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ABSTRACT 

 

Protein, as one of the most important functional biomolecules in the human body, plays a 

significant role in physiological responses and molecular diagnostics. Detecting the existence of 

proteins, quantifying concentration, and identifying protein types are therefore important 

techniques in many fields. There is also a need to develop protein detection techniques that 

provide high efficiency, low cost, and high sensitivity. Immunoassays are one of the major 

techniques relied on for protein detection. Immunoassays have been broadly applied in disease 

diagnosis, pharmaceutical development, food science, and environmental protection. Significant 

impacts in these fields have motivated people to develop immunoassays with better performance 

in terms of efficiency, sensitivity, specificity, and point-of-care feasibility. 

The first part of this dissertation describes studies aimed at developing chemical vapor 

deposition (CVD) graphene as a large size protein biosensing platform. Since the first success of 

graphene isolation in 2004, a tremendous number of potential applications of graphene have been 

proposed. In particular, the application of graphene to biosensor development has received a 

great deal of interest. To utilize graphene as a biosensing platform, techniques to immobilize 

proteins on graphene are critical. In this dissertation work, carboxyl functional groups (-COOH) 

were created by graphene functionalized through Diels-Alder reaction followed by hydrolysis, 

and the functionalized graphene was characterized using Raman spectroscopy, X-ray photo 

spectroscopy (XPS), and fluorescence microscopy. These methods help to characterize the 

creation of the carboxyl functional groups, the functional groups distribution uniformity and their 

density. The fluorescence images show that the carboxyl groups were created uniformly. The 

XPS results in carboxyl group density approximation of 22%. The approach developed here 

provides information about protein coupling density and uniformity on large scale graphene (> 

cm2).  
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The second and the third parts of the thesis describe the application of a microfluidic technique 

to two widely used protein detection methods – immunoblotting and dot blotting. Applying 

microfluidics to protein immunoblotting and dot blotting helps to save sample volumes, and also 

permits the detection of multiple proteins simultaneously. The microfluidic systems were 

designed and fabricated to be easily interfaced with a common type of protein blotting membrane 

called polyvinylidene fluoride (PVDF) membrane. The microfluidic device was specifically 

applied to the antibody incubation step, which reduces antibody consumption and therefore also 

significantly reduces the cost of the assay. In microfluidic immunoblotting, an approach to 

activate the PVDF membrane to increase its protein binding capacity was developed. This was 

achieved by adding a surfactant Tween-20 to the antibody solution. The concentration of Tween-

20 was optimized so that only the portion of the membrane within the channel region was 

activated. The system has been shown to be able to profile inflammatory signaling pathways. In 

microfluidic dot blotting, the influence of substrate hydrophobicity and protein concentrations on 

device design constraints were studied. Inflammatory cytokine detection using the developed 

microfluidic dot blotting system was determined. Altogether these experiments demonstrate that 

applying microfluidic techniques to protein immunoblotting and dot blotting improves detection 

efficiency, and reduces cost by utilizing less antibodies.  
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CHAPTER 1 

PROTEIN IMMUNOASSAY AND ITS DEVELOPMENT 

 

1.1 Introduction 

The ability to detect biomolecules is of great significance in clinical diagnostics, food safety, 

drug screening, and environmental evaluation. Biomolecule detection with high sensitivity and 

specificity are often applied in testing food that contains antibiotics, toxins, and hormones; 

screening patient samples including blood, saliva, and urine for disease diagnosis; and 

identifying pollutants that impose risks to our environment. 

Among all biomolecule detection methods, protein detection is among the most important, 

especially considering its role in disease biomarker detection.  The presence and concentrations 

of certain proteins can be used to indicate diseases status. These proteins can therefore be 

identified as biomarkers and their specific occurrence can be applied in monitoring related 

disease. The detection of proteins plays a critical role in disease diagnosis and screening, and 

various techniques have been developed for protein detection. One major method of protein 

detection is accomplished by immunoassays through antibody-antigen binding process. 

Therefore, understanding how immunoassays work and advancing their development is 

important in disease treatment, drug development, clinical diagnostics, and biomedical science. 

1.2 Overview of protein immunoassay 

Due to the significance of proteomics in disease diagnosis and therapeutic applications, profiling 

proteins and their modification has long been of great interests in the fields of molecular biology 

and clinical diagnostics. Since proteins can indicate the state of disease progression and the 

functions of normal biological processes within the human body, they have become important 

biomarkers for disease diagnosis and screening. Specific proteins have been identified as 
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biomarkers to address a variety of diseases including cancer, cardiovascular disease, and 

infectious diseases (i.e. tuberculosis, HIV).  

Various techniques have been developed to profile proteins, which include enzyme-based 

detection techniques, florescent-protein-based biosensors, surface plasmon resonance (SPR), and 

nanoparticles. The most common method for protein detection in basic research and clinical 

diagnostics is the enzyme-linked immunosorbent assay (ELISA) [1]. Mass spectrometry also 

plays a major role in protein analysis [2, 3]. However, because these assay methods can only be 

used to analyze one or few samples at a time, they are not suitable for high-throughput screening 

and not efficient in assay reagent consumption [4-6]. 

Limitations of existing proteomic technologies have consequently driven the development and 

investigation of novel tools for the proteomics research. An emerging technology is the protein 

microarray, which is developed using the concept similar to the current DNA microarray 

technique[7] [8-10]. In protein microarrays, arrays of capture proteins are bound and can be used 

to profile protein expression [11, 12]. However, protein microarrays are limited by the 

biochemical diversity and the sheer number of proteins, which make an equivalent analysis much 

more complex and difficult to accomplish.[13] 

The broad impacts of protein sensing and the demand for fast and reliable medical tests to 

identify large number of biomarkers have driven the development of new analytical approaches 

that are of high efficiency, sensitivity, specificity, and stability. This development is significant 

for clinical analysis and medical diagnostics due to the need to provide timely or even early 

detection, diagnosis, and therapy. 

1.2.1 Protein immunoassay forms – The principles of how it works 

The principles of protein sensing rely on antibody-antigen binding interactions. With the 

consideration of the nature of the analyte, labeling chemistry availability, the required assay 

sensitivity, dynamic range, and precision, the immunoassay methods can be classified in two 

basic forms: (I) heterogeneous immunoassays and (II) homogeneous immunoassays. They are 

distinguished by the separation process. Homogeneous assays are accomplished by simply 

mixing the reagent samples, and heterogeneous assays are often carried out with washing and 

separation steps. The design of both forms can be further classified as competitive or non-
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competitive immunoassays. The choices are based on the nature of the analyte, labeling 

chemistry availability, the required assay sensitivity, dynamic range, and precision. The 

following section shows the competitive and non-competitive design, using antigen or antibody 

immobilized on a solid surface.[14] 

1.2.2 Competitive immunoassays 

The principle of competitive assays relies on the labeled and unlabeled ligands’ competitive 

binding reactions for limited antibody binding sites. In competitive assays, a fixed amount of 

labeled ligand and the unlabeled ligand from the samples are incubated with the antibody at the 

same time. If the concentration of the unlabeled ligand increases, available binding sites for the 

labeled ligand decrease and result in weaker signals. Therefore, the lower the signal, the more 

unlabeled analyte is in the sample. This results in a negative slope for the standard curve of a 

competitive binding assay as shown in Figure 1.1.[15] 

 

Figure 1.1 Schematic diagram of the competitive binding assay. 

The antibodies are immobilized on the substrate. Both labeled and unlabeled ligands are 
competing for the antibody binding sites. 

1.2.3 Non-competitive immunoassays 

In non-competitive assays, the measurement of labeled ligand is directly in accordance with the 

amount of antigen present in the sample. This format of immunoassay usually provides higher 

sensitivity and specificity than other assays, and the standard curve of non-competitive 

immunoassays shows a positive slope (Figure 1.2). The most representative example of non-

competitive immunoassays is sandwich ELISA.  
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Figure 1.2 Schematic diagram of the non-competitive binding assay. 

The antibodies are immobilized on the substrate. The signals are directly proportional to the 
sample concentration so the standard curve has a positive slope. 

1.3 Protein immunoassay development goals 

Immunoassays have advanced dramatically since their first introduction in 1960s. The 

application of immunoassay techniques in many fields such as pharmaceutical analysis and 

disease diagnosis usually involves measurement of great varieties of very low concentration 

samples. Therefore, immunoassays with good utility need to be of high specificity, through-put, 

and sensitivity.[14] [16] Following are some of the major goals for current immunoassay 

development. 

1.3.1 Specificity 

Specificity is a principal determinant for the quality of immunoassays since interference in assay 

measurements can lead to incorrect results including inaccurate concentration or analyte activity. 

Immunoassay specificity can be influenced by the binding property of the antibody, antigen and 

matrix composition, reagents, and immunoassay format. The nature of the interference may be 

caused by unsuspected binding proteins interfering with the reaction between analyte and assay 

antibodies, and antibody induced conformational changes in antigen. [17]   
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The specificity in immunoassays comes from the capability of the antibody to distinguish 

between differences in the primary structure of antigen, its optical or spatial configuration, and 

differences in charge [18]. It is critical to optimize antibody quality by testing potential detector 

antibodies against related “near neighbor” antigens to maximize specificity and determine cross-

reactivity. The results can be used to select antibodies with maximum sensitivity and specificity 

for the target antigen [16]. 

1.3.2 Efficiency 

As knowledge in the fields of proteomics and genetics grows, there is a growing demand for 

technologies that are able to extract huge amounts of information from limited sample amounts. 

The ability to obtain a lot of information with limited amounts of clinical samples helps to 

provide patients with better quality disease diagnosis, prognosis, and treatment. This demand has 

also driven immunoassay development to be low-cost, flexible, and high-throughput for 

simultaneous detection of multiple proteins in a single test. Multiplex assays are highly efficient 

tools designed to simultaneously measure multiple analytes in a single run/cycle of the assay. 

Multiplex proteomic assays for biomarker detection are of great utility in clinical settings with 

the benefits in screening diseases in a rapid, precise, and cost-effective way. In clinical analyses 

and medical diagnostics, the demand for increasing numbers of identified biomarkers and for 

providing fast and reliable medical tests for early detection, diagnosis, and better therapy drive 

the development of new analytical approaches that can be used in clinical biochemistry. 

Recent advances in technology (e.g. fluidics, optics, novel material) [19-21] have facilitated a 

great variety of multiplex immunoassay emerging on the market. Two of the most important 

renovations of protein multiplex assays – the planar multiplex assay and bead-based multiplex 

assay – will be discussed below (Figure 1.3) [22-25]. 
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Figure 1.3 Two principles of multiplex assays. 

(a) The planar microarray consists of proteins or antibody dense spots immobilized on a surface. 
(b) Optically encoded beads reveal antibody-antigen binding information by reading the particle 

code. 

Multiplex planar assays 

The planar multiplex assay basically consists of arrays of miniaturized and dense protein and 

antibody spots (typical size: ~ 300 μm in diameter; ~ 2000 spots/cm2). This assay can be used to 

measure the abundance of specific proteins from the samples. Fluorescence and 

chemiluminescence are the most common signal detection approaches [26] [27] [28]. 

The planar multiplex assay platform can be nitrocellulose filters, glass slides, or hydrogel for 

protein immobilization. The principle of detection is like a normal ELISA, but certain limitations 

include: (1) it requires certain spatial separation of captured proteins on the assay platform, and 

(2) the detection relies on using a CCD-based imager. [29] 

Encoded Bead Assays 

Bead-based assays are one version of the ligand encoded microparticle array and they provide 

many advantages over the 2-D planar protein/antibody assays. In bead-based assays [25], beads 

are usually optically encoded and the optical signals are used to indicate the captured analytes in 

immunodetection. For example, one of the most well-known encoded bead assays is Luminex 

xMAP (Multi-Analyte Profiling). In Luminex xMAP, each set of beads contain a unique blend of 

flurophores at different concentrations which shows unique fluorescence intensity. Each set of 
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beads are coated with a specific type of antibody/antigen and the binding reaction changes the 

beads fluorescence signature. The fluorescence measurements can subsequently be used for 

sample concentration quantification over a wide range. This bead-based assay system has been 

well-established and has been successfully applied in many fields such as drug monitoring 

[6] [30]. 

The encoded bead assays are highly promising candidates for multiplex assays and the detection 

efficiency is achieved by preparing bead sets of different florescent dyes at various 

concentrations. Different sets of beads can be combined and mix with each sample. Each bead’s 

fluorescence spectrum is recorded which provides the information of the bind biomolecules, and 

up to one hundred different detection reactions can be measured simultaneously [31] [4]. 

The major differences between encoded bead assays and multiplex planar assays are (I) encoded 

bead assays use fluorescence as a reporter system where multiplex planar assays use enzyme 

amplification of a colorimetric substrate. (II) Bead-based assays capture ligands onto spherical 

beads in suspension; the curved surfaces on beads provide less steric hindrance and better 

diffusion efficiency than the flat surface of 2-D planar assays. (III) Bead-based assays by nature 

achieve multiplexity by mixing multiple ligands simultaneously, which sets a more stringent 

condition for antibody cross-reactivity. 

