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CHAPTER I 

INTRODUCTION 

 

1.1. VOLATILES IN RIFT ENVIRONMENTS 

The significance of inclusions within individual crystals in providing information about 

the petrogenesis of igneous rocks has been understood since the pioneering work of Sorby 

(1858), over one hundred years before analyses of these inclusions began to make an impact in 

the community. By the 1920’s it was apparent that magmas contained some volatile (H2O, CO2, 

Cl, F, S) component and Bowen (1928) understood the need to quantify the effects of volatiles in 

magma as well as measure the volatiles in a magma, stating, “To many petrologists a volatile 

component is exactly like a Maxwell demon; it does just what one may wish it to do.” Some of 

the first measurements of melt inclusions were done in the 1970’s (Roedder and Weiblen 1970; 

Anderson 1974a; Anderson 1974b; Roedder 1979), however, due to the difficulty of analyzing 

volatiles in melt inclusions, it was only within the past two decades that melt inclusion analyses 

became commonplace. As it is clear that volatiles play a large role in magma genesis, efforts 

have been made to quantify the volatile contents of the mantle by investigating the storage 

capacity of nominally anhydrous mineral phases (Beran and Libowitzky 2006; Skogby 2006), 

the stability of hydrous phases in the mantle (Frost 2006; Foley et al 2009; Green 2015), the 

nature of mantle metasomatism (Roden and Murthy 1985; Wilshire 1987; Rosenthal et al 2009), 

as well as the composition of fluid inclusions in mantle xenoliths (Andersen and Neumann, 
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2001; Frezzotti et al., 2012). Of particular focus in this dissertation is the ability for mantle 

metasomes to store volatiles. 

It is well understood that the generation of silica-undersaturated alkaline lavas requires a 

metasomatized mantle source that is rich in H2O and CO2 (Brey and Green 1975; Menzies and 

Murthy 1980; Spera 1981; Roden and Murthy 1985; Edgar 1987; Foley 1992; Pilet et al 2008; 

Foley et al 2009; Green 2015). These metasomes can often have a phase assemblage involving 

amphibole or phlogopite, hydrous minerals acting as a reservoir for water, and may also be 

veined with carbonate (Foley 1988; Foley 1992; Rosenthal et al 2009; Kessel et al 2015). The 

generation of these metasomes is not well understood, with hypotheses including carbonatitic 

low-degree partial melts of the mantle at ~300 km (Dasgupta and Hirschmann 2006), fluids 

and/or sediments melts from subducting slabs (Tsuno and Dasgupta 2012; Rooney et al 2014), 

and partial melts during plume ascent at ~150 km depth (Rosenthal et al 2009; Foley et al 2009). 

As these metasomes can act as mantle reservoirs for volatiles, understanding their origin and 

stability is key to understanding the flux of volatiles into and out of the mantle. Silica-

undersaturated alkaline are also often found at the propagating tips of rifts, indicating that there 

may be some link between metasomatism and rift initiation.  

Chapter II of this dissertation investigates the major- and trace-element compositions 

and volatile contents of olivine hosted melt inclusions from the Western Branch of the East 

African Rift. The mantle beneath this portion of the rift is thought to be a phlogopite- and 

carbonate-bearing metasomatized mantle. The investigation of these melt inclusions provides 

evidence of the volatile contents of the silicate melt at the time of entrapment, which allows us to 

estimate the volatile contents of the initial melt, providing insight into the mantle source. The 

results from this study show that the melt inclusion chemistry looks very similar to rocks erupted 
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in arc settings rather than ocean island basalts (OIBs) or rifts, and contain far higher volatile 

contents than would be expected for OIBs and rifts. The concentrations of fluid-mobile elements 

compared to fluid-immobile elements show an enrichment in the fluid-mobile elements, similar 

to subduction-related magmas, that trends towards global subducted sediments (GLOSS). These 

data provide evidence that the metasomatism in the East African mantle may have occurred 

during the ~600 Ma Pan-African Orogeny, and that volatiles can be stored in the lithospheric 

mantle over long periods of geologic time. This chapter has been published in Contributions to 

Mineralogy and Petrology 169(5), 1-18. 

1.2. PETROGENESIS IN ARC ENVIRONMENTS 

Though studied for over a century, the origin of intermediate and silicic magmas remains 

enigmatic. Bowen (1928) demonstrated, through a series of experiments, that higher silica 

liquids could be formed by the crystallization and subsequent removal by settling of mineral 

phases. This led to the widely accepted theory of crystal fractionation, but also led to Bowen’s 

stance during “The Granite Controversy” that granites formed by the consolidation of evolved 

magmas, rather than by the “granitization” of pre-existing rock (Bowen 1948; Read 1948). This 

controversy led to the experimental work of Tuttle and Bowen (1958) that effectively ended the 

granite controversy, but also demonstrated the ability to generate evolved silicate liquids by the 

partial melting of granitoid crust in the presence of H2O.  

Since the work of Tuttle and Bowen (1958), many experimental studies have supported 

the origin of evolved magmas through the partial melting of hydrous crust (Beard and Lofgren 

1991; Rapp et al 1991; Coleman et al 1992; Atherton and Petford 1993; Tepper et al 1993; Rapp 

and Watson 1995; Lange and Carmichael 1996; Petford and Atherton 1996; Petford and 

Gallagher 2001; Annen et al 2006), however, the origin of intermediate to silicic magmas is still 
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much like the granite controversy. There is support for magma mixing being the dominant 

petrogenetic process (Anderson 1976; Reubi and Blundy 2009; Kent et al 2010; Kent 2013), 

partial melting of the mantle (Straub et al 2008), crystal fractionation (Brophy 1991; Bachmann 

and Bergantz 2008; MacDonald et al 2008; Dufek and Bachmann 2010). There are even 

disagreements on the origin of the same magma body, from crystal fractionation (Davies and 

Halliday 1998) to the re-melting of rhyolitic crust (Bindeman and Valley 2001). Though most 

would argue that all of these processes are happening somewhere, the main disagreements begin 

when one tries to determine the dominant process responsible for the generation of intermediate 

to silicic magmas. 

Magma mixing has been proposed as the dominant process by which intermediate 

magmas are generated (Anderson 1976; Eichelberger 1978; Reubi and Blundy 2009; Kent et al 

2010), and the advance of microanalytical techniques has furthered our ability to extract details 

on the conditions of magma chambers. Recent microanalytical evidence for magma mixing 

includes the observation of compositionally distinct melt inclusions in intermediate lavas (Reubi 

and Blundy 2009; Robertson et al 2013), chemical composition and crystal size distribution of 

phenocrysts in intermediate lavas (Churikova et al 2007; Salisbury et al 2008; Kent et al 2010; 

Neill et al 2015), and crystal residence times post-mixing by diffusion chronometry (Kent et al 

2010; Till et al 2015). Though there is growing evidence of the ubiquity of magma mixing, there 

exist thermal and compositional barriers to mixing that question the likelihood of magma mixing 

being the dominant process forming intermediate magmas. 

Chapter III of this dissertation examines a set of lavas erupted at Mutnovsky Volcano, 

Kamchatka, to investigate the petrogenesis of intermediate lavas by examining plagioclase 

phenocryst abundance, chemistry, and texture. The results of previous melt inclusion work 
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(Robertson et al 2013) and geochemical modeling (Simon et al 2014) at Mutnovsky are 

consistent with the formation of intermediate lavas by magma mixing. This chapter set out to see 

if the chemistry and texture of plagioclase was consistent with the prior melt inclusion and 

modeling work. Plagioclase is ideal in this regard as it can be found in lavas covering a wide 

range of silica content and, since plagioclase is a solid solution of anorthite (CaAl2Si2O8) and 

albite (NaAlSi3O8), its composition reflects the composition of the magma it crystallized from. 

The results of this study demonstrate that the basaltic andesites erupted at Mutnovsky all have 

two chemical and textural populations of plagioclase, a euhedral and anorthite-rich population, 

and a sieved and anorthite-poor population. The anorthite-rich population share similar 

compositions with the plagioclase observed in Mutnovsky basalts, whereas the sieved, anorthite-

poor population are compositionally similar to the plagioclase found in Mutnovsky dacites. We 

suggest that this is physical evidence of basalt and dacite mixing to form basaltic andesite, 

leading to the partial resorption of the dacitic plagioclase phenocrysts. 

Chapter IV is an effort to quantitatively model the mixing, or lack thereof, of magmas 

with different temperatures, viscosities, and compositions to address the significance of thermal 

and compositional barriers to magma mixing. This has been previously investigated by Sparks 

and Marshall (1986), however many key parameters of the model could not be easily 

constrained, such as the degree of crystallinity, viscosity, and heat capacity. With the recent 

advancements in computational thermodynamics and the development of the MELTS model 

(Ghiorso and Sack 1995), we now have a method by which we can calculate these parameters for 

any composition, temperature, and pressure, providing much more insight into the properties of 

these magmas. In addition to this advancement, recent experimental work has quantified the 

ability of magmas of different viscosities to mix (Laumonier et al 2014b; Laumonier et al 
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2014a). By combining MELTS modeled data with these experimental results, we demonstrate a 

robust way to constrain the ability of compositionally and thermally distinct magmas to mix. 

This can be applied to any system where mixing is proposed, provided that an estimate or 

measurement of the proposed end-members exists. 
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CHAPTER II 

MELT INCLUSION EVIDENCE FOR CO2-RICH MELTS BENEATH THE WESTERN 

BRANCH OF THE EAST AFRICAN RIFT: IMPLICATIONS FOR LONG-TERM 

STORAGE OF VOLATILES IN THE DEEP LITHOSPHERIC MANTLE 

 

2.1. ABSTRACT 

We present new major element, trace element, and volatile (H2O, CO2, S, F, and Cl) 

concentrations of olivine-hosted melt inclusions from five high-K, low-silica basanites from the 

Western Branch of the East African Rift System, and use these data to investigate the generation 

of H2O- and CO2-rich melts at up to ~150km depth. Measured H2O and CO2 concentrations 

reach ~2.5 wt% and ~1 wt%, respectively, representing some of the highest CO2 concentrations 

measured in a melt inclusion to date. These measurements represent direct evidence of the high 

CO2 and H2O concentrations required to generate high-K alkaline lavas, and the CO2 that has 

been previously inferred to be necessary for the low mantle potential temperatures in the area. 

Ratios of CO2/Nb, CO2/Ba, and CO2/Cl are used to estimate an initial melt CO2 concentration of 

5-12 wt%. The measured CO2 concentrations are consistent with CO2 solubilities determined by 

molecular dynamics calculations and high pressure experiments for melt generation at 4-6 GPa, 

the depth of melting suggested by previous studies in the area. These melt inclusions 

measurements represent direct evidence for the presence of H2O- and CO2-rich melts in the deep 

upper mantle that have been proposed based on experimental and seismic evidence. Primitive 

mantle normalized trace element patterns more closely resemble those found in subduction 
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settings rather than ocean island basalt, and ratios of slab fluid tracers such as Li/Dy and B/Be 

indicate that the measured volatile abundances may be related to Neoproterozoic subduction 

during the assembly of Gondwana, implying the storage of volatiles in the mantle by subduction-

related metasomatism. 

2.2. INTRODUCTION 

It has long been appreciated that the generation of intra-plate, silica-undersaturated 

alkaline magmas requires the involvement of a metasomatized mantle source rich in volatiles, 

specifically CO2 and H2O (Brey and Green 1975; Menzies and Murthy 1980; Spera 1981; Roden 

and Murthy 1985; Edgar 1987; Foley 1992; Green and Falloon 1998; Foley et al. 2009; Green 

2015). These mantle metasomes have the potential to be reservoirs of CO2 and H2O on short to 

long time-scales, and are generally only identifiable when thermobaric perturbations lead to 

melting and eruption of alkaline lavas. While it is understood that these rocks require a 

metasomatically modified mantle source, the mechanism and timing of metasomatism is often 

difficult to constrain, leaving questions of volatile storage timescales and enrichment 

mechanisms unanswered. Small fractions of carbonatitic to carbonate-bearing silicate liquid 

generated from low degree partial melts of the mantle at depths of ~100-300 km have been 

invoked as potential metasomatic agents (Mengel and Green 1989; Dasgupta and Hirschmann 

2006; Foley et al. 2009), as well as fluids and sediment melts from a subducting slab (Tsuno and 

Dasgupta 2012). However, it is clear that fluids introduced by subducting slabs are a potent 

metasomatic agent that can enrich the mantle with volatiles, provided the volatile phases are not 

all fluxed to the atmosphere during arc volcanism (Poli and Schmidt 2002; Thomsen and 

Schmidt 2008). 
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Data from natural systems demonstrate that subducted volatiles can be efficiently 

returned to the surface from the mantle via arc volcanism (Fischer 2008; Plank et al. 2009) and 

also that some proportion of the subducted volatiles may be stored in the mantle for hundreds of 

millions to possibly several billion years (Pettke et al. 2010; Rooney et al. 2014). Investigating 

the generation of alkaline intraplate lavas can provide insight into the storage of volatile elements 

in the mantle lithosphere and the stability of lithospheric metasomes over geologic time. There is 

a growing body of evidence for the long-term storage of elements in mantle metasomes that are 

later remobilized during melting by small thermobaric perturbations (Larsen et al. 2003; Pettke et 

al. 2010; Rooney et al; 2014). For example, Rooney et al. (2014) investigated the metasomatic 

origins of an isolated field of alkaline lavas in the middle of the Ethiopian large igneous 

province. These 24 Ma alkaline lavas formed by the melting of metasomatized mantle, stabilized 

at ~700 Ma, during Pan-African subduction. This is the only known alkaline exposure in the 

area, and has significant implications for the mantle beneath the entire East African Rift. 

The western branch of the East African Rift is ideally suited to further investigate the 

potential for long-term storage of volatiles in mantle metasomes owing to the abundant and 

accessible alkaline eruptions and the complex subduction history during Pan-African Orogeny. 

Previous studies in the Virunga volcanic field have investigated whole-rock major-element, 

trace-element, and isotopic characteristics of the volcanics (Vollmer and Norry 1983; Rogers 

1998; Platz et al. 2004; Chakrabarti et al. 2009; Muravyeva et al. 2014), however there exist few 

measurements of volatiles in the area (Head et al. 2011). Here we present melt inclusion data 

from a set of high-K basanites from the Bufumbira volcanic field in the Virunga area of the 

western branch of the East African Rift System that provide insight into the high volatile 
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contents in the initial melts, enrichments in fluid-mobile elements, and subduction-like trace-

element signatures. 

2.3. BACKGROUND GEOLOGY 

A comprehensive review of the geologic history of the East African Rift System is 

presented by Baker et al. (1972) and Chorowicz (2005), and is only briefly described here. The 

East African Rift System extends from the Afar triple junction to Mozambique and is broken into 

three main segments: (1) the main Ethiopian rift (MER), extending from the Afar triple junction 

south to northern Kenya (Corti 2009), (2) the eastern branch, which extends from southern 

Ethiopia into northern Tanzania, on the east side of the Tanzania Craton (Baker and Wohlenberg 

1971), and (3) the western branch, extending from northern Uganda through the 

Uganda/Congo/Rwanda tri-state region to Mozambique (Ebinger 1989; Pasteels et al. 1989; 

Kampunzu et al. 1998; Figure 2.1). Volcanic activity began in southern Ethiopia at ~45 Ma, 

while the more voluminous flood basalts and rift-related activity in northern Ethiopia began at 

~30-25 Ma (Berhe et al. 1987; George et al. 1998). The rifting propagated southward, bifurcating 

around the Tanzanian Craton, generating the eastern and western branches shown in Figure 2.1. 

Rifting in the western branch commenced at ~12 Ma (Ebinger et al. 1989; Pasteels et al. 

1989; Kampunzu et al. 1998; Roberts et al. 2012), although Roberts et al. (2012) suggested that 

rift initiation may have begun at ~25 Ma, contemporaneous with the initiation of the voluminous 

flood basalts in Ethiopia. The western branch is sub-divided into four distinct volcanic segments 

that together span ~1200km. These four segments, from north to south, are Toro-Ankole, 

Virunga, Kivu, and Rungwe (Figure 2.1). Volcanism began in Virunga at ~12 Ma, followed by 

Kivu and Rungwe at ~8-9 Ma and Toro-Ankole at ~1 Ma, where rifting is propagating northward 

(Ebinger 1989). The volcanic activity of the western branch is characterized by a compositional 
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range from carbonatitic and silica-undersaturated ultrapotassic lavas to tholeiitic lavas, with a 

systematic increase in SiO2 and decrease in K2O from Toro-Ankole to Kivu (Furman and 

Graham 1999; Tappe et al. 2003; Furman 2007; Eby et al. 2009). 

The Bufumbira volcanic field in southwestern Uganda (Figure 2.1, field area) is a section 

of the Virunga province and contains ~40 cinder cones first described by Holmes and Harwood 

(1937). Lavas in the area are predominantly high-K basanites, though latites and trachy-andesites 

also occur (Ferguson and Cundari 1975; Barifaijo et al. 2010). It has been suggested that these 

lavas were sourced from a phlogopite-bearing, carbonated mantle (Ferguson and Cundari 1975; 

Barifaijo et al. 2008; Rosenthal et al. 2009). It was from this area that lavas were sampled for this 

study to characterize the volatile abundance in olivine-hosted melt inclusions. 

2.4. ANALYTICAL METHODS 

2.4.1. Whole rock major- and trace-element analysis 

Twenty-four whole-rock samples were cut into slabs, trimmed to remove surface 

alteration, polished to remove saw marks, and ultrasonically cleaned in DI water to remove any 

residual debris from cutting and polishing. These slabs were subsequently crushed in a steel-jaw 

crusher and powdered in a rotary flat alumina ceramic-plate grinder. Sample powders were then 

prepared as fused lithium tetraborate glass disks for major and trace element analysis at 

Michigan State University following the procedure outlined by Deering et al. (2008). Briefly 

summarized here, major elements and the trace elements Zr, Sr, Rb, and Ni, were analyzed by 

using a Bruker S4 Pioneer 4 kW wavelength dispersive X-ray fluorescence spectrometer. The 

concentrations of other trace elements were obtained by using a Cetac LSX-200 laser and a 

Micromass Platform inductively coupled plasma mass spectrometer (LA-ICP-MS). Co-existing 

Fe-Ti oxides in polished thin sections were analyzed using a CAMECA SX 100 electron probe 
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micro analyzer (EPMA) in the Electron Microbeam Analysis Laboratory (EMAL) at the 

University of Michigan. The oxide minerals were analyzed by using an accelerating voltage of 

15 keV, a beam current of 15 nA, and a point-focused beam. Peak and background count times 

were 20 and 10 seconds, respectively, for all elements analyzed. 

2.4.2. Melt inclusion selection and preparation 

Olivine-hosted melt inclusions from five lava samples, chosen to cover the full range of 

observed whole-rock MgO content of the volcanic field, were isolated, inspected, and prepared 

for analysis. Samples were crushed and sieved, and olivine grains from the 850-425 μm size 

fraction were hand-picked under a binocular microscope. Individual olivine crystals that 

contained melt inclusions at least 30 μm from the edge of the olivine crystal, were free of 

visually discernable cracks, and had no other visually apparent defects were selected. All melt 

inclusions observed were crystallized, and were therefore rehomogenized by using a piston 

cylinder apparatus in Youxue Zhang’s laboratory at the University of Michigan to produce a 

glass for chemical characterization (see Hui et al. (2008) for calibration). To prevent inclusion 

decrepitation during rehomogenization, batches of 10-30 olivine grains from each whole-rock 

sample were rehomogenized together following the techniques outlined in Kent (2008). A 

graphite capsule was used to hold the olivine grains, a graphite furnace was used for heating, 

MgO spacers held the center of the capsule in the center of the furnace, and barium carbonate 

was the pressure medium. Samples were first held at 200 °C and ~500 MPa for two hours to 

allow for relaxation of the cell assembly. The pressure and temperature were then increased in 

less than one minute to 600 MPa and 1300 °C, respectively, and held at those conditions for 

eight minutes, then quenched to below 200 °C in less than 20 seconds. Eight-minute 

rehomogenization times were sufficient to produce a glass, and have been demonstrated to 
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minimize H2O loss from the inclusion (Danyushevsky et al. 2002; Rowe et al. 2007). Short 

rehomogenization times also minimize the possibility of melt-inclusion contamination by the 

graphite capsule as the solubility and diffusivity of C in olivine are very low, at 0.1-1 ppm and 

<10-12 cm2/s, respectively (Keppler et al. 2003; Shcheka et al. 2006; Tingle et al. 1988). 

Recovered olivine grains were polished with 600-grit SiC sandpaper until melt inclusions were 

exposed at the surface, and then the crystals were mounted in epoxy rounds for EPMA. Epoxy 

rounds were the polished with finer abrasives down to 0.1 µm alumina powder. 

2.4.3. Melt-inclusion and host-crystal major-element analysis 

Polished olivine grain mounts were carbon coated, and the major element composition of 

individual melt-inclusion glass was determined by using EPMA. An accelerating voltage of 15 

keV, beam current of 4 nA, and a 5 μm defocused beam were used. The major-element 

composition of each host-olivine crystal was quantified by using an accelerating voltage of 15 

keV, a beam current of 10 nA, and a focused beam. Counting times in the melt inclusions and 

olivine host for all elements were 20 s and background counting times were half of the peak 

counting time. Detection limits were typically in the range of 0.02-0.06 wt%. 

2.4.4. Measurements of CO2, H2O, F, S, and Cl in melt inclusions 

The abundances of CO2, H2O, F, S, and Cl were measured with a Cameca IMS 1280 

secondary ion mass spectrometer (SIMS) at the Northeast National Ion Microprobe Facility 

(NENIMF) at Woods Hole Oceanographic Institute. Before sample analysis, olivine grains were 

re-polished to remove any trace of the carbon coating. Olivine grains were then removed from 

the epoxy mount by using a pointed soldering iron, and the crystals were pressed into an indium 

mount for better vacuum during the analysis. The mounts were then re-polished, washed with 

isopropanol, and stored under vacuum prior to cold coating. The gold coated sample mount was 
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held in the machine airlock for ~12 h before analysis. The melt inclusions were analyzed by 

using a Cs+ primary beam with a 1.5 nA current and a 10 μm beam rastered over a 30x30 μm 

area with a 15x15 μm field aperture to eliminate any beam-edge effects. To eliminate any surface 

contamination, each spot analyzed was pre-sputtered for four minutes prior to analysis. 

