD height, m∗h the hole effective mass and ∆Et the potential barrier

height as labeled in Fig. 1.3. Using Finite-Difference-Time-Domain method (see

Appendix B) to solve the Schrödinger equation for a 3-nm thick QD, it is found that

∆Et = 0.095 eV. The built-in electric field at 0 V gate bias can be estimated from

Fig. 1.2 to be 2.1 × 106 V/m. After substituting the appropriate values for other

parameters, we have rt = 1.5×10−15 s−1 ≈ 0. Hence the hole remains confined to the

QD until recombination occurs. Another commonly used expression for estimating rt

is derived from the analysis concerning the ionization of impurity states by an electric

field in semiconductors, and is given by [57, 55, 58, 59]

rt =
eF

4
√

2m∗h∆E
exp

(
−4

3

√
2m∗h∆E

3/2
t

e~F

)

This expression, however, gives an estimate of two orders of magnitude less than that
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of the first, and therefore have little use here. It is also worth mentioning that for

the case of an electron, Eq. 1.1 gives rt = 2 × 108 s−1, which is comparable to the

electron-hole recombination rate of 109 s−1.

1.4 Calculating electron envelope wavefunctions using Finite-

Difference-Time-Domain (FDTD) method

Having explained the working principles of the device structure encasing the

QDMs, we are in position to calculate the wavefunctions of an electron confined

in a QDM. In this chapter, we will confine our discussion to the calculation of single

electron wavefunctions while leaving most of the essential electronic and optical prop-

erties of QDMs to the next chapter. Nonetheless, one of the most important features

of QDMs—inter-QD tunneling, is being discussed here in the context of delocalized

or molecular eigenstates.

The geometry of the QDM considered here is based on the XSTM images[41, 9]

and is shown in Fig. 1.4. By neglecting the escape of charge carriers via tunneling,

one can calculate the wavefunctions of a confined electron by solving the Schrödinger

equation in a small volume enclosing the QDM, as indicated by the red-shaded box in

Fig. 1.2, instead of considering the entire sample structure. This greatly lessens the

demand on computational resources. Care should be taken in defining this region of

interest so that the wavefunctions can be assumed to vanish at the boundary. Using

the single-band-effective-mass (SBEM) method, the task reduces to the particle-in-a-

box problem encountered in introductory quantum mechanics. The choice of SBEM

over more rigorous methods like the eight-band k·p model is motivated by pragmatism

befitting the purpose of the calculation. Due to the inhomogeneity of QDs formed

by the Stranski-Krastanov process, the accuracy provided by the latter does not pose

an advantage when it comes to experiments. Although the eight-band k · p model

may reveal more physical details, e.g. inter-band optical transitions in the presence

of strain [60], they are out of the scope of this thesis.

In SBEM, a conduction band electron assumes an effective mass, m∗e = mr,e (r) m0,

where m0 is the electron rest mass. The dimensionless quantity mr,e (r) is determined

by the material at point r. The confinement of an electron in the QDM is due to

the conduction band offset between InAs and GaAs which is estimated to be 0.89

eV for bulk materials. This value, however, does not take into account the strain

due to lattice mismatch, which may cause a sizable shift in the conduction band

offset. Following Ref. [4], corrections to the band offsets due to strain are given by
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Figure 1.4: Physical dimensions of the QDM used in the calculation of wavefunctions
in this chapter.

−acε and −avε for conduction band electron and valence band hole respectively, by

assuming an in-plane strain orthogonal to growth axis. ac and av are the deformation

potentials while ε is the lattice mismatch defined as ε = (a0,GaAs − a0,InAs) /a0,InAs,

where a0,x denotes the lattice constant of material x. Tables 1.1 and 1.2 summarize

the strain accounted band parameters and effective masses used in the calculations

of wavefunctions for the QDM structure studied in this thesis. Notice that only the

heavy-hole is considered here. This is justified from the fact that due to strain, heavy-

hole and light-hole energy levels are no longer degenerate at Γ-point. Consequentially,

we can ignore the mixing between heavy-hole and light hole and take into account

only the heavy-hole in the modeling. This assumption is also corroborated by the

lack of indication of heavy-hole-light-hole mixing in experiments.

Bandgap (eV) Conduction band offset (eV)
InAs GaAs Al0.3Ga0.7As InAs/GaAs GaAs/Al0.3Ga0.7As

0.8724 1.5189 1.9418 0.5491 0.2810

Table 1.1: Band parameters inferred from Ref. [4].

Electron effective mass, m∗e (m0) Heavy-hole effective mass, m∗hh (m0)
InAs GaAs Al0.3Ga0.7As InAs GaAs Al0.3Ga0.7As
0.026 0.067 0.092 0.463 0.551 0.609

Table 1.2: Effective masses for electron and heavy-hole from Ref. [4] and [5].

The FDTD procedure explained in Appendix B provides a convenient way to nu-

merically determine the ground state wavefunction of an electron confined in a QDM.

With a simple modification discussed in the appendix, the wavefunctions of other
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low-lying energy eigenstates can also be estimated. As mentioned in the beginning

of this chapter, the FDTD method can be implemented in two ways. The first is

to solve the Schrödinger equation of the double potential directly while the second

is to calculate the wavefunctions of individual QDs, then construct the “molecular

wavefunctions” using molecular orbital theory (MOT). While the former approach is

straightforward, in FDTD the convergence rate of the calculation procedure is pro-

portional to the energy difference between the ground and first excited states. In

general, the larger the inter-QD distance, the smaller the energy splitting between

the bonding and anti-bonding states. Therefore, for QDMs with large inter-QD dis-

tances, it can be time-consuming to determine the ground state wavefunctions using

this direct “brute-force” approach. (See Appendix B) The second way requires more

intermediate steps because separate sets of calculations are needed to find the wave-

functions in individual QDs and their wavefunction overlaps. However, for cases with

large inter-QD distances and strong quantum confinements, it might be time-saving to

follow this approach. In practice, from the point of view of computational resources,

the MOT method is more advantageous when st � ∆E1,2, where st is the tunnel-

ing coefficient (see Appendix A) and ∆E1,2 is the energy splitting between adjacent

energy levels in separate QDs 1 and 2.

1.5 Bonding and anti-bonding states of a single electron con-

fined in a QDM

From preceding section and Appendix A, we learn that the molecular wavefunc-

tions can be obtained in two ways, both using the FDTD method. One by simply

solving the Schrödinger equation of the double-QD potential, and the other by em-

ploying the MOT to construct delocalized wavefunctions. For the QDM considered

here, the result obtained from the MOT is very close to that from the direct solu-

tion of the double-QD potential, although only the ground state wavefunctions of

individual QDs are taken into account. This arises from the fact that the energy

splitting between the ground and first excited states in a single QD (≥ 100 meV)

is much larger than the inter-QD tunneling constant, st, (≤ 1 meV) for the sample

considered here. In this case, however, the time required for directly solving the

double-QD Schrödinger equation is longer due to the small energy splitting of the

molecular states. Since both results differ only insignificantly, the MOT approach is

more advantegeous and is therefore used in the following.

Following Appendix A, the molecular wavefunctions for the ground (bonding)
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Figure 1.5: Bonding and anti-bonding energy levels as a function of applied bias for
the QDM sample described in §1.1. The energies are plotted with respect
to the single-QD ground state energy level of the bottom QD, E0,B. st
denotes tunneling constant with a value of around 0.4 meV taken from
the anti-crossing at Vb,2. Inset (i)-(iii): Probability amplitudes of the
anti-bonding states, Ψ−, at bias Vb,1, Vb,2 and Vb,3. B and T denote
bottom and top QDs respectively. Inset (iv)-(vi): Probability amplitudes
for the bonding states, Ψ+. Inset (vii)-(ix): Corresponding probability
amplitudes along z -direction cutting through the center of the QDM.
Solid blue line: ground (bonding) state; solid red line: first excited (anti-
bonding) state; and solid black line: conduction band potential.
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state, Ψ+, and the first excited (anti-bonding) state, Ψ−, are given by

Ψ± =
Ψ0,B − c±Ψ0,T√

1 + |c±|2

where

c± =
α11 + β21 − E± (1 + S∗)

α22 + β12 − E± (1 + S)

Here Ψ0,B and Ψ0,T are the ground state wavefunctions of individual bottom and top

QDs while E± is the eigen-energy of Ψ±. This, along with α11, α22, β12, β21 and the

wavefunction overlap, S, are defined in Appendix A. The eigen-energy as a function

of applied bias for the bonding and anti-bonding states are plotted in Fig. 1.5. The

emergence of molecular states is characterized by the avoided crossing (anti-crossing)

of the energy levels at applied bias Vb,2, where the ground state energy levels of the

individual QDs are on resonance. The smallest energy splitting between the two levels

is defined as twice the tunneling constant, st, which is roughly 0.4 meV as shown in

Fig. 1.5. In the vicinity of Vb,2, the wavefunctions of the electron are delocalized, given

by the symmetric (bonding) and anti-symmetric (anti-bonding) linear combinations

of Ψ0,B and Ψ0,T (Insets (ii) and (v) of Fig. 1.5). Away from this tunneling resonance,

the wavefunctions become localized at individual QDs. As the bias is increased, the

energy level for an electron confined in the top QD is shifted (dc Stark shift) roughly

by an amount −d′

D
e∆Vb ≈ −0.033e∆Vb relative to that of the bottom QD. Here d′

denotes the inter-QD separation, D the distance between the Schottky contact and

the substrate and ∆Vb the change in bias. For Vb < Vb,2, an electron confined in the

bottom QD has lower energy than that in the top QD, while for Vb > Vb,2, the order

is reversed. This bias dependent behavior is illustrated in the insets (vii)-(ix) of Fig.

1.5.

1.6 Remark on heavy-hole energy states and conclusion

In §1.1, it is mentioned that the sample is constructed in such a way that the

electron energy levels in the two QDs can be brought into tunneling resonance by

applying a moderate voltage bias. This sample geometry also dictates that the ground

state heavy-hole levels cannot be tuned into tunneling resonance with a reasonable

voltage bias. Tunnel coupling, however, can still exist between the heavy-hole ground

state in the bottom QD and one of the excited states in the top QD[41]. Based

on photoluminescence (PL) spectroscopy, the tunneling constant for heavy-hole is
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measured to be an order of magnitude smaller than that for electron[10, 41, 9, 37].

This is mainly due to the heavier effective mass of a heavy-hole in InAs compared

to that of an electron. For the sample structure considered here, the lowest energy

heavy-hole state is localized in the top QD, and can be accessed only through photo-

excitation. In the bulk of this thesis, only this single QD hole state is considered.

In conclusion, the molecular characteristic of a QDM is signified by the anti-

crossing of the ground and excited states as a function of applied bias. Using the

FDTD method to solve for electron wavefunctions in individual QDs and followed

by the MOT approach, the delocalized bonding and anti-bonding wavefunctions are

obtained. The calculated tunneling constant, st, agrees with the experimentally mea-

sured value of 0.35 meV from PL spectroscopy of a similarly structured sample[7]. As

derived in Appendix A, for QDMs with large inter-QD separations, the anti-crossing

can be modeled using a simple matrix Hamiltonian[40, 10, 9, 38, 42]

Ĥ =

[
α11 st

s∗t α22 + ed′F

]

This model considers a single particle with two energy levels. A QDM, however, can

be charged with multiple electrons or holes in various spatial configurations. The

Coulomb interaction between these particles gives rise to few-body systems, where

each of them posseses unique characteristics. Therefore, many important properties

QDMs are only revealed through the interactions between multiple charge carriers,

which will be the focus of the next chapter. Nevertheless, the modeling method

developed here plays a very important role since its results, i. e., the molecular

wavefunctions, will serve as the basis for further studies presented in subsequent

chapters.
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CHAPTER II

Electronic and Optical Properties of a QDM:

Charge Configurations and Optical Resonance

Spectra

In the previous chapter, it is shown how the wavefunctions of a confined electron in

QDM shifted from atomic-like to molecular-like as the sample bias voltage is changed.

In experiments involving optically active QDMs, however, these single particle states

are seldom probed just as they are; rather they are always probed jointly with optically

excited states where an electron-hole pair is added via optical excitation. With every

addition of a charge carrier, a different phenomenon arises. This chapter explores

some of these phenomena by constructing their corresponding energy levels using the

wavefunctions numerically obtained in the previous chapter. Using the examples of

two-electron and doubly-charged exciton configurations, methods for the evaluation

of Coulomb interaction matrix elements and the assessment of dipole-allowed optical

transitions are also discussed. Towards the end of this chapter, it is shown how the

the numerical model reproduces striking ’X-patterns[10, 36, 41, 39, 40, 9]’ observed in

bias-dependent photoluminescence (PL) spectra of a QDM. The results and concepts

developed here serve as the starting point for experimental studies reported in later

chapters.

2.1 Basis states and symbols for charge configurations

Due to the difference in the basis states used in this thesis and in some literature[10,

36, 41, 39, 40, 9], a few cautionary notes are necessary before proceeding to the dis-

cussions involving multiple charge carriers. In the picture provided by the latter, the

presence of two QD sites in a QDM enables spatial arrangements of charge carriers.
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For example, an electron can reside in either the top or the bottom QD, while two

electrons can be arranged such that each resides in a separate QD, both reside in the

top QD or both in the bottom QD. This means the wavefunctions are constructed

from basis states specified by the spatial confinement a single electron in either the

top or bottom QD, henceforth known as the ’spatial basis’. The use of this basis

originated from an intuitive way to visualize the charge configurations, which are

represented graphically with ’window diagrams’ as shown in Fig. 2.1(a). Although

the spatial basis is not used in this thesis for calculations, the window diagrams are

used for the purpose of labeling energy levels when convenient, i. e., in regions far

away from tunneling resonance. Hence, a brief discussion on them is worthwhile.

� �

�

Number of e-

Number of h+

B
o

tt
om

 Q
D

To
p

 Q
D

or, when spin is considered:

— Spin-down (up) e-

— Spin-down (up) h+

± βα

(a)

(b)

1, 2
0, 1

≡

Figure 2.1: Window diagrams for the representations of charge configurations. (a)
Without considering the spins, numerals in the upper row represent the
number of electrons occupying the bottom QD (left box) and the top QD
(right box), while the corresponding numbers in the lower row represent
heavy-holes. When spins are taken into account, the numbers are replaced
by arrows indicating spin projections. (b) Symbolic representation for a
tunnel-coupled state where the +(-) sign denotes bonding (anti-bonding)
state.

In a ’window diagram’, boxes in the upper row represent the potential wells in the

conduction band while the lower row the valance band. The left and right columns

indicate the top and bottom QDs, respectively. Charge occupancies are denoted by

the numbers in the upper row for electrons (e−) and the lower row for heavy-holes

(h+). When spins are included, the numbers are replaced by arrows pointing in the

directions of spin projections. In some other works, bracketed matrices are used

instead of boxes. To illustrate tunnel coupling, symmetric and anti-symmetric linear

combinations of charge configurations are symbolically constructed, as shown in Fig.

2.1(b). Although cumbersome in depicting tunnel coupled states, the spatial basis
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provides a convenient description of the relationship between the energy levels and

spatial charge configurations as a function of sample voltage bias. A small drawback

of the spatial basis is its potential to mislead due to the fact that the basis states are

not orthogonal to each other, i.e., the basis is over-complete. Therefore, extra care

must be taken in calculations when using this basis. (See Appendix A)

In this thesis, the basis states are chosen to be the single particle energy eigenstates

calculated using the procedure outlined in Chapter 1. In the vicinity of tunneling

resonance, this basis is formed by molecular states, while far from tunneling resonance,

it is identical to the spatial basis. Here the orthogonality of the basis states makes

calculating Coulomb interaction matrix elements convenient. As will be discussed

in the next section, multi-particle wavefunctions are constructed from the product

states of these single electron or heavy-hole eigenstates. The following notation used

to represent a product state in this thesis:

|1 ↑〉 |2 ↓〉 |2 ↑〉 |1 ⇑〉 ≡ (|Ψe
1〉1 ⊗ |↑〉1)⊗(|Ψe

2〉2 ⊗ |↓〉2)⊗(|Ψe
2〉3 ⊗ |↑〉3)⊗

(∣∣Ψh
1

〉
1
⊗ |⇑〉1

)
describes the case where the first electron occupies energy level 1 with a spin-up state,

the second and the third level 2, with spin-down and spin-up states, respectively, while

the heavy-hole assumes a spin-up state 1 in the valance band. For now, let us ignore

the anti-symmetrization for fermionic particles since they will be discussed in the

following section. Here Ψe
i and Ψh

i are i-th eigenstates for electron and heavy-hole,

respectively, in the conduction and the valance band. Spin states are denoted by

a simple arrow for the electron and a double-line arrow for the heavy-hole. In the

simplified notation on the left hand side of the equation above, numerical indices

identifying the particles are dropped as the identification is implied in the ordering

of the basis states.

2.2 Two-electron states: The H2 block of fermionic Fock

space and Coulomb interaction

When two or more particles are confined in a QDM, interaction between par-

ticles arises, along with additional charge and spin configurations. The formalism

of fermionic operators and Fock space provides a systematic way for the evaluation

of the interaction matrix elements involving multiple particles, as will be demon-

strated in this section for two electrons. If we assume that an electron confined

in a QDM can occupy one of the states |1 ↓〉, |1 ↑〉, |2 ↓〉 and |2 ↑〉, then for two-
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electrons, there are six possible combinations, namely, |1 ↓, 1 ↑〉, |1 ↓, 2 ↓〉, |1 ↓, 2 ↑〉,
|1 ↑, 2 ↓〉, |1 ↑, 2 ↑〉 and |2 ↓, 2 ↑〉. The notation here follows that of Appendix C, e. g.,

|1 ↓, 1 ↑〉 = â† (1 ↑) â† (1 ↓) |∅〉 ≡ 1√
2

(|1 ↓〉 |1 ↑〉 − |1 ↑〉 |1 ↓〉), where â† (1 ↑) denotes

the fermionic creation operator for the quantum state |Ψe
1〉 ⊗ |↑〉 and |∅〉 represents

the vacuum state. In this particular case, the six quantum states above span the two-

electron Hilbert space in our QDM, also known as the H2 block of the fermionic Fock

space, F . Note that due to Pauli exclusion principle, double occupancy of the same

state is not allowed. As shown in Appendix C, this can be viewed as the consequence

of the anti-commutation relations for fermionic operators.

Using the formalism of fermionic operators, the interaction Hamiltonian for a

single particle, H(1), is given by

H(1) =
∑
α,β

〈α|V (1) |β〉 â† (α) â (β) (2.1)

where 〈α|V (1) |β〉 is the interaction matrix element for quantum states |α〉 and |β〉,
which, in coordinate representation, takes the form

〈α|V (1) |β〉 =

ˆ
drΨ∗α (r)V (1) (r) Ψβ (r)

For interactions involving two particles, e. g. Coulomb interaction, the Hamiltonian

is

H(2) =
1

2

∑
α,β,γ,δ

V
(2)
αβ,γδâ

† (α) â† (β) â (γ) â (δ) (2.2)

where
V

(2)
αβ,γδ = (〈α| ⊗ 〈β|)V (2) (|γ〉 ⊗ |δ〉)

=
˜
dr1dr2Ψ∗α (r1) Ψ∗β (r2)V (2) (r1, r2) Ψγ (r2) Ψδ (r1)

(2.3)

in coordinate representation. It is important to note that the basis states for both

Eq. (2.1) and (2.2) are those of two-particle states, |α, β〉. The factor 1
2

in Eq. (2.2)

arises from double counting because |β, α〉 = − |α, β〉, as shown in Appendix C.

In the case of two electrons confined in a QDM, the Hamiltonian consists of

confinement potential for individual electron, H0, and Coulomb interaction, V Cou.

Since the single particle basis states are chosen to be the molecular eigenstates of

H0 from Chapter 1, the nonzero terms in the Hamiltonian for particle confinement,
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HCon, in Eq. (2.1) are

HCon = 〈1 ↓|H0 |1 ↓〉 â† (1 ↓) â (1 ↓) + 〈1 ↑|H0 |1 ↑〉 â† (1 ↑) â (1 ↑)

+ 〈2 ↓|H0 |2 ↓〉 â† (2 ↓) â (2 ↓) + 〈2 ↑|H0 |2 ↑〉 â† (2 ↑) â (2 ↑)

=E1â
† (1 ↓) â (1 ↓) + E1â

† (1 ↑) â (1 ↑) + E2â
† (2 ↓) â (2 ↓) + E2â

† (2 ↑) â (2 ↑)

Here E1(2) = E+(−) is the eigen-energy from Chapter 1. The matrix representation of

HCon is therefore diagonal:

HCon =



2E1 0 0 0 0 0

0 E1 + E2 0 0 0 0

0 0 E1 + E2 0 0 0

0 0 0 E1 + E2 0 0

0 0 0 0 E1 + E2 0

0 0 0 0 0 2E2


(2.4)

in the basis {|1 ↓, 1 ↑〉, |1 ↓, 2 ↓〉, |1 ↓, 2 ↑〉, |1 ↑, 2 ↓〉, |1 ↑, 2 ↑〉, |2 ↓, 2 ↑〉}.
For the Coulomb interaction term, H(2) = HCou, we have

V (2) = V Cou =
e2

4πε

1

|r1 − r2|

where ε is the permittivity of the underlying semiconductor material. Substituting

the expression for Coulomb interaction above into Eq. (2.3), it is easy to show that

V Cou
αβ,γδ = V Cou

βα,δγ =
(
V Cou
γδ,αβ

)∗
The matrix elements for Coulomb interaction can be written in terms of V Cou

αβ,γδ using

Eq. (2.2). For example, to evaluate the matrix element below:

〈1 ↓, 1 ↑|HCou |1 ↓, 1 ↑〉 = 〈1 ↓, 1 ↑| 1
2

∑
α,β,γ,δ

V Cou
αβ,γδâ

† (α) â† (β) â (γ) â (δ) |1 ↓, 1 ↑〉

first note that 〈1 ↓, 1 ↑| â† (α) â† (β) â (γ) â (δ) |1 ↓, 1 ↑〉 is nonzero if (α, β), (γ, δ) =

(1 ↓, 1 ↑) or (1 ↑, 1 ↓). But V Cou
αβ,γδ = (〈α| ⊗ 〈β|)V Cou (|γ〉 ⊗ |δ〉) is nonzero only if the

spin projection of α equals that of δ, and similarly for the pair β and γ. Hence,

the two sets of values (α, β, γ, δ) which contribute to the matrix element above are
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(1 ↓, 1 ↑, 1 ↑, 1 ↓) and (1 ↑, 1 ↓, 1 ↓, 1 ↑), and we have

〈1 ↓, 1 ↑|HCou |1 ↓, 1 ↑〉 = 〈1 ↓, 1 ↑| 1
2
V Cou

11,11â
† (1 ↓) â† (1 ↑) â (1 ↑) â (1 ↓) |1 ↓, 1 ↑〉

+ 〈1 ↓, 1 ↑| 1
2
V Cou

11,11â
† (1 ↑) â† (1 ↓) â (1 ↓) â (1 ↑) |1 ↓, 1 ↑〉

= V Cou
11,11

Here the electron spin is dropped in the notation V Cou
αβ,γδ since it is understood that

Coulomb interaction is spin conserving.

In similar fashion to the example above, all matrix elements of Coulomb interac-

tion can be found and are given below in the same basis as Eq. (2.4):

HCou =



V Cou
11,11 0 V Cou

11,12 −V Cou
11,12 0 V Cou

11,22

0 V Cou
12,21 − V Cou

12,12 0 0 0 0(
V Cou

11,12

)∗
0 V Cou

12,21 −V Cou
12,12 0 V Cou

12,22

−
(
V Cou

11,12

)∗
0 −V Cou

12,12 V Cou
12,21 0 −V Cou

12,22

0 0 0 0 V Cou
12,21 − V Cou

12,12 0(
V Cou

11,22

)∗
0

(
V Cou

12,22

)∗ − (V Cou
12,22

)∗
0 V Cou

22,22


Away from “tunneling resonance”, i. e., |E2 − E1| �

∣∣V Cou
11,11 − V Cou

12,21

∣∣ , ∣∣V Cou
22,22 − V Cou

12,21

∣∣,
the off-diagonal Coulomb terms V Cou

11,12, V Cou
12,22 and V Cou

11,22 are negligible. Setting these

terms to zero, the eigen-energies and eigenstates of the Hamiltonian HCon +HCou are

given by:

Eigen-energies: Eigenstates:

2E1 + V Cou
11,11 |1 ↓, 1 ↑〉 = |1〉 |1〉 ⊗ |↓〉|↑〉−|↑〉|↓〉√

2
= |S1,1〉

2E2 + V Cou
22,22 |2 ↓, 2 ↑〉 = |2〉 |2〉 ⊗ |↓〉|↑〉−|↑〉|↓〉√

2
= |S2,2〉

E1 + E2 + V Cou
12,21 + V Cou

12,12
|1↓,2↑〉−|1↑,2↓〉√

2
= |1〉|2〉+|2〉|1〉√

2
⊗ |↓〉|↑〉−|↑〉|↓〉√

2
= |S1,2〉

E1 + E2 + V Cou
12,21 − V Cou

12,12 |1 ↓, 2 ↓〉 = |1〉|2〉−|2〉|1〉√
2

⊗ |↓〉 |↓〉 =
∣∣T 1,2
−
〉

E1 + E2 + V Cou
12,21 − V Cou

12,12
|1↓,2↑〉+|1↑,2↓〉√

2
= |1〉|2〉−|2〉|1〉√

2
⊗ |↓〉|↑〉+|↑〉|↓〉√

2
=

∣∣T 1,2
0

〉
E1 + E2 + V Cou

12,21 − V Cou
12,12 |1 ↑, 2 ↑〉 = |1〉|2〉−|2〉|1〉√

2
⊗ |↑〉 |↑〉 =

∣∣T 1,2
+

〉
(2.5)

The eigenstates consist of spin-zero singlet states, represented by S, and spin-1 triplet

states, by T . Subscripts denote spin projections, while charge configurations are given

in superscripts. Note that the triplet states are degenerate. The energy splitting

between |S1,2〉 and the triplet states is given by 2V Cou
12,12, in which V Cou

12,12 is known as

the exchange integral, sometimes written as Jex. Following the order of the eigenstates
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above, we can rewrite the Hamiltonian HCon +HCou in singlet-triplet basis as:

HCon+HCou =



2E1 + V Cou
11,11 V Cou

11,22

√
2V Cou

11,12 0 0 0(
V Cou

11,22

)∗
2E2 + V Cou

22,22

√
2
(
V Cou

12,22

)∗
0 0 0√

2
(
V Cou

11,12

)∗ √
2V Cou

12,22 E1,2
S 0 0 0

0 0 0 E1,2
T 0 0

0 0 0 0 E1,2
T 0

0 0 0 0 0 E1,2
T


(2.6)

Here the off-diagonal Coulomb terms V Cou
11,12, V Cou

12,22 and V Cou
11,22 are restored. The terms

E1,2
S = E1 +E2 +V Cou

12,21 +V Cou
12,12 and E1,2

T = E1 +E2 +V Cou
12,21−V Cou

12,12 are the energy levels

of the singlet and triplet states, respectively, in the absence of off-diagonal Coulomb

coupling, for the charge configuration where levels 1 and 2 are each occupied by an

electron. Eq. (2.6) above shows that the singlet state |S1,2〉 is coupled to states

|S1,1〉 and |S2,2〉 with coupling constants given by
√

2V Cou
11,12 and

√
2V Cou

12,22 respectively,

whereas the triplet states are isolated. This is due to the fact that Coulomb interaction

is spin conserving, i. e., it does not affect the spin states of the electrons.

