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ABSTRACT 

 

 

INVESTIGATING THE ROLE OF OCCUPANTS, COMPLEX 

CONTEXTUAL FACTORS, AND NORMS ON RESIDENTIAL 

ENERGY CONSUMPTION 

by 

Kyle Anderson 

 

Human behavior in the built environment has repeatedly been found to have 

significant meaningful impact on energy consumption. As a consequence 

researchers have spent considerable efforts investigating various approaches to 

induce improved occupant behavior, with much recent attention on the use of 

normative approaches. However, it still remains unclear as to how occupants 

behave in buildings, how complex factors influence behavioral interventions, and 

what the long term effects of intervening are. With this background in mind, there 

are three broad goals in this research: (1) to improve our understanding of the 

impact of occupant decision making in residential energy consumption, (2) to 

enhance our understanding of how individual characteristics and complex 

contextual factors influence change in individual behavior and its diffusion through 

communities when subjected to normative intervention, and (3) to identify more 

effective normative behavioral strategies for reducing energy consumption in the 

built environment. In order to achieve these diverse research objectives, I 



xiii 

 

conducted four interrelated studies based on an iterative research framework that 

applies an interdisciplinary research approach integrating field experiments with 

computational modeling. Through these studies it was found that: (1) vast 

quantities of energy are spent in unoccupied residences and that the percentage of 

energy consumed while unoccupied in a residence is unrelated to total use; (2) 

when applying behavior interventions social network structure can meaningfully 

affect how behavior diffuses and intervention outcome; (3) normative messaging 

duration positively influenced the durability of behavior change; (4) not all 

individuals were equally influenced by normative messaging with high norm 

individuals reducing energy consumption and low norm individuals increasing 

consumption; (5) by exploiting behavioral responses to normative messaging 

significant reductions in energy consumption could conceptually be achieved. 

These findings improve our understanding of occupant behavior, how occupants 

are influenced by social forces in the built environment, and how complex 

contextual factors moderate the diffusion of behavior. Further, the findings provide 

insight into how to improve the environmental sustainability of buildings through 

behavioral approaches. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 BACKGROUND 

Globally, concerns over unsustainable consumption of energy resources and the emission 

of greenhouse gases continue to grow. It is predicted that continued increases in the atmospheric 

concentrations of carbon dioxide caused by anthropogenic emissions will lead to significant 

changes in climate with serious consequences (Houghton et al. 2001; Thomas et al. 2004).  

In the US and other developed countries, buildings are the largest consumers of energy, 

accounting for approximately 40% of all primary energy use (EIA 2014; Perez-Lombard et al. 

2008). Within the building sector households account for slightly over 21% of all energy use in 

the US and over 26% across the EU-28 countries (EIA 2014; European Commission 2013). This 

makes buildings the largest single contributor to energy consumption and a major contributor to 

climate change. In the US alone, household fuel consumption results in the emission of nearly 

1.2 billion metric tons of CO2 equivalent emissions annually (EPA 2012). Given the vast 

importance of the building sector on anthropogenic greenhouse emissions, many countries are 

taking significant steps to reduce carbon emissions from the built environment (US Congress 

2007; Poel et al 2007).  

Efforts to reduce the impact of building energy consumption and emissions have 

historically taken two forms, design improvements and behavioral improvements. Design 

improvements focus on improving the efficiency of building systems and include everything 

from how to strategically place trees (Simpson and McPherson 1990) to renewable energy 

systems (Hepbasli and Akdemir 2004) and advanced building control systems (Foley 2012). The 
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alternative approach to this focuses on occupant behavior and methods to promote 

environmentally preferable behavior from occupants.   

While both methods for reducing carbon emissions from the built environment are 

crucially important, in the end all buildings are operated by humans and how occupants chose to 

behave in buildings will, to a great extent, determine how much energy is consumed in buildings. 

This is evident in the significant impact of occupant behavior on energy consumption which 

often creates differences in consumption between 5% and 25% (Bahaj et al. 2007; Emery and 

Kippenhan 2006; Santin et al. 2009; Yu et al. 2011; Yun et al. 2011)—and even differences in 

consumption greater than 100% in identical buildings (Gill et al. 2010).  It is also frequently 

evident after technological improvements have been implemented as expected reductions in 

energy use are often not achieved as a result of changes in occupant behavior (Druckman et al. 

2011; Sorrell et al. 2009).  In addition, as buildings become more efficient and passive in design, 

the influence of occupant behavior on energy consumption is expected to become even more 

pronounced (Robinson and Haldi 2011). When considered in the aggregate, improving human 

behavior in the built environment has substantial potential to reduce carbon emissions and 

achieve national energy reduction goals (Dietz et al. 2009; Gardner and Stern 2008).  

 

1.2 PRO-ENVIRONMENTAL BEHAVIOR INTERVENTIONS 

Given the importance of human behavior on energy consumption, since the 1970’s 

researchers have put forth models and examined numerous variables to enhance our 

understanding of what prompts one to engage in pro-environmental behaviors and which 

variables make good predictors as to whether or not an individual will partake in 

environmentally preferable behaviors (De Young 1993; Hines et al. 1987; Kaplan and Kaplan 

2009; Osbaldiston and Schott 2012; Stern 2000; Stern 2011; Wilson and Dowlatabadi 2007).  

Many of these studies have been dedicated to encouraging environmentally responsible energy 

use in buildings and most have focused on attempting to change repetitive, or curtailment, 

behaviors such as turning off the lights when leaving a room. Repetitive behaviors, as opposed to 

one time behaviors such as purchasing new more efficient heating systems, have been the main 

focus of most intervention studies. The extensive focus on curtailment behaviors is partially 
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because they typical have no financial or logistical barriers which is not true of many one-time 

behaviors (McKenzie-Mohr 2000) and are applicable to a larger population base including 

renters which make up over a third of all US households (Census Bureau 2013a). 

To promote improved occupant behavior many diverse intervention techniques have been 

applied including environmental education, information, social modeling, intervention agents, 

incentives, disincentives, competitions, goal setting, commitments, individual or group feedback, 

rewards, and penalties. Of these various strategies, substantial work has been focused on 

providing individuals with feedback of their behavior (Darby 2006). Early feedback studies were 

mainly performed by psychologists and largely presented participants with feedback on previous 

behavior only. In these studies occupants have been provided with daily, weekly, monthly or 

continuous feedback (Abrahamse et al. 2005); the results of the studies have varied substantially. 

Several studies reported positive effects on energy consumption between roughly 5 and 15% 

(Bittle et al. 1979a; Hutton et al. 1986; McClelland and Cook 1979; Van Houwelingen and Van 

Raaij 1989; Wilhite and Ling 1995), but others have also reported no significant change in 

consumption (Katzev et al. 1981; Sexton et al. 1987). In addition, feedback has also been 

reported to have undesired effects where high energy consumers will decrease consumption, but 

low and midlevel consumers increase their use as a result of feedback (Bittle et al. 1979b; 

Schultz et al. 2007). 

More recently, researchers have begun employing the use of comparative feedback which 

presents individuals with feedback on their own behavior as well as social norms of a reference 

group. Social norms, although often underappreciated through self-appraisal, have repeatedly 

been found to be a significant predictor of how one behaves (Nolan et al. 2008) and have been 

successfully applied in energy use behavior interventions. The most common application to date 

is the use of descriptive norm messaging; consumers are provided mean energy use data of other 

households in their locality (Schultz et al. 2007). These interventions may also attach injunctive 

norm messages, messages expressing approval or disapproval of the consumer’s use. Large-scale 

experiments across the US using normative messages containing both descriptive and injunctive 

norm messages on monthly and quarterly energy bills have reduced residential energy 

consumption by around 2% (Allcott 2010; Allcott and Rodgers 2012; Ayres et al. 2013). Norm-

centric interventions, as opposed to financially focused interventions, have the advantage of 
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being applicable in situations where the target population has no financial incentive to change 

behavior. This includes rental properties, offices, hotels, and dormitories. Appealing to occupants 

through the use of social norms has been shown effective in these types of buildings (Nolan et al. 