Preparation, analytical conditions, and calibration for SIMS analysis followed techniques 

outlined by Shimizu et al. (2009). The raw data were monitored continually for fluctuation of 

signal intensity during acquisition (Figure 2.2). Sample signals that displayed random fluctuation 

had extra time appended to the analysis to see if the signal stabilized. Samples displaying 

decreasing signal intensity had either extra time appended to stabilize or were analyzed a second 

time, including pre-sputtering to clean the melt inclusion surface. Data from samples that failed 

to produce a stable signal are not reported. 

2.4.5. Trace-element analysis of melt inclusions and host-olivine 

Following SIMS analyses, the olivine grains were polished with 0.3 µm alumina powder 

and washed with ethanol to remove the gold coating and any remaining Cs implanted by the 

SIMS primary beam. Melt inclusions and their host olivine crystals were then analyzed by using 

a Photon Machines Analyte 193 ultra-short-pulse Excimer laser coupled to a Bruker 820-MS 

ICP-MS at Rensselaer Polytechnic Institute. A laser spot size of 65 μm, pulsed at 4 Hz was used 

to ablate large melt inclusions (>65 μm) and (separately) each olivine host crystal. A laser spot 

size of 30 μm was used for smaller inclusions (<65 μm). For all melt inclusions, the size of the 

laser spot was smaller than the diameter of the inclusion; hence, avoiding mixed inclusion – host 

analyses. Samples were sputtered for one second to ensure a clean surface before analysis. The 

He carrier gas background signal for each analysis was measured for 20 seconds, at which time 

the laser was turned on and each inclusion or host crystal was ablated for ~40 seconds. Data were 
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reduced by using the SILLS software program (Guillong et al. 2008). GSD-1G (Jochum et al. 

2005) was used as a standard and ML3B-G (Jochum et al. 2006) was used as a check standard. 

Both standards were re-analyzed after every 10 melt inclusion analyses. To correct for 

differences in ablation efficiency, 43Ca was used as an internal standard.  

2.4.6. Post-entrapment crystallization 

It is well known that the chemistry of a melt inclusion may be effected by post-

entrapment crystallization as well as reheating during laboratory homogenization (Danyushevsky 

et al. 2002). To correct for the compositional effects of post-entrapment crystallization and 

overheating of an inclusion – both assumed to be able to add or subtract oxide components such 

as MgO from the inclusion and into olivine or vice versa – we followed the corrections to 

elemental abundance method described in Sobolev and Shimizu (1993). Olivine was numerically 

added or subtracted incrementally, in 1 wt% increments, to or from an individual inclusion until 

each olivine-liquid (melt inclusion) pair had an Fe-Mg KD of 0.28. This Fe-Mg KD value is 

appropriate for the bulk composition of lava samples in the current study, based on Gee and Sack 

(1988) who demonstrated that the olivine-liquid KD value decreases with decreasing SiO2 and 

increasing alkali content of the silicate melt from the general Fe-Mg KD of 0.3 for basalt (Roeder 

and Emslie 1970). The two-oxide Fe-Ti geothermometer and oxybarometer of Ghiorso and 

Evans (2008) was used to estimate the oxidation state of the host rock of each inclusion. The 

Fe3+/FeT was then calculated for the melt in each inclusion by using the expression relating Fe3+ 

and fO2 of Kress and Carmichael (1991). The amount of olivine correction ranged from -26% to 

+17%, where negative values represent olivine subtracted from the inclusion necessitated by 

apparent overheating and assimilation of host olivine during rehomogenization, and positive 

numbers represent incomplete homogenization of sidewall crystallization.  
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2.5. RESULTS 

2.5.1. Petrography 

Petrographic observations indicate that all samples are dominated by olivine and 

clinopyroxene, except 08WR-14p, a phlogopite-clinopyroxenite, which is dominated by 

phlogopite and clinopyroxene. Phlogopite, nepheline, and leucite are minor phases in all 

samples. All samples are hypocrystalline, display varying degrees of vesicularity, and have <1 

modal % oxide phases. The exception here is sample 08WR-20 which contains ~10 modal % 

oxide phases. 

2.5.2. Major-elements of whole-rocks 

All whole-rock samples follow an alkaline trend on a total alkali-silica diagram (Le Bas 

et al. 1986; Figure 2.3). Of the 24 samples analyzed, there are 16 basanites, three basalts, two 

trachy-basalts, and three trachy-andesites (Table 2.1). The Mg# [(XMgO/(XMgO + XFeO) * 100)] of 

the basanites and basalts ranges from 49 to 78, where XFeO was calculated by using the 

relationship between Fe3+ and fO2 of Kress and Carmichael (1991) and fO2 was obtained by 

using the two-oxide Fe-Ti geothermometer and oxybarometer of Ghiorso and Evans (2008). All 

samples are shoshonitic (K2O > Na2O), and are consistent with bulk compositions of volcanic 

rocks reported in previous studies of the Virunga province (Holmes and Harwood 1937; Rogers 

et al. 1992; Rogers et al. 1998; Chakrabarti et al. 2009; Head et al. 2011; Muravyeva et al. 2014). 

Whole-rock MgO concentrations range from 1.75 wt% to 19.5 wt% (Table 2.1), and 

trends of major-element concentrations plotted vs. MgO are consistent with the fractionation of 

olivine and clinopyroxene (Figure 2.4, shaded fields). Samples with MgO >5 wt% display 

increasing Al2O3, K2O, Na2O, and P2O5 with decreasing MgO (Figure 2.4, shaded fields). 
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Samples with <5 wt% MgO display decreasing TiO2, FeO(T), and CaO with decreasing MgO 

(Figure 2.4, shaded fields).  

2.5.3. Major-elements of melt inclusions 

The MgO concentrations of olivine-hosted melt inclusions range from 1.6 to 14.2 wt% 

and the SiO2 concentrations of melt inclusions range from 35.9 to 51.3 wt% (Table 2.2; Figure 

2.4). Trends of major-element concentration vs. MgO indicate decreasing FeO(T), TiO2, and MnO 

and increasing SiO2, Al2O3, K2O, and P2O5 with decreasing MgO. Sample 08WR-20 exhibits 

large variations in TiO2, FeO(T), and MnO, decreasing strongly with decreasing MgO, which are 

discussed in section 5.1.  

2.5.4. Trace-elements of whole-rock and melt inclusions 

Selected whole-rock and melt inclusion trace-element data vs. MgO are presented in 

Figure 2.5. Whole-rock trace-element data are found in Table 2.3, melt-inclusion trace element 

data are in Table 2.4. Sample 08WR-20 exhibits high concentrations of V with increasing MgO, 

discussed in detail in section 5.1. Primitive-mantle normalized whole-rock and melt inclusion 

compositions have a steep heavy rare earth element slope (Figure 2.6). Potassium exhibits some 

depletion in all samples except 08WR-20. The concentration of Li is enriched in melt-inclusions 

from sample 08WR-20, whereas some melt-inclusions are enriched and some depleted in Li (i.e. 

samples 08WR-7, 08WR-13, and 08WR-16).  

2.5.5. Volatile concentrations of melt inclusions 

The CO2 concentrations of the melt inclusions range from ~25 to 9,950 ppm (Table 2.5). 

These measured CO2 concentrations are consistent with molecular dynamics simulations (Guillot 

and Sator 2011), high-pressure partial melting experiments (Dasgupta et al. 2007; 2013), and 

observations and extrapolation from mid-ocean-ridge basalts (MORBs) (Saal et al. 2002), as 



22 
 

discussed in section 5.2. They are also consistent with measured volatile contents of olivine-

hosted melt-inclusions from the nearby Nyamuragira volcano (Head et al. 2011) as well as the 

volatile concentrations measured in other intraplate basanites (Oppenheimer et al. 2011). 

Measured volatile contents do not display any correlations with major elements. 

The H2O concentrations for the melt-inclusions measured range from 0.3 to 2.5 wt% 

(Table 2.5). These concentrations are higher than the ranges reported for MORB and E-MORB, 

which are 0.1 - 0.3 wt% and 0.3 - 1.0 wt%, respectively (Dixon et al. 1995; Michael 1995; 

Danyushevsky et al. 2000). The concentration of H2O decreases with decreasing wt% MgO and 

does not correlate with the variability of other melt-inclusion major-elements. 

The S concentrations of melt-inclusions range from ~10 to 4,000 ppm (Table 2.5; Figures 

2.6a,b). The inclusion with the highest measured S concentration (i.e., 4,032 ppm) also contains 

the highest measured CO2 concentration (Figure 2.6b). The abundance of Cl ranges from ~90 to 

2,100 ppm. The concentration of Cl increases with increasing S and F (Figure 2.6a,c); however, 

there is no apparent correlation of Cl concentration with H2O or CO2 concentration. The 

concentration of F varies from ~800 to 4,000 ppm, and the two inclusions with the highest 

measured fluorine concentrations, 3,964 and 3,429 ppm, contain the highest measured H2O 

concentrations, 2.3 and 2.5 wt%, respectively, with a general trend of increasing F with 

increasing H2O (Figure 2.6d). There is no apparent correlation among S, Cl, or F with major-

element concentrations. 

2.6. DISCUSSION 

2.6.1. Comparison of whole-rock and melt inclusion compositions 

The MgO concentrations of olivine-hosted melt-inclusions span a smaller range (1.6 to 

14.2 wt%) than the MgO concentration of the whole rock (4.7 to 19.5 wt%). Most melt 
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inclusions have lower MgO contents than their respective whole rock, except for sample 08WR-

20 which falls in the middle of the range for melt inclusion MgO abundances (Figure 2.4). For 

samples 08WR-7, 08WR-8, 08WR-13, and 08WR-16, this is most likely due to olivine 

accumulation (cf. Rosenthal et al. 2009), but could also be due to under-correcting for the post-

entrapment crystallization. Compositional variability in melt inclusions from 08WR-20 is 

discussed below. The SiO2 concentrations of melt inclusions range from 35.9 to 51.3 wt%, 

mostly within the range of all lavas sampled (38.1 to 61.1 wt% SiO2). 

The melt inclusion abundances of major-elements plotted against MgO generally follow 

trends similar to those of the whole rocks (Figure 2.4); however, major element concentrations in 

the melt inclusions display slightly greater variability than the whole rocks. An exception is in 

the abundances of TiO2, FeO(T), and MnO for inclusions from sample 08WR-20, which do not 

follow the trends of other samples. Inclusions from sample 08WR-20 display unrealistic 

compositions, with elevated concentrations of FeO, MnO, TiO2, and V, and also SiO2 contents 

lower than the whole rock (Figures 2.4 and 2.5). We interpret this to result from co-entrapment 

of melt and an oxide phase, which is subsequently re-melted during the rehomogenization 

process. These phases are difficult to observe prior to homogenization owing to the opacity of 

the crystalline inclusions. The elevated concentrations of FeO, MnO, TiO2, and V are consistent 

with the trapping and subsequent melting of ilmenite or titanomagnetite, both of which are 

petrographically observed in abundance in sample 08WR-20. Further evidence for the 

assimilation of iron-titanium oxides into the inclusions of 08WR-20 is in the comparison of FeO, 

MnO, TiO, and V with SiO2, in which these elements increase with decreasing silica content, a 

trend not observed in melt inclusions from the other four samples. Though differences in these 
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elements are apparent, there is an overall agreement between melt inclusion and whole-rock 

compositions for the remaining major elements. 

On a primitive-mantle normalized trace-element plot (Figure 2.6), melt inclusion 

compositions are very similar to those of their respective whole-rock samples. Inclusions from 

08WR-8 are slightly enriched relative to whole rock, whereas samples 08WR-7, 08WR-13, 

08WR-16, and 08WR-20 have nearly the same concentrations as whole rock. All of the melt 

inclusions display greater depletions in K and Pb than whole-rock, but are otherwise in good 

agreement. Because of this similarity between whole-rock and melt-inclusion chemistry, and in 

order to simplify the rest of the discussion, any further mention of major and trace element 

compositions refers to both whole-rock and melt inclusion data except where specifically noted. 

2.6.2. Degassing trends and the determination of initial CO2 concentrations 

Previous studies have used CO2, H2O, Cl, Ce, Nb, and Ba concentrations in MORB 

glasses, melt-inclusions, and “popping rock” to define undegassed magmatic CO2/Cl, CO2/Nb, 

and H2O/Ce values (Michael 1995; Danyushevsky et al. 2000; Dixon and Clague 2001; Saal et 

al. 2002; Simons et al. 2002; Cartigny et al. 2008; Helo et al. 2011; Rosenthal et al. 2015). 

Rosenthal et al. (2015) determined peridotite/melt partition coefficients for C and compared their 

results, paired with the Nb and Ba from Workman and Hart (2005), with CO2/Nb and CO2/Ba 

values from other studies. Our melt-inclusion data exhibit a large range of CO2/Nb, CO2/Ba, and 

CO2/Cl values that all fall below the undegassed ratios (Saal et al. 2002; Cartigny et al. 2008; 

Rosenthal et al. 2015), suggesting that the loss of CO2 is the cause of CO2/Nb, CO2/Ba, and 

CO2/Cl variability (Figure 2.8a-c). Similarly, all melt-inclusion H2O/Ce ratios are below 

undegassed H2O/Ce values (Michael 1995; Saal et al. 2002)(Figure 2.8d). These trends, coupled 

with the relatively constant Nb, Ba, and Ce concentrations (Table 2.4), suggest that the 
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variability in CO2/Nb, CO2/Ba, and H2O/Ce ratios in melt-inclusions is controlled by the loss of 

the volatile species, and indicates significant degassing of the melt prior to being entrapped by 

olivine. In the case of H2O, diffusive loss of H+ during cooling and rehomogenization will lead to 

the loss of H2O with no loss of Ce, resulting in it being a combined H2O loss by degassing and 

diffusion trend. Using these trends, we can attempt to estimate the initial volatile concentration in 

the melt by projecting the trends to an undegassed mantle source. 

Using the calculated CO2/Cl and CO2/Nb values of Saal et al. (2002) as an estimate for 

the initial CO2 content of the melts generated in our study area, an initial melt CO2 concentration 

of 5-10 wt% is predicted based on the CO2/Cl regression and 3-5 wt% using the CO2/Nb 

regression (Figure 2.8a,c). Using the CO2/Nb values of Cartigny et al. (2008), an initial melt CO2 

concentration of 6-9 wt% is predicted (Figure 2.8a), more closely matching the values calculated 

by the CO2/Cl regression of Saal et al. (2002). With the CO2/Ba value of Rosenthal et al. (2015), 

an initial melt CO2 concentration of 12-24 wt% is predicted, much higher than the previous 

estimates (Figure 2.8b). Rosenthal et al. (2015) suggest that CO2/Ba ratios are more robust than 

CO2/Nb ratios for low degree partial melts as the compatibility of C and Ba are closer than C and 

Nb. However, our measured Ba concentrations in the melt inclusions are higher than the range 

recorded by the whole-rocks, whereas Nb is consistent with whole-rock (Figure 2.5), suggesting 

that we may be over-predicting CO2 with the CO2/Ba ratio due to excess Ba in the melt 

inclusions. These high CO2 concentration estimates are consistent with the results of partial 

melting experiments (Dasgupta et al. 2007), and can be used to place constraints on the depth of 

melt generation. 

Assuming these melts are CO2 saturated, a depth of melting can be estimated by using the 

solubility data for CO2 in silicate melt calculated by molecular dynamics (Guillot and Sator 
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2011). This corresponds to a CO2-saturated melt at pressures of 4-6 GPa (5-10 wt% CO2 in 

MORB). These estimated pressures of partial melting are consistent with studies that describe the 

depth of melting in the surrounding areas (Chakrabarti et al. 2009; Foley et al. 2009; Rosenthal et 

al. 2009), and observations from partial melting experiments of a carbonate-bearing lherzolite 

performed at 3GPa and 1300-1600°C that indicate that partial melts ranging from 35.3 to 45.7 

wt% SiO2 contain CO2 concentrations ranging from 11.1 to 5.1 wt%, respectively (Dasgupta et 

al. 2007). However, the whole-rock K2O/Na2O values of 1-2 may limit the depth of melting to 3 

GPa, the upper limit of amphibole stability (Foley et al. 1999; Rosenthal et al. 2009). This is also 

consistent with the work of Green (2015) where carbonate-bearing hydrous silicate melt can be 

generated in intraplate settings at ~3 GPa. 

With the exception of one datum at about 2.5 wt% H2O, a weak trend of increasing CO2 

with increasing H2O is apparent (Figure 2.9). While the spread of CO2 then seems ideally suited 

to investigating degassing paths, the loss of H2O from a melt inclusion by proton diffusion owing 

to slow cooling or reheating effectively eliminates any coherent degassing trend in a plot of H2O 

vs. CO2 (Lloyd et al. 2013). It is for this reason that volatile loss by degassing and diffusion is 

investigated by using the ratio of a volatile species with an incompatible element. 

2.6.3. Insights into the mantle source and the origin of the volatiles 

Comparisons of trace element compositions with various other source compositions 

provides insight into mantle source characteristics and can also elucidate the source of volatiles. 

The primitive mantle normalized trace-element compositions of melt inclusions exhibit elevated 

large-ion lithophile element (LILE) and light rare earth element (LREE) abundances relative to 

ocean-island basalts (OIB), but have similar abundances of middle rare earth elements (MREE) 

and heavy rare earth elements (HREE). Compared also to a global average of arc-related 
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basanites (Rafferty and Heming 1979; Baker et al 1981; Hirai and Arai 1986; Hole 1988; Davis 

et al 1993; El Azzouzi et al 1999; D’Orazio et al 2000; Beccaluva et al 2002; Gorring et al 2003; 

Duggen et al 2005; Espinoza et al 2005; Ichiyama and Ishiwatari 2005; Massaferro et al 2006; 

Perepelov et al 2006; Orozco-Esquivel et al 2007; Chang et al 2009; Espíndola et al 2010) and to 

the average composition of Mexican arc lamprophyres (Luhr 1997), the melt inclusions exhibit 

similar abundances for all elements except for the high field strength elements (HFSE) of the 

Mexican arc lamprophyres (Figure 2.10). The average Mexican arc lamprophyre composition is 

used for comparison owing to the similarities in the origin of lamprophyres and the generation of 

low-silica, high-potassium basanites (Foley 1988; Maria and Luhr 2008). The ratios of 

LREE/HREE, e.g., La/Yb, for the melt inclusions in the present study are similar to those of 

average arc lamprophyre and average arc basanite, and are much higher than those for OIB. The 

La/Yb ratios of the melt inclusions are also a factor of three lower than values from Toro-

Ankole, north of Virunga, where repeated freezing of upwelling induced melts is proposed as a 

the metasomatic agent (Tappe et al. 2003; Rosenthal et al. 2009). This similarity to arc-related 

rocks may indicate a relationship between the mantle in arc settings and mantle beneath the East 

African Rift, which prior to the Pan-African Orogeny was itself along a convergent margin. 

Ratios of LILE/HREE, such as Ba/Yb, for the melt inclusions are also similar to arc-related 

basanites and much higher than OIB, suggesting that a fluid component may be responsible for 

the observed trends, as is commonly invoked for arc settings (Lee et al. 2005; Pearce and Stern 

2006). 

High field strength element ratios are dissimilar to the observed trends in LILE and 

LREE. The Nb/Ta values of the melt inclusions more closely match OIB and average arc 

basanite than Mexican arc lamprophyre. The discrepancy in Nb and Ta values between average 
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arc basanite and average arc lamprophyre could be controlled by rutile stability in subducting 

slab sediments, where rutile effectively retains Nb and Ta. The elevated Nb and Ta 

concentrations observed in average arc basanite are consistent with the transfer of HFSE into the 

mantle via aqueous fluids during subduction (Ryerson and Watson 1987; Foley et al. 2000), or 

with the presence of ilmenite as a Ti-bearing phase instead of rutile (Foley et al. 1999; Tappe et 

al. 2008). This finding is consistent with field evidence of HFSE mobility during the blueschist 

to eclogite transition preserved in exhumed terranes (Gao et al. 2007). Experimental fluid-melt 

partitioning data from 4-6 GPa and 700-1200 °C corroborate the transfer of HFSE into a fluid-

phase during subduction-dehydration (Kessel et al. 2005). It is worth noting that arc basanites 

globally appear not to show the typical arc-related HFSE depletion (Ryerson and Watson 1987), 

suggesting that the absence of a HFSE depletion in our melt inclusion data is not inconsistent 

with being derived from a subduction-modified mantle.  

The primitive-mantle normalized melt inclusion data are also very similar to data 

generated from partial melting experiments wherein hornblendite, clinopyroxene-hornblendite, 

and hornblendite peridotite sandwiches were melted at 1175-1350°C and 1.5GPa (Pilet et al. 

2008). These experiments were designed to investigate the products of partially melting a veined, 

metasomatized mantle, and the similarity of the East African rift data reported here is consistent 

with the partial melting of a metasomatized mantle that would likely contain phlogopite as well 

as amphibole at the estimated depth of melting (i.e., >100km; Rosenthal et al. 2009). Though the 

mantle in this area contains phlogopite and amphibole, very similar alkaline lavas generated from 

the partial melt of a metasomatized amphibole-bearing mantle have erupted in the Ethiopian 

large igneous province (ELIP)(Rooney et al. 2014). Hafnium isotope evidence from these 

samples suggests that the metasome responsible for the alkalic lavas in the ELIP dates to ~700 
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Ma, during which fluids and fluid mobile elements were transferred to the mantle during the Pan-

African Orogeny (Rooney et al. 2014). Despite the geographic distance between the ELIP the 

field area of the current study (Figure 2.1), the Pan-African orogenic event continued through the 

area, propagated further south (Meert and van der Voo 1997), and plausibly metasomatized the 

mantle beneath the western branch of the East Africa rift system (see below).  

In an effort to determine if the volatile phases present in the sampled lavas are consistent 

with their introduction during subduction at ~700 Ma, various slab fluid tracers were examined 

owing to the chemical similarity between our samples and arc related rocks (Figure 2.10). Ratios 

of Li/Yb, a proxy to trace the presence of a slab fluid (Ryan and Langmuir 1987), range from 2 

to 32, extending beyond the values for MORB and ocean-island basalt (OIB), which are 2 and 4, 

respectively (Sun and McDonough 1989). The ratios of B/Be, also a slab fluid tracer (Bebout et 

al. 1993; Edwards et al. 1993; Ryan and Langmuir 1993), range from 1 to 15, extending beyond 

the field for MORB and OIB, which range from 0 to 5. Plots of melt inclusion Li/Yb vs. Dy/Yb, 

and Li/Yb vs. B/Be form an array trending towards global subducted sediment (GLOSS-II; Plank 

2014), potentially representing a slab-fluid component or a recycled sediment component (Figure 

2.11).  