In summary, planar protein microarray and bead-based assays are the two major forms of 

multiplex protein assays. Their improved detection efficiency has significant contribution for a 

wide range of application includes disease early detection and therapeutic drug monitoring. 

However, there are still many challenges to overcome when people develop protein assays from 

“single-lex” to “multiplex”. Therefore, there is still a need for the development of reliable, cheap, 

high efficiency and rapid protein sensing approaches that fulfill the demands for both basic 

research and clinical diagnostics. 

1.3.3 Sensitivity 

One major application of immunoassays is in disease diagnosis and treatment evaluation. 

Immunoassays are used to detect protein biomarkers, which usually circulate in blood or exist in 

serum. In the early stages of some diseases such as cancer, the level of the biomarkers may be 

low, making it important to develop highly sensitive immunoassays with the ability to detect 



8 
 

proteins at very low concentrations. Improving the limit of detection (LOD) would facilitate 

disease detection at early stages, and can help screen many diseases. 

The traditional protein immunoassays are based on the antibody-antigen binding approaches, and 

one of the most well-established and commonly applied techniques is ELIZA. These antibody-

based approaches rely on fluorogenic or chromogenic substrates for actual signal generation and 

the LOD is mostly in the ng/ml to pg/ml range. [32] 

To further advance the sensitivity of protein detection in immunoassays, people have been 

developing signal amplification based on different approaches. Signal amplification can be 

achieved in either chemical or enzymatic systems, and common strategies for signal 

amplification include biotin-streptavidin system, chemical system, enzymatic amplification, and 

nucleic acid replication assisted exponential amplification [33]. In the following section the most 

powerful signal amplification mechanism, the immune-PCR assay, will be discussed. 

The principle behind immune-PCR is to use oligonucleotide (ex. DNA or RNA) labeled 

antibodies instead of the most validated enzyme-linked antibodies for detection. This labeling 

strategy provides the advantages of exponential signal amplification power, which is derived 

from polymerase chain reaction. Nowadays, significant efforts have been spent on developing 

simple oligonucleotide labeling techniques on antibodies. With this advancement, the immune-

PCR assays have been shown to be effective in detecting proteins with concentrations 102 to 105 

fold lower than the conventional ELISA assays. These advancements of linking nucleic acids 

with existing antibody binding approach have brought LOD of protein immunoassay to another 

scale.[34] [35, 36]  

1.4 Immunoassay platform 

Immunoassays are used to quantify molecules of biological interest based on the specificity and 

selectivity of generated antibody reagents. Successful assay developments usually require 

validation of many variables such as analytes to test, detection mechanisms, availability of the 

testing instruments, sensitivity, throughput, and cost. While the choice of antibody or antigen is 

often related to detection dynamic range, sensitivity, and limit of detection, the design of the 

platform also deserves equal attention for optimal selection since it has a substantial effect on 

cost, availability, and throughput.   
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Various assay platforms have been explored for the detection and quantification of biologically 

important proteins. These platforms are designed to aim at different issues. These include an 

optical sensing microcantilever-based sensor, which shows very high sensitivity (0.2 ng/ml) [37], 

and a self-contained, colorimetric detecting paper-based microfluidic platform [38]. Other 

protein immunoassay platform such as bead-based flow cytometric assays with high throughput 

and antibody-array immunoassay have already been discussed above. The single-atom layer 

material, graphene, has also been explored of its potential in biosensing. Current development of 

graphene-based biosensors can be either electrical sensors or optical sensors. [39, 40]  

1.5 Other goals 

There are other emerging trends in immunoassay development. These include immunoassay 

automation to provide hands-free operation with the potential to gain productivity and save time; 

point-of-care diagnostic platform development for testing infectious diseases, cancer, and 

immune diseases; new assay platform application for improved performance; and miniaturization 

for portable assay systems. 

1.6 Graphene in biosensing 

Since 2004, the first discovery of graphene has added a new field of nanomaterials in biosensing 

research [41] Various nanomaterials, including nanoparticles, nanowires, carbon nano tubes 

(CNT) have been studied for their potential in biomolecule detection [42]. . The unique 

properties of graphene such as high surface-to-volume ratio, excellent electrical conductivity, 

good mechanical flexibility, and transparency have made graphene a promising candidate in 

biosensing. 

Currently there are many methods of graphene production. These include chemical vapor 

deposition (CVD)-grown graphene, reduced graphene oxide (RGO), and exfoliation of graphite 

or graphite oxide. The feasibility of synthesizing graphene in different ways increases the 

opportunities for applying graphene in biosensing development. Graphene-based biosensing 

systems can be classified as the following: (I) electrical transducers such as field-effect-

transistors, electrochemical biosensors, impedance biosensors (II) fluorescence biosensors [43]. 

Graphene exhibits good electronic properties with very high charge carrier mobilities [44], 

motivating people to apply its superior conductivity for various biomolecules sensing (ex. 
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glucose, DNA, proteins [45-47]) as bioelectronics devices [48]. The other direction that has also 

brought a lot of interest is to apply graphene in fluorescence biosensing. Graphene quenches 

fluorophores due to a fluorescence resonance energy transfer from dye to graphene. This 

quenching detection mechanism has been applied in thrombin detection, DNA sensing [49], and 

virus screening [50, 51]. 

1.7 Dissertation map 

In this dissertation, the first chapter explores some fundamental characteristics of developing 

graphene as a protein biosensing platform. The work is specifically conducted on CVD graphene 

with the production availability of large size (> cm2 scale). This development of graphene-based 

immunoassay platform is promising in fabricating a flexible, portable, and wearable 

biosensor/device. 

The second chapter describes the application of microfluidic technique to protein 

immunoblotting. The design is aiming at improving current existing techniques with the goals of 

improving detection efficiency and reducing cost. In addition to improving protein screening and 

detection efficiency on the existing sensing platform, the microfluidic system has also been 

demonstrated to be applicable for inflammatory signaling pathway profiling. 

The third chapter describes the application of microfluidics to dot blotting. In addition to 

showing the advantages of improving the efficiency and reducing reagent consumption, the 

device design constraints were also studied. Finally the results of using microfluidic dot blotting 

for cytokine detection were presented.   
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CHAPTER 2 

FLUOROPHORE AND PROTEIN CONJUGATED DIELS-ALDER FUNCTIONALIZED 
CVD GRAPHENE LAYERS 

 

Abstract 

Chemical modification of the graphene web is emerging as a promising approach in band gap 

engineering of graphene devices and in producing solution-processable graphene derivatives for 

applications in electronics and nano/biotechnology. The zero-band-gap electronic structure of 

graphene has provided the opportunity to modify graphene by Diels-Alder chemistry via 

pairwise formation of sp3 centers on the graphene lattice, thereby modifying the electronic, 

chemical and magnetic properties of graphene. Here we develop an approach to covalently attach 

fluorescent molecules to Diels-Alder modified CVD graphene to visualize the graphene layers, 

and to estimate the functional group density created by conjugating Alexa 488 cadaverine dye 

followed by XPS analysis. In addition, we demonstrate that proteins can be attached to graphene 

surface via the amine coupling reaction. Our present method provides an efficient way of 

visualizing graphene layers and provides an approach to the problem of estimating the density of 

functional groups on graphene surface. 

2.1 Introduction 

Graphene is a strictly two dimensional (2D) carbon membrane of atomic thickness that has 

enormous scientific and technological potential because of its high electrical and thermal 

conductivity, mobility of charge carriers, mechanical strength, and transparency.[1-3] Moreover, 

recent advances in graphene chemical functionalization have potential applications in many 

fields, including the development of biosensing platforms.[4-6] Chemical functionalization 

provides the capability of adding functional groups on the graphene surface in a controlled 

manner, which is crucial for the capture of targeted biomolecules in a sensing platform design,[4, 

7] with previous work focusing on epitaxial graphene or graphene oxide.[8-10] Each of these 

methods has its own limitations compared to chemical vapor deposition (CVD) in terms of ease 
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of fabrication, scalability, and cost. Moreover, most methods for attaching biomolecules to the 

graphene surface are based on non-covalent binding, whereas covalent interaction is usually 

preferable in diagnostic applications to reduce concerns about interference from the 

heterogeneous mixtures of analytes.[11] 

Covalent modification of the graphene surface with functional groups provides a means of 

covalently immobilizing most biomolecules including DNA, enzymes, peptides, and proteins.[10, 

12-15] A functional group of particular interest is the carboxyl (-COOH) group. The synthetic 

utility of carboxylic acid functional groups coupling to other species through relatively simple 

chemistry such as amide or ester formation has been widely adopted in various techniques in 

such as surface plasmon resonance (SPR) and microarrays. It allows versatile biomolecules to be 

conjugated with stable, effective and high quality results.[16, 17] 

Imaging graphene layers is important for characterization of the material; each technique for 

imaging has its own advantages and limitations, so new approaches to visualization of the layers 

are always desirable to complement existing methods. The gross macroscopic features of these 

atomically thick carbon membranes are often visualized on dielectric substrates (e.g. SiO2/Si) by 

optical interference contrast.[18] For characterization at shorter length scales, atomic force 

microscopy (AFM), which scans materials with a tiny tip, is frequently used. AFM, however, is a 

slow process that can only look at small areas on smooth surfaces. Scanning electron microscopy 

(SEM) scans a surface with high-energy electrons, but only works if the material is placed in 

vacuum and is not particularly useful for characterizing chemical properties. Visualizing 

suspended graphene samples is extremely challenging, and often accomplished using SEM rather 

than optical techniques. Therefore, there are growing demands for developing new graphene 

imaging techniques.[19] 

We have recently demonstrated that the unique zero-band-gap electronic structure of graphene 

together with its possession of high-lying HOMO (low ionization potential), low-lying LUMO 

(high electron affinity), and symmetries of the degenerate graphene frontier molecular orbitals 

(FMOs) at the Dirac point (K-point) facilitate the chemical behavior of graphene as a versatile 

Diels-Alder substrate.[20, 21] Indeed, the wide scope and versatility of the Diels-Alder 
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pericyclic reaction in organic chemistry could potentially enable covalent grafting of a wide 

range of diene and dienophile molecules with modifiable functionalities to graphene. 

In this report, we establish a method of functionalizing CVD graphene and creating carboxylic 

acid groups (Gr-COOH) on the graphene surface. Graphene surface modification with the 

creation of carboxylic functional groups is accomplished by the synthetic method of the Diels-

Alder reaction. In this reaction, graphene reacts as a diene with maleic anhydride, a dienophile, 

and this allows the maleic anhydride moiety to be grafted on graphene (MA-Gr), and subsequent 

hydrolysis generates free carboxylic acid groups (Gr-COOH). The Diels-Alder chemistry 

transforms a pair of neighboring sp2 carbon bonds into sp3 bonds. To characterize the 

functionalized graphene sheets, we have used Raman spectroscopy and X-ray photoelectron 

spectroscopy (XPS). We also estimate the functional group density created by conjugating Alexa 

488 cadaverine dye followed by XPS analysis. Finally, we demonstrate that proteins can be 

covalently attached to graphene surface via EDC-NHS amine coupling reaction and we 

investigate the conjugation conditions by using fluorescence microscopy. 

2.2 Materials and Methods 

Materials and Instruments 

Maleic anhydride (F.W. = 98.06), p-xylene, ammonium hydroxide (NH4OH), N-(3-

Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC, 98+%, F.W. =191.71), N-

Hydroxysuccinimide (NHS, F.W. =115.09), triethylamine (Et3N, >99.5%, F.W.=101.19), 

ammonium persulfate were obtained from Sigma-Aldrich. Bovine Serum Albumin (BSA 

protein), Fraction V, Heat Shock Treated were obtained from Fisher Scientific. Alexa Fluor 488 

Cadaverine, Sodium Salt (F.W. =640.61) and Alexa Fluor 488 Carboxylic acid, Succinimidyl 

Ester (F.W. =643.41) were obtained from Life Technologies. 950PMMA A4 resist was obtained 

from MicroChem Corporation. 

Preparation of CVD Graphene Samples 

CVD-grown single layer graphene (SLG) samples were either purchased from Bluestone Global 

Tech or grown at Michigan using standard CVD techniques. During the CVD process, the 

graphene was synthesized on 25 µm thick copper foil (99.8%, Alfa Aesar), which was loaded 

into an inner quartz tube inside a 3 inch horizontal tube furnace of a commercial CVD system 
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(First Nano EasyTube 3000). The system was purged with argon gas and evacuated to a vacuum 

of 0.1 Torr. The sample was then heated to 1000°C in H2 (100 sccm) environment with a vacuum 

level of 0.35 Torr. When 1000 °C is reached, 70 sccm of CH4 is flowed for 15 minutes at a 

vacuum level of 0.45 Torr. The sample was then allowed to cool slowly to room temperature. 

The vacuum level was maintained at 0.5 Torr with 100 sccm of argon gas flowing during cooling. 