Using the Coulomb matrix elements calculated from the wavefunctions obtained

in Chapter 1, the eigen-energies for the Hamiltonian in Eq. (2.6) are plotted in Fig.

2.2. For a better display of the anti-crossing, the energy level of the triplets, E1,2
T ,

is used as the reference in the main plot, while the original energy levels are given

in the inset. As one expects from Eq. (2.6), the coupling between |S1,1〉 and |S1,2〉
gives rise to an anti-crossing (solid lines), while the three-fold degenerate triplet states

(dashed line) remain uncoupled. Away from the anti-crossing, the wavefunctions of

the electrons become localized in individual QDs, and it is convenient to label the

energy levels with the window diagrams representing charge configurations. Here the

anti-crossing between |S1,2〉 and |S2,2〉 occurs at a very high bias around 1.6 V, outside

of the plot range. The energy splitting between |S1,1〉 and |S1,2〉 at the anti-crossing

is given by

∆2e− =

√(
E2 − E1 + V Cou

12,21 + V Cou
12,12 − V Cou

11,11

)2
+ 8

∣∣V Cou
11,12

∣∣2
For the sample considered here, ∆2e− is typically around 3st, where st is the tunneling

constant from Chapter 1.

Although somewhat extraneous to the discussion here, it is interesting to note the

relation between Eq. (2.6) and the Hund-Mulliken model[9, 7], often used as the toy

model to describe the energy level structure for two-electron states in QDMs. If we
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Figure 2.2: Calculated eigen-energies for two electrons confined in a QDM as a func-
tion of applied bias. The energy levels are plotted with E1,2

T as the ref-
erence. In the main plot, only eigen-energies for states |S1,1〉, |S1,2〉, and
the triplets are shown. The original energy levels are included in the inset
where the eigen-energy for state |S2,2〉 can also be found. Charge con-
figurations in regions away from the anti-crossing are labeled by window
diagrams.

replace the eigenstates |1〉 and |2〉 in Eq. (2.6) by |B〉 and |T 〉 to indicate the occu-

pation of an electron in the bottom and top QD, respectively, and also change 2E1,

2E2, V Cou
11,12, V Cou

12,22, and V Cou
11,22 to 2E

′
1− ed′F , 2E

′
2 + ed′F , −st, −st and 0, respectively,

we arrive at

HHM =



2E
′
1 + V Cou

11,11 − ed′F 0 −
√

2st 0 0 0

0 2E
′
2 + V Cou

22,22 + ed′F −
√

2s∗t 0 0 0

−
√

2s∗t −
√

2st E
′
S 0 0 0

0 0 0 E
′
T 0 0

0 0 0 0 E
′
T 0

0 0 0 0 0 E
′
T


(2.7)

Here E
′
S = E

′
1 + E

′
2 + V Cou

12,21 + V Cou
12,12 and E

′
T = E

′
1 + E

′
2 + V Cou

12,21 − V Cou
12,12, while st,

d′ and F are similarly defined as in Chapter 1. The Hund-Mulliken model given

in Eq. (2.7) above provides a phenomenological description of the bias-dependent
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energy levels in singlet-triplet basis analogous to Eq. (2.6). However, here the

single electron states are localized, i. e., in spatial basis. The coupling between

the singlet states are given in terms of the tunnling constant as −
√

2st. This can

be derived if one assumes that the “tunneling interaction” takes the form V Tun =

−
∑

α,β (1− δα,β) stâ
† (α) â (β), where α, β = {B, T} and δα,β is the Kronecker delta.

Here â† and â operate only on the non-spin portion of the wavefunctions. It can be

shown that 〈B ↓, B ↑|V Tun 1√
2

(|B ↓, T ↑〉 − |B ↑, T ↓〉) = −
√

2st.

2.3 Other examples of charge configurations: Neutral and

charged excitons

Both single- and two-electron charge configurations discussed in Chapter 1 and

in previous section constitute part of the optical ground states of the system. From

Chapter 1, for the sample structure under consideration, a hole can only exist due

to optical excitation. Therefore, whenever a charge configuration contains a hole, it

is known to be part of the optical excited states. Using the same method presented

in previous section, the Coulomb matrix elements for the optical excited states, and

subsequently the eigen-energies, can be calculated. However, while the electrons in

the optical ground states are indistinguishable, in this thesis, the hole in the optical

excited states is assumed to be distinguishable from the electrons. Consequentially,

certain aspects of the exciton such as the electron-hole exchange interaction, which

arises from the symmetry breaking of underlying materials, are not accounted for.

Nonetheless, as shown in other works[40, 39, 9, 10], these effects can be “artificially”

included in the Coulomb matrix elements a posteriori. For more rigorous treatments

of the exciton, interested readers are encouraged to consult works on group theoretical

methods[61, 62, 63].

As mentioned in Chapter 1, only the two lowest-lying heavy-hole states are con-

sidered in this thesis. The sample structure used here dictates that tunneling between

the two QDs cannot occur for the heavy-hole within reasonable range of applied bias,

i. e., the heavy-hole wavefunctions are localized within the bias of interest. Fur-

thermore, for this sample, the energy separation between the two heavy-hole states

is larger than the energy shift due to Coulomb interaction. For this reason, the

heavy-hole states remain localized in the presence of Coulomb interaction. Con-

sequentially, we can ignore the off-diagonal Coulomb matrix elements that involve

different hole states. This reduces the matrix representations of Coulomb interaction

to block-diagonal matrices. We can therefore solve for the eigenstates separately for
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configurations containing different hole energy levels. The simplest example of an

optical excited state is the neutral exciton, denoted by X 0, to be discussed in the

following. In addition, since the subsequent chapters focus on the two-electron sys-

tem, its corresponding optical excited state, the doubly-charged exciton, X 2−, is also

presented in this section. In the notation used here, X represents an exciton while

the superscript indicates the number of additional charges present in the QDM. For

example, an X 2− state contains three electrons and a heavy-hole. Since there are two

possible ways for three electrons to occupy two energy levels, the X 2−manifold con-

tains four charge configurations, assuming that the heavy-hole can occupy one of its

two energy levels. Although the X 1−(trion) and X 3− configurations are not discussed

here, the procedure given below can be easily used to calculate their energy levels.

For the case of a neutral exciton consisting of an electron-hole pair, the basis

states are:

{|1 ↓〉 |h ⇓〉 , |2 ↓〉 |h ⇓〉 , |1 ↓〉 |h ⇑〉 , |2 ↓〉 |h ⇑〉

|1 ↑〉 |h ⇓〉 , |2 ↑〉 |h ⇓〉 , |1 ↑〉 |h ⇑〉 , |2 ↑〉 |h ⇑〉}

where h represents either one of the two lowest-lying heavy-hole eigenstates. From
Eq. (2.1) and (2.2), the matrix elements for the exciton Hamiltonian, HX

0
= HCon +

HCou + Eg Î, can be found easily:

HX
0

=



E
(X0)
1 −V Cou

1h,h2 0 0 0 0 0 0

−
(
V Cou

1h,h2

)∗
E

(X0)
2 0 0 0 0 0 0

0 0 E
(X0)
1 −V Cou

1h,h2 0 0 0 0

0 0 −
(
V Cou

1h,h2

)∗
E

(X0)
2 0 0 0 0

0 0 0 0 E
(X0)
1 −V Cou

1h,h2 0 0

0 0 0 0 −
(
V Cou

1h,h2

)∗
E

(X0)
2 0 0

0 0 0 0 0 0 E
(X0)
1 −V Cou

1h,h2

0 0 0 0 0 0 −
(
V Cou

1h,h2

)∗
E

(X0)
2



Here E
(X 0)
1 = E1 +Eh+Eg−V Cou

1h,h1 and E
(X 0)
2 = E2 +Eh+Eg−V Cou

2h,h2, where Eg is the

bandgap. Since HX
0

is block-diagonal with four identical 2×2 matrices, there are two

eigen-energies in this system where each of them is four-fold degenerate. In reality,

however, due to the strain-induced breaking of the S4-symmetry[63], the degeneracy is

lifted, causing exciton fine structure splittings, also known as electron-hole exchange

splittings, of about 0.1 meV[40, 39, 9, 10]. Since these fine structure splittings are

much smaller compared to the energy splitting at the anti-crossing, they are ignored

for the moment. The energy level structure for a neutral exciton resembles that of a
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single electron, with the energy splitting at the anti-crossing given by

∆X 0 =

√(
E2 − E1 + V Cou

1h,h1 − V Cou
2h,h2

)2
+ 4

∣∣V Cou
1h,h2

∣∣2
Another charge configuration having equally simple energy level structure as the

neutral exciton is the doubly-charged exciton, X 2−, which consists of two spin-paired

electrons and a neutral exciton. It has the same number of basis states as the neutral

exciton, here written as:

{|1 ↓, 1 ↑, 2 ↓〉 |h ⇓〉 , |1 ↓, 2 ↓, 2 ↑〉 |h ⇓〉 , |1 ↓, 1 ↑, 2 ↓〉 |h ⇑〉 , |1 ↓, 2 ↓, 2 ↑〉 |h ⇑〉 ,

|1 ↓, 1 ↑, 2 ↑〉 |h ⇓〉 , |1 ↑, 2 ↓, 2 ↑〉 |h ⇓〉 , |1 ↓, 1 ↑, 2 ↑〉 |h ⇑〉 , |1 ↑, 2 ↓, 2 ↑〉 |h ⇑〉}

Using Eq. (2.2) and the identities given at the end of Appendix C, the Coulomb

matrix elements can be determined in the same manner as before. We then arrive at

the following for the doubly-charged exciton Hamiltonian:

HX
2−

=



E
(X 2−)
1 V (X 2−) 0 0 0 0 0 0

V (X 2−)∗ E
(X 2−)
2 0 0 0 0 0 0

0 0 E
(X 2−)
1 V (X 2−) 0 0 0 0

0 0 V (X 2−)∗ E
(X 2−)
2 0 0 0 0

0 0 0 0 E
(X 2−)
1 V (X 2−) 0 0

0 0 0 0 V (X 2−)∗ E
(X 2−)
2 0 0

0 0 0 0 0 0 E
(X 2−)
1 V (X 2−)

0 0 0 0 0 0 V (X 2−)∗ E
(X 2−)
2


where

E
(X 2−)
1 = 2E1 + E2 + Eh + Eg + V Cou

11,11 + 2V Cou
12,21 − V Cou

12,12 − 2V Cou
1h,h1 − V Cou

2h,h2

E
(X 2−)
2 = E1 + 2E2 + Eh + Eg + V Cou

22,22 + 2V Cou
12,21 − V Cou

12,12 − V Cou
1h,h1 − 2V Cou

2h,h2

V (X 2−) = V Cou
1h,h2 − V Cou

11,12 − V Cou
12,22

The matrices HX
0
and HX

2−
have the same form and differ only in their corresponding

matrix elements. Therefore, the energy level structure of a doubly-charged exciton

is similar to that of a neutral exciton, i. e., four-fold degenerate and contains an

anti-crossing, but is tilted and shifted with repect to the latter due to differences in
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matrix elements. The energy splitting at the anti-crossing is given by:

∆X 2− =

√(
E2 − E1 + V Cou

22,22 − V Cou
11,11 + V Cou

1h,h1 − V Cou
2h,h2

)2
+ 4 |V (X 2−)|2

Fig. 2.3 below shows the energy levels for X 2− as a function of applied bias. Here,

the heavy-hole wavefunction is localized in the top QD, which has lower energy than

the bottom QD. The energy level of the two-electron triplet state, E1,2
T , is subtracted

from both X 2− levels in order to project the plot in a more convenient way for later

discussion on optical transitions. The original energy levels are shown in the inset.
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Figure 2.3: Calculated eigen-energies for a doubly-charged exciton, X 2−, as a function
of applied bias. The energy levels are plotted with E1,2

T as the reference.
Window diagrams indicate spatial charge configurations in regions away
from the anti-crossing. Inset: Original non-tilted plot.

2.4 Charge stability plateaus and co-tunneling regimes

The examples presented above can be generalized to any charge configuration

where the Hamiltonian can be conveniently written in terms of confinement ener-

gies and Coulomb matrix elements. Even so, one needs to keep in mind that these

quantities are bias dependent. Therefore, different sets of matrix elements need to

be numerically evaluated for different applied bias. It was this bias dependency that

provides the means to deterministically charge the QDM with a desired number of
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electrons. This is because by changing bias voltage across the sample, the potential

energies of individual QDs relative to the Fermi level can be tuned. The sketch in

Fig. 2.4 below illustrates how electrons are added progressively into the QDM when

the forward bias is increased.

Increasing Forward Bias

2e-Neutral 1e-
Optical Ground States

EF

X�� X��X�

Optical Excited States

EF

Figure 2.4: Sketches portraying how band diagram changes with applied bias, along
with charging sequence. Note that different numbers of electrons as well
as charge configurations can exist at a given bias. This figure shows only
how the addition of electrons occurs as a function of bias. (Upper panel:
optical excited states; Lower panel: optical ground states)

It is important to note that as long as the eigen-energy of a given charge config-

uration lies below the Fermi level, this configuration can exist. As a result, mutiple

charge configurations can be present simultaneously at a given bias. Nonetheless, in

most cases, the system will relax to a stable configuration which has the lowest energy

level. This configuration can be determined easily by overlaying the calculated eigen-

energies of various charge configurations on the same plot, as shown in Fig. 2.5 (a)

and (b) for the optical ground state and the optical excited states, respectively. Bias

regions where each of these configurations is stable, also known as the charge stabil-

ity plateaus, are shaded with distinct colors. Near the boundaries of these stability

plateaus, two or more charge configurations are energetically degenerate. This means

a stable charge configuration is absent in the vicinity of these boundaries, where it

is often imagined that an electron rapidly moves in and out of the QDM. Hence,

these regions are known as the co-tunneling regimes. As will be seen later in the

next chapter, the effects of stability plateaus and co-tunneling regimes are extremely

important in the optical characterization and manipulation of the two-electron charge
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configurations.

Figure 2.5: Energy level structures of different charge configurations for (a) optical
ground states and (b) optical excites states. Regions shaded in green,
red, blue and cyan indicate stability plateaus for neutral, 1e−, 2e− and
3e− configurations for the optical ground states, and X 0, X 1−, X 2− and
X 3−for the optical excited states, respectively.

Another important feature in Fig. 2.5 is the correspondance between the charging

sequence of the optical ground states and their respective optical excited states. In

general, the stability plateau of a charge configuration and that of its correponding

excitonic states do not necessarily overlap. This is mainly due to the difference in

the Coulomb matrix elements associated with the addition of an electron-hole pair.

However, as apparent in Fig. 2.5 above, there are considerable overlaps between

corresponding ground and optical excited states for the sample under study. This is

crucial when it comes to optical manipulations of the electronic states. As will be dis-

cussed in following chapters, stable optical ground and excited states are of paramount

importance in processes such as optical pumping for electron spin initialization.

2.5 Optical transitions between two-electron states and doubly-

charged excitons

Most studies performed on self-assembled semiconductor QDs involve optical ex-

citations. For single QDs, the most fundamental way to distinguish a charged exciton

from a neutral one is by measuring the energy splitting (about 6 meV) between two

resonances in bias-dependent photoluminescence (PL) spectroscopy. In the case of a
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QDM, distinctive features like the anti-crossings produce a variety of structures in

PL. Recognizing these complex patterns on a bias-dependent PL map then becomes

essential in identifying different charge configurations in a QDM. In order to manage

this, one must know the optical dipole allowed transitions between the eigenstates

of a charge configuration and their corresponding optical excited states. One of the

most important cases in QDMs, as well as the focus of this thesis, is the two electron

configuration. For this reason, it is used below as an example showing how dipole

allowed transitions can be determined.

A convenient way for deriving the selection rules between two optically coupled

manifolds is by considering the symmtry properties of the quantum states involved.

In the context of self-assembled InAs QDs, an excellent discussion on the group

theoretical derivation of selection rules for QD-confined neutral excitons and trions

can be found in Ref. [63]. The approach therein is extended here to the case of a

doubly-charged exciton. As a brief summary of this method, consider the matrix

element for optical dipole interaction,

〈n|V Opt |m〉 ,

where |n〉 and |m〉, being two eigenstates of the system, possess certain symmetry

inherited from the underlying crystal structure. Let us say that |n〉 and |m〉 transform

according to irreducible representations (irreps) Γ
(G)
n and Γ

(G)
m of space group G. In

general, the operator V Opt can be written in terms of irreducible tensor operators

V
(G)
j , which transforms according to the irrep Γ

(G)
j . The operation of V Opt on |m〉

results in a state vector that transforms in the same way as the product representation∑
j

pjΓ
(G)
j × Γ(G)

m

which is in general reducible and has the irreducible decomposition∑
j

pjΓ
(G)
j × Γ(G)

m =
∑
k

qkΓ
(G)
k (2.8)

The matrix element 〈n|V Opt |m〉 is nonzero only if the right hand side of Eq. (2.8)

contains Γ
(G)
n .

A self assembled InAs QD has a point group symmetry of C2v. The reduction of

symmetry from the bulk InAs space group, which is cubic T 2
d , is due to strain and

anisotropy developed during the growth process[64, 63]. There are four single valued
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and one double valued irreps for the symmetry group C2v, denoted by Γ1, Γ2, Γ3,

Γ4 and Γ5, respectively. The character table for these representations is given below,

along with their irreducible decompositions. In most optical excitation schemes, the

beam travels along z-direction and the electric field vector is pointing in the transverse

direction. For x-polarized electric field, the corresponding irreducible tensor operator

transforms according to Γ3, while y-polarized field corresponds to the irrep Γ4.

C2v Basis E Ē
C2 σy σx

C̄2 σ̄y σ̄x

Γ1 z, x2, y2, z2 1 1 1 1

Γ2 xy 1 1 -1 -1

Γ3 x, xz 1 -1 1 -1

Γ4 y, yz 1 -1 -1 1

Γ5

{
+1

2
,−1

2

}
2 -2 0 0 0

Γ1 × Γi = Γi
Γi × Γi = Γ1

Γ2 × Γ3 = Γ4

Γ2 × Γ4 = Γ3

Γ3 × Γ4 = Γ2

Γ5 × Γi = Γ5, i 6= 5
Γ5 × Γ5 = Γ1 + Γ2 + Γ3 + Γ4

Table 2.1: Character table and irreducible decompositions for C2v point group. σy
represents mirror reflection in the xz-plane, while σx in the yz-plane.

To proceed, we need to determine the irreps according to which the eigenstates

involved transform. Let us rewrite the two-electron optical ground states in Eq. (2.5)

in another basis: ∣∣γ1,1
1

〉
= |S1,1〉∣∣γ2,2

1

〉
= |S2,2〉∣∣γ1,2

2

〉
= |S1,2〉∣∣γ1,2

1

〉
=
∣∣T 1,2

0

〉∣∣γ1,2
3

〉
= 1√

2

(∣∣T 1,2
+

〉
−
∣∣T 1,2
−
〉)∣∣γ1,2

4

〉
= 1√

2

(∣∣T 1,2
+

〉
+
∣∣T 1,2
−
〉)

(2.9)

It is easy to see that the singlet states
∣∣γ1,1

1

〉
and

∣∣γ2,2
1

〉
transform like Γ1, while the

spin triplets
∣∣γ1,2

1

〉
,
∣∣γ1,2

3

〉
and

∣∣γ1,2
4

〉
, which behave like the pz, px and py orbitals,

transform according to Γ1, Γ3 and Γ4, respectively. The remaining singlet
∣∣γ1,2

2

〉
transforms according to either Γ1 or Γ2, depending on the details of the spatial wave-

functions. Here it is assumed to transform like Γ2, but in the absence of magnetic

field, the outcome remains the same if Γ1 is used instead. For the X 2− configura-

tion, each eigenstate contains two spin-paired electrons and a neutral exciton, and

thus transforms like the product state Γ1 × Γi = Γi where i 6= 5. Similar to the

two-electron ground states, we can express the optical excited states in a symmetry
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adapted basis and classify them according to their irreps :

Γ1 :


∣∣∣ξ1,h

1

〉
= 1√

2
(|1 ↑, 2 ↓, 2 ↑〉 |h ⇑〉+ |1 ↓, 2 ↓, 2 ↑〉 |h ⇓〉)∣∣∣ξ2,h

1

〉
= 1√

2
(|1 ↓, 1 ↑, 2 ↑〉 |h ⇑〉+ |1 ↓, 1 ↑, 2 ↓〉 |h ⇓〉)

Γ2 :


∣∣∣ξ1,h

2

〉
= 1√

2
(|1 ↑, 2 ↓, 2 ↑〉 |h ⇑〉 − |1 ↓, 2 ↓, 2 ↑〉 |h ⇓〉)∣∣∣ξ2,h

2

〉
= 1√

2
(|1 ↓, 1 ↑, 2 ↑〉 |h ⇑〉 − |1 ↓, 1 ↑, 2 ↓〉 |h ⇓〉)

Γ3 :


∣∣∣ξ1,h

3

〉
= 1√

2
(|1 ↓, 2 ↓, 2 ↑〉 |h ⇑〉 − |1 ↑, 2 ↓, 2 ↑〉 |h ⇓〉)∣∣∣ξ2,h

3

〉
= 1√

2
(|1 ↓, 1 ↑, 2 ↓〉 |h ⇑〉 − |1 ↓, 1 ↑, 2 ↑〉 |h ⇓〉)

Γ4 :


∣∣∣ξ1,h

4

〉
= 1√

2
(|1 ↓, 2 ↓, 2 ↑〉 |h ⇑〉+ |1 ↑, 2 ↓, 2 ↑〉 |h ⇓〉)∣∣∣ξ2,h

4

〉
= 1√

2
(|1 ↓, 1 ↑, 2 ↓〉 |h ⇑〉+ |1 ↓, 1 ↑, 2 ↑〉 |h ⇓〉)

(2.10)

The result above directly follows the assignment of irreps to the two-electron states

in Eq. (2.9). To see this, one must keep in mind that a spin-up hole transforms in

the same manner as a spin-down electron, and vice versa. The fact that the basis

states
∣∣∣ξ1,h

1

〉
,
∣∣∣ξ1,h

2

〉
,
∣∣∣ξ1,h

3

〉
and

∣∣∣ξ1,h
4

〉
all belong to different irreps tells us that, unlike

what was shown in Fig. 2.3, they are not necessarily degenerate. In reality, there is

a small energy difference between
∣∣∣ξ1,h

3

〉
and

∣∣∣ξ1,h
4

〉
, known as the exciton hyperfine

or electron-hole exchange splitting. In order to keep our discussion here simple, this

splitting is ignored.

From the symmetry of the basis states and the irreducible tensor operators, optical

dipole allowed transitions can be easily determined. For example, since Γ1×Γ3 = Γ3,

the x-polarized light couples
∣∣γ1,1

1

〉
,
∣∣γ2,2

1

〉
and

∣∣γ1,2
1

〉
with the optical excited states∣∣∣ξ1,h

3

〉
and

∣∣∣ξ2,h
3

〉
. Likewise, from Γ1 × Γ4 = Γ4, transitions between

∣∣∣ξ1,h
4

〉
and∣∣∣ξ2,h

4

〉
and the aforementioned optical ground states are allowed under y-polarized

excitation. Fig. 2.6 above shows all dipole allowed transitions between the two-

electron optical ground states and the excited states
∣∣∣ξ1,h

1

〉
,
∣∣∣ξ1,h

2

〉
,
∣∣∣ξ1,h

3

〉
and

∣∣∣ξ1,h
4

〉
.

For the remaining half of the excited states, similar selection rules are obtained.

The optical transitions between two-electron states and X 2− can be identified

in bias-dependent PL spectra by virtue of the distinctive pattern of the resonant

energies. In PL, a laser beam with higher frequency than the optical resonances is

used to excite charge carriers into higher-lying energy levels. These charges then relax

to different X 2− states through various non-radiative pathways. When an electron-

hole pair recombines, leaving two electrons in either singlet or triplet states, a photon
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Figure 2.6: Selection rules for optical transitions between the two-electron optical

ground states and the excited states
∣∣∣ξ1,h

1

〉
,
∣∣∣ξ1,h

2

〉
,
∣∣∣ξ1,h

3

〉
and

∣∣∣ξ1,h
4

〉
. For

the selection rules involving
∣∣∣ξ2,h

1

〉
,
∣∣∣ξ2,h

2

〉
,
∣∣∣ξ2,h

3

〉
and

∣∣∣ξ2,h
4

〉
, simply replace

superscripts “1” in the label for the excited states by “2”.

with frequency corresponding to the energy difference between the excited and ground

states is created. A PL map is generated by measuring the resonant frequencies at

different applied bias, as shown in Fig. 2.7(c), which was measured with a QDM

named QDM-A.