If the volatile phases and the mantle metasomatism are consistent with a subduction 

origin, then this fluid addition and alteration must have remained in the sub-continental 

lithospheric mantle for 600-700 million years following the closure of the Mozambique Ocean 

during the Pan-African Orogeny. This long-term stability of mantle metasomes is consistent with 

rift-related lavas in Ethiopia (Rooney et al. 2014), and the Rocky Mountains region of the U.S., 

where Pettke et al. (2010) used Pb isotope abundances in fluid inclusions to conclude that 

magmas erupted during the Eocene contain a component of Proterozoic lithospheric mantle that 
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was metasomatized at ~1.8 Ga. However, with the data presented here we cannot rule out old, 

recycled sediments as the source of the observed geochemical trends, suggesting that old 

subducted slabs may also be a large volatile reservoir in the mantle. 

2.7. CONCLUSIONS 

Measured major-element, trace-element, and volatile (H2O, CO2, S, F, and Cl) 

concentrations of olivine-hosted melt inclusions sampled from high-K basanites erupted in the 

Virunga volcanic field of the western branch of the East African Rift System are consistent with 

partial melting at depths of at least 100 km in the presence of volatiles. Concentrations of CO2 in 

melt inclusions are as high as ~ 1 wt. %, and CO2/Nb and CO2/Cl ratios indicate that initial CO2 

concentrations of the magma may have been as much 10 wt% CO2, which is consistent with CO2 

solubility at the estimated depths of melting. Host-lava and melt-inclusion data are consistent 

with the partial melting of a metasomatized mantle source. Trace element ratios are consistent 

with mantle metasomatism by subducting slab-derived fluids, which is consistent with Hf isotope 

data from other portions of the East African Rift. The combination of high volatile contents and 

subduction-related signatures suggest that the volatiles measured in the melt inclusions may have 

been introduced to the mantle during Pan-African subduction at ~700-600Ma and were stored in 

the lithosphere until remobilization during rifting in the Neogene. 
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Figure 2.1 Colored digital elevation model of East Africa with the different rift sections shaded, 
and the Toro-Ankole, Virunga, Kivu, and Rungwe volcanic fields labeled. The small black box 
in the Western Branch outlines the sample collection site. Basemap from NASA space shuttle 
radar topography. Inset highlights the Virunga volcanic field and field area, the Bufumbira 
Volcanic Field. Virunga map from GeoMapApp (www.geomapapp.org) 
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Figure 2.2 Carbon signal intensity vs. melt inclusion depth is plotted for all SIMS analyses. The 
signal stability for each transient analysis indicates that surface carbon does not contribute to the 
data. The first 360 seconds of each analysis (first shaded field) are blank as this is a peak scan 
and sputtering to remove any surface contaminants. The second shaded field is the result of a 
second run, including sputtering, for two analyses that had extra time appended, as discussed in 
the text. Gray lines are examples of samples that were excluded due to signal instability 
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Figure 2.3 Total alkali vs. silica plots of olivine-hosted melt inclusions and their host rocks. Melt 
inclusions were analyzed from three basanites (08WR-8, 08WR-13, 08WR-16), one basalt 
(08WR-7), and one trachybasalt (08WR-20). Bufumbira data from Holmes and Harwood (1937) 
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Figure 2.4 Major-element vs MgO plots for melt inclusions and whole rock samples. The shaded 
field represents the total variability of the whole rock samples 
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Figure 2.5 Trace-element vs MgO plots for melt inclusions and whole rock samples. The shaded 
field represents the total variability of the whole rock samples 
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Figure 2.6 Primitive-mantle normalized (Sun and McDonough 1989) multi-element diagrams 
for melt inclusions and whole rocks. Gray lines represent melt inclusion data, solid black lines 
represent whole rock 
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Figure 2.7 Volatile comparison plots. a) S vs Cl. There is a general trend of decreasing S with 
decreasing Cl. b) S vs. CO2. Two of the high CO2 inclusions also record the highest S 
concentrations. Most of the range of S is expressed at low CO2 concentrations. c) F vs. Cl. There 
is a general trend of decreasing F with decreasing Cl. d) F vs. H2O. The two inclusions with the 
highest H2O also record the highest F concentrations 
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Figure 2.8 CO2 is compared to Nb, Ba, and Cl, and H2O is compared to Ce to define degassing 
trends and to quantify initial volatile concentrations in the melt. a) CO2/Nb vs CO2. The lines of 
constant CO2/Nb represent mantle ratios and associated errors, calculated by Saal et al. (2002) 
and Cartigny et al. (2008) as 239 ± 46 and 537 ± 112, respectively. As CO2 and Nb are expected 
to behave similarly during partial melting, their ratio should be unaffected by the degree of 
partial melting. b) CO2/Ba vs CO2. Similar to panel a, however Ba has been demonstrated to 
behave more like C during partial melting (Rosenthal et al. 2015). The line of constant CO2/Ba is 
the mantle value proposed by Rosenthal et al (2015) of 133 ± 44. c) CO2/Cl vs. CO2. The line of 
constant CO2/Cl and associated errors, 75 ± 20, represent undegassed mantle from the data of 
Saal et al. (2002). d) H2O/Ce vs H2O. The line of constant H2O/Ce, 180 ± 30, represents the 
manle H2O/Ce value of Michael (1995). As H2O and Ce are expected to behave similarly during 
partial melting, following a degassing trend back to the mantle ratio provides an estimate of the 
pre-degassed H2O content of the partial melt 
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Figure 2.9 CO2 vs. H2O plot for all melt inclusions analyzed. Isobars were calculated by using 
the solubility model of Papale et al. (2006) 
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Figure 2.10 Primitive-mantle normalized (Sun and McDonough 1989) multi-element plot 
comparing analyzed melt inclusion data (shaded field) with ocean island basalt (OIB; Sun and 
McDonough 1989), similar Toro-Ankole rocks from Tappe et al. (2003), average arc basanite, 
and average Mexican arc lamprophyre (Luhr 1997). Average arc basanite was calculated from 
GEOROC database (http://georoc.mpch-mainz.gwdg.de/georoc/) and is defined as ±1σ of the 
average of 128 analyses from 17 studies (Rafferty and Heming 1979; Baker et al 1981; Hirai and 
Arai 1986; Hole 1988; Davis et al 1993; El Azzouzi et al 1999; D’Orazio et al 2000; Beccaluva 
et al 2002; Gorring et al 2003; Duggen et al 2005; Espinoza et al 2005; Ichiyama and Ishiwatari 
2005; Massaferro et al 2006; Perepelov et al 2006; Orozco-Esquivel et al 2007; Chang et al 
2009; Espíndola et al 2010). The melt inclusion data are more enriched in the large ion lithophile 
elements (LILE) than OIB and overlap with the LILE concentrations of average arc basanite. 
Some melt inclusions show the Ti depletion commonly associated with arc magmatism, but lack 
similar depletions in Nb and Ta. Melt inclusion data also show an enrichment in Li relative to 
OIB, commonly associated with fluids driven off of a subducting slab 
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Figure 2.11 Li/Yb vs. Dy/Yb, and Li/Yb vs. B/Be for melt inclusions. Li and Dy have similar 
compatibilities in the mantle and are expected to behave the same during partial melting and, due 
to the similar concentrations of Li and Dy expected in mantle peridotite, the Li/Yb vs. Dy/Yb 
values should follow a 1:1 line. As such, should edge-effects play any role in the trace element 
concetrations it is expected that Li and Dy would be concentrated equally. Elevated Li/Yb is 
expected to be a result of fluid migration off a subducting slab as Li is highly fluid mobile and 
Dy is not. Measured inclusions trend away from MORB and OIB towards high values of Li/Yb, 
approaching the GLOSS-II composition. B/Be is also used as a slab fluid tracer as boron 
volatilizes readily. Measured inclusions trend away from the MORB and OIB field towards the 
GLOSS-II composition (B/Be = 34±4). GLOSS-II data from Plank (2014). MORB and OIB from 
Sun and McDonough (1989) 
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Table 2.1 Whole-rock major-element compositions (wt%) 
Sample SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 Total 

08WR-1 44.41 3.06 11.83 12.24 0.18 10.52 10.30 2.21 3.11 0.55 98.41 

08WR-2 42.05 2.73 8.23 11.80 0.17 17.70 11.15 1.74 2.48 0.43 98.48 

08WR-3 43.16 2.52 9.89 12.54 0.18 16.21 9.72 1.99 2.21 0.41 98.83 

08WR-4 44.57 3.60 12.55 13.28 0.19 8.84 10.12 1.96 3.02 0.51 98.64 

08WR-5 43.08 2.64 10.07 12.57 0.18 15.38 9.99 1.97 2.21 0.42 98.51 

08WR-6 44.57 3.66 12.93 13.21 0.19 8.11 9.84 2.07 3.27 0.53 98.38 

08WR-7 44.89 3.06 11.43 12.52 0.18 11.79 9.68 1.92 2.88 0.48 98.83 

08WR-8 43.13 2.16 8.91 12.09 0.17 19.28 9.11 1.61 1.94 0.36 98.76 

08WR-9 44.84 2.96 11.17 12.42 0.18 10.46 11.00 2.02 2.82 0.50 98.37 

08WR-10 41.75 3.57 11.75 12.78 0.22 9.13 11.40 2.99 3.71 0.80 98.10 

08WR-11 43.29 3.17 9.68 12.21 0.18 11.29 13.87 1.71 2.77 0.46 98.63 

08WR-12 43.80 2.79 11.50 11.58 0.19 11.56 9.96 3.01 3.16 0.64 98.19 

08WR-13 42.84 2.94 11.40 11.86 0.19 11.67 9.97 3.00 3.28 0.69 97.84 

08WR-14 43.18 2.92 11.46 11.89 0.20 11.75 9.85 3.07 3.38 0.70 98.40 

08WR-14p 37.19 6.33 9.71 17.51 0.14 11.78 11.24 0.62 2.98 0.07 97.57 

08WR-15 43.79 2.51 10.78 11.73 0.18 14.04 9.49 2.50 2.77 0.56 98.35 

08WR-16 43.85 2.54 10.83 11.61 0.18 13.53 9.61 2.54 2.72 0.56 97.97 

08WR-18 45.36 2.84 11.85 11.54 0.17 9.77 11.17 2.03 2.74 0.50 97.97 

08WR-19 54.83 1.57 17.83 7.41 0.16 1.71 4.48 4.06 5.35 0.55 97.95 

08WR-20 47.86 3.14 16.21 10.78 0.15 4.57 7.93 2.54 3.89 0.57 97.64 

08WR-21 54.89 2.32 14.75 8.82 0.13 3.65 5.47 2.94 4.46 0.50 97.93 

08WR-22 59.40 1.69 14.86 6.66 0.09 2.40 3.87 3.01 4.90 0.41 97.29 
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Table 2.2 Melt-inclusion major element data  

Melt 
Inclusion SiO2 TiO2 Al2O3 FeOT MnO MgO CaO Na2O K2O P2O5 

Original 
Total 

P.E.C. 
Correction 

08WR-7-10 44.29 3.86 10.98 10.78 0.24 9.41 15.80 2.03 2.06 0.53 97.65  -3 

08WR-7-11 43.76 4.85 12.61 9.88 0.14 7.37 14.34 2.72 3.76 0.58 95.93  5 

08WR-7-15 42.74 4.26 9.48 17.14 0.21 14.20 7.45 2.32 1.58 0.52 97.59  14 

08WR-7-16 40.23 4.65 12.66 9.57 0.12 9.09 16.51 2.45 4.11 0.64 93.76  7 

08WR-7-17 45.63 4.21 16.24 9.03 0.05 5.15 11.87 2.87 4.17 0.74 98.21  -15 

08WR-7-18 43.95 4.40 14.79 8.41 0.07 7.80 13.59 2.67 3.69 0.64 97.66  -6 

08WR-7-2 41.56 4.26 14.48 8.28 0.11 7.44 16.72 2.96 3.65 0.52 96.80  -7 

08WR-7-3 43.24 3.15 11.77 15.52 0.27 11.84 9.27 1.79 2.60 0.62 98.28  14 

08WR-7-4 38.72 4.44 10.88 9.77 0.17 10.07 17.89 3.33 3.69 1.03 96.86  4 

08WR-7-5a 44.52 3.78 11.19 13.05 0.24 11.75 10.20 1.93 2.69 0.65 97.57  1 

08WR-7-5b 45.68 4.11 12.03 7.74 0.13 6.56 15.40 2.40 4.88 1.09 97.33  1 

08WR-7-7a 39.34 5.35 10.79 8.90 0.17 9.31 18.68 2.84 3.93 0.67 94.56  11 

08WR-7-7b 39.84 5.72 11.27 6.89 0.16 7.25 21.10 2.86 4.22 0.68 94.46  4 

08WR-7-8 42.67 4.87 11.38 8.50 0.17 8.63 16.10 2.91 4.09 0.70 96.63  6 

08WR-8-1 43.76 3.90 10.41 10.11 0.17 9.04 17.59 1.44 3.20 0.41 97.56  3 

08WR-8-10a 42.28 4.19 10.48 11.39 0.17 10.38 16.56 1.67 2.41 0.54 97.07  7 

08WR-8-10b 44.33 3.19 12.61 11.90 0.19 10.81 10.39 3.05 2.91 0.62 98.29  0 

08WR-8-11 44.69 3.79 11.96 9.96 0.16 9.29 14.84 2.88 1.86 0.51 97.65  -4 

08WR-8-13b 48.35 1.21 15.06 16.51 0.23 4.08 5.67 2.98 5.09 0.86 97.72  3 

08WR-8-14 46.60 2.92 14.18 10.49 0.20 8.19 10.31 2.88 3.57 0.71 97.29  10 

08WR-8-19 44.05 3.53 10.17 10.49 0.16 9.53 18.01 2.01 1.62 0.43 96.82  0 

08WR-8-21a 45.38 3.60 12.04 10.25 0.22 9.38 14.99 1.70 1.95 0.57 96.99  7 

08WR-8-21b 44.52 4.09 12.02 9.00 0.14 8.26 18.11 1.72 1.65 0.55 96.72  7 

08WR-8-2a 41.38 4.25 12.76 9.34 0.16 8.11 18.30 2.76 2.44 0.58 95.34  7 

08WR-8-2b 42.59 4.24 13.75 10.47 0.19 9.39 15.18 1.89 1.92 0.50 95.18  11 

08WR-8-2c 41.12 4.70 13.10 9.68 0.15 8.62 16.71 2.28 3.13 0.65 96.04  11 

08WR-8-3b 42.87 3.86 13.55 9.49 0.16 8.63 15.41 2.09 3.29 0.64 93.73  -1 

08WR-8-4 41.86 4.22 10.87 10.74 0.16 9.52 16.35 2.34 3.52 0.61 96.29  12 

08WR-8-7 41.90 3.92 12.06 9.96 0.14 9.57 17.21 2.45 2.46 0.46 95.31  7 

08WR-8-9a 41.89 4.09 11.39 9.93 0.15 8.90 17.86 2.72 2.25 0.66 98.99  -12 

08WR-8-9b 42.06 4.21 9.33 11.06 0.16 10.13 19.36 1.76 1.55 0.54 95.95  13 

08WR-8-9c 46.18 3.24 11.11 9.05 0.14 8.22 17.49 2.39 1.56 0.57 97.80  -4 

08WR-8-9d 46.36 3.25 11.40 9.00 0.14 8.24 16.55 3.22 1.46 0.38 98.12  0 

08WR-13-10 46.36 3.11 13.25 10.15 0.20 9.51 10.02 5.22 1.32 0.77 97.94  11 

08WR-13-11a 41.44 3.77 12.80 11.42 0.15 9.62 16.13 2.23 3.87 0.78 95.00  11 

08WR-13-2a 45.05 3.13 11.82 11.86 0.18 10.34 13.59 3.55 1.89 0.73 96.80  8 

08WR-13-2c 41.80 2.64 11.45 10.15 0.18 8.33 17.48 2.68 3.44 0.78 95.72  11 

08WR-13-3 43.39 3.37 9.97 15.71 0.19 14.09 14.05 2.76 1.55 0.64 97.89  9 

08WR-13-4 45.50 3.24 12.23 10.20 0.15 9.02 16.35 2.41 1.49 0.48 96.98  -5 

08WR-13-5a 41.56 3.70 11.01 10.49 0.13 9.46 18.08 2.86 3.27 0.74 96.06  1 

08WR-13-6 42.21 5.22 12.20 10.20 0.23 8.65 14.92 5.73 0.62 0.65 97.51  0 

08WR-16-1 43.56 3.33 11.94 12.86 0.26 12.29 9.18 2.95 2.95 0.70 97.79  7 

08WR-16-10 44.36 3.63 10.55 9.59 0.13 8.58 17.69 1.87 2.99 0.62 97.74  -1 

08WR-16-11a 43.83 3.71 10.70 11.20 0.19 9.83 16.22 2.36 1.52 0.46 97.54  4 

08WR-16-11b 41.68 4.09 9.64 12.05 0.19 10.77 16.60 1.96 2.43 0.64 96.58  12 

08WR-16-12 44.53 3.24 12.50 11.19 0.22 10.32 10.62 2.94 3.77 0.67 98.37  -2 

Elements in wt% post PEC-correction 
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Table 2.2 Melt-inclusion major element data (cont’d) 

Melt Inclusion SiO2 TiO2 Al2O3 FeOT MnO MgO CaO Na2O K2O P2O5 
Original 

Total 
P.E.C. 
Correction 

08WR-16-13 44.71 3.52 10.38 9.77 0.19 9.37 16.83 2.23 2.35 0.66 96.40  2 

08WR-16-15 44.11 4.09 11.14 9.84 0.18 8.82 15.98 2.57 2.66 0.63 96.77  -3 

08WR-16-2a 43.33 3.41 10.19 11.05 0.19 9.49 17.04 1.02 3.64 0.61 96.91  -4 

08WR-16-2b 42.48 3.46 10.34 15.25 0.28 13.98 8.88 2.94 1.77 0.70 97.85  10 

08WR-16-3 44.79 2.98 12.25 10.89 0.15 10.86 11.32 2.76 3.35 0.64 97.40  0 

08WR-16-5a 43.82 3.33 11.33 10.90 0.19 10.96 13.40 2.99 2.21 0.85 95.76  3 

08WR-16-5b 44.42 3.59 10.85 10.18 0.20 9.89 16.00 2.60 1.76 0.50 96.54  4 

08WR-16-5c 43.48 4.37 12.52 8.78 0.15 8.46 15.13 2.37 3.76 0.98 96.40  4 

08WR-16-5d 44.86 3.69 10.62 8.68 0.19 8.60 18.32 1.66 2.74 0.64 97.10  6 

08WR-16-6 44.65 3.65 13.50 9.34 0.15 8.30 12.85 2.50 4.23 0.86 95.66  10 

08WR-16-7 44.84 2.86 12.85 11.93 0.19 10.87 10.09 3.54 2.31 0.62 96.81  17 

08WR-16-8 42.88 3.83 12.22 9.46 0.16 8.43 15.21 2.59 4.51 0.74 96.22  8 

08WR-20-10a 49.16 2.92 13.84 15.21 0.25 3.95 6.92 2.70 4.25 0.81 98.35  -5 

08WR-20-12a 42.14 6.26 12.51 21.22 0.35 5.75 5.89 1.91 3.22 0.71 97.79  -7 

08WR-20-12b 45.05 4.20 13.39 17.92 0.28 4.79 7.64 2.62 3.53 0.56 97.84  -4 

08WR-20-13a 46.08 4.19 14.89 15.65 0.23 4.16 6.84 3.30 3.88 0.71 98.67  -15 

08WR-20-13b 49.99 3.23 15.50 12.88 0.24 3.28 6.19 2.69 5.13 0.79 99.18  -21 

08WR-20-13c 46.11 4.16 15.23 15.45 0.25 3.90 7.55 2.97 3.64 0.66 98.38  -16 

08WR-20-14b 44.11 2.98 15.71 18.59 0.26 4.61 6.61 2.89 3.50 0.66 98.22  -11 

08WR-20-14c 47.57 3.12 13.36 18.55 0.34 4.65 4.97 2.37 4.27 0.73 98.22  -7 

08WR-20-14d 50.20 0.83 19.81 11.21 0.19 2.59 8.26 3.01 3.20 0.54 99.18  -17 

08WR-20-14e 42.37 6.36 11.05 23.62 0.38 6.16 4.41 1.58 3.40 0.66 96.69  -2 

08WR-20-15c 50.44 1.89 13.93 15.46 0.23 4.02 5.77 2.97 4.55 0.72 98.90  0 

08WR-20-15d 42.29 6.30 12.66 19.80 0.29 5.29 6.47 2.18 4.05 0.67 98.09  -2 

08WR-20-15e 50.24 2.92 15.66 12.15 0.21 2.90 6.68 3.32 5.12 0.78 98.96  -14 

08WR-20-15f 38.96 7.23 10.59 25.68 0.37 6.78 5.48 1.69 2.59 0.72 99.01  6 

08WR-20-15g 49.29 2.87 15.47 14.20 0.21 3.46 6.16 2.42 5.19 0.69 98.73  -17 

08WR-20-16a 48.65 2.87 14.01 15.59 0.27 3.99 6.91 2.56 4.40 0.76 98.66  0 

08WR-20-16b 35.86 8.84 9.98 28.08 0.44 7.68 5.46 1.27 1.94 0.53 99.06  6 

08WR-20-17a 45.98 3.72 14.30 16.33 0.26 4.25 7.41 3.12 3.77 0.73 98.71  -14 

08WR-20-18 35.90 8.30 10.51 28.93 0.39 7.54 3.04 2.02 2.92 0.43 100.09  -3 

08WR-20-19 48.69 3.28 14.15 16.80 0.29 4.16 4.93 2.20 4.87 0.70 98.43  -13 

08WR-20-1a 50.36 3.79 15.96 10.94 0.18 2.57 7.70 2.50 5.20 0.84 97.29  -23 

08WR-20-1b 51.27 3.69 16.43 10.03 0.19 2.30 7.73 2.65 4.97 0.77 98.47  -25 

08WR-20-2 49.87 3.20 15.89 11.34 0.21 2.65 7.49 3.37 4.95 0.81 99.12  -19 

08WR-20-20 51.11 1.51 21.35 8.01 0.14 1.60 9.13 3.53 3.50 0.46 98.80  -26 

08WR-20-21a 49.16 4.21 16.70 10.11 0.16 3.52 6.58 3.35 5.32 0.83 98.72  -15 

08WR-20-21b 50.18 4.46 17.54 6.00 0.10 1.75 10.59 3.33 5.33 0.64 99.10  -23 

08WR-20-22a 38.49 6.24 11.06 26.00 0.30 6.89 4.21 2.79 3.49 0.52 98.90  -7 

08WR-20-22b 49.39 2.67 14.38 14.47 0.26 3.70 7.00 3.06 4.29 0.77 98.64  -10 

08WR-20-23a 43.55 4.94 12.02 17.27 0.24 4.57 14.42 1.31 1.31 0.34 97.80  -13 

08WR-20-23b 47.12 4.51 14.51 15.04 0.26 3.96 6.84 3.07 3.96 0.70 98.55  -9 

08WR-20-24a 49.62 2.52 14.73 13.89 0.26 3.77 6.95 2.99 4.54 0.72 98.93  -8 

08WR-20-24b 50.09 2.55 15.27 12.82 0.20 3.23 7.28 3.13 4.67 0.75 98.99  -12 

08WR-20-25 39.10 4.16 9.72 23.80 0.28 7.01 12.16 1.80 1.66 0.44 97.73  8 

Elements in wt% post PEC-correction 
P.E.C. Correction in %, where positive numbers represent olivine addition and negative numbers represent olivine subtraction 
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Table 2.2 Melt-inclusion major element data (cont’d)  