SLG on copper surface, thus grown, was characterized by use of Raman spectroscopy. 

Diels-Alder Chemistry of CVD Graphene 

 In a typical reaction, CVD graphene on a copper substrate was placed inside a round-bottom 

flask; a solution of maleic anhydride (MA, ~0.05 M in p-xylene) was added and then flushed 

with argon. The solution was heated at 120-125 oC under argon atmosphere for 20 hrs. The 

system was allowed to cool down to room temperature, washed with acetone, and then with 

isopropanol to obtain Diels-Alder modified graphene, MA-Gr. The reaction was monitored with 

Raman spectroscopy.  

Hydrolysis of the Grafted Functionalities 

The Diels-Alder adduct of MA and CVD graphene was hydrolyzed by heating MA-Gr with 

ammonium hydroxide solution at 50 oC for 5 min, then washed with copious amounts of distilled 

water, then rinsed with absolute ethanol, and finally dried under gentle flow if argon. 

Conjugation of the Fluorescent Dye, Alexa Fluor 488 by EDC/NHS Coupling Reaction 

The carboxylic acid groups on the functionalized graphene sample were coupled with amine (-

NH2) groups on the fluorophores through the EDC/NHS coupling reaction. 

In the reaction EDC (0.4 M) and NHS (0.4 M) were dissolved in water and added to cover the 

whole surface of graphene on copper foil. The sample in solution was placed on a shaker and 

reacted for 2 hours. Once the reaction was completed, the sample was removed and washed in DI 

water. Afterwards, it was immediately placed in the solution with the fluorescent dye. To 

conjugate fluorophores on the graphene surface, a solution of 1 mg of Alexa Fluor 488 

Cadaverine, sodium salt in 400 µl water (0.004 M) with 2µl of Et3N was prepared and added to 

the previously treated graphene sample. The sample was reacted for two hours then washed with 

DI water. Finally, the sample was dried in a lyophilizer overnight. 
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Scheme 2.1. Procedures for graphene functionalization. 

Step 1: Diels-Alder chemistry of CVD grown graphene (as a diene) on copper substrates with a 
dienophile (maleic anhydride; MA) to obtain MA-Gr adduct. Step 2: Hydrolysis of the adduct to 

form free carboxylic acid moieties on graphene surface (Gr-COOH). Step 3: Conjugation of 
Alexa 488 fluorophore with Gr-COOH via amide linkage. 

XPS Spectroscopy of graphene samples 

Prior to X-ray photoelectron spectroscopic (XPS) analysis, the functionalized graphene samples 

were mounted onto standard sample stubs and secured by washers. The samples were mounted 

on the holder by adhesive copper tape (3M). XPS measurements were performed using Kratos 

Axis Ultra XPS spectrometer with a monochromated Al X-ray source. XPS analysis was carried 

out in an ultra-high-vacuum chamber equipped with a fast-entry introductory chamber. Prior to 

analysis, all samples were evacuated in the introductory chamber using a turbo-molecular pump 

for at least 90 min to ensure low vacuum. Samples were then introduced into the XPS analysis 

chamber (Pbase < 1 x 10-8 Torr). XP spectra were recorded using the X-ray irradiation from an 

aluminum (Al) anode at 14 kV and 300 W. Elemental scans were acquired using a pass energy of 

20 eV and a resolution of 0.125 eV/step. Binding energies were referenced to the C 1s peak at 

284.8 eV.  

The survey scans of XPS spectrum of Alexa-488 cadaverine conjugated CVD graphene on 

copper foil were obtained. The photo electron binding energies covering in the range from 0 to 

600 eV are present, together with 30 eV width narrow scans for C(1s) and N(1s) elements that 

are present for the quantitative analysis. Integration of the narrow-scan peak areas, after linear 
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background subtraction, enables elemental surface atomic percentages to be calculated, using 

manufacture supplied relative sensitivity factors ; C 1s (1), O 1s (2.93), and N 1s (1.8). 

Fluorescence Visualization 

After graphene functionalization was completed, the surface was spin-coated with 950PMMA 

A4 (Microchem) resist and cured at 180 °C for 5 minutes. (As a result, the PMMA layer is on top 

of the functional groups.) The sample was then left in ammonium persulfate (Sigma Aldrich) 

solution (0.03 g/mL) for at least 12 hours to completely dissolve away the copper layer. The 

sample was transferred onto a glass slide and dried overnight. Functionalized graphene was then 

be visualized under a fluorescence microscope (Olympus). 

2.3 Results and Discussion 

Fabrication of Diels-Alder Modified CVD Graphene 

The functionalization of graphene using maleic anhydride (MA) under Diels-Alder reaction has 

been reported previously, and this reaction allows maleic anhydride moieties to be grafted onto 

graphene surface (MA-Gr)[20, 21]. Here we further hydrolyze maleic anhydride to create 

carboxylic acid functional groups on the graphene surface by using ammonium hydroxide 

(NH4OH). For the synthesis work, the maleic anhydride was grafted onto graphene surface and 

subsequently hydrolyzed with ammonium hydroxide to obtain the product, Gr-COOH. 

The covalent functionalization of CVD graphene, which occurs with the saturation of conjugated 

sp2-hybridized atoms converted to sp3, was confirmed and characterized by Raman spectroscopy. 

Figure 2.1 shows the Raman spectra of (a) CVD graphene, (b) Gr-MA, and (c) Gr-COOH. The 

Raman spectrum of the starting material CVD graphene shows two characteristic peaks of 

graphene, the G-band (~ 1583 cm-1) and the 2D band (~ 2680 cm-1). After DA chemistry, there is 

a transformation of the sp2 carbon atoms in the graphene honeycomb lattice to sp3 atoms and this 

results in the creation of D-band (~ 1350 cm-1) in Raman spectrum, which can be clearly seen in 

the spectra of Gr-MA (ID/IG = 0.4) and Gr-COOH (ID/IG = 0.5).  

After conjugation of the Alexa 488 fluorophore, the Raman spectrum of Gr-CONH-Fr (Gr-Alexa 

488 cadaverine in Scheme 1, step 3) was not very informative due to the overwhelming 

fluorescence background contribution from the Alexa 488 fluorophore dye. After conjugation of 

Alexa 488 dye, the overall signals (Raman intensity) are much higher after the coupling reaction 

than the one before the coupling reaction when scanned with the 514 nm excitation laser. 
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Consequently, with the 514 nm laser excitation the spectrum showed fully saturated signals with 

no distinguishable peaks.  

 

Figure 2.1. Raman spectroscopy of graphene. 

Raman spectroscopy of (a) pristine CVD graphene (CVD Gr) on copper substrate, (b) Diels-
Alder modified CVD graphene, MA-Gr adduct, and (c) the product of hydrolysis, Gr-COOH. 

Conjugation of Alexa 488 cadaverine to Gr-COOH 

After the hydrolysis step (Scheme 1, step 2), carboxylates (-COOH) are created on the 

functionalized graphene surface. The -COOH functional groups can be applied in the amine 

coupling reaction through 1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide (EDC)/N-

hydroxysulfosuccinimide (NHS)-mediated approach (Scheme 1, step 3). We verified the 

coupling reaction by conjugating Alexa 488 cadaverine to the functionalized graphene, where 

both reactions (-COOH functional group creation and EDC-NHS coupling reaction) proceeded 

with the CVD graphene on the copper substrate. The conjugation of fluorophores makes possible 

the visualization of the graphene sheet via fluorescence microscopy when the fluorophore-

conjugated graphene layer is transferred from the copper foil to a transparent substrate such as a 

glass slide. A common method for CVD-grown graphene transfer uses a polymer layer such as 

PMMA,[22] so functionalized graphene on copper foil was first coated with a PMMA support 
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layer. PMMA is a polymer which is transparent and does not yield auto-fluorescence (Figure 2.7 

(Appendix)), so coating it on top of the functionality on the graphene sheet does not interfere 

with the fluorescence from the Alexa 488 dye conjugated on the graphene surface. Once PMMA 

was coated on the functionalized graphene, the copper foil was dissolved in ammonium 

persulfate and the graphene with PMMA layer was transferred to a glass slide. Figure 2.2 and 

Figure 2.5 (Appendix) show the image of a graphene sheet with PMMA coated and imaged by 

fluorescence microscopy. In the example shown in Figure 2.2, the sample unintentionally folded 

during the transfer process. We observe that the folded graphene layers do not quench the 

fluorescence, and the fluorescence yield is approximately linear with the number of layers.  

 

Figure 2.2. Fluorescence images of Alexa 488 cadaverine conjugated graphene. (a) 
Functionalized graphene conjugated with Alexa 488 (coated with PMMA) imaging by 

fluorescence microscopy. The transfer process of PMMA coated graphene sheet to the glass slide 
without copper substrate caused the graphene sheet edges to fold (not intentionally). Fluorescent 
signals were quantified at regions which the number of layers can be identified. (b) Mean values 
of the fluorescence intensity from different number of graphene layers using ImageJ. Signal from 

empty area (0 layer) was subtracted as background noise. 

We also observe that the optical distribution of the conjugated fluorophore is highly uniform, and 

this implies the carboxylic acid functional groups are created uniformly on the graphene surface. 

Since we can not calibrate the absolute fluorescence efficiency of the conjugated dye, it is not 

possible to extract the dye surface density directly from the fluorescence; it is possible, however, 

(a)

(b)
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to estimate the density of the carboxylic acid functional groups (-COOH) on the graphene 

surface by using XPS. 

XPS Analysis of Functionalized Graphene Samples 

X-ray photoelectron spectroscopy (XPS) is a technique that provides information of surface 

element composition, materials’ electronic and structural information. Figure 2.3 shows the XPS 

spectrum of CVD graphene and DA-functionalized graphene conjugated with Alexa 488 

cadaverine. 

The C 1s spectra confirm the results from Raman spectroscopy that functionalization has been 

achieved successfully. As seen in Figure 2.3, the carbon C 1s peak, observed at 284.4 eV for sp2 

pristine carbon, shifts as expected to the higher binding energy of ~ 284.9 eV after Diels-Alder 

surface modification.[23] This further verifies the creation of sp3 bond by opening the double 

bond and the C-C bond formation after the functionalization. 

Besides the demonstration of fluorescence from fluorophores conjugated to DA-functionalized 

graphene, the conjugation of Alexa 488 cadaverine can also be used as XPS labels for carboxylic 

groups existed on the DA-functionalized graphene surface. The XPS spectra provide information 

of the amounts of material in the sample surface since the integrated peak areas can be used for 

the quantification of the elemental atomic percentages.[24] 

Since the fluorescent dye molecules Alexa 488 attach specifically to the -COOH functional 

groups, measuring the N 1s spectral emission of the Alexa 488 fluorescent dye allows the 

identification and quantification of the -COOH functional groups on the graphene surface. The 

percentage of the elemental surface composition corresponding to the carboxyl groups can be 

derived using XPS via the emission from the N 1s level of the label. From the XPS survey 

spectrum of CVD graphene and DA-functionalized graphene sheets, both samples show the C 1s 

peaks, but only the functionalized sample shows a N 1s signal at 398.95 eV binding energy. The 

remaining signals can be assigned to oxygen, whose core level electrons have a binding energy 

of 530 eV, Cu 3s, Cu 3p and Auger lines. The copper signal arises from the copper foil beneath 

graphene. 

The ratio of the C 1s peak area to the N 1s peak area, or the C/N ratio, provides an estimation of 

the density of the -COOH functional groups on the graphene surface. Since nitrogen is absent 

from the native graphene surface, the coupling reaction of fluorescent dye Alexa 488 cadaverine 
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to the carboxylic functional groups (-COOH) provides nitrogen atoms attached to the graphene 

surface. This information can be used to quantify the density of the carboxylic functional groups 

(-COOH) on the surface by measuring the C/N element ratio as shown in the Supporting 

Information. Table 1 details the surface element composition for CVD graphene and DA-

functionalized graphene conjugated with Alexa 488.  

 

Figure 2.3. The XPS spectra of pristine CVD graphene and DA-functionalized graphene 
conjugated with Alexa 488 cadaverine (a) C 1s spectra (b) Survey scan (0-600 eV). 

Table 2.1. The percentage elemental composition of CVD graphene and DA-functionalized 
graphene surfaces determined using XPS. 

Material % C % O % N Coverage of carboxyl groups on the 

graphene surface as a percentage of 

the elemental composition (%) 

CVD Graphene (pristine) 91.73 8.27 -- Undetermined 

DA-functionalized graphene 

with Alexa 488 cadaverine 

70.05 21.02 8.93 71.61 

 

Protein Immobilization of Diels-Alder modified CVD graphene 

To investigate the potential for developing the graphene surface with carboxylic functional 

groups as a biosensing platform, we conjugated a model protein (fluorescein isothiocyanate-

labeled BSA) to a chemically modified graphene surface. It is apparent from Figure 2.4 that 
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conjugation of BSA-Alexa 488 with Diels-Alder modified graphene (Gr-COOH) leads to 

visualization of graphene basal planes and graphene edges [Figure 2.4(a)] by fluorescence 

microscopy. In sharp contrast to this covalent conjugation of BSA-Alexa 488 with graphene, 

non-covalent binding or adsorption of the same BSA-Alexa 488 with pristine CVD graphene (no 

Diels-Alder modified graphene) does not lead to visualization of graphene layers [Figure 2.4(c)], 

indicating the absence of adsorption. 