2008; Goldstein et al. 2008; Peschiera et al. 2010). 

With intervention strategies that focus on comparative information to elicit behavioral 

change such as normative feedback messaging interventions, system and individual behavior 

change dynamically during and after the implementation of the intervention. Considering the 

dynamic nature of these interventions, understanding how behavior spreads and changes over 

time would allow interveners to develop more favorable intervention strategies.  Regrettably, 

collecting data necessary to explore these interactions through field experiments can be cost 

prohibitive and face privacy challenges. Therefore, researchers have begun developing 

simulation models to analyze the potential effect of implementing normative feedback 

interventions in building communities (Anderson et al. 2012; Anderson and Lee 2013; Anderson 

et al. 2013; Azar and Menassa 2012a; Chen et al. 2012; Zhang et al. 2011). These efforts have 

applied computer modeling methodologies to simulate human interactions and the spread of 

behavior. The use of simulation experiments, in contrast to field experiments which have 

traditionally been conducted in this field, offer a cost-effective and expedient means to assess 

potential success and failure of interventions. These virtual experiments can provide insight to 

decision makers as to the potential outcomes and the distributions of outcomes of the tested 

intervention strategies. Further, these virtual experiments provide researchers a new method to 

explore how specific complex contextual factors and behavior setting characteristics, such as 

social network structure, contribute to the diffusion of behavior in building and residential 

communities. 

 

1.3 PROBLEM STATEMENT 

Unfortunately, despite the large body of research on energy use feedback interventions, 

several key limitations exist throughout much of the literature. First, while previous research 

efforts have made significant contributions to our understanding of behavior interventions many 

studies have suffered from limited sample sizes, variable measurement, and have used mixed 
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intervention designs (Abrahamse et al. 2005). Often studies will measure only behavioral 

determinants (i.e., predictor variables to behavior such as environmental attitudes or knowledge) 

or behavioral outputs (e.g., energy use) (Abrahamse et al. 2005). In doing so, limited knowledge 

is gained into causal relations between the two. For instance, although a study might find that 

individuals increased their knowledge about environmental issues or identified with norms, if no 

data is collected on energy use over the same period no insight is gained as to whether or not 

behavior actually changed as a result of the intervention. In other words, it is critically important 

to identify both whether the intervention was truly successful and the reasons why it was or was 

not. This limitation of much of the previous research greatly restricts the usefulness of many 

previous findings. 

Additionally, almost all studies to date have focused only on short-term behavior change. 

Many interventions have been shown to result in substantial energy savings due to changes in 

behavior, often between 5% and 15% and sometimes upward of 20%. Unfortunately, the changes 

in energy use behavior are rarely measured over significant durations (i.e., a year or more) to see 

if they are maintained or if behavior relapses to baseline levels upon withdrawal or with 

continued intervening. In the limited studies where intervention effects have been measured over 

more substantial durations, they have often not proved durable after intervention withdrawal or 

provide much smaller energy use reductions than shorter term studies (Abrahamse et al. 2005; 

Allcott and Rodgers 2012; Darby 2006; Geller 2002; Osbaldiston and Schott 2012). Until 

recently, very few norm-based feedback studies had given any consideration to the durability of 

the behavior change induced through intervention. The durability of an intervention is assessed 

by whether or not treatment effects persist after intervention withdrawal. In a rare study that 

investigated longer-term effects of normative energy use feedback, Allcott and Rodgers (2012) 

found that households never fully habituated to receiving monthly messages. Comparing groups 

that had interventions withdrawn after one year with groups that had interventions withdrawn 

after two years, they found that effects were much more persistent with the group that had 

received messages for two years. However, it remained less clear why the additional duration of 

messaging resulted in more persistent behavior change. 

Further, relatively little is currently known as to how complex factors influence the 

outcomes of these normative interventions and the state-of-the-art in intervention modeling has 
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not nearly advanced to the point of being useful for predictive purposes.  More specifically 

relating to the first limitation, how the specific building or residential community social networks 

affect the spread and diffusion of energy use behaviors is not well understood. To date 

computational models that simulate behavior interventions have not considered the influence that 

social network structure exerts on simulation results. This is critical because from one study to 

the next different social networks structures are implemented (Azar and Menassa 2012a; Chen et 

al. 2012; Zhang et. al 2011). Using different social network structures and not understanding the 

role they play in determining intervention outcomes dramatically reduces the generalizability of 

the findings from these studies. Identifying common social network structures in target 

populations and exploring their effect on interventions remains a critical prerequisite to modeling 

interventions if they are to eventually be used for predictive modeling and ‘what if’ scenario 

evaluations. Further, despite the state-of-the-art in intervention modeling advancing rapidly over 

the last few years most models have lacked strong theoretical foundations and empirical 

evidence for behaviors rules which limits model usefulness to highly conceptual exploratory 

analyses. In order to advance beyond this level of analysis and mature towards predictive 

modeling it is necessary to develop conceptually sound and theoretically robust models to 

simulate human behavior. These models then in turn must be validated and calibrated with 

empirical findings from longitudinal field experiments in the populations they are attempting to 

model. 

 

1.4 RESEARCH OBJECTIVES AND APPROACH 

With this background in mind, there are three broad goals in this research: (1) to improve 

our understanding of the impact of occupant decision making in residential energy consumption, 

(2) to enhance our understanding of how individual characteristics and complex contextual 

factors influence change in individual behavior and its diffusion through communities when 

subjected to normative intervention, and (3) to identify more effective normative behavioral 

strategies for reducing energy consumption in the built environment. The following are more 

specific objectives of this research:    
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1. To measure the operational efficiency of residences: Despite the large body of work 

attempting to improve occupant energy behavior and vast research efforts quantifying 

energy consumption, a poor understanding of the operational efficiency of residences 

remains. Quantifying the operational efficiency of residences will provide a target for 

energy intervention programs      

2. To explore the relationship between social network structure and pro-

environmental behavior intervention outcomes: It is not clear at this time how 

complex factors contribute to the outcome of normative based behavior interventions. 

Since normative interventions focus on the spread of behavior through social networks 

understanding how social network structure influences diffusion of behavior has 

significant implications for developing improved intervention strategies as well as for the 

application of predictive intervention modeling.  

3. To identify and measure relationships between behavioral determinants and 

normative feedback intervention effectiveness in both the short and long term: 

Although research on pro-environmental behavior interventions began over forty years 

ago there has been extremely limited study of the long term effects of most intervention 

techniques. Understanding whether or not normative feedback programs induce 

sustainable long term behavioral improvements and under what circumstances these 

methods are more effective has significant policy implications.         

4. To create a formal behavior model for occupant behavior in order to predictively 

model normative feedback interventions: A formal model of how occupants respond to 

normative feedback will allow interveners the opportunity to conduct hypothetical 

experiments and test alternative intervention strategies. The outcomes from these 

experiments can provide estimates into expected intervention outcomes and risks. 

In order to achieve these diverse research objectives I have developed an iterative research 

framework that applies an interdisciplinary research approach (Figure 1.1). This framework 

integrates the use of: 1) longitudinal field experiments which consist of exploratory data analysis, 

survey data collection, behavior interventions, and statistical analysis; and 2) formalized 

behavior modeling and computational modeling and simulation techniques.  The first half of the 
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framework, the use of field experiments, has been widely used in the social sciences. This 

approach allows researchers to test causal relationships between variables of interest and 

provides invaluable real world data. The second half of the research framework, computational 

modeling and simulation, has been extensively used in the study of complex systems. Simulation 

and modeling permits researchers to test hypotheses that are often cost prohibitive or very 

difficult to test in the field in virtual laboratories.  

 

 

Figure 1.1: Iterative research framework. 