Melt Inclusion SiO2 TiO2 Al2O3 FeOT MnO MgO CaO Na2O K2O P2O5 
Original 

Total 
P.E.C. 
Correction 

08WR-20-3a 42.83 5.46 13.24 19.76 0.29 5.17 6.08 2.65 3.92 0.58 98.64  -4 

08WR-20-3b 41.00 6.09 13.86 20.23 0.24 5.17 5.50 2.96 4.22 0.66 98.67  -11 

08WR-20-4a 47.31 3.16 16.15 11.81 0.20 4.91 8.99 2.79 4.11 0.56 97.49  -5 

08WR-20-4b 46.40 3.42 15.63 12.61 0.21 5.22 9.52 2.65 3.74 0.60 98.22  -8 

08WR-20-5 47.73 4.11 15.86 10.37 0.16 2.77 12.11 2.78 3.51 0.58 98.26  -24 

08WR-20-6 49.37 2.66 14.48 14.24 0.26 3.76 6.99 3.02 4.43 0.73 98.58  -10 

08WR-20-7a 47.70 2.94 13.72 17.57 0.40 4.70 6.82 1.85 3.23 0.79 96.71  -13 

08WR-20-7b 46.46 3.54 12.85 18.05 0.33 4.94 7.08 2.49 3.65 0.64 97.97  1 

08WR-20-8a 48.23 3.10 13.88 16.08 0.27 4.11 7.16 2.50 3.88 0.73 98.99  -10 

08WR-20-9 48.64 3.02 14.27 15.11 0.25 3.65 7.00 2.96 4.33 0.73 98.70  -11 

Elements in wt% post PEC-correction 
P.E.C. Correction in %, where positive numbers represent olivine addition and negative numbers represent olivine subtraction 
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Table 2.5 Melt-inclusion volatile concentrations 

Melt Inclusion CO2 H2O F S Cl 

08WR-7-10 - 1.04 1590 455 621 

08WR-7-15 106 1.26 2281 516 839 

08WR-7-17 810 0.72 1550 1862 1022 

08WR-7-18 882 0.80 2101 2000 1072 

08WR-7-4 6056 1.15 2423 3333 2133 

08WR-7-5a 2409 1.26 1910 1668 321 

08WR-7-5b 791 1.58 1635 1877 1179 

08WR-8-10b 206 0.42 1639 1079 969 

08WR-8-15 181 0.77 2691 1351 1351 

08WR-13-3 472 0.63 1720 401 554 

08WR-13-5a 9953 1.55 2402 4032 1325 

08WR-16-1 75 0.75 2333 1352 1683 

08WR-16-12 300 1.13 1826 1139 1214 

08WR-16-3 364 1.18 1792 749 1021 

08WR-16-4c 505 1.17 1670 778 241 

08WR-16-5a 402 2.53 3429 636 1519 

08WR-16-5c - 2.28 3964 751 938 

08WR-16-5d 429 1.25 1827 318 324 

08WR-20-10a 1655 0.72 1298 292 537 

08WR-20-13a 45 0.64 2406 1879 1267 

08WR-20-13b 503 0.71 2171 148 247 

08WR-20-13c - 0.93 2230 552 1062 

08WR-20-14b 51 0.69 1348 1775 409 

08WR-20-14d 432 0.48 831 205 141 

08WR-20-15d 2686 0.89 2032 192 392 

08WR-20-15e 122 0.43 1883 365 756 

08WR-20-15f 251 0.91 2868 248 396 

08WR-20-15g 672 0.57 1357 102 87 

08WR-20-18 249 0.98 2508 156 505 

08WR-20-19 641 1.07 1824 153 147 

08WR-20-2 27 0.40 1751 508 727 

08WR-20-20 111 0.47 1012 237 424 

08WR-20-21a 59 0.45 2067 865 804 

08WR-20-21b 211 0.28 1693 693 680 

08WR-20-23a 102 0.72 1436 1249 467 

08WR-20-23b 744 0.77 2188 1588 1535 

08WR-20-3a 104 0.86 2239 493 892 

08WR-20-3b 424 0.60 2112 724 985 

08WR-20-4a 7254 0.59 2318 1062 1276 

08WR-20-4b 150 0.58 2393 1283 1158 

08WR-20-5 200 0.50 1931 984 954 

08WR-20-7a 377 0.90 2166 344 741 

CO2, F, S, and Cl in µg g-1, H2O in wt% 

A “-“ is present where CO2 signals failed to stabilize 
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CHAPTER III 

INVESTIGATING MAGMA MIXING THROUGH CHEMICAL AND TEXTURAL 

OBSERVATIONS OF PLAGIOCLASE FROM MUTNOVSKY VOLCANO, 

KAMCHATKA 

 

3.1. ABSTRACT 

Mixing of compositionally distinct mafic and felsic magmas is seemingly accepted as a 

ubiquitous process to generate intermediate composition magmas at stratovolcanoes. However, 

in a majority of studies that invoke this process there are no constraints on the source of the pre-

mixed mafic and felsic endmembers or quantitative evaluations of the physicochemical 

plausibility of mixing. In this study, we investigate the plausibility that mixing of basaltic and 

dacitic end-member magmas with significantly different initial temperatures and viscosities can 

mix to produce basaltic andesite erupted from Mutnovsky Volcano, Kamchatka. The plagioclase 

phenocryst populations in the basaltic and dacitic magmas are compositionally continuous, with 

their peaks centered in a single range of plagioclase compositions. Plagioclase phenocrysts in the 

basaltic andesite are strongly bimodal with distinct peaks and a prominent ~10-20 mol% An gap. 

Significantly, all plagioclase phenocrysts are euhedral in the basalt and dacite lavas, whereas the 

basaltic andesite contains both a euhedral population and a sieved population of plagioclase. The 

bimodal plagioclase assemblage in the basaltic andesites cannot be explained by purely fractional 

crystallization or degassing, but rather is most consistent with hybridization of basalt and dacite 

to generate basaltic andesite. This is also consistent with published Hf, Sr, Nd and Pb isotope 
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data and assimilation-fractional crystallization model results that demonstrate that the basaltic, 

basaltic andesitic and dacitic magmas are genetically related. 

3.2. INTRODUCTION 

Magma mixing is recognized as a ubiquitous process at stratovolcanoes, which globally 

erupt magmas that vary in composition from basalt to rhyolite, however the role of magma 

mixing as a petrological process for driving compositional diversity in arc environments remains 

controversial. Some studies suggest that magma mixing itself is the dominant process that forms 

intermediate magma compositions (Reubi and Blundy 2009; Kent et al 2010). However, other 

studies indicate that intermediate magmas may be generated by partial melting of amphibole-

bearing basaltic material in the mid- to lower-crust (Beard and Lofgren 1991; Rapp and Watson 

1995; Lange and Carmichael 1996). Some studies suggest that some intermediate magmas may 

originate by partial melting of the sub-arc mantle (Carmichael 2002; Straub et al 2008). And still 

other studies suggest that intermediate and high-Si magmas simply reflect the eruption of 

evolved interstitial liquids that are the product of down-temperature fractional crystallization of 

mafic magmas (Brophy 1991; Bachmann and Bergantz 2008; MacDonald et al 2008; Dufek and 

Bachmann 2010). Proponents of the magma mixing hypothesis argue that the presence of mafic 

and felsic enclaves and mafic and felsic composition melt inclusions in intermediate magmas, 

and notably a dearth of andesitic composition melt inclusions, are consistent with magma mixing 

(e.g., Reubi and Blundy 2009). Critics of the magma mixing hypothesis, however, argue that the 

disparate thermal and compositional differences of mafic and felsic magmas eliminate the 

possibility of physical mixing as a process responsible for the compositional diversity of arc 

magmas. 
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In this study we investigate and present plagioclase phenocryst chemical and textural data 

of lavas from Mutnovsky volcano, Kamchatka. Mutnovsky has repeatedly erupted basalts, 

basaltic andesites, andesites, and dacites. Published melt inclusion data, Sr, Nd, Hf, Pb isotope 

data, and assimilation-fractional crystallization (AFC) model results are consistent with the 

intermediate composition lavas at Mutnovsky having been the product of mixing of basaltic and 

dacitic magmas (Robertson et al. 2013; Simon et al. 2014). This previous work provides for a 

clear comparison of petrologic data with model evidence and melt inclusion evidence for magma 

mixing. 

3.3. BACKGROUND GEOLOGY 

 Mutnovsky volcano is located ~75 km southwest of Petropavlovsk-Kamchatsky (Figure 

3.1). Briefly summarized here from Selyangin (1993), Mutnovsky consists of four superimposed 

eruptive centers, Mutnovsky I-IV, and lavas span the compositional range from basalt to dacite, 

from 48.7 to 69.4% SiO2. Mutnovsky I erupted basaltic to dacitic lavas from ~80-60 ka. 

Mutnovsky II formed ~3km southeast of the Mutnovsky I crater and erupted basaltic to dacitic 

lavas from ~40-30 ka. Mutnovsky III formed between the centers of Mutnovsky I and II and 

erupted basaltic to dacitic lavas. The active Mutnovsky IV has erupted only basalt and basaltic 

andesite. Across all eruptive centers, basalt and basaltic andesite are dominant, with ~12% of the 

total erupted volume (~91 km3) comprised of andesite and dacite (Selyangin, 1993). The 

compositional diversity at Mutnovsky is similar to most Kamchatka volcanoes, which are 

composed mainly of basalt and basaltic andesite (i.e., 50-85% of the total mapped rock volume; 

Volynets 1994; Ponomareva et al 2007). 

 Simon et al. (2014) investigated the cause(s) for compositional diversity of erupted lavas 

at Mutnovsky and here we summarize their findings, which are critical to establishing the 
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magma mixing process that is investigated in the current study. They analyzed fifty unique 

samples from Mutnovsky I-IV. Across centers of all ages, Mutnovsky lavas define a tholeiitic 

igneous series with FeO*/MgO generally increasing with increasing SiO2. Hafnium (εHf = 15.3-

15.9), Nd (εNd ~8.0-9.5), Pb (206Pb/204Pb ~ 18.36; 207Pb/204Pb ~ 15.51) and Sr (87Sr/86Sr~0.7033) 

isotope data are similar for samples of all compositions from all four eruptive centers, and 

indicate that all samples were produced by melting of a similar source material. Simon et al. 

(2014) reported that fractional crystallization sensu stricto cannot explain the origin of basaltic 

andesites, andesites and dacites from a basaltic source. Dacites from Mutnovsky have trace 

element patterns that contrast with more mafic rocks from those centers. Notably, Mutnovsky 

dacites are more depleted in the middle and heavy REEs relative to more mafic lavas from 

Mutnovsky. If the dacites formed by purely down-temperature fractional crystallization of a 

more mafic magma, the depleted REE signature of the dacites requires a fractionating phase that 

preferentially sequesters the REE. Amphibole fractionation can do this; however, model 

fractional crystallization results indicate that fractionation of 1 to 80 modal % amphibole, using a 

wide range of amphibole / melt partition coefficients from the Geochemical Earth Reference 

Model (GERM, earthref.org) database and Hidalgo and Rooney (2010) cannot reproduce the 

Mutnovsky dacite compositions by fractional crystallization of amphibole from any melt 

composition less evolved than dacite. Formation of dacite by partial melting of oceanic crust was 

ruled out based on the absence of a high-Mg#, highly calc-alkaline composition for the 

Mutnovsky dacites. Simon et al. (2014) concluded that the most plausible explanation for the 

origin of the dacites involves partial melting of underplated amphibole-bearing basaltic rock in 

the middle-crust (cf. Beard and Lofgren 1989; Beard and Lofgren 1991; Rapp et al 1991; 
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Coleman et al 1992; Tepper et al 1993; Rapp and Watson 1995; Lange and Carmichael 1996; 

Borg and Clynne 1998). 

Published experimental studies demonstrate that small to moderate degree partial melts of 

underplated amphibole-bearing basaltic rock can yield dacitic magma (e.g., Beard and Lofgren 

1989; Rushmer 1991; Beard and Lofgren 1991; Rapp et al 1991; Rapp and Watson 1995). The 

REE patterns for vapor-absent dacitic to rhyodacitic melts produced by experimentally partially 

melting amphibole-bearing basaltic rock at 8 kbar, and 900 and 1000˚C, are almost identical to 

the REE signature of the Mutnovsky dacites. To test this partial melting hypothesis, Simon et al. 

(2014) performed batch melting calculations of amphibole-bearing basaltic rock that contains 

60% cpx, 10% ol, and 30% hornblende. The model results indicate that batch melting of 20 to 

25% of amphibole-bearing basaltic rock reproduces the REE signature of Mutnovsky dacites. 

This finding is consistent with a plethora of published studies that have investigated the 

evolution of chemically evolved silicate magmas in arc environments (e.g., Coleman et al 1992; 

Atherton and Petford 1993; Tepper et al 1993; Lange and Carmichael 1996; Petford and 

Atherton 1996; Borg and Clynne 1998; Petford and Gallagher 2001). 

Simon et al. (2014) used the the least-squares program XLFRAC (Stormer and Nicholls 

1978) to model the major element evolution of Mutnovsky basaltic andesites and andesites. Their 

model results indicate that 20% fractional crystallization of 6% olivine, 3% clinopyroxene and 

91% plagioclase from basalt, combined with assimilation of dacite in a basalt:dacite ratio of 9:1 

yields a basaltic andesite composition that is similar to basaltic andesite at Mutnovsky. The sum 

of the squares of residuals is 1.63 and the fractionating assemblage is consistent with 

petrographic observations. XLFRAC results also indicate that that a model andesite similar to 
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andesite at Mutnovsky may be produced by 11% FC of 100% plagioclase from basaltic andesite; 

the sum of squares of residuals is 1.212.  

Model results for the evolution of the REE abundances, performed by using the IgPet 

software program (Carr 2007), indicate that the REE abundances of basaltic andesite at 

Mutnovsky can be generated by 15% fractional crystallization of 6% olivine, 3% clinopyroxene 

and 91% plagioclase from basalt, coupled with assimilation of dacite with R (mass 

assimilated/mass fractionated) = 0.1. Andesite with a composition similar to that erupted at 

Mutnovsky can be generated by 8% fractional crystallization of 100% plagioclase, combined 

with assimilation of dacite with R = 0.4. The consistency between the model results for the major 

and REE abundances were interpreted by Simon et al. (2014) to indicate that assimilation – 

fractional crystallization is the most plausible origin for basaltic andesites and andesites at 

Mutnovksy.  

3.4. METHODS 

 The following analyses were done on a subset of the samples analyzed by Simon et al. 

(2014). Whole-rock major and trace element compositions of these samples can be found in 

Table 3.1. 

3.4.1. Mineral analysis 

The compositions of plagioclase, pyroxene, ilmenite, and magnetite were quantified in 

thin-section by using a Cameca SX-100 at the Electron Microbeam Analysis Laboratory 

(EMAL) at the University of Michigan. An accelerating voltage and beam current of 15 kV and 

4 nA, respectively, were used to analyze plagioclase, and an accelerating voltage and beam 

current of 15 kV and 15 nA, respectively, were used to analyze pyroxene, ilmenite, and 

magnetite. Plagioclase phenocrysts (defined as grains that measured >200 µm) were analyzed 
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with transects from rim to rim, along the long axis, with 10 to 30 µm spacing between points 

depending on crystal size size and visually discernible zoning of each grain. Plagioclase 

microlites (defined as grains that measured <50 µm) were analyzed with a single point or a rim 

and a core point, size permitting. Pyroxene crystals were analyzed for core and rim 

compositions. Due to the generally small size of the ilmenite and magnetite crystals, a single 

analysis was performed at the center of the crystal. 

3.4.2. Geothermometry 

Temperatures were calculated by using two geothermometers, where possible. Two-

pyroxene temperatures were calculated by using the geothermometer of Putirka (2008) on all 

clinopyroxene-orthopyroxene pairs analyzed in thin section (Table 3.2). Two Fe-Ti oxide 

temperatures and oxygen fugacities were calculated using the geothermometer of Ghiorso and 

Evans (2008) on all possible magnetite-ilmenite pairs measured in thin section (Table 3.3). 

3.5. RESULTS 

Histograms of mol% anorthite (An) of plagioclase phenocrysts and microlites are 

presented in Figures 3.2-3.4 for representative samples of basalt, basaltic andesite, and dacite 

from Mutnovsky I, II and III, respectively. Plagioclase phenocrysts from basalt range from ~95 

to 60 mol% anorthite and are dominantly An-rich with a peak at ~An90-95 and a smaller peak at 

~An75-80. Plagioclase phenocrysts in the dacite range from An51 to An33, with a peak at ~An50-55. 

Plagioclase phenocrysts in the basaltic andesite display a bimodal distribution of anorthite 

compositions with distinct peaks at An80-95 and An40-50, and a ~20 mol% An gap between An50 

and An70. In the basaltic andesite, euhedral plagioclase grains are An-rich, whereas plagioclase 

grains that display a sieved texture are An-poor (Figs. 3.2-3.4). For basalt and dacite samples, 

plagioclase microlite compositions are more sodic than co-existing plagioclase phenocrysts, 



68 
 

overlapping slightly with the most sodic phenocrysts. However, plagioclase microlites in the 

basaltic andesite from Mutnovsky III have compositions that are between the sodic and calcic 

populations of phenocrysts. 

Photomicrographs of representative plagioclase phenocrysts are presented with the mol% 

An histograms in Figures 3.2-3.4. Plagioclase phenocrysts observed in basalts and dacites 

erupted from Mutnovsky I-III are all euhedral and do not display any sieved or spongy textures. 

There are two distinct populations of plagioclase phenocrysts in the Mutnovsky I-III basaltic 

andesites, a euhedral population displaying no sieved or spongy textures, and a euhedral to 

subhedral population with very clear sieved and spongy textures. These populations directly 

correspond to the high An and low An peaks, respectively, observed in the histograms of the 

basaltic andesites. 

Two-pyroxene temperatures (±1σ) range from 1131 ± 15° to 1093 ± 19°C for basaltic 

lavas, 1086 ± 44° to 1006 ± 35°C for basaltic andesite, and 1032 ± 18° to 997 ± 21°C for dacite 

(Table 3.2). 

3.6. PLAGIOCLASE CHEMICAL AND TEXTURAL EVIDENCE FOR MAGMA 

MIXING 

Plagioclase phenocrysts in Mutnovsky basaltic andesites display a bimodal distribution of 

anorthite content, with a gap of ~20 mol% An between An-rich and An-poor plagioclase 

populations, whereas plagioclase compositions in the basalts and dacites all have a single 

population within a narrow range of anorthite content (Figs. 3.2-3.4). The basaltic andesites 

contain two textural populations of plagioclase, a euhedral population and a sieved population, 

whereas the basalts and dacites only contain euhedral plagioclase phenocrysts. The two textural 

populations in the basaltic andesites correspond with the two distinct chemical populations, 
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where the euhedral crystals are always the An-rich population and the sieved crystals are always 

the An-poor population.  

There are several petrological processes that can result in compositional and textural 

diversity of plagioclase phenocrysts in lavas. These include magma decompression, degassing, 

fractional crystallization, convective mixing of a single magma, and mixing of two 

compositionally disparate magmas. Nelson and Montana (1992) investigated the effects of 

decompression on plagioclase texture and chemistry in basaltic andesite and andesite magma 

compositions by performing experiments with decompression rates ranging from 0.07 to 0.21 

MPa/min. They demonstrated experimentally that sieve-textured plagioclase, often invoked as an 

indicator of magma mixing, can form solely due to decompression. However, they showed that 

the resulting sieve-textured and euhedral phenocrysts span ~30-60 mol% An, and are chemically 

indistinguishable from one another (Figure 7 in Nelson and Montana 1992). This is not observed 

for Mutnovsky samples. Waters and Lange (2013) investigated decompression-induced 

crystallization in a suite of phenocryst-poor obsidians and reported that rapid decompression 

during eruption led to the crystallization of sodic plagioclase microlites, all of which had 

compositions overlapping with those of the plagioclase phenocryst assemblage. Additionally, 

Waters et al. (2015) experimentally investigated decompression-induced crystallization, finding 

that their decompression experiments yielded plagioclase compositions more sodic than the 

range observed in natural samples. These results demonstrate that decompression-induced 

crystallization yields a wider range of plagioclase compositions, and notably not compositionally 

distinct plagioclase populations as observed in basaltic andesite lavas from Mutnovsky. 

Evolution of the strongly bimodal plagioclase populations in Mutnovsky basaltic 

andesites seems inconsistent with fractional crystallization, which should result in a continually 
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decreasing An component with crystallization (Drake 1976; Anderson et al 1982). This is not 

observed in Mutnovsky basaltic andesites and cannot explain the ~10-20 mol% An gap. 

Convective mixing has also been proposed to explain disequilibrium textures and compositions 

in intermediate composition lavas (Murphy et al 2000; Couch et al 2001). In such a scenario, a 

thermal boundary layer develops in an initially compositionally homogeneous magma chamber 

that is losing heat at its roof and simultaneously being heated at its base during an underplating 

event. This may cause convective self-mixing, and the temperature heterogeneity may also result 

in calcic overgrowths on plagioclase phenocrysts that are not in equilibrium with their rock 

matrix. We argue that this is also unlikely for Mutnovsky basaltic andesites because of the 

prominent ~10-20 mol% An gap. 

