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Abstract 

The construction industry faces challenges that include high workplace injuries and fatalities, 

stagnant productivity, and skill shortage. Automation and Robotics in Construction (ARC) has 

been proposed in the literature as a potential solution that makes machinery easier to collaborate 

with, facilitates better decision-making, or enables autonomous behavior. However, there are two 

primary technical challenges in ARC: 1) unstructured and featureless environments; and 2) 

differences between the as-designed and the as-built. It is therefore impossible to directly 

replicate conventional automation methods adopted in industries such as manufacturing on 

construction sites. In particular, two fundamental problems, pose estimation and scene 

understanding, must be addressed to realize the full potential of ARC. 

This dissertation proposes a pose estimation and scene understanding framework that addresses 

the identified research gaps by exploiting cameras, markers, and planar structures to mitigate the 

identified technical challenges. A fast plane extraction algorithm is developed for efficient 

modeling and understanding of built environments. A marker registration algorithm is designed 

for robust, accurate, cost-efficient, and rapidly reconfigurable pose estimation in unstructured 

and featureless environments. Camera marker networks are then established for unified and 

systematic design, estimation, and uncertainty analysis in larger scale applications. 



xvii 

The proposed algorithms' efficiency has been validated through comprehensive experiments. 

Specifically, the speed, accuracy and robustness of the fast plane extraction and the marker 

registration have been demonstrated to be superior to existing state-of-the-art algorithms. These 

algorithms have also been implemented in two groups of ARC applications to demonstrate the 

proposed framework's effectiveness, wherein the applications themselves have significant social 

and economic value. The first group is related to in-situ robotic machinery, including an 

autonomous manipulator for assembling digital architecture designs on construction sites to help 

improve productivity and quality; and an intelligent guidance and monitoring system for 

articulated machinery such as excavators to help improve safety. The second group emphasizes 

human-machine interaction to make ARC more effective, including a mobile Building 

Information Modeling and way-finding platform with discrete location recognition to increase 

indoor facility management efficiency; and a 3D scanning and modeling solution for rapid and 

cost-efficient dimension checking and concise as-built modeling. 
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Chapter 1 

Introduction 

"Let's start with the three fundamental Rules of Robotics."—Isaac Asimov 

The objective of this research was to develop, implement and validate novel computer vision 

based technologies to provide rapidly reconfigurable, infrastructure-independent, robust, reliable 

and accurate 6 Degree-Of-Freedom (DOF) pose (position and orientation) estimation, 3 

dimensional (3D) scene reconstruction and understanding solutions, for various perception and 

navigation applications of Automation and Robotics in Construction (ARC). These technologies 

have the potential to help the construction industry improve safety, increase productivity and 

accelerate the transition of skill-intensive construction jobs to knowledge-intensive ones. 

This research is timely and critical. The automatic perception and navigation ability has been 

highlighted as a basic capability that will impact the automation of many industries including 

construction by the National Robotics Initiative (Christensen et al. 2009). With such ability, 

construction machines could be easier to control and collaborate with, require less human 

supervision to avoid collisions, and even autonomously operate on complex worksites. Workers 

and managers can also benefit from wearable and mobile devices with such ability to facilitate 

construction, operation and management tasks. These could alleviate issues like relatively poor 

safety, stagnant productivity, and skilled labor shortage in both construction and similarly 
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affected industries such as manufacturing, mining, and shipbuilding, where robotics is poised to 

revolutionize next-generation processes if key technical challenges related to localization, 

navigation, manipulation, obstacle avoidance, and collaboration can be successfully resolved. 

 

Figure 1-1: Overview of the research. 

As shown in Figure 1-1, the research objective was achieved by first investigating general pose 

estimation and scene understanding algorithms in computer vision and robotics, either by 

exploring and advancing existing ones or developing new ones. These algorithms were then 

applied in the ARC domain to explore their potential and validate their effectiveness. 

1.1 Importance of the Research 

The inability to automatically perceive surrounding environments and estimate poses of either 

large scale mobile manipulators’ key components (e.g., end-effectors of manipulator arms or 

undercarriage tracks of mobile cranes), or mobile devices used by civil engineering inspectors, 
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has a significant negative impact on the safety and productivity in industries such as 

manufacturing, construction, and shipbuilding. This incapability also contributes to the shortage 

of skilled labor in these industries. 

Firstly, high rates of workplace injuries and fatalities in unstructured manufacturing 

environments (e.g., construction sites, shipyards) have been affecting many industries. 

According to the 2013 Census of Fatal Occupational Injuries (CFOI) report (Bureau of Labor 

Statistics 2013), the construction industry had the largest number of fatal occupational injuries, 

and in terms of rate ranked the fourth highest among all industries. Among all the causes for the 

796 fatal injuries in the U.S. construction industry in 2013, the cause of being struck by an object 

or equipment comprised 10 percent. This percentage is even higher in other industries such as 

agriculture (19%), forestry (63%), and mining (23%). For example, besides directly causing fatal 

injuries on worksites, mobile manipulators such as excavators can also inadvertently strike 

buried utilities, thus disrupting life and commerce, and pose physical danger to workers, 

bystanders, and building occupants. Such underground strikes happen with an average frequency 

of about once per minute in the U.S., reported by the Common Ground Alliance, the nation's 

leading organization focused on excavation safety. More specifically, excavation damage is the 

third biggest cause of breakdowns in U.S. pipeline systems, accounting for about 17% of all 

incidents, leading to nearly 25 million dollars annual utility interruptions (US DOT PHMSA 

2015). Similar statistics abound in other related industries. 

When mobile manipulators are continuously aware of their poses in unstructured environments, 

and are monitoring their surroundings such as recognizing nearby human workers’ poses and 

actions, such machines can make decisions to avoid striking human workers, for example by 

sending alerts to their operators or even temporarily taking over the controls to prevent accidents. 
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Thus, machine self-awareness can help decrease the possibilities of the abovementioned injuries 

and fatalities and improve safety on worksites. Similarly, with continuous tracking of the pose of 

an end-effector (e.g., a bucket of an excavator), an intelligent excavator can perform collision 

detection with an existing map of underground utilities and issue its operator a warning if the 

end-effector's distance to any buried utilities exceeds predefined thresholds. 

In addition to the safety concerns, there are also increasing concerns of relatively stagnant 

productivity rates and skilled labor shortage in manufacturing and construction industries. From 

a recent survey, 83% U.S. construction firms are reported to be in shortage of skilled workers 

(Associated General Contractors of America 2014). Similarly, the construction sector in the 

United Kingdom is reported to be in urgent need of 20% more skilled workers and thus 50% 

more training provision by 2017, to deliver projects in planning (LCCI/KPMG 2014). For 

example, earthwork is a typical affected activity. Currently precise excavation grade control is 

provided by employing grade-checkers to accompany excavators during appropriate operations. 

Grade-checkers specialize in surveying and frequently monitor the evolving grade profile. The 

evolving grade profile is compared to the target profile and this information is communicated by 

the grade-checker to the excavator operator. The operator reconciles this information and adjusts 

the digging strokes accordingly. This process is repeated until the target profiles are achieved. 

Employing grade-checkers is not only dangerous but also results in a significant loss in 

excavation productivity due to frequent interruptions required for surveying the evolving profile 

(Feng et al. 2015). 

When a mobile manipulator can continuously track its end-effector's pose and capture its 3D 

surroundings on worksites, such information can be combined together with the digital design of 

a task, either to assist human operators to complete the task faster and more efficiently, or to 
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eventually finish the task autonomously. For example, an intelligent excavator being able to 

track the pose of its bucket can guide its operator to dig trenches or backfill according to 

designed profiles more easily and accurately with automatic grade-checks. This can eventually 

lead to fully autonomous in-situ machines, such as deployment of robotic arms or unmanned 

aerial vehicles on construction sites and shipyards for autonomous assembly and fabrication 

(Helm et al. 2012; Willmann et al. 2012; Feng et al. 2014). When such machines become more 

intelligent, due to the transition from skill-based to knowledge-based control, it can be expected 

to save time in training operators, and thus to mitigate skilled labor shortages and also improve 

productivity. 

In summary, the inability to automatically reconstruct and perceive surrounding scenes and 

estimate poses not only affects the safety and productivity of the corresponding processes, but 

also increases the demand for skilled labor in those industries. In particular, the inability to 

estimate pose in unstructured environments and the lack of rapidly reconfigurable solutions are 

primary obstacles that need to be overcome. There is thus a clear and critical need for new 

methods to support accurate and reliable real-time scene understanding and 6DOF pose 

estimation with rapid and flexible configurations for intelligent guidance and control of machines 

and mobile devices adopted in relevant industries. 

1.2 Background of the Research 

1.2.1 Perception and Navigation 

In the general context of automation and robotics, pose estimation and scene understanding 

belong to perception and navigation problems. Perception is the process of interpreting sensor 

data in order to acquire information and develop knowledge of the environment; and navigation 
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is the process of determining the current pose of an object of interest and discovering subsequent 

actions leading the object to its target pose without collision with other objects. These two 

definitions imply that perception and navigation are very closely related to each other: 

fulfillment of the goal of navigation (such as localization, path planning and collision avoidance) 

usually requires support of perception to provide knowledge of the environment; on the other 

hand, better perception results can be achieved with improved navigation since sensor data are 

registered into an improved spatially consistent framework. 

Many different types of sensors can be used for perception and navigation, ranging from Global 

Position System (GPS) receivers, Inertial Measurement Units (IMU), sonars, and optical 

encoders to generalized vision sensors including cameras, depth cameras (such as stereo vision 

cameras, Microsoft Kinect, etc.) and laser range finders/lidars. This research will mainly focus 

on the generalized vision sensors because of both the richness of information that they can 

capture and the various insufficiencies of other sensors. 

Perception includes many different types of problems. To find out a certain object from vision 

sensor data such as images or point clouds, object detection and recognition are needed. To 

pinpoint the position or identify the region of that object in those data, object segmentation is 

necessary. If the vision sensor data are continuously updated, then object tracking is required. 3D 

reconstruction can provide a 3D geometric description of the environment either from a sequence 

of images or from registration of a collection of point clouds into a unified coordinate frame. 

Many different research communities have spent enormous efforts on perception. 

Photogrammetry is probably one of the earliest, with focus on theories of 3D reconstruction from 

aerial imagery and applications in cartography. Computer vision sprouts from digital image 
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processing and builds on different perception research domains mentioned above. Robotics 

researchers study visual perception to increase the automation level for machinery and robots. 

Other industries such as manufacturing, automobile, augmented reality (AR) have all taken 

advantage of progress in perception. 

Navigation in robotics often includes multiple goals: pose estimation, localization, path planning 

and collision avoidance. Path planning often needs either 2D or 3D maps of the environment as 

algorithm input. Collision avoidance requires detection of obstacles in the environment. Yet 

before these two goals, pose estimation or localization has the first priority in order to achieve 

successful navigation. The ability to recover a user's pose (i.e., position and orientation within a 

certain coordinate frame) is critical in many engineering domains such as AR, robotics, context-

aware computing, and computer vision. In AR, for example, this task is termed as the 

“registration” problem (Azuma 1997). In robotics, this task is closely related to “Simultaneous 

Localization and Mapping” (SLAM) (Klein and Murray 2007; Thrun 2008). In computer vision, 

“Structure from Motion” (SfM) algorithms are designed to solve this problem with little or no 

prior knowledge about the environment (Sturm and Triggs 1996; Snavely et al. 2006; Bao and 

Savarese 2011). Context-aware engineering applications also face a similar problem where the 

positioning part is more relevant (Akula et al. 2011). In cinematography, the problem is called 

“move matching”. 

1.2.2 Automation and Robotics in Construction 

ARC is comprised of two major categories: hard and soft ARC (Balaguer 2004). Just as “every 

construction chore has physical components and information components” (Everett and Slocum 

1994), hard ARC focuses mainly on construction tasks which contain a large portion of physical 

processing, such as robotics for brick laying, interior finishing, road paving, etc.; while soft ARC 
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concentrates mostly on construction tasks which typically require higher level information 

processing, such as document management, progress monitoring, safety monitoring, maintenance 

and inspection, and as-built Building Information Modeling (BIM). 

1.2.2.1 Challenges 

Even though hard ARC had been actively studied in the 1990s, ARC research has been shifting 

towards the soft ARC side since the last decade. From a previous research trend study (Son H. et 

al. 2010) about papers published in the proceedings of the International Symposium on 

Automation and Robotics in Construction (ISARC), a huge net decrease of hard ARC related 

papers from about 70% to 35% was observed. This trend highlights the importance of 

incorporating more soft ARC techniques into the hard ARC side, which means more automatic 

information processing abilities should be developed for construction machinery or devices to 

increase their level of automation and thus to make them easier to use (Balaguer 2004). This is 

because that on top of perception and navigation challenges inherited from general automation 

and robotics such as speed, accuracy and robustness of algorithms, part of the reasons for this 

decrease could be the following unique challenges in civil engineering and similar industries. 

Unstructured and featureless environment: unlike traditional manufacturing, where robotic 

solutions benefit from the structured layout of the environment (e.g., factory assembly line), 

construction robots face unique challenges that arise from the unstructured, dynamic, and 

sometimes featureless environment of the work site, as shown in Figure 1-2, as well as the 

uncertainty and evolving sequence of occurring on-site events. This challenges any intended 

construction robots to not only replicate basic human motion, but also be capable of accurately 

and reliably sensing and adapting to environmental changes, and making decisions based on the 
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evolving state of the environment. Examples of ARC applications under such environments 

include the on-site robotic assembly in Chapter 5 and the excavation monitoring in Chapter 6. 

 

Figure 1-2: Unstructured environments with repeated features or featureless
1
 characteristics. 

Difference between the as-designed and the as-built: many buildings or civil infrastructures 

have different extent of discrepancies between their designs and as-built results, since many 

issues are not anticipated or simply unpredictable during the design phase. This poses another 

layer of challenges when trying to incorporating the design as prior knowledge for perception 

and navigation algorithms for ARC. Examples of ARC applications related to such challenges 

include facility management in Chapter 7 and the as-built modeling in Chapter 8. 

1.2.2.2 Principle and Methodology 

Due to the abovementioned challenges, many perception and navigation algorithms designed for 

traditional manufacturing robots cannot be directly applied in ARC out of the box. When fully 

autonomous construction robots seem to lack the required algorithmic foundations and practical 

feasibilities, semi-automation in construction enabled by Human Machine Interaction (HMI) is 

                                                 
1
 The two photos come from Buildipedia.com. 

http://buildipedia.com/knowledgebase/division-09-finishes/09-20-00-plaster-and-gypsum-board/09-29-00-gypsum-board/09-29-00-gypsum-board
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identified to be “preferential in the mobile and non-standardized construction environment” (Han 

C. 2011). Previous work about either interior finishing robot (Kahane and Rosenfeld 2004b; 

Navon 2000), where human operators need to manually transfer the robot between workstations, 

or infrastructure inspection and maintenance robot (Kim and Haas 2000), where manual editing 

and correction of automatic crack sealing error is needed, had followed this principle. This 

research was also guided by the same principle, as shown in applications in later chapters. 

Besides the HMI principle, to efficiently address those challenges, many ARC methodologies 

have been proposed as guidelines to identify construction tasks and develop robotics and 

automation solutions for them. Everett (1991) described a hierarchical taxonomy of construction 

field operations, in which two important levels of construction operation, activity and basic task, 

are proposed. While many hard ARC research had focused on activity level automation, i.e. 

whose output “results in a recognizable, completed unit of work with spatial limits and/or 

dimensions” (Everett and Slocum 1994), Everett (1991) proposed to conduct ARC research on 

the level of the basic task—fundamental elements that build up construction activities, since 

technology advancement on this level could be applied to many different construction activities, 

as opposed to automation on activity level. This research followed the same idea and advanced it 

by changing the perspective of basic task level automation from construction worker to 

autonomous/semi-autonomous construction machinery. 

In Everett's hierarchical taxonomy of construction field operations (Everett 1991), the basic task 

level—including connect, cover, cut, dig, finish, inspect, measure, place, plan, position, spray 

and spread—is the one recommended for most easy introduction of construction automation. 

Since basic task is the fundamental element of construction field work, successful automation on 

one basic task could more easily benefit many different construction activities. 
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However, when ARC researchers actually try to automate these basic tasks, one issue they will 

encounter is likely to be the sub-problem overlap. For example, to automate the “connect” basic 

task, the first question for the designer to ask might be “how to identify the objects to be 

connected”. Thus object detection and recognition is a sub-problem for this basic task. On the 

other hand, to automate the “cut” basic task, the same sub-problem of object detection and 

recognition must be addressed since the robot needs to know what object needs to be cut. 

Similarly, the question “where and in what pose should the object be positioned” must be 

answered for the robot to automate both “position” and “place” basic tasks. 

It is thus interesting to note that the basic tasks were summarized and abstracted from 

construction activities from the perspective of a human worker or manager. It is indeed natural, 

obvious and easy to assign commands made up from these basic tasks to human workers, 

whereas commands for construction robots require specification of additional detailed 

information in forms that machines understand. 

Therefore, inspired by the modularization thinking in Everett's methodology and the 

identification of overlapping sub-problems, to efficiently automate basic tasks, their common 

sub-problems should be investigated and automated first. By further examining these sub-

problems, one can realize that most of them are related to the information processing. Hence, the 

construction basic task automation methodology in this research is as follows: 

1. For each basic task, identify input and output information; 

2. Find each commonly needed type of information and define an atomic function which 

outputs that information; 

3. Prioritize all atomic functions and selectively automate them; 
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4. Automate or semi-automate basic tasks which require information output by automated 

atomic functions. 

This methodology is in line with the previous trend analysis stating that more automatic 

information processing abilities (the atomic functions) must be possessed by construction 

machinery and devices. Guided by this methodology, firstly the commonly needed information is 

analyzed. From Table 1–1 one can see that information such as position and orientation, object 

identity and geometric description of the environment are commonly needed. Moreover almost 

all autonomous mobile robots need this information to navigate themselves to their destination. 

Thus the corresponding atomic functions, i.e., pose estimation and scene understanding, which 

belong to perception and navigation for ARC, are chosen to be investigated in this research. 

Table 1–1: Commonly needed information for each construction basic task. 

1.2.3 Previous Work 

In the ARC community, perception and navigation have been studied since the 1990s (Everett 

1991; Beliveau et al. 1996; Forsberg et al. 1997; Shohet and Rosenfeld 1997). Recently modern 

computer vision techniques are being introduced into ARC community, including 3D 

Basic Task Object Identity Position and/or Orientation Area/Region/Shape/Boundary 

Connect √ √  

Cover √  √ (Region to be covered) 

Cut √ √ (pose of cutting tool)  

Dig  √ √ (Region to be dug) 

Finish   √ (Region to be finished) 

Inspect √ √  

Measure √ √  

Place √ √  

Plan  √  

Position √ √  

Spray  √ (pose of spraying tool) √ (Region to be sprayed) 

Spread  √ (pose of spreading tool) √ (Region to be spread) 
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reconstruction from unordered image sets for construction visualization and progress monitoring 

(Golparvar-Fard et al. 2009), object detection and tracking for automatic productivity estimation 

(Rezazadeh Azar and McCabe 2012), 3D human skeleton reconstruction for construction 

occupational disease analysis (Han and Lee 2013), and planar structure extraction from surveyed 

point clouds of buildings for as-built BIM (Zhang et al. 2012). Building on recent advancements 

in robotic navigation and control, researchers from robotics community also have been making 

efforts towards autonomous robots that can perform certain simplified construction tasks, such as 

structure or brick assembly by quadrotors (Lindsey et al. 2012; Willmann et al. 2012). 

Many researchers have realized that to increase the level of autonomy for construction robots, 

the mapping and navigation abilities of the robot are essential (Beliveau et al. 1996; Forsberg et 

al. 1997; Shohet and Rosenfeld 1997). However, the accuracy of SLAM algorithm was found to 

be insufficient at that time for many construction tasks which require direct manipulation of 

construction materials or tools (Shohet and Rosenfeld 1997). Some researchers even suggested 

removing the autonomous navigation functionality and transferring robots between workstations 

manually, then performing either a coarse-to-fine calibration (Kahane and Rosenfeld 2004a) or 

carrying out an additional vision-based real-time quality assurance step (Navon 2000). 

As core functions of either mapping or navigation, two types of pose estimation techniques have 

been extensively studied, i.e. traditional non-visual-sensor-based methods, and newly emerging 

visual-sensor-based methods, briefly introduced as follows. 

1.2.3.1 Non-visual-sensor-based Methods 

Among the first type, GPS is mainly used in outdoor open areas. GPS signals are easily blocked 

by obstacles (e.g., buildings) that result in decreased accuracy or even failure of localization, 
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known as the “urban canyon” effect (Cui and Ge 2003; Groves 2011). Wireless Local Area 

Network (WLAN) based methods also require large number of footprints for calibration (Aziz et 

al. 2005). Ultra-Wide Band (UWB) based methods generally have high cost (Teizer et al. 2008; 

Khoury and Kamat 2009). Radio Frequency Identification (RFID) based methods usually depend 

on large infrastructure (i.e., sufficient RFID tags must be available) and also requires special tag 

readers (Sanpechuda and Kovavisaruch 2008; Andoh et al. 2012). IMU has tracking drift issues 

that require error correction (Akula et al. 2011). Most of these methods (except for IMU) are 

dependent on certain installed tracking infrastructure. Besides, none of them can easily provide 

direct orientation information (angular sensors in IMU such as gyroscope, electrical compass or 

accelerometer have problems such as tracking drift or sensitivity to magnetic environment 

changes), which makes them not optimal for the aforementioned industrial application scenarios. 

1.2.3.2 Visual-sensor-based Methods 

On the contrary, the second type of methods directly outputs orientation along with position 

information, by analyzing images captured from visual-sensors (e.g., cameras, lidars). Based on 

their different assumptions/requirements on the surrounding environment, these algorithms can 

be classified into two groups: known vs. unknown environment (Lepetit and Fua 2005). The only 

unknown in the first group is the sensor's pose. While in the second group, both the environment 

and the sensor's pose have to be estimated, i.e. the SLAM problem (Thrun 2008). Generally, 

SLAM-based methods are inherently infrastructure-independent due to minimal assumptions. 

Traditional 2D SLAM methods rely on lidar measurements, while the range limits, cost and even 

the weight of lidars are disadvantages for their large-scale outdoor applications. Although 

emerging visual SLAM algorithms (Davison et al. 2007; Klein and Murray 2007; Engel et al. 
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2014) try to avoid these drawbacks by using ordinary cameras, they have limitations including 

small range or inadequate accuracy and robustness. 

On the other hand, the first group of methods assumes the environment is fully or partially 

known, thus providing more accurate, reliable and robust pose estimation. These pieces of 

known appearance and geometry information are so-called markers, which could be pre-designed 

planar or non-planar objects. Thus, they are also referred to as marker-based pose estimation, 

which have been extensively studied in many areas such as AR and robotics (Olson 2011), 

including context-aware computing (Feng and Kamat 2012; Feng and Kamat 2013) and in-situ 

digital fabrication (Feng et al. 2014). 

1.2.4 Limitations of Previous Work 

The current state of knowledge has three critical limitations that preclude the application of pose 

estimation and scene understanding of construction machinery or devices to increase their level 

of autonomy: 

 Lack of Rapidly Reconfigurable and Sensor-Infrastructure-Independent Methods 

 Lack of Reliable Visual-Sensor-Based Methods in Complex Environments 

 Lack of Systematic Design and Error Analysis for Industrial Applications 

1.2.4.1 Lack of Rapidly Reconfigurable and Sensor-Infrastructure-Independent Methods 

Traditional non-visual-sensor-based methods have various limitations for large-scale mobile 

manipulator applications, including inadequate accuracy and robustness, high cost, slow 

reconfiguration, and infrastructure dependency. Within this type of methods, robotic total 

stations provide the most accurate (millimeter level) position estimation given a clear line of 

sight. However, it can only track one target's 3D position at a time, which makes real-time 6DOF 
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pose estimation intractable, in addition to its relative high cost and payload. Real time kinematic 

(RTK) GPS provides 3D position estimation at centimeter level accuracy, but it also has relative 

high cost and payload, and inherits the common GPS issues noted above (Akula et al. 2011). 

UWB methods provide sub-meter level position accuracy, but are expensive to setup the 

infrastructure. WLAN methods provide meter level position accuracy, but are slow to configure 

and calibrate the infrastructure. Due to low positioning accuracy, orientation estimation is not 

directly available using UWB or WLAN. Although IMU can be integrated for orientations, the 

aforementioned tracking drift and magnetic environment sensitivity issues make it less robust 

and appealing. Thus, it is clear that because of these limitations, non-visual-sensor-based 

methods are non-optimal for the pose estimation in guidance and control of large scale mobile 

manipulators. To overcome such limitations, visual-sensor-based methods are increasingly 

studied and have the potential to bridge these gaps. 

1.2.4.2 Lack of Reliable Visual-Sensor-Based Methods in Complex Environments 

Visual-sensor-based methods differ from other methods by the ability to instantaneously and 

non-intrusively capture massive amounts of information as images of the environment. Thus, 

these methods have the potential to interpret sensors’ surroundings and estimate sensors’ poses 

without any hardware infrastructure as needed in GPS (satellites), UWB, or WLAN, i.e., they are 

inherently infrastructure-independent. However, the challenge in these methods is mainly the 

robust and accurate interpretation of images. Current visual SLAM methods commonly assume 

that: 

1. The working environment has abundant visual features; and 

2. This environment is completely or at least mostly static in both appearance and geometric 

structure. 
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But these two assumptions do not normally hold in complex industrial environments. For 

example, on construction sites, workers and machines are constantly and frequently moving, 

which makes the sites highly dynamic instead of static. In addition, many of such surroundings 

are feature-less in terms of visual appearance, for instance, shipyards before finishing have 

almost the same appearance everywhere on the walls and ceilings. Moreover, repeated visual 

features commonly exist in such environments, which decreases the robustness of the 

interpretation and hence impede the pose estimation accuracy. Besides, there are also challenges 

such as the computational burden of real-time image interpretation and the lack of scale 

estimation in visual SLAM using a monocular camera (i.e., it estimates the camera's position in 

an undefined distance unit). Thus, it is clear that although the visual-sensor-based methods 

(especially visual SLAM) have the potential to overcome limitations of non-visual-sensor-based 

methods, presently they are still in the early research phase and not readily feasible for 

applications in complex industrial environments where construction machinery are operated. 

1.2.4.3 Lack of Systematic Design and Error Analysis for Industrial Applications 

It is not sufficient to only estimate the pose of a key component of a mobile manipulator. The 

accuracy and uncertainty of the estimated pose is critical for the following reasons. Firstly, the 

uncertainty provides a measure of the confidence level of the estimated pose, which is necessary 

for many downstream applications (e.g., deciding buffer size for collision avoidance). Secondly, 

it serves as a tool for evaluating the stability of the pose estimation system under different system 

configurations, and thus provides further guidance to avoid critical configurations that lead to 

unstable pose estimation. 

Current visual-sensor-based methods normally have neither systematic uncertainty analysis nor 

practical accuracy evaluation. Usually, visual SLAM methods’ position accuracies are from 
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comparisons with GPS positioning as ground truth, while the orientation accuracies are omitted 

or evaluated qualitatively. This is insufficient since the orientation accuracy also affects 

downstream decision-making and GPS might not provide accurate enough ground truth in urban 

areas, especially in GPS-denied regions. In addition, although a few marker-based methods 

applied Monte-Carlo simulation and made some empirical observations (Luhmann 2009), neither 

visual SLAM nor marker-based methods have systematic analysis in terms of the relationship 

between estimation stability and system configuration to improve pose estimation system design. 

1.3 Research Objectives 

As previously stated, the overall objective of this research was to develop, implement and 

validate novel computer vision based technologies to provide rapidly reconfigurable, 

infrastructure-independent, robust, reliable and accurate 6 DOF pose estimation, 3D scene 

reconstruction and understanding solutions, for various applications of ARC. The more specific 

objectives of this research were as follows. 

 Develop algorithms of real-time scene understanding in 3D point clouds, to enable more 

accurate 3D scene reconstruction, and to enable semantic recognition of different 

geometric elements (e.g., walls, floors, ceilings, stairs, etc.), thus facilitating as-built BIM 

generation and mobile robot perception. 

 Develop algorithms of accurate and robust real-time marker-based pose estimation, to 

serve as core algorithmic components in camera marker networks. 

 Develop algorithms of pose estimation using camera marker networks that has little or no 

hardware infrastructure dependency and thus can be rapidly applied in large scale 

applications. 
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 Design and implement generic software frameworks of the new methods for further 

industrial applications and prototypes. 

 Evaluate accuracy and precision of the new methods in virtual and real-world scenarios. 

 Validate effectiveness and investigate potential of the new methods through industrial 

application prototypes in robotic construction machinery, including autonomous in-situ 

robotic assembly, using vision-guided mobile manipulators to digitally fabricate curved 

walls more efficiently; as well as intelligent excavation monitoring using a camera 

marker network for articulated machine pose estimation to improve excavation safety and 

productivity. 

 Validate effectiveness of the new methods through applications in construction 

automation with human-in-the-loop, including indoor facility management using mobile 

devices and camera marker networks to increase inspection efficiency, as well as camera 

marker networks assisted 3D scene reconstruction and geometric element recognition for 

cost-efficient and more reliable and accurate as-built BIM generation. 

The end results of pursuing these objectives are three general scene understanding and pose 

estimation algorithms, corresponding software frameworks for both soft and hard ARC 

applications, and the four specific ARC applications mentioned above. 

1.4 Research Methodology 

The methodology of this research is first to investigate, adapt existing pose estimation and scene 

understanding algorithms and develop new ones when necessary, then with the help of the 

domain knowledge from construction and civil engineering, to apply those fundamental 

algorithms in appropriate ARC applications. Figure 1-1 above shows the overview of such 

algorithms-to-applications methodology in this research. 
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One of the advantages of this methodology is that due to consideration of the prior knowledge 

from the application domain, i.e., construction or civil engineering, existing general pose 

estimation or scene understanding algorithms can be modified and adapted as needed to better fit 

targeted application requirements. Especially when algorithms developed for general computer 

vision or robotics applications make assumptions that do not hold in construction scenarios, new 

algorithms are well-motivated for development. 