 

The key element of this research framework is its iterative structure. Data and findings 

collected from the field experiments will feed into and guide the modeling research. This will 

provide a strong empirical foundation for the behavior models and a means by which to validate 

and calibrate the simulation models. Through this process it will improve model validity and 

credibility. With more refined and calibrated models new hypotheses can be tested in a virtual 

building community before being implemented in the field. This provides a very cost efficient 

and quick method for identifying novel intervention strategies which are more likely to be 
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successful when deployed into live populations. Further, findings from the simulation work can 

also be used to direct the work done in the field in several respects. First it can identify areas to 

focus on and collect additional data. Second, modeling work can propose new hypotheses as to 

the mechanisms by which occupants behave. 

 

1.5 DISSERTATION STRUCTURE 

The organizational structure of this dissertation is reflects the iterative framework 

presented above. The dissertation is composed of six Chapters. Chapter 1 and 6 provide the 

introduction and conclusion to this work and the interior Chapters each introduce a study which 

corresponds to a stage in the aforementioned research framework. The following is a list of the 

chapters.     

Chapter 1: Introduction. This chapter introduces the background, problem statements, 

objectives, and approaches of the entire research effort.     

Chapter 2: Opportunities for Improvement: Energy Use in Unoccupied Dormitory 

Residences. This chapter presents an exploratory analysis of energy consumption in dormitory 

residences. The study focuses primarily on quantifying the amount of energy consumed during 

periods of non-occupancy and its implications for meeting energy reduction goals through 

behavioral interventions.   

Chapter 3: Exploring the Role of Social Network Characteristics on Normative 

Behavior Interventions. This chapter details a study that models the diffusion of behavior 

through social networks which investigates the effect and role of social network structure on 

normative feedback interventions using a bottom-up modeling approach.  

Chapter 4: A Longitudinal Investigation of the Effect of Normative Energy Use 

Feedback. This chapter presents a field study that combines the use of survey and weekly 

messaging to test the effectiveness of normative feedback, the durability of behavior change 

upon intervention withdrawal, and enhance our understanding of which behavioral determinants 

are critical for inducing behavior change.  



10 

Chapter 5: An Empirically Grounded Model for Simulating Normative Feedback 

Intervention Strategies. This chapter presents the culminating work of this dissertation, a study 

that details the creation and development of a refined behavior model grounded in the empirical 

findings from the previous chapter. This model is then used to test novel normative feedback 

intervention strategies. 

Chapter 6: Conclusions and Recommendations. This chapter summarizes the findings 

and main conclusions from the previous chapters. Recommendations for future work are also 

provided and outlined.  
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CHAPTER 2 

OPPORTUNITIES FOR IMPROVEMENT: ENERGY USE IN UNOCCUPIED 

DORMITORY RESIDENCES
1
 

 

2.1 INTRODUCTION 

 Within buildings there are numerous opportunities for energy reduction and recently 

researchers have attempted to identify the amount of energy used in buildings during periods of 

non-occupancy (Brown et al. 2010; Masaoso and Grobler 2010; Lindelof and Morel 2006; 

Mahdavi et al. 2008; Yun et al. 2012). Quantifying the amount of energy that is consumed in 

buildings while unoccupied is important since it helps provide insight into the operational 

efficiency of buildings. When considering residences, it offers an approximation of the amount 

of energy that could be saved from improvements in occupant behavior without occupants 

having to make changes to their behavior in a manner that potentially could negatively affect 

his/her comfort (e.g., raising or lowering thermostat settings). This quantity, depending on the 

climate where the building is situated, is a slight overestimation of what could be considered 

waste since the vast majority of this energy could be reduced without affecting comfort
2
. The 

amount of energy spent on useful services (e.g., refrigeration) would vary by building type, size, 

and several other factors. Identifying the quantity of energy consumed in unoccupied buildings 

still offers a reasonable target for energy reduction programs and identifies a high end estimate 

                                                           
1  This chapter is adapted from Anderson, K., Song, K., Lee, S., Lee, H., and Park, M. “Energy 

Consumption in Households While Unoccupied: Evidence from Dormitories.” Energy and Buildings, 

Elsevier, 87(1), 335-341. 
2
 Not all energy spent in unoccupied residences is or should be considered wasted energy as some is used 

to perform important services such as food refrigeration, heating to maintain minimum temperatures in 

cold weather to avoid building damage. This amount of energy however is quite minimal for most 

climates as it mainly consists of food refrigeration which is less than eight percent of all electrical energy 

consumption in the home (EIA 2014). 
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of potential savings from behavioral improvements before occupants might feel as if he/she has 

to sacrifice in order to achieve energy conservation goals. 

 In a study of 160 non-domestic buildings, over 20% left on heating equipment during 

periods of vacancy (Brown et al. 2010). Such behavior can have an extremely detrimental effect 

on reducing energy consumption in the built environment and can amount to substantial 

proportions of the total energy demand of a building. Masoso and Grobler (2010) found that 

across six buildings in South Africa and Botswana more energy was used during non-working 

hours than working hours, 56% to 44%. This was largely a result of occupants failing to turn off 

lighting and equipment when leaving. Over half of the consumed energy in these buildings was 

spent because of poor occupant behavior. Other studies have highlighted the amount of energy 

consumed in vacant offices during working hours in commercial buildings as a result of leaving 

on equipment and lighting when not present, which can be up to 50% of the work day (Lindelof 

and Morel 2006; Mahdavi et al. 2008; Yun et al. 2012). In all cases, this represents a tremendous 

amount of energy being spent in empty buildings and is of greater quantity than national energy 

use reduction goals in the US seek to achieve through design improvements (U.S. Congress 

2007). Despite this unfavorable data, there is a silver-lining. Behavioral improvements, unlike 

technological improvements, can potentially be achieved at almost no cost. Further, improving 

many behaviors that can lead to energy consumption in unoccupied buildings (e.g., not turning 

off lights when leaving rooms, leaving on devices such as TVs and computers, not turning air 

conditioners) can dramatically reduce building energy consumption without impairing occupant 

comfort.  

 Unfortunately, to the best of my knowledge, studies to date using field-collected data 

have only investigated energy consumed during periods of non-occupancy in non-domestic 

buildings and little is known regarding this quantity of energy in households. Current 

approximations of energy spent in vacant households have relied on self-reported data along with 

assumptions regarding occupancy and occupant behavior to generate estimates (Meyers et al 

2010). The work presented in this chapter attempts to bridge this information gap and contributes 

to the literature by presenting a first look into the amount and percentage of energy that is 

consumed in households while unoccupied using field-collected data. The chapter proceeds with 
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a description of the research methodology. This is followed by the study’s results and discussion, 

and then ends with concluding remarks. 

 

2.2 METHODOLOGY 

Advanced metering equipment was used to collect electrical energy consumption data for 

over 1,000 rooms in seven mid-rise dormitory buildings in Seoul, South Korea. These seven 

buildings include single occupancy and double occupancy rooms housing both graduate and 

undergraduate students. Utilities are paid for indirectly and are included in the cost of housing, a 

common practice for many rental properties (one in seven rental units in the US (US Census 

Bureau 2013b)). All buildings are newly constructed, nearly identical in design, and have 

identical room floor plans for each type of room. Rooms do not have kitchens but have mini-

refrigerators. Each room has an electric ceiling mounted air conditioning unit (2.6 kW max 

capacity) with three functions: on/off, temperature up, and temperature down. Further, all rooms 

have an under-floor electric heating system, a commonplace heating system in Korea, with a max 

power rating of 4 kW. The heaters have the same control options as the air conditioning units: 

on/off, temperature up, and temperatures down. In every room electrical energy use is collected 

hourly. This data accounts for electricity consumed by plug-loads as well as electricity consumed 

as a result of lighting, heating, and cooling.  