To understand the complex spectra observed, consider the energy level structures

of the two-electron states in Fig. 2.2 and that of the X 2− configuration in Fig. 2.3,

reproduced in Fig. 2.7(a) above, where both contain an anti-crossing. Here the energy

level of
∣∣γ2,2

1

〉
lies outside the plot range. From the selection rules shown in Fig. 2.6,

there are 10 allowed optical transitions for each x- and y-polarization between the 5

ground states and the 8 excited states shown. Four of them are indicated by vertical

arrows, which correspond to transitions between the singlets,
∣∣γ1,1

1

〉
and

∣∣γ1,2
1

〉
, and

the excited states
∣∣∣ξ1,h

3

〉
,
∣∣∣ξ1,h

4

〉
,
∣∣∣ξ2,h

3

〉
and

∣∣∣ξ2,h
4

〉
. Due to the Coulomb matrix

elements associated with the addition of an electron-hole pair, the anti-crossing of

the X 2− configuration is shifted with respect to that of the two-electron states. The

resulting resonant energy structure in Fig. 2.7(b) contains four anti-crossings, where

two of which to the left arise from that of X 2−, while the other two to the right are

from the singlet anti-crossing of the two-electron states. The four transitions labeled

in Fig. 2.7(a) give rise to the large Stark shift lines forming an “X-pattern” at the
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center of Fig. 2.7(b). These lines are known as the indirect transitions because they

can be loosely interpreted as the result of the recombination between an electron and

a hole localized in separate QDs.
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Figure 2.7: (a) Optical transitions between the X 2− configuration and the two-
electron states. Note that only 4 out of 20 possible transitions are labeled.
Red arrows represent x-polarized optical transitions, while blue arrows de-
note y-polarization. (b) Resulting resonant energy structure showing the
characteristic “X-pattern”. (c) PL map of a QDM (QDM-A). The energy
of the CW excitation laser is 1.38 eV (900 nm).

2.6 Remarks on neutral exciton and trion transitions, con-

clusion and outlook

At the end of the preceding section, the theoretical model is shown to successfully

reproduce the essential features of the complex structure observed PL. Although the

discussion here is confined to the two-electron states and the doubly-charged exci-

ton, similar modeling procedure can be extended to the other charge configurations

with minimal incremental efforts. Since the Coulomb matrix elements numerically

evaluated for the X 2− case can be reused for all other charge configurations, the task

of calculating their eigen-energies.reduces to merely diagonalizing the Hamiltonians

associated with these charge configurations. Furthermore, selection rules for optical

transitions are readily available thanks to previous works on neutral excitons and tri-
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ons in single QDs, as reported in Ref. [63]. To see how they are related to those in a

QDM, consider the irreducible decompositions shown below (assuming that electrons

occupy only the two lowest-lying energy levels):

Configuration Irreps of electrons Irrep of hole Irreducible decomposition

1e− Γ5 − Γ5

3e− Γ1 × Γ5 = Γ5 − Γ5

X 0 Γ5 Γ5 Γ5 × Γ5 = Γ1 + Γ2 + Γ3 + Γ4

X 1− Γ1,Γ2,Γ3,Γ4 Γ5 Γi × Γ5 = Γ5, i 6= 5

X 3− Γ1 Γ5 Γ1 × Γ5 = Γ5

The list above shows that the optical transitions between the single-electron and

three-electron configurations and their respective optical excited states transform like

that of a trion in single QDs. An example of calculated optical resonance map that

includes X 0, X 1− and X 3− related transitions, in addition to those of X 2−, is shown

in Fig. 2.8. Here, the inter-QD spacing and QD sizes are different from those used in

previous calculations, and the hole is confined to the top QD. The two “X-patterns”

in the bias-dependent spectra arise from the X 1−-single electron transitions (left) and

from the X 2−-two-electron transitions (right) discussed earlier. It is interesting to

note that the result qualitatively reproduces the essential features of the PL map

found in Ref. [9].

Figure 2.8: Numerically calculated bias dependent optical resonances for X 0-neutral
QDM, X 1−-single electron, X 2−-two-electron, and X 3−-three-electron
transitions. For the purpose of showing the double X-patterns, the inter-
QD spacing and QD sizes used here are different from those in previous
calculations.
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In contrast to the phenomenological, piecewise methods commonly used in the

literatures[38, 9, 42, 27, 65, 39, 40, 41, 10, 36], the model presented in this and

the previous chapters provides a more holistic picture of the electronic and optical

properties of a QDM. From this model, one could gain insights into the physical origins

of certain ad hoc parameters employed in other literatures, such as the tunneling

constant, kinetic exchange and electron-hole exchange. On the one hand, the model

is developed here for the purpose of understanding the essential physics of a QDM, and

subsequently for assistance in identifying different optical transitions in PL spectra.

On the other hand, this “bottom-up” approach offers a systematic way to study the

effects of physical parameters such as strain or inter-QD distance on the electronic

properties of a QDM. This potentially serves as an invaluable tool for the design

and implementation of QDMs for applications in quantum information processing.

Meanwhile, for the purpose in this thesis, the model provides guidance in choosing a

suitable sample bias for further study, as will be discussed in the next chapter.
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CHAPTER III

Optical Pumping in the Two-Electron

Configuration: Electron Spin Preparation in Zero

and Nonzero External Magnetic Fields

The preceding chapter emphasized the importance of the two-electron configu-

ration as a test-bed for many aspects of quantum mechanics, and as a platform to

investigate the electronic and optical properties of QDMs. For applications in quan-

tum information processing, the study of the two-electron manifold is motivated by

the prospect in scaling up a single QD electron spin qubit to two-qubit operations in

a QDM. Using the energy level structure shown previously, the identification of the

singlet-triplet states of the two-electron configuration via optical pumping is explained

in this chapter. The characterization of QDMs for two-qubit operations requires the

knowledge of optical selection rules in magnetic fields, which will also be derived

here. The result is an eight-level system that serves as the model for all further

studies reported in this thesis.

One of the five DiVincenzo criteria[6] stipulates that for quantum computation,

one must be able to initialize the qubits to a known state. A convenient way to

achieve this is by emulating earlier success in single self-assembled QDs, where the

samples are placed in magnetic fields, and the electron spins are initialized via optical

cooling[15, 13]. Later in this chapter, it is shown how initialization of two-electron

spin states is accomplished in a similar manner with an applied magnetic field in Voigt

geometry, but with multiple pump lasers. The results give us a brief introduction to

the effects of nuclear environment on the lineshapes of optical resonances, which will

be the focus of the next chapter.
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3.1 The “sweet spot” for two electron spin manipulation

One of the objectives of the analyses in preceding chapters is to assist in identify-

ing a suitable voltage bias for two-qubit operations. In Chapter 2, we have seen that

the two-electron states can be written in singlet-triplet basis: |S1,1〉, |S2,2〉, |S1,2〉,∣∣T 1,2
−
〉
,
∣∣T 1,2

0

〉
and

∣∣T 1,2
+

〉
, where the subscripts denote spin projections while super-

scripts charge configurations. If we ignore the off-diagonal terms in Eq. (2.6), the

Hamiltonian for the four-dimensional subspace, S1,2, spanned by the basis states

{|S1,2〉,
∣∣T 1,2
−
〉
,
∣∣T 1,2

0

〉
,
∣∣T 1,2

+

〉
} can be written as

H
(1,2)

2e− = −
V Cou

12,12

~2

∑
α,β,γ,δ

Ŝ
(2)
αβ,γδâ

† (α) â† (β) â (γ) â (δ) +
1

2
EST

∑
α

â† (α) â (α) (3.1)

where the spin operator Ŝ
(2)
αβ,γδ is defined as

Ŝ
(2)
αβ,γδ = 〈α| ⊗ 〈β| Ŝγ · Ŝδ |γ〉 ⊗ |δ〉 , Ŝγ and Ŝδ are single-spin operators, and

EST = E1 + E2 + V Cou
12,21 −

1

2
V Cou

12,12

The first term in Eq. (3.1) is known as the Heisenberg exchange Hamiltonian which

gives rise to the energy splitting of 2V Cou
12,12 between the singlet and triplet states, while

the second term is merely a common energy shift.

It is apparent that the Heisenberg exchange term gives the basic mechanism for

the interaction between electron spins neccesary for two-qubit operations. Hence, it

is desirable that the subspace S1,2 becomes isolated from the other two singlet states,

or, V Cou
11,12, V

Cou
12,22 � V Cou

12,12. From Chapter 2, we know that this occurs in regions away

from the anti-crossing. For convenience, the bias dependent optical transitions from

Chapter 2 is reproduced in Fig. 3.1 below.

While the operation point in bias should be chosen as far away from the anti-

crossing as possible, it is necessary to keep the singlet-triplet splitting at least several

linewidths of the optical resonance. This is to ensure that all resonances can be

resolved when an external magnetic field is applied so that the individual states

can be optically manipulated without significant coupling the other states, causing

unintended dynamics. Ideally, the singlet and triplet transitions should have zero

DC Stark shift so that the resonant frequencies remain unaffected by fluctuations

in the applied voltage. More importantly, at the operation point, the basis states

spanning subspace S1,2 should belong to the lowest energy charge configuration in
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Figure 3.1: X 2−-two-electron optical transition energies versus bias reproduced from
Chapter 2. The energy levels for two-electron and X 2− configurations are
shown in the inset, where window diagrams indicate charge configurations
away from the anti-crossings. The sweet spot, marked by the red circle in
the transition map, corresponds to the recombination of an electron-hole
pair localized in the top QD, leaving behind two localized electrons, as
indicated by the two-sided arrow. The singlet and triplet transitions are
also marked.

order to remain as stable optical ground states of the system. The bias voltage that

meets all the requirements above is called the “sweet spot”. At the sweet spot, the

wavefunctions are sufficiently localized so that the two electrons presumably reside

in seperate QDs. However, in order to maintain a nonzero singlet-triplet splitting,

a small amount of wavefunction overlap must remain. As can be seen in the inset

of Fig. 3.1, in the X 2− manifold, the separation in bias between the sweet spot and

the anti-crossing of the X 2− states is even larger than that between the sweet spot

and the two-electron anti-crossing. This far away from the anti-crossing, tunneling

between the two QDs is negligible. Therefore, the optical excited states here can be

regarded as consisting of an isolated electron in the bottom QD and a trion in the

top QD.

A sweet spot is optically addressable only if it lies within the stability plateau of

both the two-electron and the X 2−configurations. Due to the inhomogeneity of the

QDMs across the sample, in practice, an extensive search is normally needed before an
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optically active singlet-triplet system is found. In bias dependent photoluminescence

spectra, here known as PL maps, the singlet-triplet transitions around the sweet spot

are signified by two near parallel resonances, as indicated in Fig. 3.2(a) and (b)

for two different QDMs named QDM-B and QDM-C, respectively, found at different

locations on the sample. Note that due to the high density of QDMs on the sample,

many QDMs are illuminated by the 1 µm-diameter excitation beam simultaneously.

The well-defined X 2− charge stability plateaus manifest in the disappearence of the

singlet and triplet transitions outside of the circled regions in both PL maps.
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Figure 3.2: PL maps for multiple QDMs illuminated simultaneously with an excita-
tion laser at 1.38 eV (900 nm). Two QDMs with two-electron stablility
plateaus near the sweet spot are identified, marked by red circles in (a)
and (b) for QDM-B and QDM-C, respectively. The singlet and triplet
transitions for each QDM are also indicated.

3.2 Optical pumping and state preparation of a singlet-triplet

qubit in zero magnetic field

The singlet and triplet resonances for both QDMs in Fig. 3.2 arise from the

optical transitions between the basis states of subspace S1,2, defined in § 3.1, and the

manifold
{
ξ2,h
i

}
, given in Eq. (2.10), where i = 1, 2, 3, 4. As pointed out in Chapter

2, in regions far away from the anti-crossings, the spatial basis provides a somewhat
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accurate picture of the quantum states in a QDM (see § 2.1). Thus, in the vicinity

of the sweet spot, the manifold
{
ξ2,h
i

}
presumably consists of four spin states of the

configuration
(

1, 2

0, 1

)
, where an electron occupies a localized state in the bottom QD

while a trion is formed in the top QD. Here, the basis for the subspace S1,2 and the

optical excited states, ξ2,h
i , are more conveniently rewritten as:

Optical ground states :
1√
2

(|↓〉 |↑〉 − |↑〉 |↓〉) ≡ |S1,2〉
1√
2

(|↓〉 |↑〉+ |↑〉 |↓〉) ≡
∣∣T 1,2

0

〉
|↓〉 |↓〉 ≡

∣∣T 1,2
−
〉

|↑〉 |↑〉 ≡
∣∣T 1,2

+

〉
(3.2)

Optical excited states :

|↓〉 |t⇓〉 ≡ |1 ↓, 1 ↑, 2 ↓〉 |h ⇓〉
|↓〉 |t⇑〉 ≡ |1 ↓, 1 ↑, 2 ↓〉 |h ⇑〉
|↑〉 |t⇓〉 ≡ |1 ↓, 1 ↑, 2 ↑〉 |h ⇓〉
|↑〉 |t⇑〉 ≡ |1 ↓, 1 ↑, 2 ↑〉 |h ⇑〉

(3.3)

In the notation of the product states above, the “ket” to the left represents a quantum

state predominantly confined to the bottom QD, while the one to the right the top QD.

|t⇓〉 and |t⇑〉 denote trion states with spin-down and spin-up heavy-holes, respectively,

in +z-direction, here known as the spin-down and spin-up trions.

Since the quantum states are treated as those localized within single QDs, the

selection rules for dipole allowed optical transitions can be readily inferred from those

of single QDs[13, 63, 66]. For circularly polarized optical fields in a single QD, a spin-

down electron, |↓〉, and a spin-down trion, |t⇓〉, are coupled by σ−-polarized light,

while σ+-polarized light.couples a spin-up electron, |↑〉, and a spin-up trion, |t⇑〉. The

optical transition matrix elements vanish for all other combinations. From this and

the assumption that the applied optical field does not effect the bottom QD electron

due to detuning, we arrive at the selection rules between the two-electron subspace

S1,2 and the optical excited states as shown in Fig. 3.3 below. It is important to

note that by using the definitions

σ+ =
x̂+ iŷ√

2
and σ− = − x̂− iŷ√

2
(3.4)

one recovers the selection rules shown in Fig. 2.6 in the basis of
{
γ1,2
i

}
and

{
ξ2,h
j

}
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following Eq. (2.9) and (2.10), where i, j = 1, 2, 3, 4.
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Figure 3.3: Selection rules for the two-electron subspace S1,2 with circularly polar-
ized light and zero applied magnetic field. ωs and ωt denote resonant
frequencies of the singlet and triplet transitions, respectively.

Fig. 3.3 shows that the two-electron states |S1,2〉 and
∣∣T 1,2

0

〉
form two Λ-systems

with the excited states |↓〉 |t⇑〉 and |↑〉 |t⇓〉. When a probe laser resonant with, say,

the singlet transition is incident on the QDM, the population in the singlet state is

being excited to one of the optical excited states, from where the population then

spontaneously decays to either the triplet state
∣∣T 1,2

0

〉
, or back to the singlet state.

If the rate of optical excitation is larger then the total rate of population relaxation

back to the singlet state, the initial population in the singlet state will be depleted

when a steady state is reached. As a result, the two-electron spin is prepared in

the triplet manifold and this process is known as the optical pumping. In single

QDs, this method is used to initialize the electron spin state in conjunction with

the application of an external magnetic field which lifts the spin degeneracy[13, 15].

In QDMs, however, due to the presence of singlet-triplet splitting, optical pumping

occurs without an applied magnetic field[7, 67, 8].

The effects of optical pumping are revealed in the bias dependent single laser

absorption spectra, known here as the absorption map, as shown in Fig. 3.4(a) for

QDM-B. Within the stability plateau of the singlet-triplet optical ground states, the

probe laser on resonance with the singlet state pumps the population to the triplet,

and vice versa, resulting in a loss of the absorption signal. At the co-tunneling regimes,

however, instability of the two-electron configuration causes rapid spin relaxation

and population redistribution among the optical ground states. This compromises

the optical pumping process and allows the absorption signals to be observed for
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both singlet and triplet transitions. The resulting “absorption gaps” between the

co-tunneling regimes are hallmarks of optical pumping and serve as additional tools

for the identification of the singlet-triplet states without an applied magnetic field.

When a strong pump laser on resonance with the other leg of the Λ-system is applied,

as shown in Fig. 3.4(c) and (e), the effects of optical pumping are reversed. Here, the

process of optical re-pump induced by the pump laser recovers the probe absorption

signals within the stability plateau, as shown in Fig. 3.4(b) and (d) for the singlet

and triplet transitions, respectively.

Figure 3.4: Absorption maps of QDM-B showing the effects of optical pumping and
re-pump. (a) Differential absorption of the probe laser is diminished in
the stability plateau of the singlet-triplet optical ground states, indicated
by the green shaded region. Red shaded areas centered at 0.48 V and
0.6 V are co-tunneling regimes. (b) The absorption signal for the singlet
transition within the stability plateau is restored by the application of a
pump laser on resonance with the triplet transition, as shown in the energy
level diagram in (c). (d) Recovery of triplet absorption signal within the
stability plateau following the optical pumping scheme as shown in (e).
Similar effects of optical pumping and re-pump are observed in QDM-C.

It is important to point out that according to the selection rules in Fig. 3.3, the

triplet states,
∣∣T 1,2
−
〉

and
∣∣T 1,2

+

〉
, and their corresponding optical excited states, |↓〉 |t⇓〉

and |↑〉 |t⇑〉, are isolated from the Λ-systems mentioned above. From this, one would

expect that the optical pumping does not affect
∣∣T 1,2
−
〉

and
∣∣T 1,2

+

〉
states, and that

the absorption signal of the triplet transition does not vanish in the stability plateau.
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However, the data in Fig, 3.4 clearly shows that the population in the entire triplet

manifold is depleted due to optical pumping. This implies that there is a mixing[7]

among the triplet states or the optical excited states. This mixing can be caused by a

number of mechanisms such as Overhauser field fluctuations and inter-QD electron-

hole exchange interaction.

Another point to note here is that the radiative spontaneous decay channels be-

tween the excited states and the singlet configurations of |S1,1〉 and |S2,2〉 have been

neglected in the discussion above. This is justified by the fact that the optical transi-

tions involving these states are indirect (see § 2.5), and therefore occur at much lower

rates than other direct transitions[68, 69]. From the PL maps, the matrix elements

of the indirect optical transitions are estimated to be two orders of magnitude less

than those of direct transitions. Furthermore, the singlet configurations of |S1,1〉 and

|S2,2〉 are unstable in the vicinity of the sweet spot. Hence, we can assume that any

population in these states will rapidly relax to the S1,2 subspace. As a result, the

two-electron levels and their excited state manifold around the sweet spot can simply

be described by the eight-level system shown in Fig. 3.3. This eight-level model

becomes the framework within which coherent optical manipulations of the singlet

and triplet states, in addition to spin initialization, can be achieved[7]. This leads

to the utilization of the singlet-triplet system as a single qubit. The main appeal of

the singlet-triplet qubit lies in the |S1,2〉-
∣∣T 1,2

0

〉
subspace, which is immune to the de-

coherence inducing fluctuations of the nuclear spins of the underlying lattice[70, 71].

This is known as the decoherence-free subspace and has been shown to exhibit a long

coherence time in the order of 1 µs[8].

3.3 Singlet-triplet states in nonzero magnetic fields

To utilize the singlet-triplet states for two-qubit operations, it is necessary to lift

the degeneracy of the triplet states so that each individual state can be optically

addressed independently. The easiest way to achieve this is by the application of an

external magnetic field. In recent studies of QDMs, external magnetic fields have

been applied in Faraday geometry to enhance the coherence time of a singlet-triplet

qubit[8], and also in Voigt geometry to provide a proof-of-principle demonstration of

a two-qubit phase gate[7]. Later in this chapter, it is shown how the magnetic field

in Voigt geometry allows us to deterministically prepare the system in any of its four

spin eigenstates. Although the focus of this thesis is on the Voigt geometry, for the

sake of completeness and due to its simplicity, Faraday geometry and the resulting
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energy level structure of the singlet-triplet states are also discussed.

In Faraday geometry, the external magnetic field is applied parallel to the prop-

agation direction of the laser beam, here designated as the z-direction. In this con-

figuration, the eigenstates of the system remain as shown in Fig. 3.3 but the energy

levels are shifted relative to one another due to Zeeman interaction. In particular, the

degeneracy of the triplet states is lifted. The Hamiltonian for the Zeeman interaction

is given by

HZee
Faraday =

1

~
∑
α,β

〈α|µBBz

(
ge,‖Ŝe,z − gh,‖Ŝh,z

)
|β〉 â† (α) â (β)

where µB is the Bohr magneton and Bz the applied magnetic field in Faraday ge-

ometry, while ge,‖ and gh,‖ are the longitudinal g-factors for electron and heavy-hole,

respectively. The spin operator Ŝe,z acts only on the electron spin and, similarly, Ŝh,z

on the hole spin. In matrix representation, HZee
Faraday takes the form

HZee
z,ST = µBge,‖Bz


0 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 1


for the singlet-triplet ground states in the basis of {|S1,2〉,

∣∣T 1,2
−
〉
,
∣∣T 1,2

0

〉
,
∣∣T 1,2

+

〉
}, and

HZee
z,X 2− =

1

2
µBBz


−ge,‖ + 3gh,‖ 0 0 0

0 −ge,‖ − 3gh,‖ 0 0

0 0 ge,‖ + 3gh,‖ 0

0 0 0 ge,‖ − 3gh,‖


for the optical excited states in the basis of {|↓〉 |t⇓〉, |↓〉 |t⇑〉, |↑〉 |t⇓〉, |↑〉 |t⇑〉}. Here, it

is assumed that the electron g-factor is the same in both QDs. The resulting magnetic

field dependent energy level structure, here known as the “fan diagram”, is schemat-

ically shown in Fig. 3.5(a), along with all six dipole allowed optical transitions. Note

that among the four triplet resonances, each pair of co-polarized transitions are en-

ergetically degenerate. Hence, only a total of four distinct resonances are observed

in the absorption spectra, as shown in Fig. 3.5(b) for QDM-B in the co-tunneling

regime (0.6 V). As a consequence of the degeneracy, it is impossible to independently

determine the electron and hole g-factors from the measured resonances. This is be-

cause for both singlet and triplet transitions, the Zeeman splitting is the same and is
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given by µBBz

∣∣ge,‖ + 3gh,‖
∣∣.
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Figure 3.5: (a) Fan diagram showing the energy levels of the singlet-triplet ground
states and the optical excited states in an external magnetic field in
Faraday geometry. All six dipole allowed optical transitions are indi-
cated, along with the degenerate transitions collectively labeled by the
Roman numerals (iii) and (iv) for σ+ and σ− transitions, respectively.
(b) Magnetic field dependent absorption spectra of QDM-B for σ+ and
σ−-polarized probes in the co-tunneling regime (0.6 V). The spectra are
offset for clarity.

In Voigt geometry, also known as the transverse configuration, the magnetic field

is applied in a direction perpendicular to the laser beam, here designated as the

x-direction. The Hamiltonian,

HZee
Voigt =

1

~
∑
α,β

〈α|µBBx

(
ge,⊥Ŝe,x − gh,⊥Ŝh,x

)
|β〉 â† (α) â (β)

can be expressed in matrix representation as

HZee
x,ST =

1

2
µBge,⊥Bx


0 0 0 0

0 0
√

2 0

0
√

2 0
√

2

0 0
√

2 0
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for the singlet-triplet ground states, and

HZee
x,X 2− =

1

2
µBBx


0 −3gh,⊥ ge,⊥ 0

−3gh,⊥ 0 0 ge,⊥

ge,⊥ 0 0 −3gh,⊥

0 ge,⊥ −3gh,⊥ 0


for the optical excited states. Here, ge,⊥ and gh,⊥ are the transverse g-factors for elec-
tron and heavy-hole, respectively. Again, the transverse electron g-factor is assumed
to be the same in both QDs. The eigenstates and eigen-energies of the eight-level
system in transverse magnetic field is listed below.