Another advantage of this methodology is that the new algorithms developed in this research are 

not limited to only construction or civil engineering, but applicable also in other engineering 

domains. For example, the fast plane extraction can accelerate scene understanding for general 

robotics problems such as point-plane based SLAM (Taguchi et al. 2013) or autonomous 

unmanned aerial vehicle (UAV) control. The marker based pose estimation can improve the 

stability of desktop AR. The camera marker network can also be applied for jobsite machinery 

productivity analysis. Thus, both ARC community and general computer vision and robotics 

communities can benefit from these algorithms. 

1.5 Dissertation Outline 

This dissertation is a compilation of peer-reviewed scientific manuscripts which document this 

research of the development of novel scene understanding and pose estimation algorithms as 

well as the designing and implementation of ARC applications adopting those algorithms. 

There are mainly three parts in this dissertation. Part I, including chapter 2, 3 and 4, describe the 

general scene understanding and pose estimation algorithms. Chapter 2 describes a novel scene 

understanding algorithm that extracts planes from depth images in real-time. Chapter 3 describes 

a novel marker based pose estimation algorithm that enables fast, accurate and robust 6DOF pose 
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estimation between a camera and a planar marker. Chapter 4 describes the abstract model of pose 

estimation using a network of cameras and markers and corresponding mathematical theories for 

pose estimation and error analysis. 

Part II, including chapters 5 and 6, describe two applications of pose estimation in robotic 

construction machinery. Chapter 5 describes an in-situ digital assembly application using a 

vision-guided mobile robotic manipulator. Chapter 6 describes an articulated machine pose 

estimation application using a camera marker network for excavation monitoring and guidance. 

Part III, including chapters 7 and 8, describe two construction automation applications with 

human-in-the-loop. Chapter 7 describes indoor facility management applications using a 

dynamic camera marker network using markers as spatial indices to link physical locations and 

associated information. Chapter 8 describes a reliable and accurate as-built BIM generation 

application using an RGBD camera marker network to both reconstruct 3D point clouds and 

recognize plane based 3D parametric models. 

The dissertation concludes with Chapter 9, which summarizes the significance and contributions 

of this research, and discusses future work directions. Since each chapter from 2 to 8 is written as 

a self-contained paper, some information appears in multiple chapters for the sake of 

completeness. All chapters have been written such that they can be easily understood and 

successfully replicated by a technically literate audience from diverse domains with basic 

understandings of 3D computer vision and robotics. 
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Part I: General Scene Understanding and Pose Estimation Algorithms 

"The world is flat."—Thomas Friedman 

This part includes three fundamental algorithms centered on planes addressing scene 

understanding and pose estimation problems. In many cases 3D point clouds of the environment 

are not enough for robotics applications, since they are generally noisy, redundant, and without 

explicit semantics of the scene. For compact and semantic 3D modeling, fitting primitives in 3D 

point clouds has attracted many research interests. In particular, planes are one of the most 

important primitives, since man-made structures consist of many planes. Thus Chapter 2 

describes a fast plane extraction algorithm from depth images. 

Planes not only enable compact 3D modeling, but can also facilitate 6DOF pose estimation. This 

is because the relative pose between a camera plane and a plane with a marker is encoded in a 

so-called homography matrix, which can be estimated given geometric correspondences between 

the two planes. Chapter 3 investigated two major groups of methods to establish or maintain 

correspondences and developed a more accurate and robust pose estimation algorithm. 

With more markers or cameras in large scale, an observation network is naturally formed. If 

depth cameras are used, 3D planes become a new kind of observation. Chapter 4 abstracted such 

networks in a unified framework, developed general solution and performed systematic error 

analysis. 
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Chapter 2 

Fast Plane Extraction in Organized Point Clouds 

"Divide each difficulty into as many parts as is feasible and necessary to resolve it." 

—René Descartes 

2.1 Introduction 

As low-cost depth cameras and 3D sensors have emerged in the market, they have become a 

popular choice in various robotics and computer vision applications. 3D point clouds obtained by 

such sensors are generally noisy and redundant, and do not provide semantics of the scene. For 

compact and semantic modeling of 3D scenes, primitive fitting to the 3D point clouds has 

attracted a lot of research interests. In particular, planes are one of the most important primitives, 

since man-made structures mainly consist of planes. 

In this chapter, an efficient plane extraction algorithm applicable to organized point clouds, such 

as depth maps obtained by Kinect sensors, is presented. This algorithm first constructs a graph 

by dividing a point cloud into several non-overlapped regions with a uniform size in the image 

space. The algorithm then performs a bottom-up, agglomerative hierarchical clustering (AHC) 

on the graph: It repeats (1) finding the region that has the minimum plane fitting mean squared 

error (MSE) and (2) merging it with one of its neighbors such that the merge results in the 

minimum plane fitting MSE. It is shown that the clustering process can be done with the 

complexity log-linear in the number of initial nodes, enabling real-time plane extraction. To 

refine the boundaries of the clustered regions, the clustering process is followed by pixel-wise 



24 

region growing. In experiments, this algorithm is compared with state-of-the-art algorithms. This 

algorithm achieves real-time performance (runs over 35 Hz) for 640 by 480 pixel depth maps, 

while providing the accuracy comparable to the state-of-the-art algorithms. Some example 

results are shown in Figure 2-1. Extracted planes are superimposed with different colors on the 

RGB image (black means non-planar region). White dash lines show the segmentation 

boundaries before the region-grow-based refinement. Initial node size of 10 by 10 detects most 

of the planes in the scene (top-left), whose 3D view is shown (bottom-left). Initial node size of 4 

by 4 reveals more segments in a smaller scale such as stairs and table leg (top-right), while that 

of 20 by 20 focuses on major large planar structures such as floors and walls (bottom-right). 

 

Figure 2-1: Plane extraction results generated with different initial node sizes. 

2.1.1 Contributions 

There are following contributions for this chapter: 

 An efficient plane extraction algorithm based on agglomerative clustering is presented. 

 The complexity of the clustering algorithm is analyzed and shown to be log-linear in the 

number of initial nodes. 
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 Real-time performance is demonstrated with the accuracy comparable to state-of-the-art 

algorithms. 

The following sections of this chapter will explain the details of this proposed Plane Extraction 

using Agglomerative Clustering (dubbed as PEAC). Section 2.2 will explain the related work on 

plane extraction, and related applications. Section 2.3 will give an overview of PEAC including 

an analogy to line segment extraction and the differences when generalizing to three dimensions. 

Section 2.4 and 2.5 will explain the two main phases of PEAC. The PEAC's performance is then 

demonstrated by various experiments in section 2.6. Finally conclusions are drawn in section 2.7. 

2.2 Related Work 

2.2.1 Plane Extraction 

Several different algorithms have been proposed for plane extraction from 3D point clouds. 

RANSAC-based methods (Schnabel et al. 2007) have been widely used. These methods usually 

follow the paradigm of iteratively applying RANSAC algorithm on the data while removing 

inliers corresponding to the currently found plane instance. Since RANSAC requires relatively 

long computation time for random plane model selection and comparison, several different 

variants were developed. Oehler et al. (2011) performed Hough transformation and connected 

component analysis on the point cloud first as pre-segmentation and then applied RANSAC to 

refine each of the resulting "surfels" (2s per 640 by 480 points). Several algorithms (Taguchi et 

al. 2013; Hulik et al. 2012; Lee et al. 2012) applied RANSAC on local regions of the point cloud 

(which decreases the data size considered in each RANSAC run to increase speed) and then grew 

the region from the locally found plane to the whole point cloud (0.2s (Taguchi et al. 2013) or 

0.1s (Hulik et al. 2012) per 640 by 480 points; 0.03s (Lee et al. 2012) per 320 by 240 points). 
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Region-grow-based methods are another popular choice. Hähnel et al. (2003) and Poppinga et al. 

(2008) grew points by both point-plane distance threshold and MSE threshold (0.2s per 25,344 

points). Holz et al. (2012) grew points by their surface normal deviation (0.5s per 640 by 480 

points), which requires per-point normal estimation. A similar but much slower variant is voxel 

grow (Deschaud and Goulette 2010). Instead of growing points, Geogiev et al. (2011) first 

extracted line segments from each scan line of the data and then grew the line segments across 

scan lines (0.05s per 18,100 points in MATLAB). 

There are other methods which do not belong to the two groups. Holz et al. (2011) first clustered 

the point cloud in the normal space and further clustered each group by its distance to the origin 

(0.14s per 640 by 480 points). To avoid per-point normal estimation, Enjarini et al. (2012) 

designed the gradient of depth feature for plane segmentation, which could be rapidly computed. 

Graph-based segmentation using self-adaptive threshold was also used (Strom et al. 2010; Wang 

et al. 2013) (0.17s per 148,500 points in Strom's paper). Although the PEAC proposed in this 

chapter also uses a graph to represent data relation, it differs from the previous methods as 

follows: 1) no RGB information is used; 2) no per-point normal estimation is required; and more 

importantly, 3) dynamic edge weights are used instead of static ones which fix the merging order 

as in (Strom et al. 2010). 

2.2.2 Applications 

Planes have been used in various applications in robotics, computer vision, and 3D modeling. 

Compact and semantic modeling of scenes provided by planes is useful in indoor and outdoor 3D 

reconstruction, visualization, and Building Information Modeling (BIM) (Zhang et al. 2012). 

Extracting a major plane is a common strategy for table-top manipulation (Holz et al. 2011), 

because it helps segment objects placed on the plane. Planes have been also used for SLAM 
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(Weingarten and Siegwart 2006; Pathak et al. 2010; Trevor et al. 2012) and place recognition 

(Fernandez-Moral et al. 2013) systems as landmarks, because planes are more robust to noise 

and more discriminative than points. However, at least three planes whose normals span 3  are 

required to compute the 6 DOF camera pose. To avoid the degeneracy due to the insufficient 

number of planes, Taguchi et al. (2013) used both points and planes as landmarks in their SLAM 

system. Salas-Moreno et al.'s SLAM system (2013) that uses objects as landmarks extracted a 

ground plane and used it as a soft constraint to align the poses of objects with respect to the 

ground plane. All of the above works can benefit from the fast plane extraction in this chapter. 

2.3 Algorithm Overview 

Figure 2-2 illustrates how PEAC processes each frame of an organized point cloud. Each frame 

of an organized point cloud is processed from left to right. (a) shows the graph initialization with 

each node colored by its normal; black dot and line showing graph node and edge; red ‘x’, black 

‘o’, and red dot showing node rejected by depth discontinuity, missing data, and too large plane 

fitting MSE, respectively. (b) and (c) show the two core operations of the AHC. Regions with 

random colors in (b) and (c) show graph nodes merged at least once. Black lines in (c) show all 

edges coming out from the node A, in which the thick line shows the edge to the node B that 

gives the minimum plane fitting MSE when merging the node A with one of its neighbors. 

Colored regions in (d) show the extracted coarse planes, which are finally refined in (e) if 

required by the application. 

An organized point cloud is defined to be a set of 2D indexed 3D points 

, , , ,{ ( , , ) }i j i j i j i jx y z p
T , 1, , , 1, ,i j M N  where the 2D indices ( , )i j  and ( 1, 1)i j   

reflect the 3D proximity relationship between points ,i jp  and 1, 1i j p  if they lie on the same 
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surface (this index space is dubbed as image space). Usually it can be obtained from a depth map 

produced by devices such as a Kinect sensor, time-of-flight camera, structured light scanning 

system, and even rotating the scanning plane of a laser range finder. 

 

Figure 2-2: The PEAC algorithm overview. 

2.3.1 Line Segment Extraction as an Analogy 

Before moving into the details of PEAC, a line segment extraction algorithm called line 

regression is briefly discussed, as summarized in (Nguyen et al. 2005) and implemented in April 

Robotics Toolkit (Olson 2010). It is widely used for extracting line features from 2D point 

sequences obtained from a laser range finder, and inspired us to generalize its idea to 3D case for 

fast plane extraction. As illustrated in Figure 2-3 (blue dots show the 2D points; circles labeled 

with letters show the nodes in a linked list; brackets show the groups of points represented by the 

nodes; thick line indicates that merging node g  with its left neighbor ef  gives a smaller line 

fitting MSE than merging it with its right neighbor h ), every W  consecutive points ( 3W  in 

this figure) in the sequence are grouped into nodes
2
, forming a double linked list. Then AHC is 

performed on this linked list by repeating (1) finding the node g  with the minimum line fitting 

MSE and (2) merging this node g  with either its left or right neighbor that gives the minimum 

merging MSE. If the minimum merging MSE is larger than a predefined threshold, which can 

                                                 
2
 Note that "node" and "segment" are used interchangeably to represent a set of data points. 
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usually be decided by the noise characteristics of the sensor, then the merging is canceled and the 

node g  can be extracted as a line segment. When using a binary heap to find the minimum MSE 

node, log-linear time complexity ( log )O n n  can be achieved for this algorithm, where n  is the 

number of points in the sequence. Note that by applying the idea of integral images, as used in 

(Holzer et al. 2012; Holz et al. 2011), merging two nodes and calculating the resulting line fitting 

MSE become constant time operations. 

 

Figure 2-3: Line regression algorithm. 

2.3.2 Differences When Generalizing to 3D 

Inspired by the use of point's neighborhood information given by the point's order of the 

sequence, one wish to generalize the 2D line regression to 3D plane extraction in an organized 

point cloud, where the neighborhood information is stored in the 2D indices. However, this 

generalization is nontrivial, because of the following two major differences. 

2.3.2.1 Non-Overlapping Nodes 

As opposed to the line regression, initial nodes (and thus any two nodes during/after merging) 

should have no identical points, i.e., for any two nodes ,s t  , s t  . This 
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requirement is due to the fact that after several merging steps, the 3D points belonging to a 

certain node s  will form an irregular shape instead of maintaining its initial rectangular shape in 

the image space, as shown in Figure 2-2(b). Thus, if allowing different nodes to have identical 

points, it is difficult to efficiently handle the overlapping points when merging two nodes, even 

with the help of integral images. While in the line regression, merging two neighboring line 

segments will still result in a line segment represented by a start and end index in the point 

sequence, which makes overlapping nodes feasible. It is important to notice that the overlapping 

nodes enable the line regression algorithm to automatically split line segments at their 

boundaries; since nodes containing points at different line segments tend to have larger line 

fitting MSE than others (e.g., nodes c , d , and h  in Figure 2-3), their merging attempts will be 

delayed and finally rejected. The non-overlapping requirement in PEAC results in losing that 

advantage of automatically detecting boundaries of planes. Section 2.4.1 will describe how to 

overcome the disadvantage by removing bad nodes in the initialization step. Section 2.5 will also 

describe a pixel-wise region growing algorithm to refine the boundaries of planes. 

2.3.2.2 Number of Merging Attempts 

In the line regression, merging a node with its neighbor is a constant time operation with at most 

two merging attempts, either to its left or right neighbor. In this generalized case, the number of 

merging attempts is larger, since nodes are initially connected to at most 4 neighbors to form a 

graph, and after several merging steps, they can be connected to a larger number of neighbors. In 

section 2.4.2, the average number of merging attempts in PEAC will be experimentally analyzed 

and shown that it stays small in practice; therefore, the merging step can be done in a constant 

time, resulting in the complexity of ( log )O n n  similar to the line regression. 
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2.4 Fast Coarse Segmentation 

The PEAC algorithm consists of three major steps, as shown in Figure 2-2 and Algorithm 2–1: 

The algorithm first initializes a graph and then performs AHC for extracting coarse planes, 

which are finally refined. If the application only requires rough segmentation of planar regions, 

e.g., detecting objects in a point cloud, then the final refinement step may be skipped, which 

could increase the frame rate to more than 50Hz for 640 by 480 points. 

First the notations are clarified.  denotes a complete frame of an organized point cloud of M  

rows and N  columns. ,  represent coarse and refined segmentation respectively, i.e., each 

element k / l  of /  is a segment—a set of 3D points 
,i jp . Meanwhile ,    are sets of 

plane equations corresponding to , , respectively. Also note that each node v  of a graph G  is 

a set of 3D points and each undirected edge uv  denotes the neighborhood of segments ,u v  in 

the image space. 

2.4.1 Graph Initialization 

As mentioned in section 2.3.2, PEAC has a requirement of non-overlapping node initialization, 

represented in lines 3 to 5 of Algorithm 2–2. This step uniformly divides the point cloud into a 

set of initial nodes of the size H W  in the image space. The requirement causes PEAC to lose 

Algorithm 2–1: Fast Plane Extraction. 
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the advantage of automatically detecting boundaries of planes. To properly segment planes using 

AHC under this restriction, the following types of nodes and corresponding edges are removed 

from the graph, which is illustrated using an example in Figure 2-4 (‘o’ shows nodes with 

missing data point; ‘x’ shows nodes with depth discontinuity; black dot shows nodes with too 

large plane fitting MSE; and ‘B’ shows nodes located at the boundary region between two 

connected planes): 

1. Nodes Having High MSE: Non-planar regions lead to high plane fitting MSE, which are 

simply removed. 

2. Nodes Containing Missing Data: Because of the limitation of the sensor, some regions 

of the scene might not be sensed correctly, leading to missing data (e.g., the glass 

window behind the shutter). 

3. Nodes Containing Depth Discontinuities: These nodes contain two sets of points lying 

on two surfaces that are not close in 3D but are close in the image space (usually one 

surface partially occludes the other, e.g., the monitor occludes the wall behind). If 

principle component analysis (PCA) is performed on points belonging to this node for 

plane fitting, the fitted plane will be nearly parallel to the line-of-sight direction and thus 

still have a small MSE. Merging this "outlier" node with its neighbor node will have bad 

effect on the plane fitting result because of the well-known issue of over-weighting 

outliers in least-squares methods. 

4. Nodes at Boundary Between Two Planes: These nodes contain two sets of points close 

to each other in 3D but lying on two difference planes (e.g., the corner of the room), 

which will decrease the plane fitting accuracy if they are merged to one of the planes. 
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The functions RejectNode and RejectEdge in Algorithm 2–2 are designed to reduce the influence 

of these four types of bad initial nodes. The RejectNode function removes the first three types of 

Algorithm 2–2: Graph Initialization. 
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bad nodes (and thus the points inside) from the graph, while the RejectEdge function is for 

mitigating influence of the fourth type of bad nodes. 

 

Figure 2-4: Examples of bad initial nodes. 

It is interesting to note that the gain in this non-overlapping "disadvantage" is the avoidance of 

per-point normal estimation. This initialization step can be seen as treating all points inside a 

node as if they have a common plane normal. This is an important reason for the speed 

improvement of this method compared to other state-of-the-art methods which often spend a 

large portion of time in the normal estimation for each point. 

2.4.2 Agglomerative Hierarchical Clustering 

As shown in Algorithm 2–3, the AHC in this PEAC algorithm is almost the same as that in the 

line regression, except that it is operated on a graph instead of a double linked list. First a min-

heap data structure is built for efficiently finding the node with the minimum plane fitting MSE. 

It then repeats finding a node v  that currently has the minimum plane fitting MSE among all 

nodes in the graph and merging it with one of its neighbor nodes bestu  that results in the 

minimum merging MSE (recall that each node in the graph is a set of points; so the merging 
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MSE is the plane fitting MSE of the union of the two sets 
mergeu ). If this minimum merging MSE 

exceeds some predefined threshold MSET  (not necessarily a fixed parameter as explained later in 

section 2.4.3), then a plane segment v  is found and extracted from the graph; otherwise the 

merged node 
mergeu  is added back to the graph by edge contraction between v  and bestu . 

Algorithm 2–3: Agglomerative Hierarchical Clustering. 
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Figure 2-5: Average number of merging tests per frame. 

As mentioned in section 2.3.2, PEAC requires a larger number of merging attempts than the line 

regression. However, it turns out to be still quite efficient and the clustering process can be done 

in ( log )O n n  time in practice. Figure 2-5 experimentally shows the average number of merging 

attempts during AHC per frame (during 2102 frames of 640 by 480 Kinect point clouds). As can 

be seen, irrespective of the initial node size (and thus the initial number of nodes), this number 

stays small. This may be explained by the fact that the graph constructed from Algorithm 2–3 is 

a planar graph. From graph theory one knows that the average node degree of a planar graph is 

strictly less than 6. Since the initial graph is planar and merging nodes by edge contraction does 

not change its planarity, during the whole process of AHC the average node degree is always less 

than 6. Also, the plane fitting MSE of a large segment is larger than that of a smaller segment, if 

errors are drawn from the same Gaussian distribution. Thus the AHC process tends to balance 

the size of all the segments, because it always tries to grow the size of the node with the 

minimum plane fitting MSE and then switches to other smaller nodes. Therefore, it will not stick 

to growing a large node (which implies large node degree since it has large boundary), otherwise 

the average number of merging tests will be much larger. Based on this observation, lines 6 to 20 
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in Algorithm 2–3 can be done in a constant time irrespective of the initial number of nodes. The 

( log )O n n  complexity only arises from maintaining the min-heap structure. 

2.4.3 Implementation Details 

There are several implementation details to improve the speed and accuracy for this fast coarse 

segmentation: 

1. A disjoint set data structure is used for tracking the point membership of each initial node 

,i jv  during the node merging in AHC. 

2. As in the line regression, all nodes maintain the first and second order statistics of all the 

belonging points, i.e., 2 2 2
, , , , , , , , , , , ,, , , , , , , ,i j i j i j i j i j i j i j i j i j i j i j i jx y z x y z x y y z z x         , 

such that merging two nodes and calculating its plane equation and MSE through PCA is 

a constant time operation. 

3. The function for determining the depth discontinuity in RejectNode of Algorithm 2–2 

depends on sensor noise characteristics. For Kinect sensors, the following function is 

used as suggested in (Holzer et al. 2012) and Point Cloud Library (PCL)
3
: 

 
1 | | 2 (| | 0.5)

( , )
0 otherwise

a b a
a b

z z z
f

  
 


p p  (2.1) 

The unit of z here (and throughout this chapter) is millimeter and the parameter   was 

used between 0.01 and 0.02. 

4. The threshold MSET  for extracting segments is also sensor dependent. For Kinect, the 

following equation adapted from (Khoshelham and Elberink 2012) is used: 

                                                 
3
 http://www.pointclouds.org 

http://www.pointclouds.org/
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 2 2( )z MSET  (2.2) 

where 61.6 10    and  between 3 and 8 is used. Similarly, ANGT  can also be 

changed depending on depth. 

5. The initial node should be close to a square shape in the image space, i.e., W H. If a 

strip-like shape is used, either W≫H  (e.g., 20, 2 W H ) or H≫W , the PCA on the 

initial node will result in wrong plane normal direction which is usually almost 

perpendicular to the line-of-sight direction. Consequently the following AHC will fail to 

segment planes correctly. 

2.5 Segmentation Refinement 

For many applications, the coarse plane segmentation obtained in the previous section might not 

be enough, especially if the applications use the boundaries of planes (Pathak et al. 2010; 

Fernandez-Moral et al. 2013) or require higher accuracy of the estimated plane equations. Thus 

refinement on the coarse segmentation  is performed. 

Three types of artifacts are expected in the coarse segmentation, as shown in Figure 2-6 (where 

the bottom row shows the corresponding refined segmentations): 

1. Sawtooth: Usually at the boundary between two connected planes (e.g., purple and 

yellow segments of the top-left part). 

2. Unused Data Points: Usually at the boundary of occlusion or missing data node (e.g., 

between lamp and wall of the top-right part). 

3. Over-Segmentation: Usually between two object's occlusion boundary (e.g., purple and 

red segments of the top-right part). 
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Algorithm 2–4: Segmentation Refinement. 
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Sawtooth artifacts cause small amount of outliers to be included in estimation, whereas unused 

data points and over-segmentation cause less inliers to be used. All of the artifacts produce 

inaccurate plane boundaries and slightly decrease the accuracy of the estimated plane equation. 

 

Figure 2-6: Artifacts of coarse segmentations and corresponding refinement. 

The solution to them is described in Algorithm 2–4. Since sawtooth artifacts are almost always 

observed at the boundary regions of , erosion of boundary regions of each segment can 

effectively eliminate them (lines 5 to 12). Then pixel-wise region growing is started from all new 

boundary points to assign all unused data points to its closest plane that is extracted previously 

(lines 13 to 27). During the region growing the 4-connected neighborhoods are discovered for 

each segment k , which form a new graph G . Finally applying AHC again on this very small 

graph (usually less than 30 nodes) fixes the over-segmentation artifact (line 28). 

2.6 Experiments and Discussion 

To comprehensively evaluate PEAC's performance in terms of robustness, time, and accuracy, 

three sets of experiments was conducted, as described in the following subsections. This 
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algorithm was implemented in C/C++. For PCA, the efficient 3 by 3 matrix eigenvalue 

decomposition routine described in (Kopp 2008)
4
 was used. All experiments were conducted on 

an ordinary laptop with Intel Core i7-2760QM CPU of 2.4GHz and RAM of 8GB. No multi-

threading or any other parallelism such as OpenMP or GPU was used in this implementation. 

2.6.1 Simulated Data 

Similar to the influence of noise simulation in (Georgiev et al. 2011), PEAC's robustness was 

tested on a simulated depth map with 20 different levels of uniformly distributed noise of 

magnitude 10 , 0, ,20E l l    (noise unit: mm; ground truth depth ranges from 1396mm to 

3704mm). After the noise was added to the depth map, it was converted to an organized point 

cloud and fed into the algorithm ( 220, 50  MSEW H T ). As shown in Figure 2-7, PEAC can 

reliably detect all of the 4 planes for 0, ,14l   , and starts to over-segment after that. Yet even 

when E=200mm PEAC was able to detect major planes in the scene. 

 

Figure 2-7: Plane extraction results on simulated data. 

                                                 
4
 Implementation available for download at http://www.mpi-hd.mpg.de/personalhomes/globes/3x3/ 

http://www.mpi-hd.mpg.de/personalhomes/globes/3x3/
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2.6.2 Real-World Kinect Data 

To measure the processing speed of PEAC, 2102 frames of 640 by 480 pixel real-world Kinect 

data were collected in an indoor scene, partly shown in Figure 2-1 and Figure 2-6. Then they 

were processed with PEAC using 12 different initial node sizes ( 800NUMT , 0.02, 8  

mm, ANGT  increases linearly from 15° at z=500mm to 90° at z=4000mm). As shown in Figure 

2-8, with initial node size of 10 by 10, even with refinement, PEAC took only . .27 3 6 9ms in 

average to process a frame of 640 by 480 pixel Kinect data, achieving more than 35Hz frame 

rate. To the best of my knowledge, this is much faster than existing state-of-the-art algorithms. 

 

Figure 2-8: Average processing time of the proposed PEAC algorithm. 

2.6.3 SegComp Datasets 

The accuracy of PEAC was evaluated using the SegComp datasets (Hoover et al. 1996). Both the 

ABW ( 4, 1, 60 , 160, 0.1    MSE ANG NUMW =H T T T ) and PERCEPTRON (

8, 2.1, 45 , 240, 0.03    MSE ANG NUMW =H T T T ) datasets of planar scenes were 
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experimented. Typical segmentation results of ABW and PERCEPTRON test datasets are shown 

in Figure 2-9. The estimated plane normal deviated from the ground truth was (1.7 0.1)  for 

ABW-TEST (top row) and (2.4 1.2)  for PERCEPTRON-TEST (bottom row). Again, white 

dash lines are the segmentation boundary before the region-grow-based refinement. The detailed 

benchmark results using the evaluation tool provided by SegComp are shown in Table 2–1. The 

results other than the one presented here were obtained from (Gotardo et al. 2003; Oehler et al. 

2011; Holz and Behnke 2012). As can be seen, PEAC's performance is comparable to the state-

of-the-art in terms of segmentation accuracy as well as plane orientation estimation (higher 

accuracy can be achieved when the ABW and PERCEPTRON sensors' noise characteristics are 

known), especially considering the fact that PEAC's frame rate is much higher (Note that the 

SegComp datasets were not used for speed evaluation since many methods in Table 2–1 were 

evaluated a decade ago with much lower computational power). 

 

Figure 2-9: Plane extraction on SegComp datasets. 
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2.7 Conclusions 

A novel fast plane extraction algorithm for organized point clouds was presented, achieving 

more than 35Hz frame rate on 640 by 480 point clouds while providing accurate segmentation. 

In the future the algorithm is to be extended to non-organized point clouds as well so as to fast 

extraction of other primitives such as spheres and cylinders. 

Table 2–1: Benchmarking results on the SegComp datasets. 

Approach 
Regions in 

ground truth 

Correctly 

detected 

Orientation 

deviation (°) 

Over-

segmented 

Under-

segmented 

Missed 

(not detected) 

Noise 

(non-existent) 

SegComp ABW data set (30 test images) by Hoover et al. (1996), 

assuming 80% pixel overlap as in (Gotardo et al. 2003) 

USF 15.2 12.7 (83.5%) 1.6 0.2 0.1 2.1 1.2 

WSU 15.2 9.7 (63.8%) 1.6 0.5 0.2 4.5 2.2 

UB 15.2 12.8 (84.2%) 1.3 0.5 0.1 1.7 2.1 

UE 15.2 13.4 (88.1%) 1.6 0.4 0.2 1.1 0.8 

OU 15.2 9.8 (64.4%) ─ 0.2 0.4 4.4 3.2 

PPU 15.2 6.8 (44.7%) ─ 0.1 2.1 3.4 2.0 

UA 15.2 4.9 (32.2%) ─ 0.3 2.2 3.6 3.2 

UFPR 15.2 13.0 (85.5%) 1.5 0.5 0.1 1.6 1.4 

Oehler et al. 15.2 11.1 (73.0%) 1.4 0.2 0.7 2.2 0.8 

Holz et al. 15.2 12.2 (80.1%) 1.9 0.8 0.1 0.9 1.3 

Enjarini et al. 15.2 13.2 (86.8%) ─ 0.3 0.2 1.1 1.8 

PEAC 15.2 12.8 (84.2%) 1.7 0.1 0.0 2.4 0.7 

SegComp PERCEPTRON data set (30 test images) by Hoover et al. (1996), 

assuming 80% pixel overlap as in (Gotardo et al. 2003) 

USF 14.6 8.9 (60.9%) 2.7 0.4 0.0 5.3 3.6 

WSU 14.6 5.9 (40.4%) 3.3 0.5 0.6 6.7 4.8 

UB 14.6 9.6 (65.7%) 3.1 0.6 0.1 4.2 2.8 

UE 14.6 10.0 (68.4%) 2.6 0.2 0.3 3.8 2.1 

UFPR 14.6 11.0 (75.3%) 2.5 0.3 0.1 3.0 2.5 

Oehler et al. 14.6 7.4 (50.1%) 5.2 0.3 0.4 6.2 3.9 

Holz et al. 14.6 11.0 (75.3%) 2.6 0.4 0.2 2.7 0.3 

Enjarini et al. 14.6 10.7 (73.3%) ─ 0.4 0.1 3.6 4.4 

PEAC 14.6 8.9 (60.9%) 2.4 0.2 0.2 5.1 2.1 
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Chapter 3 

Plane Registration Leveraged by Global Constraints 

"We all need people who will give us feedback. That's how we improve."—Bill Gates 

3.1 Introduction 

The ability to recover a user’s pose (i.e., position and orientation within a certain coordinate 

system) is critical in many engineering domains such as AR, robotics, context-aware computing, 

and computer vision. In AR, for example, this task is termed as the “registration” problem 

(Azuma 1997). In robotics, this task is closely related to “simultaneous localization and 

mapping” (SLAM) (Klein and Murray 2007; Thrun 2008). In computer vision, “structure from 

motion” (SFM) algorithms are designed to solve this problem with little or no prior knowledge 

about the environment (Bao and Savarese 2011). Context-aware engineering applications also 

face a similar problem where the positioning part is more relevant (Akula et al. 2011). In 

cinematography, the problem is called “move matching”. For simplicity, the author will refer to 

all of these as the registration problem in this research. 