 

Figure 2.4. Fluorescence images of BSA conjugated graphene. (a) Functionalized graphene 
conjugated with BSA-Alexa 488 (coated with PMMA) imaging by fluorescence microscopy at 

the edge and (b) at the center. (c) Fluorescent microscopy image of BSA-Alexa 488 conjugation 
with pristine CVD graphene (non-covalent adsorption) at the center. (d) Comparison of 

fluorescence intensity of samples in (b) and (c). 

2.4 Conclusions 
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In the present article, we employ the versatile Diels-Alder reactivity of graphene as a diene by its 

reaction with maleic anhydride (a dienophile) to graft the maleic anhydride moiety to graphene 

(MA-Gr), which upon hydrolysis generates free carboxylic acid groups (Gr-COOH). The 

versatile nature of the carboxylic acid functionality enables its coupling with a wide range of 

moieties with the amine (-NH2), alcohol (-OH), ester (-COOR) etc. terminals. Here we employ 

the conjugation of the Alexa 488 fluorophore with amine terminal with G-COOH through an 

amide (-CONH) linkage, which makes quick visualization and identification of different number 

of graphene layers feasible. Finally, we demonstrate that proteins can be covalently attached to 

graphene surface via EDC-NHS amine coupling reaction and we investigate the conjugation 

condition by using fluorescence microscopy. Our present method of graphene biosensor 

development with different biomolecule immobilization techniques may enable easy and high 

throughput visualization of graphene layers, and could lead to accurate estimates of the surface 

coverage of functional groups. Thus our present approach solves important challenges in 

graphene research including the imaging and visualization of graphene layers, and estimating 

density of functional groups on graphene surface.  
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Appendix 

 

Figure 2.5. Alexa 488 cadaverine conjugated to Diels-Alder reaction functionalized 
graphene visualized under fluorescence microscopy 

 

Synthesis of Fluorescent Dye Labeled Proteins and the Conjugation to Graphene Surface 

BSA protein was first labeled with the fluorescent dye Alexa 488 carboxylic acid succinimidyl 

ester by linking the succinimidyl esters to the primary amines on BSA. In the reaction, BSA 

(0.5mM) and Alexa 488 carboxylic acid succinimidyl ester (1.5mM) were dissolved in water and 

added in Et3N (2.25mM) and stirred for reaction for 2 hours. The reaction steps were carried out 

in glass flasks at room temperature. 

The protein solution mixture was purified using 10K MWCO centrifugal filtration devices 

(Amicon Ultra-4). Purification consisted of five cycles using 1X PBS and five cycles using DI 

water. All cycles were 15 minutes at 4000 rpm. The resulting product was lyophilized overnight 

to yield a yellow solid. Sample’s molecular weight is characterized by MALDI-TOF mass 

spectroscopy with the result 67358. 
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Figure 2.6. MALDI-TOF mass spectroscopy characterization of BSA proteins conjugated with 
Alexa 488 carboxylic acid, succinimidyl ester. 

Conjugation of the Fluorescent Dye labeled proteins to DA functionalized graphene surface 

The carboxylic acid groups on the functionalized graphene sample are coupled with amine (-NH2) 

groups on the BSA proteins through EDC/NHS coupling reaction. 

In the reaction EDC (0.4 M) and NHS (0.4 M) were dissolved in water and added to cover the 

whole surface of graphene on copper foil. The sample in solution was placed on a shaker and 

reacted for 2 hours. Once the reaction is completed, the sample was removed and washed in DI 

water. Afterwards, it was immediately placed in the solution with the fluorescent dye-labeled 

BSA proteins. To conjugate fluorophores on graphene surface, solution of 8mg of Alexa 488 

carboxylic acid succinimidyl ester conjugated BSA was dissolved in 800 µl water with 2µl of 

Et3N was prepared and added to the previously treated graphene sample. The sample was reacted 

for two hours then washed with DI water. Finally, the sample was dried in a lyophilizer 

overnight. 
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Figure 2.7. PMMA layer and pristine graphene visualized under optical microscopy and 
fluorescence microscopy. (a) PMMA layer under optical microscopy. (b) PMMA layer under 

fluorescence microscopy. (c) PMMA layer coated pristine graphene under optical microscopy. (d) 
PMMA layer coated pristine graphene under fluorescence microscopy. 

XPS quantification 

𝐺𝐺𝐺𝐺 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐶𝐶26𝐻𝐻25𝑁𝑁4𝑂𝑂10𝑆𝑆2𝑁𝑁𝑁𝑁  →   𝐺𝐺𝐺𝐺 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐶𝐶26𝑁𝑁3𝑂𝑂10𝑆𝑆2𝑁𝑁𝑁𝑁  (S1) 

If we use the expression, [𝐶𝐶]0 and [𝑂𝑂]0 are the initial concentrations of C and O present on the 

surface as determined by XPS and [𝑂𝑂]0𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  is the surface concentration of carboxylic acid 

groups. The above equation gives equation S2 

 

[𝑁𝑁] =  2𝜀𝜀[𝑂𝑂]0𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

[𝐶𝐶]0+[𝑂𝑂]0+21×𝜀𝜀[𝑂𝑂]0𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
          (S2)            

So, 

[𝐶𝐶]0[𝑁𝑁] + [𝑂𝑂]0[𝑁𝑁] + 21𝜀𝜀[𝑂𝑂]0𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[𝑁𝑁] = 2𝜀𝜀 [𝑂𝑂]0𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
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[𝐶𝐶]0[𝑁𝑁] + [𝑂𝑂]0[𝑁𝑁] = (2𝜀𝜀 − 21𝜀𝜀[𝑁𝑁])[𝑂𝑂]0𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

and 

%[𝑂𝑂]0𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  =   
[𝐶𝐶]0[𝑁𝑁] + [𝑂𝑂]0[𝑁𝑁]

2𝜀𝜀 − 21𝜀𝜀[𝑁𝑁] × 100                            (𝑆𝑆3) 

This equation can be used to determine the concentration of carboxylic acid groups on the 

functionalized graphene surface, so 

If reaction S1 proceeds with 100% efficiency (i.e. 𝜀𝜀 = 1), then 

%[𝑂𝑂]0𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  =   
[𝐶𝐶]0[𝑁𝑁] + [𝑂𝑂]0[𝑁𝑁]

2 − 21[𝑁𝑁] × 100                            (𝑆𝑆3) 
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Chapter 3 

PROFILING INFLAMMATORY RESPONSES WITH MICROFLUIDIC 

IMMUNOBLOTTING 

 

Abstract 

Rapid profiling of signaling pathways has been a long sought after goal in biological sciences 

and clinical medicine. To understand these signaling pathways, their protein components must be 

profiled. The protein components of signaling pathways are typically profiled with protein 

immunoblotting. Protein immunoblotting is a powerful technique but has several limitations 

including the large sample requirements, high amounts of antibody, and limitations in assay 

throughput. To overcome some of these limitations, we have designed a microfluidic protein 

immunoblotting device to profile multiple signaling pathways simultaneously. We show the 

utility of this approach by profiling inflammatory signaling pathways (NFκB, JAK-STAT, and 

MAPK) in cell models and human samples. The microfluidic immunoblotting device can profile 

proteins and protein modifications with 5380-fold less antibody compared to traditional protein 

immunoblotting. Additionally, this microfluidic device interfaces with commonly available 

immunoblotting equipment, has the ability to multiplex, and is compatible with several protein 

detection methodologies. We anticipate that this microfluidic device will complement existing 

techniques and is well suited for life science applications. 

3.1  Introduction 

Inflammation is now recognized as a driver of several chronic diseases including cancer and 

heart disease [1,2]. Although many regulatory steps are involved, protein modifications are one 

of the defining features of inflammatory responses [3-5]. Since its inception in 1979, protein 

immunoblotting has become the standard technique for profiling proteins and protein 

modifications in molecular biology and clinical diagnostics [6]. Although traditional protein 
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immunoblotting is a powerful technique, it has several limitations including its slow throughput, 

the requirement for relatively large sample and antibody amounts, and the inability to probe for 

multiple proteins simultaneously [7]. As our recognition of the role of inflammation in disease 

has grown, there is a need for more robust approaches to monitor the signaling pathways that 

drive inflammation. To overcome some of the limitations of traditional protein immunoblotting, 

several variations have been introduced including membrane stripping and the use of fluorescent 

secondary antibodies. Despite their improvements, these variations have their own limitations, 

including loss of signal intensity and increased assay variability. Additionally, none of these 

variations address the large sample and antibody amounts required by traditional protein 

immunoblotting. Recently, microfluidic technology has been applied to molecular biology and in 

clinical diagnostics. The small volumes and spatial control afforded by microfluidics make it an 

exciting complement to existing technologies. With regards to protein immunoblotting, 

microfluidic immunoblotting devices have been fabricated with most approaches trying to 

integrate all aspects of protein immunoblotting. The Herr group has recently presented several 

approaches that incorporate microfluidic technology with traditional protein immunoblotting 

[8,9]. Their approaches are significant improvements over existing immunoblotting platforms 

because of the integration of all aspects of protein immunoblotting [10]. Pan and colleagues 

made advances by introducing a fluorescence based microfluidic immunoblotting device that 

could detect several proteins and is compatible with existing protein immunoblotting 

technologies [11]. We wished to build upon these advancements without sacrificing the accuracy 

and accessibility of traditional protein immunoblotting. We fabricated a microfluidic device that 

can simultaneously profile multiple proteins using existing immunoblotting equipment and 

chemiluminescent detection technologies. We demonstrate the utility of this microfluidic device 

by monitoring several inflammatory signaling pathways in culture models and human samples.  

3.2 Materials and Methods 

Microfluidic protein immunoblotting  

The transparency mask was printed using a CAD file of the microfluidic device (CAD/Art 

Services, Inc.; Bandon, OR USA). Soft-lithography was used to fabricate a silicon master mold 

from the transparency mask. The microfluidic devices were created by mixing the pre-polymer 

and curing agent (Sylgard 184 Silicone Elastomer Kit, Dow Corning; Midland, MI USA) and 
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then pouring on to the silicon master. After gel electrophoresis, the gels were electroblotted onto 

a PVDF membrane (Life Technologies; Carlsbad, CA USA) for 1 hour at 30V. The PVDF 

membrane was dried overnight before proceeding to microfluidic immunoblotting. The 

microfluidic assembly was created by sandwiching the PVDF membrane between a glass support 

and the PDMS microfluidic device. The PDMS microfluidic device was aligned to the ladder to 

ensure accurate channel placement over the sample lanes. To complete the assembly, two glass 

slides were placed on top of the PDMS device for further support. The spacing between the two 

glass slides was approximately 0.5mm and was used as the injection site. The activating and 

antibody solutions were injected using a 1ml syringe with 27G ½ needles. The PVDF membrane 

was activated through the microfluidic channels using a 0.1% BSA and 0.1% Tween20 in TBS. 

Primary antibodies were injected through the microfluidic channels and incubated for 1 hour. 

Both the primary and secondary antibody dilutions were prepared in 0.1% BSA and 0.1% 

Tween20 TBS. Following the primary antibody incubation period, the microfluidic device was 

removed and the membrane was washed, blocked for 1 hour in 0.1% BSA and 0.1% Tween20 

TBS, and then stained with the secondary antibody for 1 hour prior to chemiluminescent 

detection with either alkaline phosphatase or horseradish peroxidase. 

Gel electrophoresis and protein immunoblotting 

PBMCs were isolated using BD Vacutainer CPT Cell Preparation Tubes with Sodium Citrate. 

Following isolation, PBMC lysates were collected as described below. The murine macrophage 

cell line (RAW264.7) was purchased from American Type Culture Collection (ATCC; Manassas, 

VA USA) and cultured in RPMI medium (Life Technologies; Carlsbad, CA USA) supplemented 

with penicillin (100 U/ml), streptomycin (100 μg/ml) and 10% fetal bovine serum (Invitrogen) at 

a density of 3.0 X 106 . After the cells were allowed to adhere for 4 to 6 hours, the media was 

changed to RPMI media supplemented with 0.5% FBS, penicillin (100 U/ml), streptomycin (100 

μg/ml), and incubated overnight (14-18 h). Endotoxin stimulation was initiated by incubating 

cells in 0.5% FBS medium containing lipopolysaccharide (LPS) from Escherichia coli O55:B5 

(Sigma-Aldridge; St Louis, MO USA) at a concentration of 100 ng/ml. Cells were then harvested 

and lysed using RIPA buffer containing 25 mM Tris-HCl, pH 7.6, 150 mM NaCl, 1% Nonidet P-

40, 1% sodium deoxycholate, 1 mM Na3VO4 , and 10 mM NaF (phosphatase inhibitors) and 

0.1% SDS with 10 µl of Halt Protease Inhibitor Cocktail (Pierce; Rockford, IL USA) added for 

each 1 ml of buffer. Samples were separated using SDS-PAGE electrophoresis and transferred to 
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a PVDF membrane. PVDF membranes were probed with rabbit primary antibodies against 

active-JNK (phospho-JNK1/2; Promega; Madison, WI), active-MAPK (phospho-ERK; 

Promega), and ERK-1 (Santa Cruz Biotechnology; Santa Cruz, CA USA), NF-κB p65 (Cell 

Signaling Technology; Beverly, MA USA), STAT3 (sc-483, Santa Cruz Biotechnology; Santa 

Cruz, CA USA), and phospho-STAT3 (Cell Signaling Technology; Beverly, MA USA). 