Singlet-triplet ground states:

Eigenstates Eigen-energies

|1〉 =
∣∣S1,2

〉
= 1√

2
(|↓〉 |↑〉 − |↑〉 |↓〉) −2Jex

|2〉 = 1
2

(∣∣∣T 1,2
−

〉
+
∣∣∣T 1,2

+

〉
−
√

2
∣∣∣T 1,2

0

〉)
= 1

2 (|↓〉 |↓〉+ |↑〉 |↑〉 − |↓〉 |↑〉 − |↑〉 |↓〉) −µBge,⊥Bx

|3〉 = 1√
2

(∣∣∣T 1,2
−

〉
−
∣∣∣T 1,2

+

〉)
= 1√

2
(|↓〉 |↓〉 − |↑〉 |↑〉) 0

|4〉 = 1
2

(∣∣∣T 1,2
−

〉
+
∣∣∣T 1,2

+

〉
+
√

2
∣∣∣T 1,2

0

〉)
= 1

2 (|↓〉 |↓〉+ |↑〉 |↑〉+ |↓〉 |↑〉+ |↑〉 |↓〉) µBge,⊥Bx

Optical excited states:

Eigenstates Eigen-energies

|5〉 = 1
2

(|↓〉 |t⇓〉 − |↓〉 |t⇑〉 − |↑〉 |t⇓〉+ |↑〉 |t⇑〉) 1
2
µBBx (−ge,⊥ + 3gh,⊥) + Eex

|6〉 = 1
2

(|↓〉 |t⇓〉+ |↓〉 |t⇑〉 − |↑〉 |t⇓〉 − |↑〉 |t⇑〉) 1
2
µBBx (−ge,⊥ − 3gh,⊥) + Eex

|7〉 = 1
2

(|↓〉 |t⇓〉 − |↓〉 |t⇑〉+ |↑〉 |t⇓〉 − |↑〉 |t⇑〉) 1
2
µBBx (ge,⊥ + 3gh,⊥) + Eex

|8〉 = 1
2

(|↓〉 |t⇓〉+ |↓〉 |t⇑〉+ |↑〉 |t⇓〉+ |↑〉 |t⇑〉) 1
2
µBBx (ge,⊥ − 3gh,⊥) + Eex

(3.5)

where Eex = E1 + Eh + V Cou
11,11 + V Cou

12,21 − 2V Cou
1h,h1 − V Cou

2h,h2. Here, the eigen-energy of

state |3〉 is taken as the reference. If we let

|+x〉 =
1√
2

(|↓〉+ |↑〉) , |−x〉 =
1√
2

(|↓〉 − |↑〉) ,

|t+x〉 =
1√
2

(|t⇓〉+ |t⇑〉) and |t−x〉 =
1√
2

(|t⇓〉 − |t⇑〉) ,

the eigenstates can be rewritten as

|1〉 =
∣∣S ′〉 ≡ 1√

2
(|−x〉 |+x〉 − |+x〉 |−x〉)

|2〉 =
∣∣T ′−〉 ≡ |−x〉 |−x〉

|3〉 =
∣∣T ′0〉 ≡ 1√

2
(|−x〉 |+x〉+ |+x〉 |−x〉)

|4〉 =
∣∣T ′+〉 ≡ |+x〉 |+x〉

(3.6)
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|5〉 = |−x〉 |t−x〉
|6〉 = |−x〉 |t+x〉
|7〉 = |+x〉 |t−x〉
|8〉 = |+x〉 |t+x〉

Eq. (3.6) above shows that in Voigt geometry, the optical ground states retain singlet-

triplet characteristic, but with spin projections aligned along the direction of the

applied magnetic field.
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Figure 3.6: The eight-level system and selection rules for optical transitions in a trans-
verse magnetic field (Voigt geometry). For brevity, the primes in the op-
tical ground states are dropped from now on. All transition energies are
labeled according to the corresponding ground and excited states, given in
numerical subscripts. Degeneracies ω25 = ω37, ω26 = ω38, ω35 = ω47 and
ω36 = ω48 are also indicated. Blue and red solid lines represent vertical
and horizontal polarizations, respectively.

To determine the selection rules for optical excitation in Voigt geometry, we can

follow the same procedure presented in the previous section, where σ+-polarized light

couples |↑〉 and |t⇑〉, while σ−-polarized light couples |↓〉 and |t⇓〉. Using the definition

in Eq. (3.4), let the horizontal and vertical polarizations be defined as Ĥ = x̂ =
1√
2

(σ+ − σ−) and V̂ = ŷ = 1√
2i

(σ+ + σ−), respectively. It is then straight forward to

find that the selection rules for optical transitions using linearly polarized light are
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as shown in Fig. 3.6. Due to spin mixing induced by the transverse magnetic field,

transitions which are forbidden in Fig. 3.3 are now allowed. This gives rise to a total

of twelve optical transitions. It is important to note that the eight-level system here

contains four pairs of doubly degenerate transitions, namely (ω25, ω37), (ω26, ω38),

(ω35, ω47) and (ω36, ω48). Hence, there are eight distinct optical resonances.

The absorption spectra for the eight-level system in Voigt geometry is shown

in Fig. 3.7(a) and (b). From Eq. (3.5), the Zeeman splitting for the vertically

polarized transitions is given by µBBz |ge,⊥ + 3gh,⊥|, while that for the horizontally

polarized transitions is µBBz |ge,⊥ − 3gh,⊥|. In contrast to the Faraday geometry, here

the electron and hole g-factors can be independently determined from the Zeeman

splittings. For QDM-B, it is found that the electron and hole g-factors are 0.21 and

-0.068 respectively, while for QDM-C, they are 0.43 and -0.084. Since ge,⊥ ≈ −3gh,⊥

in QDM-B, µBBz |ge,⊥ + 3gh,⊥| ≈ 0 and as a result, the vertically polarized transitions

in QDM-B appear to be degenerate at low magnetic fields. The stark difference in the

absorption spectra between Fig. 3.7(a) and (b) highlights the role of inhomogeneity

in the observed behavior of the eight-level system.
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Figure 3.7: Magnetic field dependent absorption spectra for (a) QDM-B and (b)
QDM-C in the co-tunneling regimes of respective QDMs, with all eight
resonances marked. The spectra are offset for clarity. The vertically po-
larized resonances in (a) appear to be degenerate at low magnetic fields
due to mutual cancellation of electron and hole g-factors in the Zeeman
splitting given by 1

2
µBBz |ge,⊥ + 3gh,⊥|. The resonance peaks of these

transitions become resolved at much higher magnetic fields of at least 3
T.
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3.4 Two-electron spin preparation via multi-laser optical pump-

ing

In single QDs, the application of an external magnetic field in Voigt geometry

causes dark transitions to become bright[15]. This enhances the efficiency of spin

flip Raman scattering process and thereby enables fast electron spin preparation by

optical pumping. In the same spirit, this method is employed here in conjunction with

multiple pump lasers to initialize the two-electron spin to a desired optical ground

state. From Fig. 3.7(b), it is shown that for QDM-C, all eight optical resonances

can be resolved by the application of a moderate magnetic field. Therefore, in the

remaining of this chapter, all experimental studies are performed using QDM-C in

1.5 T applied magnetic field in Voigt geometry.

As mentioned in § 3.2, optical pumping cannot occur in co-tunneling regimes due

to rapid relaxation among the optical ground states of multiple charge configurations.

To demonstrate optical pumping, it is necessary to operate within the stability plateau

of the singlet-triplet configuration. In Fig. 3.8(a), two vertically polarized CW pump

lasers, here known as Pump 1 and Pump 2, on resonance with transitions ω25 and ω48

respectively, are incident on the QDM. Due to the degeneracy in transition frequen-

cies, the pumps also act on transitions ω36 and ω37. In a similar manner to the optical

pumping process discussed in § 3.2, the system is initialized to the singlet state. A

weak probe laser is then scanned across the relevant frequency range in the presence

of the pumps. The absorption spectra reveals two peaks corresponding to transitions

ω15 and ω18, as shown in Fig. 3.8(b). When either of the pump lasers is blocked, the

absorption signal at the singlet transitions is diminished. This is because the probe

laser now acts as a weak pump, and together with the remaining pump laser, say,

Pump 1, initializes the system to the other ground state which is not pumped by the

blocked beam, in this case |T+〉.
The effectiveness of the optical pumping process can be evaluated by considering

the population distribution among the optical ground states under thermal equilib-

rium. In a magnetic field of 1.5 T, the Zeeman splitting between |T−〉 and |T+〉 is

74.4 µeV, while the |S〉-|T0〉 splitting is 116.6 µeV. From these values, it is estimated

that at the operating temperature of 6 K, the probability density for |S〉, |T−〉, |T0〉
and |T+〉 are 29.4%, 25.2%, 23.5% and 21.9%, respectively, assuming that Maxwell-

Boltzmann distribution applies. In Fig. 3.8(b), the absence of signal at the frequencies

of triplet transitions ω47 = ω35 and ω26 = ω38 suggests that the initialization to the

singlet state is close to unity. As a crude estimate, the initialization fidelity is taken
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Figure 3.8: (a) Pump configuration for initialization to the singlet state via popula-
tion pumping. Blue and red arrows represent vertically polarized pump
lasers and horizontally polarized scanning probe, respectively. Green solid
circle indicates the target state, in this case the singlet state. (b) Differ-
ential absorption spectra obtained by scanning the probe laser across all
eight resonances, as indicated by vertical dash lines. Solid circles show
the data taken with the pump lasers set to ω25 = ω37 and ω36 = ω48

transitions. The realization of singlet state initialization is suggested by
the absence of signal at ω47 = ω35 and ω26 = ω38. Measurements are re-
peated with one of the pump lasers blocked (hollow circles and triangles),
resulting in diminished absorption signal.

as the area under the curve in the vicinity of ω15 and ω18 divided by the total area

under the curve of the Lorentzian fit shown in Fig. 3.8(b). A measurement noise

limited fidelity of 98 % is then obtained. From this value, the spin temperature as a

result of optical pumping is estimated to be 0.24 K. This is significantly lower than

the operating temperature of 6 K.

Although vertically polarized pump lasers are chosen in the scheme shown in Fig.

3.8(a), initialization to the singlet state can also be accomplished with horizontally

polarized pumps. Furthermore, by tuning one of the pump lasers to the resonance of

a singlet transition, the dual laser optical pumping method can be used to initialize

the system to the triplet states |T+〉 and |T−〉. Fig. 3.9 summarizes all six possible

dual laser optical pumping schemes for initialization to the singlet, |T+〉 and |T−〉
states, including the one discussed above. Each of these states can be prepared with

two pump configurations. For initialization to the triplet states, the fidelity can be

estimated in the same manner as above, and the values of 0.90 and 0.94 are obtained

for the cases of |T+〉 and |T−〉, respectively. In both cases, the loss of fidelity is mainly

due to measurement noise from the experimental setup. The results of the dual laser

optical initialization process can be summarized by the truth table shown in Fig.
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3.10.

Figure 3.9: All six possible configurations for dual laser optical pumping and their
resulting absorption spectra. Panel (a) & (b): Initialization to the singlet
state. The absence of signal at the triplet resonances signifies high-fidelity
spin preparation of the singlet state. Pump configurations giving rise
to these spectra are given in the boxes to the right, where solid arrows
represent pump lasers while dashed arrows the probe. Vertically polarized
light is color coded in blue while horizontally polarized light in red. Panel
(c) & (d): Initialization to |T+〉 state. Panel (e) & (f): Initialization to
|T−〉 state.

So far the discussion has not involved the coherence of the spin states. In Fig.

3.8(a), when the scanning probe and one of the pump lasers are in two-photon reso-

nance, i. e., when their frequency difference equals the corresponding singlet-triplet
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Figure 3.10: Truth table for the process of dual laser optical initialization. Columns
color-coded in blue, red and green correspond to initialization to the sin-
glet, |T+〉 and |T−〉, respectively. Here, the fidelity for the initialization
process for each case is given by the diagonal elements, from which the
values of 0.98, 0.90 and 0.94 are obtained for the singlet, |T+〉 and |T−〉,
respectively.

splitting, a dark-state will be formed due to coherence population trapping. There-

fore, one expects to see dark-state dips in the spectrum given by the solid circles in

Fig. 3.8(b). The absence of a dark-state dip suggests a significant degradation of

the coherence lifetime, which stands in contrast to the long spin coherence observed

in QDMs and single QDs[11, 8]. Another anomaly is seen in Fig. 3.9 where the ab-

sorption lineshapes shown in panels (c) to (e) deviate considerably from Lorentzian.

These observations suggest the involvement of the nuclear spin ensemble of the un-

derlying crystal lattice in the dynamics of optical spin manipulation. In the next

chapter, some of these phenomena will be further explored.

From DiVincenzo criteria for quantum computation[6], it suffices to be able to

initialize to a known quantum state, given that other criteria are met. However, to

demonstrate a universal set of quantum gates, it helps to perform quantum process

tomography, which requires all basis states as input. Here, the only two-electron spin

state that cannot be prepared using the method discussed above is |T0〉. As seen in

Fig. 3.6, due to the degeneracy in transition frequencies, any pump laser acting on

|T+〉 or |T−〉 also depletes the population in |T0〉 state. Nevertheless, if the system is

first initialized to the singlet state, one can then transfer the population to the |T0〉
state via stimulated Raman adiabatic passage (STIRAP) or by using a sequence of
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Figure 3.11: (a) Pump configuration for spin preparation of |T0〉 state using four CW
lasers. The population is confined to the |S〉-|T0〉 subspace due to Pump
1 and Pump 2. By virtue of CPT driven by Pump 2 and Pump 3 on one
side and Pump 1 and Pump 4 on the other, a coherent superposition
of |S〉 and |T0〉 is formed. If Pump 3 and Pump 4 are made arbitrary
strong, the system is essentially prepared in |T0〉 state. (b) Calculated
ground state populations as a function of Pump 1 Rabi frequency in
units of radiative decay rate, γ. Rabi frequencies used here are 0.1γ, 2γ
and 2γ for Pump 2, Pump 3 and Pump 4, respectively.

circularly polarized picosecond pulses. A third method requiring only CW lasers is

shown in Fig. 3.11(a). As in the case for singlet state initialization, Pump 1 and Pump

2 deplete the population in |T+〉 and |T−〉. As a result, the system is confined to the

|S〉-|T0〉 subspace. Here, Pump 2 and Pump 3 are in two-photon resonance, thereby

forming a Λ-system containing states |S〉, |6〉 and |T0〉. Similarly, Pump 1 and Pump

4 form another Λ-system. From these two Λ-systems, coherent population trapping

(CPT) ensues and a coherent superposition of |S〉 and |T0〉 is created, of which the

relative composition is determined by the intensities of the pump lasers. As shown

in Fig. 3.11(b), if Pump 3 and Pump 4 have much higher intensities compared to

Pump 1 and Pump 2, the system is essentially initialized to |T0〉 state when the

intensities of Pump 1 and Pump 2 are equal. Since the process of CPT is integral

for the |T0〉 initialization technique discussed here, the effectiveness of this method

relies on the coherence properties of the eigth-level system. Although this coherent

optical pumping scheme is yet to be demonstrated experimentally, it is in principle

viable given sufficient isolation of the eight-level system from the decoherence inducing

environment.
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3.5 Conclusion

In this chapter, the effects of optical pumping in two-electron configuration with

zero and nonzero applied magnetic fields are presented. The most important result

derived here is given in Fig. 3.6 for the eight-level system in a transverse magnetic

field (Voigt geometry). The accuracy of this eight-level model, along with the selection

rules for optical transitions, is demonstrated by a series of optical pumping schemes

shown in Fig. 3.9. At the same time, the resulting spectra from optical pumping

suggest that high fidelity two-electron spin initialization can be achieved. It should

be emphasized that the loss of initialization fidelity here is mainly due to noise asso-

ciated with the measurement and one expects significant improvements when better

instrumentation is employed. However, the results from optical pumping also expose

some unexpected behaviors, notably the highly asymmetrical lineshapes in the ab-

sorption spectra. These deviations from ideal lineshapes are known to originate from

the nuclear spin polarization and might present as an obstacle for the demonstration

of two-qubit operations using QDMs. In the next chapter, it will be shown how this

impediment can be overcome by means of optical manipulations with CW lasers.
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CHAPTER IV

Dynamic Nuclear Spin Polarization and Optical

Nuclear Spin Locking in QDMs: Extended

Two-Electron Spin Coherence

The physical platform for two-electron spin manipulation in optically active QDMs

is laid out in the previous chapter as the eight-level system in a transverse magnetic

field shown in Fig. 3.6. Based on this simple model, it was shown that optical two-

electron spin initialization to all four eigenstates is, in principle, attainable via the

multi-laser optical pumping technique. Three of these cases, namely the singlet, |T+〉
and |T−〉 spin state preparations are experimentally demonstrated, while initialization

to |T0〉 is theoretically possible with the application of four CW lasers. The simplicity

of the eight-level model obscures the fact that the interactions between the QDM-

confined electrons and their surrounding environment is entirely ignored. From the

irregularity of the lineshapes observed, it is obvious that these interactions play signif-

icant roles in the optical measurements of the two-electron spin states. Among them,

the nuclear hyperfine interaction between an electron and the underlying nuclear spin

ensemble of the lattice is known to produce complex behaviors in the presence of

optical excitations.

The nuclear hyperfine interaction couples the electron spin to a fluctuating bath

of nuclear spins. Because of this, the energy states of the two-electron system be-

come unstable under the influence of a changing net polarization of the nuclear spin

ensemble. The presence of nuclear spin fluctuations complicates certain aspects of

optical studies in QDMs. For example, as seen in the previous chapter, it is diffi-

cult to extract coherent properties of a QDM from the absorption lineshapes due to

the absence of dark-state dips caused by nuclear spin fluctuations. Furthermore, it

will become troublesome later on for two-qubit operations where a precise control

of the detuning and timing of the optical fields is required. As instability in energy
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levels causes random shifts in spin precession frequencies, the fidelity of two qubit

operations deteriorates in the presence of nuclear spin fluctuations.

Fortunately, as was first demonstrated in single QDs[3], nuclear spin fluctuations

in QDMs can also be controlled optically. In this chapter, it will be explained how

nuclear hyperfine interaction gives rise to a non-collinear hyperfine term which induces

a net nuclear spin polarization (NSP), in conjunction with optical pumping and strain

induced electric field gradient. Again, due to the nuclear hyperfine interaction, the

NSP in turn produces an effective magnetic field, known as the Overhauser field,

that shifts the energy levels of the spin states. This interplay between the electron

and nuclear spins forms the basic mechanism[72, 73, 74, 75] for dynamic nuclear spin

polarization (DNSP). The DNSP is known to cause highly asymmetric lineshapes

depending on the spin states of the electron. However, under conditions where the

DNSP is stabilized via optical nuclear spin locking, it gives rise to the suppression of

nuclear spin fluctuations[3]. The outcomes show “DNSP-free” dark-state lineshapes

from which long spin coherence of about 1 µs can be inferred for the two-electron spin

states. For the QDM used in this study, the significance of this observation lies in the

fact that all optical manipulations involve only the trion states of the top QD. Since

the electron wavefunctions are largely confined within individual QDs at the operating

bias, this implies that the nuclear spin locking is somehow channelled from the top QD

to the bottom QD, possibly due to the small amount of electron wavefunction overlap.

The result is hereby interpreted as non-local nuclear spin locking. Meanwhile, as an

effort to lay down the groundworks for the optical nuclear spin locking technique, the

effects of DNSP and its physical origin in the context of optical studies in QDMs will

be discussed in the following section.

4.1 Resonance pulling and resonance pushing lineshapes as

indicators of electron spin induced DNSP

As noted in the previous chapter, in all cases of optical spin preparation with

two pump lasers, the absorption lineshapes deviate significantly from the expected

dark-state profile. To look at these lineshapes more closely, let us begin with the

cases where the spin preparation of |T−〉 and |T+〉 states is accomplished by using

pump configurations shown in Fig. 4.1(a) and (c), respectively. In both schemes,

Pump 1 behaves simply as a narrow-band light source to deplete any population

in the singlet state resulting from spontaneous decay and ground state population

relaxation. Its frequency is chosen so that it does not couple to the same excited
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state as Pump 2 in order to avoid population transfer to the singlet state via coherent

population trapping (CPT), i.e., formation of a dark state. Pump 2 and the probe

laser couple states |T−〉, |T0〉, |T+〉, |6〉 and |8〉, forming a double Λ-system with a

shared |T0〉 ground state. Due to the degeneracy in optical resonances, these two

Λ-systems are identical except for their optical dipole moments. In an ideal case,

the dipole moment of transition ω25 is a factor of
√

2 greater than that of ω37, while

the dipole moment of ω35 is smaller than that of ω47 by a factor of
√

2. Due to the

resemblance of the double Λ-system to the letter “M”, it is hereby referred to as an

M-subsystem. When Pump 2 and the probe form a two-photon resonance, i.e., when

their frequency difference equals the corresponding triplet state splitting, CPT ensues

and one expects a dark-state dip in the probe absorption spectrum, as shown in the

inset of Fig. 4.1(b).

For the pump configuration shown in Fig. 4.1(a), the measured absorption spectra

of the probe given in Fig. 4.1(b) shows a strong signal at the |T−〉 resonance of ω25,

and negligible signals at other transitions. This is consistent with the spin prepara-

tion of the |T−〉 state discussed in the previous chapter. However, it is evident that

the measured probe absorption lineshapes significantly deviates from that expected.

A more complex structure of a broadened resonance with a round top, abrupt rising

and falling edges, and a shifted “partial dip” is obtained. This resonance profile is

observed in earlier studies in single QDs[3, 76] and is referred to as the “frequency

pulling[77, 78]” or “dragging[76]” behavior. Furthermore, by scanning the probe laser

in backward direction (decreasing in frequency), the lineshape obtained is different

from that of forward direction. In other words, hysteresis with respect to scan di-

rection is present in the system. This and the frequency pulling behavior are the

hallmarks of DNSP in InAs QDs.

In the other scheme for the initialization of the |T+〉 state shown in Fig. 4.1(c),

the roles of Pump 2 and the probe are reversed. An M-subsystem identical to the

previous one is formed. Again, the presence of a strong signal at the |T+〉 resonance

of ω47 indicates that the system is almost entirely in |T+〉 state throughout the scan.

When the probe laser is scanned in forward direction towards the resonance at ω47,

the signal first increases, but upon approaching the two photon resonance, drops

abruptly to a value close to the noise floor. As the scanning progresses, the signal

reappears suddenly then gradually diminishes. The same behavior is observed in the

backward scan, resulting in a lineshape that roughly resembles a mirror reflection of

the former about the resonance frequency of ω47. These striking profiles as shown

in Fig. 4.1(d) are the outcomes of the “frequency pushing” or “anti-dragging[76]”
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Figure 4.1: Resonance pulling and pushing lineshapes in spin triplet manifold. (a)
Pump configuration for |T−〉 state preparation. Here thick solid arrows
represent the pumps while dashed arrow the probe. Polarizations of
the optical fields are indicated by red and blue for horizontal and ver-
tical, respectively. (b) Following the pumping scheme in (a), the upper
panel shows the absorption spectrum of a vertically polarized probe laser
scanned in forward (increasing in frequency) direction, while the lower
panel in backward direction. The spectra show hysteresis with respect to
scan direction and resonance pulling behavior due to DNSP. Inset: Ideal
CPT lineshape with a dark-state dip. (c) Pump configuration for |T+〉
state preparation. (d) Absorption spectra showing resonance pushing be-
havior with a horizontally polarized probe. In both pump configurations,
the spin state of the optically excited trion, determined by the heavy-hole
spin, remains the same.
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behavior.

Figure 4.2: (a) and (c) Optical spin preparation of |T−〉 and |T+〉 states, respectively,
using alternative pump configurations. (b) and (d) Corresponding high-
resolution probe absorption spectra showing that, despite the difference
in pump configurations and resulting heavy-hole spins, the observed be-
havior is qualitatively similar to that shown in Fig. 4.1.

It worths noting that in both pump configurations discussed above, the probe and

Pump 2 couple to the spin-down state of the heavy-hole. At this point it seems rea-

sonable to assume that the resonance profiles are associated with the electron spins,

where |T−〉 state gives rise to frequency pulling behavior, while |T+〉 frequency push-

ing. To provide further evidence that the hole spin indeed plays little role in DNSP,

it is necessary to couple to a different hole spin. This is achieved with alternative

pump configurations shown in Fig. 4.2(a) and (c) for initializing to |T−〉 and |T+〉
states, respectively. The corresponding probe absorption spectra are given in Fig.

4.2(b) and (d), in which the probe laser is scanned in finer step sizes compared to

previous experiments, across the resonances where the signals are expected to ap-

pear. Here, the probe and Pump 2 excite the spin-up heavy-hole state, as opposed

to the spin-down state in previous cases. Nonetheless, both frequency pulling and

pushing lineshapes qualitatively similar to those in Fig. 4.1(b) and (d) are obtained,

each arising from the initialization of |T−〉 and |T+〉 states, respectively. This implies
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that although the upper-QD trion maybe involved in the mechanism of DNSP, its

spin projection, which is entirely determined by the heavy-hole spin, plays negligible

role. As a side note, the optically induced DNSP reported earlier in single QDs is

attributed to either electron-nuclear non-collinear hyperfine interaction arising from

nuclear quadrupolar field[79, 76, 73, 74], or hole-nuclear non-collinear hyperfine cou-

pling due to heavy-hole-light-hole mixing[3, 73]. It is very likely that the underlying

mechanism of DNSP in QDs varies from one sample to another[76, 74], and the results

above suggest that the behavior of the QDM under study is governed by the former.

4.2 General mechanism of DNSP in InAs QDs

Although a detailed physical description of DNSP in QDMs is yet to be elucidated,

a partial understanding can be developed based on earlier studies in single QDs. As

mentioned in the introductory section of this chapter, the theoretical framework of

DNSP is cast in the form of a feedback loop leading to the generation of NSP via

optical pumping and the back-action of the NSP on the optical resonances[75]. Both

processes arise from the electron-nuclear hyperfine interaction. In the former, it takes

the shape of the non-collinear hyperfine[79, 76, 73, 74] term having the generic form∑
iA

NC
i Ŝe,xÎi,y, and electron spin mediated nuclear spin diffusion[80, 79, 81, 74] term

given by
∑

i,j A
SD
ij Ŝe,xÎi,+Îj,−. Here, ANC

i and ASD
i are coupling constants for the non-

collinear and spin diffusion terms, respectively. Ŝe,x denotes electron spin operator

in the x-direction (in the same direction as the applied magnetic field), chosen here

as the quantization axis, while Îi,z is the spin operator of i-th nucleus. The spin-flip

operators are defined as Îi,± = Îi,z ∓ iÎi,y.
In recent studies of single QDs, the non-collinear term is found to be the largest

contributor for NSP[79, 82, 76, 74, 81] and is due to the interaction between the

electric nuclear quadrupolar moment and the electric field gradient induced by strain.