Despite the rapid development of sensor technology—such as the global positioning system 

(GPS) and inertial measurement units (IMU), as well as angle sensors like the digital magnetic 

sensor, gyroscope, and accelerometer—this problem remains a challenge. A GPS signal is hardly 

available indoors, IMU suffers from the drifting effect after a while (Akula et al. 2011), and a 
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magnetic sensor can be hugely affected by the changing environment, especially in challenging 

environments such as construction sites with all kinds of machines moving around, needless to 

mention the sensor’s annoying jitter effect. 

To overcome these technical insufficiencies, especially for indoor environments, infrastructure-

based technology has been studied, such as RFID-based indoor tracking (Bekkali et al. 2007) and 

wireless local area network (WLAN)-based indoor positioning (Khoury and Kamat 2009; Li et 

al. 2006). Yet these technologies are costly, inefficient, or sensitive to the environment, and lots 

of work has to be put into the system calibration stage. Further, these technologies’ general 

inability to recover a user’s orientation is troublesome for 3D visualization. 

However, beyond all of those technologies, it is very interesting to note that a human being can 

figure out where s/he is to a certain degree of accuracy, given that s/he is familiar enough with 

that specific region of environment, mostly with the help of visual clues. This intuition inspires 

us to look into the developments in the computer vision community. Meaningful new tools that 

confront this registration problem could be developed if the insight of this human-possessed 

ability can be somehow captured and automated. 

Following this motivation, this chapter presents a new visual registration method called KEG 

planar object tracker, which essentially recovers the pose of the user, i.e. camera, in real-time 

from a set of planar markers whose own poses are known, capturing the idea that this tracker is 

familiar enough with the environment so as to perform an estimation of position and orientation, 

just as humans do. Section 3.2 will briefly introduce the state-of-the-art methods in visual 

registration. Section 3.3 will explain in detail how the first computation step of this tracker 

works. Then section 3.4 will explain another class of planar marker-based algorithms that 
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eventually serve as the second step of this tracker. Section 3.5 will explain the main contribution 

in this chapter—an efficient improvement based on the previous two classes of algorithm 

frameworks. After that, section 3.6 will describe several experiments that demonstrate the 

superiority, under different objective quality measures, of this algorithm framework. Also, 

section 3.7 will describe two novel AEC applications that deploy this tracking algorithm. Finally, 

conclusions are drawn in section 3.8. 

3.2 Previous Work 

The visual registration problem is actively studied in the computer vision community, and 

several algorithms have been proposed to address it. Based on their different assumptions on the 

environment (i.e. the surrounding world where visual registration is going to be performed), 

these algorithms can be classified into two groups (Lepetit and Fua 2005): known environment 

vs. unknown environment (See Figure 3-1. The proposed method in this chapter can be classified 

under natural marker-based methods). The first group of algorithms is easier to design since the 

only unknown is the user’s pose. In the second group, an estimation of the environment has to be 

done along with the registration, which is naturally related to the visual SLAM problem that is 

being explored in the robotics community (Davison et al. 2007). 

 

Figure 3-1: A brief taxonomy of visual registration methods. 
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Generally, SLAM-based methods are more desirable since very few assumptions are made on the 

environment, which inherently makes those algorithms infrastructure-independent and thus 

enlarges their sphere of application. Non-visual SLAM-based methods typically rely on 

measurements from laser or light detection and ranging (lidar), where the cost and even the 

weight of those devices could be potential disadvantages of applying such technologies. 

Especially for context-aware computing in civil infrastructure applications (e.g. facility 

management, bridge inspection), weight is always an important consideration since human 

inspectors will not be able to comfortably use overly heavy devices. Although those developing 

visual SLAM algorithms can avoid these drawbacks by using a standard and lightweight web-

cam as the main sensor, currently many limitations exist in such an approach (Klein and Murray 

2007), including the requirement of high computational power and small range restriction. 

Different from the visual SLAM methods, the known environment methods have been well 

studied, and many powerful algorithms have been proposed in the last two decades. This makes 

it more realistic to apply them for solving real-world engineering issues. Within this class of 

methods, they can be further categorized into two groups: planar environment vs. non-planar 

environment. The first group is again easier to design because of the simple assumption made 

regarding the environment—a planar structure with known visual features. While the second 

group typically assumes known 3D structures with known visual features (usually CAD models), 

they are more often applied in a controlled environment with limited space, such as a small 

manufacturing workspace (Drummond and Cipolla 2002). 

The authors choose to take advantage of plane-based methods since planar structures are 

abundant in buildings, construction sites, and other human-made environments where 

engineering operations are conducted, which makes this type of method very convenient to 
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apply. In addition, a planar structure can simply be an image printed out on a piece of paper and 

attached to a wall/floor of a corridor, with nearly zero cost. All of those advantages make this 

method ideal for application, and merit its investigation. 

Plane-based methods can be further classified based on different visual features they adopt: 

fiducial marker vs. natural marker. In the following two subsections, the two types of markers 

will be introduced. 

3.2.1 Fiducial Marker 

A fiducial marker is composed of a set of visual features that are “easy to extract” and “provide 

reliable, easy to exploit measurements for the pose estimation” (Lepetit and Fua 2005). Usually 

those features are a set of black and white patterns forming simple geometry by circles, straight 

lines, or sharp corners and edges. 

Figure 3-2: Examples of fiducial markers. 

Fiducial markers have been widely used in AR community for their simplicity and minimal 

computational requirement. ARToolKit (Kato and Billinghurst 1999) is one of the earliest and 

most widely used fiducial marker-based AR systems. Since every ARToolKit marker is bounded 

by a wide black bounding box, the detection of the marker and registration can be solved by 

   
(a) ARToolKit (Kato and 

Billinghurst 1999) 

(b) Frame marker (Wagner et 

al. 2008) 

(c) AptilTag (Olson 2011) 
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simply taking a threshold of the current input image and then discovering the four outer edges 

and corners so as to further estimate the camera’s pose. A similar method is also adopted in the 

“frame marker” proposed by (Wagner et al. 2008), as shown in Figure 3-2 (a) and (b). 

Different from the simple image-processing algorithms in ARToolKit for detecting marker and 

estimating pose, AprilTag (Olson 2011) clusters every pixel of the current input image based on 

its gradient and location, and then extracts multiple line segments as the boundary of each 

cluster. Finally, different quadrangles are discovered and used to decode a potential tag/marker 

ID, as shown in Figure 3-2 (c). This newly proposed method is proved through experiments to be 

superior to ARToolKit and many other state-of-the-art fiducial marker-based methods (Olson 

2011). 

3.2.2 Natural Marker 

Distinct from a fiducial marker, a natural marker does not require special predefined visual 

features. Instead, it treats any visual features in the same way. In this sense, any common image, 

ranging from a natural view to a company logo, can immediately be used as a natural marker, of 

course except for some images with fixed spatial frequency (i.e. images with the same color 

everywhere or repeated patterns). This major difference makes it much easier to set up a natural 

marker than a fiducial one. Users do not need to separately design special markers; they can 

simply take advantage of any meaningful pictures related to the problem of interest. 

In addition, one major downside to a fiducial marker lies in the fact that it usually depends on the 

four corner points or edges of the marker’s quadrangle to do further registration estimation, 

which is the reason that fiducial marker-based methods will fail even if one corner is not within 
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view. This disadvantage does not exist in natural marker-based methods; in fact natural markers 

do not even require a marker image to be rectangular. 

A natural marker uses more than four points to perform registration estimation. By detecting an 

appropriate number of feature points in both marker image and current image, a natural marker-

based algorithm will then try to establish correspondences between these two sets of feature 

points. Once correspondences are established, further estimation can easily be made. Thus lots of 

algorithms have been proposed to tackle the main issue and most computational intensive part 

here, i.e. how to find as many correct correspondences as quickly as possible. Again, by the 

fundamental difference in the way they treat input images, these algorithms form two groups: 

one group treats each input image independently, which is referred to as a detection-based 

method, such as (Lowe 2004; Ozuysal et al. 2007); the other group needs two or more 

consecutive images as input, which is referred to as a tracking-based method, such as (Shi and 

Tomasi 1994; Lucas and Kanade 1981). Since the proposed method in this chapter evolves from 

both these algorithm groups, the following sections (3.3 and 3.4) will explain in detail the 

process framework of each type of algorithms, as well as how it inspires and is jointly adapted to 

the proposed algorithm framework. 

3.3 Homography From Detection 

In either fiducial marker-based or natural marker-based algorithms, the fundamental task is to 

find the transformation between the marker image plane and the current camera plane which 

contains that current image frame. Such a transformation, which is called homography, maps 

points on the marker image to their corresponding points on the current image frame with the 

following equation: 
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 [ , ,1] [ , ,1]s x y x y  T T
H  (3.1) 

where H is a 3 by 3 matrix representing the homography, (x, y) and (x', y') are the corresponding 

points on the two images, and s is an unknown scaling parameter. 

In fact, the general idea behind a plane-based registration algorithm is the fact that homography 

between two planes encodes the orientation and position information of one plane relative to 

another. From this perspective, registration is equivalent to finding the homography between the 

marker plane and the current camera plane. From projective geometry, one knows that with at 

least four point correspondences between two planes, their homography can be uniquely 

determined by solving a set of linear equations (Hartley and Zisserman 2000). 

More complicated than fiducial marker-based algorithms, which take advantage of simple 

patterns to find correspondences and then estimate homography, natural marker-based 

algorithms require a lot more effort to solve a correspondence problem. 

 

Figure 3-3: Homography-from-detection algorithm framework. 

Figure 3-3 shows the generic algorithm framework of the homography-from-detection type of 

methods. The gray components need be loaded or calculated once during a computation, while 

the white components need to be updated for each new frame. H is the homography between the 

current frame and the marker image. K is the camera calibration matrix storing the focal length 

and some other intrinsic parameters, which can be calibrated in advance. R is the rotation matrix 

 



53 

representing camera orientation, and T is the translation vector representing the position of 

camera center. For each incoming image frame, the first step is to detect a set of keypoints. Also, 

at the very beginning, a fixed set of keypoints has to be detected on the marker image. Interest 

point detection algorithms are usually applied in this step, such as Harris corner detector (Harris 

and Stephens 1988), FAST (Rosten and Drummond 2006), Difference of Gaussian (DoG) (Lowe 

2004), and Laplacian of Gaussian (LoG) (Lindeberg 1998). 

The second step involves a matching problem, i.e. finding corresponding points between two sets 

of keypoints based on their local appearance. Among the state-of-the-art algorithms, the Scale 

Invariant Feature Transform (SIFT) algorithm by (Lowe 2004) is perhaps the most famous and 

widely used nowadays. Although the SIFT algorithm works very well under large variation of 

visual conditions—illumination, scale, and rotation change among others—it is computationally 

time-consuming, which makes it impractical to be applied directly in real-time applications, such 

as a registration problem, even after applying lot of approximation to SIFT, as proposed in the 

SURF algorithm (Bay et al. 2008). Ozuysal et al. approach the matching problem from a very 

different perspective—matching as classification (Ozuysal et al. 2007). Their method, FERNs, 

differs from SIFT/SURF by the requirement of an offline training stage. Only after a long period 

of training using the marker image can FERNs recognize different keypoints on that particular 

marker under different visual conditions. Although the offline training requirement appears to be 

a disadvantage, FERNs enjoy the high-speed advantage. Recently, other faster methods (Rublee 

et al. 2011; Taylor et al. 2009) have also been proposed. 

As mentioned, since most of these matching algorithms exploit a local feature descriptor, i.e. 

using image intensity information to describe a keypoint within only a limited neighboring 

region centered at that keypoint, mismatch is inevitable. In order to avoid most of these false 
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matches, a robust estimation algorithm, such as the famous RANdom Sample And Consensus 

(RANSAC) (Fischler and Bolles 1981) or its variants (Chum and Matas 2005; Torr and 

Zisserman 2000), is usually employed to estimate the homography. 

3.3.1 Homography Decomposition 

Once homography is found—through matrix decomposition techniques (Benhimane et al. 2005; 

Malis and Vargas 2007) the camera position, the translation vector T, and orientation—the 

rotation matrix R, can be calculated. A simple yet effective method was proposed by (Simon et 

al. 2000). 

If a point’s 3D coordinate is (X, Y, Z) and its image on the camera plane has a 2D coordinate of 

(x, y), and if it is assumed that the camera is already calibrated with known focal length and 

principal point position that is stored in the K matrix, the camera projection model is (Hartley 

and Zisserman 2000): 

 
[ , ,1] ~ [ , , ,1]

~ [ , ][ , , ,1] ,

x y X Y Z

X Y Z

T T

T

P

K R T
 (3.2) 

where “~” means the two vectors are equal up to a scale parameter, i.e. equal in the sense of 

projective geometry. Since the marker image is a 2D plane, it can be set to be on the X–Y plane 

without loss of generality. Thus the above projection equation can be rewritten as (ri is the i-th 

column of R): 
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From the equation above, one can determine the following equations, which decompose the 

homography H between the current frame and the marker image into R and T, to be: 

 
1 2 1 2

3

[ , , ]

,

, 



R a a a a

T a
 (3.4) 

where ai is the i-th column of matrix 1

1 2 3[ , , ]


K H a a a  and “  ” means the cross product. Note 

again that the actual matrix to be decomposed is 1
K H  rather than H, which means the camera 

needs to be calibrated in advance to get the K matrix. 

3.4 Homography From Tracking 

 

Figure 3-4: Homography-from-tracking algorithm framework. 

As shown in Figure 3-4 homography-from-tracking type of methods explore relations between 

consecutive frames. Since images of two such frames usually look very similar, correspondences 

needed for homography estimation can easily be maintained by tracking each keypoint around its 

local neighborhood. Thus this type of methods can circumvent the hardest matching problem, 

since in this framework, matching between the marker keypoint and the current keypoint to get 

correspondences is only needed at the very beginning; after that, keypoint correspondences are 

maintained by a tracking algorithm. Next sections will briefly introduce two tracking algorithms 
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that play a crucial role in the proposed method: the Kanade-Lucas-Tomasi (KLT) feature tracker 

and Efficient Second-order Minimization (ESM) algorithm. 

3.4.1 Kanade-Lucas-Tomasi Feature Tracker 

Proposed by (Lucas and Kanade 1981), the KLT tracker’s ultimate goal is to find the feature 

point displacement within two consecutive frames. It assumes that during these two frames, the 

local appearance of the feature point x does not change, and that the displacement is small. Thus 

in order to find the optimal displacement, these two assumptions of the invariance in local 

appearance can be mathematically represented as: 
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In equation (3.5), I0 is the last frame, I1 is the current frame, and z is the location of the point to 

be tracked in the image frame I0. Note that x, z, p, ∆p are all 2D column vectors. Here, an image 

is a function that takes a 2D point as input and outputs a real intensity value, i.e. 2:I   . In 

order to solve this minimization problem, the KLT tracker applies the first-order Taylor 

expansion on the image function I1(.) around x+p in equation (3.5), leading to: 
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where 1( )I x p  is the 1 by 2 image gradient of the current frame at location x+p. 

This becomes a standard least-square problem with close-form solution. Since the KLT tracker 

uses a first-order approximation of the image function during the derivation, an iterative process 
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is adopted here (see Algorithm 3–1). Note that this is a local tracking algorithm since in equation 

(3.5) and (3.6) only the neighborhood of the tracked point is z considered. 

3.4.2 Efficient Second-order Minimization 

As discussed previously, the KLT tracker actually formulates the point tracking problem as a 

minimization problem. Its motion model is very simple, a 2D displacement. Similarly, if using 

the 2D homography as the motion model, and using second-order approximation of the image 

function, one will get a global refinement algorithm with a faster convergence rate, i.e. the ESM 

algorithm proposed by (Benhimane and Malis 2004; Benhimane et al. 2005). 

Firstly, the optimization equation is: 

 

 

 

2

2

arg min ( ( ) ) ( )

arg min ( ( ) ( ) ) ( ) ,

I H T

I H H T

 

  





p
x

Δp
x

p x x

p Δp x x
 (3.7) 

Algorithm 3–1: KLT algorithm. 

Input: a single keypoint z to be tracked from the last frame I0 to the current frame I1. 

Initiate p=[0,0]
T
. 

Iterate: 

1. Compute the error image 0 1( ) ( )I I x x p  around the neighbor of z; 

2. Compute the image gradient of the current image 1I  around the neighbor of z; 

3. Compute *
Δp  by solving equation (3.6); 

4. Update * p p Δp  

Until *
Δp . 
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where H(p) is a homography function that takes an 8 by 1 parameter vector p as input and 

outputs a 3 by 3 homography matrix, satisfying that H(0) is an identity matrix, and ∆p is the 

updating parameter of the initial guess on optimal parameter p; also, H(p)·x means mapping the 

2D point x using the homography H(p) by equation (3.1). Notice that in this equation x is not 

limited to any local region. Instead, x can be any pixel location in the template image T, i.e. the 

marker image in this framework, which is why this is dubbed as a global refinement. Then a 

second order Taylor expansion of the image function ( ( ) ( ) )I H H  p x  around updating 

parameter ∆p=0 is performed: 

 
2

1
arg min ( ( ) ) ( ) ( ) ( ) ,

2
I H T J M   
 
  


T

Δp
x

p x x 0 Δp Δp 0 Δp  (3.8) 

where J(0) is the 1 by 8 Jacobian matrix of the function ( ( ) ( ) )I H H  p x , and  M(0) its 8 by 8 

Hessian matrix, all evaluated at ∆p=0 and location x. 

Next, let’s consider the novelty of ESM. One can again apply a first-order approximation of the 

Jacobian matrix ( ) ( ) ( )J J M  T
Δp 0 Δp 0  and substitute it into equation (3.8) to get: 
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Thus one gets a second-order approximation without calculating the Hessian matrix, whose 

computation is time-consuming. Let  
1

( ) ( ) ( )
2

esmJ J J Δp 0 Δp , then the optimization 

becomes: 
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If one knows how to compute the ( )esmJ Δp  without knowing ∆p, the problem is again a standard 

least-square problem similar to equation (3.6). 

So the only problem now is the calculation of ( )esmJ Δp . Let’s consider the first half of it. 

Applying the chain rule, one has: 
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where JI is the image gradient of the warped image I(H(p)) at location x, JW is the Jacobian of the 

homographic mapping function  ( ; ) ( )W H x p p x , and JH depends on the choice of the 

parameterization of the homography. JW and JH can be pre-computed once and for all. 

In order to prevent direct calculation of J(∆p), since ∆p is the variable to be optimized, 

Benhimane et al. chose to use a Lie Algebra method for parameterizing the homography 

(Benhimane and Malis 2004). Thanks to this method, the calculation of J(∆p) can be 

circumvented by J(∆p)=JT·JW·JH, where JT is the image gradient of the template image T. This 

means: 
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2

esm I T W HJ J J J J Δp  (3.12) 

Since, in the above equations, the computation of JI, JT, JW and JH only requires the location x 

and the p as the current guess of homography parameters, without the need of knowing ∆p, the 

previous problem is solved. In summary of the above derivation, one can get the ESM global 

refinement algorithm (see Algorithm 3–2). 
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3.5 Global Geometric and Appearance Constraints 

The advantage of homography-from-detection methods lies in the fact that since they treat each 

image frame separately, as shown in Figure 3-3, estimation can be totally wrong at one particular 

frame, and the following frames won’t be affected at all. However, the problem with methods 

such as SURF and FERNs is that, in order to speed up the time-consuming matching step in 

detection, lots of approximations are adapted. This makes the homography estimation very 

unstable, resulting in a very annoying jitter effect if adopted in AR applications, i.e. the 

augmented object appears to be shaking in the scene (Kamat and El-Tawil 2007). In the author’s 

experiments, even if the camera is fixed, the estimated camera position and orientation could 

have very large variance. 

In a different approach, homography-from-tracking methods, such as ESM and KLT, compare 

the current frame with the previous one in order to track the change. Although they benefit from 

Algorithm 3–2: ESM global refinement algorithm. 

Initiate p=0. 

Pre-compute JWJH as in equation (3.11), and also image gradient of template image T. 

Iterate: 

1. Warp current image I with H(p), result in the warped image I(H(p)); 

2. Compute image gradient of the warped image I(H(p)); 

3. Compute Jesm as in equation (3.12); 

4. Compute error image I(H(p)·x)-T(x); 

5. Solve the least-square problem in equation (3.10); 

6. Update the homographic warp *( ) ( ) ( )H H H p p p  

Until *
Δp . 
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the relatively higher tracking speed that improves their frame rate, one critical problem of this 

group of methods is that every tracker suffers from the drifting effect, i.e. the updated position of 

the tracked point actually differs to some extent from its true new position, and will thus 

eventually fail. The drifting effect will lead to large error in homography estimation, since these 

drifting errors usually do not follow Gaussian distribution and shall be seen as systematic errors 

that are changing dynamically. Also, the greater the number of points failing to be tracked, the 

larger the variance that the estimated camera pose could have. Thus the augmented objects could 

be in a wrong position and shaking at the same time. 

 

Figure 3-5: KEG algorithm framework. 

The new framework (Figure 3-5) proposed in this chapter integrates the homography-from-

detection and homography-from-tracking frameworks, utilizing their strong points and 

circumventing their short-comings. In general, the framework starts by the original homography-

from-detection framework. Once the marker image is detected along with a rough estimation of 

the homography, it immediately moves into a coarse-to-fine framework. Only when the track is 

somehow lost will this procedure be repeated. Within the new framework, and firstly via the 

original tracking algorithm (KLT), a coarse homography could be found. Then, it would be 

refined by a global optimization algorithm (ESM). Finally the refined homography would be 
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used to correct the positions of the set of points to be tracked in the next frame, which is inspired 

by the following analysis of the cause of the drifting effect. 

3.5.1 Drifting Effect Analysis 

After analyzing the drifting effect in homography-from-tracking methods, it is actually found to 

be an error accumulation issue. During the tracking between every two consecutive frames, the 

error introduced by any tracking algorithm is accumulated. After a while, this accumulation 

could directly lead to the tracking of a wrong local target or even to the failure of the tracker. 

After realizing this, one pertinent question to ask is: is there any way to correct the error before 

the next tracking is actually performed? It was found that this is possible, which led to the design 

of this proposed framework. To gain more understanding of the cause of the drifting effect, the 

detailed error analysis is shown, as follows. 

Firstly, the error source of any tracking algorithm, such as KLT, can be seen as composed by the 

following terms: 

 ˆnew gold d    x x x  (3.13) 

where ˆ
newx  is the updated position estimated by KLT, xold is the true original position, 

new old Δx x x  is the true displacement, d  is the systematic drifting error, and g  is the rest of 

the error, which is assumed to follow some Gaussian distribution. Here, ∆x is caused by physical 

movement between the camera and the scene, 
g  is mainly caused by camera CCD sensor noise, 

and d  is usually caused by the tracking algorithm and other complicated reasons, such as the 

fact that KLT will be affected a lot when the camera is moving too fast, which leads to motion 

blur and thus violates KLT’s underlying assumptions. 
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The second step of homography-from-tracking methods applies robust estimation algorithms 

(e.g. RANSAC) to estimate Hcoarse from the array of tracked points ˆ{ }newx  and their 

corresponding points on marker image. However, even though RANSAC can eliminate a lot of 

outliers if the absolute value of error d g   exceeds some threshold, and further, can eliminate 

the Gaussian error 
g  by a final least-square estimation on the outlier-free subset of 

correspondent points, there still remains a part of systematic drifting error d  not handled and 

thus propagated into Hcoarse. In the homography-from-tracking framework, neither d  nor 
g  are 

corrected during the update step, so these errors are accumulated, which can cause a large drift 

even after a few frames of tracking. 

3.5.2 Error Correction by Global Constraints 

One natural way to reduce the effect of d  is to apply the global appearance constraint, as 

shown in equation (3.14), 
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which essentially means that the original marker image will look the same as the image rectified 

from the current frame by estimated homography H. Before this step, all of the information used 

by the KLT tracker is local, while d  is systematic, therefore a global optimization based on the 

whole marker image, i.e. the global appearance constraint represented by equation (3.14), will 

theoretically eliminate all the systematic error and Hcoarse can serve as a good optimization 

starting point. 
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After the drifting error is eliminated when estimating the refined homography Hrefined, one can 

easily correct tracking errors and update keypoint positions to be filled into the next tracking 

iteration by the homography mapping: 

 new refined refx H x  (3.15) 

where xref are keypoint positions on the original marker image; this is named as applying the 

global geometric constraint (for it relies on the prior knowledge that all keypoints lie in the 

same plane). Since the estimated Hrefined is already theoretically error-free, updating using the 

above equation (3.15) instead of equation (3.13) prevents tracking error from propagating into 

the tracking of the next frame, and thus increases the tracking stability. 

Besides the improvement in accuracy, this algorithm also enjoys an increase in tracking speed. 

Because of the global refinement step, the local tracking algorithm such as KLT needs not be 

very accurate by reducing the number of iterations of KLT algorithms that result in larger error 

d g  . Since the direct result of KLT is just a coarse homography serving as an ESM 

optimization starting point, a certain amount of error can be tolerated and will be theoretically 

eliminated after global refinement (ESM). Similarly, since the time complexity of a local 

tracking algorithm such as KLT is usually positively correlated to the number of points to be 

tracked, the number of keypoints to be tracked can be decreased. 

This method is denoted as the KEG (KLT Enhanced by Global constraints) tracker, and the 

complete algorithm framework is described in Algorithm 3–3. It’s worth noting that KLT, ESM, 

and RANSAC, as well as the initial detection method (AprilTag/SURF), are replaceable 

components in this approach. This makes the method very flexible and easy to be extended by 
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new algorithms (as long as they serve the same purpose). Detailed comparisons in section 3.6 

show that, even though the new framework involves more steps, its performance in accuracy, 

stability, and speed is increased as compared to the state-of-the-art algorithms. 

3.6 Experimental Results 

In order to validate this method and compare it to state-of-the-art algorithms, several experiments 

on both real-world and synthesized video sequences (in which the ground-truth of the camera 

pose is known) were conducted. Experiments were all conducted on a desktop computer with an 

eight-core 2.8 GHz Intel Core i7 CPU with 6 GB memory. Also, all of the video sequences have 

a frame size of 640 by 480 pixels, which is the commonly adopted size of commercial webcams. 

Algorithm 3–3: KEG algorithm. 

1. Detect N keypoints {xref} on marker image T; 

2. Apply Fiducial Marker method (AprilTag) or Homography-from-detection algorithm 

(SURF), try to find the marker image and its corresponding homography Hrefined. If found, go 

to step 6; otherwise, re-do step 2; 

3. Take a new incoming frame Inew, the last frame Iold, and the old keypoint positions {xold}, 

perform local tracking (KLT) and output new keypoint position {xnew}; 

4. Perform robust estimation (RANSAC) on correspondent keypoint array {xref} and {xnew} and 

output Hcoarse; 

5. Apply global appearance constraint by equation (3.14) and output Hrefined; 

6. Validate Hrefined by similarity (zero-mean normalized cross-correlation between T and 

rectified Inew by Hrefined) threshold. If valid, Hrefined can be output for homography 

decomposition by equation (3.4); otherwise, meaning loss-of-track, go to step 2; 

7. Update keypoints position {xnew} using global geometric constraint by equation (3.15); 

8. Replace Iold with Inew. Replace {xold} with {xnew}. Go to step 3 until no new incoming frames. 
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In all of the test cases to be shown in the following, for the purpose of showing the necessity of 

the three core components in KEG—local tracker (K-step), global refinement (E-step), and error 

correction (G-step) —and proving its superiority to state-of-the-art methods, 7 different 

algorithms were tested over those cases: 

1. KEG with AprilTag as initialization method (referred to as A+KEG). 

2. No global appearance constraints applied; others are the same as 1 (A+K G). 

3. No global geometric constraints applied; others are the same as 1 (A+KE). 

4. No global constraints applied, representing homography-from-tracking method 

(A+K). 

5. AprilTag, representing fiducial marker-based method (A). 

6. AprilTag with global appearance constraints applied (A+ E). 

7. FERNs, representing homography-from-detection method (FERNs). 

For the homography-from-detection component, the C++ implementation of AprilTag 

(https://github.com/simbaforrest/cv2cg) was used, which originates from the java 

implementation by April Lab (http://april.eecs.umich.edu/wiki/index.php/AprilTags) at the 

University of Michigan (Olson 2011). The KEG algorithm is open-source, and the C++ code can 

be found at https://github.com/simbaforrest/cv2cg. For comparison with state-of-the-art 

homography-from-detection methods, the well-known and widely used Open Source Computer 

Vision (OpenCV) library (http://opencv.org/) implementation of the FERNs method was 

adopted, which also provides the implementation of KLT. For the ESM method, the binary 

library provided by INRIA Sophia-Antipolis at http://esm.gforge.inria.fr/ESMdownloads.html 

was used. 

https://github.com/simbaforrest/cv2cg
http://april.eecs.umich.edu/wiki/index.php/AprilTags
https://github.com/simbaforrest/cv2cg
http://opencv.org/
http://esm.gforge.inria.fr/ESMdownloads.html
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Different performance metrics are proposed so as to have a comprehensive understanding of the 

performance of these algorithms: 

 Duration: The time to process each frame, reflecting the speed of the algorithm. This 

metric is crucial for real-time applications. 