Horseradish peroxidase (HRP) or alkaline phosphatase (AP) goat anti-rabbit secondary 

antibodies (Thermo Scientific; Rockford, IL USA) were used at a dilution of 1:20000. 

Quantification and statistical analysis of protein immunoblots  

Immunoblots were scanned and converted to 2400 dpi images. The images were imported into 

ImageJ software and analyzed as described below. For the traditional protein immunoblots, the 

signal intensity inside three boxes overlaying the band of interest was measured (each box was 

10 pixels x 28 pixels); the average of these measurements was the signal intensity assigned to the 

band. The standard deviation of the signal intensity inside the three boxes was on average 9.9%. 

For the microfluidic protein immunoblots, the signal intensity of overlaying the region of interest 

was measured (each box was 10 pixels x 28 pixels). For both traditional and microfluidic 

immunoblots, the signal intensity was normalized to the signal intensity from the 5 µg of protein 

probed with the 1:1000 dilution of P65 antibody. Traditional and microfluidic immunoblots are 

representative of at least three independent protein immunoblots. Signal quantification is 

expressed as means with standard deviations (SD) with numbers of individual experiments 

presented in figure legends. Significance was tested using analysis of variance (ANOVA) with 

Newman–Keuls post hoc test (P<0.05). 

3.3 Results and Discussion 

Design and interface of the microfluidic device 

The poly(dimethysiloxane) (PDMS) microfluidic device was designed to interface with existing 

immunoblotting equipment. The devices were fabricated using standard soft-lithography 

techniques as previously described [12].First, the transparency mask was printed from a CAD 

file of the microfluidic device. Soft-lithography was used to fabricate a silicon master mold from 

the transparency mask. The microfluidic device consisted of 5 lanes corresponding to the protein 

lanes of a traditional protein gel. Each lane contained 3 microfluidic channels (3.1 cm long, 150 

μM wide, 100 μM deep). The microfluidic devices were created on the silicon master by mixing 
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the pre-polymer and curing agent at a mass ratio of 12:1. The microfluidic device was degassed 

and cured at 60° C for 1 hour. Our microfluidic immunoblotting approach consists of three 

stages including gel electrophoresis, transfer to a PVDF membrane, and microfluidic 

immunoblotting for proteins of interest (Figure 3.1). Because the first two stages are similar to 

traditional immunoblotting, the microfluidic device easily interfaces with existing 

immunoblotting equipment. After the samples were separated and transferred to the PVDF 

membrane, the PVDF membrane was placed between a glass support and the microfluidic device. 

The PVDF membrane was activated by filling and incubating the microfluidic channel with 

blocking solution for 20 minutes. After the PVDF membrane was activated, the microfluidic 

channels were filled with the 

 

Figure 3.1. Schematic of a PDMS microfluidic device and the interface with a PVDF 

membrane. Microfluidic channels overlie each sample lane that can be used to probe for 

multiple proteins within each sample lane. 
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primary antibody and incubated for 1 hour. The microfluidic device was then removed and the 

PVDF membrane was washed. To detect the primary antibody, the entire PVDF membrane was 

incubated with the chemiluminescent secondary antibody and detected with the specified 

chemiluminescent substrates. 

Comparison of traditional and microfluidic immunoblotting 

We wished to compare the test characteristics of microfluidic immunoblotting with traditional 

immunoblotting. We collected peripheral blood monocytes (PBMC) from healthy volunteers and 

isolated protein lysates. Four different protein amounts were separated using gel electrophoresis 

and then transferred to a PVDF membrane. Using a primary antibody to RelA/p65, a member of 

the NF-κB transcriptional family, we compared the signals between microfluidic and traditional 

immunoblotting at three different primary antibody dilutions and the different protein loading 

amounts (Figure 3.2 and Figure 3.5 (Appendix)). The microfluidic immunoblotting approach 

resulted in slightly lower, but comparable signal intensities compared to those from 

 

Figure 3.2. Comparison of traditional and microfluidic immunoblotting in human blood 

monocyte samples. 
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Representative immunoblots for RelA/p65 at four protein concentrations (5, 1, 0.5 and 0.1 µg) 
and three antibody dilutions (I: 1:1000; II: 1:1666; III: 1:5000) using (A) traditional and (B) 
microfluidic immunoblotting techniques. The signal intensity for the (C) traditional and (D) 

microfluidic blots were quantified using ImageJ software and normalized to the signal associated 
with 5 µg of protein probed with the 1:1000 p65 antibody dilution. Immunoblots are 
representative of three independent PVDF membranes from the same PBMC lysates. 

traditional immunoblotting. In both approaches, the signals and signal variation were comparable 

under the conditions tested. For the PVDF membranes used in these experiments, a traditional 

immunoblotting assay for a single protein requires approximately 10 mL of primary antibody 

solution. Based on the microfluidic channel (0.015, 0.010, and 3.100 cm), approximately 

0.000465 mL of primary antibody solution is required for each microfluidic channel. Using the 

microfluidic device, to assay a PVDF membrane for 1 protein requires 0.00186 mL of primary 

antibody solution (4 lanes *0.000465 mL of antibody/lane = 0.00186 mL primary antibody 

solution). Even without considering the multiplexing capacity of the microfluidic device, this 

translates into a 5380-fold reduction in primary antibody amounts compared with traditional 

protein immunoblotting. The implication of these results is that the microfluidic approach 

requires substantially less protein and antibody amounts to generate immunoblots of comparable 

quality. To further demonstrate the multiplexing ability of this approach, we fabricated a 

microfluidic device comprised of 5 channels per lane that performs similarly to the 3-channel 

microfluidic device (Figure 3.6 (Appendix)). For these reasons, microfluidic immunoblotting is 

ideally suited to profile signaling pathways from human samples and other low-protein samples. 

Monitoring inflammatory pathway activation and protein modifications 

Inflammatory pathways are often regulated through posttranslational modifications of signaling 

proteins [13,14]. Monitoring these posttranslational modifications is critical to capture the 

dynamics of inflammatory responses. Like the NFκB protein family, the signal transducer and 

activator of transcription (STAT) protein family coordinates many aspects of inflammatory 

responses [15]. In response to specific cytokines and growth factors, STAT family members are 

phosphorylated by receptor-associated kinases [16,17]. Protein phosphorylation, a common 

posttranslational modification, is typically monitored with protein immunoblotting. Because this 

type of posttranslational modification must be evaluated in the context of the total protein 

amount, both the phosphorylated and total protein levels must be profiled in parallel. These types 

of profiling experiments are well suited for microfluidic immunoblotting because the 
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phosphorylated and total protein can be profiled at the same time from the same sample lane. To 

evaluate this capacity of microfluidic immunoblotting, we stimulated RAW264.7 cells, a 

macrophage cell line, with lipopolysaccharide (LPS) (100 ng/ml) for 24 hours. After 24 hours, 

the cell lysates were collected and probed for phosphoSTAT3 and STAT3 with both microfluidic 

and traditional protein immunoblotting. Similar to traditional immunoblotting, microfluidic 

immunoblotting detected phospho-STAT3 in LPS stimulated macrophages consistent with 

inflammatory activation of the STAT pathway (Figure 3.3). These results suggest that 

microfluidic immunoblotting can be used to monitor phosphorylation and other posttranslational 

modifications. Importantly, the ability to monitor multiple proteins and protein modifications 

greatly improves assay throughput and reduces sample requirements without sacrificing data 

fidelity. 

Monitoring multicomponent, inflammatory pathways 

The mitogen activated protein kinase (MAPK) pathway is another pathway that coordinates 

inflammatory responses [18]. MAPKs are serine/threonine-specific protein kinases that transduce 

extracellular signals and regulate diverse cellular responses including cell proliferation, 

differentiation, and apoptosis. One of the difficulties in monitoring this pathway is that it has 

multiple protein components with different activation properties. These complexities make 

monitoring the MAPK pathway with traditional immunoblotting time and resource intensive. We 

hypothesized that some of these complexities could be addressed using microfluidic 

immunoblotting. To determine the efficacy of the microfluidic device to monitor the MAPK 

pathway, we stimulated RAW264.7 cells with LPS (100 ng/ml) for 45 minutes and collected cell 

lysates. We probed for phospho-JNK, phospho-ERK, and total ERK with traditional and 

microfluidic protein immunoblotting (Figure 3.4). Traditional immunoblotting required three 

different gels and PVDF membranes. In contrast, microfluidic immunoblotting obtained similar 

results using only two sample lanes from a single gel and PVDF membrane. By simultaneously 

probing for total ERK from the same sample, we minimized the time and resources compared 

with traditional immunoblotting. We also wanted to evaluate the flexibility of the microfluidic 

immunoblotting approach with other common chemiluminescent detection methods. Both HRP 

and AP have excellent sensitivity. However, this higher sensitivity also makes them more 

susceptible to background noise. We ran a microfluidic immunoblot using the same cell lysates 

and MAPK antibodies as above. We then used a horseradish peroxidase secondary antibody and 
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substrate to detect the primary antibodies. The efficacy of HRP detection was equivalent to 

alkaline phosphatase detection using the microfluidic immunoblotting device (Figure 3.4) further 

expanding the utility of this approach. 

 

Figure 3.3. Detection of STAT3 phosphorylation in response to inflammatory stimuli. 

(A) Traditional immunoblots of RAW264.7 cell lysates showing phosphorylation of STAT3 in 
response to LPS stimulation. (B) Microfluidic immunoblot on same RAW264.7 cell lysates as 
(A). The signal intensities from three microfluidic immunoblots were quantified using ImageJ 
and demonstrate a robust and reproducible signal intensity. The microfluidic device allows for 
simultaneous monitoring of phospho-STAT3 and STAT3 in the same sample without the need 
for stripping or reprobing of the PVDF membrane. Immunoblots are representative of at least 

three independent PVDF membranes. 

3.4 Conclusions 

In this study, we report the design and evaluation of a microfluidic immunoblotting device to 

profile inflammatory responses. This approach is unique compared with previously described 

microfluidic immunoblotting platforms in that it: (1) easily interfaces with conventional protein 

immunoblotting platforms and can be used with several detection modalities, (2) can detect 

endogenous proteins and protein modifications from research and human samples, and (3) 

greatly reduces resource (antibody and sample) requirements and enhances assay throughput. 

Generally, microfluidic immunoblotting approaches can be categorized into two types: those that 

focus on integrating all of the elements of immunoblotting and those that focus on applying 
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microfluidics only to specific phases of immunoblotting. The former group of microfluidic 

platforms has obvious advantages and represents the ultimate goal of microfluidic 

immunoblotting platforms[19–22]. As mentioned above, Herr and colleagues have presented 

several microfluidic platforms integrating the separation, transfer, and detection steps of protein 

immunoblotting within a single device. Their methods are fast and enable simultaneous 

monitoring of several proteins. However, the immediate accessibility to typical molecular 

biology users may be limited since their focus is on automation and integration of 

immunoblotting steps. Ciaccio et al. recently presented an approach to monitor EGF receptor 

signaling using microwestern arrays [23]. Their technique captures the throughput advantages of 

microarray technology with the detection ability of traditional immunoblotting. This approach is 

clearly an advance, but does require specialized equipment and extensive sample processing. 

Although microfluidic integration of all the traditional immunoblotting elements is the desired 

goal, achieving this goal requires advances in microfluidics that also must surpass the ease and 

reproducibility of existing technologies. An intermediate goal is to use microfluidics for only 

some elements of protein immunoblotting. This goal has the advantages of greater flexibility and 

minimal end-user investment. However, to realize these advantages, the microfluidic device must 

be simple, reproducible, and easily interface with the existing immunoblotting technologies and 

equipment. Our microfluidic approach most closely resembles that of Pan and colleagues and 

focuses on integrating microfluidics with the detection phase of protein immunoblotting [11]. 

Although both approaches use a microfluidic device that interfaces with slab gels, there are 

several important differences. First, to reduce the complexity of the device, we used a low-

volume syringe to load the microfluidic channels to obviate the need for pumps and tubing. 