The fact that strain is ubiquitous in nanostructures due to lattice mismatch and

alloying makes the nuclear quadrupolar interaction important. To briefly see how the

non-collinear term arises from nuclear quadrupolar interaction, let us begin with the

Hamiltonian

H =HOPT +
geµB
~

Ŝe ·B−
µN
~
∑
i

gn,iÎi ·B (4.1)

−µ0

4π
γe
∑
i

γN,iÎi ·

8π

3
Ŝeδ (ri)−

r2
i Ŝe − 3ri

(
Ŝe · ri

)
r5
i

+
L̂

r3
i

− 1

2

∑
i

Q̂
(2)
i ·V

(2)
i
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Here, HOPT represents the Hamiltonian term for QD-optical field interaction. The

second and third terms are the Zeeman interactions for electron and nuclei, respec-

tively, in which µN is the nuclear magneton while gn,i the g-factor of i-th nucleus. The

fourth term is the hyperfine interaction in terms of separation between the electron

and i-th nucleus, ri. γe and γN,i denote electron and nuclear gyromagnetic ratios,

respectively, while L̂ the electron orbital angular momentum operator. Finally, the

fifth term gives us nuclear quadrupolar interaction, where Q̂
(2)
i and V

(2)
i are the nu-

clear quadrupolar moment and electric field gradient tensors, respectively, evaluated

at the site of i-th nucleus. The hole-nuclear hyperfine term is neglected in the Hamil-

tonian above since it is expected to be an order of magnitude smaller compared to

the electron-nuclear hyperfine term[83, 84, 85, 86, 87]. The hyperfine interaction con-

sists of the Fermi contact term, the electron-nuclear magnetic dipole coupling and

the spin-orbit coupling between nuclear spin and electron angular momentum, in the

order presented in Eq. (4.1) above. If we assume s-type Bloch states with slowly

varying envelop wavefunctions for the electron[3], we can keep only the Fermi contact

term, so that the Hamiltonian in Eq. (4.1) is simplified to

H ≈ HOPT +
geµB
~

Ŝe,xBx−
µN
~
∑
i

gn,iÎi,xBx +
∑
i

Ae,iŜe · Îi−
1

2

∑
i

Q̂
(2)
i ·V

(2)
i (4.2)

for an applied magnetic field in Voigt geometry. Ae,i is also known as the electron-

nuclear hyperfine constant. To see how Eq. (4.2) gives rise to the non-collinear

hyperfine term, we apply a unitary transformation so that the Hamiltonian in the

rotated basis, H̃, has the form

H̃ = eSHe−S

With an appropriate choice of S , e. g.

S =
1

Bx

∑
i

ci

[
2
(
Îi,+Îi,x − Îi,xÎi,−

)
+ Îi,+ − Îi,−

]
where ci is a constant, the quadrupolar term in Eq. (4.2) can be eliminated. This is

known as the Schrieffer-Wolff transformation[88, 76, 74] and a detailed discussion is

given in Appendix D. The resulting Hamiltonian is

H̃ ≈ HOPT+
geµB
~

Ŝe,xBx−
µN
~
∑
i

gn,iÎi,xBx+
∑
i

Ae,iŜe ·Îi+
∑
i

ANC
i

(
iŜe,xÎi,y + · · ·

)
where the non-collinear hyperfine constant, ANC

i , is proportional to the product of
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nuclear quadrupolar moment and electric field gradient. Once again, the quantization

axis is chosen to be along the x-direction. It is important to emphasize that the

Schrieffer-Wolff transformation does not alter the Hamiltonian physically, but merely

shows certain aspects of the interactions in a more explicit manner. From Îi,z =
1
2

(
Îi,+ + Îi,−

)
, it is easy to see that the non-collinear term induces nuclear spin flips,

and as an accumulative effects across the nuclear ensemble, results in NSP.

The spread of NSP across the entire QDM, especially to locations where the strain

is negligible, is facilitated by the electron spin mediated nuclear spin diffusion term

mentioned earlier. The derivation of this term can be done by neglecting the nuclear

quadrupolar interaction in Eq. (4.2), and again, by applying the Schrieffer-Wolff

transformation but this time using

S =
1

Bx

∑
i

c
′

i

(
Ŝ+Îi,− − Ŝ−Îi,+

)
we have

H̃
′ ≈ HOPT +

geµB
~

Ŝe,xBx −
µN
~
∑
i

gn,iÎi,xBx +
∑
i

Ae,iŜe,xÎi,x (4.3)

+
∑
i,j

ASD
ij

(
Ŝe,xÎi,+Îj,− + · · ·

)
where

ASD
ij =

~Ae,iAe,j
4 (geµB + µNgN,j)Bx

The term
∑

iAe,iŜe,xÎi,x in Eq. (4.3) above is known as the Overhauser shift, since it

gives rise to an effective magnetic field, i. e., the Overhauser field, given by

BOH =
~

geµB

∑
i

Ae,iÎi,x

As a result, the energy levels of the spin states and, subsequently, the optical reso-

nances, are shifted. This in turn changes the dynamics of the optical pumping process

and therefore, brings about the back-action of the NSP on the optical excitaton.

The effects of DNSP seen in the optical pumping experiments discussed above in

§ 4.1 is summarized in Fig. 4.3. The process begins with the optical initialization to a

nonzero spin state of either |T−〉 or |T+〉, which induces NSP via non-collinear hyper-

fine interaction. When the probe laser is scanned across the resonance associated with

the prepared spin state, the total electron spin projection of the system is perturbed
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Figure 4.3: A schematic illustration of the mechanism of DNSP showing the feed-
back between optical pumping induced NSP and NSP induced Overhauser
shift.

due to either optical transition to a trion state or CPT. In response, the amount

of NSP is changed since the electrons and nuclei are coupled. This translates to a

shift in the Overhauser field, which in turn alters the energy levels of the eigenstates

and, consequentially, affects the dynamics of the optical pumping process. In optical

pumping experiments, this feedback mechanism manifests in the frequency pulling

and pushing lineshapes shown in Fig. 4.1 and 4.2. This “asymmetrical” response of

the system with respect to the electron spin state is likely due to the change in the

dynamics of the feedback loop[81, 75], since switching the electron spin state flips the

sign of the non-collinear term. In order to reproduce the observations theoretically,

one must find the steady state solution involving all physical processes labeled in

Fig. 4.3. This proves to be a challenging task and, in the case of single QDs, several

attempts are made[3, 88, 81, 73]. Nonetheless, the basic idea of DNSP discussed here

is sufficient for the effort of suppressing the frequency pulling and pushing behaviors.
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4.3 Recovery of dark-state lineshapes by nuclear spin lock-

ing: Extended electron spin coherence

The frequency pulling and pushing lineshapes provide little information on the

coherence time of the two-electron spin state. Based on the understanding of DNSP

given in § 4.2, these spectral distortions caused in part by changes in DNSP can

be avoided if the effect of the probe laser on DNSP can be minimized. The most

straightforward way to achieve this is by reducing the intensity of the probe laser at

the expense of signal to noise ratio. For the purpose of measuring spin coherence

time in CW spectroscopy by measuring the dip of the dark-state formed by CPT,

this method is detrimental since a low signal to noise ratio in the vicinity of the

dark-state dip greatly reduces the accuracy of the estimated coherence time. For a

better approach, a third pump laser tuned to the two-photon resonance with Pump 2

is applied, as shown in Fig. 4.4(a) and (c). As previously noted, Pump 1 plays little

role in the coherence of the optical ground states. In both schemes, a configuration

similar to that for CPT in an ordinary Λ-system is formed by Pump 2 and 3 in

each half of the M-subsystem. In this more complex CPT configuration, a coherent

state is formed between the components of the triplet manifold (|T−〉, |T0〉 and |T+〉)
with probability amplitudes dictated by the relative intensities of the pumps and the

relevant optical dipole moments. For the effective intensity ratio of Pump 2 to Pump

3 arbitrarily chosen to be 25 : 1, most of the ground state probability amplitude is

associated with the |T−〉 state for the pump configuration shown in Fig. 4.4(a), while

in Fig. 4.4(c), the prepared spin state is predominantly |T+〉.
As long as the probe is weaker than the pumps, this has the effect of stabilizing the

ground state probability amplitudes against the perturbation caused by the probe,

thereby keeping the electron spin induced NSP relatively constant, i.e., locking the

nuclear spins[3]. In the absorption spectra shown in Fig. 4.4(b) and (d), correspond-

ing to the pump configurations in Fig. 4.4(a) and (c) respectively, a prominent dark

state dip is now observed in each case. The full depth of both dips indicates strong

suppression of nuclear spin fluctuations and long ground state decoherence times. The

recovery of the dark-state profiles allows us to simulate the behavior of the system

without considering the effects of DNSP. By using the eight-level master equation

given in Appendix E, the numerically obtained best fit lineshapes are overlaid on the

experimental results. The accuracy of the model is evident not just by the excellent

fits it generates, but also by its ability to account for the kink, as indicated in Fig.

4.4(b), due to a slight misalignment of the pump detunings. From the fits in Fig.
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Figure 4.4: Nuclear spin locking and the recovery of dark state lineshapes. (a) and
(c) Pump configurations similar to those shown in Fig. 4.2(a) and (c),
except with the addition of Pump 3 at ω26 for case (a) and ω48 for case (c).
(b) and (d) Corresponding absorption spectra showing dark-state profiles
for the probe scanning across transitions ω26 and ω48, respectively. Solid
circles in the plots represent averaged data points obtained from a series
of 7 scans and the error bars show standard deviations. Red solid lines
are theoretical fits obtained from solving the eight-level master equation.

4.4(b) and (d), ground state decoherence times of 90 ns and 1.3 µs, respectively, are

extracted. Compared to the estimated decoherence time of 2.5 ns due to thermally

distributed nuclear fluctuations[1, 2, 3], these numbers correspond to extension of

decoherence times by factors of 36 and 520. The difference in these values is likely

due to the residual effects of DNSP caused by the scanning probe laser given that the

actual Rabi frequency of Pump 3 is merely twice that of the probe.

4.4 Emergence of dark-state dips at singlet transitions: Nu-

clear spin narrowing

While the nonzero spin states |T−〉 and |T+〉 give rise to DNSP, the spin-zero

singlet state does not since its contribution to the hyperfine interaction vanishes.
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Therefore, the eigen-energy of the singlet state is unaffected by fluctuations in the

Overhauser field. Nonetheless, the optical transitions from the singlet to the trion

states are affected due to nonzero spins in the excited states. By tracing the res-

onance of singlet transitions, one can then extract information on the NSP. When

the system is prepared in the singlet state following the scheme in Fig. 4.5(a) with

Pump 3 blocked, the absorption spectrum of a weak probe scanned across transi-

tion ω18 shows a broadened lineshape (orange triangles in Fig. 4.5(b)) resembling a

Voigt profile. This broadening is attributed to fluctuations in NSP and, subsequently,

the Overhauser field. In experiment, the data acquisition time (4 s per data point)

is expected to be much longer than the timescale of Overhauser field fluctuations.

Therefore, each data point represents an averaged value derived from a distribution

of Overhauser fields. To construct the numerical fit, the effect of nuclear spin fluctu-

ations is treated the same way as in spectral diffusion, where the Overhauser field is

assumed to be slowly varying compared to the optical processes. Calculated absorp-

tion spectra corresponding to different Overhauser fields are then averaged according

to the best-fitting Overhauser field distribution. Some of these spectra, evaluated

using 1 µs decoherence time, are shown in Fig. 4.5(d). Apparently, although each in-

dividual spectrum shows a dark-state dip, the averaging of different spectra obscures

it, thus explaining its absence in the measurement. Assuming that the intrinsic Over-

hauser field has a Gaussian distribution, a numerically fitted standard deviation of

0.15 Tesla is obtained, in agreement with the theoretical order-of-magnitude estimate

of 0.11 Tesla given in Appendix F.

With the application of Pump 3, the system is prepared in a coherent superposition

of the singlet and |T+〉 states via CPT. Due to a nonzero overall spin projection, DNSP

ensues and its effects on the singlet transitions of ω18 is shown in Fig. 4.5(b) (hollow

squares and circles). The dark-state dip now emerges with its depth enhanced as

the intensity of Pump 3 is increased, resulting in spectra resembling CPT lineshapes.

In addition, the overall linewidth is reduced. Both features above are reproduced in

numerical simulation when narrowed Overhauser field distributions are assumed, as

shown in Fig. 4.5(c). From the best-fit Overhauser field distributions, it is found

that the higher the intensity of Pump 3, the narrower the distribution. Although the

distribution can be further narrowed down, this occurs at the expense of the signal

strength since the population of the singlet state is now being depleted, as can be

seen from the peak heights in Fig. 4.5(b).

A more important effect of DNSP is revealed at the singlet transition of ω15,

which is not acted upon by Pump 3. A dark-state dip associated with the coherence
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Figure 4.5: |S〉-|T+〉 coherence and Overhauser field narrowing. (a) Pump configura-
tion for the preparation of a coherent |S〉-|T+〉 superposition. (b) Probe
absorption spectra showing the emergence of dark-state dips at ω18 tran-
sition following the application of Pump 3. The spectra are taken with
nominal Pump 3 intensities of 0 µW, 0.5 µW and 2.0 µW, corresponding
to Rabi frequencies of about 0 MHz, 200 MHz and 400 MHz respectively.
(c) Nuclear field distributions used in the numerical model for fitting the
spectra in (b). (d) A schematic illustration explaining the disappearence
of the dark-state dip due to averaging for the case without nuclear spin
locking (Pump 3 blocked). The black curve is the weighted average of
multiple colored curves (5 of them are shown) according to the intrinsic
Overhauser field distribution (red dotted line in (c)).
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Figure 4.6: Dark-state dips at ω15 and ω18. (a) The pump configuration here is similar
to that shown in Fig. 4.5(a), but the probe is scanned across a wider range
covering both singlet transitions. (b) Probe absorption spectra showing
the emergence of dark-state dips at both singlet transitions, along with
numerical fits. The Rabi frequency associated with Pump 3 is about
560 MHz. (c) Nuclear field distributions used in the numerical model
for fitting the spectra in (b). (d) Comparison between spectra calculated
from different combinations of dehonerence times and Overhauser field
distributions. Here, the thermal value of decoherence time is assumed to
be 2.5 ns[1, 2, 3].

between the singlet and |T−〉 states now appears at ω15, as shown in Fig. 4.6(b). A

comparison between the two dark-state dips reveals that the one at ω18 is deeper than

the other. This is due to the effect of Pump 3 which acts on ω18 and saturates the

optical transition, a process related to hole burning in atomic vapors. Expectedly,

when Pump 3 is tuned to the resonance of ω15, the dip at ω15 becomes the deeper one.

From theoretical calculations, a narrowed distribution of Overhauser field and long

spin coherence of about 1 µs are necessary for the observation of the dark-state dip at

ω15. This is illustrated in Fig. 4.6(d) which shows several calculated lineshapes using

different combinations of decoherence times and Overhauser field distributions. An

approximate numerical fit using the narrowed Overhauser field distribution shown in
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Fig. 4.6(c) and a decoherence time of 1µs is able to qualitatively reproduce all the

essential features observed. The fact that this is achieved simultaneously for both

singlet resonaces with a single set of fitting parameters suggests that the physical

descriptions of the system provided here are well-grounded.

4.5 Conclusion and outlook

It is remarkable that the nuclear spin ensembles in two separate QDs can be

stabilized simultaneously in the same manner as achieved in single QDs. The fact

that all optical manipulations involve only the top QD lead us to the claim of non-

local nuclear spin locking. This implies that the coupling between the two QDs

remains efficient and robust in the presence of fluctuations of surrounding nuclear

environment. The observation of long spin coherence involving all four two-electron

spin eigenstates extends the applications of InAs QDMs to include the entire singlet-

triplet manifold, where multiple two-qubit operations can be implemented within its

decoherence time. Recently, it has been reported that suppressed spin fluctuations

of a nuclear ensemble in an InAs QD persists beyond one second[22]. Therefore, for

improved robustness, it might be advantageous to precede any two-qubit operation

with the optical nuclear spin locking method discussed above[89].

On the other hand, the uniqueness of QDMs lies in the existence of a spin-zero

singlet ground state that does not affect the NSP, while its corresponding optical

transitions are sensitive to fluctuations in the Overhauser field. This can potentially

serve as a tool for probing the dynamics of NSP. For instance, given sufficient signal

to noise ratio and faster instrumentation, one might be able to trace the resonance of

a singlet transition as a function of time. From this, the timescale of nuclear spin flip

processes can be inferred. In addition, QDMs provide a platform for the investigation

of potential coupling between two nuclear ensembles. This might prove useful for

the fundamental study of mesoscopic entanglement as outlined by Schuetz et al.[90]

Regardless, the work presented in this chapter suggests that a scalable architecture

for quantum information processing composed of locally interacting QDs is feasible.
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CHAPTER V

Towards a Universal Two-Qubit Gate

The observation of long two-electron spin coherence from the previous chapter

establishes single QDMs as promissing platforms for the implementation of two-qubit

operations. Since fast coherent manipulation of electron spins is typically required for

gate operations, this chapter will begin with an introduction to the basics of pulsed

laser excitation in QDMs. It is worth mentioning that picosecond pulses have been

used in recent studies[87, 7] of InAs QDMs where coherent control of two-qubit states

are being explored. In particular, as reported by Kim et al.[7], an all-optical two-qubit

phase gate has been realized, using a QDM sample structure similar to the one used

in this thesis. Even so, a universal two-qubit gate is still yet to be demonstrated.

In the original scheme proposed by Loss & DiVincenzo[91], a universal set of gates

is achieved by modulating the strength of Coulomb exchange interaction between the

two QDs. This has been realized in gate defined QDMs[92], albeit with a modest

gate speed in the order of 10 MHz. In self-assembled QDMs, the presence of strong

Coulomb exchange coupling means that high gate speed in the order of 10 GHz is

possible. However, a low modulation depth together with the high speed required

makes electrical gating of exchange interaction in self-assembled QDMs impractical.

Instead, the recipe for realizing a universal two-qubit gate is learned from NMR[93],

where a series of pulses resulting in single qubit rotations is applied, while the ex-

change interaction is kept constant. In the course of this chapter, it will be shown how

picosecond pulses give rise to two-photon Raman transitions and subsequently single

spin rotations. This, together with the Coulomb exchange interaction, constitutes

the basis for the universality of two-qubit operations. A methodology for the readout

of the populations of all four spin eigenstates will also be discussed.
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5.1 Raman transitions with picosecond pulses: Single elec-

tron spin rotation

Previous chapters introduced coherent manipulation of the two-electron spin states

using multiple CW lasers, which enables optical spin initialization and nuclear spin

locking. As mentioned before, however, in order to implement a universal set of two-

qubit operations, Raman transitions via pulsed excitations are required. Here in this

section, the effects of picosecond pulses on the eight-level system are explored, from

which the result shows adiabatic elimination of optical excited states and single spin

rotation about the optical axis. These form the basis for two-qubit operations to be

discussed in the next section.

In the previous chapter, the density matrix formalism was employed in the mod-

eling of the eight level system under CW optical excitation. (See Appendix E). This

choice is governed by the relevance of density matrix formalism in handling relax-

ations. Here, since the duration of the picosecond pulses is short compared to both

the excited state lifetime and the spin decoherence time of about 2 ns and 1 µs, re-

spectively, the effects of relaxation are unimportant. For simplicity, the amplitude

picture is used in this section. An important assumption here is that the frequency

bandwidth of the pulses is much larger than the spin splittings of the two-electron

states. This is justified if one considers 2 ps pulses generated by Mira mode-locked

Ti:Sapphire laser from Coherent Inc. Of which the frequency bandwidth is given by

TBP/∆tp, where TBP is the time-bandwidth product while ∆tp the FWHM pulse

width. Assuming a Gaussian pulse shape with a TBP of 0.441 (0.315 for sech2), the

bandwidth is 221 GHz, or, equivalently, 0.92 meV. On the other hand, the largest

spin splitting, given by that between the singlet and |T+〉 states, is 0.153 meV in an

applied magnetic field of 1.5 Tesla.

The optical field is defined as

E (t) =
1

2
[x̂Ex (t) + ŷEy (t)] eiωt + c.c.

where ω is the center frequency of the pulses and c.c. represents complex conjugate.

Assuming the dipole approximation holds, let us define the Rabi frequencies for the

x- and y-polarized fields as

Ωx (t) =
µEx (t)

~
and Ωiy (t) = i

µEy (t)

~

respectively. Here, µ is the dipole moment for transition ω25 which, ideally, is the
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same in magnitude as transitions ω26, ω47 and ω48. Note that Ωiy (t) is defined as
the quadrature component, as indicated by the factor i. By referring to Fig. 3.6
and using the rotating wave approximation, we can write the Hamiltonian of the
eight-level system in field interaction picture as

H̃ = ~



ν1 0 0 0 1
2
√
2
Ωx (t) 1

2
√
2
Ωiy (t) − 1

2
√
2
Ωiy (t) − 1

2
√
2
Ωx (t)

0 ν2 0 0 1
2Ωiy (t) 1

2Ωx (t) 0 0

0 0 ν3 0 1
2
√
2
Ωx (t) 1

2
√
2
Ωiy (t) 1

2
√
2
Ωiy (t) 1

2
√
2
Ωx (t)

0 0 0 ν4 0 0 1
2Ωx (t) 1

2Ωiy (t)
1

2
√
2
Ω∗x (t) 1

2Ω∗iy (t) 1
2
√
2
Ω∗x (t) 0 ν5 − ω 0 0 0

1
2
√
2
Ω∗iy (t) 1

2Ω∗x (t) 1
2
√
2
Ω∗iy (t) 0 0 ν6 − ω 0 0

− 1
2
√
2
Ω∗iy (t) 0 1

2
√
2
Ω∗iy (t) 1

2Ω∗x (t) 0 0 ν7 − ω 0

− 1
2
√
2
Ω∗x (t) 0 1

2
√
2
Ω∗x (t) 1

2Ω∗iy (t) 0 0 0 ν8 − ω


(5.1)

Here, ν1 through ν8 are similarly defined as in Appendix E. The probability amplitude

in field interaction picture, denoted by c (t), is related to that in Schrödinger picture,

a (t), by c (t) = Û (t) a (t), where the unitary matrix Û (t) is diagonal with elements

{1, 1, 1, 1, eiωt, eiωt, eiωt, eiωt}. From the Hamiltonian above, the equations of motion

for the probability amplitudes are given by

ċ1 (t) = −i
[
−2 |Jex| c1 (t) +

Ωx (t)

2
√

2
c5 (t) +

Ωiy (t)

2
√

2
c6 (t)− Ωiy (t)

2
√

2
c7 (t)− Ωx (t)

2
√

2
c8 (t)

]
ċ2 (t) = −i

[
−δgc2 (t) +

Ωiy (t)

2
c5 (t) +

Ωx (t)

2
c6 (t)

]
ċ3 (t) = −i

[
Ωx (t)

2
√

2
c5 (t) +

Ωiy (t)

2
√

2
c6 (t) +

Ωiy (t)

2
√

2
c7 (t) +

Ωx (t)

2
√

2
c8 (t)

]
ċ4 (t) = −i

[
δgc4 (t) +

Ωx (t)

2
c7 (t) +

Ωiy (t)

2
c8 (t)

]
ċ5 (t) = −i

[
(∆− δa) c5 (t) +

Ω∗x (t)

2
√

2
c1 (t) +

Ω∗iy (t)

2
c2 (t) +

Ω∗x (t)

2
√

2
c3 (t)

]
ċ6 (t) = −i

[
(∆− δb) c6 (t) +

Ω∗iy (t)

2
√

2
c1 (t) +

Ω∗x (t)

2
c2 (t) +

Ω∗iy (t)

2
√

2
c3 (t)

]
ċ7 (t) = −i

[
(∆ + δb) c7 (t)−

Ω∗iy (t)

2
√

2
c1 (t) +

Ω∗iy (t)

2
√

2
c3 (t) +

Ω∗x (t)

2
c4 (t)

]
ċ8 (t) = −i

[
(∆ + δa) c8 (t)− Ω∗x (t)

2
√

2
c1 (t) +

Ω∗x (t)

2
√

2
c3 (t) +

Ω∗iy (t)

2
c4 (t)

]
(5.2)

where the detuning, ∆, and Zeeman splittings, δg, δa and δb are defined as follows:

∆ = ω0 − ω
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δg =
µBgeBx

~
, δa = µBBx

2~ (ge − 3gh) , δb =
µBBx

2~
(ge + 3gh)

If we further define

c̃5 (t) = c5 (t) ei(∆−δa)t

c̃6 (t) = c6 (t) ei(∆−δb)t

c̃7 (t) = c7 (t) ei(∆+δb)t

c̃8 (t) = c8 (t) ei(∆+δa)t

The last four equations in Eq. (5.2) can be rewritten as

˙̃c5 (t) = −i
[

Ω∗x (t)

2
√

2
c1 (t) +

Ω∗iy (t)

2
c2 (t) +

Ω∗x (t)

2
√

2
c3 (t)

]
ei(∆−δa)t (5.3)

˙̃c6 (t) = −i
[

Ω∗iy (t)

2
√

2
c1 (t) +

Ω∗x (t)

2
c2 (t) +

Ω∗iy (t)

2
√

2
c3 (t)

]
ei(∆−δb)t

˙̃c7 (t) = −i
[
−

Ω∗iy (t)

2
√

2
c1 (t) +

Ω∗iy (t)

2
√

2
c3 (t) +

Ω∗x (t)

2
c4 (t)

]
ei(∆+δb)t

˙̃c8 (t) = −i
[
−Ω∗x (t)

2
√

2
c1 (t) +

Ω∗x (t)

2
√

2
c3 (t) +

Ω∗iy (t)

2
c4 (t)

]
ei(∆+δa)t

Solving for c̃5 (t), c̃6 (t), c̃7 (t) and c̃8 (t) using integration by parts, we arrive at

c̃5 (t) =
1

∆− δa

{
−
[

Ω∗x (t)

2
√

2
c1 (t) +

Ω∗iy (t)