  We suggest that the observation that the anorthite peaks in the basaltic andesites 

correlate with peaks in the basalt and dacite from each eruptive center (Figures 3.2-3.4) is 

consistent with the hypothesis that the compositionally disparate plagioclase populations 

crystallized in separate basaltic and dacitic magmas that subsequently mixed physically, and 

erupted prior to chemically re-equilibrating. Thus, the pre-mixed plagioclase chemistry is 

preserved. This finding is consistent with the interpretation of assimilation – fractional 

crystallization model results described above that indicate that Mutnovsky basaltic andesites 

formed by the mixing of basaltic and dacitic magmas (Simon et al 2014). Mixing must have been 

vigorous as it was effective at stirring the basaltic and dacitic magmas such that the melt was 

homogenized on a hand-sample scale, yet dissolution of dacitic plagioclase was incomplete. We 

do not suggest that the composition of the basalts hosting the plagioclase analyzed represent the 

basaltic composition that formed the basaltic andesites when mixed with dacite. The basalts have 

erupted as basalts, suggesting they did not undergo any mixing to form basaltic andesite. The 
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dacites from which plagioclase were measured have also not mixed, as they erupted as dacites. 

These plagioclase compositions are used to demonstrate that only the basaltic andesites contain 

two phenocrysts populations, both chemically and texturally. These observations are consistent 

with the previous geochemical modeling of Simon et al. (2014) suggesting the mixing of basalt 

and dacite to form basaltic andesite. This is also consistent with observations from Mt. Hood, 

Oregon, where crystal size distributions could be linked with chemical data to demonstrate the 

existence of two compositionally distinct magmas mixing prior to eruption (Kent et al. 2010). 

Though we know significant viscosity and thermal barriers to magma mixing exist, these 

observations demonstrate that they can be overcome to result in hybridized magmas. 

3.7. CONCLUSIONS 

Geochemical modeling of whole-rock and isotope data for lavas from Mutnovsky 

Volcano, Kamchatka, Russia, is consistent with basaltic andesitic magmas having formed by 

physical mixing and hybridization of basaltic and dacitic magmas. New results for the variability 

of compositions of plagioclase phenocrysts and microlites in basaltic, basaltic andesite and 

dacitic lavas indicate that the bimodal distribution of plagioclase from Mutnovsky basaltic 

andesites is consistent with physical mixing of basaltic and dacitic magmas that contained An-

rich and An-poor plagioclase phenocryst populations, respectively, prior to mixing. The textures 

of plagioclase in the basaltic andesites are consistent with the resorption of plagioclase originally 

formed in the dacite end-member owing to a high mixing ratio of basalt:dacite. The results of 

this study provide physical evidence of the magma mixing proposed at Mutnovsky by previous 

geochemical modeling efforts. 
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Figure 3.1 A map of the Kamchatka Peninsula showing the location of Mutnovsky Volcano. 
Map from GeoMapApp (www.geomapapp.org) 
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Figure 3.2 Histograms of mol% anorthite from a basalt (a), a basaltic andesite (b), and a dacite 
(c) from Mutnovsky I. Calculated temperatures (±1σ) are from the two-pyroxene 
geothermometer of Putirka (2008). For the basalt and dacite the photomicrograph is 
representative of the plagioclase phenocrysts analyzed. For the basaltic andesite the top two 
photomicrographs are representative of the anorthite-rich phenocrysts and the bottom two 
photomicrographs are representative of the anorthite-poor phenocrysts. 
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Figure 3.3 Histograms of mol% anorthite from a basalt (a), a basaltic andesite (b), and a dacite 
(c) from Mutnovsky II. Calculated temperatures (±1σ) are from the two-pyroxene 
geothermometer of Putirka (2008). For the basalt and dacite the photomicrograph is 
representative of the plagioclase phenocrysts analyzed. For the basaltic andesite the top two 
photomicrographs are representative of the anorthite-rich phenocrysts and the bottom two 
photomicrographs are representative of the anorthite-poor phenocrysts. 
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Figure 3.4 Histograms of mol% anorthite from a basalt (a), a basaltic andesite (b), and a dacite 
(c) from Mutnovsky III. Calculated temperatures (±1σ) are from the two-pyroxene 
geothermometer of Putirka (2008). For the basalt and dacite the photomicrograph is 
representative of the plagioclase phenocrysts analyzed. For the basaltic andesite the top two 
photomicrographs are representative of the anorthite-rich phenocrysts and the bottom two 
photomicrographs are representative of the anorthite-poor phenocrysts. 
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Table 3.1.  Whole-rock Major and Trace Element Results for Mutnovsky Lavas 

sample 
M1-04-
08 

M1-05-
08 

CM-
19 

CM-
33 

CM-
105 

M1-09-
08 

CM-
48 

CM-
92a 

CM-
97a 

CM-
33a 

M1-06-
08 

CM-
4a 

CM-
5 

center M I M I M I M I M I M I M I M I M I M I M I M I M I 

Map # 1 2 3 4 5 6 7 8 9 10 11 12 13 

SiO2 
Al2O3 

53.14 51.67 52.42 52.59 51.06 51.23 50.92 50.94 51.44 58.08 54.08 55.13 53.95 

18.65 19.81 19.53 23.00 17.73 17.54 17.46 20.98 18.07 18.90 17.61 18.45 18.72 

FeO* 10.81 9.89 9.93 7.54 10.42 11.83 11.96 9.15 10.01 8.20 10.80 7.62 9.18 

MnO 0.20 0.19 0.18 0.21 0.21 0.24 0.23 0.21 0.16 0.19 0.23 0.16 0.16 

MgO 3.43 3.18 3.46 3.24 5.71 4.76 4.89 3.73 7.29 2.39 3.50 4.76 4.00 

CaO 8.37 10.03 8.91 8.73 9.80 9.22 9.54 10.24 8.78 6.03 8.22 8.37 8.61 

Na2O 3.29 3.42 3.35 2.88 2.92 3.21 3.12 2.76 2.45 3.70 3.50 3.61 3.17 

K2O 0.55 0.41 0.55 0.60 0.52 0.42 0.36 0.74 0.55 1.12 0.45 0.78 0.74 

TiO2 1.34 1.22 1.42 1.06 1.42 1.33 1.31 1.13 1.11 1.16 1.34 0.91 1.22 

P2O5 0.22 0.18 0.24 0.15 0.21 0.22 0.21 0.12 0.13 0.22 0.27 0.20 0.25 

Mg# 0.36 0.36 0.38 0.43 0.49 0.42 0.42 0.42 0.56 0.34 0.37 0.53 0.44 

              

Rb 7.06 4.95 5.35 6.86 2.79 5.66 5.26 5.83 8.09 13.2 3.34 7.35 10.1 

Sr 386 399 423 420 511 413 404 412 477 402 451 410 462 

Y 27.8 31.9 32.8 27.2 29.1 29.2 28.1 27.5 25.4 35.4 46.1 34.8 38.9 

Zr 67.2 63.0 62.2 52.1 57.0 60.3 57.0 49.6 63.8 74.4 84.4 81.7 70.3 

Nb 1.33 1.07 1.05 1.20 1.11 1.20 1.13 0.85 1.36 1.70 1.95 1.62 1.47 

Cs 0.49 0.41 0.23 0.34 0.26 0.44 0.41 0.35 0.49 0.68 0.23 0.37 0.78 

Ba 179 154 164 164 174 164 149 151 229 274 282 277 242 

La 4.44 4.30 4.42 5.39 4.63 4.77 4.38 4.01 5.63 7.36 6.46 6.89 6.55 

Ce 12.3 12.8 13.1 13.4 13.9 13.2 12.5 11.4 15.1 18.8 17.8 19.4 18.7 

Pr 2.17 2.33 2.39 2.43 2.51 2.34 2.23 2.07 2.47 3.12 3.05 3.34 3.24 

Nd 11.8 13.1 13.5 12.7 13.6 12.6 12.2 11.4 12.5 16.1 16.4 17.1 17.0 

Sm 3.67 4.12 4.27 3.70 4.13 3.85 3.76 3.56 3.55 4.71 5.12 4.95 5.07 

Eu 1.20 1.35 1.44 1.21 1.36 1.25 1.22 1.18 1.20 1.52 1.89 1.53 1.65 

Gd 4.38 5.05 5.01 4.22 4.95 4.67 4.40 4.24 4.19 5.41 6.72 5.73 6.24 

Tb 0.72 0.83 0.85 0.70 0.82 0.75 0.73 0.70 0.71 0.90 1.20 0.98 1.05 

Dy 4.65 5.25 5.44 4.46 5.22 4.74 4.67 4.52 4.51 5.78 7.86 6.32 6.75 

Ho 0.96 1.09 1.13 0.92 1.07 0.98 0.97 0.94 0.93 1.20 1.66 1.30 1.41 

Er 2.70 3.04 3.18 2.59 3.01 2.73 2.71 2.63 2.64 3.40 4.80 3.70 3.96 

Tm 0.41 0.46 0.48 0.40 0.45 0.41 0.40 0.40 0.40 0.52 0.72 0.57 0.60 

Yb 2.78 3.10 3.25 2.64 2.88 2.74 2.75 2.68 2.61 3.52 4.71 3.75 3.89 

Lu 0.42 0.46 0.50 0.40 0.45 0.41 0.42 0.40 0.41 0.54 0.73 0.59 0.62 

Hf 2.19 2.12 2.11 1.72 1.87 1.95 1.90 1.70 1.96 2.45 2.56 2.58 2.28 

Ta 0.08 0.06 0.06 0.07 0.06 0.06 0.06 0.05 0.09 0.11 0.11 0.10 0.09 

Pb 4.09 3.05 3.87 3.66 3.55 3.78 3.51 3.43 4.82 6.27 5.98 5.92 5.50 

Th 0.42 0.28 0.28 0.43 0.28 0.30 0.30 0.32 0.52 0.74 0.47 0.64 0.53 

U 0.18 0.14 0.15 0.18 0.12 0.14 0.14 0.17 0.24 0.33 0.24 0.27 0.25 
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Table 3.1.  Whole-rock Major and Trace Element Results for Mutnovsky Lavas (continued) 

sample 
CM-
24 M1-02-08 

CM-
47 

CM-
156 

CM-
169a 

CM-
187 

CM-
186 

CM-
142 

CM-
147 

CM-
154 

CM-
155 

CM-
113 

M3-
03-
08 

center M I M I M I M II M II M II M II M II M II M II M II M II M III 

Map # 14 15 16 17 18 19 20 21 22 23 24 25 26 

SiO2 
Al2O3 

60.73 61.04 65.52 49.55 52.52 52.29 54.58 54.51 60.98 63.90 58.37 68.51 51.66 

18.28 17.13 16.25 18.98 18.16 19.03 17.44 17.68 16.63 16.28 16.03 14.84 18.22 

FeO* 6.20 7.14 5.41 9.68 10.29 9.45 9.94 9.48 7.40 5.89 9.53 4.79 11.34 

MnO 0.16 0.16 0.15 0.31 0.26 0.15 0.18 0.23 0.16 0.21 0.21 0.11 0.21 

MgO 2.23 2.30 1.64 6.51 4.66 4.60 4.01 3.88 2.00 1.41 2.70 1.07 4.68 

CaO 5.59 5.78 4.07 11.01 8.97 9.50 8.04 8.30 4.83 4.34 6.05 3.36 9.06 

Na2O 4.42 3.94 3.81 2.13 3.02 2.87 3.39 3.56 4.72 5.13 3.95 4.62 3.02 

K2O 1.04 1.29 2.01 0.49 0.55 0.68 0.80 0.73 1.54 1.50 1.32 2.13 0.45 

TiO2 1.03 0.95 0.92 1.19 1.40 1.23 1.38 1.34 1.28 1.02 1.48 0.48 1.16 

P2O5 0.32 0.27 0.22 0.15 0.17 0.19 0.24 0.29 0.46 0.32 0.35 0.10 0.21 

Mg# 0.39 0.36 0.35 0.55 0.45 0.46 0.42 0.42 0.32 0.30 0.34 0.28 0.42 

              

Rb 14.6 40.4 37.8 4.29 5.93 6.05 9.04 8.30 18.1 21.4 15.1 21.1 4.36 

Sr 374 392 317 476 456 500 478 474 407 350 411 200 477 

Y 42.1 43.2 40.4 26.4 29.2 31.2 40.8 38.1 57.3 56.6 52.4 20.3 23.3 

Zr 122 132 192 53.7 61.5 71.5 94.9 94.2 160 193 153 122 50.2 

Nb 2.46 2.76 3.59 1.07 1.18 1.48 1.95 1.94 3.56 3.95 3.16 2.75 1.14 

Cs 0.27 1.58 2.51 0.41 0.52 0.25 0.47 0.61 1.22 1.46 0.74 2.38 0.36 

Ba 415 390 652 166 200 196 253 250 502 591 451 696 168 

La 8.21 9.75 13.2 4.23 4.99 5.59 7.52 7.12 14.0 14.0 11.0 8.51 4.30 

Ce 23.9 26.1 33.8 12.4 14.4 16.5 22.0 21.2 37.7 38.3 32.0 20.9 12.0 

Pr 3.82 4.27 4.99 2.21 2.51 2.85 3.79 3.60 6.23 6.06 5.29 2.69 2.02 

Nd 19.3 21.8 23.1 11.9 13.4 15.0 19.8 18.9 31.2 29.8 27.0 11.7 10.8 

Sm 5.62 6.16 5.97 3.65 4.02 4.41 5.75 5.48 8.44 8.09 7.68 2.86 3.24 

Eu 1.83 1.99 1.54 1.21 1.34 1.40 1.72 1.64 2.24 2.14 2.15 0.90 1.18 

Gd 6.59 7.03 6.66 4.38 4.81 5.20 6.77 6.47 9.71 9.25 8.84 3.14 3.85 

Tb 1.13 1.21 1.11 0.74 0.81 0.88 1.14 1.08 1.60 1.53 1.46 0.54 0.67 

Dy 7.36 7.68 7.00 4.74 5.23 5.61 7.22 6.91 10.0 9.73 9.26 3.48 4.32 

Ho 1.53 1.58 1.44 0.98 1.09 1.16 1.50 1.43 2.08 2.02 1.92 0.74 0.89 

Er 4.42 4.63 4.12 2.79 3.08 3.29 4.25 4.05 5.89 5.81 5.45 2.19 2.52 

Tm 0.69 0.69 0.64 0.42 0.46 0.49 0.64 0.61 0.89 0.89 0.82 0.35 0.38 

Yb 4.59 4.61 4.18 2.70 3.02 3.22 4.17 3.99 5.76 5.84 5.41 2.46 2.46 

Lu 0.73 0.71 0.67 0.43 0.48 0.51 0.67 0.63 0.93 0.94 0.86 0.42 0.37 

Hf 3.77 3.94 5.32 1.76 2.04 2.30 3.01 3.00 4.82 5.46 4.56 3.69 1.59 

Ta 0.14 0.17 0.26 0.06 0.07 0.08 0.11 0.11 0.20 0.22 0.17 0.27 0.06 

Pb 7.47 8.85 12.84 3.76 4.83 4.63 5.28 5.88 11.14 12.18 10.46 11.10 4.05 

Th 1.00 1.40 3.04 0.25 0.37 0.38 0.51 0.51 1.13 1.15 0.95 3.53 0.30 

U 0.43 0.63 1.21 0.14 0.19 0.18 0.24 0.24 0.54 0.54 0.44 1.17 0.14 
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Table 3.1.  Whole-rock Major and Trace Element Results for Mutnovsky Lavas (continued)      

sample 
M3-04-
08 

M3-05-
08 

M3-07-
08 

M3-08-
08 CM-29 

CM-
193 

CM-
201b 

CM-
210 

CM-
211 KR1-2 

CM-
9a 

M3-
09-
08 

center M III M III M III M III M III M III M III M III M III M III M III M III 

Map # 27 28 29 30 31 32 33 34 35 36 37 38 

SiO2 
Al2O3 

51.68 51.34 50.20 49.49 50.43 53.64 52.25 50.22 49.39 56.95 53.65 59.29 

18.44 18.43 19.66 22.95 18.07 18.07 20.50 17.83 17.81 16.49 19.31 18.15 

FeO* 11.03 11.24 10.24 7.23 10.07 9.20 8.01 9.16 9.69 8.90 7.95 6.60 

MnO 0.20 0.21 0.18 0.13 0.15 0.18 0.25 0.11 0.18 0.16 0.14 0.13 

MgO 4.51 4.70 4.23 4.46 5.81 4.93 4.51 8.24 8.50 4.27 5.47 2.18 

CaO 9.29 9.30 10.69 12.58 11.04 8.87 10.64 10.96 10.74 7.84 9.33 7.29 

Na2O 3.17 3.08 2.95 2.19 2.65 2.94 2.06 2.07 2.28 2.82 2.53 3.68 

K2O 0.38 0.37 0.54 0.28 0.46 0.80 0.62 0.28 0.40 1.38 0.67 1.63 

TiO2 1.15 1.15 1.11 0.60 1.16 1.17 0.98 0.93 0.82 0.96 0.80 0.85 

P2O5 0.15 0.17 0.20 0.09 0.15 0.19 0.18 0.22 0.19 0.23 0.15 0.21 

Mg# 0.42 0.43 0.42 0.52 0.51 0.49 0.50 0.62 0.61 0.46 0.55 0.37 

             

Rb 3.17 3.73 9.76 6.25 1.58 8.34 4.71 7.76 7.04 28.3 12.5 40.2 

Sr 479 485 430 451 469 459 497 503 514 402 457 405 

Y 22.0 15.2 30.8 20.3 25.0 36.9 23.0 23.6 23.6 30.1 24.9 35.2 

Zr 47.3 49.0 75.6 57.3 53.0 88.0 58.6 72.5 70.5 142 79.2 189 

Nb 1.06 1.14 1.78 1.09 1.02 1.99 1.32 2.02 1.93 3.08 1.54 3.76 

Cs 0.15 0.27 0.56 0.50 0.12 0.44 0.32 0.43 0.36 1.75 0.80 2.51 

Ba 165 168 209 174 164 302 198 232 223 406 262 540 

La 3.92 2.71 5.90 4.07 4.19 9.81 5.32 6.87 6.84 10.3 5.76 13.24 

Ce 12.1 8.0 16.1 11.1 12.1 24.4 14.3 17.5 17.5 25.5 15.6 32.6 

Pr 1.96 1.29 2.73 1.81 2.05 3.91 2.38 2.79 2.76 3.80 2.47 4.77 

Nd 10.5 6.9 14.2 9.35 10.9 19.3 12.3 13.7 13.6 17.8 12.3 22.1 

Sm 3.20 2.16 4.19 2.80 3.36 5.33 3.54 3.75 3.71 4.65 3.46 5.52 

Eu 1.18 0.81 1.46 1.02 1.15 1.63 1.29 1.27 1.27 1.26 1.11 1.45 

Gd 3.76 2.57 5.02 3.35 4.10 6.14 4.05 4.17 4.13 5.07 4.03 5.93 

Tb 0.66 0.45 0.87 0.59 0.68 1.04 0.69 0.70 0.69 0.87 0.69 1.01 

Dy 4.24 2.90 5.60 3.80 4.43 6.55 4.30 4.38 4.31 5.48 4.40 6.35 

Ho 0.87 0.60 1.17 0.79 0.91 1.35 0.87 0.89 0.88 1.12 0.92 1.30 

Er 2.49 1.71 3.34 2.25 2.55 3.89 2.48 2.50 2.49 3.20 2.59 3.75 

Tm 0.37 0.26 0.50 0.34 0.38 0.57 0.37 0.37 0.36 0.48 0.40 0.56 

Yb 2.43 1.71 3.28 2.25 2.49 3.81 2.45 2.42 2.38 3.19 2.60 3.78 

Lu 0.36 0.26 0.50 0.33 0.39 0.58 0.37 0.36 0.36 0.48 0.41 0.57 

Hf 1.53 1.56 2.26 1.74 1.67 2.55 1.71 2.02 1.95 3.96 2.35 5.23 

Ta 0.06 0.06 0.11 0.07 0.06 0.12 0.07 0.11 0.11 0.21 0.10 0.27 

Pb 3.99 4.33 4.67 4.37 3.64 6.50 4.51 4.27 3.97 9.20 5.52 10.23 

Th 0.26 0.26 0.66 0.51 0.33 0.66 0.27 0.53 0.51 2.05 0.83 3.00 

U 0.10 0.11 0.27 0.22 0.16 0.30 0.15 0.23 0.22 0.90 0.37 1.32 
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Table 3.1.  Whole-rock Major and Trace Element Results for Mutnovsky Lavas (continued)      

sample 
M3-01-
08 CM-8a 

M4-01-
08 

CM-
196 

CM-
206 CM-68 

CM-
61a 

CM-
63a 

CM-
67 

CM-
198 KR-1 

CM-
62 

center M III M III M IV M IV M IV M IV M IV M IV M IV M IV M IV M IV 

Map # 39 40 41 42 43 44 45 46 47 48 49 50 

SiO2 
Al2O3 

64.09 69.60 53.19 49.60 51.97 50.95 50.19 50.30 48.97 50.14 54.94 54.24 

16.00 14.65 19.37 19.22 18.31 20.94 19.97 19.15 20.25 18.12 16.93 17.44 

FeO* 5.65 3.66 9.97 9.99 9.27 7.94 9.63 9.45 10.05 9.66 9.16 8.67 

MnO 0.21 0.10 0.16 0.18 0.20 0.18 0.21 0.14 0.18 0.19 0.16 0.15 

MgO 1.55 0.75 3.93 6.27 5.39 5.15 5.08 6.25 5.40 7.22 5.26 5.02 

CaO 3.35 3.10 8.85 10.90 10.40 11.17 10.73 10.41 10.73 10.84 8.96 8.99 

Na2O 4.93 4.19 2.82 2.54 2.54 2.25 2.45 2.51 2.71 2.27 2.65 3.10 

K2O 2.71 3.19 0.55 0.29 0.61 0.55 0.42 0.55 0.55 0.49 0.85 1.20 

TiO2 1.27 0.63 0.99 0.85 1.13 0.78 1.06 1.01 1.00 0.93 0.91 1.00 

P2O5 0.25 0.12 0.17 0.16 0.17 0.10 0.25 0.23 0.16 0.14 0.18 0.18 

Mg# 0.33 0.27 0.41 0.53 0.51 0.54 0.48 0.54 0.49 0.57 0.51 0.51 

             