Second, to improve the detection limits of our microfluidic device, we used chemiluminescent 

detection methodologies because of the increased sensitivity compared with fluorescent detection 

methodologies. Although the increased sensitivity improves detection limits, it requires a 

microfluidic platform with no leaking and a high degree of stability to maintain a low 

background signal. Lastly, in contrast to the microfluidic approach by Pan and colleagues, our 

approach resulted in primary antibody concentrations similar to those of traditional protein 

immunoblotting leading to greater reductions in primary antibody requirements. In conclusion, 

we have presented the design and evaluation of a microfluidic immunoblotting device for rapid 

profiling of inflammatory signaling pathways. The design of the microfluidic device allows for 
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the addition of more microfluidic channels that would further increase the amount of proteins 

that can be simultaneously profiled. The microfluidic approach maintains the data fidelity of 

traditional protein immunoblotting but greatly improves assay throughput and reduces resource 

requirements. Additionally, this approach is still compatible with membrane stripping and other 

PVDF membrane manipulations allowing for further microfluidic profiling of proteins. We 

anticipate that this microfluidic immunoblotting device will have utility in molecular biology and 

clinical diagnostics.  

 

Figure 3.4. Protein immunoblots of the MAPK pathway using different chemiluminescent 
detection modalities. 

(A) Traditional immunoblots of RAW264.7 cell lysates with or without LPS for 45 minutes. 
Membranes were probed for phospho-JNK and phospho-ERK using total ERK as the loading 

control. Primary antibodies were detected using HRP chemiluminescent techniques. (B) 
Microfluidic immunoblots mirroring conditions in (A). (C) and (D) are identical to (A) and (B) 
except they were performed using AP chemiluminescent secondary antibodies to detect primary 

antibodies. The signal intensities from three microfluidic immunoblots were quantified using 
ImageJ. Immunoblots are representative of at least three independent PVDF membranes. 
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Appendix 

 

 

 

 

 

Figure 3.5.  Comparison of antibody and protein signal dependence of traditional and 
microfluidic protein immunoblotting. Immunoblots from PBMCs were run and processed 
as described in the Materials and Methods section.  Data are from three independent PBMC 
immunoblots (from the same sample) for RelA/p65 at four protein concentrations (5, 1, 0.5 

and 0.1 µg) and three antibody dilutions.  The normalized signal intensities represent 
measurements from 3 independent immunoblots.  Under the conditions tested, the signal 

intensity was more dependent on protein concentration than on antibody concentration for 
both traditional and microfluidic protein immunoblotting. 
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Figure 3.6.  Example of microfluidic protein immunoblot generated using a 5-channel per 
lane microfluidic device. 
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CHAPTER 4 

DOT BLOTTING USING MICROFLUIDIC TECHNIQUES 

Abstract 

Cell cytokine detection has important applications in biological sciences and clinical medicine 

due to cytokine’s roles in cellular communication, immune response, and inflammation. There is 

an increasing demand for high-throughput cytokine detection technology, but current approaches 

can be costly and therefore have limited accessibility. To overcome some of these limitations, we 

have designed a microfluidic dot blotting system that is cost-effective and increases the 

throughput. Dot blots of cell supernatants were spotted onto a poly(vinylidene fluoride) (PVDF) 

membrane and sandwiched between a glass slide and a microfluidic device. Antibodies were 

introduced into the microfluidic channels and multiple different antibodies were run in the 

channels simultaneously. To achieve high-throughput by maximizing the number of channels on 

a dot, we studied the device channel spacing design constraints impacted by surface 

hydrophobicity and protein concentrations. Also, we described the use of the microfluidic system 

for profiling lipopolysaccharide (LPS)-stimulated cytokine secretion in macrophages. 

4.1 Introduction 

Cytokines are vital biomolecules that transmit signals when they are released from one cell and 

are sensed by another cell. The information carried by cytokine proteins can play significant 

roles in cellular communication, immune response, and inflammation. To detect cytokines in 

body fluids, immunoassays are the most common adopted techniques. Immunoassays can detect 

cytokines at low concentrations. There are different types of immunoassays that can be applied 

for cytokine detection such as ELISA [1], flow cytometry [2], antibody array assays [3], and 

bead-based assays [4]. Although the traditional approaches are effective in cytokine detection, 

they can be costly and technically challenging; thus have limited applications for point-of-care 

medical device development.  
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Considering cytokine production is associated with a large number of diseases and measurement 

of cytokines is important in disease diagnosis [5-7], there is a growing demand for a reliable and 

cost-effective cytokine detecting assay that can collect large amount of cytokine information 

within limited amount of samples. Recently, developments in bead-based assays, multilayer 

membrane dot blotting system, and electroluminescence assays have been applied as multiplex 

assays to detect multiple cytokines in small amount of samples [8-10]. However, these 

approaches can be far from being cost-effective and being a simple system with potential in 

point-of-care diagnosis development. Furthermore, these advanced approaches and the most 

standard cytokine detection method of ELISA usually require special instruments for signal 

readout. 

To overcome the limitations of the aforementioned immunoassays for cytokine detection, we 

have developed a microfluidic dot blot system with the ability of profiling multiple cytokines 

simultaneously. The system was assembled by interfacing a microfluidic polydimethylsiloxane 

(PDMS) device to a polyvinylidene fluoride (PVDF) membrane so that microfluidic channels are 

placed on protein dots. The good sealing at the PDMS-PVDF interface provided a miniaturized 

flow chamber for antibody-antigen binding interaction and therefore protein probing. Moreover, 

to improve the detection efficiency as a multiplex assay, it is critical that a large number of 

channels can be placed within a given size of protein dot. The number of channels allowed 

within a certain size of dot is primarily determined by channel spacing and can be impacted by 

several variables. We studied two variables that are most relevant to experimental conditions: 

surface wetting property and protein sample concentration. Using the microfluidic system on a 

PVDF platform, we demonstrated a convenient, simple, and reagent-saving inflammatory 

cytokine detection assay with detection efficiency 4-folds higher and antibody-consumption 

2000-fold less. 

4.2 Materials and Methods 

Microfluidic device design 

The microfluidic device was designed using SolidWork (CAD/Art Services, Inc.; Bandon, OR 

USA) to generate a CAD file. Each lane contains 5 channels. Each channel has the dimensions of 

length 1.985 cm, width 150 μm, channel spacing 0.107 cm, and depth 150 μm. In our device 

design we have 5 lanes (25 channels in total). 
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PDMS Microfluidic Device fabrication 

The transparency mask was printed using a CAD file of the microfluidic device (CAD/Art 

Services, Inc.; Bandon, OR USA). Soft-lithography was used to fabricate a silicon master mold 

from the transparency mask. The microfluidic devices were created by mixing the pre-polymer 

and curing agent at a 12:1 weight ratio (Sylgard 184 Silicone Elastomer Kit, Dow Corning; 

Midland, MI USA) and then pouring the mixture onto a silicon master mold that had been 

affixed to a smooth aluminum tray.  The amount of silicone used in this process was titrated such 

that the devices produced were 6 mm thick.  To remove the bubbles from the silicone mixture, 

the tray was placed in a degassing apparatus until all bubbles were gone (~15 minutes).  The 

aluminum tray was then transferred into an oven that was pre-heated to 100°C where it was 

baked for 90 minutes.  The aluminum tray was removed from the oven and allowed to cool at 

room temperature until it could be handled comfortably (~45 minutes).  To remove the 

microfluidic device from the aluminum pan, a razor blade was used to cut around the silicon 

master mold.  The microfluidic device was then slowly peeled away from the silicon master 

mold. The excess silicone was trimmed from the device using the razor blade such there was a 

~1 cm perimeter around the channels; this perimeter insures a good seal between the microfluidic 

device and the glass slide that is used during the injection process. 

 

Figure 4.1. Schematic of microfluidic dot blot system. 



51 
 

Proteins are deposited as circular dots on PVDF membrane. The microfluidic PDMS device is 
assembled by incorporating the device to the membrane. The microfluidic channels are placed on 
protein sample dots. Antibodies are introduced in each microfluidic channel. 

Preparation of Protein Samples 

The BSA (bovine serum albumin) protein samples were prepared by dissolving BSA (Fisher 

BioReagents™ Bovine Serum Albumin, Fraction V, Heat Shock Treated) in deionized water at 

concentrations of 0.25 mg/ml, 0.025 mg/ml, 0.0125mg/ml, and 0.0025 mg/ml. 

The bone-marrow derived macrophages (BMDMs) were collected from mouse C57/BL6 

received from Charles River. The bone-marrow cells were strained in 100um filter, spilt into 12 

petri dishes with 10-L929-cell conditioned media. BMDMs plated in 6-well plates at 106/ml then 

put on MCSF. Cells were washed in PBS-Ca/-mg and incubated in 0.5% FBS medium 

containing lipopolysaccharide (LPS) from Escherichia coli O55:B5 (Sigma-Aldridge; St Louis, 

MO USA) at a concentration of 100 ng/ml. Cell supernatants were collected at 48 hour time 

point. The supernatant samples were spun down at 2500xg for 4 minutes at 4°C. Then transferred 

the supernatant to new tubes and store them at -80°C for preservation. 

Preparation of PVDF Membrane Immobilized with BSA using microfluidics 

Prior to protein immobilization, the PVDF membrane was ‘wetted’ by immersing it in methanol 

for 10 seconds, DI water for 2 minutes and finally TBS for 5 minutes. The PVDF membrane was 

then placed on top of stack of dry filter papers and covered with a single piece of filter paper that 

had been soaked in TBS buffer. The membrane hydrophobicity was changed by varying the time 

(15 min, 30 min, 45 min, and 1 hour) spent between placing the membrane on the filter paper 

stack, and immobilizing protein on the membrane surfaces. In studies where the impact of 

protein concentration was evaluated, membranes were allowed to dry for 3 minutes to yield a 

contact angle of 55°. 

To immobilize BSA protein on PVDF membrane using a microfluidic device, the PVDF 

membrane was removed from the filter paper stack, laid on a glass slide, subsequently the PDMS 

microfluidic device was placed on the top. Solutions of BSA at concentrations of 0.25 mg/ml, 

0.025 mg/ml, 0.0125mg/ml, and 0.0025 mg/ml were injected at different channels using a 1ml 

syringe with 27G ½ needles and incubated for 15 minutes. Following the protein solution 

incubation, the microfluidic device channels was washed with TBS buffer by injection then the 
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PDMS device was removed and the membrane was dried at the room temperature for at least 3 

hours. 

Contact angle measurement for PVDF membrane hydrophobicity evaluation  

Static water contact angle measurements were performed using a CAM 100 Optical Contact 

Meter (KSV Instruments). Water contact angles were measured on PVDF membrane dried at the 

time points of 15 min, 30 min, 45 min, and 1 hour. The contact angles were evaluated by fitting a 

mathematical expression to the shape of the drop and then calculating the slope of the tangent to 

the drop at the liquid-solid interface line at the left and the right side of the droplet (for further 

analysis average values were used). 

Quantification and statistical analysis of protein lane width  

To visualize the protein lane on the PVDF membrane, the membrane was incubated in a solution 

of 7% acetic acid, 10% methanol and incubated for 15 minutes. Once incubation is completed, 

the membrane was washed in DI water for 5 minutes for four times. The membrane was stained 

with SYPRO ruby red (Life Technologies; Carlsbad, CA USA) for 15 minutes then washed with 

DI water for 1 min for four times. 

Protein blots were scanned using Gel Doc XR system (BioRad). The images were imported into 

ImageJ software and analyzed. The microfluidic protein blots with the signal intensity in the 

channel region was measured. The signal intensity and position profile was plotted at upstream, 

middle-stream, and downstream. The position profile was fit by Gauss model and full width half 

maximum (FWHM) was extracted. Quantification is expressed as means with standard 

deviations (SD) with numbers of individual experiments repeated for three times. 

Microfluidic dot blot for cytokine detection 

For cytokine detection using dot blot, PVDF membrane was wet with methanol for 10 seconds, 

rinsed in DI water for 2 minutes then in TBS buffer for 5 minutes. The PVDF membrane was 

placed on a stack of filter paper with dry filter paper at the bottom and filter paper wetted with 

TBS buffer on the top. Then 8-10 µL of cell supernatant per dot were spotted onto wet PVDF 

membrane. Once the cell supernatants wicked into the PVDF membrane, the membrane was 

removed from the filter paper and placed on a clean surface to dry overnight. 
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Once dry, the microfluidic device was placed on the PVDF membrane with channels aligned on 

the dots. IL6, IFNγ, amd IL10 primary antibodies were injected into each channel and incubated 

for 30 minutes. Both the primary and secondary antibody dilutions were prepared in 0.1% BSA 

and 0.1% Tween20 TBS. Following the primary antibody incubation period, the channels were 

washed with TBS buffer injection then the microfluidic device was removed and the membrane 

was blocked for 30 minutes in 0.1% BSA and 0.1% Tween20 TBS. The membrane was then 

incubated with the secondary antibody for 1 hour prior to chemiluminescent detection with 

alkaline phosphatase. 