 NCC: The zero-mean normalized cross-correlation between the original marker image I1 

and the rectified image I2 by Hrefined, which can be calculated by: 
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where n is the total number of pixels of image I1 or I2, and mi and σi are the mean value 

and standard deviation of intensity of image Ii. Obviously, if I1 and I2 are exactly the 

same, their NCC index should be one, and the larger their difference, the smaller the 

NCC index. This means NCC is a good similarity index (Ladikos et al. 2007). This index 

is also used in KEG to determine whether it loses track or not by a simple threshold of 

0.5; if at any frame the NCC index is smaller than 0.5, it is regarded as a loss-of-track 

frame. 

 LOT: The total number of loss-of-track frames. This metric represents a registration 

algorithm’s stability to some extent. 

 T-RMS/R-RMS: The root mean square error between ground truth and estimated camera 

position/orientation. This metric represents the absolute accuracy of a registration 

algorithm, and is calculated by: 
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where k is the total number of frames of a test case, Ti and ˆ
iT  are the i-th frame’s ground 

truth and estimated position vector of dimension 3 by 1, and ei and îe  are the i-th frame’s 

ground truth and estimated Euler angle vector of dimension 3 by 1, respectively. Since 

these two indices require ground truth data, they are only examined for synthesized test 

cases. 

 UOT: This new index is also proposed for estimating the extent of jitter effect of a 

registration algorithm, i.e. the unsmoothness-of-tracking, taking advantage of the NCC 

index by 
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where NCCi is the NCC index of the i-th frame, which essentially means that UOT index 

is the standard deviation of the difference between consecutive NCC indices. In 

MATLAB, this can be simply calculated by “std(diff(ncc)).” A stable registration 

algorithm should give a UOT index value as small as possible. 
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Figure 3-6: Marker image composition. 

In all of the test cases, the marker image is composed of a 16 bits AprilTag of ID equal to zero 

(Figure 3-2c) and a natural image, the logo of University of Michigan (Figure 3-6a), that is rich 

in features (Figure 6b). Note that using AprilTag here does not mean that this method is fiducial 

marker based method. As explained in step 2 of Algorithm 3–3, applying either fiducial marker 

based method or Homography-from-detection based method (SURF) could serve as a starting 

point of this method in the first video frame. However, even though AprilTag is not a necessary 

component here, it is added to support multiple markers, which is very useful in many 

applications to be explained in section 3.7. 

3.6.1 Synthesized Test Cases 

Three test cases were synthesized in OpenGL, using the marker image and a static real-world 

image as background (Figure 3-2c). The first test case, S-1, simulates a random camera 

movement of both position and orientation change with 440 frames. The second test case, S-2, 

simulates 421 frames of the situation in which the camera moves around the marker image with a 

fixed distance. The last test case, S-3, simulates 304 frames of the situation in which the camera 

first moves close to the marker image and then far away, and the camera plane is parallel to the 

   

(a) UM Logo. (b) The Marker Image. (c) Background Image of Synthesized Test Case 
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marker image plane. The different performance measures of different algorithms are shown in 

Figure 3-7, Figure 3-8 and Figure 3-9. 

From the left column of Figure 3-7 one can see that the average processing time of A+KEG is 

about 40 milliseconds, which is even faster than AprilTag. While other algorithms have very 

unstable processing time and are mostly slower than A+KEG, the only exception is A+KG, 

which is as expected since it has no global refinement step. These curves prove that the KEG 

method does fit for real-time applications and that it can process images at 20 frames-per-second 

or faster. 

From the left column of Figure 3-8 one can find that, even though sometimes AprilTag might 

have a slightly higher NCC value, in most cases, the NCC curve of A+KEG is the upper bound 

for the other algorithms, especially performing better than the state-of-the-art algorithm, FERNs. 

From the right column of Figure 3-7 and Figure 3-8, one can figure out that the A+KEG method 

has fewer loss-of-track frames, showing its ability to track longer, and lower UOT index, 

showing its smoothness in tracking—an important feature if applied in AR. Also A+KEG is 

more accurate, by giving less T-RMS/R-RMS errors in Figure 3-9. Notice that here it is assumed 

the radius of the synthesized marker is 20 cm (which was the real size when it was printed out on 

an A4 sheet of paper in the real-world test cases). In this configuration, the KEG tracker’s 

maximum working distance can be as far as 3 meters, and its maximum working Euler angle can 

be about 85 degree offset from the marker image’s normal direction. If an even larger working 

distance is desirable, a higher resolution camera and bigger marker can be adopted. 
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(a) Test case S-1. 

  
(b) Test case S-2. 

  
(c) Test case S-3. 

Figure 3-7: Duration curves (left) and LOT bars (right) for synthesized test cases. 
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(a) Test case S-1. 

  
(b) Test case S-2. 

  
(c) Test case S-3. 

Figure 3-8: NCC (left) curves and UOT (right) bars for synthesized test cases. 
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(a) Test case S-1. 

  
(b) Test case S-2. 

  
(c) Test case S-3. 

Figure 3-9: T-RMS (left) and R-RMS (right) bars for synthesized test cases. 
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(a) Test case R-1. 

  
(b) Test case R-2. 

  
(c) Test case R-3. 

Figure 3-10: Duration curves (left) and LOT bars (right) for real-world test cases. 
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(a) Test case R-1. 

  
(b) Test case R-2. 

  
(c) Test case R-3. 

Figure 3-11: NCC (left) curves and UOT (right) bars for real-world test cases. 
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3.6.2 Real-world Test Cases 

Three real-world video sequences were also recorded for a test. The first sequences (R-1) have 

180 frames, the second (R-2) 122 frames, and the third (R-3) 254 frames. The R-3 test 

purposefully has a lot of shaking in the camera movements; this is to test tracking performance in 

a very challenging situation. Note that in real-world test cases, the ground truth of the camera 

pose is unknown, so T-RMS and R-RMS are not examined here. Another difference between 

real-world and synthesized test cases is that noises introduced by the webcam sensor in real-

world test cases will affect the accuracy of tracking. 

From Figure 3-11 one can see a similar performance analysis as in the synthesized test cases, 

which firmly proves the claim that the KEG method outperforms the state-of-the-art methods 

FERNs and AprilTag in speed, accuracy and stability. It’s also worth noting that by comparing 

the algorithm configuration between A+KEG, A+KG, A+KE, and A+K, one can conclude that 

the three core steps of KEG are all crucial, and that the KEG method cannot achieve the same 

performance while missing any one of the three components. Another interesting observation is 

that the FERNs algorithm in real-world test cases is affected a lot by the noisy measurements. 

Comparing the left column of Figure 3-7 and Figure 3-10, it can be seen that the processing time 

per frame increased from 60 to 150 milliseconds on average, which drops its frame rate to only 

about 7 frames-per-second. 

Figure 3-12 shows 4 representative frames under different challenging visual conditions such as 

large rotation or scale change (picked from test case S-1), or partial occlusion (picked from test 

case R-2), using the A+KEG method. The color pyramid represents the registration result, R and 

T of the camera relative to the marker image (since it is a 3D pyramid, without correct R and T, 
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it is impossible to be rendered correctly). The red trails show the position update from xold to 

newx . 

 
(a) Frame 1, 242, 372 and 426 from test case S-1. 

 
(b) Frame 1, 20, 38 and 92 from test case R-2. 

Figure 3-12: Visualization of A+KEG registration results of some representative frames. 

3.7 Applications 

As noted in the Introduction, this algorithm has several potential applications in many different 

areas. One example application implemented here is context-aware computing. Indoor context-

aware computing has been studied in AEC for its ability to speed up information delivery in 

many aspects, including construction site inspection/monitoring and facility management (Aziz 

et al. 2005; Behzadan and Kamat 2009; Khoury and Kamat 2009; May et al. 2005). Prior 

approaches for indoor ubiquitous tracking utilize an inertial measurement device, which suffers 

from its drifting effect. By (Akula et al. 2011), a context-aware computing system integrated 

with both GPS and inertial measurement device is developed, requiring human intelligence to 

recognize certain predefined locations to manually correct the drifting error caused by the inertial 

measurement device. 
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(a) A+KEG in context-aware computing. 

 
(b) A+KEG in desktop AR. 

Figure 3-13: Two example applications of the KEG tracker. 

In this application, manual error correction was naturally replaced by automated correction using 

the A+KEG method, as shown in Figure 3-13a
5
. The green text shows that the algorithm 

successfully recognizes different locations by composing a natural photo (UM logo in this case) 

with different AprilTags. Once the inspector is within the effective range of the KEG marker 

image, the marker is automatically detected and then the inspector’s pose relative to the marker 

is continuously estimated. Similar to (Akula et al. 2011), both the location and orientation of 

these predefined markers in the global coordinate system are known and stored in a database. 

Therefore the inspector’s pose in the global coordinate system can be determined, as well. 

Benefiting from the KEG tracker, this application can provide automatic regional drifting error 

correction instead of manual point correction. This application can thus further facilitate 

information delivery on construction sites or in indoor building environments. 

Another interesting application is to apply this algorithm in tabletop augmented reality. Figure 

3-13b
6
 shows a desktop environment AR showcase of a 3D building design. Since the KEG 

                                                 
5
 See video in http://www.youtube.com/watch?v=Cnvr3l104wM 

6
 See video in http://www.youtube.com/watch?v=8Y8Mlh7jhsY 

http://www.youtube.com/watch?v=Cnvr3l104wM
http://www.youtube.com/watch?v=8Y8Mlh7jhsY
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tracker has the ability to quickly detect and accurately maintain the tracking of a marker image 

without requiring that the marker image be fully in sight (as required by ARToolkit), it can easily 

be adapted into tabletop collaborative AR applications (Dong and Kamat, 2011) to support better 

interactive design demonstration or visual simulation for construction planning. 

3.8 Conclusions 

After studying the two different types of natural marker-based registration algorithms and 

analyzing the cause of the drifting and jitter effects in both homography-from-tracking and 

homography-from-detection methods, a new natural marker-based registration algorithm 

framework, KEG tracker, is proposed, combining the advantages of those two, and 

circumventing their shortcomings. In theoretical analysis, it was found out that the drifting effect 

is an error that occurs because of an accumulation problem. This problem was solved by 

applying two global constraints: a geometric and appearance constraint. 

The experiments on both synthesized and real-world test cases prove that the KEG method is fast 

enough for real-time applications (about 40 milliseconds for processing one 640 by 480 image), 

and also more accurate and stable than state-of-the-art algorithms such as FERNs and AprilTag. 

When the radius of the KEG marker is 20 cm printed out on a sheet of A4 paper, and the 

webcam provides an image resolution of 640 by 480 pixels, the KEG tracker’s maximum 

working distance can be as far as 3 meters, and its maximum working Euler angle can be about 

85 degrees offset from marker image’s normal direction. If a larger working distance is desirable, 

a higher resolution camera and bigger marker can be deployed. 
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Potential applications of the new tracker was also explored, such as context-aware computing, 

for replacing manually drifting error correction, and augmented reality for tabletop 3D visual 

simulation. 

In the future, one direction for further research is applying more object recognition techniques so 

that, without the need of composing a fiducial marker (AprilTag), the method could more 

naturally support multiple marker recognition and tracking. Extending this method to a 3D 

environment, such that no planar structure assumption is needed, could also be a very interesting 

research direction. In addition, specific AEC applications of the tracker can be explored, such as 

pose estimation for construction equipment. 
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Chapter 4 

Camera Marker Network 

"In nature we never see anything isolated, but everything in connection with something else 

which is before it, beside it, under it and over it."—Johann Wolfgang von Goethe 

4.1 Introduction and Previous Work 

In Chapter 2 and Chapter 3, two algorithms about scene understanding and pose estimation using 

a single camera (either a depth camera or an ordinary RGB camera) were described in detail. 

However they share a common drawback, which is the relatively small working range of a single 

camera, due to the narrow field of view (FOV) of normal cameras with non-wide-angle lenses. 

For example, the popular RGBD camera, Microsoft Kinect, has a vertical FOV of 43° and 

horizontal FOV of 57° (Microsoft 2015). An ordinary webcam usually has a horizontal FOV 

between 50° and 90°. Additionally, due to the limitation in camera spatial resolution, objects or 

features beyond a certain distance from a camera become less significant in terms of depth and 

pose estimation. For instance, Microsoft Kinect's depth sensor range is minimum 800mm and 

maximum 4000mm (Microsoft 2012). 

Such a drawback limits the sphere of application of those algorithms. For example, the KEG 

tracking algorithm and other marker-based pose estimation algorithms can only be employed in 

desktop range applications such as table-top AR (Dong et al. 2013). To increase the working 

range of those algorithms, as illustrated in Figure 4-1, there are three types of solutions 

addressing the problem from either spatial or temporal perspective: 
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1. Using more than one camera; 

2. Moving the single camera while maintaining estimations of that camera's poses; 

3. Combining the two options above, i.e., using more than one camera and moving some/all 

of the cameras while tracking the cameras' poses. 

 

Figure 4-1: Illustration of camera marker networks applied on construction sites. 

4.1.1 Multiple Cameras Solution 

The solution 1, i.e., multiple cameras solution, approaches the problem from a spatial 

perspective, i.e., using multiple cameras' FOV to cover the desired working range. There are a 

few possible implementations. First is to simply form a camera cluster by rigidly mounting two 

or more cameras at nearby positions but pointing outwards to different directions. In this way, 

multiple ordinary cameras' narrow FOV is composed into the camera cluster's wider FOV. 

Different from directly using cameras with wide-angle lens (e.g., fish-eye or catadioptric 

panoramic cameras), this implementation preserves the same projection model as ordinary 

cameras and many marker-based pose estimation algorithms including the KEG tracking 
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algorithm can be directly applied without any modification. Point Grey's Ladybug series cameras 

(Point Grey 2015) are commercialized examples of this implementation. 

Another possible implementation is more de-centralized, i.e., to form a camera network by 

rigidly mounting multiple cameras at different positions and pointing towards different 

directions, as long as the composite wider FOV of this camera network covers the desired range. 

Surveillance cameras on construction sites are examples of this implementation. 

An important requirement of this type of solutions is the synchronization between all cameras. 

This means that for either pose estimation or scene understanding, the images from all cameras 

should be taken at the same time in order to make sound analysis and accurate estimation. This is 

outside the scope of this research, but can be achieved in a relatively straightforward manner. 

Another requirement is that all cameras' poses should be calibrated in a same coordinate 

reference frame in advance of system operation. Only after this can poses that are independently 

estimated or 3D scene point clouds that are partially reconstructed in different views be 

transformed into a consistent reference frame for further analysis. Since a camera coordinate 

frame often cannot be directly surveyed physically, with a set of static markers, this requirement 

can be satisfied using the camera marker networks technique proposed in this research. This 

camera marker networks technique is similar to previously proposed spatial relationship patterns 

(Pustka et al. 2006) in the sense that both use graphs to abstract spatial relationships between 

objects. However, as explained below, there are several differences between the two techniques. 

4.1.2 Multiple Views Solution 

A potential disadvantage of the multiple cameras solution is that the increased number of 

cameras could increase the cost, the energy consumption and the vulnerability of the solution. 
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Another drawback is the relative non-flexibility due to the fixed camera setup. To avoid such 

weakness, the multiple views solution approaches the FOV problem from a temporal perspective 

by allowing the single camera to be dynamically moving and capturing multiple views for pose 

estimation and scene understanding. The previously introduced SfM (Snavely et al. 2006) and 

SLAM (Klein and Murray 2007) technologies all belong to this type of solutions. 

Yet the dynamically moving camera introduces a different important requirement for this type of 

solutions, which is to estimate this moving camera's pose at any time when a new view is 

recorded. This is done in similar ways of the marker-based pose estimation methods explained in 

Chapter 3. Through identification of same physical elements' corresponding images (e.g., points, 

lines, planes, objects, etc.) across different views, the poses of those views can be estimated 

relative to each other. However the assumption for this correspondence identification process to 

be possible and reliable is that the target scene is rich in locally distinguishable features that can 

be captured by the camera. As mentioned in Chapter 1, many industrial environments, such as 

indoor construction sites before finishing, often do not satisfy such assumption. They (e.g., walls, 

floors, ceilings) are frequently featureless or texture-less, or with repeated features. 

To enable a reliable and rapidly reconfigurable multiple views solution in industrial 

environments is another objective of the camera marker networks technique proposed in this 

research. With markers attached in these featureless target environments, the feature 

correspondence in computer vision and SfM, or data association in SLAM, can be more reliable. 

In addition, the cost to manufacture and install multiple markers in such environments is much 

less than that to install cameras and other active or passive sensors, especially considering that 

markers consume no energy. 
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4.1.3 Multiple Cameras and Views Solution 

The third solution is a hybrid one of the previous two. For example in Figure 4-1, camera 2 and 3 

forms a moving camera cluster, while camera 1 is a static surveillance camera onsite. Naturally 

this solution also inherits requirements of the previous two. For a dynamically moving camera 

cluster with relatively static cameras, markers will be needed to estimate the motion of the whole 

cluster. Markers are also necessary to calibrate the relative static poses of cameras in such 

clusters, or the poses of static cameras observing target environments. 

In fact, both multiple cameras, multiple views and the hybrid solutions, can be abstracted in a 

unified framework, which is termed as the camera marker networks, explained in details in the 

following sections. Section 4.2 explains its methodology, including its definition, abstraction and 

mathematical solution. Section 4.3 performs the uncertainty analysis to such networks and lists a 

series of observations. Section 4.4 demonstrates several important experiments proving the 

networks effectiveness in real world. Finally conclusions are drawn. 

4.2 Methodology 

A camera marker network is defined as an observation system containing multiple cameras or 

markers for estimating poses of objects embedded in this system. The example in Figure 4-1 

shows a camera marker network with three cameras and three markers. The objects of interests in 

this case are the excavator's base, its stick, and a haul truck. 

4.2.1 Graph Abstraction 

A camera marker network as defined above can be abstractly represented as a graph with three 

types of nodes and two types of edges. A node denotes the pose of an object (i.e. the local 

coordinate frame of that object) in the world coordinate frame, which can be a camera (or a 
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view), a marker, or the world coordinate frame. An edge denotes the relative relation of poses 

(i.e. transformation) between two objects connected by this edge, which can be either a set of 

observations (e.g., image point coordinates corresponding to an observed marker's corners) for 

pose estimation from the previously mentioned marker-based algorithms, or a set of constraints 

(e.g., known transformation through calibration, known geometrical relationship such as 

coplanarity and perpendicularity). Figure 4-2 demonstrates such a graph corresponding to the 

camera marker network in Figure 4-1. 

3
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Figure 4-2: Graph representation of a camera marker network. 

Therefore, if at least one path exists between any two nodes in such a graph, the relative pose 

between them can be estimated using algorithms described below. In addition, any loop in the 

graph means a hidden constraint of poses, which can be used to improve the pose estimation. 

With more cameras and markers in the network as shown in Figure 4-1, there are more 

opportunities of creating loops and thus improving pose estimation of the whole network. 

Note that this graph abstraction of camera marker networks provides a unified theoretical 

framework to both systematically manage all observations and relationships in different 

realizations of such networks, and efficiently find their solutions, in real world applications. 
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4.2.2 Network Calibration 

Two types of calibration are necessary for a camera marker network before its operation. The 

first type is intrinsic calibration which determines internal parameters (e.g., focal length) of all 

cameras in the system. This is done either using a planar calibration rig (Zhang Z. 2000) or a 3D 

calibration field by the direct linear transformation (DLT) algorithm (Abdel-Aziz 1971). 

The second type is extrinsic calibration which determines relative poses (e.g. dotted edges in the 

graph) designed to be calibrated before system operation. There are two kinds of such poses: 

1. poses of static markers in the world coordinate frame, and 

2. poses between rigidly connected cameras, or camera and markers. 

The first kind of poses can be calibrated by traditional surveying methods using a total station. 

The second kind of poses, however, can hardly be physically surveyed directly since a camera 

frame's origin and principal directions usually cannot be found or marked tangibly on that 

camera. 

Thus to calibrate a set of m rigidly connected cameras, a camera marker graph needs to be 

constructed as denoted in Figure 4-3. A set of n markers' poses need to be surveyed in the world 

frame. Then when the m cameras observe these n calibration markers, the graph is formed to 

estimate each camera's pose in the world frame and thus their relative poses between each other 

(i.e., edges with question mark) are calibrated. It is suggested to ensure that multiple loops exist 

in this graph to improve the accuracy of the poses to be calibrated. Such loop exists as long as at 

least two markers are observed by a same camera simultaneously. It is also worth noting that 

with enough many calibration markers, each camera's intrinsic parameters can be further 

optimized together with their extrinsic parameters. 
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Figure 4-3: A camera marker graph for extrinsic calibration. 

4.2.3 Mathematical Solution 

For a unified mathematical solution and further uncertainty analysis, a formal definition of a 

camera marker graph as an abstraction of the corresponding network is defined as follows. This 

graph G contains two parts, a set of nodes X and a set of edges E, i.e., G = (X, E). Both marker 

nodes, camera/view nodes, and the world node, are all mathematically represented as parameter 

vectors encoding the poses of nodes in the world reference frame, i.e.,  | 1, ,i i N X x . Note 

that this X is interchangeably termed as the state or configuration of this camera marker network. 

Usually, each node ,i ii
 
 

T
T Tx e t  is a 6D column vector, with the first three elements ie  

encoding the orientation of the node in the world reference frame, and the last three elements it  

encoding the position of the node in the world reference frame. Various parameterizations can be 

applied for ie , including Euler angles and axis-angle representation. In this research, the axis-

angle parameterization is adopted. The orientation parameters and corresponding rotation matrix 

can be converted back and forth using the Rodrigues' rotation formula. Both the axis-angle 

parameterization and the conversion equations are explained in detail in the Appendix. 

On the other hand, all edges are divided into two sets, i.e., E = (O, C), where the first set 

 | 1, ,j j M O o  corresponds to the set of observations (i.e., edges denoted by solid lines), 
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and the second set  | 1, ,k k L C c  corresponds to the set of constraints (i.e., edges denoted 

by dotted lines). Each observation edge ( , , )j j j js eo z  contains a camera/view node's index js  

and a marker node's index je , and also the observation column vector jz . Usually, in a network 

with only RGB cameras and markers, jz  is constructed by stacking all observed 2-dimentional 

coordinates of image points of feature points on the -thje  marker. Similarly, each constraint 

edge ( , ,g )k k k ks ec  contains indices ks  and ke  of the two nodes involved, and a constraint 

function g ( , )
k ks ek x x 0 . Note that edges in this graph encode observations and constraints, 

which is different from the aforementioned spatial relationship patterns (Pustka et al. 2006) 

where edges encode transformations between nodes. 

4.2.3.1 Initial Solution 

Solving such a network is essentially an estimation problem. The final solution is the optimal 

poses of nodes, X̂ , which is most consistent with all the observations and constraints. Since in 

most cases there are no close form solutions, iterative optimizations are indispensable for 

obtaining the final solution. Before optimization, an initial solution X  must be provided as a 

starting point. 

Different methods can be used to initialize those poses. If a node is connected to another 

initialized node by an edge constraining their relative pose to calibrated values, then this node's 

pose can be initialized by composing the calibrated relative pose and the initialized node's pose. 

For example, poses of camera 1 and marker 1 in Figure 4-2 can be initialized in this way. 

On the other hand, if a node is connected to other nodes only through observation edges, marker 

based pose estimation can be applied to solve the relative pose between the camera node and the 
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marker node. Marker 2 and 3 in Figure 4-2 are examples for this initialization method. As 

mentioned in the previous chapter, it firstly finds a set of 2D geometry features (e.g., points or 

lines) on an image captured by a calibrated camera, then establishes correspondences between 

another set of 2D or 3D geometry features on a marker whose pose has been initialized with 

respect to a certain coordinate frame of interest, and finally estimates the pose of the camera in 

that coordinate system. If 2D-2D correspondences are used, the pose is typically estimated by 

homography decomposition (Hartley and Zisserman 2000). If 2D-3D, the pose is typically 

estimated by solving the perspective-n-point (PnP) problem (Abdel-Aziz 1971; Fischler and 

Bolles 1981; Lepetit et al. 2009). Two typical marker-based pose estimation algorithms are 

AprilTag (Olson 2011) and the KEG tracker (Feng and Kamat 2013) developed in Chapter 3. 

4.2.3.2 Optimization 

Thanks to the graph representation, once all nodes are initialized, a systematic optimization can 

be applied to the whole graph to find the optimal solution X̂ . This optimization is achieved by 

adjusting all nodes' initial poses X  to minimize all observation residuals or constraint residuals 

on each edge of the graph. 

The observation residuals of an observation edge ˆ( , , )j j j js eo z  in such a graph is in fact the 

difference between the actual measured and stored observation column vector ˆ jz  and the 

predicted observation column vector jz  calculated using the current pose estimation of the two 

connected nodes 
jsx  and 

jex . In a camera marker network with only RGB cameras, this 

prediction model is based on the following equation: 

 1( ) ( )
1

s e
  

   
  

y
z π T x T x , (4.1) 
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where y is the 3D coordinate of a point on the marker je  connected to this edge jo ; z is the 

predicted 2D coordinate of this point's image in camera/view js ; 
6: (3)T SE  is the 6D pose 

conversion equation explained in the Appendix; and the function 
4 2: π  is the well-known 

central perspective projection function
7
: 
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  

p
z π π







 (4.2) 

in which 
2 2 2 2( ) /r x y z  , and [ , , ]x y z T

p  is the above point y's coordinate transformed into 

the local coordinate frame of camera/view js  using sx  and ex . Notice that this projection 

function is parameterized by the camera's intrinsic parameters including the linear part 

, , ,x y x yf f c c  and the distortion part ( 1, ,6), ( 1,2)i jk i p j  . Also note that by stacking the 

predicted 2D image coordinates of each point on this marker je  results in the predicted 

observation column vector jz . 

Now, the process of repeating this prediction for all observation edges in O by equation (4.1) and 

(4.2), and stacking the results into a single column vector 1 , , M
 
 

T
TT

Z z z , can be abstracted 

as the following observation function of the system: 

 ( ; , )Z F X Y K , (4.3) 

                                                 
7
 There are different variations of central perspective projection function, due to different camera distortion models. 

In this research, the popular OpenCV model is adopted. 

http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
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which is parameterized by the known parameters Y (usually contains all marker points' local 

coordinates y, measured precisely), and the calibrated parameters K (usually encodes all 

cameras' intrinsic parameters). Thus the observation residual of the system is ˆ Z Z , where 

1
ˆ ˆ ˆ, , M

 
 

T
T

T
Z z z  is the correspondingly stacked all actual observation vectors. 

Similarly, the residuals of all constraint edges C can be abstracted as the following function: 

 
1 11( ) g ( , ) , , g ( , )

L Ls e L s e
 
 

T
T T

G X x x x x . (4.4) 

Finally, as previously mentioned, the maximum likelihood estimation of this camera marker 

network is obtained as: 

 
ˆ

2 2ˆ ˆarg min ( ; , ) ( )  
C

Z
PPX

X Z F X Y K G X , (4.5) 

where 
Ẑ

P  is the a priori covariance matrix of the actual observations Ẑ  (typically assumed as 

2
u I  when image coordinates are measured with a standard deviation of 2

u ), and 1/2
CP  is the 

weighting matrix of all the constraints (typically large weight to ensure satisfying of constraints). 

Note that 
P

 here denotes the Mahalanobis norm with covariance matrix P. 

Solving this highly non-linear optimization problem is in fact termed as bundle adjustment 

(Triggs et al. 2000), originated from photogrammetry and rediscovered in computer vision. The 

well-known Levenberg-Marquardt algorithm is commonly applied to solve this bundle 

adjustment problem iteratively. When implementing this optimization, programming libraries 

such as the Ceres (Agarwal and Mierle 2012) or the g2o (Kummerle et al. 2011) solver can be 

adopted for efficient implementation. 
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4.3 Uncertainty Analysis 

It is not sufficient to only estimate all the poses in a camera marker network. The uncertainty of 

an estimated pose is critical for the following reasons. Firstly the uncertainty provides a measure 

of the confidence level of the estimated pose, which is necessary for many downstream 

applications (e.g., deciding buffer size for collision avoidance between two objects of interests). 

Secondly it serves as a tool for evaluating the stability of this pose estimation system under 

different configurations, and thus further guiding to avoid critical configurations that will lead to 

unstable pose estimation. 

4.3.1 Uncertainty Propagation 

No matter how complex a camera marker network is and what method is used to get an initial 

estimate X  (either PnP or homograph decomposition), the uncertainty of the optimized poses X̂  

from equation (4.5) can be backward propagated from the observation uncertainty 
Ẑ

P  with 

linearization of F around the solution X̂ . Since the errors are assumed to come from only the 

observations (the uncertainties in calibrated parameters K will be included in future work, but 

are assumed to be negligible in this chapter as long as all the cameras are carefully calibrated; 

similarly the uncertainties of all constraints, C, are neglected), one can directly apply the results 

in (Hartley and Zisserman 2000) to calculate the uncertainty of the optimized states: 

 
1 1 2 1

ˆ ˆ( ) ( )u
   T T

X Z
P J P J J J , (4.6) 

where 
ˆ



 X

F
J

X
 is the Jacobian matrix of F evaluated at X̂ , and the diagonal elements of this 

covariance matrix, ˆdiag( )
X

P , are the marginal variations of each random variables in the 

estimated pose vector X̂ . 
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4.3.2 Uncertainty and Configuration 

Equation (4.6) provides not only a means of evaluating uncertainty of the optimized pose 

estimation of a camera marker network, but also a tool to predict the system stability at any given 

configuration X before even making any measurements. This is done by evaluating the Jacobian 

matrix J of F at that X, then applying equation (4.6) to predict X's covariance matrix: 

  
1

1
ˆ( ) ( ) ( )


 T

X Z
P X J X P J X . (4.7) 

It is based on the fact that the aforementioned backward propagation of observation uncertainty 

does not directly rely on specific observations. In fact it directly relies on the configuration X 

around which the linearization of F is performed. Thus, when evaluating Jacobian matrix J at a 

configuration X, equation (4.7) yields the theoretically best/smallest pose estimation uncertainty 

that one can expect at that X, which denotes the system stability at that configuration. 