2
c2 (t) +

Ω∗x (t)

2
√

2
c3 (t)

]
ei(∆−δa)t (5.4)

+

ˆ
dtei(∆−δa)t d

dt

[
Ω∗x (t)

2
√

2
c1 (t) +

Ω∗iy (t)

2
c2 (t) +

Ω∗x (t)

2
√

2
c3 (t)

]}
c̃6 (t) =

1

∆− δb

{
−
[

Ω∗iy (t)

2
√

2
c1 (t) +

Ω∗x (t)

2
c2 (t) +

Ω∗iy (t)

2
√

2
c3 (t)

]
ei(∆−δb)t

+

ˆ
dtei(∆−δb)t

d

dt

[
Ω∗iy (t)

2
√

2
c1 (t) +

Ω∗x (t)

2
c2 (t) +

Ω∗iy (t)

2
√

2
c3 (t)

]}
c̃7 (t) =

1

∆ + δb

{[
Ω∗iy (t)

2
√

2
c1 (t)−

Ω∗iy (t)

2
√

2
c3 (t)− Ω∗x (t)

2
c4 (t)

]
ei(∆+δb)t

+

ˆ
dtei(∆+δb)t

d

dt

[
−

Ω∗iy (t)

2
√

2
c1 (t) +

Ω∗iy (t)

2
√

2
c3 (t) +

Ω∗x (t)

2
c4 (t)

]}
c̃8 (t) =

1

∆ + δa

{[
Ω∗x (t)

2
√

2
c1 (t)− Ω∗x (t)

2
√

2
c3 (t)−

Ω∗iy (t)

2
c4 (t)

]
ei(∆+δa)t

+

ˆ
dtei(∆+δa)t d

dt

[
−Ω∗x (t)

2
√

2
c1 (t) +

Ω∗x (t)

2
√

2
c3 (t) +

Ω∗iy (t)

2
c4 (t)
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For a large detuning, ∆, it is reasonable to assume that the Rabi frequencies and

probability amplitudes are slowly varying compared to ∆, i. e.,∣∣∣∣ ddtΩx (t) ci (t)

∣∣∣∣ � |∆Ωx (t) ci (t)| and∣∣∣∣ ddtΩiy (t) ci (t)

∣∣∣∣ � |∆Ωiy (t) ci (t)|

In this case the integrals in Eq. (5.4) are small and can be neglected. We then obtain

c5 (t) ≈ − 1

∆− δa

[
Ω∗x (t)

2
√

2
c1 (t) +

Ω∗iy (t)

2
c2 (t) +

Ω∗x (t)

2
√

2
c3 (t)

]
(5.5)

c6 (t) ≈ − 1

∆− δb
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2
√

2
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Ω∗x (t)

2
c2 (t) +

Ω∗iy (t)

2
√

2
c3 (t)

]
c7 (t) ≈ 1

∆ + δb

[
Ω∗iy (t)

2
√

2
c1 (t)−

Ω∗iy (t)

2
√

2
c3 (t)− Ω∗x (t)

2
c4 (t)

]
c8 (t) ≈ 1

∆− δb

[
Ω∗x (t)

2
√

2
c1 (t)− Ω∗x (t)

2
√

2
c3 (t)−

Ω∗iy (t)

2
c4 (t)

]
Substituting these into the first four equations in Eq. (5.5) and by ∆ � δa, δb as

mentioned above, we can write the equations of motion for the two-electron spin

states in the form of an effective 4-level Hamiltonian as

Heff ≈ −~


2
~Jex + ∆S (t) 1√

2
Ω2e (t) 0 − 1√

2
Ω2e (t)

1√
2
Ω2e (t) δg + ∆S (t) 1√

2
Ω2e (t) 0

0 1√
2
Ω2e (t) ∆S (t) 1√

2
Ω2e (t)

− 1√
2
Ω2e (t) 0 1√

2
Ω2e (t) −δg + ∆S (t)

 (5.6)

Here, the basis states consist of the two-electron subspace of the eight level system

and are given by {|S〉, |T−〉, |T0〉, |T+〉}. The diagonal term,

∆S (t) =
|Ωx (t)|2 + |Ωx (t)|2

4∆

corresponds to the AC Stark shift, while the off-diagonal Raman term,

Ω2e (t) =
Ω∗x (t) Ωiy (t) + c.c.

4∆

gives rise to the coupling between electron spin states. Hence, in the limit of a

slowly varying temporal profile of the pulses and a large detuning, the excited state
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population is minimized and Raman transitions between optical ground states occur.

This is known as the adiabatic elimination of the optical excited states. Note that in

the effective Hamiltonian above, |S〉 and |T0〉 are not coupled via the Raman pulses.

This is because in deriving Eq. (5.6), we have made the simplification ∆± δa ≈ ∆ ≈
∆± δb. In reality, however, nonzero values of δa and δb give rise to a small coupling

term

ΩS−T0 (t) =
1

4

[
|Ωx (t)|2 δa

∆2 + δ2
a

+ |Ωiy (t)|2 δb
∆2 + δ2

b

]
that can bring about the Raman transition between |S〉 and |T0〉 states.

To gain a better physical understanding of the effects of Raman pulses, it is

insightful to write the effective Hamiltonian in Eq. (5.6) in a rotated basis defined as

H
′

eff = Û ′Heff Û ′† where

Û ′ =


0 0 0 1

− 1√
2

0 1√
2

0
1√
2

0 1√
2

0

0 1 0 0

 (5.7)

It is easy to verify that the operation of Û ′ rotates the eigenstates into the compu-

tational basis : {|+x〉B |+x〉T , |+x〉B |−x〉T , |−x〉B |+x〉T , |−x〉B |−x〉T}. For clarity,

subscripts B and T are introduced here to explicitly indicate electron wavefunctions

predominantly localized in the bottom and top QDs, respectively. H
′

eff is then given

by

H
′

eff = −~


−δg + ∆S (t) Ω2e (t) 0 0

Ω2e (t) 1
~Jex + ∆S (t) −1

~Jex 0

0 −1
~Jex

1
~Jex + ∆S (t) Ω2e (t)

0 0 Ω2e (t) δg + ∆S (t)

 (5.8)

=
2

~2
JexŝB · ŝT − 2Ω2e (t) ŝT,z +

µBgeBx

~
(ŝB,x + ŝT,x)−

[
1

2
Jex + ~∆S (t)

]
=

1

2
Jex

(
σ̂ ⊗ Î

)
·
(
Î ⊗ σ̂

)
− ~Ω2e (t)

(
Î ⊗ σ̂1

)
+

1

2
µBgeBx

(
σ̂3 ⊗ Î + Î ⊗ σ̂3

)
−
[

1

2
Jex + ~∆S (t)

]
Î ⊗ Î

where ŝB and ŝT denote spin operators for the electrons localized in the bottom and

top QDs, respectively, while ⊗ represents tensor product. The terms in the last two

lines correspond to the Heisenberg exchange interaction, pulsed Raman transition,

Zeeman shift and a common energy shift, respectively, in the order of their appear-
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ance. To arrive at the last line, one needs to recall that the quantization axis is along

the x-direction, so that

ŝx =
~
2
σ3 =

~
2

[
1 0

0 −1

]

ŝz =
~
2
σ1 =

~
2

[
0 1

1 0

]

ŝy = −~
2
σ2 =

~
2

[
0 i

−i 0

]

Eq. (5.8) above shows that the Raman term Ω2e (t) couples |+x〉B |+x〉T to |+x〉B |−x〉T ,

and also |−x〉B |+x〉T to |−x〉B |−x〉T . In both cases, only the spin state of |±x〉T
is affected. This means that the pulsed Raman transition here is essentially a single

spin rotation about the optical axis (in z-direction) of the electron predominantly

confined in the top QD. It is worth noting that this result is consistent with that of

single QDs which allows fast spin manipulation for single qubit operations. In the

following section, it will be revealed that the Hamiltonian in Eq. (5.8) forms the basis

of a universal two-qubit gate.

5.2 An all-optical universal two-qubit gate in a QDM: Basic

principles1

While the set of single-qubit operations belongs to the SU(2) group, two-qubit

operations are elements of the SU(4) group and therefore can be conveniently repre-

sented by 4×4 unitary matrices up to a global phase. Any two-qubit operation can be

classified[95, 96, 97, 98] either as a local gate, which belongs to the SU(2)⊗SU(2) sub-

group, or a non-local gate, from the non-local, also known as the entangling, subgroup

of SU(4)\[SU(2)⊗SU(2)]. Needless to say, the SU(2)⊗SU(2) subgroup comprises of

single-qubit operations performed on each individual qubit in isolation. An entan-

gling gate from the non-local subgroup, on the other hand, requires some kind of

entanglement generating interaction between the two qubits. It has been proven that

any entangling two-qubit operation combined with single-qubit rotations of any one

of the two qubits can generate a set of universal two-qubit gates[99].

From the Hamiltonian in Eq. (5.8), it is clear that both the entangling operation

and single-qubit rotations are provided by the exchange coupling and the pulsed

1See Ref. [94].
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Raman term, together with the Zeeman interaction. A demonstration of the two-

qubit universality in the context of self-assembled InAs QDMs is provided in Ref.

[94] and is re-iterated here. Let us first look at the matrix representations of two-

qubit operations. Up to a global phase, any 4 × 4 unitary matrix can be written as

a linear combination of the 15 generators of SU(4), given by the set {σ̂i ⊗ Î, Î ⊗ σ̂i,(
σ̂i ⊗ Î

)(
Î ⊗ σ̂j

)
}, where i, j = {1, 2, 3}. Hence, for a system capable of generating

a universal set of two-qubit operations, its time-evolution operator must contain all

linear combinations of the 15 generators. For compactness, we will use the notations

σ̂B,i ≡ σ̂i ⊗ Î and σ̂T,i ≡ Î ⊗ σ̂i in the following.

Let us consider a system described by the Hamiltonian in Eq. (5.8), re-written

here as

ċ = −iH ′c

H ′ = H0 +H1 (t)

where

H0 =
1

2
J
′

exσ̂B · σ̂T +
1

2
δg (σ̂B,3 + σ̂T,3) , J

′

ex = Jex/~

H1 (t) = −Ω2e (t) σ̂T,1

The term corresponding to a common energy shift of −
[

1
2
Jex + ~∆S (t)

]
is irrelevant

to the discussion here and is therefore discarded. The time-evolution operator, Û (t),
of the system can be written in the form of Magnus expansion:

Û (t) = exp

(
−i
ˆ t

0

dt′H ′ (t′)− 1

2!

ˆ t

0

dt′
ˆ t′

0

dt′′ [H ′ (t′′) , H ′ (t′)] (5.9)

− i

3!

ˆ t

0

dt′
ˆ t′

0

dt′′
ˆ t′′

0

dt′′′ {[H ′ (t′′′) , [H ′ (t′′) , H ′ (t′)]] + [[H ′ (t′′′) , H ′ (t′′)] , H ′ (t′)]}+ · · ·

)

The commutator appearing in the second order correction term can be expanded to

give

[H ′ (t′′) , H ′ (t′)] = [H0, H1 (t′′)] + [H1 (t′) , H0] (5.10)

=
1

2
[Ω2e (t′)− Ω2e (t′′)]

[
J
′

exσ̂B · σ̂T + δg (σ̂B,3 + σ̂T,3) , σ̂T,1

]
= i [Ω2e (t′)− Ω2e (t′′)]

[
J
′

ex (σ̂B,3σ̂T,2 − σ̂B,2σ̂T,3) + δgσ̂T,2

]
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Proceeding to the third order correction term, we have

[H ′ (t′′′) , [H ′ (t′′) , H ′ (t′)]] = 2 [Ω2e (t′)− Ω2e (t′′)]
{

Ω2e (t′′′)
[
J

′

ex (σ̂B,2σ̂T,2 + σ̂B,3σ̂T,3) + δgσ̂T,3

]
+J

′2
ex (σ̂T,1 − σ̂B,1) + δgJ

′

ex (σ̂B,3σ̂T,1 − σ̂B,1σ̂T,3) +
1

2
δ2g σ̂T,1

}
(5.11)

In Eq. (5.10), (5.11) and the first order term, H ′, 12 out of the 15 generators of SU(4)

can be found. If one continues to evaluate the higher order terms, the remaining

3 generators, σ̂B,1σ̂T,2, σ̂B,2σ̂T,1 and σ̂B,2 will appear. Another way to reveal all 15

generators is by expanding the exponential form of the time-evolution operator into its

power series. In the expansions above, the effective Rabi frequency for spin rotation,

Ω2e (t), has a time dependence corresponding to the applied Raman pulses. Therefore,

it is in principle possible to generate any linear combination of the 15 generators of

SU(4) by engineering the timing and amplitudes of the applied pulses.

In practice, an arbitrarily defined Ω2e (t) can be implemented by using a sequence

of picosecond pulses with varying intensity and temporal spacing. For convenience,

let us assume a uniform temporal spacing of 60 ps, corresponding to a propagation

delay of 18 mm in free space. The unitary operator after a sequence of k pulses

{Ω2e (t0), Ω2e (t1), · · · , Ω2e (tk−1)} can be approximated by

Û (tk) ≈ e−iH0τse−iH1(tk−1)τp · · · e−iH0τse−iH1(t1)τpe−iH0τse−iH1(t0)τp

Here, τp and τs denote the temporal width and spacing of the picosecond pulses,

respectively. Due to the fact that τp � τs, Ω2e (t′)− Ω2e (t′′) = 0 in most of the time

except when t′, t′′ = ti. Therefore, the higher order Magnus terms can be ignored. If

we let ÛT to represent the unitary matrix associated with the target two-qubit gate,

the gate fidelity of Û (tk) can be crudely defined as

1

Ni

∑
i

∣∣∣〈Ψi| Û †T Û (tk) |Ψi〉
∣∣∣2

where the summation is taken over a number of input states, here given by the 4 spin

eigenstates of the system. By varying the amplitudes of the pulses individually, the

optimal pulse sequence corresponding to the highest gate fidelity can be numerically

determined. One such pulse sequence is shown in Fig. 5.1(a) for the CNOT gate

with a fidelity of 98 %. The corresponding populations of the four eigenstates for

each input, also known as the “truth table”, are given in Fig. 5.1(b). Here, the

most important result lies in the total gate time of about 500 ps. Based on the

estimate of T ∗2 given in Chapter 4, about 1000 gate operations can be carried out
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within the spin coherence lifetime. In addition, assuming that the detuning, ∆, is

chosen to be the pulse bandwidth of 0.92 meV, from the experimentally determined

optical dipole moment, µ, of 0.086 µeV/
√

nW, the average power needed for the pulse

laser is estimated to be 6 mW. Therefore, the requirements for realizing a universal

two-qubit gate are well within the capabilities of the instrumentation.

Figure 5.1: (a) Pulse sequence for implementing a CNOT gate using square pulses
with pulse widths of 2 ps. Jex and δg are assumed to be 120 µeV and
40 µeV, respectively. (b) Calculated truth table, i. e., state populations
following the pulse sequence shown in (a) for each input eigenstates. Num-
bers in parenthesis are the populations of an ideal CNOT gate. Note that
the singlet-triplet basis is used.

5.3 Optical readout of eigenstate populations

Having addressed the issues of spin initialization in Chapter 3 and optical spin

manipulation in the previous section, the remaining challenge for the experimental

demonstration of a two-qubit gate is the population readout of the eigenstates. For

the purpose of characterizing a two-qubit operation, e. g., by performing quantum

process tomography, it is imperative to be able to readout the population of all spin

states individually. In single QDs, this can be accomplished simply by measuring the

probe absorption. However, this is not the case in QDMs. As shown in Chapter 3,

degeneracy in the optical transition frequencies precludes the measurement of indi-

vidual spin states in the triplet manifold. As a result, the only eigenstate population

that can be uniquely determined by probe absorption is that of the singlet state.
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To overcome the difficulty in spin readout posed by the degeneracy, one can in-

stead measure the rates of frequency resolved spontaneous emission following resonant

excitations. It should be reminded that the measurements here are made in the basis

consisting of singlet and triplet eigenstates. Conversion to the computational basis

can be easily done using the unitary operator Û ′ defined in Eq. (5.7). The mea-

surement scheme is illustrated in Fig. 5.2 for the frequency resolved measurement of

emitted photons at the resonance of ω35 and ω15. Here, long excitation pulses of a few

nanoseconds are used so that the bandwidth is sufficiently limited to avoid excitation

of unintended transitions. A vertically polarized excitation pulse on resonance with

transition ω25 excites the population from |T−〉 to the excited state |5〉 and, simul-

taneously, from |T0〉 to |7〉 due to the degeneracy. The detection of a horizontally

polarized photon at ω35 signifies an event of spontaneous relaxation either from |7〉
to |T+〉 or from |5〉 to |T0〉, while a photon at ω15 corresponds to the relaxation from

|5〉 to |S〉. As typically done in an experiment, a polarizer is placed after the sample

in order to reject the excitation pulse. As a result, vertically polarized emissions are

blocked and therefore are not considered here.

xtx −−=5
xtx +−=6 xtx −+=7

xtx ++=8

−= T2

+= T4

S=1

03 T=

Excitation
pulse

Excitation
pulse

γ53 ρ55

γ74 ρ77

γ51 ρ55

Figure 5.2: A schematic illustration of horizontally polarized spontaneous emissions
following a vertically polarized excitation pulse on resonance with ω25.
Solid arrows represent excitation paths while wavy arrows spontaneous
emission channels. Note that vertically polarized spontaneous emission
channels are not shown as the emission is assumed to be blocked by a
polarizer after the sample for the purpose of excitation beam rejection.

In the following discussion, let Rij denotes the photon count rate measured within

the optical linewidth of transition ωij, and γkl the spontaneous emission rate from
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state |k〉 to state |l〉. Using ρii to represent the population of state |i〉, we can write

R35 = R47 = γ53ρ55 + γ74ρ77

= γ53ε25ρ22 + γ74ε37ρ33 (5.12)

Here, εij denotes the fraction of population being excited from state |i〉 to state |j〉 by

the excitation pulse. For simplicity, the effect of optical pumping is ignored. However,

if the duration of the excitation pulse is much longer than the excited state lifetime,

optical pumping becomes important. This is because the population that ends up

in |T0〉 via the spontaneous decay channel of γ53 can be re-excited, thereby creating

additional photon counts at ω47. In this case, the correction term γ53

γ53+γ51
ε25ρ22 should

be added to the right hand side of Eq. (5.12). At ω15,

R15 = γ51ρ55 = γ51ε25ρ22 (5.13)

Dividing Eq. (5.12) by (5.13), we have

R35

R15

= 1 + 2
ε37ρ33

ε25ρ22

Here, the ideal branching ratios of γ53/γ51 = 1 and γ74/γ51 = 2 are assumed. Nonethe-

less, it is important to point out that these values can be independently measured

due to the fact that near unity initialization of states |S〉, |T−〉 and |T+〉 is possible,

as discussed in Chapter 3. For example, to determine γ53/γ51, one simply prepares

the system in the |T−〉 state, then measures R35/R15 with the same excitation pulse

shown in Fig. 5.2. Assuming a unity excitation efficiency, i. e., εij = 1, then

ρ22 =
2R15

R35 −R15

ρ33 (5.14)

Following the same derivation given above, but moving the excitation laser to the

resonance of ω48, we arrive at

ρ44 =
2R18

R38 −R18

ρ33 (5.15)

Assuming that ρ11 + ρ22 + ρ33 + ρ44 = 1 holds, from Eq. (5.14) and (5.15), we obtain

ρ33 = (1− ρ11)

[
1 + 2

(
R15

R35 −R15

+
R18

R38 −R18

)]−1

(5.16)
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The population of the singlet state, ρ11, can be independently measured by com-

paring the signal strength to the case where the system is initialized to the singlet

state. Now, all state populations are given in terms of measurable quantities and

can be individually determined from Eq. (5.14) to (5.16). It is worth mentioning

that there are alternative spin readout procedures besides the one mentioned above.

For example, if a circularly polarized excitation pulse is used, one can measure both

horizontally and vertically polarized emissions. This then gives ρ22/ρ33 = R15/R17

and ρ44/ρ33 = R18/R16, assuming ideal excitation and branching ratios.

5.4 Proposed experimental demonstration of two-qubit gates

One of the easiest methods for demonstrating a two-qubit operation is by con-

structing a truth table which gives the measured populations of the four eigenstates

as a function of input states as shown in Fig. 5.1(b). Combining the results from §

3.4, § 5.2 and § 5.3, here the processes of initialization, gate control and spin readout

are incorporated into a proposed scheme for this purpose. The timing diagram for

the optical pulses and the gated single photon counter is shown in Fig. 5.3, where

the duration of each cycle is determined by the repetition rate of the pulsed laser.

The long excitation pulses for initialization and readout are derived from CW lasers

modulated with electro-optic modulators (EOMs). Although the duration of the ini-

tialization pulses is assumed to be 10 ns in Fig. 5.3, experimental results have shown

that 4 ns suffices. For the picosecond gate pulses, a mode-locked Ti:Sapphire laser

is used. For the two-qubit gate control, a pulse sequence can be created by passing

the picosecond pulses through a beam splitter network, in which the amplitudes of

individual pulses can be independently adjusted. Since the gate pulses are circularly

polarized, it is preferable that the excitation lasers and the picosecond pulses are

co-circularly polarized. In this way, they can all be rejected by a polarizer after the

sample in order to prevent signal saturation or damage to the single photon counter.

Due to the constant presence of the Coulomb exchange interaction, the Bloch

vector associated with the S − T0 subspace continuously precesses about the axis

defined by the singlet and |T0〉 states. Consequentially, the operation of a two-qubit

gate is only defined at the moment the system is being measured. However, if the

measurement involves only the readout of population in the eigen-basis, the result

will be less sensitive to the timing between the gate pulses and the readout pulse.

Nonetheless, care should be taken in regard to the timing so that only photons emitted

during the readout phase are registered. This can be achived by using a time-gated
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Figure 5.3: Timing diagram for the processes of initialization, gate control and read-
out of the two-qubit states. Here, the excitation lasers are configured to
initialize the system to the |T0〉 state, while the readout is intended for
the singlet state. The frequencies of the excitation lasers are similar to
the configuration shown Fig. 3.11.

single photon counter or a detector with a good timing resolution. Based on the

lineshapes obtained in CW absorption measurements, an excited state spontaneous

decay rate of about 500 MHz is inferred, as given in Appendix E. Therefore, a spin

readout time of about 2 ns is recommended. As mentioned in the previous section, a

much longer readout time may be used if one properly takes into account the effect

of optical pumping.

Finally, from Chapter 4, we have seen that the hyperfine coupling between the

electron spins and the nuclear spin ensemble can cause errors during the process of

gate control. This is because one part of the Hamiltonian for the hyperfine cou-

pling can be written in terms of an effective magnetic field arising from a non-zero

nuclear spin polarization. The presence of this Overhauser field alters the preces-

sion frequency of the system about the quantization axis and may result in incorrect

gate operations. Furthermore, the Overhauser field shifts the energy levels and com-

plicates the processes that rely on careful detunings of the excitation lasers, e. g.,

initialization to the |T0〉 state. Hence, it is desirable that the Overhauser field remains

constant throughout the entire length of two-qubit gate demonstration. Therefore, it

is important to interrupt the experiment at a regular interval to perform nuclear spin

locking. Fortunately, it is likely that the lifetime of the nuclear spin polarization is

very long, in the order of seconds, as observed in single QDs. The frequency of the

interruption should be low enough that it can be executed between the acquisitions

of each data point.
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5.5 Conclusion

This chapter brings together many aspects of two-electron configuration in a QDM

introduced earlier in an effort to show that the realization of a universal two-qubit gate

is feasible. A large portion of this chapter is devoted to the theoretical groundwork

for single spin rotations via pulsed Raman transitions. This, along with the inherent

Coulomb exchange interaction, forms the basis for the universality of two-qubit op-

erations in a QDM, thereby satisfying the DiVincenzo criterion requiring a universal

set of gates. The development of multi-laser optical pumping technique for spin ini-

tialization and the observation of long spin decoherence time reported in Chapter 3

and 4, respectively, fulfill yet two more DiVincenzo criteria. The question concerning

the measurement of individual quantum states is addressed in § 5.3. However, the

procedure developed therein is yet to be demonstrated. If it is experimentally proven

to be viable, we might then be able claim that the all five DiVincenzo criteria for a

two qubit processor is fulfilled in a QDM.
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CHAPTER VI

Summary and Future Directions

A large portion of this thesis is devoted to the theoretical descriptions of the QDM

and, in particular, the two-electron configuration. The most important result is the

eight-level system shown in Fig. 3.6. Based on which, a number of experiments

are proposed and some of them have been demonstrated. These, along with other

important findings, are summarized below.

6.1 Summary

Based on the simple energy band diagram of the QDM and by using the single-

band-effective-mass model, the energy levels of an electron confined in a QDM can

be calculated. When the energy levels are plotted with respect to applied bias, it

is shown that they avoid crossing each other. This anti-crossing signifies coupling

between the two QDs. With the addition of another electron, the QDM is now in the

two-electron configuration. The Coulomb interaction between the two electrons not

only shifts the energy levels but also gives rise to Heisenberg exchange interaction.

As a result, the eigenstates of the two-electron configuration are given by the singlet

and triplet states. The energy levels and the eigenstates can be determined by simply

adding the Coulomb terms into the existing Hamiltonian. In a similar manner, the

eigenstates of the X 2− configuration can also be found. Calculations showed that

radiative decay from the X 2− states to the two-electron states produces a striking

“X-pattern”. This becomes the indicator of the two-electron configuration in the

optical studies of QDMs.