Rb 64.6 53.6 9.67 2.82 5.75 2.98 4.76 6.53 4.91 3.83 17.0 16.8 

Sr 271 177 471 474 520 437 501 498 472 461 427 432 

Y 54.8 48.2 28.7 21.4 24.9 15.5 21.8 26.2 25.4 21.5 24.6 25.3 

Zr 408 321 70.0 56.8 65.2 43.5 53.8 78.4 58.6 62.2 97.2 102 

Nb 12.30 5.63 1.55 1.38 1.45 1.05 1.17 1.73 1.08 1.43 2.03 2.08 

Cs 2.39 3.72 0.71 0.12 0.38 0.32 0.42 0.47 0.43 0.41 1.08 1.18 

Ba 1069 900 222 187 204 125 161 223 169 169 282 307 

La 31.5 16.6 6.07 5.08 5.64 3.14 4.08 6.66 4.37 4.87 7.07 7.42 

Ce 75.1 44.7 16.0 13.4 14.8 8.8 11.7 18.4 12.8 12.9 17.9 19.5 

Pr 9.96 6.23 2.58 2.19 2.43 1.45 1.95 2.89 2.19 2.11 2.75 2.96 

Nd 42.2 28.1 13.3 11.0 12.4 7.36 10.1 14.4 11.5 10.7 13.4 14.2 

Sm 9.55 7.01 3.92 3.13 3.55 2.16 2.99 3.95 3.43 3.10 3.69 3.79 

Eu 2.44 1.37 1.38 1.14 1.27 0.77 1.08 1.31 1.22 1.13 1.14 1.12 

Gd 9.32 7.53 4.73 3.65 4.18 2.58 3.60 4.44 4.18 3.64 4.15 4.31 

Tb 1.57 1.29 0.81 0.62 0.71 0.44 0.61 0.76 0.72 0.63 0.71 0.71 

Dy 9.73 8.30 5.21 3.95 4.51 2.84 3.96 4.74 4.62 3.96 4.49 4.52 

Ho 2.00 1.73 1.08 0.81 0.92 0.58 0.82 0.97 0.96 0.81 0.92 0.92 

Er 5.79 5.04 3.07 2.30 2.64 1.66 2.31 2.71 2.71 2.31 2.64 2.61 

Tm 0.90 0.79 0.46 0.34 0.39 0.25 0.34 0.41 0.41 0.34 0.39 0.39 

Yb 6.08 5.32 3.04 2.24 2.57 1.63 2.26 2.68 2.67 2.24 2.57 2.58 

Lu 0.94 0.84 0.46 0.34 0.39 0.26 0.36 0.41 0.42 0.34 0.39 0.41 

Hf 9.61 8.93 2.08 1.64 1.89 1.31 1.65 2.23 1.85 1.76 2.73 2.91 

Ta 0.75 0.41 0.09 0.07 0.08 0.06 0.06 0.10 0.06 0.08 0.14 0.14 

Pb 17.93 18.15 5.16 3.17 5.20 2.99 3.87 4.93 4.24 3.77 6.17 6.91 

Th 4.91 4.79 0.50 0.29 0.39 0.31 0.31 0.42 0.27 0.31 1.22 1.36 

U 1.99 1.89 0.24 0.13 0.19 0.14 0.14 0.20 0.15 0.16 0.53 0.56 
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Table 3.2. Average compositions of pyroxene analyses 

Sample CM-33 CM-5 CM-47 CM-187 CM-186 CM-113 CM-29 CM-9a CM-8a 
Phase opx opx opx opx opx opx opx opx opx 
No. of analyses 9 2 17 10 6 21 1 5 34 

SiO2 51.58 52.67 51.59 52.63 52.84 52.24 53.46 51.14 50.88 
TiO2 0.33 0.35 0.30 0.32 0.44 0.25 0.29 0.22 0.24 
Al2O3 0.71 0.87 0.83 0.59 1.14 1.28 0.85 0.52 0.77 
FeOT 21.34 21.25 22.87 24.76 22.29 19.65 20.93 25.26 28.25 
MnO 0.73 0.79 0.87 0.83 0.80 1.01 0.53 1.13 1.07 
MgO 19.94 19.83 21.01 18.61 18.73 23.33 21.47 18.98 16.55 
CaO 4.30 5.24 2.37 4.03 4.95 1.51 4.19 1.61 1.69 
Na2O 0.39 0.09 0.04 0.08 0.14 0.03 0.08 0.03 0.08 
Total 99.33 101.08 99.87 101.86 101.32 99.30 101.79 98.89 99.54 

Cations per formula unit based on 6 oxygens       
Si 1.942 1.955 1.937 1.964 1.970 1.941 1.957 1.965 1.973 
Ti 0.009 0.010 0.008 0.009 0.012 0.007 0.008 0.006 0.007 
AlIV 0.048 0.035 0.037 0.027 0.018 0.052 0.035 0.028 0.020 
AlVI 0.000 0.003 0.000 0.000 0.032 0.004 0.002 0.000 0.016 
Fe3+ 0.093 0.038 0.076 0.034 0.000 0.050 0.039 0.035 0.010 
Fe2+ 0.579 0.622 0.644 0.739 0.695 0.561 0.602 0.777 0.906 
Mn 0.023 0.025 0.028 0.026 0.025 0.032 0.016 0.037 0.035 
Mg 1.120 1.098 1.171 1.035 1.040 1.291 1.172 1.088 0.956 
Ca 0.174 0.208 0.096 0.161 0.198 0.060 0.164 0.066 0.070 
Na 0.028 0.006 0.003 0.006 0.010 0.002 0.005 0.002 0.006 
Mg# 62.5 62.4 61.7 57.3 59.9 67.9 64.6 57.3 51.0 
±1σ Mg# 2.6 2.9 5.8 1.2 1.6 2.5 — 0.3 2.1 

          

Phase cpx cpx cpx cpx cpx cpx cpx cpx cpx 
No. of analyses 3 7 6 7 6 8 15 18 10 

SiO2 49.67 49.56 50.57 51.78 54.68 49.60 51.28 50.75 50.79 
TiO2 0.72 0.97 0.55 0.66 0.62 0.75 0.70 0.59 0.43 
Al2O3 2.72 4.20 2.00 1.40 2.90 3.10 2.30 2.89 1.32 
FeOT 11.34 12.18 11.19 15.01 13.61 10.36 14.10 9.79 14.33 
MnO 0.41 0.38 0.44 0.53 0.53 0.50 0.39 0.33 0.60 
MgO 15.32 14.03 14.59 14.42 12.87 14.73 15.00 15.46 12.50 
CaO 18.47 18.63 19.50 16.99 15.38 19.06 17.31 18.97 18.87 
Na2O 0.28 0.30 0.29 0.33 0.68 0.31 0.27 0.26 0.28 
Total 98.93 100.25 99.13 101.12 101.27 98.41 101.33 99.04 99.12 

Cations per formula unit based on 6 oxygens       
Si 1.867 1.849 1.904 1.931 2.038 1.873 1.898 1.898 1.943 
Ti 0.020 0.027 0.016 0.018 0.017 0.021 0.020 0.017 0.012 
AlIV 0.113 0.123 0.081 0.051 0.000 0.105 0.082 0.085 0.045 
AlVI 0.008 0.061 0.008 0.011 0.126 0.033 0.018 0.042 0.015 
Fe3+ 0.125 0.083 0.094 0.064 0.000 0.095 0.084 0.062 0.051 
Fe2+ 0.231 0.297 0.259 0.404 0.424 0.233 0.353 0.244 0.408 
Mn 0.013 0.012 0.014 0.017 0.017 0.016 0.012 0.011 0.019 
Mg 0.858 0.780 0.818 0.801 0.715 0.829 0.827 0.862 0.713 
Ca 0.744 0.745 0.786 0.679 0.614 0.772 0.686 0.760 0.774 
Na 0.021 0.022 0.021 0.024 0.049 0.023 0.019 0.019 0.021 
Mg# 70.6 67.4 69.9 63.1 62.8 71.7 65.4 73.8 60.9 
±1σ Mg# 2.6 3.8 3.6 1.3 0.4 2.7 2.1 3.4 2.7 

T(°C) ±1σ  1093 ± 19 1079 ± 42 1015 ± 18 1099 ± 16 1086 ± 44 997 ± 21 1131 ± 15 1006 ± 35 1032 ± 18 
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Table 3.3. Average compositions of Fe-Ti oxides 

Sample CM-47 CM-186 CM-29 CM-9a CM-8a 
Phase ilmenite ilmenite ilmenite ilmenite ilmenite 
No. of analyses 4 13 2 2 7 

SiO2 0.62 0.24 0.20 15.32 0.22 
TiO2 45.48 44.04 48.67 34.47 47.14 
Al2O3 0.35 0.07 0.12 4.92 0.20 
Fe2O3 17.56 15.23 11.43 18.23 12.64 
V2O3 0.37 0.38 0.45 0.42 0.30 
Cr2O3 0.01 0.02 0.01 0.01 0.01 
FeO 30.03 35.93 36.94 22.18 36.68 
MnO 0.73 0.73 0.56 0.34 0.80 
MgO 1.70 0.89 2.49 1.45 1.93 
CaO 4.15 0.21 0.19 1.70 0.04 
Total 100.99 97.71 101.08 99.05 99.95 
Xilmenite 76.1 80.2 79.1 77.8 79.2 
±1σ Xilmenite 2.1 1.4 1.2 2.5 0.4 

      

Phase magnetite magnetite magnetite magnetite magnetite 
No. of analyses 30 17 8 8 11 

SiO2 0.16 0.14 0.37 0.20 0.35 
TiO2 14.64 8.02 16.46 13.97 16.37 
Al2O3 2.07 0.79 1.81 1.86 1.63 
Fe2O3 37.91 50.36 33.86 41.22 35.96 
V2O3 0.71 0.74 1.24 0.56 0.35 
Cr2O3 0.04 0.03 0.07 0.05 0.02 
FeO 41.75 36.59 44.38 41.78 44.62 
MnO 0.57 0.42 0.57 0.54 0.66 
MgO 1.48 0.24 1.05 1.73 1.12 
CaO 0.12 0.18 0.16 0.07 0.10 
Total 99.45 97.50 99.97 101.98 101.17 
Xulvospinel 41.1 23.5 46.0 38.2 45.3 
±1σ Xulvospinel 4.7 3.3 5.9 0.8 3.0 

T(°C) ±1σ  882 ± 41 775 ± 36 898 ± 40 959 ± 25 924 ± 21 
ΔNNO ±1σ  -0.3 ± 0.1 0.5 ± 0.2 -0.6 ± 0.1 0.1 ± 0.03 -0.3 ± 0.04 
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CHAPTER IV 

A MODEL TO INVESTIGATE THE PLAUSIBILITY OF THE HYBRIDIZATION OF 

THERMALLY AND COMPOSITIONALLY DISTINCT MAGMAS 

 

4.1. ABSTRACT 

To assess the hypothesis that basaltic and dacitic magmas mixed to produce the basaltic 

andesite, we develop a quantitative model that fully describes the evolving viscosity of the 

basaltic and dacitic end-member magmas (melt + crystals, including water content) and quantify 

that there is a narrow viscosity-defined magma mixing window over a narrow range of 

temperatures (<30°C) where basaltic and dacitic magmas reach thermal equilibrium and mix to 

produce basaltic andesite. To test the applicability of the model to other magmatic systems, we 

used published mafic and felsic end-member magma estimates from Mt. Hood, Oregon, to 

demonstrate that the proposed basaltic and rhyolitic magma end-members for that system do 

enter a viscosity-defined magma mixing window where they can mix to produce andesite, as 

proposed in several published studies. Also consistent with published work, the efficiency of 

mixing is maximized with larger proportions of mafic magma, which is well documented as the 

primary source of energy for the mixing process. Our results demonstrate quantitatively that the 

physical mixing of mafic and felsic magmas from initially disparate thermal and viscosity 

conditions is a plausible mechanism to produce intermediate magmas. The methodology by 

which proposed mixing ratios can be tested to determine the physical plausibility for magma 
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mixing is globally applicable and can be applied in cases where mafic and felsic endmember 

compositions are known or can be estimated. 

4.2. INTRODUCTION 

Mixing of compositionally disparate magmas is a seemingly ubiquitous process in the 

plumbing systems of stratovolcanoes (Anderson 1976) The seminal work of Sparks and Marshall 

(1986) provided a conceptual framework that considers the physicochemical plausibility for 

compositionally disparate magmas (i.e., low-Si mafic and high-Si felsic) with different initial 

temperatures and viscosities to hybridize. Sparks and Marshall (1986) suggested that mixing 

requires magmas of similar temperatures and viscosities, and that the hybridization potential for 

magmas with very different initial (pre-mixing) viscosities is maximized if the proportion of 

mafic magma is volumetrically dominant, regardless of the composition of the felsic endmember. 

However, despite this well accepted conceptual framework, magma mixing as a petrological 

process for driving compositional diversity in arc environments remains controversial. 

Recent studies by Laumonier et al. (2014a,b) have experimentally investigated the effect 

viscosity differences in magmas have on their ability to mix. Their findings show that magmas 

with a viscosity contrast, Δlog η (log(ηbasalt/ηdacite)), greater than 0.5 do not efficiently mix. This 

is in contrast to melt inclusion, phenocryst, and field observations of the mixing of mafic and 

felsic magmas with Δlog η > 1. However, the experimental studies are limited to the 

investigation of the mixing of compositionally distinct magmas at the same temperature, leaving 

an investigation of the mixing of two compositionally and thermally distinct magmas 

unaddressed. 

In this study, we investigate the plausibility of physicochemical mixing of mafic and 

felsic magmas by focusing on lavas from the active, arc-front Mutnovsky volcano, located in 
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Kamchatka, Russia. By using thermodynamic models for the evolution of magma (melt + 

crystals, including water content) viscosities we quantitatively assess the hypothesis that mafic 

and felsic magmas physically mix to produce intermediate compositions. This work builds on the 

concepts described in Sparks and Marshall (1986) by applying a rigorous thermodynamic 

treatment to natural magma compositions, and linking the model to phenocryst assemblages in 

the lavas. We also use published compositions for Mt. Hood to demonstrate the applicability of 

the technique to other arc volcanic systems. 

4.3. BACKGROUND GEOLOGY 

 Mutnovsky volcano is located ~75 km southwest of Petropavlovsk-Kamchatsky (Figure 

4.1). Briefly summarized here from Selyangin (1993) and Simon et al. (2014), Mutnovsky 

consists of four superimposed eruptive centers, Mutnovsky I-IV. Mutnovsky I erupted basaltic to 

dacitic lavas from ~80-60 ka. Mutnovsky II formed ~3km southeast of the Mutnovsky I crater 

and erupted basaltic to dacitic lavas from ~40-30 ka. Mutnovsky III formed between the centers 

of Mutnovsky I and II and erupted basaltic to dacitic lavas. The active Mutnovsky IV has erupted 

only basalt and basaltic andesite. Across all eruptive centers, basalt and basaltic andesite are 

dominant, with ~12% of the total erupted volume (~91 km3) comprised of andesite and dacite. 

4.4. MELTS MODELING 

The starting compositions used in this study are fifty samples from Mutnovsky volcano, 

previously characterized for their whole-rock compositions (Simon et al. 2014). A subset of 

these samples can be found in Table 4.1. MELTS modeling (Ghiorso and Sack 1995) was done 

by using the alphaMELTS software (Smith and Asimow 2005) and Rhyolite-MELTS (Gualda et 

al 2012). Whole-rock compositions were used as initial liquid compositions and were cooled in 

1°C increments from 1200°C to 900°C for Mutnovsky basalts and basaltic andesites, 1200 to 800 
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for Mutnovsky dacites, 1200°C to 900°C for the proposed Mt. Hood mafic endmember (Kent et 

al 2010), and 1200°C to 700°C for the proposed Mt. Hood felsic endmember (Kent et al 2010), 

recording residual liquid composition, mineral phases crystallizing, and mineral compositions for 

each step. Oxygen fugacity was fixed at the nickel-nickel oxide reference buffer for the 

Mutnovsky samples, consistent with the fO2 calculated for the rocks from the Fe-Ti oxide 

geothermobarometer of Ghiorso and Evans (2008). Oxygen fugacity for the Mt. Hood samples 

was set at the quartz-fayalite-magnetite buffer, following the Mt. Hood MELTS modeling of the 

same composition described in Cooper and Kent (2014). The pressure used for the Mutnovsky 

samples was 400 MPa, consistent with existing geobarometry and magma depth estimates 

(Robertson 2011; Robertson et al 2013; Simon et al 2014). The pressure used for Mt. Hood 

modeling was 200 MPa following Cooper and Kent (2014). The H2O concentrations used for the 

Mutnovsky samples were determined for each sample by using the plagioclase hygrometer of 

Lange et al. (2009) and the average plagioclase composition of each sample. Due to the bimodal 

distribution of plagioclase in the basaltic andesites (described below) the calculated H2O 

concentrations of the basaltic andesites are likely less robust; however, we emphasize that the 

calculated basaltic andesite viscosities do not play a role in the results and interpretations of this 

manuscript. The H2O concentration used for Mt. Hood was 3.8 wt% following Kent et al. (2010) 

and Cooper and Kent (2014). 

4.5. RESULTS 

The program MELTS was used to calculate liquidus temperatures for whole-rock 

compositions of Mutnovsky basaltic and dacitic lavas, and these liquidus compositions were then 

were cooled in 1°C increments, recording residual liquid compositions, mineral phases 

crystallizing, and mineral compositions for each temperature increment. For the modeled basalts 
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and dacites the plagioclase compositions show less variability but are generally consistent with 

the observed An content. The modeled basaltic andesites only crystallize one population of 

plagioclase compositions and do not recreate the bimodal distribution observed in the natural 

samples. The viscosity of the melt at each temperature increment was calculated by using the 

viscosity model of Hui and Zhang (2007). Reported here are the results of modeling the 

Mutnovsky I-III samples examined in Chapter III. The effect of crystals on magma viscosity was 

calculated by using the Einstein-Roscoe equation (Roscoe 1952) using a packing-fraction of 0.6 

(Marsh 1981) and the crystal fraction calculated by MELTS for each temperature increment. As 

temperature decreases from 1200 to 900°C, the viscosity of the residual melts, reported as log η, 

increases from ~1 to 4.2 for the basalt and basaltic andesite, and from ~2 to 4.5 for dacite (Figure 

4.2). The calculated melt viscosity of the basalts and basaltic andesites is never greater than the 

calculated viscosity of the dacitic melt. However, the calculated magma (i.e., melt + crystals) 

viscosities exhibit a crossover at ~1125°C, where the viscosity of the basaltic and basaltic 

andesite magmas exceeds the viscosity of the dacitic magmas (Figure 4.2). This is a critical point 

as it is the viscosity of the magma, and not only the melt phase, that determines whether or not 

mixing may occur. 

4.6. ASSESSING THE PLAUSIBILITY OF PHYSICAL MIXING OF BASALT AND 

DACITE 

Sparks and Marshall (1986) described the ability of compositionally and thermally 

disparate magmas to mix in terms of the rate of heat transfer relative to the rate of mass transfer 

via chemical diffusion. They emphasized that heat transfer is significantly faster than chemical 

diffusion, such that two magmas will come to thermal equilibrium rapidly and yet still be in a 

state of chemical disequilibrium. The ability for the two magmas to chemically homogenize (i.e., 
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mix) is dictated by the evolution of their physical properties after the attainment of thermal 

equilibrium. Since their pioneering study, experimental investigations have demonstrated that 

strong differences in magma viscosity are a physical barrier to mixing.  Magmas with a Δlog η 

(log(ηbasalt/ηdacite)) < 0.5 may effectively mix, magmas with Δlog η > 0.5 will not mix, and 

magmas with log η > 7.5 do not effectively mix (Scaillet et al., 2013; Laumonier et al., 2014a,b).  

The development of the MELTS computational thermodynamics software allows for 

improved constraints on the work of Sparks and Marshall (1986). In their study, crystallinity was 

estimated by using the Zr concentrations of a suite of samples to estimate the degree of 

crystallization required to move from one composition to another, magma viscosity was 

calculated by using the method of Shaw (1972) and the estimated crystallinity, and the heat 

capacity of the magmas were assumed. The method used to approximate the crystallinity is not 

applicable to places where mixing has been proposed and mafic endmember compositions have 

not been observed, preventing a test of mixing. Given constraints on pressures and water 

contents, the MELTS program quantitatively determines crystallinity, melt composition, and heat 

capacity of melt and crystals for a starting composition from any initial to final temperature. We 

have compared MELTS output of the same starting composition used in Sparks and Marshall 

(1986) with the estimated crystallinity data presented in Sparks and Marshall (1986) in Figure 

4.3. The MELTS calculated crystal fraction is consistent with Sparks and Marshall (1986) for 

higher MgO contents, but deviates at lower MgO contents. This increased crystallinity with 

decreasing MgO is apparent at greater than 60% crystals, suggesting that the MELTS results are 

similar to the Sparks and Marshall (1986) as applied to an investigation of magma mixing, as 

crystallinity >60% is thought to behave as a partially molten solid, effectively preventing mixing 

(Van der Molen and Paterson 1979; Shaw 1980; Marsh 1981; Marsh 1984). With this 
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comparison and with the wealth of data output by MELTS, we suggest that the data generated by 

MELTS allow for a more robust assessment of the physical plausibility of magma mixing. 

To evaluate the plausibility that Mutnovsky basalt and dacite physically mixed to produce 

the basaltic andesites, we calculated viscosities for Mutnovsky I-III basaltic and dacitic magmas 

(melt + crystals) and assessed whether the viscosities of the basaltic and dacitic magmas satisfied 

the Δlog η (log(ηbasalt/ηdacite)) < 0.5 criteria for mixing during their evolution. The results are 

shown in Figure 4.2. The results indicate that the viscosities of Mutnovsky basalt and dacite 

overlap at temperatures on the order of 1100 – 1140 °C, which along with the criterion that Δlog 

η (log(ηbasalt/ηdacite)) < 0.5, defines the viscosity-temperature window where physical mixing is 

plausible. The ability to mix magmas of different initial viscosities and temperatures was 

assessed by using the heat capacity of the magmas, which was calculated by MELTS for every 

temperature increment. The thermal response of each magma to mixing was calculated ideally, 

using the equation Xdacite ΔTdacite CP dacite = Xbasalt ΔTbasalt CP basalt, where X is the proportion of 

magma, ΔT is the temperature change of the magma when thermal equilibrium has been reached, 

and CP is the integrated heat capacity of the magma from Tinitial to Tfinal at constant pressure. 