 In addition to electrical energy use, data is collected on the occupancy status of each 

individual resident for the whole year by card entry and exit readers installed in every room. This 

provides an unparalleled level of detail of occupancy data relative to previous studies which have 

relied on work hours and water consumption data as a proxy for occupancy (Brown et al. 2010; 

Masoso and Grobler 2010). In this study, occupancy data is unique to the individual, not the 

room, and is recorded on an hourly basis. In order for an occupant to enter his/her room he/she 

must use a key card. Once he/she enters the room he/she places the key card in a card reader on 

the inside of the door. Having the key card in the reader enables the lights in the room to be 

operated as well as the ceiling mounted air conditioning unit; however, the key card reader does 

not affect the room’s heating system or outlets. From observation and discussions with occupants 

in the dorms, all residents place his/her card in the reader upon entry and rarely neglect to do so. 
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Each time the occupant enters or leaves the room, the key card is either placed in or removed 

from the reader, the time is recorded as well as the action, entering or leaving. The system 

records and stores these events and logs on an hourly basis and reports the final action of each 

hour for each occupant.  

 

 

Figure 2.1: Room’s unoccupied energy use by building. Each of the seven buildings had very 

meaningful amounts of energy consumed during periods of non-occupancy over the course of the 

year. This quantity for the seven dormitory buildings varied significantly (F6, 952 = 2.583, p = 

0.0173, n = 959). Subscripts indicate statistical differences between buildings. 

 

 Data for both individual occupancy and room electrical consumption was collected from 

January 1, 2013 through December 31, 2013. However, from April 24 to May 3 no data was 

gathered due to a system wide malfunction with the electrical metering system. In addition, some 
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rooms had to be removed from analysis due to errors and inconsistences in occupancy data as a 

result of individual card reader malfunction and remaining tenantless for substantial portions of 

the year. In total 959 rooms are included in the analysis. This includes 152 single occupancy 

units and 807 double occupancy units. The total number of units in each of the seven buildings 

(single, double) are 67 (9s, 58d), 93 (21s, 72d), 110 (19s, 91d), 106 (16s, 90d), 218 (36s, 182d), 

224 (46s, 178d), and 141 (5s, 136d) respectively.  

 Analysis of the results is conducted using multiple techniques. Analysis of variance 

(ANOVA) is used to test for statistical differences in annual energy consumption as well as 

percentage of consumption while vacant across buildings. In order to meet the normality 

assumptions of ANOVA the percentage of annual energy use while unoccupied has undergone 

an arcsine square root transformation and annual energy consumption has undergone a square 

root transformation. When significant results are found the Tukey honest significant difference 

test is applied to identify which means significantly differ. Additionally, Welch Two Sample t-

tests are used to test the significance of room type on annual percentage energy consumed in 

unoccupied rooms and net energy consumption. Correlation analyses are also run to identify 

relationships between several variables. 

 

2.3 RESULTS AND DISCUSSION 

2.3.1 Annual Energy Consumption 

Each of the seven dormitory buildings had substantial amounts of energy spent in vacant 

rooms (Figure 2.1). This amount differed significantly between the seven buildings over the 

course of the year (F6, 952 = 2.583, p = 0.0173, n = 959). Building 2 had the lowest mean 

percentage among the buildings at 26.9% while building 6 had the highest mean percentage at 

31.9% (Table 2.1). Across the seven buildings the average room spent 869 kWh a year, or 

30.2%, of all energy while vacant. Taken in aggregate, only including rooms in the analysis959 

rooms, over 833 mWh of site energy was consumed during periods of vacancy in slightly less 

than one year. Of this use it should be noted that roughly four percent is spent on useful services 

such as the operation of the mini-fridge in each room. 
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Table 2.1: Mean Annual Room Energy Use by Building and Room Type 

    Mean  Energy Use per Room (kWh)   

  
No. of Rooms 

(% Singles) 

While 

Vacant     

While 

Occupied 
Total  

Mean Use While 

Vacant (%) 

Building 1 
67 893.6 2070.3 2963.9 30.6 

(13.4) (393.5) (738.9) (898.4) (10.6) 

Building 2 
93 789.2 2152.2 2941.3 26.9 

(22.6) (396.7) (686.2) (848.6) (10.4) 

Building 3 
110 896.2 2124.9 3021.1 29.3 

(17.3) (458.9) (733.5) (955.9) (11.3) 

Building 4 
106 833.2 2079.4 2912.6 28.7 

(15.1) (446.4) (786.9) (997.3) (11.8) 

Building 5 
218 896.0 1973.6 2869.6 30.9 

(16.5) (467.2) (660.2) (871.2) (11.9) 

Building 6 
224 929.2 1953.4 2882.6 31.9 

(20.5) (469.9) (630.6) (817.1) (12.5) 

Building 7 
141 775.7 1793.5 2569.2 30.0 

(3.5) (382.1) (612.9) (787.4) (11.0) 

      

Across all buildings  
868.6 1995.5 2864.1 30.2 

 
(443.8) (685.6) (879.1) (11.7) 

      
Single Occupancy Rooms 152 899.8 1446.0 2345.8 37.7 

  
(425.3) (461.5) (646.0) (12.7) 

Double Occupancy Rooms 807 862.8 2099.0 2961.8 28.7 

    (447.2) (671.7) (883.3) (10.9) 

With the exception of values in the Number of Rooms column, all values in parentheses are standard deviations. 

 

Within the buildings the percentage of energy spent in unoccupied rooms varied 

substantially from one room to another. The number of hours a rooms was unoccupied and their 

respective percentage of energy consumed while vacant was highly correlated (Pearson’s r = 

0.63, t = 25.1507, df = 957, p-value < 2.2e-16). Naturally this is to be expected; however, this 

did not explain all, or even half, the variation in the percentage of energy consumption while 

vacant across rooms. Poor occupant behavior, e.g., leaving on heaters and appliances while away 

from home, is one explanation for the wide variance between rooms. Rooms that had occupants 

who were home frequently and exhibited better behavior (i.e., those that turn off appliances and 

equipment when leaving) had very small percentages of energy consumed while vacant, as low 

as 4%. On the other end of the spectrum, rooms where occupants were frequently away from 



17 

home and left equipment on had over 70% of total energy consumed while unoccupied. In 

between the two extremes, a quarter of all rooms spent less than 22% and a quarter of all rooms 

spent more than 37% of all electricity in unoccupied rooms over the course of the year. In the 

building with the lowest average quantity of energy spent in empty rooms, building 2, rooms 

consumed on average just over a quarter, 26.9%, of all their energy during periods of vacancy. In 

building 6, the worst performing building, residents spent on average almost one-third of their 

total electrical consumption for the year, 31.9%, while away from home.  

 When comparing the effect of room type on energy consumption patterns it can be seen 

that single occupancy rooms average statistically significant less annual energy use than double 

occupancy rooms at 2,346 kWh compared to 2,962 kWh (Welch’s t-test t = -10.1104, df = 

269.832, p-value < 2.2e-16), but have significantly higher percentages of energy consumed while 

unoccupied at 37.7% versus 28.7% (Welch’s t-test t=8.0988, df = 195.164, p-value = 5.896e-14) 

(Figure 2.2). The increased energy consumption in double rooms is to be expected considering 

that the rooms have slightly larger living quarters and would have additional electronic devices 

since there are two occupants. It is also fitting that with more occupants in the room the 

percentage of energy spent while no one home is decreased. The higher percentage of energy use 

while unoccupied in single rooms can largely be attributed to more periods of vacancy. Since 

two occupants reside in the double rooms the periods of vacancy are lower. This restricts the 

total potential vacant energy use in double rooms beyond that of single occupancy rooms even if 

occupants exhibit similar behavioral practices in each room type. So even when occupants in 

each room type have uniform behavior the percentage of energy consumption while away from 

home should be lower in higher occupancy rooms. Despite this, and the fact that single rooms 

use more energy while unoccupied on average than double rooms, both in absolute terms and 

percentage, there is no relationship between the average amount of energy spent in empty rooms 

in each building and its percentage of single rooms (Table 2.1). This implies that the number of 

single rooms in each building is not the cause of the differences in consumption in unoccupied 

rooms in each building, but rather that occupant energy use practices with regards to turning off 

equipment and devices when leaving his/her residence vary from building to building.  
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Figure 2.2: Annual unoccupied energy use by room type. Single occupant rooms spent a 

significantly higher percentage of their total energy consumption over the course of the year 

while unoccupied when compared with double occupancy rooms (Welch’s t-test t=8.0988, df = 

195.164, p-value = 5.896e-14). 