Furthermore, noticing the fact that equation (4.7) is a function of the system configuration X, it 

provides a method to a directly optimize any camera marker network designs so as to reduce the 

theoretical uncertainty. This can be done by performing the following nonlinear optimization: 

  argminCost ( )
X

XX P X , (4.8) 

subject to constraints such as: 1) all predicted image points by X should stay within the photo's 

nominal size, e.g. 640 by 480 pixels for common webcam image; 2) direct pose constraints on X 

so as to ensure markers' detectability in practice, e.g., camera marker distance not too long. Note 

that there are various options for the cost function on the covariance matrix, Cost : n
 S

8
, 

                                                 
8
 

n
S  denotes any n by n symmetric positive definite matrix, in this case, any n-dimensional covariance matrix. 
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according to different network design criteria. Some possible choices of this cost function are the 

trace of the matrix, tr( ) , or the maximum diagonal element of the matrix, max(diag( )) . To 

solve this constrained nonlinear optimization, classic algorithms like trust region reflective 

(Coleman and Li 1996), active set (Powell 1978), or interior point (Byrd et al. 2000) can be used. 

For program implementation of equation (4.8), one may take advantage of MATLAB's fmincon 

function in its optimization toolbox. 

It is also worth noting that without equation (4.7), the conventional method for such uncertainty 

analysis is Monte Carlo simulation (Luhmann 2009). However its drawback is that a large 

amount of independent trials are necessary for credible results. For a camera marker network 

with many nodes and edges, the resulting time for estimating equation (4.7) for a single X 

becomes very long. Thus, it is intractable to evaluate equation (4.8) by Monte Carlo simulation. 

4.4 Experimental Results 

4.4.1 Single Camera Single Marker 

Using the above method, some important empirical conclusions on the basic single camera 

single marker system are found about relationships between system stability and configuration, 

based on various numerical experiments, which are useful for more complex network designs 

and are listed as follows. 

1. The marker's origin/position in the camera frame, c
mt , has the largest uncertainty along 

a direction nearly parallel to the camera's line of sight to the marker, i.e., c
mt  itself. 

Figure 4-4 exemplifies this conclusion at two randomly generated poses (and thus the true ones) 

between a camera and a marker. For left side of this figure, firstly the expected position 
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uncertainty tP  was calculated using one of the randomly generated pose [ , ] T T T
X e t  via 

methods explained in section 4.3.2, shown as the 2 9   ellipsoid wireframe. Then a Monte 

Carlo simulation of 100 times was conducted to simulate the camera marker network estimation 

of the pose X with image point measurement noise variance 2 0.04u   pixels, and the position 

components are shown as blue dots in the figure. One can verify that almost all blue dots are 

within that position uncertainty ellipsoid. Then the eigenvalue decomposition, equivalently 

singular value decomposition (SVD) or principal component analysis (PCA), was performed on 

this 3 by 3 position covariance matrix, i.e., 2 2 2
1 2 3 2 31 1 2 3[ , , ]diag( , , )[ , , ]   T

tP v v v v v v , where 

3 33 v  is the largest direction of position uncertainty as shown in red solid line. One can then 

verify that this direction is almost parallel with the line of sight direction (the black dashed line). 

Similar results also present on another randomly generated pose (the right side of the figure). 

 

Figure 4-4: Two examples of the largest position error direction. 
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2. The largest uncertainty of marker's position in the camera frame increases approximately 

quadratic to the marker's distance to the camera; compared to which the two smallest 

uncertainty's increases are almost negligible. 

Figure 4-5 shows an example of this conclusion. After randomly generating a camera pose 

( , )c c
m mR t , and scaling c

mt  by a factor s  varying from 0.5 to 1.5 without change the orientation 

c
mR , using above methods one can calculate the position uncertainty corresponding to each 

pose ( , )c c
m msR t . Then PCA was performed on each of such position covariance matrix, to 

extract the smallest ( 13 , i.e., PCA error 1 in the figure) and largest ( 33 , i.e., PCA error 3 in 

the figure) uncertainty. The x/y/z error in the figure corresponds to 3 / 3 / 3x y z    respectively 

where 
2 2 2( , , ) diag( )x y z    tP . By comparing 33  and 3 x , one can verify this observation. 

 

Figure 4-5: Position error vs marker distance. 
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3. The largest uncertainty of marker's position in the camera frame increases approximately 

linear to the camera focal length; compared to which the two smallest uncertainty's 

increases are almost negligible. 

Figure 4-6 shows an example of this conclusion using similar numerical experiment setup, 

except that this time the randomly generated camera pose was fixed and the camera focal length 

xf  and yf  was varied. 

 

Figure 4-6: Position error vs focal length. 

These empirical conclusions are useful for designing and implementing a camera marker 

network. For example, the third conclusion indicates that a camera with relatively shorter focal 

length will lead to smaller position estimation uncertainty, which can guide the selection of 

cameras. Similarly, the second conclusion indicates that although the position estimation error 

will increase when camera marker distance increases, such increases are slow and small along 

the directions that are parallel to the camera/view's image plane. 
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4.4.2 Camera Calibration 

Another group of important empirical conclusions are made about the intrinsic camera 

calibration using either planar (Zhang Z. 2000) or 3D calibration rigs (Abdel-Aziz 1971). As 

stated in equation (4.3), all of cameras' intrinsic parameters are assumed to be calibrated in 

advance with negligible uncertainty for equation (4.9) and (4.7) to be valid. Thus it is important 

to understand how to achieve stable and accurate intrinsic camera calibration. 

In fact, the camera intrinsic calibration can be similarly modeled as a camera marker network of 

one camera node and n marker nodes with n edges between the camera and each marker (or 

equivalently, one marker and n views). Then the observation prediction equation changes from 

equation (4.3) to c( , ; )Z F K X Y  where the camera intrinsic parameters vector K becomes a 

part of the state/configuration of this new system, instead of the original parameters for the 

function F. Thus following the same arguments as in section 4.3, the expected estimation 

uncertainty of K and X becomes: 

  
1

1
ˆc c

( , ) ( , )
( , ) ( , )

( , ) ( , )




 
 

 

K KX

T
K

T

Z
X X

P K X P K X
J K X P J K X

P K X P K X
 (4.10) 

where c c

,

c ,
  

     K X

F F
J

K X
 is the Jacobian matrix for the function cF  evaluated at K and X; KP  

is the expected covariance matrix of K; XP  is that of X; and KXP  is the expected cross-

covariance matrix of K and X. Similar to equation (4.8), optimizing a calibration network design, 

for reducing calibration uncertainty, can be done by performing  minCost ( , )
X

KP K X  on a given 

camera intrinsic parameters vector K . As guidance for improving camera intrinsic calibration, 

several empirical conclusions based on these analyses are listed as follows. 
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Figure 4-7: Calibration error vs camera marker distance. 

 

 

Figure 4-8: Pose optimization for camera calibration. 
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1. Shortening camera marker distance during calibration reduces calibration uncertainty. 

Figure 4-7 shows two sets of calibration examples that verify this conclusion. Firstly a random 

camera calibration configuration of 10 markers (or equivalently 10 views) was generated. Then 

for each of these 10 markers, their relative orientations in the camera frame, c
mR , were fixed, 

while their positions, c
mt , were scaled by a varying factor s from 0.5 to 2. Then KP  can be 

estimated using equation (4.10) for each scaled pose. Finally the diagonal elements of KP  can be 

plotted versus this scaling factor s, for both planar (left) and 3D (right) calibration methods. 

2. Calibration has lower uncertainty if images of markers are distributed on regions that 

are closer to the image margins, especially corners. 

This empirical conclusion comes from the aforementioned optimization  minCost ( , )
X

KP K X , as 

shown in Figure 4-8. Firstly a random camera calibration configuration of 3 markers (whose 

images are shown as solid red, blue, and green lines in the upper figure) was generated, and each 

marker has 9 feature points. Then the above optimization was performed to find out the "best" 

calibration configuration X (and the corresponding markers' images are shown as dashed lines in 

the upper figure). As can be verified, all markers' images were moved to corners regions. The 

lower figure shows the optimization details with respect to iterations. In this example the cost 

function Cost( )  is selected to be the sum of the first four diagonal elements of KP  (shown as the 

fval in the figure), i.e. the sum of the variances of the camera's linear intrinsic parameters 

, , ,x y x yf f c c . It's worth noting that as X becomes larger, this becomes a higher dimensional 

optimization which could be more and more inefficient. To make it tractable, this optimization of 

KP  can be approximated by iteratively adjusting each marker pose ix  in this calibration 
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network, instead of the original batch adjustment of all markers' poses at a same time, so that it is 

always a 6D optimization. Moreover, this calibration configuration optimization can also be 

applied in camera calibration methods with user guidance (Richardson et al. 2013) for efficiently 

selecting the next best marker pose to reduce overall the calibration uncertainty. 

4.5 Conclusions 

In conclusion, this chapter summarized different solutions addressing limitations of a single 

camera's narrow FOV into a unified theoretical framework, which is termed as camera marker 

networks. This framework can be used to model both pose estimation and also camera 

calibration (both intrinsic and extrinsic calibration) processes. A graph abstraction of different 

realizations of such networks was developed to both systematically manage all observations and 

relationships, and efficiently find their solutions. A mathematical notation and solution based on 

such abstraction was then established. Moreover, a systematic uncertainty analysis was 

developed based on the uncertainty backward propagation in estimation theory. Such analysis 

avoids traditionally time-consuming Monte Carlo simulation and enables optimization of 

network configurations in order to reduce estimation uncertainty. Finally, based on various 

numerical experiments, several important empirical conclusions were drawn to guide better 

camera calibration and pose estimation. The real world experiments proving this proposed 

method's effectiveness will be demonstrated in the following chapters that describe applications. 

Several future directions to improve this proposed method are identified. This includes 1) 

performing similar uncertainty analysis on several basic camera marker network configurations, 

such as single camera multiple markers or multiple cameras and markers; 2) incorporating 

calibration uncertainty into the analysis: and 3) including hard constraints (directly encoding 

constraints into parameters, i.e. nodes) in addition to current soft constraints C. 
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Part II: Applications in Robotic Construction Machinery 

"I hear and I forget; I see and I remember; I do and I understand."—Xunzi
9
 

This part includes two robotic construction machinery applications of the algorithms developed 

in part I, to validate their effectiveness and to test their potential in real world industrial 

scenarios. 

The architects nowadays prefer to design many buildings with non-planar and curved elements. 

Using robotic manipulators to assemble and construct such elements is appealing because of the 

precision, efficiency, and repeatability of their movements. However different from traditional 

manufacturing, robotic manipulators need to work onsite. Thus the in-situ pose estimation is 

important. Chapter 5 describes how marker based pose estimation can be applied in such cases. 

Another application is described in Chapter 6 about excavation monitoring and guidance. To 

improve the excavation safety, the poses of excavators' key components need to be continuously 

monitored to alert operators for any potential collisions. Similarly excavations according to 

design profiles can be accelerated if buckets' positions are always known. A prototype was 

implemented in this chapter to evaluate the solutions accuracy. 

                                                 
9
 The original Chinese text is most likely from 《荀子·儒效篇》：“不闻不若闻之，闻之不若见之，见之不若

知之，知之不若行之；学至于行之而止矣”. It is frequently and mistakenly accredited to Confucius in the West. 
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Chapter 5 

Autonomous Onsite Robotic Assembly and As-Built Scanning 

EVE: "Name?" WALL-E: "WALL-E." EVE: "WALL-E?"—Andrew Stanton 

5.1 Introduction 

Several studies have argued that among all industries, construction has seen a significant 

productivity decrease over the last several decades compared to other industries (Rojas and 

Aramvareekul 2003). Construction has also been documented to have some of the highest rates 

of workspace injuries and fatalities (Bureau of Labor Statistics 2013). Automation and robotics 

in construction (ARC) has the potential to relieve human workers from repetitive and dangerous 

tasks, and has been extensively promoted in the literature as a means of improving construction 

productivity and safety (Balaguer 2004). 

Compared to the tangible benefits of automation and robotics identified by the manufacturing 

industry, the construction industry is still exploring feasible and broadly deployable ARC 

applications (Balaguer 2004). This can be attributed to several commercial and technical 

challenges. From the commercial perspective, the fragmented and risk-averse nature of the 

construction industry leads to little investment in ARC research causing construction to lag 

behind other industries (Saidi et al. 2008). On the other hand, as described next, there are several 
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technical complexities inherent in construction that have contributed to hindering the successful 

development and widespread use of field construction robots. 

5.1.1 Technical Challenges 

5.1.1.1 Unstructured Construction Environments 

Automated and robotized manufacturing facilities are typically considered as structured 

environments, since both the machines and evolving products either stay in their predefined 

locations or move on predesigned and typically fixed paths. In general, such environments do not 

change shape or configuration during the performance of manufacturing tasks, making the 

enforcement of tight tolerances possible (Milberg and Tommelein 2003). In contrast, 

construction sites can typically be considered unstructured since they are constantly evolving, 

and dramatically changing shape and form in response to construction tasks. Building 

components are moved around without fixed paths or laydown/staging areas. Various physical 

connections are established through improvisation in response to in-situ conditions, making tight 

tolerances hard to maintain and enforce (Milberg and Tommelein 2005). 

5.1.1.2 Mobility of Construction Manipulators 

In manufacturing, factory robotics typically involves robotic platforms that are generally 

stationary (or have limited linear mobility) and partially complete products that arrive at robot 

workstations and precisely localize themselves in the robots’ base reference frames. Precision is 

achieved by controlling the pose of the moving (and evolving) product, and the robots 

themselves are programmed to manipulate the products through fixed trajectories. Thus, from a 

mobility and cognitive perspective, a factory robot has little responsibility and autonomy. 

Control is achieved by enforcing tight tolerances in moving and securing the product in the 
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manipulator’s vicinity. However, this spatial relationship is reversed in construction. A 

construction robot has to travel to its next workface (or be manually set up there), perceive its 

environment, account for the lack of tight tolerances, and then perform manipulation activities in 

that environment. This places a significant mobility and cognitive burden on a robot intended for 

construction tasks even if the task itself is repetitive. 

This discussion highlights that factory-style automation on construction sites requires 

development of robots that are significantly more mobile and perceptive when compared to 

typical industrial robots. Such on-site construction robots have to be able to semantically sense 

and adjust to their unstructured surroundings and the resulting loose tolerances. This chapter 

presents a new high-accuracy 3D machine vision metrology for mobile construction robots. The 

developed method uses fiducial markers to rapidly establish a local high-accuracy control 

environment for autonomous robot manipulation on construction sites. Using this method, it is 

possible to rapidly convert a portion of a large unstructured environment into a high-accuracy, 

controllable reference frame that can allow a robot to operate autonomously. 

The rest of the chapter is organized as follows. Related work is reviewed in section 5.1.2. The 

technical approach is discussed next in detail in section 5.2. The experimental results of both 

assembly and scanning are shown and discussed in section 5.3. Finally, in section 5.4, the 

conclusions are drawn and the future work is summarized. 

5.1.2 Previous Work 

5.1.2.1 Robotic Manipulators in Construction 

The construction community has pursued research on robotic manipulators for several decades: 

for example, Slocum and Schena (1988) proposed the Blockbot for automatic cement block wall 
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construction; Pritschow et al. (1993) identified the needs and requirements of a brick-laying 

robot for masonry construction and developed a control system for such robots. 

A large portion of the construction robotic manipulator research focused on mechanics and 

control of specific construction activities. Fukuda et al. (1991) discussed the mechanism and the 

control method of a robotic manipulator in construction based on human-robot cooperation. Yu 

et al. (2009) proposed an optimal brick laying pattern and trajectory planning algorithm for a 

mobile manipulator system, with computer simulation to test its efficiency. Hansson and Servin 

(2010) developed a semi-autonomous shared control system of a large-scale manipulator in 

unstructured environments, with a forwarder crane prototype to test its performance. Chung et al. 

(2010) proposed a new spatial 3 degree-of-freedom (DOF) parallel type master device for glass 

window panel fitting task. Gambao et al. (2012) developed a modular flexible collaborative robot 

prototype for material handling, although without any perception sensors for capturing the 

working environment.  

Another important aspect of construction robotic manipulators lies in sensing and perception. 

Kahane and Rosenfeld (2004a) proposed a "sense-and-act" operation concept enabling an indoor 

mobile robot to position itself with approximately 10 cm accuracy, using a CCD camera and 

several laser projectors. Kim and Haas (2000) proposed automatic infrastructure inspection and 

maintenance using machine vision for crack mapping. Gambao et al. (2000) developed a robot 

assembly system based on laser telemeter sensors of 6 to 15 mm positional precision. During 

these research studies, it was generally realized that increasing the level of autonomy for 

construction robots requires high accuracy localization of the robot: from 3-5 cm indoor 

positional accuracy for contactless construction tasks such as spray-painting, to 2-3 mm accuracy 

for more precise tasks demanding direct contact between manipulator and building components 
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(Shohet and Rosenfeld 1997). This requirement has posed a significant challenge for ARC 

because even by using current state-of-the-art simultaneous localization and mapping (SLAM) 

techniques, such accuracy is hard to achieve at large scales (Kümmerle et al. 2009). In order to 

address this issue, in this study vision-based pose estimation algorithms was chosen since they 

can achieve high accuracy locally around a visual marker (Feng and Kamat 2013; Olson 2011). 

5.1.2.2 3D As-Built Modeling in Construction 

3D as-built modeling (e.g., BIM) plays an important role in a wide range of civil engineering 

applications. This modeling process usually starts with collecting 3D point clouds of sites of 

interest. Paul et al. (2007) utilized a 6DOF anthropomorphic robotic arm to get the 3D mapping 

of a complex steel bridge with a laser range scanner. Brilakis et al. (2010) outlined the technical 

approach for automated as-built modeling based on point clouds generated from hybrid video 

and laser scanning data. Akula et al. (2013) explored different 3D imaging technologies, e.g., 3D 

image system, image based 3D reconstruction and Coherent Laser Radar scanner, to map the 

locations of rebar within a section of a railway bridge deck in order to assist a future drill 

operator in making real-time decisions with visual feedback. Zhu and Donia (2013) investigated 

the advantages and drawbacks of RGBD cameras in as-built indoor environments modeling, with 

evaluation on the accuracy of collected data, the difficulty of automatic scan registration and the 

recognition of building elements, demonstrating RGBD camera's potential in as-built BIM 

modeling. In this research, the automatic planning, scanning and registration of point clouds 

obtained from a 3D camera mounted on the manipulator are achieved with the visual marker-

based metrology and the manipulator's internal encoders. 

Once 3D point clouds are obtained, CAD-like geometric models can be generated. For example, 

Son et al. (2014) automatically extracted 3D pipeline models from laser scanning data based on 
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the curvature and normal of point clouds; Han et al. (2012) proposed an automated and efficient 

method to extract tunnel cross sections from terrestrial laser scan (TLS) data. While this research 

focuses more on the automatic registration of different frames of point clouds, the resulting 

registered point clouds could be input into such algorithms to generate semantically meaningful 

CAD-like geometric entities for as-built BIM. 

5.1.2.3 Robotic Manipulators in Architecture 

Recently the architectural design community has also shown an increased interest in industrial 

robotics, with many academic programs investing in their own robotic work cells
10

. Capitalizing 

on the machines’ inherent flexibility, they have leveraged the industrial robot as a development 

platform for the exploration and refinement of novel production techniques in which material 

behavior is intrinsically linked to fabrication and assembly logics. As part of the general 

ecosystem of industrial robotics, computer vision systems has begun to play an increasingly 

important role in these research initiatives, with a number of architectural research groups 

developing interfaces for accessible hardware such as the Microsoft Kinect. 

Initially the majority of architectural robotic research utilizing computer vision has revolved 

around its application at the micro scale, using a vision feedback system to make incremental 

adjustments to a robotic strategy based upon local variations. Examples of this include Dierichs 

et al.’s research (2012) into poured aggregate structures at the Institute for Computational Design 

at University of Stuttgart and Dubor and Diaz’s project (2012) Magnetic Architecture from the 

Institute for Advanced Architecture of Catalonia, two robotics projects which use the Microsoft 

Kinect to provide information on local variations from the intended design geometry, which is 

then used to generate incremental adjustments in succeeding operations. While beneficial as a 

                                                 
10

 http://www.robotsinarchitecture.org/map-of-robots-in-architecture 

http://www.robotsinarchitecture.org/map-of-robots-in-architecture
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means to adjust for material variation and machine error, these implementations are not robust 

enough for the in-situ robotics due to the complexities of construction sites. 

Acknowledging the limitations of processes developed within the safety of the research 

laboratory, architects have slowly begun to explore application of computer vision at the macro 

scale for adaptive path planning. At the fore-front of this work has been the research conducted 

at the ETH Zurich led by Fabio Gramazio and Matthias Kohler. Heavily invested in the potential 

of construction site robotics, their work has included the development of hardware/software 

solutions that allow industrial robotics to dynamically adjust their operations at both the micro 

and macro levels. This research is best exemplified in their ECHORD project
11

, in which an 

eight-meter-long module wall was assembled by an ABB robot mounted to a mobile track 

system (Helm et al. 2012). Constructing a stacked module wall along a gestural path captured by 

the robot’s computer vision system, this mobile robot also used the same system to reposition 

itself on the construction site (expanding its operable reach envelope) and make local 

adjustments based on topographic variation. Without using an extensive sensor suite like the one 

used in ECHORD, the robotic platform described in this chapter successfully built similar 

module walls purely based on perceived information from a single camera; moreover, as-built 

3D point clouds of the assembled outcome can be readily obtained if the robotic platform is 

equipped with a 3D camera on the manipulator, for purposes like as-built BIM generation or 

construction progress documentation. 

                                                 
11

 http://dfab.arch.ethz.ch/web/e/forschung/198.html 

http://dfab.arch.ethz.ch/web/e/forschung/198.html
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5.2 Technical Approach 

5.2.1 System Overview 

The developed robotic in-situ assembly and scan system consists of several major components, 

as shown in Figure 5-1. The assembly workflow of the system consists of an offline design 

process and an online building process. During the offline process, a designer models the 

intended structure in 3D, which is then analyzed and validated by the assembly planer, outputting 

an assembly plan for the online process. The online assembly process uses a fixed camera 

mounted on the base of the robot for providing images to the pose estimator to detect staged 

building components and estimate their poses, and more importantly localize the robot itself in 

the local building reference frame. Having computed this information, the plan achiever then 

sequentially transforms each step from the automatically generated assembly plan into an 

executable command, which can be interpreted by the robot controller and subsequently 

executed by the robot manipulator. In addition, the visualization component also receives the 

information generated by the pose estimator as well as the robot’s real-time pose feedback from 

the controller, to simultaneously represent the actual on-site assembly process into a 3D virtual 

environment for improved monitoring. 

Similarly for the scan workflow, based on design information, the scan planner can feed a 

scanning plan to the plan achiever, controlling the robot manipulator to stop and capture 3D 

images at a series of desired poses using the 3D camera mounted on the manipulator. Since the 

robot platform is aware of both its base's pose relative to the local building reference frame 

through the marker-based metrology, and the 3D camera's pose relative to its base through its 

internal encoders, the scan register can then readily transform each frame of captured 3D images 
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into the same local building reference frame, resulting a 3D point cloud describing the 

construction site. 

 

Figure 5-1: Overview of the autonomous assembly and scanning system. 

5.2.2 Calibration of Pose Estimator 

Before introducing the details of other components of the system, it is important to discuss how 

the pose estimator is calibrated, since this is crucial to the level of assembly/scan accuracy that 

the system can achieve. This process includes two steps to be finished before system operation: 

intrinsic and extrinsic calibration of the camera. Intrinsic calibration involves estimating the 

camera’s focal length, principle point’s position on the image plane, and distortion parameters. 

On the other hand, extrinsic calibration aims to determine: 1) the relative 6-DOF pose of the 

camera in the robot’s base coordinate frame for assembly, and 2) the relative 6-DOF pose of the 

3D camera in the robot's tool coordinate frame for scan registration. It must be noted that both 
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intrinsic and extrinsic calibration are one-time processes, as long as the camera/3D camera is 

fixed-focus and rigidly mounted in the robot’s base/tool coordinate frame (e.g., fixed installation 

on the robot’s base/end-effector). 

5.2.2.1 Intrinsic Parameters 

 

Figure 5-2: Intrinsic calibration of the camera. 

Unlike the popular plane-based camera calibration method (Zhang Z. 2000) implemented in 

OpenCV
12

 and Matlab Calibration Toolbox
13

, it is chosen in this research to calibrate the camera 

using a 3D rig, which is similar to the classic calibration in photogrammetry. This 3D rig was 

made by attaching N Apriltags (Olson 2011) on two intersecting planes forming a 90 degree 

angle (as shown in the top of Figure 5-2) so that the 3D coordinate X of each Apriltag’s center 

could be readily measured. 

The process of calibration was then simply taking a sequence of M images of the rig and 

inputting them into the camera calibration tool
14

 developed by me, which takes advantage of the 

Apriltag detection algorithm to detect the 2D image coordinate U of each tag center and establish 

correspondence with X. Then the initial camera intrinsic and extrinsic parameters can be 

obtained through Direct Linear Transform (DLT) (Hartley and Zisserman 2000) and 

                                                 
12

 http://docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_calibration.html 
13

 http://www.vision.caltech.edu/bouguetj/calib_doc/ 
14

 Available at https://code.google.com/p/cv2cg/#apriltag 

Intrinsic Calibration RMS=0.844679 pixel

http://docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
http://www.vision.caltech.edu/bouguetj/calib_doc/
https://code.google.com/p/cv2cg/%23apriltag
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subsequently optimized by bundle adjustment (Triggs et al. 2000), which minimizes the re-

projection error by tuning both intrinsic (K) and extrinsic (R and t) camera parameters as 

following equation (5.1): 

  
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1 1

arg min ( ) ,
M N

i j i j i

i j


 

 
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U K R X t  (5.1) 

where the perspective division function 
3 2:   converts a 2D homogeneous coordinate 

into a 2D Cartesian coordinate. 

Benefitting from the high corner detection accuracy of Apriltag as well as the 3D rig, this 

intrinsic calibration produces more robust and repeatable results than the alternatives mentioned 

above. 

5.2.2.2 Extrinsic Parameters 

Once the camera’s intrinsic parameters are calibrated, the camera’s relative pose in the robot’s 

base coordinate frame, [ , ; ,1]r r r
c c cT R t 0 , can be estimated using an extrinsic calibration 

marker containing L (L>1) Apriltags with known size and spacing. 

  
(a) (b) 

Figure 5-3: Extrinsic calibration between the camera and the robot base. 
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As shown in Figure 5-3(a), r
cT  can be composed from the two other poses, m

rT , the robot’s 

pose in the extrinsic calibration marker’s coordinate frame, and c
mT , the marker’s pose in the 

camera coordinate frame, by 1( )r c m
c m r

T T T . 

This extrinsic calibration of the camera used for assembly consists of the following steps: 

1. Fix the marker in the camera’s field of view; 

2. Manually control the robot manipulator to pinpoint at least 4 non-collinear points on the 

marker and record their 3D coordinates r
X  in the robot’s base coordinate frame; also 

measure their local 3D coordinates m
X  in the marker’s reference frame (by setting all Z 

coordinates to be zero); 

3. Take an image from the camera and detect the L Apriltags’ 4L corners’ 2D image 

coordinates U. 

With this information collected, the m
rT  can be estimated using the well-known rigid body 

registration (Besl and McKay 1992) from 3D point set r
X  to m

X , while the c
mT  can be 

estimated by decomposing the homography between m
X  and U using the previously calibrated 

camera intrinsic parameter K (Zhang Z. 2000; Feng and Kamat 2013). 

In order to improve the extrinsic calibration’s accuracy, a non-linear optimization of c
mT  is also 

performed in addition, since during the homography decomposition, a polar decomposition is 

performed to get a valid rotation matrix c
mR , which causes the result to be non-optimal. This 

optimization, as shown in equation (5.2), can be done by tuning the initial c
mT  to minimize the 

re-projection error: 
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While the extrinsic calibration of the 3D camera used for scanning could be done in a similar 

manner, a faster and more efficient solution is to perform the classic robot hand-eye calibration: 

by moving the robot end-effector to different poses relative to its base ( ,i jB B ) and 

correspondingly estimate through Apriltags the extrinsic calibration marker's pose relative to the 

3D camera reference frame ( ,i jA A ), equations i i j jA XB A XB  can be established where 

t
cX T , representing the 3D camera's pose relative to the robot's tool coordinate frame, as 

shown in Figure 5-3(b). After rearranging such equations into the form of AX=XB where 

1
j i
A A A  and 

1
j i

B B B , the calibration can be solved by Tsai and Lenz's methods (Tsai and 

Lenz 1989). It's worth noting that the previous extrinsic calibration of the camera for assembly 

could also be solved as a hand-eye calibration problem, even though the camera is not fixed on 

the manipulator's end-effector, to further simply the calibration process. 

5.2.2.3 Calibration Validation 

The calibration can be validated by the following procedure: 

1. Fix the extrinsic calibration marker to a new pose that is different from the one used in 

the calibration; 

2. Measure, in robot's base frame, the 3D coordinates 
r
X  of a set of P corner points on the 

marker (e.g., the 4L corners used previously); 

3. Take an image and find out the corresponding 3D coordinates 
c
X  in the camera 

reference frame using Apriltags; 
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4. Calculate the residual using equation (5.3): 

 
2

1

1
( )

P
r r c r

j c j c

jM 

  X R X t  (5.3) 

This residual should ideally approach zero, as smaller residual indicates better calibration 

accuracy. 