Using this equation, the model-based mixing ratio of 9:1 basalt:dacite reported by Simon et al. 

(2014), and the magma viscosity mixing window for each set of magmas mixing, we calculated 

mixing scenarios for basalt and dacite erupted from Mutnovsky I, II and III.  The temperature-

viscosity model results are shown in Figures 4.4a, b and c, respectively.  For Mutnovsky I, the 

results indicate that the interaction of a 1009°C plagioclase-bearing dacitic magma (B′ in Figure 

4.4a) physically interacting with a 1112°C basaltic magma (B in Figure 4.4a) results in the two 

magmas reaching thermal equilibrium at 1102°C (Figure 4.4a, Table 4.2).  For Mutnovsky II, the 

results indicate that the interaction of a 1025°C plagioclase-bearing dacitic magma (B′ in Figure 
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4.4b) physically interacting with a 1123°C basaltic magma (B in Figure 4.4b) results in the two 

magmas reaching thermal equilibrium at 1113°C (Figure 4.4b, Table 4.2).  For Mutnovsky III, 

the model results indicate that the interaction of a 1044°C plagioclase-bearing dacitic magma (B′ 

in Figure 4.4c) physically interacting with a 1140°C basaltic magma (B in Figure 4.4c) results in 

the two magmas reaching thermal equilibrium at 1130°C (Figure 4.4c, Table 4.2). These 

temperatures are all consistent with the two pyroxene temperatures of the same lavas, suggesting 

that they can efficiently mix as they approach thermal equilibrium. 

As mentioned previously, diffusion of heat is orders of magnitude faster than chemical 

diffusion. Thus, for the conditions where basalt dominates the mixing assemblage (basalt:dacite 

= 9:1), heat transfer from basalt with an initial temperature of ~1140°C to dacite with an initial 

temperature of ~1040°C results in increasing the temperature of the dacite on the order of 100°C 

while the basalt cools by only ~10°C. Thus, both the basaltic and dacitic magmas coexist within 

the viscosity-defined thermal mixing window. In turn, while thermal equilibration is approached, 

progressive crystal-melt disequilibrium results in progressive resorption of plagioclase 

phenocrysts from the dacite endmember. The preservation of the strongly bimodal plagioclase 

populations in the basaltic andesites at Mutnovsky indicates that eruption occurred prior to 

complete chemical equilibration of the two mixed magmas. These model results indicate that 

dacitic magmas over a large range of temperatures can thermally equilibrate with basaltic 

magmas and end up in the viscosity-defined mixing window, allowing for the physical 

hybridization of initially compositionally and thermally distinct dacitic and basaltic magmas. 

Physical mixing and hybridization of dacitic and basaltic magmas, where the basaltic magma is 

dominant volumetrically, would result in resorption of An-poor plagioclase from the dacitic 
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magma, consistent with the textures observed in Mutnovsky basaltic andesites (cf. Tsuchiyama, 

1985). 

To investigate the broader applicability of this model, we applied it to the mixing of 

basaltic and rhyolitic magmas proposed by Kent et al. (2010) as mixing endmembers for 

intermediate magmas erupted at Mount Hood, Oregon (mafic and felsic compositions provided 

in Table 4.1). The authors invoke the mixing of ~75-40% basalt with ~25-60% rhyolite to 

explain the compositional variability at Mt. Hood by mixing alone, and suggest the mafic and 

felsic endmember magmas were 1100°C and 800°C, respectively. Figure 4.5 illustrates that our 

model predicts that mixing is physically plausible at a ratio of 70:30 basalt:rhyolite, though the 

model temperature of the felsic endmember must be 850-900°C (A′ in Figure 4.5) in order to 

efficiently mix with the 1100°C mafic endmember (A in Figure 4.5). Mixing becomes less likely 

as the percent mafic component decreases, consistent with previous studies (cf. Sparks and 

Marshall, 1986). This model can also be used to estimate the ratio of magmas mixed if the 

endmember temperatures are known or fixed. If we use the proposed temperatures of 1100°C 

and 800°C for basalt and rhyolite, respectively, from Kent et al. (2010) we calculate effective 

mixing of 100-75% basalt and 0-25% rhyolite. This suggests that some of the higher silica 

andesites may be the product of fractional crystallization after the mixing of 75:25 basalt:rhyolite 

rather than generation by mixing alone. 

The model results for physical mixing of Mutnovsky mafic and felsic magmas are 

consistent with thermal models for the development of silicic magmas by successive 

emplacement of basaltic sills (Annen et al., 2006a,b, 2008; Annen, 2011) and with the recent 

experimental data of Laumonier et al. (2014b). Repeated emplacement of basaltic sills provides 

thermal energy sufficient to partially melt underplated basaltic rock to generate dacitic melts that 
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can subsequently cool and crystallize over relatively short timescales. Subsequent injections of 

basaltic magma can then intrude through or into these dacitic lenses, allowing for the 

hybridization of the two compositionally distinct magmas, provided that they mix in appropriate 

volumes at appropriate temperatures. The remobilization of a crystal-rich dacitic magma is 

consistent with the work of Cooper and Kent (2014), who demonstrated that most of the 

phenocrysts found in Mt. Hood lavas spent a majority of their existence at temperatures below 

their MELTS-calculated lock-up temperature. These crystals were essentially un-eruptible until 

injection of new, hot magma remobilized and erupted the previously locked crystal-mush. This 

suggests that dacitic lenses generated by partial melting caused by repeated basaltic underplating 

could cool below lock-up temperature, and be remobilized by subsequent injection(s) of basaltic 

magmas. Dacitic and basaltic magmas can in turn mix physically provided that the mixing ratio 

allows the magmas to enter the viscosity mixing window. The thermal-viscosity model presented 

here indicates that this process was plausibly responsible for formation of basaltic andesites 

erupted at Mutnovsky, and intermediate composition magmas erupted at stratovolcanoes 

worldwide. 

4.7. CONCLUSIONS 

In light of the significant advances in computational thermodynamics over the last 

decade, as well as an ever increasing number of experimental studies, the seminal work of 

Sparks and Marshall (1986) deserved to be revisited. A thermal and viscosity model integrating 

the thermodynamic data generated through the MELTS model demonstrates the physical 

plausibility of the mixing of basaltic and dacitic magmas to produce basaltic andesite erupted at 

Mutnovsky. The use of the MELTS model eliminates many of the uncertainties in calculating 

viscosity, crystallinity, and thermodynamic parameters for phases present at a given P-T. 
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Investigating another location of proposed mixing (Kent et al. 2010), this model supports the 

mixing origin for intermediate magmas at Mt. Hood, Oregon. The viscosity and thermal 

modeling presented here provides a straightforward way to quantify the plausibility of physical 

magma mixing and assess its role to produce intermediate composition lavas at arc volcanoes 

worldwide. 
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Figure 4.1 A map of the Kamchatka Peninsula showing the location of Mutnovsky Volcano. 
Map from GeoMapApp (www.geomapapp.org) 
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Figure 4.2 Crystal fraction (a-c), melt viscosity (d-f), and magma viscosity (g-i) calculated by 
using MELTS and the viscosity model of Hui and Zhang (2007) for basalt, basaltic andesite, and 
dacite from Mutnovsky I-III. Calculated melt viscosities show no crossover between basalt and 
dacite. The addition of crystals drastically changes the viscosities such that basaltic and dacitic 
magma cross over at 1100-1130°C 
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Figure 4.3 Comparison of MELTS produced crystal fraction vs. MgO of St. Kilda mafic 
endmember, SK27, with Zr-estimated crystal fraction vs. MgO calculated by Sparks and 
Marshall (1986). The crystal fraction estimated by MELTS is similar to the data reported in 
Sparks and Marshall (1986), but reports higher crystal fractions at lower MgO contents. Given 
that a magma with crystal fraction greater than 0.6 becomes effectively solid (Marsh 1981), we 
suggest that the MELTS model effectively reproduces the estimation of Sparks and Marshall 
(1986) 
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Figure 4.4 Log magma viscosity vs temperature for Mutnovsky I-III and Mt. Hood. The 
Mutnovsky III inset shows a larger range of temperature and viscosity, and the box in the inset 
represents the portion displayed in the main figure. The vertical rectangular box on the right side 
of each figure illustrates the window of temperature and viscosity within which magma 
viscosities are <0.5 log Pa s of each other and can physically mix after attaining thermal 
equilibrium. Tick marks labeled A-A′, B-B′, etc. represent a basalt (A, B, C, D) and dacite or 
rhyolite (A′, B′, C′, D′) that will reach thermal equilibrium at the viscosity crossover (Table 4.2). 
As described in the text, these plots illustrate that a Mutnovsky basaltic magma at B mingling 
with a Mutnovsky dacitic magma at B′, for a ratio of 9:1 basalt:dacite, results in thermal 
equilibrium at within the viscosity-defined mixing window, and allows for efficient mixing 
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Figure 4.5 Log magma viscosity vs. temperature for proposed Mt. Hood mafic and felsic end-

members from Kent et al. (2010), similar to Figure 4.4. These results indicate that a basaltic 

magma at 1105°C (A) mingling with a rhyoltic magma at 891°C (A′), at a ratio of 7:3 

basalt:rhyolite, results in efficient mixing at ~1055°C 
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Table 4.1 Samples used as MELTS starting compositions 

Sample SiO2 TiO2 Al2O3 FeOT MnO MgO CaO Na2O K2O P2O5 Total 
  (wt%) (wt%) (wt%) (wt%) (wt%) (wt%) (wt%) (wt%) (wt%) (wt%) (wt%) 

Mutnovksy I            
CM-33 51.56 1.04 22.55 7.39 0.21 3.18 8.56 2.82 0.59 0.15 98.05 
CM-5 52.38 1.18 18.18 8.91 0.16 3.88 8.36 3.08 0.72 0.24 97.09 
CM-47 64.68 0.91 16.04 5.34 0.15 1.62 4.02 3.76 1.98 0.22 98.72 

Mutnovsky II            
CM-187 50.96 1.20 18.54 9.21 0.15 4.48 9.26 2.80 0.66 0.19 97.45 
CM-186 53.36 1.35 17.05 9.72 0.18 3.92 7.86 3.31 0.78 0.23 97.76 
CM-113 67.53 0.47 14.63 4.72 0.11 1.05 3.31 4.55 2.10 0.10 98.57 

Mutnovsky III            
CM-29 49.20 1.13 17.63 9.83 0.15 5.67 10.77 2.59 0.45 0.15 97.57 
CM-9a 52.80 0.79 19.00 7.82 0.14 5.38 9.18 2.49 0.66 0.15 98.41 
CM-8a 69.40 0.63 14.61 3.65 0.10 0.75 3.09 4.18 3.18 0.12 99.71 

Mt. Hood            
Mafic 50.7 1.6 20.3 9.3 0.0 5.8 8.2 4.1 0.1 0.0 100.0 
Felsic 70.9 0.3 14.6 1.6 0.0 0.1 3.6 4.4 2.8 0.0 98.3 

   Note: Mafic and Felsic endmembers for Mt. Hood from Kent et al. (2010) 
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Table 4.2 Calculated magma temperatures and viscosities resulting 
in efficient mixing 

Mutnovsky I Basalt  Dacite 

Figure Temperature log η  Temperature log η 
 labels (°C) (Pa s)  (°C) (Pa s) 

A-A′ 1122 1.77  895 23.85 
B-B′ 1112 1.92  1009 3.71 
C-C′ 1107 2.08  1056 2.89 
D-D′ 1103 2.21  1092 2.51 
Mixing T 1102 2.25  1102 2.44 

      
Mutnovsky II    
A-A′ 1133 1.53  926 10.46 
B-B′ 1123 1.91  1025 3.12 
C-C′ 1118 2.13  1069 2.76 
D-D′ 1114 2.33  1104 2.51 
Mixing T 1113 2.38  1113 2.46 

      
Mutnovsky III    
A-A′ 1150 1.38  955 4.49 
B-B′ 1140 1.82  1044 3.06 
C-C′ 1135 2.08  1087 2.74 
D-D′ 1131 2.32  1121 2.51 
Mixing T 1130 2.38  1130 2.45 

      
Mt. Hood Basalt  Rhyolite 

A-A′ 1105 1.57  891 6.13 
B-B′ 1085 1.85  958 3.63 
C-C′ 1070 2.26  1007 3.25 
D-D′ 1060 2.68  1039 3.02 
Mixing T 1055 2.91  1055 2.91 

   Note: Mt. Hood data were modeled by using the proposed 
mafic and felsic endmembers from Kent et al. (2010). 
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CHAPTER V 

CONCLUSIONS 

Sorby (1858) suggested that the investigation of the minute can be just as informative of 

large scale processes as observations in the field. With the refinement of analytical techniques 

and the development of new technologies such as the field emission source for electron 

microscopy, NanoSIMS, and atom probe tomography, we find a whole new wealth of 

nanometer-scale information directly relating back to large scale petrogenetic processes. Our 

ability to tie together the smallest of observations with millimeter-, meter-, and kilometer-scale 

observations is crucial in furthering our understanding of the origin of rocks, from the mantle to 

the crust. The goal of the chapters presented in this dissertation is to use new melt inclusion and 

phenocryst data to better understand magmatic processes during rifting and subduction, and 

ultimately, to apply these finding to larger questions in igneous petrogenesis. 

The investigation of olivine-hosted melt inclusions in Chapter II showed volatile 

enrichments much greater than would be expected in a plume or rift environment, trace-elements 

concentrations that looked less like OIB sources and more like the same rock type erupted in arc 

settings, and were enriched in fluid-mobile elements often used as slab fluid tracers. We 

highlighted that this subduction-like signature may have been caused by lithospheric 

modification during Pan-African subduction at ~600 Ma, but emphasize that our data is by no 

means a smoking gun. While similar to what would be expected in subduction zones, we cannot 

demonstrate that these findings are inconsistent with mantle modification by low-degree partial 

melts caused by extension, or low-degree partial melts caused by plume ascension. An 
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investigation of mantle xenoliths found in the area may shed more light into the source of 

lithospheric modification in the East African mantle. Understanding the source of these volatile-

rich mantle metasomes will add to our growing understanding of where volatiles reside in the 

mantle, where they came from, and how they are stored. 

The work in Chapter III and Chapter IV focuses on Mutnovsky Volcano, a 

stratovolcano in southern Kamchatka with four super-imposed eruptive centers. The overlapping 

eruptive centers provide the ideal opportunity for combining melt inclusion data, mineral 

chemistry, mineral textures, and whole-rock compositions to elucidate magma chamber 

processes resulting in the formation of intermediate lavas. Plagioclase phenocryst compositions 

measured in Mutnovsky basalts, basaltic andesites, and dacites generally described two chemical 

populations, a high-anorthite population and a low-anorthite population. The basalts host a high-

An population, dacites a low-An population, and the basaltic andesites contain both populations, 

with a compositional gap between them. All plagioclase observed were euhedral crystals except 

for those in the low-An population of the basaltic andesites, which were partially resorbed. We 

emphasize that this cannot be explained by degassing, crystal fractionation, or magma recharge, 

and is only consistent with mixing. Microlite compositions more An-rich than the low-An 

phenocryst population in some of the basaltic andesites is also indicative of mixing. These 

finding are also consistent with melt inclusion evidence and geochemical models of magma 

mixing at Mutnovsky, suggesting that intermediate lavas at Mutnovsky are primarily generated 

through the mixing of a basaltic and dacitic magmas. 

The work presented in Chapter IV brings new data, new models, and the advances in 

computational thermodynamics to an old problem, understanding the conditions at which 

magmas can mix. We demonstrate that the MELTS program (Ghiorso and Sack 1995) provides 
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quantitative constraints for the melt composition, viscosity, crystallinity, and heat capacity of 

magma over any range of temperatures, improving upon the constraints used in the seminal work 

of Sparks and Marshall (1986). These data can then be directly used to investigate the ability of 

thermally and compositionally distinct magmas to mix. When applied to lavas erupted at 

Mutnovsky we observe that the range of temperatures at which a basalt and a dacite could 

physically mix is consistent with the two-pyroxene temperatures of Mutnovsky basalts and 

dacites. We then demonstrate the broader applicability of this model by applying it to previously 

published data from Mt. Hood, Oregon (Kent et al 2010), where the endmembers mixed are 

estimated, not observed. We find our model results are similar to their proposed temperatures 

and volumes of mixing, but that other processes may also be at play, such as crystal 

fractionation.  

This body of work, while varied in tectonic setting, scope, and technique, show that there 

is almost always a wealth of information to be found by using microanalytical techniques, and 

that these minute data can be readily interpreted with investigations into kilometer-scale 

processes. Each chapter addresses some larger fundamental questions regarding igneous 

processes, from the generation of mantle metasomes and their ability to store volatiles in the 

mantle to questions concerning the origin of intermediate lavas. Ultimately, the results of this 

work does not solve any of these questions, in fact this work raises many more. 
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APPENDIX A 

Table A1 Average compositions of Fe-Ti oxides from the East 
African Rift 

Sample 08WR-7 08WR-8 08WR-16 08WR-20 

Phase ilmenite ilmenite ilmenite ilmenite 

No. of analyses 2 2 2 13 

SiO2 0.89 0.17 2.00 0.05 

TiO2 47.93 49.27 47.46 48.88 

Al2O3 0.75 0.17 0.69 0.33 

Fe2O3 11.82 7.30 7.54 10.53 

V2O3 0.35 0.46 0.54 0.53 

Cr2O3 0.03 0.12 0.23 0.06 

FeO 31.84 36.82 35.07 34.37 

MnO 0.85 0.85 0.71 0.56 

MgO 3.06 2.48 2.52 3.28 

CaO 1.44 0.29 0.26 0.26 

Total 98.95 97.94 97.02 98.85 

Xilmenite 75.9 81.8 81.7 76.8 

±1σ Xilmenite 9.9 1.6 1.4 4.8 

Phase magnetite magnetite magnetite magnetite 

No. of analyses 34 15 6 20 

SiO2 0.16 0.16 0.17 0.10 

TiO2 26.24 19.96 22.64 23.40 

Al2O3 2.99 4.90 4.24 3.18 

Fe2O3 14.55 18.91 21.16 19.11 

V2O3 0.53 0.41 0.53 0.92 

Cr2O3 0.84 6.17 0.08 0.75 

FeO 49.97 43.96 45.16 47.89 

MnO 0.73 0.75 0.73 0.55 

MgO 2.79 2.70 3.82 2.49 

CaO 0.23 0.35 0.24 0.21 

Total 99.02 98.27 98.77 98.60 

Xulvospinel 72.0 54.9 61.6 64.7 

±1σ Xulvospinel 3.2 9.4 3.1 2.8 

T(°C) ±1σ  959 ± 36 954 ± 29 896 ± 33 1024 ± 49 

ΔNNO ±1σ  -1.8 ± 0.1 -1.2 ± 0.2 -1.4 ± 0.02 -1.0 ± 0.2 
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Table A2 Titanomagnetite compositions from the East African Rift 

 SiO2 TiO2 Al2O3 Fe2O3 V2O3 Cr2O3 FeO MnO MgO CaO Total 

08WR-7-1 0.13 24.51 4.70 14.63 0.68 2.39 48.15 0.55 3.75 0.07 99.57 

08WR-7-2 0.14 26.84 1.76 14.71 0.35 0.16 50.78 0.74 2.18 0.25 97.91 

08WR-7-3 0.14 26.52 2.50 15.02 0.37 0.19 50.57 0.84 2.35 0.24 98.73 

08WR-7-4 0.22 27.03 2.31 13.13 0.40 0.46 51.09 0.73 2.06 0.31 97.76 

08WR-7-5 0.17 26.98 2.52 12.94 0.53 0.83 50.94 0.79 2.35 0.24 98.29 

08WR-7-6 0.09 27.01 2.62 14.19 0.47 0.82 50.77 0.73 2.81 0.22 99.74 

08WR-7-7 0.10 26.35 3.01 14.52 0.57 0.94 51.00 0.73 2.59 0.13 99.96 

08WR-7-8 0.08 26.12 3.47 14.65 0.59 1.11 49.76 0.62 3.28 0.16 99.83 

08WR-7-9 0.09 25.49 3.77 14.76 0.67 1.39 49.40 0.68 3.20 0.11 99.56 

08WR-7-10 0.10 23.35 4.90 17.16 0.75 2.41 45.21 0.53 4.74 0.14 99.30 

08WR-7-11 0.16 26.21 2.36 15.23 0.51 0.44 50.04 0.82 2.34 0.28 98.40 

08WR-7-12 0.11 25.70 2.63 16.28 0.50 0.75 49.20 0.81 2.58 0.33 98.87 

08WR-7-13 0.12 26.55 2.28 15.48 0.42 0.39 49.73 0.75 2.77 0.31 98.78 

08WR-7-14 0.26 26.22 2.26 15.25 0.43 0.27 50.04 0.83 2.00 0.42 97.98 

08WR-7-15 0.09 26.63 3.12 13.19 0.57 0.94 49.68 0.58 3.34 0.15 98.28 

08WR-7-16 0.11 26.39 3.28 13.28 0.72 1.41 49.89 0.75 3.41 0.06 99.31 

08WR-7-17 0.15 28.22 2.09 11.50 0.36 0.14 52.55 0.80 1.74 0.30 97.84 

08WR-7-18 0.08 25.45 3.51 15.40 0.55 1.19 48.92 0.69 2.91 0.27 98.96 

08WR-7-19 0.15 26.03 2.69 15.35 0.47 0.83 49.65 0.72 2.59 0.32 98.79 

08WR-7-20 0.08 26.23 2.92 15.18 0.62 1.07 49.68 0.83 2.57 0.38 99.56 

08WR-7-21 0.06 25.80 2.71 16.07 0.55 0.63 49.26 0.75 2.82 0.23 98.88 

08WR-7-22 0.66 26.21 2.68 14.26 0.45 0.35 50.05 0.81 2.57 0.38 98.43 

08WR-7-23 0.06 25.52 3.61 15.33 0.61 1.02 49.52 0.62 3.12 0.11 99.53 

08WR-7-24 0.09 27.47 2.62 13.01 0.50 0.62 51.48 0.75 2.71 0.15 99.41 

08WR-7-25 0.03 26.05 3.26 15.71 0.61 0.84 49.23 0.63 3.57 0.14 100.07 

08WR-7-26 0.04 26.09 2.92 15.93 0.52 0.61 49.52 0.80 2.64 0.34 99.41 

08WR-7-27 0.13 26.25 2.88 15.00 0.55 0.74 49.71 0.75 2.65 0.34 98.98 

08WR-7-28 0.09 27.37 2.79 12.59 0.52 0.70 50.82 0.68 2.88 0.19 98.63 

08WR-7-29 0.28 26.43 3.17 13.25 0.57 0.73 50.36 0.77 2.68 0.22 98.46 

08WR-7-30 0.49 27.02 3.31 11.15 0.52 0.88 51.88 0.68 2.58 0.12 98.63 

08WR-7-31 0.16 26.24 2.63 14.83 0.48 0.72 50.84 0.86 2.08 0.25 99.09 

08WR-7-32 0.12 25.52 3.60 15.73 0.59 1.16 48.97 0.73 3.39 0.17 99.98 

08WR-7-33 0.08 27.33 2.44 13.65 0.42 0.18 52.15 0.73 2.01 0.20 99.20 

08WR-7-34 0.44 24.88 4.37 16.28 0.68 1.10 47.97 0.63 3.76 0.34 100.44 

            