 

Beyond looking at average amounts of energy spent in unoccupied rooms, understanding 

which rooms tend to consume more energy while away from home would be beneficial. 

Examining total energy consumption against the percentage of energy spent while away from 

home I find that there is no meaningful relationship between the two variables (Pearson’s r = 

0.048, t = 1.4721, df = 957, p-value = 0.1413, n.s.). High and low energy consuming rooms both 

tended to spend similar percentages of energy while away from home. This suggests that while 

most occupants tend to leave on devices and equipment when leaving their rooms an equal 

amount, the difference between the high and low energy users is the quantity and intensity of the 

devices and equipment he/she leaves on. For instance, a low energy user might not use the heater 

on mildly cool days in the fall, but they tend to leave on their desktop when going out. On the 

other hand, a high energy user would use both devices and tend to leave both on when going out. 
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This finding has positive implications for behavioral interventions. The uniformity in behavior 

between both high and low energy users permits the deployment of non-particular, or generic, 

interventions. In other words, interventions focusing on mitigating energy use while away from 

home will likely be applicable to the entire population and not just specific sub-populations. 

 

 

Figure 2.3: Room energy use by season and across seasons by building. The average amount of 

electrical energy use in kWh per room varies significantly and meaningfully by season (F3, 3775 = 

2707, p = 2e-16, n = 3779). Energy use differed significantly among buildings in all seasons 

except spring (winter: F6, 927 = 2.613, p = 0.0162, n = 934; spring: F6, 951 = 2.07, p = 0.0543, n.s., 

n = 958; summer: F6, 930 = 4.177, p = 0.0003, n = 937; fall: F6, 943 = 3.205, p = 0.0040, n = 

950).Winter is January through March, spring is April through June, summer is July through 

September, and fall is October through December. Letters on the plots indicate significant 

differences between buildings. 

 

2.3.2 Energy Consumption by Season 

Seoul is situated in a climate which requires significant heating during the colder months 

and limited cooling in the summer months; the seasonal energy use by residents in the seven 
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dormitory buildings reflects this (Figure 2.3). In 2013, Seoul had 5,814 heating degree days 

(HDD) and 1,392 cooling degree days (CDD) (Weather Underground 2014). Electrical energy 

consumption differed significantly by season (F3, 3775 = 2707, p < 2e-16, n = 3779) and peaked in 

the winter months. In 2013, January was the coldest month followed by December and February 

with 1300, 1116, and 1047 HDD respectively (Weather Underground 2014). Alternatively, July 

and August were the hottest months. Overall energy consumption during the summer months 

was depressed relative to the others for two reasons. First, some students were away from his/her 

rooms more than in previous months due to school being in recess. Second, it was not possible 

for residents to leave on air conditioners while away from home which reduced the amount of 

energy that was consumed during periods of non-occupancy. Looking closely at the energy 

consumption across the seasons by buildings, certain buildings consumed more energy on 

average than others, with the exception of during spring, where there were no significant 

differences in consumption (winter: F6, 927 = 2.613, p = 0.0162, n = 934; spring: F6, 951 = 2.07, p = 

0.0543, n.s., n = 958; summer: F6, 930 = 4.177, p = 0.0003, n = 937; fall: F6, 943 = 3.205, p = 

0.0040, n = 950). Given that these buildings are identical in construction, these results further 

highlight the importance of individual behavior on energy consumption. 

When considering energy use in unoccupied rooms from a seasonal perspective I find that 

the percentage energy consumed while away from home is fairly consistent in magnitude 

throughout the year despite energy use varying with changes in seasonal weather patterns. Mean 

energy use while vacant did statistically significantly differed by season though (F3, 3775 = 23.61, 

p = 3.93e-15, n = 3779). Net energy use in unoccupied residences increased in roughly an equal 

proportion to net energy use as consumption changed with the seasons (Figure 2.4). Mean values 

ranged from 27.5% in the fall to 31.5% in the summer (Table 2.2). Investigating this at the 

building level it can be seen that energy spent in vacant rooms varied significantly by building in 

each of the four seasons (winter: F6, 927 = 2.356, p = 0.029, n = 934; spring: F6, 951 = 3.245, p = 

0.00366, n = 958; summer: F6, 930 = 5.603, p = 1.01e-5, n = 937; fall: F6, 943 = 3.232, p = 0.00379, 

n = 950). Within each season most buildings did not statistically differ, but rather only two of 

three of the buildings did. In the colder seasons, fall and winter, we see a slight peak in the 

percentage of energy consumed in vacant rooms. This is expected since air conditions cannot run 

in unoccupied rooms. Some extreme households consumed over 80% of its total energy while 

away from home, and eight percent of all rooms spent over 50% of all electrical expenditures 
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while away from home. These results reinforce the previous finding from the annual time scale 

that the quantity of energy spent in empty rooms scale with the total amount of energy 

consumed. As an individual consumes more electricity he/she also consumes more while away 

from home in a comparable ratio to when his/her consumption was lower. This finding, in spite 

of the negative connotations associated with it, can be viewed in a positive light. If occupants can 

be induced to lower his/her total energy consumption the amount of energy spent while vacant 

should decline proportionally as well (Figure 2.5).  

 

 

Figure 2.4: Percentage unoccupied energy use by season and across seasons by building. The 

percentage of energy used in vacant residences remains relatively consistent in magnitude across 

the seasons, but does significantly differ (F3, 3775 = 23.61, p = 3.93e-15, n = 3779). In addition, it 

differs significantly among buildings in all seasons (winter: F6, 927 = 2.356, p = 0.029, n = 934; 

spring: F6, 951 = 3.245, p = 0.00366, n = 958; summer: F6, 930 = 5.603, p = 1.01e-5, n = 937; fall: 

F6, 943 = 3.232, p = 0.00379, n = 950). Letters on the plots indicate significant differences 

between buildings (* indicates p < 0.1, all others are p < 0.05). 
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Figure 2.5: Seasonal energy use versus percentage unoccupied energy use. Over the course of the 

year there is largely no relationship between the amount of energy used in a given room and its 

percentage of energy consumed while unoccupied (note the change in scales on the x-axis, the 

right two most plots also use a log scale x-axis). 
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Figure 2.6: Unoccupied energy use versus hours unoccupied. The percentage of energy a 

household consumed while unoccupied is highly correlated with the number of hours the 

dwelling was unoccupied; however, this does not completely explain all the variance in the 

percentage of energy consumed while vacant. Occupant behavior can help explain the remainder. 

Many households left on equipment while away from home, but many others turned off 

equipment when leaving home.  

 

 



24 

Table 2.2: Mean Room Energy Use by Season 

  Mean  Energy Use per Room (kWh)   

Season 

(Months) 
While Vacant        While Occupied Total 

Mean Use While 

Vacant (%) 

Winter 

(Jan-Mar) 

406.7 894.9 1301.6 31.0 

(239.8) (339.2) (424.5) (14.5) 

Spring 

(Apr-Jun) 

107.6 278.1 385.7 27.8 

(70.4) (124.9) (160.6) (12.0) 

Summer 

(Jul-Sep) 

62.8 147.1 209.9 31.5 

(39.0) (83.1) (103.4) (12.2) 

Fall     

(Oct-Dec) 

279.0 702.0 981.0 27.5 

(199.0) (286.2) (380.2) (13.8) 

Standard deviations are shown in parentheses. 