4.3 Results and Discussion 

Sealing condition test at the interface of microfluidic PDMS device and PVDF membrane 

Our first goal was to test the sealing at PDMS and PVDF interface and compare the test 

characteristics of conventional dot blot with microfluidic dot blot. In our previous work, we have 

demonstrated the feasibility of using microfluidic PDMS device on PVDF membrane at antibody 

incubation step for Western blot [11]. However, in dot blot protein samples are directly deposited 

on PVDF membrane without the electroblotting step. To test if leakage would be an issue in 

applying microfluidics to dot blot, we collected cell supernatants from both LPS treated 

macrophages and no treatment group and spotted the supernatants on PVDF membrane as dots. 

Using primary antibody IL6, an inflammatory cytokine, at three different concentrations (1:100; 

1:500; 1:1000), we compared the signals between the conventional approach and microfluidic 

dot blot. The microfluidic dot blot approach resulted in slightly lower, but comparable signal 

intensities compared to those from traditional dot blotting. In both approaches, the signals and 

signal variation were comparable under the conditions tested. 
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Figure 4.2. Comparison of traditional and microfluidic dot blotting in macrophage 
supernatants. 

Representative dot blots for IL6 at three antibody dilutions (1:100; 1:500; 1:1000) using (A) 
conventional and (B) microfluidic dot blotting techniques. The signal intensity for the (C) 

conventional and (D) microfluidic blots were quantified using ImageJ software and normalized 
to the background signal. Immunoblots are representative of three independent PVDF 

membranes from the same macrophage supernatants. 

Influence of protein concentration on protein lane width using a microfluidic device on 

PVDF 

We next determined the microfluidic device channel spacing design constraints by measuring 

protein lane width variation. Since antibody flow on PVDF membrane is governed by adsorption 

and diffusion, antibody solution at different concentrations might result in different lane width 

[12]. We developed an approach by studying the lane width of immobilizing model protein BSA 

at different concentrations on PVDF membrane. The model protein BSA was chosen at a 

concentration range that is tested in most biology studies, 2.5 mg/ml, 25 μg/ml, 12.5 μg/ml, and 

2.5 μg/ml. The dimension of the PDMS microfluidic device is 3.1 cm long, 150 μm wide, and 
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100 μm deep. Protein lane width measurement was conducted by first placing the PVDF 

membrane on a glass slide with the microfluidic device on the top. Model protein BSA solutions 

were injected into the channels and incubated for 15 minutes. The microfluidic device was then 

removed and the PVDF membrane was dried for at least 2 hours. To detect the protein lane 

signal, the entire PVDF membrane was incubated with Sypro Ruby protein blot stain fluorescent 

dye. The detection was achieved by scanning the membrane with Gel DOC EZ system. The 

image was analyzed in ImageJ by measuring the line profile of signal intensity at three positions: 

upstream, middle stream, and downstream. The peak intensity was fitted by Gauss model at each 

position using Origin software to get the full-width-half-maximum (FWHM). 

The dependence of protein width on the protein sample concentration is shown in Figure 3. The 

signal intensity decreases as protein concentration decreases. This implies protein concentration 

should be taken into consideration for device design constraints in our microfluidic PDMS on 

PVDF membrane system. The measurement of actual protein lane width on PVDF membrane at 

highest concentration of 2.5 mg/ml is approximately 200 μm (Appendix). The measurement 

provides guidelines of channel spacing design with consideration of the widest protein lane 

width. 
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Figure 4.3. Protein lane width variation at different protein concentrations. 

(A) Ruby red stain of BSA protein at different concentrations immobilized on PVDF 
membrane using a microfluidic device. (B) Full-width-half-maximum (FWHM) measurement of 
channel width at three different positions, up-stream, mid-stream, and down-stream. The FWHM 

values were taken by fitting the intensity profile with Guass model. The values of FWHM at 
three different positions were averaged at each protein concentration and show a decreasing 
trend as protein concentrations get low. This suggests protein concentration within the range 

tested should be taken into consideration for microfluidic device channel spacing design. Results 
are representative of three independent experiments. 

Influence of PVDF hydrophobicity on protein lane width using a microfluidic device 

The surface wetting property is another variable that influences liquid spreading area on a 

surface. Surface hydrophobicity or hydrophilicity can be quantitatively defined by contact angle. 

Hydrophobic surface has large contact angle whereas hydrophilic surface has small contact angle 

[13-15]. PVDF membrane is a good platform to control its surface wetting property. PVDF 

membrane becomes hydrophilic when it is activated with methanol then washed with DI water. 

The hydrophilic membrane can then be placed on a dry, clean filter paper and water evaporation 

changes the membrane surface to become hydrophobic. To study the influence of surface wetting 

property on protein lane width, we first activated PVDF membrane with methanol and rinsed in 
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DI water, then the membrane was placed in the air (on clean filter paper) and dried at different 

time points (15 min, 30 min, 45 in, 60 min). The surface wetting property of PVDF membrane 

drying at different time points was quantified by contact angle measurement. Once the PVDF 

membrane got dried at the testing condition, the membrane was then removed from the filter 

paper and assembled between a glass slide and a microfluidic device. BSA protein solution at the 

concentration of 25 μg/ml was injected into the microfluidic channel and incubated for 15 

minutes. After the incubation, the procedures of Ruby red stain and signal detection by Gel DOC 

EZ system as described above were followed. The same data analysis of using ImageJ for line 

profile measurement and Gauss peak fitting in Origin software was adopted. 

Figure 4 shows the protein lane width variation at different surface wetting properties. The mean 

and standard variations of FWHM measured at different surface wetting properties suggest that 

there is no significant difference between any groups of the time points we chose to study. These 

results further suggest that channel spacing in the microfluidic device design is not impacted by 

the surface hydrophobicity conditions that were tested. 

 

Figure 4.4. Protein lane width variation at different PVDF membrane surface wetting 
properties. 

(A) Representative image of Ruby red stain of BSA protein immobilized on PVDF membrane 
at different surface wetting properties using a microfluidic device. (B) Full-width-half-maximum 
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(FWHM) measurement of BSA protein lane width with PVDF membrane at different contact 
angles. The FWHM values were taken at three different positions, up-stream, mid-stream, and 
down-stream by fitting the intensity profiles with Guass model. The values of FWHM at three 

different positions were averaged at each contact angle and do not show a significant difference 
among different groups. This suggests substrate hydrophobicity within the range tested should 

not change microfluidic device channel spacing design. Results are representative of three 
independent experiments. 

Monitoring multicomponent, inflammatory cytokines 

Immune systems are often modulated by cytokine released in human bodies. Monitoring these 

secreted proteins by the immune cells plays an important role in manipulating inflammatory 

responses and diseases. Like macrophages, the dominant phagocytes of the immune system, they 

release a variety of different inflammatory cytokines once they are activated [16-18]. 

These complexities limit the ability of using the standard and best validated method Enzyme-

Linked Immuno-Sorbant Assay (ELISA) in inflammatory molecule studies with high efficiency, 

low-cost, and wide accessibility [8]. We believe that some of these challenges could be 

addressed using microfluidic dot blotting system. To determine the efficacy of the microfluidic 

dot blotting system for cytokine detection, we stimulated RAW264.7 cells with LPS (100 ng/ml) 

for 48 hours and collected cell lysates. We probed for interleukin 6 (IL-6), interleukin 10 (IL-10), 

interferon gamma (IFNγ), and netrin-1 with traditional and microfluidic dot blotting (Figure 4). 

Traditional dot blotting required preparation of four protein blots. In contrast, microfluidic dot 

blotting obtained similar results using only one set of protein blot. By simultaneously probing 

cytokines released in macrophage supernatants, we demonstrated the feasibility of minimizing 

the time and resources compared using a simple approach. 
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Figure 4.5. Detection of inflammatory cytokines in response to inflammatory stimuli. 

(A) Traditional dot blots of macrophage supernatants probing for IFNγ, IL-6, Netrin-1, and IL-10 
in response to LPS stimulation. The signal intensities of IL-6 and netrin-1 changed in LPS-
treated and no treatment groups. (B) Microfluidic dot blots on same macrophage supernatants as 
(A). The signal intensity change from microfluidic dot blots demonstrates comparable and 
reproducible test results. The microfluidic device allows for simultaneous monitoring of four 
different cytokines in the same sample. Results are representative of three independent 
experiments. 

4.4 Discussion 

In this study, we designed a cost-effective microfluidic dot blot device that can be used to probe 

for inflammatory cytokines efficiently. We further investigated device design constraints under 

some certain conditions. Microfluidic dot blot is a technically simple and resource-saving 

approach that can be easily applied in common biological labs and clinical settings. The 

microfluidic dot blot approach simplifies sample preparation process by directly depositing 

protein samples on a PVDF membrane. We designed the device with channel width to be 150 

µm and chose alkaline phosphatase chemiluminescent substrate as a labeling technique. This 

provides the advantages of seeing distinguishable bands as signals with the naked eye, so that 

additional tools or instruments are not required. 
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In summary, microfluidic dot blot allows the detection of multiple proteins in one sample 

simultaneously with only microliters of antibody needed. This method provides an excellent 

approach for cytokine analysis with applications in biological research and disease diagnosis. 

Appendix 

 

Figure 4.6. 2.5 mg/ml protein lane width measurement by intensity profile line scan. 

(A) 2.5 mg/ml protein lane width image was scanned together with the transparency mask of a 
microfluidic channel. The channel width is 150 µm. (B) Intensity profile by line scan of 150 µm 
wide channel and 2.5 mg/ml protein lane. The base width of 2.5 mg/ml protein lane is 
approximately 200 µm compared to the 150 µm lane. 
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CHAPTER 5 

CONCLUSIONS 

5.1 Summary 

As the life expectancy of human beings is rising, the proportion of healthcare costs is expected to 

rise. The costs will be highly likely to be used to provide better healthcare services including 

effective treatment and efficient disease diagnosis. Disease diagnosis and the decision-making 

for treatments rely on reliable, low cost, and efficient immunoassays. In this dissertation, the 

immunoassay development goals was addressed by first exploring the potential of using 

graphene as an immunoassay sensing platform with detailed characterization (Chapter 2). Then 

the work of applying microfluidic techniques to immunoblot with the advantages of reducing the 

cost and improving the efficiency is presented (Chapter 3). Based on this achievement, the 

microfluidic technique was applied again to dot blot and device design constraints impacted by 

surface hydrophobicity and protein concentration were tested (Chapter 4). These studies 

contribute to the immunoassay development goals of sensitivity, cost reduction, efficiency, and 

point-of-care diagnosis development. These studies are believed to be valuable for development 

of graphene biosensing platform and application of microfluidic technique to protein blotting. In 

this chapter, the roles of the works of graphene biosensing platform development and applying 

microfluidic techniques to immunoblot and dot blot were discussed individually in the greater 

scheme of scientific research. Then the general lessons and principles that have learned through 

the development of these techniques and possible future directions are presented. 

5.2 Summary of functionalization of graphene 

In 2004, the initial success of isolating single atomic layer graphene by Geim and Novoselov 

generated ripples of excitement in the scientific community. Since then, a tremendous number of 

potential applications of graphene have been proposed ranging from supercapacitors to DNA-

sequencing, photocatalysts, and display. This opens new avenues for research of understanding 

the properties of graphene and urges the development of a variety of functionalization methods 
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for the following reasons: (1) graphene is inert, which weakens its competitive strength in many 

fields of application, and (2) graphene possesses zero band gap and therefore has limited 

application potential in nanoelectronic devices. 

Several chemical approaches of graphene functionalization have been developed to make 

graphene broadly applicable. In general, for covalent functionalization of graphene, there are two 

routes: (1) forming covalent bonds between carbon atoms (C=C) and free radicals or dienophiles, 

and (2) attaching organic functional groups to the oxygen groups of graphene oxide (GO) then 

reduce GO by removing the oxygen groups and rehybridize the sp3 C atoms to sp2 C atoms. GO 

has been extensively studied as the starting material to covalently link organic groups to the 

surface. However, nowadays the methods to completely reduce GO to graphene is still under 

investigation. It remains to be a study of interest to completely remove all residual epoxy or 

hydroxyl functional groups left on reduced graphene oxide. 

5.2.1 Functionalization of graphene: covalent approaches 

Considering the fact that the complete reduction of GO to graphene has not yet been achieved, 

forming a reaction between graphene carbon atoms and free radicals or dienophiles is currently 

the most attractive approach. Moreover, this approach has also been shown to be an effective 

functionalization method with other carbon nanomaterials. For example, this approach of adding 

dienophiles to C=C bonds has been successfully applied in the functionalization of carbon 

nanostructures including fullerenes, nanotubes, and nanoribbons. This type of reaction is flexible 

and important because it offers the ability to react with a variety of functional groups. Moreover, 

the results have displayed interesting applications in many fields ranging from polymer 

composites, to biotechnology, nanoelectronic devices, drug delivery, and solar cells [1]. 