5.2.3 Automatic Assembly Planer 

5.2.3.1 Algorithmic Architectural Design 

Starting with the introduction of Ivan Sutherland’s Sketchpad at MIT in the 1963, the 

architectural exploration of computation has focused on the digital environment’s ability to 

represent an object as a system “compromised of and working with a series of interrelated 

systems” (Ahlquist and Menges 2011), a surprising contrast to the discrete geometric 

representations found in many 2D and 3D CAD applications. Initially as a domain of specialized 

research groups embedded in academia or commercial practices, this systems approach to digital 

design has become increasingly commonplace. In the 1990s many architects, unsatisfied with the 

capabilities presented by off-the-self software, began to develop their own software solutions 

through both higher-level scripting languages for CAD packages and ground-up application 

development. Currently, visual programming interfaces that afford designers quick access to the 

potential of computation without the effort of coding syntax are available as plug-ins for popular 

commercial software, such as Dynamo
15

 for Autodesk’s Revit and Grasshopper
16

 for McNeel’s 

Rhinoceros. 

                                                 
15

 http://autodeskvasari.com/dynamo 
16

 http://www.grasshopper3d.com 

http://autodeskvasari.com/dynamo
http://www.grasshopper3d.com/
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This systems approach (and its respective tools) was implemented to automatically derive the 

robotic positioning data for each building block in a curved stack-unit wall from a single user-

generated non-uniform rational basis spline (NURBS) surface. Working from a predetermined 

block size, an algorithm developed in the Grasshopper plug-in for Rhinoceros extracts latitudinal 

section curves from the input surface, generating a running bond pattern of the said blocks. Each 

block is checked for volumetric collisions with adjacent blocks, color-coding collisions in the 

Rhinoceros environment. Instead of applying simple heuristics to arbitrarily resolve these 

collisions, the color-coding can provide real-time feedback, engaging the designer to actively 

participate in the development of the curved stack-unit wall. Simultaneously the necessary 

positional information for each block is output for the generation of the assembly plan. 

Combined into a single algorithmic process, these functions “enable an explicit and bidirectional 

traversal of the modern division between design and making” (Pigram et al. 2012), reinforcing 

the implications of William Mitchell’s statement that “architects tend to draw what they can 

build, and build what they can draw” (2001). 

5.2.3.2 Assembly Plan Generation and Simulation 

Given the final positions and orientations of all the building blocks in the design, the assembly 

plan is generated and written into a text file stored for the plan achiever to process later during 

the online building phase. 

This assembly plan file contains a list of sequential instructions for the robot manipulator to 

build the designed structure. Each line in the file corresponds to an instruction. For example, the 

following plan file segment will instruct the robot manipulator to first grab a building component 

named “block0” directly from above (line 1-4), then lift it vertically up for 500 mm (line 5) and 

finally place it at its destination in another reference frame named “building” (line 6-8): 
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1: 0

2 :  0 0 0 500 0 0 0

3 :  0 12 10 10 0 0 0

4 :  1

5 :  0 0 500 0 0 0

6 :   200.00 300.00 500.00 63.92 0.00 0.00

7 :   200.00 300.00 19.05 63.92 0.

Gripper

Goto block

Goto block

Gripper

Shift

Goto building

Goto building

  

 

  00 0.00

8 :  0Gripper

 

Currently, 3 types of instructions are implemented in the system: 

1. Gripper 0/1: Control the manipulator’s gripper to open (0) or close (1); 

2. Goto reference_frame x y z a b c: Control the manipulator to move to a new pose (x, y, 

z, a, b, c) in the reference frame, in which the (x, y, z) is the new position and (a, b, c) 

specifies the new orientation as three Euler angles in “ZYX” order; 

3. Shift x y z a b c: Control the manipulator to incrementally move by (x, y, z, a, b, c). 

This assembly plan can also be simulated in Rhinoceros to check if there exists any self-collision 

between the robot manipulator and the wall during the building process, as shown in Figure 5-4 

 

Figure 5-4: Assembly simulation. 
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5.2.4 Vision-based Plan Achiever 

5.2.4.1 Rapid Setup of Building Reference Frame 

As previously mentioned, the reversed spatial relationship of product and manipulator on 

construction sites poses a significant challenge for autonomous mobile robots. This is notably 

different from typical autonomous manufacturing spatial configurations, where robots’ bases are 

either stationary or have finite mobility, and materials/components can be readily staged at fixed 

locations within the manipulators’ static workspaces. In contract, for mobile robots to 

autonomously perform building tasks on unstructured construction sites, their bases require 

significant mobility, and consequently their manipulators’ workspaces are not fixed with respect 

to the construction site. In order to complete building tasks at the correct locations and assemble 

materials into their intended poses, a robotic system must be able to establish the accurate 6-DOF 

transformation between the robot’s base and the building reference frame at all times. As pointed 

out in (Shohet and Rosenfeld 1997), this requires the localization accuracy to be at least at 

centimeter level, which could not be easily achieved using state-of-the-art Visual SLAM style 

techniques for mobile robots. 

 

Figure 5-5: Different reference frames 
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Site
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Robot
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In order to address this challenge, a convenient and accurate solution is proposed using planar 

marker-based pose estimation (Olson 2011; Feng and Kamat 2013), as shown in Figure 5-5. By 

1) attaching fiducial markers at appropriate locations on-site where building tasks are to be 

performed, 2) surveying their poses m
bT  in the building reference frame using a total station, 

and 3) storing these poses inside the system’s database, a mobile robot can readily estimate its 

base’s pose b
rT  inside the building reference frame using equation (5.4) whenever its on-board 

camera detects such a marker, based on previous calibration results: 

 1( )b r c m
r c m b

T T T T  (5.4) 

5.2.4.2 Conversion from Plans to Commands 

With the information input from the pose estimator, the vision-based plan achiever starts to 

execute the assembly plan generated beforehand, according to the following procedure: 

1. Read a single plan step (i.e. one line) from the assembly plan file; 

2. Wait until all the poses needed to convert the step into a building command are available; 

3. Convert this step into a command that is executable by the robot controller; 

4. Send the command to the robot controller; 

5. Wait for the controller to complete the command; 

6. Repeat this process unless all plan steps are completed, i.e. the plan is achieved. 

It must be noted that the core step of this procedure is the conversion from a plan step to an 

executable command. This is because the poses stored in the previously generated assembly plan 

are not completely specified in the robot’s base reference frame. Recall that every pose in the 

“Goto” step is specified in a “reference_frame” relatively. Specifying all steps in the assembly 
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plan in the robot base reference frame is not possible because: a) during the design phase the 

designer conceives all component locations in the building reference frame; b) the robot’s base is 

expected to be mobile during the building phase; and c) more importantly, the building 

components will be arbitrarily transported and staged in the building reference frame in the 

vicinity of the robot manipulator’s workspace. This, in fact, is one of the core differences 

between on-site construction automation and manufacturing automation. 

In this research, this conversion is facilitated by the aforementioned rapid setup of the building 

reference frame using markers. As long as the pose estimator can detect and report the 

transformation between the on-board camera and the marker used to specify the building 

reference frame, the poses in the plan steps can be readily converted to the robot base frame 

using equations similar to (5.4). Similarly, by attaching markers on the building components, the 

robot manipulator can detect and clasp them autonomously after the corresponding plan steps are 

converted. 

5.2.5 As-built Point Clouds from 3D Camera 

Due to the operation and maintenance requirement, nowadays construction project owners are 

often more satisfied if given access to not only an as-designed BIM but also an as-built BIM of a 

project. As reviewed previously, a common practice is to start with various 3D scanners such as 

TLS to create 3D point clouds of the built environment. These point clouds are then manually or 

semi-automatically abstracted into CAD-like 3D geometric objects conveying semantic 

meanings, such as walls, floors, doors, windows and utility pipelines. 

Since more often than not limited by the 3D scanner's field of view, a single scan cannot fully 

cover a construction project's outcome, multiple scans need to be carefully planned, performed 
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and then registered into a single reference frame. As pointed out by previous work, the 

automation of such planning and registration becomes important to improve the productivity as 

well as the quality of the final point clouds. 

Facilitated by the proposed visual marker-based metrology and the robot's internal encoders, the 

process to automatically plan, scan and register different frames of 3D point clouds becomes 

readily available on the proposed robotic platform with minimal effort of mounting and 

calibrating a 3D camera on the manipulator, when reusing existing components for autonomous 

assembly. Whenever a new frame of 3D point clouds ( 1,2,3 )c
i i P  is captured (and thus 

expressed naturally in the 3D camera's reference frame), controlled by the scan planner, they are 

transformed into the building reference by equation (5.5): 

 , ( 1,2,3, )b b r t c
i r t c i i  P T T T P  (5.5) 

where t
cT  is the 3D camera's pose relative to the robot's tool reference frame, i.e., hand-eye 

calibration result obtained in section 5.2.2.2, r
tT  the robot's tool's pose relative to its base 

reference frame, maintained by the robot's internal encoders. As noted earlier, the robot's base 

pose in the building reference frame, b
rT , is estimated through the marker-based metrology in 

equation (5.4). 

5.3 Results and Discussion 

5.3.1 Assembly Experiments 

The designed algorithms were implemented into a robotic system using a 7-axis KUKA KR100 

robotic arm with sub-millimeter level accuracy, a Point Grey Firefly MV camera, and a laptop 
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with an Intel i7 CPU, connected through the Robot Operating System (ROS)
17

. Each component 

in Figure 5-1 except for the assembly planner and robot manipulator is a process corresponding 

to a ROS node. The camera node sends images of size 1280 pixels by 960 pixels to the pose 

estimator that implements the Apriltag detection algorithm in C/C++. The plan achiever was 

implemented in Python. The robot controller was also developed using Python to send and 

receive control signals via Ethernet through KUKA’s native Robot Sensor Interface (RSI). Inside 

this controller, a 6-DOF PID control algorithm was employed to drive the robot manipulator 

(with a two-finger gripper) to its destination pose when executing commands from the plan 

achiever. The involved inverse kinematics computations are performed inside the KUKA 

manipulator’s controlling middleware. 

In the first phase of experiments, the robot was tasked with assembling a section of a curved 

wall, as designed in section 5.2.3.1. The design was shown in Figure 5-1. The building 

components used were a set of 170x70x20mm3 medium-density fiberboard (MDF) blocks, each 

affixed with two different 56x56mm
2
 Apriltags. The building reference frame was setup by 4 

different 276x276mm
2
 Apriltags. The overall goal of the experiment was to test the robot’s 

ability to autonomously build the designed wall. 

The system was first calibrated and validated using the methods discussed earlier. The validation 

residual calculated using equation (5.3) was found to be less than 1mm. With the accurately 

calibrated intrinsic and extrinsic parameters, the online building process proceeded smoothly. 

The building blocks were affixed with smaller markers, which decreased the building block 

localization accuracy to centimeter level (2cm) during the clasping process. The error was 

however compensated by the tolerance of the gripper. 
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Figure 5-6: Autonomous robotic assembly experiments. 

 

Figure 5-7: Curved and circular walls assembled onsite by the designed system. 

(a) Pick (b) Lift (c) Move (d) Drop

(e) Before change (f) During change (g) Auto-adapt to change (h) Successfully pick up
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A working cycle of the autonomous building process was shown in Figure 5-6(a)-(d). Since the 

pose estimator was constantly monitoring and updating the poses of each marker, the system was 

naturally capable of automatically adapting to pose changes on-site. As shown in Figure 5-6(e)-

(h), when a building block’s pose changed, the robot manipulator was automatically able to pick 

it up at its newest location. A video recording of the experiment can be found online at the 

following URL: http://youtu.be/fj7AXRpj97o. A fully assembled three-layer curved wall 

approximately 1.5m in length, and another three-layer circular wall, are shown in Figure 5-7. 

5.3.2 Scanning Experiment 

The scan module was implemented on the same KUKA robotic arm with a Microsoft Kinect as 

the 3D camera, as shown in Figure 5-8, with the scan planner and the scan register implemented 

in Matlab. The Fabrication Lab (FabLab) in the College of Architecture of the University of 

Michigan was scanned as an experiment demonstrating the scan module's effectiveness. Using 

the methods described in section 5.2.5, each frame of newly captured Kinect RGBD image of 

640x480 pixels is first converted into a frame of colored point cloud and then transformed into 

the same building reference frame. The resulting final point cloud is then visualized in Point 

Cloud Library (PCL)
18

, as shown in Figure 5-9. 

5.3.3 Limitations and Future Work 

There are several limitations in the above implementation of the proposed vision guided robotic 

assembly and scanning solution that need to be overcome to facilitate its future applications in 

real world construction sites. These limitations include: 

                                                 
18

 http://pointclouds.org 

http://youtu.be/fj7AXRpj97o
http://pointclouds.org/
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1. Feasibility and robustness of the marker-based pose estimation under different 

illumination conditions; 

2. Occlusion of markers on construction sites may impede the feasibility or even 

performance of such systems; 

3. Substantial effort may be necessary to setup such systems onsite due to requirements to 

survey numerous markers and register their poses into the project coordinate frame; 

4. Additional effort is needed for attaching markers on each construction 

material/component such as blocks for the robot to recognize and pick them up; 

5. The durability of markers is a critical limitation for applications in rugged environments 

and difficult weather conditions; 

6. Lack of systematic and quantitative comparisons of such robotic system with traditional 

manual methods. 

The first concern on marker-based pose estimation's robustness noted above has been addressed 

in section 6.4.1 of Chapter 6 with various field experiments proving the feasibility, robustness 

and accuracy for applying such technique in both indoor and outdoor construction environments. 

Even though the second concern about occlusion is a common limitation of all vision based 

methods, it is not such a critical problem in this proposed method. This is because many 

occlusions of markers onsite are temporary due to moving equipment or humans. Once the 

mobile robotic manipulator observes those markers and estimates its own pose in the project 

reference frame, as long as its base stays static during the occlusion period, the robot can still 

accurately maintain its pose using its internal encoders. 
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Figure 5-8: Scan module of the designed robotic system. 

 

Figure 5-9: An as-built 3D point cloud of the FabLab at the University of Michigan 
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The third concern about the workload of installing and surveying markers onsite indeed exists in 

the current system implementation. Yet, compared to the efforts of setting up other pose 

estimation and localization methods that require powered hardware infrastructure such as WLAN 

or UWB, or methods that only work well in open-air outdoor environments such as GPS, this 

effort could be a worthwhile tradeoff. Moreover, Chapter 8 will describe a novel method that 

integrates the markers with Structure-from-Motion technique so that there will be no need to 

survey these markers using specialized surveying equipment such as total station. Instead, by 

simply taking a set of images of those installed markers, their poses can be automatically 

estimated. 

The fourth and fifth concerns were also recognized, and approached by removing the 

requirement of attaching markers on raw construction materials. For example, although not 

closely related to the core contribution of this chapter, the block detection and grasp can be 

achieved without markers using Kinect sensor and the fast plane extraction algorithm in Chapter 

2, and are demonstrated at the following URL: http://youtu.be/CyX4Pr_xly0. For markers to be 

attached on indoor construction sites, even printing on papers can achieve reasonably good 

durability, which is very cost-efficient and can be conveniently replaced if destroyed. For 

outdoor situations, markers can be spray painted on existing planar surfaces (e.g., walls) or 

manufactured wood, foam, or plastic boards. 

Lastly, quantitative comparisons with tradition manual methods are a logical future direction in 

this research. Such comparisons will be more meaningful when this research advances to the 

next stage where the mobile manipulator can actually build stable structures with cement mortar, 

rather than in this research as the proof-of-concept stage. 

http://youtu.be/CyX4Pr_xly0
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Figure 5-10: Block detection and grasp using Kinect. 

5.4 Conclusions 

This chapter reported algorithms and an implemented robotic system that is able to automatically 

generate assembly plans from computational architectural designs, achieve these plans 

autonomously on construction sites, and create as-built 3D point clouds. In order to address the 

localization accuracy challenge, this chapter proposed a computer-vision-based sub-centimeter-

level metrology that enables pose estimation using planar markers. The conducted evaluation 

experiments used the designed robotic system to autonomously assemble various structures such 

as a curved wall of MDF blocks, proving the algorithms and the system’s ability to meet the 

accuracy requirement when building computational architecture designs. In sum, with markers, 

an unstructured construction site can be rapidly configured to allow autonomous mobile 

manipulators to localize themselves and thus perform assembly and scanning tasks. In this way, 

the challenges of unstructured environment and mobility can be efficiently addressed. 

In addition to the long term future goals mentioned in section 5.3.3, the current and planned 

work in this research direction in the short term is focused on continuously improving the 

fundamental methods used in this system along the following directions: 

Kinect Sensor

Block Grasp
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1. Perception: using camera on manipulator to further improve the pose estimation accuracy 

through multiple observations and sensor fusion; improving 3D perception to help 

improve the safety of the robotic system, preparing for its collaboration with human 

workers on-site. 

2. Navigation: incorporating state-of-the-art SLAM algorithms with the proposed marker-

based metrology in the system for increasing its range of autonomous movement. 

3. Hardware and control: designing a suitable robotics platform with mobile base and on-

board manipulator of sufficient payload capacity for indoor and outdoor construction 

activities that are more complex than the block laying activity described in this chapter, 

exploring more sophisticated control algorithms to enable such complex construction 

tasks. 

4. Applications: extending the proposed autonomous system in other construction or 

architecture applications. 
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Chapter 6 

Articulated Machine Pose Estimation for Excavation Monitoring 

"What we need is a machine that will let us see the other guy's point of view." 

—Arthur C. Clarke 

6.1 Introduction 

The construction industry has long been affected by high rates of workplace injuries and 

fatalities. According to the United States Bureau of Labor Statistics' 2013 Census of Fatal 

Occupational Injuries (CFOI) report (Bureau of Labor Statistics 2013), the construction industry 

had the largest number of fatal occupational injuries, and in terms of rate ranked the fourth 

highest among all industries. 

In addition to the safety concerns, there are also increasing concerns of relatively stagnant 

productivity rates and skilled labor shortage in the construction industry. For example, recently 

the construction sector in the United Kingdom is reported to be in urgent need of 20% more 

skilled workers and thus 50% more training provision by 2017, to deliver projects in planning 

(LCCI/KPMG 2014). 

Excavation is a typical construction activity affected by the safety and productivity concerns 

mentioned above. Excavator operators face two major challenges during excavation operations, 

described as follows. 
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First is how to maintain precise grade control. Currently, grade control is provided by employing 

grade-checkers to accompany excavators during appropriate operations. Grade-checkers 

specialize in surveying and frequently monitor the evolving grade profile. The evolving grade 

profile is compared to the target grade profile and this information is communicated by the 

grade-checker to the excavator operator. The operator reconciles this information and adjusts the 

digging strokes accordingly. This process is repeated until the target profiles are achieved. 

Employing grade-checkers is not only dangerous but also results in a significant loss in 

excavation productivity due to frequent interruptions required for surveying the evolving profile. 

Second is how to avoid collisions to either human workers, buried utilities, or other facilities, 

especially when excavator operators cannot perceive the digging machine’s position relative to 

hidden obstructions (i.e., workers or utilities) that it must avoid. According to the 

aforementioned CFOI report, among all the causes for the 796 fatal injuries in the U.S. 

construction industry in 2013, the cause of striking by object or equipment comprised 10 percent. 

This percentage is even higher in other industries such as agriculture (19%), forestry (63%), and 

mining (23%). Besides directly causing fatal injuries on jobsites, construction machines can also 

inadvertently strike buried utilities, thus disrupting life and commerce, and pose physical danger 

to workers, bystanders, and building occupants. Such underground strikes happen with an 

average frequency of about once per minute in the U.S., reported by the Common Ground 

Alliance
19

, the nation's leading organization focused on excavation safety. More specifically, 

excavation damage is the third biggest cause of breakdowns in U.S. pipeline systems, accounting 

for about 17% of all incidents, leading to over 25 million annual utility interruptions (US DOT 

PHMSA 2015). 

                                                 
19
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Automation and robotics in construction (ARC) has been extensively promoted in the literature 

as a means of improving construction safety, productivity and mitigating skilled labor shortage, 

since it has the potential to relieve human workers from either repetitive or dangerous tasks and 

enable a safer collaboration and cooperation between construction machines and the surrounding 

human workers. In order to apply ARC and increase intelligence of construction machines to 

improve either safety or productivity for excavation and many other activities on construction 

jobsites, one of the fundamental requirements is the ability to automatically and accurately 

estimate the pose of an articulated machine (e.g., excavator or backhoe). The pose here includes 

the position and orientation of not only the machine base (e.g., tracks or wheels), but also each of 

its major articulated components (e.g., stick and bucket). 

When a construction machine can continuously track its end-effector's pose on the jobsites, such 

information can be combined together with the digital design of a task, either to assist human 

operators to complete the task faster and more efficiently, or to eventually finish the task 

autonomously. For example, an intelligent excavator being able to track the pose of its bucket 

can guide its operator to dig trenches or backfill according to designed profiles more easily and 

accurately with automatic grade-check. This can eventually lead to fully autonomous 

construction machines. When construction machines becomes more intelligent, it can be 

expected to save time in training operators and thus to mitigate skilled labor shortage and also 

improve productivity. 

On the other hand, when construction machines are aware of the poses of their components at 

any time and location on jobsites, combined with other abilities such as the recognition of human 

workers' poses and actions, such machines will be able to make decisions to avoid striking 

human workers, for example by sending alerts to their operators or even temporarily taking over 
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the controls to prevent accidents. Thus it will help to decrease the possibilities of those injuries 

and fatalities and improve the safety on construction jobsites. Similarly, with continuous tracking 

of the pose of its end-effector (e.g., a bucket of an excavator), an intelligent excavator could 

perform collision detection with an existing map of underground utilities and issue its operator a 

warning if the end-effector's distance to any buried utilities exceeds some predefined threshold. 

 

Figure 6-1: Overview of SmartDig. 

Thus, from a safety, productivity, and economic perspective, it is critical for such construction 

machines to be able to automatically and accurately estimate poses of any of their articulated 

components of interest. In this chapter, a computer vision based solution using planar markers is 
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proposed to enable such capability for a broad set of articulated machines that currently exist, but 

cannot track their own pose. A working prototype is implemented and shown to enable 

centimeter level excavator bucket depth tracking. Its overview is shown in Figure 6-1, with (A) 

camera cluster and stick marker, (B) benchmark with pre-surveyed pose in the project reference 

frame, (C) system calibration, (D) working prototype of automatic grade control, (E) comparison 

to manual grade. 

The remainder of this chapter is organized as follows. Related work is reviewed in section 6.2. 

The technical approach is discussed next in detail in section 6.3. The experimental results are 

presented in section 6.4. Finally, in section 6.5, the conclusions are drawn and the future work is 

summarized. 

6.2 Previous Work 

The majority of the construction machines on the market do not have the ability to track their 

poses relative to some project coordinate frames of interest. To track and estimate the pose of an 

articulated machine, there are mainly four groups of methods. 

First are the 2D video analysis methods, stimulated by the improvement in computer vision on 

object recognition and tracking. Static surveillance cameras were used to track the motion of a 

tower crane in (Yang et al. 2011) for activity understanding. Similarly in (Rezazadeh Azar and 

McCabe 2012) part based model was used to recognize excavators for productivity analysis. This 

type of methods generally require no retrofitting on the machine, but suffers from both 

possibilities of false or missed detection due to complex visual appearance on jobsites and the 

relative slow processing speed. Although real-time methods exist as in (Memarzadeh et al. 2012; 
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Brookshire 2014), they either cannot provide accurate 6D pose estimation, or require additional 

information such as a detailed 3D model of the machine. 

Second are stereo vision based methods. A detailed 3D model of the articulated object was 

required in (Hel-Or and Werman 1994) in addition to stereo vision. A stereo camera was 

installed on the boom of a mining shovel to estimate pose of haul trucks in (Borthwick et al. 

2009), yet the shovel’s own pose was unknown. In (Lin et al. 2013) the shovel’s swing rotation 

was recovered using stereo vision SLAM, yet the pose of its buckets was not estimated. This 

type of methods can be infrastructure independent if with SLAM, yet some problems (sensitivity 

to lighting changes or texture-less regions) remain to be resolved for more robust applications. 

Third are laser based methods, e.g., (Duff 2006; Kashani et al. 2010; Cho and Gai 2014), which 

rooted from the extensive use of laser point clouds in robotics. This type of methods can yield 

good pose estimation accuracy if highly accurate dense 3D point clouds of the machine are 

observed using expensive and heavy laser scanners. Otherwise with low quality 2D scanners, 

only decimeter level accuracy was achieved (Kashani et al. 2010). 

Finally are angular sensor based methods, such as (Ghassemi et al. 2002; Cheng and Oelmann 

2010; Lee et al. 2012). They are usually infrastructure independent and light-weight, but the 

resulting pose estimation is either not accurate enough or sensitive to changes of magnetic 

environment which is not uncommon in construction sites and can lead to large variations in the 

final estimation of the object poses. Moreover this type of methods only estimate the articulated 

machine's pose relative to the machine base itself, if without the help of infrastructure dependent 

sensors like GPS. However the use of GPS brings several technical challenges. For example, 

construction sites in a lot of cases do not have good GPS signals to provide accurate position 
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estimation when these sites are located in urban regions or occluded by other civil infrastructure 

such as under bridges. Sometimes GPS signals could even be blocked by surrounding buildings 

on jobsites and thus fail to provide any position estimation. In addition, since the GPS only 

provides 3D position estimation, to get the 3D orientation estimation one needs at least two GPS 

receivers at different locations of a rigid object. When the object is small, such as a mini-

excavator's bucket, the estimated 3D orientation's uncertainty will be high. 

6.3 Technical Approach 

In this section, firstly the basic marker based pose estimation for this application is discussed as a 

baseline design. After potential issues of the baseline design are identified, different versions of 

the proposed articulated machine pose estimation system design resulting from the previously 

developed camera marker networks are explained. Finally, two prototypes implementing these 

designs are discussed. 

6.3.1 Baseline Design 

As mentioned previously, this computer vision based articulated machine pose estimation 

solution relies on a method called marker based pose estimation. Generally, marker based pose 

estimation firstly finds a set of 2D geometry features (e.g., points or lines) on an image captured 

by a calibrated camera, then establishes correspondences between another set of 2D or 3D 

geometry features on a marker whose pose is known with respect to a certain coordinate frame of 

interest, and finally estimates the pose of the camera in that coordinate system. If 2D-2D 

correspondences are used, the pose is typically estimated by homography decomposition. If 2D-

3D, the pose is typically estimated by solving the perspective-n-point (PnP) problem. Two 

typical marker-based pose estimation methods are AprilTag (Olson 2011) and KEG (Feng and 

Kamat 2013) proposed in Chapter 3. 
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There are two ways of applying marker based pose estimation for poses of general objects of 

interest. As shown in Figure 6-2, one way is to install the calibrated camera 1 rigidly on the 

object of interest (in this case, the cabin of the excavator), and pre-survey the marker 1's pose in 

the project coordinate frame. The other way is to install the marker 2 rigidly on the object (in this 

case, the stick of the excavator), and pre-calibrate the camera 2's pose in the project coordinate 

frame. As long as the camera 2 (or the marker 1) stays static in the project coordinate frame, the 

pose of the excavator's stick (or the cabin) can be estimated in real-time. 

 

Figure 6-2: Two examples of basic camera marker configuration 

However, these basic configurations don't always satisfy application requirements. For example, 

if only the camera 1 and the marker 1 are used, the excavator's stick pose cannot be estimated. 

On the other hand when only the camera 2 and the marker 2 are used, once the stick leaves the 

field of view (FOV) of the camera 2, the stick's pose becomes unavailable as well. Thus it is 

necessary to take a camera's FOV into consideration when designing an articulated machine pose 
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estimation system. This understanding leads to the camera marker network designs proposed as 

described in the following subsections. 

6.3.2 Camera Marker Network Designs 

As proposed in Chapter 4, a camera marker network is an observation system containing 

multiple cameras or markers for estimating poses of objects embedded in this system. It can be 

abstracted as a graph with three types of nodes and two types of edges. A node denotes an object 

(i.e. the local coordinate frame of that object), which can be a camera, a marker, or the world 

coordinate frame. An edge denotes the relative pose (i.e. transformation) between two objects 

connected by this edge, which can be either an observed pose estimated from the previously 

mentioned marker based pose estimation, or a known pose (e.g., through calibration). Thus, if at 

least one path exists between any two nodes in such a graph, the relative pose between them can 

be estimated. In addition, any loop in the graph means a constraint of poses that can be used to 

improve the pose estimation. 

 

Figure 6-3: Single-camera multiple-marker configuration. 
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Applying this concept to articulated machine pose estimation results in numerous possible 

designs. One of the basic possible camera marker networks is shown in Figure 6-3. A single 

camera is rigidly mounted on the base of the machine observing a marker attached to the 

articulated component of interest (e.g., stick). In the meantime another benchmark marker with 

pre-surveyed pose is also inside the camera's FOV. Then the stick's pose in the world frame can 

be continuously estimated even if the machine base might be moving. This configuration is 

typically suitable for applications where the moving direction is aligned with the camera's 

viewing direction (e.g. trenching). 

 

Figure 6-4: Multiple-camera multiple-marker configuration. 

Such single-camera multiple-marker configuration can be further extended by adding more 

cameras. For example as shown in Figure 6-4, camera 1 observes the benchmark while camera 2 

observes the stick marker, and the rigid transformation between the two cameras is pre-
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calibrated. Thus as long as the two markers stay inside the two cameras' FOV respectively, the 

stick's pose in the world frame can be estimated. It is worth noting that the two figures only 

illustrate the simplest configurations. With more cameras and markers in the network, there are 

more chances of creating loops and thus improving pose estimation, especially considering that 

surveillance cameras are becoming popular in construction jobsites whose poses can be pre-

calibrated. 

6.3.3 Prototypes 

Multiple prototypes have been implemented to realize the above described camera marker 

network designs. Figure 6-5 demonstrates one of the early prototypes implementing the single-

camera multiple-marker configuration. A mechanical component using a timing belt was adopted 

to map the relative rotation between the excavator bucket and the stick to the relative rotation 

between the stick marker and the flip marker. This implementation enables pose tracking of the 

excavator bucket. 

 

Figure 6-5: An early prototype configuration. 
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Due to the potential interference of the flip marker and any obstructions during excavation, the 

above early prototype was slightly modified and evolved to the current prototype as shown in 

Figure 6-1. The newer working prototype implements the multiple-camera multiple-marker 

configuration similar to Figure 6-4. Two cameras are rigidly mounted forming a camera cluster. 