 

In addition, once again the amount of time rooms remain unoccupied is highly correlated 

with percentage of energy that is consumed during periods of non-occupancy (winter: Pearson’s 

r = 0.689, t = 28.99, df = 932, p-value < 2.2e-16; spring: Pearson’s r = 0.726, t = 32.56, df = 956, 

p-value < 2.2e-16; summer: Pearson’s r = 0.896, t = 61.52, df = 935, p-value < 2.2e-16; fall: 

Pearson’s r = 0.692, t = 29.55, df = 948, p-value < 2.2e-16). These correlations do not 

completely explain all the variance in the percentage of energy consumed while vacant though 

(Figure 2.6). It can be seen that there is minimum amount of energy consumed during periods of 

non-occupancy, around 4%, even in the rooms with very low levels of energy use while 

unoccupied relative to their percentage of hours unoccupied. This energy is believed to stem 

from powering the mini-refrigerator in each room, which through experimentation has been 

found to have a functional power rating between 25 and 33 watts. Differences in occupant 

behavior among the households can help explain the remaining variance. In all seasons except 

summer, many households consume approximate the same amount of energy while home as 

while away from home. Occupants appear to leave on heating equipment, and possibly other 

appliances, regardless of whether anyone is home or not. This is not true of all households 

though. A fair number of households consume substantially less energy on a percentage basis 

when away from home relative to the percentage of hours the unit is unoccupied (e.g., 

unoccupied 40% of the time but only consumes 10% of energy while vacant). This suggests that 

these households exhibit environmentally preferable behavior and turn off equipment when 

leaving home. This pattern, a lower ratio of consumption while vacant relative to hours of 
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vacancy, is found in almost all households in the summer since the largest consumer of 

electricity, the air conditioner, can only be run while occupants are home. 

 

2.4 CONCLUSIONS 

In commercial buildings the amount of energy spent in building during non-working hours 

has been found to be in excess of 50% of all energy use, but to the best of my knowledge little is 

known as to the quantity of energy use in vacant households. In this study I conducted an 

investigation into the quantity of energy spent in unoccupied households, focusing specifically 

on dormitories. Electrical energy consumption and occupancy data has been collected on an 

hourly basis for seven dormitory buildings housing over 1000 individual residences in Seoul, 

South Korea from January 1, 2013 to December, 31, 2013. During this period using hourly 

occupancy and electricity consumption data it has been found that over 30% of all electrical 

energy consumption (which accounts for plug loads, lighting, heating, and cooling) took place in 

unoccupied residences. This quantity represents an overestimation of the amount of energy that 

could be reduced by improvement in occupant behavior before requiring lifestyle changes (e.g., 

wearing a sweater rather than turning on the heaters), since not all energy spent in unoccupied 

residences is wasted energy use (e.g., refrigeration). In these dormitories, roughly four percent of 

all energy used while away is spent on useful services and should be detracted from the 

following values in order to estimate realistic targets for reduction. Through the seasons the 

percentage of energy consumed in vacant rooms across the seven buildings ranged from 27.5% 

to 31.5% while individual rooms fluctuated from around 4% to over 80%. It is reasonable to 

expect that similar magnitudes of energy expenditures while unoccupied, when conditioned on 

number of occupants, would be found in more traditional residential dwellings as well (i.e., 

single family apartments), since these dormitories are essentially studio apartments without 

kitchens and energy consumption related to food storage and preparation represents less than 

eight percent of total site energy use in the home (EIA 2014). The amount of energy consumed in 

unoccupied households, while highly correlated with how often the household is vacant, is also 

strongly influenced by occupant behavior. In addition to the aforementioned findings, no 

meaningful relationship was found between total a residences total energy consumption and the 
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percentage of energy that was used while unoccupied. High and low energy users both spent 

energy while away from home in proportion to his/her consumption.  

 These findings, which could be perceived as discouraging can alternatively be viewed as 

a significant opportunity to improve the sustainability of households at little to no cost through 

behavioral approaches. Energy behavior interventions can offer a low cost and effective means to 

reduce building energy consumption (Abrahamse et al. 2005; Osbaldiston and Schott 2011; 

Wilson and Dowlatabadi 2007). Recently, normative behavior interventions have shown 

considerable promise in inducing environmentally significant behavior in a variety of settings 

(Goldstein et al. 2008; Schultz et al. 2007). Using these techniques in conjunction with prompts 

at the point of behavior could be particularly apt at addressing behaviors which lead to energy 

expenditures in unoccupied buildings. A very favorable quality of energy use in unoccupied 

spaces, with respect to eliciting behavior change in occupants, is that it is mostly energy that can 

be saved without occupants having to sacrifice his/her comfort. In addition, since the percentage 

of energy that is spent in unoccupied households is found to be proportional to total 

consumption, behavior interventions aimed at reducing this quantity of energy do not necessarily 

have to be tailored to the target group. Interventions can be highly non-particular which places 

less demands on interveners (De Young 1993), since energy consumption while away from the 

home is largely the culmination of a very specific set of behaviors common to all individuals, 

such as not turning off devices and equipment prior to exiting the residence. Such behavioral 

efforts specifically focusing on targeting these behaviors, given the large quantity of energy 

consumed in vacant households found in this study, have the potential to meaningfully improve 

the environmental sustainability of the built environment. 

  

 

 

 

 

 



27 

 

 

 

CHAPTER 3 

EXPLORING THE ROLE OF SOCIAL NETWORK CHARACTERISTICS ON 

NORMATIVE BEHAVIOR INTERVENTIONS
3
 

 

3.1 INTRODUCTION 

The previous chapter highlighted the substantial role individual behavior can have on 

energy consumption in the home. Understanding the importance of behavior it is critical to 

develop and implement sound methods for promoting pro-environmental behaviors. Ideally to 

study the effectiveness and consequences of pro-environmental intervention strategies robust 

large scale randomized field experiments should be employed. Unfortunately, conducting field 

experiments to test new intervention strategies is very time consuming and costly. Therefore, 

researchers have begun developing models to simulate the effect of behavioral interventions, but 

very limited work in this area has been done to date
4
. The ability to model and simulate 

interventions aimed at changing occupant behavior is of particular interest and importance as it 

creates a means to experiment, test and in turn identify favorable interventions in a cost effective 

and timely manner prior to implementation. Being able to accurately identify effective 

interventions for specific buildings or communities of buildings based on local conditions has 

significant implications for reducing energy consumption and demand in buildings.  

The limited intervention modeling efforts to date have focused on modeling intervention 

techniques where social norms, social influence/pressure, are exploited to induce behavior 

change (Azar and Menassa 2012a; Chen et al. 2012; Zhang et. al 2011). Social norms can be 
                                                           
3 This chapter is adapted from Anderson, K., Lee, S., and Menassa, C. (2013). “Impact of Social Network 

Type and Structure on Modeling Normative Energy Use Behavior Interventions.” Journal of Computing 

in Civil Engineering, ASCE, 28(1), 30-39. 
4
 This is not to be confused with public policy modeling which has received considerable attention 

(Mundaca et al. 2010) or the development of theoretical behavior models which has been extensive. 
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thought of as general codes of conduct, i.e., shared understandings of what is and what is not 

acceptable behavior for a group (Bendor and Swistak 2001). In the models, as in the real world, 

the transmission of social norms occurs through social networks. Results from these studies 

suggest that normative based interventions can have significant impact on energy use. However, 

in these previous modeling efforts minimal attention has been given to the impact of social 

network type (e.g., random graphs, small-world networks) and social network structure (e.g., 

number of people, number of relationships per person). If these models are to be used for 

predictive purposes understanding the importance of social network type and structure (SNTS) is 

necessary since SNTS are likely not identical across various residential communities or in 

different types of communities. This brings into question whether or not SNTS is an important 

determinant in simulation results. Therefore, further effort needs to be extended to quantify the 

impact that SNTS have on normative based interventions.  In order to address this shortcoming 

in the literature I will use agent-based modeling to simulate behavior interventions across an 

array of different social network structures.  