For the demonstration of a two-qubit gate, it is advantageous to operate near the

“sweet spot” in voltage bias. At this location, the energy levels of the two-electron

states consist of the singlet state and the three-fold degenerate triplets. The optical

excited states, however, behave as if the QDs are isolated, where an electron lies in
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the bottom QD while a trion is formed in the top QD. Due to the energy splitting

between the singlet and triplet manifolds, optical pumping occurs at zero magnetic

field. This serves as another indicator of the two-electron configuration. In a nonzero

magnetic field in Voigt geometry, the degeneracy of the triplet states and of the optical

excited states are lifted. The result, shown in Fig. 3.6, is an eight-level system with

12 optical transitions. Due to the degeneracy in transition frequencies, only a total of

8 distinct resonant frequencies are resolved. The eight-level model is experimentally

verified by the fan diagram shown in Fig. 3.7.

In Voigt geometry, initialization of the spin state can be accomplished in the same

manner as in single QDs. However, more than one pump laser is needed here. By

using two pump lasers in various configurations, initialization to the singlet, |T+〉 and

|T−〉 states has been demonstrated with initialization fidelities greater than 90 % .

Notably, the multi-laser optical spin preparation technique used here is akin to the

laser cooling process. For the case of the singlet state initialization, a spin temperature

of 0.24 K is achieved, a remarkable decrease from the operating temperature of 6 K.

The main drawback of the dual-laser optical pumping scheme lies in the fact that

it cannot initialize the system to the |T0〉 state due to the degeneracy in transition

frequencies. Nonetheless, it is theoretically shown that initialization to the |T0〉 state

is possible with the application of four pump lasers. This four-laser optical spin

preparation technique relies on the coherence of the spin state. From the absorption

lineshapes observed, however, the coherence of the spin states appears to be affected

by nuclear spim fluctuations of the underlying lattice. In the triplet manifold, this

situation is excerbated by the process of dynamic nuclear spin polarization (DNSP).

Further studies in the absorption lineshapes reveal that DNSP is largely caused

by the electron spins. This is corroborated by the fact that when the pump lasers

are arranged in a configuration that induces coherent population trapping (CPT), a

dark-state lineshape is recovered in the absorption profile of the weak probe laser.

From the “DNSP-free” dark-state lineshapes, long spin coherence of about 1 µs can

be extracted by fitting the lineshapes using the eight-level master equations. Similar

analysis of the lineshapes associated with singlet transitions showed that the effects

of nuclear spin fluctuations can be treated in the same way as spectral wandering.

Furthermore, by holding a constant nonzero population in either the |T+〉 or the |T−〉
state via CPT, a narrowing in the Overhauser field distribution was observed. The

significance of these results lies in the realization that the nuclear spin polarization in

both QDs are stabilized while the optical excitation involves only the top QD. This

demonstrates the effiect of non-local nuclear spin locking.
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A theoretical study of the eight-level Hamiltonian showed that under pulsed ex-

citation, detuned Raman transitions result in adiabatic elimination of the optical

excited states and subsequently, single spin rotations of the electron confined in the

top QD. This result has been verified in a recent study by Kim et al.[7]. Theoreti-

cally, single spin rotations and the Coulomb exchange interaction jointly constitute

a universal two-qubit gate. The experimental demonstration of the two-qubit gate

calls for a series of independently attenuated picosecond pulses which, according to

theoretical calculations, is feasible in laboratory. One remaining component required

for the experimental realization of a universal two-qubit gate is the readout of the spin

states. This is also addressed theoretically, which showed that independent measure-

ment of the populations of all four spin eigenstates is possible, given that frequency

resolved single photon counting of spontaneous emission is used.

6.2 Future directions

Among numerous lines of research in QDMs, the most important task at hand

is the demonstration of a universal two qubit gate. To achieve this goal, several

components critical for the task need to be in place. Firstly, a robust methodology

for spin readout needs to be established, of which a potentially feasible approach is

discussed in § 5.3. The demonstration of this capability is crucial not only because

it is an important element in the realization of gate operations, but also due to its

use in characterizing the performance of other critical parts of the experiment. For

example, it can be used to determine the initialization fidelity for the case of the

|T0〉 states, given that measuring the population of the |T0〉 state independently is

impossible with probe absorption.

Secondly, the initialization to the |T0〉 state via coherent optical pumping as out-

lined in § 3.4 is also critical since it is necessary for the construction of the truth

table. On the surface, this might seem straightforward, however, since the nature

of the coupling between a spin-1 |T0〉 state and the nuclear spins is still unknown,

complications might arise. Finally, a protocol for nuclear spin locking during the

course of experiment needs to be developed so that interpretations of the results are

not obscured by the effects of DNSP.

Beyond the confines of quantum gates, the mechanisms of various couplings be-

tween the QDM and its surroundings, such as the DNSP, are yet to be elucidated.

It is well known that the decoherence of an electron spin is largely induced by the

coupling between the electron and its nuclear environment. Other known mechanisms
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of decoherence include charge fluctuations in the vicinity of the QDs[7] and spin-orbit

coupling in the form of Dzyaloshinski-Moriya interaction[100, 101]. Although the

causes of spin decoherence is dominated by nuclear spin fluctuations, with a success-

ful implementation of nuclear spin locking and a subsequent suppression of nuclear

spin fluctuations, other sources of decoherence might surface. On the one hand, the

understanding of these physical processes may guide us in improving the robustness of

the quantum gates. On the other hand, it may be exploited for potential applications

such as in quantum memory using nuclear spin ensembles[102].

It is important to keep in mind that despite the lengthy discussion presented, the

scope of this thesis lies almost entirely within the two-electron configuration. The

most important aspect of QDMs is that they provide us a variety of systems thanks

to the existence of multiple charge configurations. Each of these configurations, ow-

ing to its uniqueness, gives rise to particular behaviors. One example is given by the

“W-system[65]” arising from the anisotropic exchange (Dzyaloshinskii-Moriya) inter-

action in the single-electron or single-hole configuration. The presence of two “cycling

transitions” in the outer arms of the W-system enables non-destructive readout of the

electron spin state, while the middle Λ-system allows spin rotation via pulsed Raman

transition. Besides being an integral part of quantum error correction, a cycling

transition provides high measurement sensitivity that makes single shot readout pos-

sible. This feature is highly desirable in the implementations of protocols involving

distant entanglement of spin qubits. In addition, a scalable architecture for quantum

computation using W-systems has recently been proposed[27]. Therefore, a detailed

experimental study of the W-system will be valuable for applications in quantum

computation and communication.

Aside from the QDMs themselves, the integration of QDMs into photonic and elec-

tronic devices has also become an active area of research. In one recent study, QDMs

have been integrated into photonic crystal cavities from which cavity-assisted Raman

scattering and Purcell enhancement of inter-QD transitions have been observed[103].

Since the inter-QD transitions can be tuned over a wide spectral range by changing

the applied bias, this system has the potential to serve as a frequency tunable sin-

gle photon source. In another study, QDMs are embedded inside a fast field-effect

device which is in turn encapsulated within a micro planar cavity[68]. This allows

fast switching between intra-QD and inter-QD transitions and subsequently enables

on-demand storage and retrieval of single photons. Evidently, the study of integrated

QDM devices centers around controlling the interface between the QDMs and the

outside world. Given the fact that the usefullness of a quantum gate largely relies on
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the effectiveness of its communication with the outside world, the integration of two-

qubit operations with the additional degree of freedom provided by optical cavities

seems to be another sensible area of study in the future.

90



APPENDICES

91



APPENDIX A

Comparison between Molecular Orbital Theory

and Exact Solution in QDMs

The Molecular Orbital Theory (MOT) has been widely used in finding electronic

wavefunctions of simple molecules, and is particularly successful in cases of diatomic

molecules. In this appendix, the procedure outlined in Ref. [104] is applied to QDMs.

The resulting eigen-energies are compared to exact solutions obtained from numeri-

cally solving the Schrödinger equation for a double-QD potential.

The potential function V (r) used in the following analysis consists of QD poten-

tials V1 (r) and V2 (r) associated with QDs 1 and 2 respectively, and a background

Vf (z) induced by a constant electric field in z -direction (See Fig. A.1). The origin of

this electric field is discussed in the main text.
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Figure A.1: Potential, V (r), of the double-QD in z -direction

Let ϕ1,i (r) and ϕ2,j (r) be the electronic eigenfunctions associated with single-QDs
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1 and 2 in isolation, i. e.[
p̂2

2m∗e
+ Vf (z) + V1 (r)

]
ϕ1,i (r) = E1,iϕ1,i (r) , and

[
p̂2

2m∗e
+ Vf (z) + V2 (r)

]
ϕ2,j (r) = E2,jϕ2,j (r)

Suppose that the double-QD wavefunction, Ψ (r), can be written as a linear combi-

nation of single-QD states, we have

Ψ =
∑
k,i

ck,i |k, i〉 , where k = 1, 2 and i = 1, 2, 3, . . . (A.1)

Here, Dirac notation (|1, i〉 ≡ ϕ1,i and |2, j〉 ≡ ϕ2,j ) is used. Note that the basis set

{|k, i〉} is over-complete since for k 6= l, 〈l, j|k, i〉 6= 0 in general. By substituting Eq.

A.1 into the Schrödinger equation for the double-QD potential, we get(
p̂2

2m∗e
+ Vf + V1 + V2

)∑
k,i

ck,i |k, i〉 = E
∑
k,i

ck,i |k, i〉 (A.2)

After multiplying Eq. A.2 from the left by the bra 〈l, j|, we obtain the secular equation

∑
k,i

(
〈l, j| p̂2

2m∗e
+ Vf + V1 + V2 − E |k, i〉

)
ck,i = 0 (A.3)

One can rewrite Eq. A.3 in matrix form simply by using contracted index n and a

map: {k, i} 7→ {n}. Eq. A.3 then becomes∑
n

(Hmn − ESmn) cn = 0

where Hmn = 〈m| p̂2

2m∗e
+ Vf + V1 + V2 |n〉 is the matrix elements for the double-

QD Hamiltonian and Smn = 〈m|n〉 is the overlap integral. Non-trivial solutions for

the expansion coefficients cn exist only if the secular determinant vanishes, i. e.,

det (Hmn − ESmn) = 0. As a simple illustration of how one can proceed from here,

assume that QDM wavefunctions can be accurately simulated by superpositions of

the ground states of individual QDs. In this case,

Ψ = c1,1 |1, 1〉+ c2,1 |2, 1〉 (A.4)
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Eq. A.3 is then reduced to

∑
k

(
〈l| p̂2

2m∗e
+ Vf + V1 + V2 − E |k〉

)
ck = 0 (A.5)

Here, indices i, j = 1 are dropped. Also,

〈1| p̂2

2m∗e
+ Vf + V1 + V2 |1〉 = 〈1| p̂2

2m∗e
+ Vf + V1 |1〉+ 〈1|V2 |1〉 = E1 + 〈1|V2 |1〉

〈1| p̂2

2m∗e
+ Vf + V1 + V2 |2〉 = 〈1| p̂2

2m∗e
+ Vf + V2 |2〉+ 〈1|V1 |2〉 = E2S12 + 〈1|V1 |2〉

Similarly, 〈2| p̂2

2m∗e
+ Vf + V1 + V2 |2〉 = E2 + 〈2|V1 |2〉 and 〈2| p̂2

2m∗e
+ Vf + V1 + V2 |1〉 =

E1S21 + 〈2|V2 |1〉. In matrix form, Eq. A.5 becomes[
α11 − E β12 − ES
β21 − ES∗ α22 − E

][
c1

c2

]
= 0 (A.6)

where S = S12, α11 = E1 + 〈1|V2 |1〉, α22 = E2 + 〈2|V1 |2〉, β12 = E2S + 〈1|V1 |2〉
and β21 = E1S

∗ + 〈2|V2 |1〉. The off-diagonal term β12 = 〈1| p̂2

2m∗e
+ Vf + V1 + V2 |2〉 =

〈2| p̂2

2m∗e
+ Vf + V1 + V2 |1〉∗ = E1 〈2|1〉∗ + 〈2|V2 |1〉∗ = β∗21 is known as the tunneling

coefficient. By setting the secular determinant of Eq. A.6 to zero and solving for E,
we obtain the following:

E± =
1

2
(

1− |S|2
)[α11 + α22 − β12S∗ − β21S

(A.7)

∓
√

(α11 − α22)
2

+ (β12S∗ − β21S)
2

+ 2 (α11S − β12) (α22S∗ − β21) + 2 (α11S∗ − β21) (α22S − β12)

]
In the analyses of the energy level structure of QDMs presented in other literatures,

it is often assumed that the explicit overlap integral, S, in Eq. A.6 is independent of

the applied sample bias. In this limit, one obtains a simplified Schrödinger equation

for QDMs[35, 38, 40, 42, 10]:[
α11 st

s∗t α22

][
c1

c2

]
≡ Ĥ |Ψ〉 = E |Ψ〉 (A.8)

where st = β12 − ĒS and Ē = 1

2(1−|S|2)
(α11 + α22 − β12S

∗ − β21S), evaluated at the

“tunneling resonance”, i. e., when E1 = E2.

To see how well the result from the MOT approximates the energy levels of a
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QDM, consider a simplified case of two identical QDs separated by a verticle distance

d, and let Vf = 0. By symmetry, S is real and E1 = E2. Also, α11 = α22 = α and

β12 = β21 = β. The eigen-energies then become:

E± =
α± β
1± S

The corresponding normalized wavefunctions are

|Ψ+〉 =
1√

2 (1 + S)
(|1〉+ |2〉) for E+ =

α + β

1 + S
and

|Ψ−〉 =
1√

2 (1− S)
(|1〉 − |2〉) for E− =

α− β
1− S

The approximation of QDM wavefunctions using linear combinations of single-QD

states is justified by looking at the exact solutions shown in Fig. A.2. The ground

state of the QDM shows nonzero electron probability density everywhere within the

inter-QD region. From the point of view of the MOT, this is the result of constructive

interference between states |1〉 and |2〉. Using the terminology in molecular physics,

this is known as the bonding state. On the other hand, the first excited state of

the QDM shows a node where the probability density vanishes on the plane midway

between QDs. This arises from destructive interference between states |1〉 and |2〉,
and is called the anti-bonding state.

The eigen-energies as a function of inter-QD separation, d, are shown in Fig.

A.3(a). The energy separation between the ground state and the first excited state

widens with decreasing d due to increasing tunneling coefficient, β. At large d, the

MOT is in good agreement with the exact solution. However, for d below 6 nm, sig-

nificant deviation from the exact solution is observed. In this region, the assumption

of Eq. A.4 becomes invalid and contribution from excited states of individual QDs

cannot be ignored. This also imposes a limit on when Eq. A.8 is applicable.

When a nonzero electric field, F, is present, or when the QDs are non-identical,

E1 6= E2 and single-QD wavefunctions of both QDs must be found separately before

one can use the MOT. However, for the former case with d large enough such that

Eq. A.7 applies, we can write E2 ≈ E1 + ed′F , assuming that the electric field is

zero at the position of QD 1. Here e denotes the magnitude of elementary charge

and d′ the center-to-center distance between QDs. The resulting eigen-energies as a

function of F are shown in Fig. A.3(b) for d = 9 nm. The energy levels consist of

a field-independent horizontal line corresponding to the probability density centered
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Figure A.2: Probability densities, |Ψ|2, for (a) ground state and (b) first excited state
of QDM. The QDs are in the shape of truncated cones with a 3 nm height
and a 20 nm base diameter, with a 6 nm inter-QD separation. Wavefunc-
tions are numerically calculated by solving the Schrödinger equation for
the double-QD potential using Finite-Difference-Time-Domain(FDTD)
method.

around QD 1, and a field-dependent line with a slope of ed′ corresponding to the

probability density centered around QD 2. An anti-crossing appears at the supposed

intersection of these two lines at F = 0. This is where hybridization of individual QD

wavefunctions occurs and is the tell-tale of molecular behavior. A simple model for

this energy level structure is given by[38, 40, 42, 9, 10]:

Ĥ =

[
α11 st

s∗t α22 + ed′F

]
(A.9)

It is to be reminded that, as is discussed above, d must be sufficiently large to justify

the use of this model, or, quantitatively, the condition S � 1 must be satisfied.

In summary, the MOT presents an alternative way of calculating envelop wave-

functions of QDM and is particularly useful for large inter-QD separation. However,

when d is small, multiple single-QD wavefunctions need to be found beforehand. This

is further complicated by the presence of asymmetry arises from the difference in QD

sizes and the electric field. Nontheless, the choice of exact solution (“brute-force”

method) or the MOT approximation is dependent on the calculation technique. For

Finite-Difference-Time-Domain (FDTD) method (see Appendix B), the time needed

to obtain the ground state solution is inversely proportional to the energy difference

between the ground state and the first excited state. Therefore, for large d where
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Figure A.3: Eigen-energies of the QDM from exact solutions (solid lines) and the
MOT (dashed lines) as a function of (a) inter-QD separation, d, at Vf = 0
and (b) electric field, F, in z -direction at a fixed d = 9 nm

this energy difference is small, it is disadvantageous to use the “brute-force” method,

since reasonable approximation can be obtained via the MOT. For small d, on the

other hand, the brute-force method is straightforward, fast and accurate, making the

MOT unfavorable in this regime.
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APPENDIX B

Solving Schrödinger Equations With FDTD

Method

This appendix reiterates the Finite-Difference-Time-Domain (FDTD) method of

solving Schrödinger equations in coordinate representation as presented in Ref. [105].

A simple analysis of the rate of convergence towards the ground state solution is

included at the end of this appendix.

We begin with the Schrödinger equation in coordinate representation:

i~
∂

∂t
Ψ (r, t) =

[
− ~2

2m
∇2 + V (r)

]
Ψ (r, t)

After making the substitution it = τ (Wick rotation), we have

∂

∂τ
Ψ (r, τ) =

[
~

2m
∇2 − V~ (r)

]
Ψ (r, τ) , where V~ (r) =

V (r)

~
(B.1)

Note that this equation has the same form as the heat equation. Therefore, tech-

niques developed for solving the heat equation can be directly applied to solve the

Schrödinger equation. A common strategy is to begin by using a guess solution Ψ′ (r).

The functional form of Ψ′ (r) is of little importance, but by completeness it can be rep-

resented as a linear combination of the basis states of corresponding time-independent

Schrödinger equation, i. e.

Ψ′ (r) =
∞∑
n=0

anΦn (r) , where

[
− ~2

2m
∇2 + V (r)

]
Φn (r) = EnΦn (r) , and
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Ψ′ (r, t) =
∞∑
n=0

anΦn (r) e−iEnt/~

Applying the same Wick rotation to Ψ′ (r, t), we obtain

Ψ′ (r, τ) =
∞∑
n=0

anΦn (r) e−Enτ/~ (B.2)

If En is arranged such that E0 < E1 < E2 < · · · , for a sufficiently large τ , the

expansion in Eq. B.2 is dominated by the n = 0 term, i. e.

lim
large τ

Ψ′ (r, τ) ≈ a0Φ0 (r) e−E0τ/~

Φ0 (r) is found by simply normalizing Ψ′ (r, τ) at this τ . Eq. B.1 now provides an

iterative method to arrive at Φ0 (r), starting with a guess solution Ψ′ (r). To obtain

the wavefunction of the first excited state, Φ1 (r), one simply records the intermediate

state Ψ′ (r, τ −∆τ) and estimates Φ1 (r) from the expression:

NΦ1 (r) ≈ Ψ′ (r, τ −∆τ)− Φ0 (r)

ˆ
d3r Φ∗0 (r) Ψ′ (r, τ −∆τ)

where N is a normalization constant. This bears resemblance to the Gram-Schmidt

process and wavefunctions of higher excited states can be estimated in similar fashion.

To apply the idea discussed above using the numerical method, one needs to

construct the potential function V~ (r) over a certain grid of points in space. The

choice of grid pattern is a matter of convenience and here rectangular grid is used for

its simplicity. The derivatives of the wavefunction in space can then be approximated

by finite differences :

∂

∂xi
Ψ′ (r, τ) ≈ Ψ′ (r + ∆~xi, τ)−Ψ′ (r, τ)

|∆~xi|
and

∂2

∂x2
i

Ψ′ (r, τ) ≈ Ψ′ (r + ∆~xi, τ)− 2Ψ′ (r, τ) + Ψ′ (r−∆~xi, τ)

|∆~xi|2

These expressions are then substituted into Eq. B.1 to estimate the “time evolution”

of Ψ′ (r, τ) (hence the term time domain) iteratively. For better numerical stability,

we take

V~ (r) Ψ′ (r, τ) ≈ 1

2
V~ (r) [Ψ′ (r, τ + ∆τ) + Ψ′ (r, τ)]
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Using the following definitions:

∂

∂τ
Ψ′ (r, τ) ≈ Ψ′ (r, τ + ∆τ)−Ψ′ (r, τ)

∆τ

Ψ̂ =

 Ψ′ (x+ ∆x, y, z, τ) Ψ′ (x, y, z, τ) Ψ′ (x−∆x, y, z, τ)

Ψ′ (x, y + ∆y, z, τ) Ψ′ (x, y, z, τ) Ψ′ (x, y −∆y, z, τ)

Ψ′ (x, y, z + ∆z, τ) Ψ′ (x, y, z, τ) Ψ′ (x, y, z −∆z, τ)

 and

D1 =
~

2m

 1

−2

1

 , and D2 =

 (∆x)−2

(∆y)−2

(∆z)−2

 ,

we can rewrite Eq. B.1 as

Ψ′ (x, y, z, τ + ∆τ) =
1

A
∆τ
(
Ψ̂D1

)
·D2 +

B

A
Ψ′ (x, y, z, τ) (B.3)

where A = 1+ ∆τ
2
V~ (x, y, z) and B = 1−∆τ

2
V~ (x, y, z). From Von Neumann numerical

stability analysis, to ensure convergence to the ground state, Φ0 (r), the upper bound

of ∆τ is given by

∆τ ≤ 1

3

m

~
min

(
∆x2,∆y2,∆z2

)
To find the minimum number of iterations needed, assume that Ψ′ (r, τ = 0) ≈

a0Φ0 (r) + a1Φ1 (r) and that |a0| ≈ |a1|. From Eq. B.2, we have

Ψ′ (r, τ) ∝
[
Φ0 (r) + Φ1 (r) e−∆Eτ/~] e−E0τ/~ where ∆E = E1 − E0

The rate of convergence is then e−∆E∆τ/~. Let Φ
′
0 (r) = NΨ′ (r, τ) where N is a

normalization constant and define the error, ε, by

ε =

√ˆ
dr
∣∣Φ′0 (r)− Φ0 (r)

∣∣2
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If we wish to achieve an error of less than one percent, then

ε =

√ˆ
dr
∣∣Φ′0 (r)− Φ0 (r)

∣∣2
=

√ˆ
dr

∣∣∣∣Φ0 (r) + e−∆Eτ/~Φ1 (r)√
1 + e−2∆Eτ/~

− Φ0 (r)

∣∣∣∣2
≈

√ˆ
dr |e−∆Eτ/~Φ1 (r)|2 = e−∆Eτ/~ < 0.01

Therefore, τ > 4.61 ~
∆E

and the minimum number of iterations required, n, is given

by

n =
τ

∆τ
> 13.82

~2

m∆E

1

min (∆x2,∆y2,∆z2)

As mentioned in Appendix A, here it is shown that the time required to obtain

the ground state wavefunction using the FTDT method is inversely proportional to

the energy difference, ∆E. Other parameters affecting the calculation speed of this

method include spatial step sizes (∆xi) and the initial guess solution, Ψ′ (r).
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APPENDIX C

Basic Fermionic Algebra

This appendix reviews some basic algebraic manipulations involving fermionic

operators. To begin, let us define the fermionic creation operator, â†, as follows:

â† (α) |∅〉 = |α〉 ; â† (β) |∅〉 = |β〉

Here |∅〉 ≡ |Vac〉 denotes the vacuum state while |α〉 and |β〉 correspond to single

particle quantum states for electron or hole. By a loose interpretation of the definition

above, the creation operator with an argument of α generates a particle occupying

state |α〉 out of the vacuum state. The adjoint of the creation operator, given by(
â†
)†

= â, is known as the annihilation operator. Fermionic operators obey the

anti-commutation relations:

{
â† (α) , â† (β)

}
= {â (α) , â (β)} = 0 and

{
â (α) , â† (β)

}
= δα,β (C.1)

where δα,β is the Kronecker delta.

Setting α = β, the anti-commutation relations above imply â† (α) â† (α) = â (α) â (α)

= 0. Consequentially, the following is true for the number operator defined as

n̂ (α) ≡ â† (α) â (α):

n̂ (α) [1− n̂ (α)] = â† (α) â (α) â (α) â† (α) = 0

using 1− n̂ (α) = â (α) â† (α) from (C.1). This suggests that the only allowed eigen-

values of n̂ are 0 or 1. Let us define the corresponding eigenstates as |0〉α and |1〉α, i.
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e., n̂ (α) |1〉α = |1〉α and n̂ (α) |0〉α = 0 or [1− n̂ (α)] |0〉α = |0〉α. We have

â† (α) |1〉α = â† (α) n̂ (α) |1〉α = â† (α) â† (α) â (α) = 0 (C.2)

â (α) |0〉α = â (α) [1− n̂ (α)] |0〉α = â (α) â (α) â† (α) = 0 (C.3)

Also,

[n̂ (α)− 0] [â (α) |1〉α] = â† (α) â (α) â (α) |1〉α = 0, and

[n̂ (α)− 1]
[
â† (α) |0〉α

]
= −â (α) â† (α) â† (α) |0〉α = 0

This implies

â (α) |1〉α = c |0〉α , and

â† (α) |0〉α = c′ |1〉α

where c and c′ are some constants. After operating â† (α) and â (α) on both sides of

the first and second equations above, respectively, we have

câ† (α) |0〉α = cc′ |1〉α = â† (α) â (α) |1〉α = n̂ (α) |1〉α = |1〉α (C.4)

and

c′â (α) |1〉α = cc′ |0〉α = â (α) â† (α) |0〉α = [1− n̂ (α)] |0〉α = |0〉α (C.5)

In both cases, we have cc′ = 1 and for convenience, let c = c′ = 1. This leads us to a

closed, self-consistent algebraic structure for fermionic operators as shown below.