A linear potentiometer is installed on the stick to track the relative motion of the excavator 

bucket and the stick even if the bucket is deep inside the earth. 

6.4 Experimental Results 

6.4.1 Feasibility Experiments 

Before implementing the pose estimation system prototypes, a set of experiments were 

performed to test the feasibility of marker based pose estimation in different indoor/outdoor 

construction environments. In all the experiments, AprilTag (Olson 2011) was chosen as the 

basic marker detection and tracking algorithm. 

Firstly, the outdoor detectability of markers was tested. A marker's detectability is a function of 

many factors including the marker size, the distance between the marker and the camera, 

included angle between the camera viewing direction and the marker plane's normal direction, 

and also image resolution. Since the distance between the marker and the camera is the most 

critical factor affecting the method's feasibility in real applications, this experiment is performed 

by fixing other factors and then gradually increasing the distance of the marker in front of the 

camera, until the algorithm fails to detect the marker, and recording the distance. Varying other 

factors and repeating this process results in Table 6–1. One can consult this table to decide how 

large the marker should be to fit application need. 
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Table 6–1: Outdoor detectability of AprilTag. 

 

Figure 6-6: Marker detection vs illumination. 

Secondly, illumination is a critical factor affecting performance of many computer vision 

algorithms. The AprilTag algorithm was thus tested under various illumination conditions to 

examine its robustness for construction applications. Figure 6-6 shows successful marker 

detection under different indoor/outdoor lighting conditions. These experiments and following 

extensive prototype tests proved AprilTag based marker detection method's robustness to 

illumination changes. 

Max Detectable Distance (m) 
Marker Angle (degree) 

0 45 0 45 

Marker Size (m
2
) 

0.2 x 0.2 6.10 4.88 11.28 8.84 

0.3 x 0.3 8.23 7.01 14.94 11.58 

0.46 x 0.46 13.41 11.28 25.91 21.64 

0.6 x 0.6 19.51 16.46 34.44 30.48 

Image Resolution 640 x 480 1280 x 960 

Focal Length 850 pixels 1731 pixels 

Processing Rate 20 Hz 5 Hz 
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Finally, for uncertainty propagation, one needs to have a prior estimation of the image 

measurement noise's standard deviation u . This is achieved by collecting multiple images 

under a static camera marker pose. Repeating this process for different poses and collecting 

corresponding image measurement statistics lead to an image measurement covariance matrix 

uΣ , which can be further relaxed to 2
u I  to include all the data points. Figure 6-7 shows that 

0.2u  pixel (adopted in section 4.4.1 on page 95) is reasonable. 

 

Figure 6-7: Image measurement noise estimation. 

6.4.2 Prototype Experiments 

As previously mentioned, a multiple-camera multiple-marker articulated machine pose 

estimation prototype has been implemented with the application of estimating an excavator's 

bucket depth in a project frame, which could be used for automatic excavation guidance and 

grade control. 
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(a) Setup 

 
(b) Different configurations 

Figure 6-8: Prototype experiments. 

The top row of Figure 6-8(a) shows the camera cluster of the prototype in Figure 6-1, and 

different experiment configurations to test the depth estimate's accuracy. The experiments were 

setup by observing the two markers in the bottom row of Figure 6-8(a) using the two cameras in 

the cluster respectively. Then the depth difference between the two markers was estimated using 

the proposed method, while the ground truth depth difference between the two marker centers 

was measured by a total station with 1 mm accuracy. Figure 6-8(b) illustrate the configurations 

of different sets of such experiments, for comprehensive tests of the method's accuracy under 

Marker Pitch

Number of TagsMarker DistanceMarker Height
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several system and design variations. The first set varies one of the marker's pitch angle (top row 

of the figure). The second set varies its height (bottom-left). The third set varies its distance to 

the camera (bottom-middle). And the fourth set varies the number of Apriltags used in that 

marker (bottom-right). 

 

Figure 6-9: Prototype error vs. configuration. 

Figure 6-9 shows the box plot of the absolute depth errors comparing the ground truths with the 

results from camera marker network pose estimation, in the above mentioned different sets of 

prototype experiments. Note that all errors are less than 2.54 cm, even when observed from 



148 

more than 10 meters away. Further experiments showed that the system worked up to 15 

meters. 

This prototype is then tested on a real excavation site for grade control as shown in Figure 6-1 

(D) and (E). The resulting trench depth differences between the manual grade and the guided 

grade (by the prototype) are less than 1 inch, which fulfils the needs of many construction 

applications. 

6.5 Conclusions 

This chapter proposed a vision based pose estimation solution for articulated machines using 

previously proposed camera marker networks. The conducted experiments and a working 

prototype proved the proposed solution's feasibility, robustness, and accuracy (centimeter level) 

for real world construction applications. 

The current and planned work in this research direction is focused on continuously improving the 

estimation accuracy, and increase the scale of the application from currently 10~20m to 

50~100m by adopting different types of lenses (e.g., telescopic lens). This improvement will be 

in collaboration with the future research directions of general camera marker networks, so that 

different choices of network designs and lens types can be analyzed in advance to real 

experiments. Another future research direction is to incorporate with the state-of-the-art visual 

SLAM algorithms so that the application scale can be further increased in more flexible ways. 
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Part III: Applications in Construction Automation with Human-in-the-Loop 

"Can machines think?"—Alan Turing 

This part includes two construction automation applications with human-in-the-loop, also based 

on algorithms from part I, guided by the Human Machine Interaction principle introduced in 

Chapter 1, section 1.2.2.2, meaning that the collaboration between human and intelligent 

machines was rooted in the designs. 

Americans spend "approximately 90 percent of their time indoors" on average (U.S. 

Environmental Protection Agency 1989). How to effectively link indoor physical locations to 

associated information so as to facilitate the work and life of humans living inside becomes 

critical. Indoor facility management is a typical automation application related to this. Chapter 7 

described a possible topological navigation solution using marker networks and mobile BIM. 

Due to inevitable differences between designs and as-built introduced in section 1.2.2.1, more 

and more construction contractors are required to provide owners as-built BIM models. A most 

important part of as-built BIM model is the 3D parametric geometry model of the building. 

Chapter 8 described a solution using camera marker networks and fast plane extraction together 

to efficiently scan the building and create a planar parametric model to accelerate further as-built 

BIM model generation. 
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Chapter 7 

Markers as Spatial Indices for Indoor Mobile Facility Management 

"It is impossible to underrate human intelligence - beginning with one's own." 

—Henry Adams 

7.1 Introduction 

Context-aware information delivery has been recognized as a critical component in many 

Architecture, Engineering and Construction, and Facilities Management (AECFM) applications 

(Aziz et al. 2005; Khoury and Kamat 2009; Andoh et al. 2012). Identification of a user’s location 

is one of the most fundamental and extensively studied problems in this area. Solutions that 

achieve good balance between cost and accuracy could lead to meaningful productivity 

improvement in applications such as facility management, construction inspection, and indoor 

way finding. 

Previously, researchers’ attention has focused more on traditional non-visual-sensor-based 

methods, such as Global Positioning System (GPS), Inertial Measurement Unit (IMU) (Akula et 

al. 2011), Radio Frequency Identification (RFID) (Sanpechuda and Kovavisaruch 2008; Andoh 

et al. 2012), Wireless Local Area Network (WLAN) (Aziz et al. 2005), and Ultra-Wide Band 

(UWB) (Teizer et al. 2008). Recently computer vision and robotics communities have proposed 

methods such as Simultaneous Localization and Mapping (SLAM) (Thrun 2008) and Visual 
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Registration (Olson 2011), utilizing visual sensors such as camera or lidar. Although most of 

these methods can track a user’s 3D position continuously, they also have their own 

disadvantages respectively such as indoor unavailability, tracking drift, large 

infrastructure/special hardware requirement, cost inefficiency, and high computational power 

requirement. 

However, in many of those methods’ AEC domain applications, the fact that the end-user is 

human being makes human intelligence not only a non-negligible but rather important ingredient 

to achieve a good cost-accuracy balance (Akula et al. 2011). This is different from robot 

navigation since robots need to know their own location at any moment for further decision 

making, while a human already possesses the ability of maintaining its own location within a 

certain range. For example, given a typical hallway with limited turnings, a human can easily 

navigate from one end point to the other; while a robot may need help of continuous SLAM. 

Only when the hallway contains lots of turnings and exit stairs, navigation becomes useful for 

humans, which is also true for outdoor road navigation. This observation in fact suggests that 

continuous tracking of user’s position might not be necessary in many AEC applications; for 

human inspectors, to automatically extract discrete-spatial-distributed information could be 

sufficient to accomplish their jobs faster and better. 

Naturally, marker based visual registration method for Augmented Reality (AR) becomes a good 

candidate for such discrete localization (Olson 2011; Feng and Kamat 2013). Registration 

problem means how to find the relative position and orientation between two coordinate systems 

in AR (Azuma 1997). Thus, beside correspondences between different AR markers and discrete 

locations, these types of methods also provide estimation of not only position but also 

orientation. This additional dimension of information could help to obtain better visualization of 
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extracted information and hence extend the application domain to where traditional sensor based 

methods such as RFID could not reach. 

In the meantime, mobile devices are becoming more and more popular recently. Especially for 

smart phones and tablets, camera, CPU and even GPU are standard configuration, which 

unsurprisingly makes them ideal equipment for ubiquitous visual computing. Combining those 

observations, the authors were motivated to explore a new method utilizing AR markers as 

spatial indices to create links between physical locations and virtual information stored in 

databases, which runs on mobile devices. The contribution in this chapter is mainly a general 

computing framework as well as an indoor way-finding application based on such a framework. 

The fact that more and more people have smart devices makes it easier for people to access 

information using this method than all previous methods such as RFID and UWB. 

The remainder of this chapter is structured as follows. In section 7.2, previous work on both 

traditional and visual sensor based methods is reviewed; in section 7.3, the general computing 

framework of AR marker as spatial index is explained in detail; in section 7.4 an indoor way 

finding application based on that framework is developed to facility indoor facility management; 

section 7.5 describes a set of experiments conducted to prove the new indoor way finding 

method’s efficiency; and finally section 7.6 presents the conclusions of the chapter. 

7.2 Previous Work 

As mentioned before, researchers have extensively studied two types of localization techniques 

for context aware computing, i.e. traditional non-visual-sensor-based methods, as well as newly 

emerging visual-sensor-based methods. 
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Among the first type, GPS is mainly used for outdoor scenarios; IMU’s tracking drift issue 

requires error correction either by human (Akula et al. 2011) or by combining with other 

methods such as AR marker (Feng and Kamat 2013); RFID-based methods usually depend on 

large infrastructure (i.e. enough RFID tags must be available) and also requires special tag reader 

which is not easily accessible by common people (Sanpechuda and Kovavisaruch 2008; Andoh 

et al. 2012); WLAN-based methods also require large number of footprints (Aziz et al. 2005); 

UWB-based methods generally cost too much (Teizer et al. 2008; Khoury and Kamat 2009). 

Besides, none of these methods can easily provide instantaneous orientation information (even 

though there is angular sensors such as gyroscope, electrical compass or accelerometer, they 

themselves come with problems such as noise and sensitivity to the environment), which makes 

them not optimal for further 3D visualization purpose. 

On the contrary, the second type of methods directly output orientation along with position 

information. By analyzing images captured from visual-sensors such as a simple webcam, the 

visual registration methods can recover that sensor’s pose (position and orientation). Based on 

their different assumptions on the environment (i.e. the surrounding world where visual 

registration is going to be performed), these algorithms can be classified into two groups (Lepetit 

and Fua 2005; Feng and Kamat 2013): known environment vs. unknown environment (see 

Figure 3-1 on page 47), the proposed indoor way-finding application contains a module that can 

be classified as fiducial marker-based method). 

The first group of visual registration algorithms is less computation-consuming and easier to 

design since the only unknown is the user’s pose. Because they have been well studied, and 

many related powerful algorithms have been proposed in the last two decades, it is more realistic 

to apply them for solving real-world engineering issues. Within this class of methods, they can 
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be further categorized into two groups: planar environment vs. non-planar environment. The first 

group is again easier to design because of the simple assumption made regarding the 

environment—a planar structure with known visual features. The second group is more often 

applied in a controlled environment with limited space, such as a small manufacturing 

workspace. 

In the indoor way-finding applications, the authors chose to take advantage of plane-based 

methods since planar structures are abundant in buildings, construction sites, and other built 

environments where engineering operations are conducted, which makes this type of method 

very convenient to apply. In addition, a planar structure can simply be an image printed out on a 

piece of paper and attached to a wall/floor of a corridor, with negligible cost. 

Plane-based methods can be further classified based on different visual features they adopt: 

fiducial marker vs. natural marker. A fiducial marker is composed of a set of visual features that 

are “easy to extract” and “provide reliable, easy to exploit measurements for the pose estimation” 

(Lepetit and Fua 2005). Usually those features are a set of black and white patterns forming 

simple geometry by circles, straight lines, or sharp corners and edges. Well known fiducial 

markers include ARToolKit (Kato and Billinghurst 1999) and the newly proposed AprilTag 

(Olson 2011). 

Distinct from a fiducial marker, a natural marker does not require special predefined visual 

features. Instead, it treats any visual features in the same way. In this sense, almost any common 

image, ranging from a natural view to a company logo, can immediately be used as a natural 

marker. Even though natural marker methods have advantages of more accurate and stable as 

well as larger tolerance to partial occlusion, its relatively higher computational requirement than 
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fiducial marker methods limits its sphere of application to high-end smart mobile devices. 

Taking all these factors into consideration, the authors chose to apply fiducial markers in the 

indoor way finding application so as to lower the requirement of its targeted devices. 

7.3 Methodology 

In this section, a general computing framework is described, representing the authors’ proposed 

idea to use AR marker as spatial index which links between physical location and virtual 

information related to that location. Since the framework is generic, the descriptions are not fixed 

to any specific algorithms. As long as an algorithm can meet the requirements of each module to 

be described below, it can fit into the framework. This makes it possible to adapt new algorithms 

for existing system with little difficulties. 

 

Figure 7-1: System overview of AR marker as spatial index. 

The system overview is shown in Figure 7-1. The system operates based on the following 

procedure. Firstly, an image potentially containing an AR marker is captured by the camera on 
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the mobile device. This image is then sent to the marker recognition module. If the image 

contains an AR marker and it is recognized by the marker recognition module, then the ID of the 

AR marker is sent to the database as a key value to search for attached information. 

Simultaneously, the estimated pose of the mobile device relative to the marker is sent to the 3D 

visualization module. This visualization module then takes the estimated pose to render the 

information sent back from the database on the screen of the mobile device for further decision 

making by its end-user. In order to achieve such functionalities, each module needs to conform 

to certain requirements, which are explained in more detail below. 

7.3.1 Physical Space 

Generally speaking, the physical space in this framework, as the targeted environment of such a 

system, could be any indoor scene. For example, a complex shopping mall, an international 

airport, a subway station, a big warehouse or a building construction site. In fact, in some 

application scenarios, even outdoor scene such as a public park could be equipped with such a 

system. 

In order to make the original physical space compliant with the system, AR markers must be 

attached to a discrete set of locations which are critical to the application. The AR markers 

should have their own IDs which serve as the spatial indices of that set of locations. The marker 

recognition algorithm corresponding to those markers should contain two functions: 1) the ability 

to extract the ID of a marker presents in an image; 2) the ability to recover the pose of that 

image, i.e. the mobile device, relative to the marker. Some possible choices of marker could be 

AprilTag (Olson 2011) or KEG marker (Feng and Kamat 2013). 
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Even though the requirement of one-to-one mapping between AR markers and physical locations 

makes this approach slightly infrastructure dependent, the facts that AR marker is flexible and 

easy to use/install, cost efficient, and more importantly capable of providing orientation 

information make it more ideal than RFID tag. 

7.3.2 Mobile Device 

A mobile device is the core of such a system. Its camera serves as the main input where 

information enters into the system. While cameras are part of the standard configuration of 

common mobile devices such as mobile phone or tablet, a rear facing camera setup is more 

desirable than a front facing one, since the direction of sight of the camera could be aligned with 

user’s viewing direction more naturally so that user could see the 3D visualization more 

conveniently. 

Also, the 3D visualization module naturally locates within the mobile devices. It visualizes the 

information sent from the database in the means of augmented reality by pose estimated from the 

marker recognition module. Here an implementation choice must be made for any application 

conforming to this framework: whether the marker recognition module should locate locally 

within mobile device or remotely in the server/cloud. This usually depends on the invoking 

frequency of this computation framework. For some applications, the whole procedure needs to 

be performed for every frame of the live video stream captured by mobile device’s camera. In 

this situation, a local marker recognition module is more reasonable, otherwise the captured 

image needs to be transferred to the server/cloud side very frequently, which will increase the 

data volume transferred through the mobile network resulting in higher cost and longer latency. 

For some other applications, the invoking frequency is relatively low, say around 1 time per 
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minute. Then turning the marker registration module into an online service could be a good 

choice. 

7.3.3 Database 

A database is the foundation of such a system. With physical locations mapped into IDs through 

AR markers, the database module is very flexible and can be implemented from almost all kinds 

of databases available, such as MySQL, SQLite or even a self-defined text file. Similarly, the 

storage location of this database is also an implementation choice, depends on the size of the 

whole database as well as the size of information to be sent back to the 3D visualization module. 

For relatively smaller-size database, say less than 1 Mb, downloading the whole database from 

cloud/server side to mobile device once and for all is a reasonable choice. Otherwise, server-side 

storage of the whole database could be more efficient, as long as the size of the information to be 

sent back in step 4 of Figure 7-1 is relatively small. 

7.4 Way-finding Application for Indoor Facility Management 

As mentioned previously, the above methodology is best suitable for the decision making 

process which involves a set of discrete spatial locations. Indoor way finding is one good 

example application for which the above methodology could be very helpful. 

Consider the following first-person scenario: you are a new student on the first day of class. You 

were given a room number which is the first class you are going to take. But the building is large 

and unfamiliar, and even though you entered it for a few times previously, you still find it 

difficult to find the correct direction. You try to look for an indoor floor plan view of the 

building but it takes you more than 5 minutes and you fail to understand the map. Since it is 

already time for class, very few people are available for inquiring the directions. When you 
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finally find someone for help, the instructions you get are “go along this hallway and turn left at 

room 1318, then walk to the end of the hallway and turn right. Then pass the exit door and go 

upstairs to second floor and turn right again. After another two exit doors and a right turn is your 

destination.” After you find the room probably half of the class has passed. Similar situations 

happen frequently inside many complex buildings for a person who is unfamiliar with the 

environment or doesn’t have a good sense of direction, and even for someone who works/studies 

inside the building every day since s/he has never been to the room before. 

  

Figure 7-2: Example of mobile BIM for facility management
20

. 

Similar situations exist for facility managers or inspectors using mobile BIM applications (Figure 

7-2). A facility manager needs to periodically access and update the maintenance information of 

a specific facility at a certain location. To access BIM on a mobile device (dubbed as mobile 

BIM, which extends BIM’s applications from pre-construction to post-construction phase) for 

facility managers immediately when they are inspecting those facilities can greatly simplify their 

workflows and improve their work efficiency. However the BIM model of a project can be very 

complex, while existing mobile BIM implementations cannot automatically determine a user’s 

                                                 
20

 Images come from Walter P Moore: http://www.walterpmoore.com/ 

http://www.walterpmoore.com/
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location inside any indoor environment. Thus facility managers have to manually search and 

locate the object on mobile devices with relatively small screens, which is inconvenient and 

inefficient. 

In both of the above two cases one can see that the most useful piece of information—either the 

instruction which greatly influences the decision making process of way finding, or the facility 

location in a BIM model which is necessary for accessing and updating corresponding data—

contains a set of discrete locations (e.g. room 1318, exit door, corner, stair, etc., or a HVAC 

equipment's position) as described before. It is then natural to consider that an AR marker should 

be attached to each of such critical spatial locations to map these locations into spatial indices. In 

the database module, the position and orientation of each marker under the building’s global 

coordinate system is stored, as well as positions of all the rooms of the building. Thus an 

oriented graph is generated from this information, with nodes as rooms and markers, edges as 

instructions of how to move from starting node to ending node, edge weights as lengths of 

physical paths (see Figure 7-3, shaded large circle means marker node, small circle means room 

node). There are two situations for adding edge to the graph: 

1. When there is a physical path between a room node A and a marker node B without 

passing other markers, an edge from B to A can be added to the graph; No edge from 

room node to marker node should be added; 

2. When there is a physical path between a marker node C and a marker node D without 

passing other markers, an edge from C to D, as well as an edge from D to C, should be 

added to the graph. 
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Figure 7-3: An example of oriented graph for indoor way finding application. 

The instruction stored within each edge, say edge starting from node A to node B, is the method 

of how to move from A to B assuming user is currently facing towards the marker. For example, 

as the orientation of marker 2 shown as an arrow in the detailed floor plan view of marker 2 in 

Figure 7-3, instruction stored in edge from marker 2 to marker 0 could be “turn left”, since when 

the user gets this instruction s/he should be looking at this marker 2. 

After the graph is constructed, the user is asked to select a node as destination. Then the Dijkstra 

algorithm (Dijkstra 1959) is performed on the graph to compute the shortest path from all other 

marker nodes to this node. Thus whenever user comes to a marker, the marker recognition 

module will extract the corresponding spatial index and then find the marker node in the graph. 

Then the shortest-path edge starting from this node is retrieved and the moving instruction is 

displayed graphically in the 3D visualization module (see Figure 7-4). When user is standing at 

the marker node which has a direct edge pointing to the destination, special logo is shown (the 
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animated eye shown at the top-right corner of the left image in Figure 7-4) to remind user to slow 

down and look carefully around the surroundings since s/he is very close to the destination room. 

  

Figure 7-4: Screenshots showing graphical instruction of how to move to the destination. 

The authors implemented the described indoor way finding application on Android platform. 

Here the two design choices are made as follows. Marker recognition module is located in the 

mobile device, since real-time performance is desired; database is stored in server side as a 

simple self-defined text file describing the whole graph of a building (termed as a map file). This 

application assumes that user is aware of which building s/he is in. When user selects the 

building, the corresponding map file will be downloaded to the mobile device. The marker 

recognition module in this application adopts the AprilTag. As mentioned in section 7.2, the 

reason to adopt this specific algorithm is that AprilTag is proved to be superior than previous 

proposed fiducial markers in the sense of speed, accuracy and tolerance to critical view 

conditions (long distance, large viewing angle, partial occlusion etc.). 

The authors have made this application, named as Mobile AR Navigator (MARvigator)
21

. 

Although similar methods or systems have been proposed before (Kalkusch et al. 2002; Wagner 

and Schmalstieg 2003; Augmented Reality & Assistive Technology Laboratory of NUS 2011), 

                                                 
21

 publicly available online at http://www.umich.edu/~cforrest/upload/marvigator/ 

http://www.umich.edu/~cforrest/upload/marvigator/
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MARvigator is superior since it takes advantage of the state-of-the-art fiducial marker system 

and is implemented conforming to the general framework described previously, resulting in 

faster real-time performance (about 15 frame-per-second as shown in Figure 7-4), high ease of 

use and flexibility (could be easily setup at any complicated indoor environment or some outdoor 

environment). 

 

Figure 7-5: Mobile BIM with marker-based location recognition in Autodesk Navisworks. 

Similarly, as shown in Figure 7-5, a mobile BIM prototype integrated with marker-based 

location recognition was implemented as a plugin in Autodesk Navisworks, a widely adopted 

BIM platform. Using similar idea discussed above, if the target indoor environment has been pre-

installed with various markers at the various facility locations, when a facility manager is 

inspecting a particular equipment, s/he just needs to point the camera on the mobile device to the 

equipment and the marker nearby. Then this plugin will automatically navigate the virtual 

camera of the BIM platform (Navisworks) to the corresponding virtual location. Then the 

manager can easily access and update relevant information, without tedious and inefficient 

manual search and navigation. Moreover, when the manager moves the mobile device, as long as 

the marker is still detectable in the image, the virtual camera will be moved in synchronization 

with that actual movement, creating an immersive experience to facilitate the inspection. 
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7.5 Experimental Results 

In order to show MARvigator’s efficiency in helping people find destinations, a set of 

experiments is conducted on the first floor of a building on the author’s university, which is 

known on the authors’ campus for its complex network of corridors and hallways. Seventeen 

apriltags are placed on critical locations among the region whose positions and orientations are 

shown in Figure 7-6. Six target positions are selected (room 1351, 1318, 1069, 1188, 1040 and 

1504) which need to be sequentially found by each of the 10 experiment volunteers, among 

which 6 volunteers work/study within a part of this region and the other 4 have never been to this 

region or are not familiar with it. 

 

Figure 7-6: Indoor way finding experiment setup. 

Each volunteer starts from nearby marker 0. They are instructed on the usage of MARvigator for 

one minute before the experiment. The time for each volunteer’s reaching target room is 

recorded with resolution of half a minute. In order to reduce to the minimum the influence of 
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other factors such as variations in walking speed and sense of direction, volunteers are asked to 

switch between using and not using MARvigator during the way finding. For example, if a 

volunteer start to find the first target room 1351 with the help of MARvigator, then s/he should 

not use MARvigator but any other common means of way finding (looking at the map on some 

part of the building or asking other people for help) to discover the second target room 1318, and 

vice versa. In the experiment, 5 people start with MARvigator and the other 5 people start 

without. 

The experiment results are shown in Table 7–1. The shaded grid shows the time to find the target 

room assisted with MARvigator. From these results it is clear that MARvigator does help people 

to find destinations faster. Notice that for the first two targets, using MARvigator took slightly 

longer time. This could be explained by the fact that the user needs time to learn how to use the 

application. Also the first two targets are very close to the start position and can be found easily. 

However, by comparing the average time of finding later targets, MARvigator’s efficiency is 

better highlighted. 

Table 7–1: Experimental results for the 10 volunteers. 

Time(min) Volunteer who starts with MARvigator Volunteer who starts w/o MARvigator   

Target A B C D E F G H I J Average 

1351 0.5 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.80 0.50 

1318 0.5 0.5 0.5 1 0.5 0.5 1 1 1 0.5 0.60 0.80 

1069 0.5 1 1 1 1 0.5 2 5 2 2 0.90 2.30 

1188 2 2 7 4 2 1.5 2 4 3 2 3.40 2.50 

1040 1 2 1 1 2 2 0.5 1 4 4 1.40 2.30 

1504 3 3 2 2 2 2 1 2 3 2 2.40 2.00 
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7.6 Conclusions 

In conclusion, the proposed general computing framework of using AR marker as spatial index 

to link physical locations with virtual information related to that location offers a new 

perspective of utilizing AR markers. The indoor way finding application MARvigator 

conforming to this framework is proved by experiments to be very efficient and convenient. 

Future research directions could be adopting more advanced computer vision and machine 

learning algorithms such as topological SLAM (Cummins and Newman 2008) to replace the 

marker recognition module with landmark recognition module which further decreases the 

infrastructure dependency of the framework. 
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Chapter 8 

Marker Assisted 3D Scanning and Plane Recognition for As-Built Modeling 

"Everything should be as simple as it can be, but not simpler."—Albert Einstein 

8.1 Introduction 

Modeling of the built environment in 3D is important for many construction and maintenance 

activities, such as interior design and facility management. As the most relevant information, the 

architects’ designs of built environments, such as 3D geometric models stored in BIM, have a 

limitation that they do not capture the discrepancies between the designs and the as-built 

environments, as introduced previously in section 1.2.2.1. Also, such designs may not be readily 

accessible for end users of the built environment. 

This as-built modeling task may be addressed by different methods. As-built survey is a widely 

applied method using conventional surveying equipment such as total stations to measure 

positions of key points in the built environment and then generating as-built 2D plans or 3D 

models usually in wireframe form. Such point-by-point surveys are accurate but inefficient. 

3D scanning technology is thus being increasingly adopted due to the fact that it can efficiently 

collect thousands of 3D points forming a point cloud to describe the environment being scanned. 

The data collection device in 3D scanning is typically a terrestrial laser scanner (TLS) due to its 

high accuracy. Various algorithms have been proposed in this area, including data collection, 

http://quoteinvestigator.com/2011/05/13/einstein-simple/
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registration, shape representation, and object recognition, as aforementioned in section 5.1.2.2, as 

well as the relevant literature review by Tang et al. (2010). 

The TLS based 3D scanning methods also have disadvantages, such as high costs for purchasing 

TLS and corresponding data processing software, requirement of trained experts to design and 

perform the scan and post-process scan data, and the large volume and weight of TLS. For 

example, tenants or even owners of an unfurnished residential building may not have, or not be 

able to conveniently access a detailed as-built 3D model of this building. When they want to 

perform certain interior designs in this building, the TLS based as-built modeling might be cost 

prohibitive and offer unnecessary detail and accuracy. 

Thus it is of interest to develop cost-efficient, easy-to-use, and lightweight as-built modeling 

solutions with sufficient accuracy. Laser-based 3D scanning devices are generally expensive, 

TLS being typical examples. Even the cheapest 2D line-scan lidar such as Hokuyo URG-04LX-

UG01 currently costs about a thousand US dollars. Compared with them, off-the-shelf 

commercial digital cameras are more attractive due to their relatively lower costs. Especially 

with the recent progress in Structure from Motion (SfM) and Visual SLAM introduced in 

previous chapters, digital cameras become promising data collection devices to achieve the 

abovementioned tradeoffs between cost and accuracy. 

When investigating those existing vision-based methods, an important technical challenge needs 

to be effectively addressed, which is the fact that a lot of target environment in need of as-built 

modeling are featureless or of repeated features, such as unfurnished indoor apartments. As 

explained in section 1.2.2.1, this violates an important constraint of existing vision-based 

methods that can provide 3D descriptions of surrounding environment, because locally 
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distinguishable features are necessary for feature matching, or data association in robotics terms, 

so that correct and accurate correspondences can be identified and proper geometric relationships 

can be established across various images. 