 

3.2 COMPUTATIONAL MODELING: AGENT-BASED MODELING 

Agent-based modeling (ABM) is an analytical method that allows the modeling of 

heterogeneous agents in various types of environments with explicit decision rules (Gilbert 

2008). This form of modeling permits adaption and learning which can be difficult to model 

using alternative methods (e.g. variable-based approaches). These attributes make ABM 

particularly well suited for modeling and understanding complex adaptive systems (Miller and 

Page 2007). In buildings, agents, i.e. occupants, are not homogeneous, are adaptive, and 

communicate through a complex system of social relationships. For that reason ABM is quite 

appropriate for exploratory studies on how individual behavior changes in social networks due to 

social influence. Several studies have used ABM in conjunction with energy interventions; these 

include Zhang et al. (2011), Azar and Menassa (2012a), Chen et al. (2012). The aforementioned 

modeling efforts, have attempted to model the dynamics of social influence caused by energy 

interventions.  
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However in the previous work, little attention has been given to the role of SNTS. Zhang 

et al. (2011) used small-world networks in their study, but mainly focused on calculating the 

effectiveness of automated lighting sensors and little on the dynamics of social interactions and 

influence. Azar and Menassa (2012a) consider a given social network type or structure, but 

rather modeled a network where all occupants interact. In this study the authors focused on 

attempting to integrate energy simulations with ABM of occupant behavior changes due to social 

norm diffusion and education. Lastly, Chen et al. (2012) evaluated the importance of social 

network structures within the context of normative energy interventions. Here the authors also 

developed a set of behavioral rules for how occupants change their behavior. In this work, social 

network structure was only evaluated within the context of random graphs.  

While each study has its own merits, if models are to be used to provide intervention 

design selection guidance, i.e. to predict actual behavioral change due to interventions, modeling 

assumptions must be rigorously reviewed (Law and Kelton 2000). Cowan and Jonard (2004) 

found that within single network types differences in architecture can lead to different 

conclusions when investigating diffusion. Further, social science research has shown that social 

networks likely are either defined by scale free properties or are small-world networks which 

feature high amounts of clustering and short path lengths (Barabasi and Albert 1999; Liljeros et 

al. 2001; Watts and Strogatz 1998). In buildings, scale free networks could represent buildings 

with hierarchal social structures. For example, workers are likely to know the CEO or students to 

know the resident advisor in a dormitory, but not all people in other departments or all other 

residents. Small world networks on the other hand could be thought of as a society where 

occupants form clusters or groups with loose ties to other groups. This can be thought of as 

people on a given floor are likely to know each other and have a few ties to people on other 

floors. These are compared to random graphs which can be thought of as randomly knowing 

individuals in the building. Since SNTS are likely not consistent from building to building it is 

important that the impact of SNTS on energy interventions is better understood. Thus, a better 

understanding of SNTS on normative interventions is required to add confidence and validity to 

modeling attempts which aim to accurately model intervention outcomes. Additionally, greater 

emphasis needs to be placed on developing models built on sound theories and evidence of how 

individuals interact and influence each other. 
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In this chapter I develop an integrated model which combines established social-

psychological principles of social influence and cultural norm diffusion with building social 

network profiles to examine the effect of energy interventions aimed at reducing energy 

consumption across multiple building environments. The main objectives of the research are to: 

(1) to test the impact of SNTS on behavioral energy interventions and (2) evaluate the 

effectiveness of the proposed interventions, providing occupants with peer data and inserting 

intervening agents into the building, in different scales of buildings. In order to achieve these 

goals, agent-based modeling and statistical analysis is utilized to simulate and measure the 

interactions of heterogeneous building occupants in social networks. Two separate interventions 

are used to examine the effect SNTS, increasing social connectivity and implementing an 

intervention agent, from here on referred to as an environmental champions (EC), a person who 

demonstrates strong pro-environmental behavior and is unsusceptible to negative influence and 

can significantly influence others in his/her network. 

 

 

Figure 3.1: Illustration of the four social network types being investigated (Anderson et al. 

2012). 

 

3.3 MODEL DEVELOPMENT 

I will describe the model using the Overview, Design concepts, Details (ODD) protocol 

for describing agent-based models (Grimm et al. 2006; Grimm et al. 2010).  This is to improve 
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the clarity, completeness and reproducibility of the model. The choice of the experimental model 

is guided by my previous work (Anderson et al. 2012) but model assumptions have been 

reevaluated; details on changes will be provided in the following subsections. The model has 

been programed in Java using Repast J v 3.0 (Repast 2012). 

3.3.1 Purpose  

The purpose of this model is to understand the impact of SNTS on modeling energy 

interventions. Specifically investigating four types of social networks random graphs (RND), 

regular ring lattices (REG), small-world networks (SWN) and scale-free networks (SFN) (Figure 

3.1). Additionally, to examine the effect of the social network structural variables: number of 

degrees (K) (i.e. average number of relationships per occupant) and social network size (N) (i.e. 

number of persons in the network). 

3.3.2 Entities, State Variables, and Scales  

In this model the entities, agents, are the building occupants. These occupants have several 

attributes: energy use standard (EUS), relationships with other occupants stored as a list, and a 

value representing their susceptibility to external influence, this is referred from here on as 

susceptibility. The primary attribute of interest is the EUS which is dynamic and changes based 

on an influence calculation which will be detailed in the submodel section. Relationships 

between occupants are undirected, i.e. reciprocal. The number of relationships in the model can 

vary slightly between the SFN and the others due to how it must be constructed, but differences 

are quite minimal (for example, in the large network, N=441 with K=6, the SFN has 2634 total 

relationships and the others have 2646). The social network, regardless of which type it is, is 

always continuous. In other words, the social network is one component and does not have any 

individuals in it who are not connected to the giant component. Lastly, time steps in the model 

do not represent actual time units and are used relatively as measures.  

3.3.3 Process Overview and Scheduling  

The model begins by creating occupants.  The model then takes the occupants and assigns 

them relationships dependent on which SNTS has been selected. This is described in further 

detail under network generation in the submodels section. After all occupants have been placed 
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into the social network, during each time step, occupants compare their EUS with the group 

norm of the members with whom they have relationships (direct or indirect) as detailed in the 

influence calculations provided in the submodel section. Agent processing order does not have a 

bearing on the outcome as agents alter their EUS using the observed EUS of their peers from the 

previous time step. Once all agents have calculated their new EUS, they update synchronously. 

Model operations end once equilibrium conditions are met as detailed further in the submodels 

section. The process flowchart can be seen in Figure 3.2.  

 

 

 

Figure 3.2: Model process flowchart. i is the occupant id of the occupant being evaluated and N 

is the total number of occupants in the simulation. 
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3.3.4 Design Concepts  

The basis for the model rests in findings from the social sciences that people modify their 

behavior to conform to social norms on many issues, including energy use (Nolan et al. 2008). 

Two very basic assumptions are made in the model: 1) an energy intervention which provides 

occupants with feedback of their own energy use and peer energy use data is being installed in a 

building where previously there was no such feedback, and 2) energy use behavior and practices 

are not such a polarizing topic that occupants of different practices would be unable to have 

relationships with each other. Additionally, not all occupants are equally susceptible to influence 

from others. Susceptibility to influence from others has been shown to be correlated with 

individual intelligence (presented in Bearden, Netemeyer, and Teel 1989 from Petty and 

Cacioppo 1981, pp. 80-84), self-confidence (Cox and Bauer 1964), self-esteem (Janis 1954), and 

interpersonal confidence (Berkowitz and Lundy 1957).  It should also be noted that the model 

assumes that behavior moves with equal ease both upward (increasing energy use) and 

downward (decreasing energy use). This is in contrast the previous agent-based models which 

have tended to place a downward bias on the direction of movement in behavior. 