With the motivation of understanding more about the fundamental properties of the 

functionalized graphene, the information about features such as functional group density and 

uniformity would be of great interest. The functional group density is often quantitatively 

estimated by calculating the ID/IG ratio in Raman spectroscopy. This ratio indicates the ratio 

between carbon atoms with sp2 and sp3 hybridization in the graphene lattice. This can be used as 

an estimation of the degree of covalent functionalization reaction but does not reveal actual 

coupling efficiency nor the uniformity. 
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This dissertation addresses the goals of estimating the coupling species density and their 

uniformity on functionalized graphene surface using an approach of conjugating fluorophore to 

the functionalized graphene. This approach introduces new elements on the functionalized 

graphene sheets and therefore provides the feasibility of estimating the functional group coupling 

efficiency by the XPS spectra. Moreover, conjugating fluorophore to graphene surface provides 

the feasibility of visualizing the graphene sheet under fluorescence microscopy. The 

fluorophores conjugated to graphene sheet emit fluorescence instead of being completely 

quenched. Moreover, the uniform fluorescence on the graphene sheet indicates the functional 

groups are created uniformly on the surface. The approach introduced in this dissertation 

provides a novel method that fulfills both requirements of estimating the functional group 

density and characterizing the uniformity. 

5.3 Advantages of using graphene as an immunoassay platform 

The material graphene is a promising candidate material to be studied as an alternative to 

common immunoassay platform materials. Common types of existing immunoassay platform 

materials include polystyrene in 96-well plate in ELISA, glass substrate in surface-plasmon 

resonance (SPR) detection, and nanoparticles in pathogen or proteins detection [2, 3]. 

Polystyrene and glass, however, are bulky and stiff materials, that can crack under stress and 

collision. Nanoparticles might get aggregated in solution and change the physical and chemical 

properties such as transport property and reactivity. These material properties limit the use of 

immunoassays as in vitro assays used only in a lab-based or hospital-testing environment. 

In contrast, graphene is an atom-layer thin carbon material with high mechanical strength 

(approximately 60 times stronger than glass and 3000 times stronger than polystyrene), low 

weight (approximately 1 million times lighter than the same size glass sheet), and high flexibility. 

The thin size, high mechanical strength, low weight, and flexibility of graphene open 

opportunities to build immunoassays on flexible and portable platforms. Because graphene is 

also biocompatible and non-toxic in the human body, this advancement could result in point-of-

care disease screening and diagnosis, and on-site and timely monitoring immunoassays. One 

promising application would be to use graphene immunoassays for real-time biological response 

monitoring in vivo. For example, it has been shown that a functionalized graphene sheet can be 

transferred onto the surface of a tooth for pathogenic bacteria monitoring of tooth enamel. This 
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demonstrates the potential of using graphene for in vivo, in situ, and real-time biomolecule 

detection development [4]. 

The sensitivity of immunoassays can also be improved from using graphene. Graphene is an 

ideal 2-dimensional material with high surface-to-volume ratio. Its geometric structure as a 

planar sheet, the sp2 hybridized form of carbon atoms, and the development of different 

approaches to attach biomolecules on functionalized graphene surface all lead to high antibody 

immobilization density on graphene surface. This results in high detection sensitivity and low 

limit of detection with the sensitivity of up to 80 times higher if graphene-based immunoassays 

are compared to the commercial ELISA [5]. Moreover, graphene exhibits several special 

electrical/physical material properties that make it an immunoassay platform suitable for 

versatile detection mechanism development. Graphene has high electrical conductivity (3000 

W/m-K), high surface-to-volume-ratio (2600 m2/g), and a high electron transfer rate, all of which 

contribute to high sensitivity in graphene-based electrochemical immunoassays [6]. Finally, the 

optical properties of graphene have also been widely explored in immunoassay platform 

development.. Graphene is transparent over a broad wavelength spectrum from ultraviolet to 

infrared, and graphene can quench fluorescence efficiently. Graphene’s quenching mechanism 

has been applied in fluoroimmunoassay applications with a goal of building high selectivity 

assays that are suitable in antibody-antigen binding or releasing events detection [7].  Altogether 

these material properties of graphene suggest that it will be highly suitable as a versatile and 

competitive alternative material in immunoassay platform development. 

5.4 Future steps of developing graphene biosensing platform 

For the biosensing application, carbon nanotubes (CNT) and graphene are the most promising 

carbon nanomaterials with great potential in development. However, there are still needs to be 

addressed to meet future requirements. One of the areas which is essential and deserves 

expanded attention in graphene biosensing development is keeping protein biomolecules in the 

active state on graphene surface. In protein immobilization on solid substrates, there is often a 

trade-off between firmly immobilizing capture proteins, binding sufficient protein amount, and 

maintaining protein structure and function in the assay format [8]. 

In this dissertation, a method has been developed to covalently immobilize proteins on a large 

scale graphene surface. Covalent bonds are strong and can withstand the washing steps in many 
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immunoassay procedures, but covalent linkage can also denature some proteins. Furthermore, 

graphene is intrinsically hydrophobic. This raises the concern that strong interaction of proteins 

with the graphene surface through hydrophobic interaction may lead to unexpected protein 

folding that could disturb protein stability and activity. Therefore, one direction of interest for 

future study is to determine antibodies immunoreactivity when they are immobilized on 

graphene surface [9, 10]. 

In summary, protein immobilization onto a solid surface has great significance in numerous 

applications including protein analysis, drug screening, and medical diagnostics. As graphene 

has raised great interests as a material candidate for biosensing platform, the work presented here 

advances the field by developing an approach to provide the information about the density and 

the uniformity of proteins immobilized on a large size graphene sheet surface. 

5.5 Summary of applying microfluidic techniques to immunoblotting 

In the second part of this thesis, the incorporation of microfluidic techniques to protein 

immunoblotting was developed with the purpose of reducing antibody consumption and cost. A 

microfluidic device was designed and fabricated and can be easily interfaced with the existing 

protein immunoblotting systems. In contrast to traditional blotting that incubates the whole 

membrane in antibody solution, a microfluidic device was used so that the antibody solution is 

only needed in the microfluidic channels. It has been shown that immunoblotting with 

microfluidic technique can perform quantitative analysis with comparable results to the 

traditional protein immunoblotting. The PVDF-based immunoblotting system is useful with an 

assortment of antibodies, both monoclonal and polyclonal, and works in a wide range of primary 

and secondary antibody concentrations. It has also been demonstrated that the designed 

microfluidic systems can be used with a variety of antibodies to profile signaling pathways and 

can achieve comparable detection limits. Compared to the current existing techniques for protein 

expression profiling such as fluorescent bead assays (Luminex), enzyme-linked immunosorbent 

assays (ELISAs), and protein microarrays, the microfluidic approach developed in this thesis is 

less expensive, requires no special instruments or tools, provides a simple technique for detecting 

multiple proteins, and offers wider accessibility for clinical diagnostics and research groups. 
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Our system was built by placing a microfluidic PDMS device on a protein PVDF membrane. The 

results show that the sealing condition of a PDMS device to a PVDF membrane is good and 

requires no additional surface treatments to prevent leaking. This is promising in incorporating 

PVDF membrane-based immunoassay with microfluidics considering membrane based 

microfluidic techniques often suffers the leakage issues with clamping fixation [11]. Our results 

show that hydrophobic PVDF membranes can be easily incorporated into microfluidic devices 

without additional complicated surface modification such as plasma treatment. Moreover, PVDF 

membranes’ protein binding capacity can be easily increased by adding Tween-20, a type of 

surfactant, to the antibody solution. The additive Tween-20 generates pores on the PVDF 

membrane and therefore provides adequate binding capacity for proteins [12]. The concentration 

of Tween-20 was optimized so that the membrane gets activated by simply flowing antibody 

solution with Tween-20 in the microfluidic channel.  

Considering the advantages of simple integration of a PVDF membrane to a microfluidic system, 

PVDF membranes’ high protein binding capacity (150 – 160 μg/cm2) and high mechanical 

strength, PVDF membranes’ wide application in many immunoassay set up, and the practicality 

of eye visualization for signal detection, the developed techniques are believed to have the 

potential to be easily prototyped and be used in most biology labs and clinical settings [13]. 

5.6 Summary of cytokine detection using microfluidic dot blotting 

In the third project, microfluidic technique was applied to dot blotting and the device design 

constraints of channel spacing impacted by PVDF membrane surface hydrophobicity and protein 

sample concentrations were further investigated. Microfluidic assisted dot blotting technique 

brings in the advantages of reducing antibody consumption and probing multiple proteins 

simultaneously. Both dot blotting and immunoblotting (Chapter 3) are techniques used for 

protein probing. However, in dot blotting protein samples are directly deposited on PVDF 

membrane whereas in immunoblotting proteins are transferred by electroblotting. It has been 

shown that the sealing condition is good at the interface of a microfluidic device and a PVDF 

membrane with electroblotting (Chapter 3) and without electroblotting (Chapter 4). 

In microfluidic dot blotting system, the capability of probing multiple proteins was determined 

by the number of channels placed on a certain size of antigen dot. Large number of channels can 
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be obtained if the channel spacing is small. However, this also results in higher risks of cross-

contamination when different antibodies flow adjacent. The influence of common experimental 

conditions on channel spacing was studied using an approach of immobilizing BSA protein on a 

PVDF membrane with a microfluidic device. The impacts of protein concentrations and surface 

wetting properties on BSA lane width were tested. Within the range tested, the results suggest 

that protein lane width shows distinguishable variation when protein concentrations are changed. 

The width does not show much difference when surface wetting properties are changed. The 

microfluidic dot blotting system has been shown to be capable for relevant biological tests by 

detecting the inflammation cytokines secreted by macrophages. The microfluidic dot blotting 

system provides a simple and cost-effective approach to develop multiplex cytokine assays with 

great potential in biological research and point-of-care device development. 

5.7 Future steps for applying microfluidic techniques to immunoblotting and dot 

blotting 

The developed microfluidic techniques can simultaneously capture multiple proteins from a 

single sample, therefore the expression and activity of several signaling mediators in response to 

numerous treatments can be quantitatively measured in a single experiment. This implied the 

microfluidic technique is a potentially powerful tool for multiplex protein immunoassays, which 

is of particular interest because there is a growing need to simultaneously screen multiple 

proteins in a single sample [14]. However, to simultaneously detect multiple proteins in different 

concentration ranges, high sensitivity and good signal-to-noise ratio are critical. The following 

address the issues that deserve further consideration. 

5.7.1 Surface Modification and Immobilization 

Nonspecific adsorption or binding to molecules rather than analytes is a key concern in 

immunoassays. The adsorption of non-targeted biomolecules often degrades the sensitivity and 

specificity, and also lowers the signal to noise ratio. Protein molecules can adsorb to PVDF 

membranes non-specifically because of the membrane’s structure. PVDF membrane is a network 

of pockets and channels of different dimensions, this heterogeneity provides the ability for 

proteins to adsorb non-specifically due to hydrogen bonding, charge interactions, or non-polar 

interactions [15]. 

Currently non-specific binding is still a challenging issue in immunoassay development and is 
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often solved by blocking. Blocking agents such as bovine serum albumin, casein and detergents 

are commonly used in many immunoassays, but they rarely reduce protein non-specific binding 

completely. Another approach is to use surface functionalization or modification on the substrate 

surface. For example, to reduce non-specific protein binding interaction on hydrogel, an effective 

approach was to use Poly(ethylene) Glycol (PEG) to modify the surface. PEG can also be grafted 

on PVDF membrane, so the proposed future direction is to study the non-specific binding on 

microfluidic protein immunoblot using PVDF membrane with PEG modification [16, 17]. 

5.8 Prospects 

Nowadays, immunoassays are essential to the practice of health care worldwide and are still 

considering of a growing demand due to the expanding use in point-of-care diagnostics, cancer 

diagnosis, tissue typing, infectious disease screening, hormone detection, and therapeutic drug 

monitoring. Moreover, the advance in nanotechnology leads to immunoassays’ improvements in 

efficiency, sensitivity, specificity, and cost reduction. Various techniques have been applied to 

immunoassay development including quantum dots [18], microcantilever [19], bead-based 

assays, and microfluidics. However, these laboratory-based, high-end technologies are not so 

much applicable in resources-limited settings and poor countries. Responding to these initiatives, 

recently there is an emerging trend of applying cheap and simple technologies to immunoassay 

development especially for disease diagnosis [20]. 

One of the essential immunoassay components is the platform. Our graphene functionalization 

and characterization work suggests a potential of using CVD graphene as a biosensing platform. 

As large scale and low cost CVD graphene are available nowadays, this is promising in 

exploiting graphene as a cheap immunoassay platform. However, there are still many questions 

need to be addressed and conditions such as sensitivity and limit of detection need to be tested. 

In the second and the third parts of the dissertation, microfluidic systems for immunoblots and 

dot blots were developed. The developed approaches are validation of multiplex protein assays 

and they can be used to detect biological samples in small volumes. With the flexibility in 

antibodies, labeling substrates (horseradish peroxidase or alkaline phosphatase), and simple 

integration, it is anticipated that the microfluidic systems can be widely applied to reduce the 

cost for protein analysis in most biology labs and in clinical settings. 
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