With previously developed marker-based pose estimation in Chapter 3 and camera marker 

networks in Chapter 4, this challenge can be readily resolved. By printing out planar markers and 

attaching them in the target environment, correspondences can be directly and automatically 

identified through detections and recognitions of those markers in each image. Then using the 

theoretical framework of camera marker networks, one can efficiently estimate all markers’ 

poses, which can be used to measure critical information of the target environment such as 

dimensions and dihedral angles between any two planes. 

If more detailed as-built modeling of the target environment is desired, e.g., with the purpose of 

generating realistic models of rooms for online advertisement, a commercial RGBD camera, 

such as Kinect, can be applied to replace the ordinary RGB camera. Since the camera marker 

network also estimates poses of each cameras/views, the associated 3D point clouds can be 

directly registered into the same world coordinate frame, forming a single point cloud describing 

the target environment. Moreover, recalling the fast plane extraction algorithm that was proposed 

in Chapter 2, plane extraction and recognition can be performed in each frame of those point 

clouds to provide additional observation and help to create a more compact and concise 

description of the target environment mixing points and planes, similar to (Taguchi et al. 2013). 

Following the above train of thought, this chapter proposes a marker assisted as-built modeling 

solution as a cost-efficient and easy-to-deploy alternative to the TLS based methods. The 

algorithms are explained in section 8.2, and the experimental results are discussed in section 8.3. 
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8.2 Technical Approach 

As briefly described in the previous section, the marker assisted as-built modeling solution 

proposed here contains two methods. The first and basic method using only an ordinary RGB 

camera will be explained in section 8.2.1. The second method extends the first one by replacing 

the RGB camera with an RGBD camera, which will be explained in section 8.2.2. 

8.2.1 Marker Structure from Motion 

This first method is a direct application of the aforementioned camera marker networks, which is 

also the foundation of the proposed solution. The basic idea is to attach printed paper markers on 

planes of the target environment. Then an intrinsically calibrated RGB camera is moved to 

different proper poses to take a sequence of images of those markers, forming a sequence of 

views. This results in a dynamic camera marker network of multiple views and multiple markers. 

When the marker poses are estimated in this camera marker network, poses of the corresponding 

planes can be determined, since it is reasonable to assume these printed paper markers are on 

those planes. Since the poses of all markers cannot be finally estimated without moving the 

single camera to different views, this method is dubbed as marker structure from motion, as it is 

very similar to traditional point-based SfM. 

Figure 8-1: Different operations in marker structure from motion. 

As illustrated in Figure 8-1, this marker SfM contains several operations to grow and maintain 

the dynamic camera marker network, which are detailed in the following subsections. 
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8.2.1.1 Initialization 

Before taking the first image, the camera marker graph needs to be initialized. As shown in 

Figure 8-1(a), this initialization is to specify the relationship between at least one marker node 

and the world node. Essentially this operation is to define what the world coordinate frame is in 

this as-built model. In camera marker graphs, such relationships are represented as soft 

constraints (dotted lines), i.e. a triplet ( , , g)s ec  where s and e are the indices of the two 

connected nodes ,s ex x  and g is the constraint function. In initialization, this constraint function 

is to directly specify the values of pose parameters of a marker s in the world coordinate frame e 

and thus termed as the fixed-node constraint (denoted with symbol ‘=’): 

 1/2g ( , ) ( )s e s s

  x x P x x  (8.1) 

where [ , ]s s s T T T
tx e  is the surveyed pose parameters of the markers s, and P  is the cross-

covariance matrix of the surveyed values sx  for properly weighting this constraint (in the sense 

of Mahalanobis distance). The markers added in this operation are termed as control markers and 

have similar purposes as control points in conventional surveying and photogrammetry. For end 

users without surveying equipment, this initialization can be done by simply setting the world 

coordinate frame as the first marker to be observed, i.e. [0,0,0,0,0,0]s 
T

x , while the cross-

covariance matrix 2 2 2 2 2 2diag([ , , , , , ] )e e tte t      
T

P  with sufficiently small 2 2, te   that 

ensure no numerical problems, usually 0.01rad, 0.1mme t   . 

8.2.1.2 Discover New Markers 

After initialization, the end user can start taking photos of those markers. Each photo will 

correspond to a new view node to be added to the initialized camera marker graph. An important 
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rule of thumb of choosing proper poses for taking photos is that at least two markers (and 

generally the more the better) should be detectable in the photo on the selected pose, and their 

images should be as far apart as possible in this photo, as shown in Figure 8-2. This is because 

that this view's pose can be more accurately and stably estimated if all of the observed markers' 

poses are known. 

 

Figure 8-2: Example photos and corresponding marker detections for as-built modeling. 

Whenever a new photo is taken, the corresponding view node needs to be initialized and added 

to the graph. There are three situations. The first one is that none of the markers detected in this 

new photo have been seen before. In this case, this view cannot be readily initialized and added 

to the graph because of no connections to existing markers. Thus this photo can be either 

discarded or temporarily cached for later processing whenever such connections can be found. 

The second situation is that among all detected markers there exist some markers that have been 

observed and added to the graph before, while others are newly detected. In this case, the new 

view node can be initialized by calculating the relative pose between those observed markers and 

this view, using either homography decomposition or solving the perspective-n-point problem, as 
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explained in Chapter 4, section 4.2.3.1. Once the view is successfully initialized and added to the 

graph, those newly detected markers which have not been observed before can now be 

subsequently initialized and added to the graph. An example is shown in Figure 8-1(b). After 

initialization in (a), firstly a new view (view 1) is added by initialize the view's pose using edge 

a. Then the new marker (marker 2) is added using edge b. 

8.2.1.3 Re-observe Old Markers 

The third situation is that all of the markers detected in this new photo are old markers that have 

been observed and added to the graph before. In this case, the new view node can be added using 

the same method as in the second situation. The only difference is no new markers can be added. 

For example Figure 8-1(c), the new view (view 2) can be added using edge c or d or both. 

It is however worth noting that in marker SfM, if only one old marker is detected in a new photo, 

this photo is of little value to be added to the graph. This is because that if conditioned on this re-

observed old marker's pose, the corresponding view's pose is and will always be independent 

with poses of all other views and markers, since no more edges can be possibly linked back to 

this view again. This is different with marker nodes since by adding more views the conditional 

independence could be removed, e.g., the marker 2 in Figure 8-1(b) is conditional independent 

on the view 1, but not any more after the view 2 is added in Figure 8-1(c). 

8.2.1.4 Detect Marker Constraints 

After multiple marker nodes are initialized and added to the graph, their geometric relationship 

can be examined to detect potential pose constraints between markers. Typical constraints 

include parallelism, perpendicularity, coplanarity, and the aforementioned fixed-node constraint. 

Generally there are two approaches for enforcing constraints between marker nodes. The first 
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one is to change the parameterization of the marker pose, so that the estimation solution is 

inherently ensured to exactly fulfill those constraints, also dubbed as hard constraints. For 

example, two markers' poses were originally parameterized by two 6D column vectors 1 2,x x  as 

described in the Appendix. To enforce the coplanarity hard constraint since they were attached to 

a same plane, one needs to change 1 2[ , ]T T T
x x  to 12 1 2[ , , ]T T T T

p q q  where the 4D column vector 

12p  encodes the normal and position of that plane, and the 2D column vector 1 2,q q  encodes the 

2D position of the two markers in that plane. After this change, the parameter dimension reduces 

from the original 12 to 8. After any optimization, the parameterization ensures the estimated two 

markers' poses are on a same plane exactly. The advantage of this approach is that it can usually 

reduce parameter dimension and thus reduce the complexity of the estimation problem. Yet due 

to the change of parameters, the implementation of this approach becomes complicated. 

The other more convenient approach is to use the so-called soft constraints, as used in Chapter 4. 

It preserves the uniform representation of each node's pose parameter, and enforces constraints as 

a special type of observations. When performing optimizations, these constraint residuals are 

minimized together with ordinary observation residuals. For example, the perpendicularity 

constraint, denoted with symbol ‘┴’ in Figure 8-1(d), can be represented as: 
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and the parallelism constraint, denoted with symbol ‘//’ in Figure 8-1(e), can be represented as: 
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and the coplanarity constraint, denoted with symbol ‘p’, can be represented as: 
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where 3( )r e  is the third column of the rotation matrix ( )R e  computed in the Appendix, 

representing a marker's normal direction in the world coordinate frame; 1
/ /  , 1

 , and 
1

p


 are 

the weighting factors for the constraints indicating the user's confidence of these constraints. 

These constraints can be either manually or more intelligently specified. Whenever a new marker 

node is added to the graph, it can be checked with each marker node existed in the graph for any 

of the constraints mentioned above. If a resulting constraint residual is below the pre-defined 

threshold, then a constraint candidate is detected and proposed for user approval. 

8.2.1.5 Final Optimization 

After a new photo is processed by the above three operations described in section 8.2.1.2, 

8.2.1.3, and 8.2.1.4, a full optimization of the current graph can be performed using equation 

(4.5) as described in section 4.2.3.2, to adjust all current poses in the graph. Note that since all 

the soft constraints described above have been already properly weighted, the Mahalanobis norm 

for the constraint residuals vector G(X) can be replaced with the ordinary vector L
2
 norm. 

When all photos are processed, a final optimization adjusting the camera intrinsic parameters 

together with all poses is performed considering the fact that camera intrinsic parameters were 

calibrated previously independent to this estimation. This slightly modifies equation (4.5) as: 
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where the camera intrinsic parameters vector K becomes a part of the function c ( , ; )F K X Y 's 

state/configuration to be adjusted, instead of the original parameters for the function F, as 

explained in section 4.4.2. This is illustrated in Figure 8-1(e) where the K is shown in grey with 

dotted edges linking to all the view nodes whose poses are directly affected when adjusting K. 

The above five operations can thus be summarized in Algorithm 8–1, which described a post 

processing version of marker SfM. It can be conveniently converted to online processing by 1) 

performing step 1 to 8 for each newly taken photo; 2) evaluating pose uncertainties using 

equation (4.6); 3) performing the final optimization using equation (8.5) after the user stops 

taking new photos when all markers are estimated with sufficiently small uncertainties. 

Algorithm 8–1: Marker Structure From Motion. 

Initialize a camera marker graph G using equation (8.1); 

For i = 1 to N: 

1. Detect markers in photo Ii; 

2. If no detected marker exists in G, swap Ii and Ii+1, and redo step 1; 

3. Initialize a new view node v in G using detected markers that exist in G; 

4. Add an edge between v and each detected existing marker in G; 

5. Initialize a new marker node for each detected markers that is not yet in G; 

6. Add an edge between v and each of these newly added marker nodes; 

7. Perform an optimization of all nodes using equation (4.5); 

8. For each new marker node n added in step 5, and each node m in G other than n: 

a. Calculate different soft constraint residuals between node n and m, e.g. using 

equation (8.2), (8.3) and (8.4); 

b. If any of such residuals is smaller than a pre-defined threshold, request user approval 

for adding a corresponding constraint edge between node n and m; 

Finally perform an optimization of intrinsic parameters and all nodes using equation (8.5). 
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8.2.2 Marker and Plane Structure from Motion 

Many applications can be readily addressed using the marker SfM proposed above, for example, 

measuring dimensions for interior design. This is because markers' poses can be used to 

straightforwardly calculate distances between parallel planes (e.g., height of a room, width of a 

hallway, etc.), dihedral angles between two planes (e.g., walls, roofs, etc.), and so on. Essentially 

the markers and the camera serve as a virtual and more accurate tape and protractor. 

In some more advanced as-built modeling applications, such as rapidly creating a virtual 3D 

model of a room for online sales, the marker SfM might not be satisfactory. Considering the fact 

that low cost 3D imaging devices like Kinect become more popular, a marker and plane SfM 

using a low cost RGBD camera as data collection device is thus proposed in this section. This 

method extends camera marker networks with a new type of observations, i.e., 3D planes 

extracted from depth image using Algorithm 2–1 (page 31). 

8.2.2.1 Extended Camera Marker Graph 

Just as the original camera marker networks, such an extended one can be considered as a graph 

G = (V, E) with a set of two types of nodes ( , )V X Π  and a set of three types of edges E = (O, 

Q, C). The only two extended elements are a set of plane nodes  ( , ) | 1 ,,i i id i S Π p e  

and a set of plane observation edges  ( , , | ,) 1,j j j jv Sp j  q AQ . Each plane node ip  is 

a 3D column vector parameterizing the corresponding plane's 3D orientation and location, as 

described in the Appendix. Each plane observation edge contains a camera/view node's index jv  

and a plane node's index jp , and also an observation matrix jA  holding in each column a 3D 

anchor point sampled from all points belonging to that plane in the raw point cloud observed at 
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view jv , similar to (Taguchi et al. 2013). Like equation (4.1), (4.2), and (4.3), the residuals of 

each plane anchor point ai in such an edge q=(v, p, A) is calculated as: 

  1/2h( , , ) h( , ) [ , ( ) ( ) , ]
pv

v p i
v

p
p

v pv d
d

  
     

   

T T
q

ee
x p A P n e R e a t

t
, (8.6) 

where function R(.) and n(.) is explained in the Appendix, and 
1/2

qP  is the weighting matrix for 

this edge. This essentially calculates the point-plane distances between the plane and each anchor 

point transformed into the world coordinate frame, and stack as a column vector. 

Stacking such equations for all plane observation edges results in: 
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Thus the original optimization in equation (4.5) is extended to: 
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and the full optimization including camera intrinsic parameters in (8.5) is extended to: 
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8.2.2.2 Plane Matching 

It is worth noting another difference in this extended graph, which is the matching of a currently 

observed plane to a plane in the graph. While matching markers across different views in the 

original graph is straightforward with markers' unique IDs, 3D planes extracted from point 

clouds cannot be matched in that way. However with marker SfM, a newly added view's pose is 



179 

already estimated in the world coordinate frame approximately. Thus each extracted 3D plane in 

this view can be transformed to the world coordinate frame and matched to its most "similar" 

plane in the extended graph, in terms of criteria such as the normal and distance deviations: 

  d( , ) [acos ( ) ( ) , abs( )]a b a b a bd d T T
p p n e n e , (8.10) 

where the second term may be replaced by the average distance between one plane and anchor 

points of the other plane, to increase matching robustness. 

Algorithm 8–2: Marker and Plane Structure From Motion. 

Initialize a camera marker graph G using equation (8.1); 

For i = 1 to N: 

9. Perform step 1 to 8 of Algorithm 8–1 (page 176) on the photo Ii; 

10. If the photo was swapped in step 2 of Algorithm 8–1, swap the point cloud Di with Di+1; 

11. Extract planes using Algorithm 2–1 (page 31) on Di; 

12. For each extracted plane p: 

a. Transform p to the world coordinate frame using the pose of the new view node v just 

added in step 3 of Algorithm 8–1; 

b. Find the best matching plane q of p in all plane nodes in G, using equation (8.10); 

c. If the differences between q and p are within pre-defined thresholds: 

i. Add a new plane observation edge between v and q to G; 

ii. Expand the boundary of q by p; 

d. Otherwise: 

i. Add p as a new plane node to G; 

ii. Add a new plane observation edge between v and p to G; 

13. Perform an optimization of all nodes using equation (8.8); 

Finally perform an optimization of intrinsic parameters and all nodes using equation (8.9). 
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Finally, the extended marker and plane SfM is summarized in the above Algorithm 8–2. Note 

that constraint edges described in section 8.2.1.4 can be add between plane nodes in similar ways 

as described in step 8 of Algorithm 8–1, which need not be repeated here. 

8.3 Experimental Results 

8.3.1 Accuracy of Marker Structure from Motion 

 

Figure 8-3: Marker SfM results. 

Both Algorithm 8–1 and Algorithm 8–2 were implemented in MATLAB using the lsqnonlin 

function in its optimization toolbox to compute the aforementioned nonlinear optimizations. A 

set of 30 Apriltags (tag family: Tag36h11) were printed on ordinary A4 papers, each tag of the 

same size 172mm. These markers are then attached on walls, floors and ceilings of a two-story 

apartment, as partly shown in Figure 8-2. The camera marker graph was initialized by setting 

marker 14 (attached on the floor) as the world coordinate frame. After 66 views of photos were 

taken, the marker structure results are shown in Figure 8-3. Only the view 1 (corresponds to the 

left image of Figure 8-2) and the view 30 (the right image) and their associated edges were 
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plotted, while other views and edges were hided for clarity purpose. The small ellipsoid centered 

on each marker denotes the largest position estimation uncertainty of that marker's center in the 

world coordinate frame (ellipsoid was again plotted by 2 9   and 0.2u   pixels, as in Figure 

4-4 on page 96). 

To evaluate the accuracy of marker SfM, a Topcon PS 101A total station (2mm nominal distance 

measurement precision within 100m, and 0.5 second nominal angular measurement precision) 

was employed to survey those markers' poses as a baseline for comparison. To avoid introducing 

additional station registration errors in this baseline result, the total station was setup in a single 

station that can directly observe a maximum of 17 among all of the 30 markers. Then each of the 

four corners of these 17 markers was surveyed, resulting in a 3 by 68 matrix s
X . The 

corresponding estimated corner positions, w
X , were calculated using those markers' poses from 

marker SfM. Using the well-known rigid body registration algorithm (Besl and McKay 1992), 

one can calculate the transformation ,w w
s sR t  that transforms each surveyed point s

iX  in the 

total station's coordinate frame to the world coordinate frame, and then compare the 

discrepancies with the corresponding estimated point w
iX  as: 

 ( )w w s w
i i s i s  E X R X t . (8.11) 

As shown in the top-left image of Figure 8-4, green ‘+’ shows each transformed surveyed point 

w s w
s i sR X t , red ‘.’ shows the marker SfM estimated point w

iX . The top-right image shows 

the error vector Ei in black ‘.’, and its projection onto each side planes (Ex, Ey, Ez). The bottom-

left image shows a histogram of Ei and bottom-right shows the relative error (Ei dividing by the 

scale of all these markers' distribution on the X, Y and Z directions). One can verify that the 
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majority of errors are within 10mm with the largest positional error of 29.5mm, while the 

absolute errors iE  on average are 5, 4, 2mm on X, Y, Z directions respectively. Note that these 

markers are distributed with a scale of about 9m along the X direction, shown in the top-left 

image. This suggests that the maximum relative error of this marker SfM is about 0.3%, which is 

of sufficient accuracy considering the fact that it was achieved using an ordinary webcam-style 

RGB camera (of image size 640x480 pixels) on the Kinect device (depth image was not yet used 

in this experiment yet). The processing rate for these 66 photos was about 1 minute per photo on 

average in this MATLAB code, which could be hugely improved with C++ code in the future. 

 

Figure 8-4: Marker corner position differences between surveyed and estimated results. 
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8.3.2 As-built Models from Marker and Plane Structure from Motion 

A second experiment was performed to test the marker and plane SfM algorithm, using the 

previous 66 RGB images, and the corresponding 66 depth image. Some intermediate results are 

shown in Figure 8-5, such as plane segments in each frame (top row, corresponding to the two 

images in Figure 8-2), and planes boundaries extracted in each frame and remaining non-planar 

points all plotted together in the world coordinate frame (bottom). 

 

Figure 8-5: Intermediate results for marker and plane SfM. 
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Figure 8-6: Point cloud results for marker and plane SfM. 

After Algorithm 8–2 was performed on these 66 RGBD images, the 66 point clouds were 

transformed into the world coordinate frame using estimated poses for each view and then 

merged into a single point cloud, whose side, front, and top views are shown in the top-left, top-

right, and bottom of Figure 8-6. This is the point cloud form of the as-built model of the 

apartment using the proposed method, with only a few paper markers and a low cost Kinect 

camera. 
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Figure 8-7: Wireframe results for marker and plane SfM. 

Another more concise form of the as-built model is shown in Figure 8-7, where each plane node 

was plotted as a single planar 3D polygon. These polygons are the boundaries of each plane, 

merged from the boundaries of the same plane observed in each single view of point cloud, in 

step 12.c.ii of Algorithm 8–2. Compared to the previous point cloud form, this polygon form is 

more similar to the parametric models used in BIM and has more semantics. 

8.4 Conclusions 

In conclusion, this chapter combined the fast plane extraction algorithm and the camera marker 

network method, resulted in two types of novel as-built modeling techniques, marker SfM, and 

marker and plane SfM. The two proposed techniques require only a low cost RGB/RGBD 
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camera and a few paper markers to perform dimension measurements and 3D scanning and 

modeling, which essentially enable rapid and cost-efficient as-built modeling. Furthermore, the 

experiment has demonstrated that these techniques can achieve satisfactory accuracy (average 

absolute error within 5mm; maximum positional error 29.5mm over a 9m scale, i.e. 0.3% relative 

positional error) at sufficiently large scales. Moreover, the marker and plane SfM algorithm 

enables automatic wireframe as-built model generation which could help automatic as-built BIM 

generation. 

The future direction for this research contains several aspects. Firstly the marker and plane SfM 

algorithm's accuracy needs to be further improved especially considering the fact that the 

systematic error in the depth image and thus in the raw point cloud from Kinect will adversely 

affect the accuracy of the marker SfM. A more accurate RGBD camera calibration might help to 

reduce such influence. Secondly the implementations of the two algorithms need to be 

transplanted to C++ using the aforementioned efficient generic bundle adjustment software 

libraries such as Ceres (Agarwal and Mierle 2012) or g2o (Kummerle et al. 2011), so as to 

improve the time performance. Thirdly a more intelligent user guidance algorithm needs to be 

integrated similar to the AprilCal (Richardson et al. 2013) where end users will be guided by the 

algorithm step by step to take photos at the best poses generated by the algorithm. This will 

greatly shorten the amount of time for end users to adopt such techniques. Fourthly, the potential 

of using multiple cameras forming a camera cluster in this as-built modeling application needs to 

be explored to increase the flexibility and reduce the amount of views needed to complete a 

modeling process. Last but not least, visual SLAM techniques needs to be integrated to further 

increase the efficiency and range of applications. 



187 

Chapter 9 

Conclusions 

"If you will tell me precisely what it is that a machine cannot do, 

 then I can always make a machine which will do just that."—John von Neumann 

9.1 Significance of the Research 

Currently, skill-intensive industries like construction are facing several challenges. The first one 

is high rates of workplace injuries and fatalities. Due to various reasons such as emotional or 

environmental ones, even skilled labors will inevitably make mistakes at work, which may result 

in accidents at job sites. The second one is relatively stagnant productivity rates, especially in 

construction industry compared to others. Unlike industries largely accelerated through 

integrations of machines, the essence of construction arguably remains unchanged. Large 

numbers of workers, skilled or not, are needed to complete a construction project. The third one 

is the shortage of skilled labor, which attracts more attention nowadays when the baby boomer 

generation is retiring while birth rates of many developed and even developing countries are 

decreasing. Moreover, when construction careers' public images are still "low-tech, low-safety, 

low-income, and unstable", such skilled labor shortage will become worse. 

Under such background, Automation and Robotics in Construction (ARC) is becoming more and 

more attractive. Firstly, machines, especially robots, once properly setup, have much lower 



188 

possibilities of making mistakes at work. Secondly, machines and robots can work in 

environments that are dangerous and unhealthy for human workers. Thirdly, machines can 

augment human worker's abilities for avoiding dangerous situations and perform better and 

faster. 

However, to realize all the above merits of ARC, some fundamental problems must be addressed 

properly. Pose estimation and scene understanding—the core focus of this research, and 

belonging to two broader topics in robotics: perception and navigation—are among such 

problems. They are critical and significant because of the two challenges of applying ARC: the 

unstructured and featureless environment, as well as the differences between designs and the as-

built infrastructures. These two challenges make it particularly difficult to directly implement 

conventional forms of automation and robotics that have been successfully adopted in 

manufacturing industries. This is because manufacturing and construction, though appearing to 

be very similar, have fundamental differences regarding those two challenges. Manufacturing 

environment is usually indoor, controlled factory settings. Manufacturing designs and as-built 

products have very tight tolerances so designs can accurately reflect the true states of products. 

However construction has opposing circumstances. Conventionally, construction often needs to 

be performed onsite where the final products, the buildings or civil infrastructure, are to be used. 

Thus the construction jobsites are often outdoors, unstructured and rugged (even indoors). The 

architecture designs and the final buildings also could have larger discrepancies. 

Thus, pose estimation and scene understanding become essential for ARC. Reliable and accurate 

pose estimation can enable construction machinery and devices to maintain estimation of their 

locations and orientations on the unstructured jobsites. Fast and semantic scene reconstruction 

and understanding can empower them to make sense of the environment that might be different 
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than the designs in their records. With these abilities, machinery can be easier to control and 

collaborate with, require less human supervision, and even become autonomous on complex 

worksites. Wearable and mobile devices can facilitate construction and post-construction 

activities by helping human workers make better decisions. These could finally alleviate the 

issues mentioned before. 

Previous research on pose estimation for ARC focuses on technologies that are heavily 

dependent on powered hardware infrastructures, such as GPS, WLAN, UWB, and RFID. Thus 

they have disadvantages such as relatively high-cost, inability to support rapid setup and 

reconfiguration, or no direct 6DOF pose estimation. Previous research on scene reconstruction 

and understanding for ARC focuses on heavy-duty equipment and specialized software such as 

terrestrial laser scanner (TLS) which could be not easily accessible or simply cost prohibitive and 

technically redundant. Recently ARC researchers have looked into cost-efficient alternatives 

such as image-based 3D reconstruction (Golparvar-Fard et al. 2009) and vision-based motion 

capture (Han and Lee 2013). 

A potential gap in this new research stream is the overlook of an important challenge in 

construction environment: featureless or repeated features. If not properly addressed, this 

challenge can affect performances of many vision-based pose estimation and scene 

understanding algorithms. This is because one of their core operations is the robust feature 

matching or data association, which depends on the fundamental assumption that there are 

enough locally distinguishable visual features in the images. 

This dissertation documented the research that follows the above train of thoughts. This research 

presents a pose estimation and scene understanding framework for filling the unnoticed gap by 
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taking advantages of markers together with cameras, and then addresses the aforementioned 

technical challenges. This framework is centered on planes, markers, and cameras. The fast plane 

extraction algorithm provides a concise and efficient way of modeling and understanding the 

environment. The marker-based pose estimation, or plane registration, provides a robust, 

accurate, cost-efficient, and rapidly reconfigurable solution to the featureless challenge. Finally 

the camera (both RGB and RGBD) marker networks provide unified links between markers and 

planes in the previous two algorithms. 

After these three fundamental algorithms, this research applied them in two groups of ARC 

applications to demonstrate effectiveness of the proposed framework, while the applications 

themselves are of great value to the relevant industry sectors. The first group is related to robotic 

construction machinery where pose estimation is critical for increasing the safety and 

productivity of tasks that involve such machinery. The applications in this group include an 

autonomous robotic manipulator that can assemble complex digital architecture designs, and a 

guiding and monitoring system for articulated machinery. The second group is related to ARC 

with human-in-the-loop, where a core principle is to enable human-machine interaction so as to 

be effective. The applications in this group include a mobile BIM enabled indoor facility 

management, and an as-built modeling solution. 

9.2 Research Contributions 

This research contributes to the automation and robotics in construction and other relevant 

industries by improving jobsite safety, increasing productivity and potentially alleviating skilled 

labor shortage with the implementation of ARC applications developed based on the three 

fundamental algorithms on pose estimation and scene understanding. For construction 

contractors, engineering, maintenance, inspection and management personnel, this will alter 
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traditional methods of using construction machinery and devices, change conventional means of 

accessing and updating project information, and thus improve their safety and productivity. 

The individual research challenges that were successfully examined and addressed in the 

proceeding chapters are summarized as follows: 

 A general-purpose fast and accurate plane extraction algorithm that runs in real-time 

(35Hz) for better understanding of 3D environment. 

 A general-purpose robust, stable, accurate and fast marker-based pose estimation 

algorithm as the basis for all following applications. 

 A general-purpose theoretical framework for rapid reconfigurable pose estimation in 

large scales, with mathematical solutions and uncertainty analysis for design guidance. 

 An autonomous robotic manipulator that is capable of assembling digital architecture 

designs on jobsites. 

 A guiding and monitoring system for articulated machines such as excavator to avoid 

collisions or guiding excavation according to design profiles. 

 A location recognition solution for indoor facility management on mobile BIM. 

 An as-built modeling solution that is accurate, efficient and cost-efficient. 

9.3 Future Directions of Research 

As previously stated, this research centered on markers, planes and cameras. The future 

directions of this research are thus to extend these three factors to overcome the outstanding 

limitations from the current work. Detailed and specific limitations have been pointed out in the 

conclusion sections of each individual chapter. In addition, the following sections discuss several 

specific thrusts as directions for future research. 
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9.3.1 Extending to Non-Fiducial Features 

In this research, markers were used to provide reliable and fast feature matching. This is 

particularly useful in featureless or repeated-feature environment. Yet even in such environment, 

there could still exist some locally distinguishable features, although not as dense as common 

indoor environment after finishing, or outdoors. Moreover, state-of-the-art visual SLAM 

algorithms are mostly purely based on non-fiducial features. Thus it could be worth considering 

to take these non-fiducial features into account to gain more observations and reduce the number 

of markers needed to be manually installed. 

9.3.2 Extending to Non-Planar Structures 

In this research, no matter 3D planes or planar markers are all plane structures in the 

environment. In many industrial environments or modern architecture designs, non-planar 

structures such as curved surfaces, are not uncommon. Thus it could be interesting to develop 

fast non-planar structure extraction, for completeness and also increasing the potential range of 

applications. 

9.3.3 Extending to Non-Central-Projection Cameras 

In this research, both RGB and RGBD cameras are assumed to be compliant with the central-

projection model, e.g., usually without much distortions on the image. However the field-of-view 

of such a camera is usually small, which is a significant limitation. Cameras with non-central-

projection lenses could potentially address this issue and thus worth including into the 

framework in the future. 
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Appendix 

6DOF Pose Parameterization 

The 6DOF pose parameterization [ , ] T T T
x e t  adopted in this research can be described as: 

 
( )

( ) ( )
1
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where the R(e) is the well-known Rodrigues' rotation formula: 
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3D Plane Parameterization 

The 3D plane parameterization [ , ]d T T
p e  adopted in this research can be described as: 
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where ( )n e  is the 3D unit normal vector of the plane, encoded using spherical coordinates. Note 

that the e here is a 2D column vector instead of 3D in the pose parameter. The third parameter d 

is simply the distance from the world origin point to this plane. 
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