08WR-8-1 0.17 20.74 4.55 18.33 0.46 4.84 44.74 0.77 2.60 0.30 97.50 

08WR-8-2 0.19 22.69 3.82 19.86 0.48 0.96 46.84 0.76 2.54 0.28 98.41 

08WR-8-3 0.26 22.62 3.72 19.52 0.47 1.88 46.35 0.86 2.32 0.48 98.49 

08WR-8-4 0.22 20.55 4.20 20.22 0.50 4.11 45.14 0.73 2.29 0.34 98.30 

08WR-8-5 0.12 14.62 7.68 16.61 0.33 15.94 39.10 0.69 3.16 0.34 98.60 

08WR-8-6 0.10 13.09 7.74 16.09 0.36 18.45 37.71 0.66 2.91 0.35 97.46 
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08WR-8-7 0.15 22.40 3.91 18.95 0.44 2.66 46.45 0.76 2.30 0.41 98.42 

08WR-8-8 0.12 15.99 6.55 18.01 0.38 12.82 40.36 0.66 3.16 0.26 98.32 

08WR-8-9 0.14 20.03 4.71 20.03 0.30 5.53 43.18 0.79 3.04 0.40 98.14 

08WR-8-10 0.20 21.46 4.03 21.40 0.42 2.03 45.13 0.70 2.57 0.45 98.40 

08WR-8-11 0.08 18.20 5.60 19.14 0.42 9.04 42.17 0.81 2.90 0.35 98.70 

08WR-8-12 0.22 21.34 4.35 18.91 0.43 4.13 45.82 0.77 2.35 0.37 98.69 

08WR-8-13 0.08 18.75 5.05 19.92 0.34 7.80 42.39 0.72 3.07 0.33 98.45 

08WR-8-14 0.13 22.13 3.99 19.65 0.39 2.31 46.10 0.86 2.40 0.35 98.30 

08WR-8-15 0.16 24.81 3.52 17.05 0.46 0.02 47.96 0.70 2.89 0.31 97.88 

            

08WR-16-1 0.12 21.58 3.96 23.90 0.64 0.14 43.86 0.72 4.17 0.19 99.28 

08WR-16-2 0.21 21.33 4.99 22.34 0.62 0.18 44.29 0.74 3.76 0.21 98.66 

08WR-16-3 0.19 22.51 4.16 20.73 0.58 0.01 45.09 0.75 3.47 0.28 97.76 

08WR-16-4 0.11 23.55 4.49 18.46 0.59 0.10 46.73 0.79 3.02 0.29 98.14 

08WR-16-5 0.24 24.13 3.94 19.35 0.22 0.00 46.02 0.73 3.93 0.35 98.92 

08WR-16-6 0.14 22.77 3.92 22.17 0.51 0.08 44.95 0.65 4.58 0.10 99.87 

            

08WR-20-1 0.08 22.27 2.72 21.55 0.59 0.04 48.86 0.68 0.95 0.18 97.93 

08WR-20-2 0.12 22.79 2.43 20.52 0.64 0.06 48.95 0.58 1.48 0.08 97.64 

08WR-20-3 0.08 22.85 2.68 20.85 0.79 0.43 48.89 0.66 1.66 0.12 99.01 

08WR-20-4 0.10 24.39 2.33 17.07 0.80 0.76 50.05 0.51 1.82 0.07 97.89 

08WR-20-5 0.11 22.87 3.87 25.38 1.07 0.41 37.22 0.44 3.93 2.26 97.56 

08WR-20-6 0.11 25.21 2.99 16.10 0.80 0.42 49.59 0.54 2.16 0.31 98.23 

08WR-20-7 0.09 24.32 4.11 15.48 1.05 0.71 49.06 0.52 2.23 0.22 97.79 

08WR-20-8 0.13 20.83 2.54 24.16 0.59 0.07 47.22 0.68 1.40 0.07 97.68 

08WR-20-9 0.15 22.74 2.57 21.11 0.57 0.09 49.29 0.58 1.43 0.09 98.62 

08WR-20-10 0.10 22.99 4.12 18.49 1.14 1.99 46.35 0.53 4.07 0.03 99.82 

08WR-20-11 0.07 23.51 3.91 17.56 1.16 2.00 47.25 0.44 3.88 0.00 99.79 

08WR-20-12 0.19 23.61 3.34 17.29 1.14 1.67 48.52 0.53 2.99 0.00 99.28 

08WR-20-13 0.01 23.24 3.41 18.69 1.13 1.65 47.63 0.48 3.23 0.02 99.49 

08WR-20-14 0.11 24.55 2.68 16.38 0.96 0.86 49.36 0.56 2.42 0.06 97.94 

08WR-20-15 0.05 23.78 3.90 18.40 1.20 0.40 47.35 0.52 3.31 0.18 99.11 

08WR-20-16 0.10 23.55 3.90 19.00 1.13 0.42 47.09 0.58 3.34 0.20 99.29 

08WR-20-17 0.14 22.30 3.07 20.99 0.92 0.60 48.13 0.51 2.03 0.10 98.78 

08WR-20-18 0.10 24.98 2.33 16.74 0.77 0.53 50.45 0.60 1.90 0.11 98.51 

08WR-20-19 0.10 23.31 3.11 18.73 0.85 0.67 48.50 0.55 2.06 0.15 98.03 

08WR-20-20 0.09 23.89 3.63 17.73 1.13 1.15 48.00 0.53 3.41 0.04 99.60 

Analytical methods for these data are the same as those described in Chapter 3.4.1 
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Table A3 Ilmenite compositions from the East African Rift 

 SiO2 TiO2 Al2O3 Fe2O3 V2O3 Cr2O3 FeO MnO MgO CaO Total 

08WR-7-1 1.64 46.06 1.34 16.91 0.30 0.03 26.03 0.75 3.82 2.54 99.41 

08WR-7-2 0.14 49.80 0.16 6.73 0.40 0.04 37.65 0.95 2.30 0.33 98.49 

            

08WR-8-1 0.21 48.74 0.18 7.88 0.53 0.21 36.00 0.75 2.67 0.25 97.40 

08WR-8-2 0.14 49.80 0.16 6.73 0.40 0.04 37.65 0.95 2.30 0.33 98.49 

            

08WR-16-1 0.21 48.74 0.18 7.88 0.53 0.21 36.00 0.75 2.67 0.25 97.40 

08WR-16-2 3.79 46.19 1.21 7.20 0.55 0.25 34.15 0.67 2.37 0.27 96.65 

            

08WR-20-1 0.02 50.34 0.56 12.72 0.60 0.10 28.63 0.47 6.76 0.05 100.25 

08WR-20-2 0.09 48.74 0.36 10.88 0.46 0.05 34.99 0.58 2.86 0.35 99.35 

08WR-20-3 0.04 48.81 0.28 10.43 0.55 0.05 35.70 0.60 2.56 0.23 99.25 

08WR-20-4 0.06 48.42 0.33 10.52 0.51 0.05 35.31 0.57 2.65 0.12 98.54 

08WR-20-5 0.06 48.85 0.36 10.33 0.52 0.04 34.31 0.59 3.29 0.18 98.52 

08WR-20-6 0.04 48.67 0.34 10.92 0.53 0.10 34.59 0.50 2.97 0.36 99.03 

08WR-20-7 0.10 48.51 0.38 11.50 0.56 0.07 33.23 0.55 3.34 0.63 98.86 

08WR-20-8 0.01 49.25 0.29 9.30 0.60 0.08 35.49 0.56 2.92 0.08 98.57 

08WR-20-9 0.06 48.62 0.35 10.39 0.52 0.05 34.62 0.58 2.92 0.31 98.42 

08WR-20-10 0.07 49.68 0.41 11.18 0.56 0.03 31.84 0.52 4.83 0.37 99.46 

08WR-20-11 0.09 48.55 0.19 8.86 0.37 0.01 37.01 0.63 2.24 0.22 98.17 

08WR-20-12 0.05 48.23 0.24 10.67 0.63 0.10 34.74 0.49 2.79 0.31 98.25 

08WR-20-13 0.02 48.80 0.19 9.21 0.51 0.09 36.36 0.61 2.50 0.15 98.44 

Analytical methods for these data are the same as those described in Chapter 3.4.1 
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APPENDIX B 

Table B1 Mutnovsky magnetite compositions 

Magnetite SiO2 TiO2 Al2O3 Fe2O3 V2O3 Cr2O3 FeO MnO MgO CaO Total 

CM-47-1 0.15 15.47 1.75 36.76 0.74 0.01 43.44 0.57 1.24 0.02 100.14 

CM-47-2 0.09 15.50 1.72 36.85 0.75 0.02 43.30 0.63 1.24 0.02 100.12 

CM-47-3 0.10 15.17 1.78 37.23 0.85 0.02 43.08 0.61 1.21 0.02 100.06 

CM-47-4 0.17 13.84 1.95 39.07 0.77 0.06 41.67 0.56 1.23 0.04 99.35 

CM-47-5 0.16 17.62 1.47 32.12 0.52 0.01 44.54 0.67 1.33 0.04 98.47 

CM-47-6 0.16 14.45 1.81 38.49 0.76 0.04 42.23 0.58 1.28 0.05 99.85 

CM-47-7 0.13 12.42 2.58 41.78 0.72 0.02 38.55 0.51 2.35 0.07 99.14 

CM-47-8 0.13 13.89 2.41 39.08 0.76 0.03 41.74 0.56 1.43 0.02 100.04 

CM-47-9 0.39 17.98 1.41 31.24 0.42 0.00 45.00 0.67 1.31 0.10 98.51 

CM-47-10 0.13 12.17 2.84 42.84 0.87 0.06 39.36 0.49 2.14 0.05 100.94 

CM-47-11 0.10 13.52 2.63 40.11 0.78 0.05 41.05 0.49 1.85 0.00 100.57 

CM-47-12 0.10 13.53 2.63 39.93 0.83 0.07 40.96 0.49 1.85 0.02 100.43 

CM-47-13 0.09 13.69 2.58 39.79 0.77 0.07 41.10 0.47 1.84 0.02 100.43 

CM-47-14 0.12 13.54 2.57 39.84 0.78 0.06 40.83 0.47 1.89 0.02 100.13 

CM-47-15 0.14 13.73 2.44 39.56 0.77 0.04 41.42 0.52 1.62 0.02 100.27 

CM-47-16 0.15 13.69 2.55 39.46 0.77 0.04 41.30 0.52 1.53 0.07 100.08 

CM-47-17 0.55 16.94 1.41 35.22 0.41 0.03 39.14 0.70 1.18 1.35 96.92 

CM-47-18 0.16 14.97 1.74 37.39 0.75 0.05 42.81 0.60 1.22 0.03 99.73 

CM-47-19 0.12 13.55 2.30 38.52 0.77 0.04 40.93 0.52 1.43 0.00 98.18 

CM-47-20 0.10 13.41 2.37 38.75 0.74 0.05 40.75 0.49 1.46 0.00 98.13 

CM-47-21 0.15 13.83 2.51 39.42 0.73 0.04 42.02 0.51 1.45 0.00 100.65 

CM-47-22 0.11 12.50 2.54 41.58 0.93 0.05 38.68 0.45 2.44 0.04 99.33 

CM-47-23 0.12 15.00 1.93 37.76 0.68 0.04 43.06 0.59 1.23 0.02 100.42 

CM-47-24 0.12 14.90 1.92 36.54 0.74 0.04 42.42 0.55 1.21 0.02 98.47 

CM-47-25 0.14 14.44 1.95 38.41 0.76 0.09 42.48 0.58 1.22 0.02 100.08 

CM-47-26 0.13 14.15 1.99 37.65 0.78 0.05 41.68 0.58 1.25 0.00 98.24 

CM-47-27 0.30 17.29 1.38 36.50 0.48 0.00 39.15 0.67 1.28 1.43 98.48 

CM-47-28 0.16 17.58 1.49 32.06 0.57 0.04 44.48 0.68 1.31 0.05 98.43 

CM-47-29 0.14 15.16 1.73 36.33 0.50 0.00 42.35 0.61 1.23 0.05 98.07 

CM-47-30 0.14 15.36 1.76 36.98 0.49 0.01 43.05 0.63 1.24 0.04 99.71 

            

CM-186-1 0.13 6.12 0.71 54.35 0.75 0.10 35.25 0.50 0.05 0.16 98.12 

CM-186-2 0.14 7.60 0.91 51.32 0.67 0.03 36.28 0.31 0.32 0.18 97.76 

CM-186-3 0.11 7.61 0.82 51.37 0.76 0.02 36.25 0.43 0.26 0.17 97.79 

CM-186-4 0.14 8.34 0.90 50.25 0.73 0.04 36.66 0.37 0.27 0.28 97.99 

CM-186-5 0.14 7.70 0.70 51.43 0.84 0.02 36.80 0.51 0.09 0.15 98.36 

CM-186-6 0.14 7.83 0.83 50.29 0.80 0.05 36.57 0.31 0.19 0.16 97.16 

CM-186-7 0.11 9.55 0.65 47.73 0.79 0.01 38.12 0.50 0.14 0.17 97.77 

CM-186-8 0.10 8.78 0.63 49.50 0.81 0.02 36.89 0.57 0.11 0.29 97.68 

CM-186-9 0.14 7.31 0.81 52.09 0.74 0.05 35.98 0.43 0.18 0.22 97.97 

CM-186-10 0.16 8.54 0.96 48.86 0.85 0.02 36.79 0.37 0.55 0.13 97.22 

CM-186-11 0.10 6.33 0.71 53.57 0.76 0.05 35.39 0.36 0.10 0.13 97.51 

CM-186-12 0.11 10.69 0.65 44.20 0.66 0.03 38.30 0.48 0.43 0.13 95.68 
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CM-186-13 0.10 6.96 0.73 52.82 0.71 0.02 35.86 0.37 0.17 0.17 97.90 

CM-186-14 0.10 8.09 0.70 50.49 0.63 0.02 36.70 0.45 0.17 0.17 97.50 

CM-186-15 0.11 8.22 0.91 49.79 0.66 0.00 36.48 0.30 0.30 0.21 96.97 

CM-186-16 0.39 8.78 0.95 47.35 0.65 0.05 36.95 0.38 0.52 0.15 96.16 

CM-186-17 0.13 7.87 0.85 50.67 0.74 0.04 36.76 0.45 0.20 0.13 97.85 

            

CM-29-1 0.27 19.47 1.34 28.25 1.15 0.04 45.76 0.68 1.09 0.30 98.34 

CM-29-2 0.76 18.79 1.53 28.71 1.34 0.10 46.32 0.73 1.29 0.19 99.76 

CM-29-3 0.32 13.71 2.69 38.08 1.31 0.05 41.96 0.37 1.05 0.18 99.71 

CM-29-4 0.51 17.11 1.58 32.30 1.32 0.08 45.40 0.52 1.09 0.09 100.00 

CM-29-5 0.37 15.43 2.29 34.99 1.31 0.07 44.33 0.61 0.64 0.11 100.15 

CM-29-6 0.29 16.67 1.46 34.29 1.25 0.03 44.26 0.73 1.13 0.15 100.26 

CM-29-7 0.16 14.04 1.79 39.73 1.22 0.10 42.80 0.36 0.88 0.13 101.21 

CM-29-8 0.30 16.43 1.83 34.50 1.07 0.06 44.23 0.52 1.26 0.12 100.32 

            

CM-9a-1 0.16 14.28 1.80 41.24 0.57 0.04 42.23 0.62 1.68 0.06 102.67 

CM-9a-2 0.18 14.18 1.78 41.18 0.57 0.04 42.19 0.58 1.70 0.04 102.44 

CM-9a-3 0.21 14.34 1.93 40.62 0.54 0.03 42.52 0.52 1.53 0.08 102.33 

CM-9a-4 0.14 14.48 1.96 40.93 0.62 0.02 42.82 0.54 1.57 0.06 103.14 

CM-9a-5 0.08 13.46 1.74 41.51 0.55 0.07 40.69 0.49 1.88 0.02 100.49 

CM-9a-6 0.31 13.65 1.86 41.46 0.55 0.07 41.38 0.50 1.79 0.09 101.66 

CM-9a-7 0.26 13.76 1.92 41.39 0.53 0.04 41.26 0.53 1.84 0.10 101.64 

CM-9a-8 0.27 13.60 1.91 41.46 0.55 0.06 41.17 0.55 1.83 0.08 101.48 

            

CM-8a-1 0.43 16.68 1.65 35.00 0.38 0.01 45.25 0.62 1.09 0.06 101.17 

CM-8a-2 0.37 15.05 1.52 38.63 0.35 0.04 43.56 0.65 0.91 0.15 101.22 

CM-8a-3 0.33 16.08 1.61 36.80 0.42 0.03 44.96 0.70 1.01 0.03 101.96 

CM-8a-4 0.63 13.82 1.53 41.20 0.14 0.00 41.88 0.68 0.78 0.41 101.06 

CM-8a-5 0.36 16.39 1.75 36.56 0.35 0.00 45.08 0.67 1.11 0.09 102.37 

CM-8a-6 0.32 16.95 1.64 34.11 0.31 0.00 44.85 0.71 1.15 0.06 100.08 

CM-8a-7 0.23 16.68 1.68 36.41 0.36 0.01 45.49 0.67 1.09 0.03 102.64 

CM-8a-8 0.34 17.34 1.62 33.30 0.33 0.04 45.39 0.71 1.15 0.03 100.25 

CM-8a-9 0.20 17.59 1.67 33.24 0.37 0.01 45.20 0.65 1.35 0.04 100.32 

CM-8a-10 0.26 16.82 1.71 34.59 0.39 0.02 44.77 0.62 1.34 0.01 100.53 

CM-8a-11 0.43 16.63 1.52 35.77 0.42 0.00 44.38 0.63 1.36 0.17 101.30 

Analytical methods for these data can be found in Chapter 3.4.1 
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Table B2 Mutnovsky ilmenite compositions 

Ilmenite SiO2 TiO2 Al2O3 Fe2O3 V2O3 Cr2O3 FeO MnO MgO CaO Total 

CM-47-1 1.91 44.81 0.82 14.37 0.44 0.00 32.35 0.83 2.33 0.39 98.26 

CM-47-2 0.25 44.82 0.25 21.45 0.44 0.00 25.20 0.78 1.44 7.60 102.22 

CM-47-3 0.17 46.16 0.17 17.56 0.39 0.00 30.56 0.81 1.77 4.18 101.77 

CM-47-4 0.15 46.11 0.15 16.85 0.21 0.05 31.99 0.49 1.25 4.44 101.69 

            

CM-186-1 0.08 44.93 0.05 14.12 0.32 0.00 36.28 0.80 1.14 0.20 97.90 

CM-186-2 0.13 45.31 0.08 13.60 0.35 0.00 36.07 0.84 1.22 0.35 97.94 

CM-186-3 0.23 43.93 0.05 16.61 0.38 0.00 35.83 0.69 0.91 0.25 98.88 

CM-186-4 0.08 44.27 0.04 15.92 0.46 0.04 36.38 0.66 0.63 0.18 98.66 

CM-186-5 0.58 44.50 0.09 13.64 0.38 0.00 36.89 0.69 0.77 0.24 97.73 

CM-186-6 0.10 43.10 0.07 16.77 0.41 0.04 35.39 0.68 0.65 0.14 97.35 

CM-186-7 0.85 42.27 0.08 16.64 0.34 0.07 34.82 0.78 1.03 0.20 97.08 

CM-186-8 0.08 42.18 0.05 17.25 0.38 0.00 34.76 0.57 0.66 0.17 96.10 

CM-186-9 0.08 41.81 0.04 17.29 0.42 0.02 34.32 0.67 0.56 0.26 95.45 

CM-186-10 0.08 44.63 0.05 15.39 0.39 0.00 37.16 0.62 0.47 0.24 99.02 

CM-186-11 0.13 45.05 0.10 13.70 0.33 0.06 35.52 0.87 1.54 0.13 97.44 

CM-186-12 0.20 45.05 0.06 14.17 0.40 0.03 36.27 0.75 1.15 0.20 98.30 

CM-186-13 0.48 45.45 0.12 12.84 0.34 0.00 37.34 0.86 0.83 0.21 98.44 

            

CM-29-1 0.28 49.36 0.13 11.17 0.50 0.02 36.94 0.50 2.88 0.13 101.91 

CM-29-2 0.13 47.98 0.11 11.69 0.41 0.01 36.94 0.62 2.10 0.26 100.25 

            

CM-9a-1 18.67 31.61 6.30 20.71 0.35 0.01 17.36 0.30 1.43 2.25 98.99 

CM-9a-2 11.97 37.34 3.54 15.74 0.50 0.00 26.99 0.39 1.47 1.16 99.10 

            

CM-8a-1 0.17 47.00 0.17 12.57 0.29 0.00 36.95 0.79 1.76 0.03 99.73 

CM-8a-2 0.39 46.33 0.21 12.51 0.31 0.00 36.09 0.81 1.92 0.03 98.59 

CM-8a-3 0.18 47.32 0.22 12.72 0.32 0.03 36.51 0.76 2.00 0.06 100.12 

CM-8a-4 0.19 47.13 0.18 12.92 0.28 0.00 36.95 0.86 1.77 0.03 100.30 

CM-8a-5 0.25 47.48 0.21 12.45 0.29 0.00 36.83 0.78 2.03 0.04 100.35 

CM-8a-6 0.14 47.39 0.19 12.60 0.29 0.02 36.62 0.81 2.06 0.03 100.15 

CM-8a-7 0.21 47.37 0.20 12.74 0.31 0.00 36.82 0.76 1.95 0.05 100.40 

Analytical methods for these data can be found in Chapter 3.4.1 
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