For a single particle state, take |0〉α = |∅〉 and |1〉α = |α〉. Combining Eq. (C.2),

(C.3), (C.4) and (C.5), the operations of fermionic operators â† and â are summarized

as follows:
â† (α) |∅〉 = |α〉
â (α) |α〉 = |∅〉
â† (α) |α〉 = 0

â (α) |∅〉 = 0

(C.6)

Note that the operations of â† (α) and â(α) are closed in the Hilbert space spanned

by the vacuum state, |∅〉, and the single “fermionic mode”, |α〉.
For two orthogonal wavefunctions, Ψα (r) and Ψβ (r), corresponding to fermionic

modes |α〉 and |β〉 respectively, we can define a two-particle state, |α, β〉, as follows:

|α, β〉 = â† (β) â† (α) |∅〉 = â† (β) |α〉 (C.7)
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Equivalently, in coordinate representation, we write

|α, β〉 ≡ Ψα,β (r1, r2) = ÂΨα (r1) Ψβ (r2)

= 1√
2

∣∣∣∣∣ Ψα (r1) Ψβ (r1)

Ψα (r2) Ψβ (r2)

∣∣∣∣∣
= 1√

2
[Ψα (r1) Ψβ (r2)−Ψβ (r1) Ψα (r2)]

= 1√
2

(|α〉1 ⊗ |β〉2 − |β〉1 ⊗ |α〉2) ≡ 1√
2

(|α〉 |β〉 − |β〉 |α〉)
(C.8)

Here operator Â is known as the anti-symmetrizer. Eq. (C.8) shows multiple ways

of representing the two-particle state of fermions, also called the “H2 block of the

fermionic Fock space, F”. In the abbreviated notation of the last equation, the num-

ber indices are dropped since the identification of particles is understood from the

ordering of the states. For an arbitrary number of electrons, n, the coordinate repre-

sentation of the Hn block of fermionic Fock space is given by the Slater determinant:

Ψα1,α2,··· ,αn (r1, r2, · · · , rn) = ÂΨα1 (r1) Ψα2 (r2) · · ·Ψαn (rn)

= 1√
n!

∣∣∣∣∣∣∣∣∣∣
Ψα1 (r1) Ψα2 (r1) · · · Ψαn (r1)

Ψα1 (r2) Ψα2 (r2) · · · Ψαn (r2)
...

...
. . .

...

Ψα1 (rn) Ψα2 (rn) · · · Ψαn (rn)

∣∣∣∣∣∣∣∣∣∣
Readers should take note of the order by which fermionic modes α and β appear

in Eq. (C.7) and (C.8) due to the fact that interchanging α and β gives rise to a

negative sign. Let us consider the following example: from the anti-commutation

relations, Eq. (C.1), and Eq. (C.6), we have

â (α) â (β) |α, β〉 = â (α) â (β) â† (β) â† (α) |∅〉
= −â (β) â (α) â† (β) â† (α) |∅〉
= â (β) â† (β) â (α) â† (α) |∅〉 = |∅〉

However,

â (β) â (α) |α, β〉 = â (β) â (α) â† (β) â† (α) |∅〉
= −â (β) â† (β) â (α) â† (α) |∅〉 = − |∅〉

Consequentially,

â (α) â (β) |α, β〉 = −â (β) â (α) |α, β〉 = â (β) â (α) |β, α〉 = |∅〉
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This implies |β, α〉 = − |α, β〉, consistent with Eq. (C.8) and the anti-commutation

relations.

For an n-particle state in general, we have
∣∣α′1, α′2, · · · , α′n〉 = (−1)p |α1, α2, · · · , αn〉

where p is the order of permutation. This is easily seen using the definition

|α1, α2, · · · , αn〉 = â† (αn) · · · â† (α2) â† (α1) |∅〉

and the commutation relations. For n =3 and 4, following identities can be derived

easily:

â (γ) |α, β, γ〉 = |α, β〉
â (β) |α, β, γ〉 = − |α, γ〉
â (α) |α, β, γ〉 = |β, γ〉

â (δ) |α, β, γ, δ〉 = |α, β, γ〉
â (γ) |α, β, γ, δ〉 = − |α, β, δ〉
â (β) |α, β, γ, δ〉 = |α, γ, δ〉
â (α) |α, β, γ, δ〉 = − |β, γ, δ〉
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APPENDIX D

Schrieffer-Wolff Transformation in DNSP

Let us consider a Hamiltonian H = H0+V consisting of the unperturbed term, H0,

and the perturbation term, V . The processs of Schrieffer-Wolff transformation begins

with a unitary transformation H̃ = eSHe−S by a time-independent operator S . A

suitable choice of S then replaces V by the higher order terms of the perturbation,

such that H̃ = H0+Ṽ (2)+Ṽ (3)+· · · It is easy to show that in order to satisfy unitarity

of eS , S must be an anti-Hermitian operator, i. e., S † = −S . To understand the

relevance of Schrieffer-Wolff transformation in DNSP, let us consider an example using

the Hamiltonian

H = HZee
e +HZee

n +HFC
e−n (D.1)

=
geµB
~

Ŝ ·B− µN
~
∑
i

gn,iÎi ·B +
∑
i

Ae,iŜ · Îi

The first and second terms are the Zeeman interaction for electron and nuclei, respec-
tively, while the third is known as the Fermi-contact hyperfine interaction, as given in
Chapter 4. Taking the x-direction as the quantization axis, let us use the definition
Ŝ± = Ŝz ∓ iŜy, Îi,± = Îi,z ∓ iÎi,y and B± = Bz ∓ iBy to rewrite Eq. (D.1) as

H =
geµB

~

[
ŜxBx +

1

2

(
Ŝ+B− + Ŝ−B+

)]
− µN

~
∑
i

gn,i

[
Îi,xBx +

1

2

(
Îi,+B− + Îi,−B+

)]
+
∑
i

Ae,i

[
ŜxÎi,x +

1

2

(
Ŝ+Îi,− + Ŝ−Îi,+

)]
= H0 +

1

2

∑
i

Ae,i

(
Ŝ+Îi,− + Ŝ−Îi,+

)
(D.2)
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where in the last equation, we let

H0 = HZee
e +HZee

n +
∑
i

Ae,iŜxÎi,x

Although it is not obvious in Eq. (D.2), the electron-nuclear spin flip-flop term

given by H ′ = 1
2

∑
iAe,i

(
Ŝ+Îi,− + Ŝ−Îi,+

)
gives rise to nuclear spin diffusion across

the QD, when mediated by the electron spin. To see this, consider the product state

|↑e〉 · · · |↓ni 〉
∣∣↑nj 〉 · · · where the superscripts e and n indicate electron and nuclear spins,

respectively. Successive operations of H ′ lead to the sequence

|↑e〉 · · · |↓ni 〉
∣∣↑nj 〉 · · · H′

−−− → |↓e〉 · · · |↑ni 〉
∣∣↑nj 〉 · · · H′

−−− → |↑e〉 · · · |↑ni 〉
∣∣↓nj 〉

implying that the spin states of i-th and j-th nucleus are swapped via an intermediate

state |↓e〉 · · · |↑ni 〉
∣∣↑nj 〉 · · · This electron mediated nuclear spin diffusion process can be

cast in a more explicit algebraic form following Schrieffer-Wolff transformation.

To begin, note that H̃ = eSHe−S can be expanded into a power series using the

Baker-Campbell-Hausdorff formula:

H̃ = eSHe−S = H + [S , H] +
1

2!
[S , [S , H]] +

1

3!
[S , [S , [S , H]]] + · · · (D.3)

If we let

S =
1

Bx

∑
i

ci

(
Ŝ+Îi,− − Ŝ−Îi,+

)
, ci =

~Ae,i
2 (µBge + µNgn,i)

then it can be shown that

[
S , HZee

e +HZee
n

]
= HFC

⊥ −H ′

where

HFC
⊥ =

∑
i

ci

[
µBgeŜx

(
B−
Bx

Îi,+ +
B+

Bx

Îi,−

)
+ µNgn,i

(
B−
Bx

Ŝ+ +
B+

Bx

Ŝ−

)
Îi,x

]

Substituting this into Eq. (D.3), we arrive at

H̃ = H0 +HFC
⊥ +

[
S ,
∑
i

Ae,iŜxÎi,x

]
+

1

2

[
S , H ′ +HFC

⊥
]

+ · · · (D.4)

by keeping only terms upto second order in Ae,i. For an applied magnetic field in
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x-direction, HFC
⊥ = 0. After expanding the commutators in Eq. (D.4), we obtain

H̃ = H0 + Ṽ (2) + · · ·

= H0 +
1

2

∑
i,j

Ae,icj
Bx

[
Ŝx

(
Îi,−Îj,+ + Îi,+Îj,−

)
+

1

2

(
Ŝ−Ŝ+Îi,−Îj,+ + Ŝ+Ŝ−Îi,+Îj,−

)]
−
∑
i,j

Ae,icj
Bx

(
Ŝ+Îi,− + Ŝ−Îi,+

)
Îj,x −

∑
i

Ae,ici
Bx

Ŝx

(
Ŝ+Îi,− + Ŝ−Îi,+

)
+ · · ·

Evidently, the first term in Ṽ (2) describes the process of electron mediated nuclear

spin diffusion. The other two terms involve the spin flip-flop between an electron and

a nucleus. In large magnetic fields, these flip-flop terms can be ignored due to energy

conservation[3].

As mentioned in Chapter 4, the addition of electric nuclear quadrupolar interaction

gives rise to the non-collinear hyperfine term. The quadrupolar interaction is given

by

HQ = −1

2

∑
αβ

Q̂αβ
∂2

∂α∂β
Ve (r) , α, β = {x, y, z}

where V e (r) is the electrostatic potential and Q̂αβ is defined as

Q̂αβ =
|Q|

I (2I − 1)

[
1

2
(IαIβ + IβIα)− δαβ

3
I (I + 1)

]
Here, |Q| = 3

´
dr
(
x2 − 1

3
r2
)
ρn (r) and ρn (r) is the nuclear charge density. Assuming

that the electric field gradient ∂2

∂α∂β
V e (r) is traceless, i. e., satisfying the Laplace’s

equation, which means that no other charge is present within the spatial extend of

the nuclear wavefunction, HQ can be written in spherical coordinates

HQ = −1

3

∑
k

Q̂
(2)
k V

(2)
k (r)
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with Q̂
(2)
k and V

(2)
k defined as

Q̂
(2)
0 =

|Q|
2I (2I − 1)

[
3Î2
x − I(I + 1)

]
Q̂

(2)
±1 = ∓

√
6 |Q|

4I (2I − 1)
Î±

(
2Îx ± 1

)
Q̂

(2)
±2 =

√
6 |Q|

4I (2I − 1)
Î2
±

V
(2)

0 =
3

2

∂2

∂x2
V e (r)

V
(2)
±1 = ∓

√
6

2

∂

∂x

(
∂

∂z
∓ i ∂

∂y

)
V e (r)

V
(2)
±2 =

√
6

4

(
∂2

∂z2
− ∂2

∂y2
∓ 2i

∂2

∂y∂z

)
V e (r)

Note that V
(2)
k is related to the spherical harmonics by

V
(2)
k = r2C(2)

k (θ, ϕ) |x→ ∂
∂z
, y→− ∂

∂y
, z→ ∂

∂x

where C(l)
k (θ, ϕ) =

√
4π

2l+1
Y

(l)
k (θ, ϕ). From above, we can see that if the electric field

gradient has only a single component along the quantization axis, the eigenstates of

the nuclear spin remain unchanged. However, when V
(2)
±1,±2 6= 0, the spin states are

coupled and the nuclear spin is no longer quantized along the x-axis.

Without loss of generality, let us take

V
(2)
i,1 = −V (2)

i,−1 = −
√

6

2
V

(2)
i,xy and V

(2)
i,0 = V

(2)
i,±2 = 0

Then

HQ =
∑
i

AQ
i V

(2)
i,xy

[
2
(
Îi,+ + Îi,−

)
Îi,x + Îi,+ − Îi,−

]
, AQ

i =
3

4

|Qi|
Ii (2Ii − 1)

For an applied magnetic field in x-direction, we have

H = HZee
e +HZee

n +HFC
e−n +HQ (D.5)

=
geµB
~

Ŝe,xBx −
µN
~
∑
i

gn,iÎi,xBx +
∑
i

Ae,i

[
ŜxÎi,x +

1

2

(
Ŝ+Îi,− + Ŝ−Îi,+

)]
+HQ

= H0 +HQ
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In the Schrieffer-Wolff transformation of Eq. (D.5) above:

H̃ = HZee
e +HZee

n +HFC
e−n +HQ

+
[
S , HZee

e

]
+
[
S , HZee

n

]
+
[
S , HFC

e−n
]

+
[
S , HQ

]
+ · · ·

if we let

S =
1

Bx

∑
i

c
′

i

[
2
(
Îi,+Îi,x − Îi,xÎi,−

)
+ Îi,+ − Îi,−

]
, c
′

i =
~AQ

i V
(2)
i,xy

µNgn,i

then
[
S , HZee

e

]
= 0 and

[
S , HZee

n

]
= −HQ. Neglecting terms higher than first order

in V
(2)
i,xy, we obtain

H̃ ≈ H0 +
[
S , HFC

e−n
]

The commutator gives

[
S , HFC

e−n
]

=
∑
i

~Ae,iAQ
i V

(2)
i,xy

µNgn,iBx

[
−2iŜxÎi,y − 4ŜxÎi,xÎi,z

+
(
Ŝ+ + Ŝ−

)(
2Î2
i,x + Îi,x − Îi,+Îi,−

)
+ Ŝ+Î

2
i,− + Ŝ−Î

2
i,+

]
in which the generic form of non-collinear hyperfine interaction, ŜxÎi,y, can be found.
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APPENDIX E

Modeling QDM-Field Interaction of the 8-Level

System

In this appendix, the process for generating the fitting lineshapes for the data

shown in Fig. 4.4, 4.5 and 4.6 in Chapter 4 is laid out using the example of the pump

configuration shown in Fig. 4.4(a). For convenience, it is reproduced below.

Figure E.1: Pump configuration for nuclear spin locking identical to that in Fig.
4.4(a). Reproduced here for convenience.

Using dipole and rotating-wave approximations, the Hamiltonian in Schrödinger
picture for the QDM-field system shown in Fig. E.1 above is given by

HS = ~



ν1 0 0 0 0 0 1√
2
χ̃1 (t) 0

0 ν2 0 0 0 χ̃3 (t) + χ̃p (t) 0 0

0 0 ν3 0 0 1√
2
χ̃2 (t) 0 1√

2
χ̃3 (t) + χ̃p (t)

0 0 0 ν4 0 0 0 χ̃2 (t)

0 0 0 0 ν5 0 0 0

0 χ̃∗3 (t) + χ̃∗p (t) 1√
2
χ̃∗2 (t) 0 0 ν6 0 0

1√
2
χ̃∗1 (t) 0 0 0 0 0 ν7 0

0 0 1√
2

(
χ̃∗3 (t) + χ̃∗p (t)

)
χ̃∗2 (t) 0 0 0 ν8
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where the matrix elements are defined as

ν1 = −2

~
|Jex| ν5 = ω0 −

µB
2~

(ge − 3gh)Bx

ν2 = −µBgeBx

~
ν6 = ω0 −

µB
2~

(ge + 3gh)Bx

ν3 = 0 ν7 = ω0 +
µB
2~

(ge + 3gh)Bx

ν4 =
µBgeBx

~
ν8 = ω0 +

µB
2~

(ge − 3gh)Bx

χ̃1 (t) =
Ω1

2
eiω1t χ̃3 (t) =

Ω3

2
eiω3t

χ̃2 (t) =
Ω2

2
eiω2t χ̃p (t) =

Ωp

2
eiωpt

Here we assume that the energy separation between any two states is much larger

than the natural linewidths of the optical transitions, so that each field drives only one

transition except where a degeneracy occurs. ω0 represents the resonance frequency

for the triplet transitions at zero magnetic field. The Rabi frequencies for the optical

fields are denoted by Ω1, Ω2, Ω3 and Ωp for Pump 1, Pump 2, Pump 3 and the probe,

respectively, and their optical frequencies by ω1, ω2, ω3 and ωp. All other parameters

are defined in § 3.3.

The presence of two fields, Pump 3 and the probe, driving the same transitions

makes the calculation of steady-state solutions nontrivial. Following the approach

outlined in Berman & Malinovsky[106], the first-order probe absorption is determined

perturbatively from a steady-state solution in which all orders in the pump intensities

are included. To reduce algebraic complexity, the Hamiltonian above is rotated into

a different basis using a diagonal unitary matrix, Û(t), with its elements given by

{e−iω1t/2, ei(ω2−ω3)t, 1, e−i(ω2−ω3)t, 1, eiω2t, eiω1t/2, eiω3t}. The tranformed Hamiltonian,
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Hf , is found using

Hf = i~
[
d

dt
Û (t)

]
Û † (t) + Û (t)HSÛ

† (t) (E.1)

= ~



ν1 + ω1
2 0 0 0 0 0

Ω∗1
2
√

2
0

0 ν2 − ω2 + ω3 0 0 0
Ω3+Ωpe−i∆t

2 0 0

0 0 ν3 0 0 Ω2

2
√

2
0

Ω3+Ωpe−i∆t

2
√

2

0 0 0 ν4 + ω2 − ω3 0 0 0 Ω2
2

0 0 0 0 ν5 0 0 0

0
Ω∗3+Ω∗pe

i∆t

2
Ω∗2

2
√

2
0 0 ν6 − ω2 0 0

Ω∗1
2
√

2
0 0 0 0 0 ν7 − ω1

2 0

0 0
Ω∗3+Ω∗pe

i∆t

2
√

2

Ω∗2
2 0 0 0 ν8 − ω3


where ∆ = ω3 − ω4. Let ρ be the 8×8 density matrix with its elements denoted by

ρij. The master equation for the time evolution of the system is given by

d

dt
ρ = − i

~
[Hf , ρ] + relaxation (E.2)

To determine the elements of the relaxation term, it is assumed that the ground state
population relaxation is negligible so that the only experimental parameters in the
relaxation term are the electron-hole recombination rate, Γr, and the electron spin
decoherence rate, Γg, where Γr � Γg is expected. Furthermore, the decoherence rates
between any two spin ground states are assumed to have the same magnitude. With
these simplifying assumptions, the relaxation term can be written explicitly as



Γr(ρ55+ρ66+ρ77+ρ88)
4

−Γgρ12 −Γgρ13 −Γgρ14 − 1
2

Γrρ15 − 1
2

Γrρ16 − 1
2

Γrρ17 − 1
2

Γrρ18

−Γgρ21
Γr(ρ55+ρ66)

2
−Γgρ23 −Γgρ24 − 1

2
Γrρ25 − 1

2
Γrρ26 − 1

2
Γrρ27 − 1

2
Γrρ28

−Γgρ31 −Γgρ32
Γr(ρ55+ρ66+ρ77+ρ88)

4
−Γgρ34 − 1

2
Γrρ35 − 1

2
Γrρ36 − 1

2
Γrρ37 − 1

2
Γrρ38

−Γgρ41 −Γgρ42 −Γgρ43
Γr(ρ77+ρ88)

2
− 1

2
Γrρ45 − 1

2
Γrρ46 − 1

2
Γrρ47 − 1

2
Γrρ48

− 1
2

Γrρ51 − 1
2

Γrρ52 − 1
2

Γrρ53 − 1
2

Γrρ54 −Γrρ55 −Γrρ56 −Γrρ57 −Γrρ58

− 1
2

Γrρ61 − 1
2

Γrρ62 − 1
2

Γrρ63 − 1
2

Γrρ64 −Γrρ65 −Γrρ66 −Γrρ67 −Γrρ68

− 1
2

Γrρ71 − 1
2

Γrρ72 − 1
2

Γrρ73 − 1
2

Γrρ74 −Γrρ75 −Γrρ76 −Γrρ77 −Γrρ78

− 1
2

Γrρ81 − 1
2

Γrρ82 − 1
2

Γrρ83 − 1
2

Γrρ84 −Γrρ85 −Γrρ86 −Γrρ87 −Γrρ88



By treating the probe laser as the perturbation, an approximate solution would

have the form

ρij = ρ
(0)
ij + ρ

(1)
ij (E.3)

where ρ
(0)
ij is the steady-state solution of the master equation with the probe Rabi

frequency, Ωp, set to zero. Let us take

ρ
(1)
ij = aij + bije

i∆t + cije
−i∆t (E.4)
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as an ansatz. Once the solution for ρ
(0)
ij is found, Eq. (E.3) and (E.4) are substituted

into the master equation, i. e., Eq. (E.2). By equating the constants and the

coefficients of e±i∆t on both sides of Eq. (E.2), a system of linear equations in terms

of aij, bij, and cij is obtained. This is then solved numerically to determine the values

of aij, bij, and cij for each probe frequency, ωp. The absorption of the probe is given

by the sum of the imaginary parts of c26 and c38. To see this, one simply goes back

to the Schrödinger picture to find that c26 and c38 are the coefficients of the probe

field, eiωpt.

To fit the measured lineshapes, the fitting parameters that need to be considered

are the Rabi frequencies and detunings of Pump 2 and Pump 3, Γr and Γg. The

calculation outlined above is repeated while one of the six parameters is varied. The

best-fit value corresponding to the least error-squares is then carried over to the

next set of calculations where another parameter is sweeped. This is whole process

is repeated until all six parameter values converge. For the two most important

parameters, Γr and Γg, it is worth taking a look at how the error-squares change

with the parameter values. Fig. E.2 below shows the error-squares of the resulting

fit when Γr and Γg are varied. In Fig. E.2(a) which corresponds to the fit for the

lineshape at ω26 as shown in Fig. 4.4(b) in Chapter 4, an enclosed region of least

error-squares is found. Here, the best fitting values for Γr and Γg can be uniquely

determined. However, in Fig. E.2(b) for the resonance profile at ω48 shown in Fig.

4.4(d), there is no such enclave for the parameter Γg. Nonetheless, an upper bound

for the spin decoherence time is found to be 1.3 µs. Tables E.1 and E.2 summarize

the physical parameters of the QDM used in this study and the best-fit values for the

spectra shown in Fig. 4.4, respectively.

For the spectra shown in Fig. 4.5(b) and 4.6(b), the Rabi frequencies of the pump

lasers can be estimated based on the incident powers and the best-fit parameters

found above. Also, the detunings can be easily determined from the positions of the

dark-state dips. Assuming that Γr remains the same, the only fitting parameters need

to be considered here are Γg and the Overhauser field distribution. The distribution

is constructed from three Gaussian curves with different widths, heights and offsets.

The same procedure discussed above is used to find the best-fit value for Γg and the

Overhauser field distribution. Only this time the lineshape is a weighted average of

many spectra calculated from distinct magnetic fields.
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Figure E.2: (a) Contour plot showing error-squares from the |T−〉 transition line-
shape fits calculated by varying the values of Γr and Γg. The model for
the corresponding pump configuration is discussed in this appendix. (b)
Contour plot of the error-squares for the |T+〉 case, showing the absence
of a converging best-fit value for the parameter Γg.

Constants 2 |Jex| ω0 ge gh

Values 116.6 1294.543 0.43 -0.084
Units µeV meV - -

Table E.1: Physical parameters of the QDM used in this study.

Parameters Ω1 δ1 Ω2 δ2 Ω3 δ3 Ωp Γr Γg

Fig. 4.4(b) :ω26 1.96 0 1.82 -0.61 0.35 -1.55 0.19 1.78 0.050
Fig. 4.4(d): ω48 1.86 0 1.86 -1.06 0.36 -1.41 0.19 1.93 0.0032

Table E.2: Parameters used to produce the fitting curves in Fig. 4.4(b) and (d). All
values are in units of µeV. Here, δi denotes detuning from corresponding
transition.
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APPENDIX F

Estimate of the Intrinsic Overhauser Field

Distribution

An order-of-magnitude estimate of the intrinsic Overhauser field distribution can

be derived as follows: The field contributed by type-α nuclear isotope in a primitive

unit cell at position r is given by

δBα,r =
a3

0

4geµB
|Ψe (r)|2Ae,rÎxα,r

where a0 is the lattice constant, Ψe (r) the electron envelop wavefunction, Ae,r the

electron nuclear hyperfine constant, and Îxα,r the nuclear spin projection along the

quantization axis. Since the spin projection of a nucleus can only assume discrete

values, δBα,r can be treated as a random variable. The Overhauser field, BOH , given

by the sum of δBα,r, then follows the multinomial distribution, which approaches the

Gaussian distribution for a large number of nuclei. At the operating temperature of

6 K, kBT = 517 µeV, which is much larger than the nuclear Zeeman splitting[107].

Hence Īxα ≈ 0 and the distribution of BOH is given by

f (BOH) =
1√
2πσ

e−
B2
OH

2σ2
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where

σ =

√∑
r,α

δB2
α,r

=
a3

0

4geµB

√∑
r,α

|Ψe (r)|4A2
e,r

(
Īxα
)2

≈ 1

geµB

√
1

3N

∑
r,α

A2
e,rIα (Iα + 1)

Here, N is the number of unit cells in a single QD. In arriving at the last expression,

the wavefunction is assumed to be uniform, i. e., |Ψe (r)|2 = 4/Na3
0. Note that

each primitive unit cell contains an In nucleus and an As nucleus. If we further

assume that the wavefunction of the electron effectively occupies a cylindrical volume

with a diameter of 10 nm and a height of 3 nm, then N ≈ 4250 for a0 = 6.05 Å.

Using AIn = 56 µeV and AAs = 47 µeV for spin-9
2

In and spin-3
2

As nuclei[108],

respectively, a standard deviation, given by σ, of 0.11 Tesla is obtained for the intrinsic

Overhauser field distribution. This order-of-magnitude estimate is in agreement with

the experimentally determined value of 0.15 Tesla given in Chapter 4.
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