In the previous iteration of this model (Anderson et al. 2012), rate of change of occupant 

behavior, EUS change per time step, had been constrained for a given time period (Anderson et 

al. 2012). This modeling assumption has been reevaluated and reworked to not limit the rate at 

which occupants are allowed to change their behavior practices. This represents a substantial 

difference in model behavior and philosophy. Previously, behavior had been thought of as a 

continuous variable, one which gradually moves along a spectrum. This assumption was based 

on the idea that one does not make radical leaps in behavior instantly. However, based on 

findings from my previous work and further review of the literature I have determined that 

behavior should be considered as present or not present, i.e., one turns off the lights when they 

leave home or they do not (Franz and Nunn 2009). This means that when considering behavior, 

intent of performing a behavior is not considered, but rather, only if a behavior has been 

performed or not. The model adopts stochasticity at several stages: initializing susceptibility, 

initial EUS, and relationships for occupants. One hundred simulations are run for each 

configuration of input parameters. From and during the simulation runs I observe and keep 
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statistics on net change in mean system EUS from initialization to equilibrium, time to reach 

equilibrium, and the standard deviation in EUS of all occupants at equilibrium. 

3.3.5 Initialization  

Each network initializes with 35 occupants which represents a medium sized building with 

an average of six relationships per occupant. The EUS of each occupant is generated from a log-

normal distribution (µ=163 watts and σ=123 watts) based on observations from buildings where 

occupants are not responsible for energy costs (Chen et al. 2012). Occupant susceptibility is 

normally distributed with a mean of 0.92 and a standard deviation of 0.01.  These values range 

between 0 and 1 (truncated at 0 and 1), where 0 means the occupant is never influenced by others 

and 1 indicates their behavior decisions are completely influence by others. These values express 

that people usually conform to social pressure and norms but have different rates of adaption 

(Friedkin 2001). Each input value derived from previous studies, EUS and susceptibility, were 

subjected to sensitivity analysis and found to demonstrate only relative changes in system 

behavior (e.g. lowering susceptibility would make the simulation times larger across all network 

types a comparable amount). 

3.3.6 Submodels 

As mentioned previously the model has three separate submodels to generate the social 

network, calculate how occupants determine their EUS and how the model determines when the 

simulation has reached equilibrium. 

3.3.6.1 Social Network Generation 

Three of the social network types are generated based on ideas presented Watts and 

Strogatz (1998). A regular ring lattice is created where an occupant (node) n is connected to the 

K/2 (K is degrees or number of connections to other occupants, K must be even) to the right of 

the occupant and repeated for each node. Right is expressed as a larger number node, determined 

by occupant Id number, until it reaches the last node then starts over at the first one thus creating 

a ring. Occupants are counted as n (their Id), so if the max number of degrees was set to 4, 

occupant 5 would make a connection with occupant 6 and 7. This procedure then repeats for 

occupant 6, then 7. Once completed, occupant 7 would be connected to occupant 5, 6, 8, and 9, 



35 

(K=4) thus representing the configuration of a regular ring lattice. To make this a small-world 

network while creating each connections there is a chance, p, which ranges from 0 to 1, to not 

connect to the intended node and instead randomly connect to another that does not fall within 

the range n±K/2.  To make a random network p is set to 1 and to make a regular lattice p is set to 

0; p is set to 0.1 to create the small-world network.   

The forth network type, the scale-free network, is generated based on ideas presented in 

Barabasi and Albert (1999). Here the maximum number of degrees each occupant is created with 

is set, K, and initially K+1 occupants are made and each is connected to the other. Next a new 

occupant is added and K connections are made to the already created nodes. The new node 

connects to the already created node n, with probability equal to Cn/ΣC, where Cn is the number 

of edges node n has, i.e. relationships, and ΣC is the sum of the number of connections of all 

nodes. When checking to make connections, the new node searches through the list of all nodes 

until the max number of connections has been made. If it goes through the whole list and not 

enough connections have been made it repeats this process again. Before searching through the 

list for the first time and each subsequent time, the list of existing nodes is shuffled so there is no 

bias in creating connections. This repeats until all occupants have been connected to the network. 

3.3.6.2 Influence Calculations 

This submodel computes occupants’ EUS for the next time step. Every time step 

occupants make groupwise comparisons to see how their EUS compares to that of other 

members in the social network. All other members in the social network do not influence the 

occupant evenly but are instead weighted as given in (1) (Friedkin 1998; Friedkin 2001): 

      

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w

     

       (1) 

where wij is the weight of influence of occupant  j on occupant i, si is the susceptibility 

value of occupant i, cik is a measure of closeness between occupant i and k (i.e., probability of 

interpersonal attachment), i≠{j, k}, 0<wij<1, Σjwij=1 (thus wii=0), and 0<si<1. Since all 

relationships in this model are undirected, closeness is determined by considering whether there 

is a direct relationship between occupant i and j and if occupant i and j share interpersonal 
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connections, both have relationships with occupant k. The amount an occupant changes their 

EUS in a time step is then calculated by (2) based on Friedkin (2001): 

   )...()1( ,,22,11,1, tNiNtitiitiiti ywywywsysy 

 

       (2) 

where t is the current time step, yi,t is the EUS of occupant i at time t, N is the total number of 

occupants in the social network, and wiN is occupant N’s weight of influence on occupant’s i 

behavior. Naturally this formula allows for occupants to increase or decrease their energy use 

from one time step to another based on the influence of others. 

Table 3.1: Simulation Experiment Settings 

  EX. 1 EX. 2 EX. 3 

Level of Connectivity (K) 2, 4, 6, 8, 10, 12 4 6 

Size (N) 35 7, 35, 441 35 

Environmental Champions (EC) 0 0 1 

Occupant Energy Use  

      Mean 168 W 168 W 168 W 

   Std Dev 123 W 123 W 123 W 

 

3.3.6.3 Equilibrium Determination 

Two methods determine whether the system has reached equilibrium. The first checks for 

convergence of behavior of all occupants. This is done by checking the standard deviation 

between all occupants’ EUS and if it returns a value less than or equal to 1 watt the behavior of 

occupants has converged. The second method measures rate of change in the mean and standard 

deviation of occupant EUS in the system. When these values have slowed down beyond a certain 

threshold the simulation run is said to have reached equilibrium by grouping of behavior. This 

represents that there are different pockets of people who express different energy use practices. 

These pockets can vary widely or even be close to what I term system convergence, but with a 

standard deviation of all occupants’ EUS greater than one. To determine whether or not the 

system has converged the current mean EUS and standard deviation are compared against a 

weighted average of these values over the last 50 time steps. Grouping happens when the 

difference between the weighted and current mean EUS is less than 0.25 watt and the difference 

between the weighted and current standard deviation of energy use behavior is less than 0.12. 
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These values were set based on observations from numerous simulation runs considering all 

different combinations of potential input parameters and have been refined from my previous 

work, since simulation runs now behave differently due to changes in modeling assumptions 

(Anderson et al. 2012).  

 

 

Figure 3.3: Combined scatter plot of average EUS change per occupant and time to reach 

equilibrium. 

 

3.3.7 Experiments  

To test the significance of SNTS during energy interventions, an analysis of the effect of 

enacting one of two interventions in buildings with different network structural properties, 

connectivity levels and size, across social network types was performed (Table 3.1). The first 

intervention involves installing a contextualized peer feedback system. The second, adds an 

intervening agent in addition to the feedback system. The first experiment (i.e., EX #1) 

investigates the effect that the social network structure property connectivity has on determining 
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simulation outcomes across social networks types. To evaluate social network structure I expand 

the four baseline networks, one for each network type, by increasing and decreasing levels of 

social connectivity. In this experiment connectivity ranges from two average relationships per 

occupant, a less social building, to twelve, a much more social building, by twos. The second 

experiment (i.e., EX #2) examines the effect of social network size on the feedback intervention. 

Two additional building sizes, a very small social network (N=7) and a sufficiently large 

network (N=441) are added in addition to the baseline value (N=35) and tested (Azar and 

Menassa 2012b). The final experiment (i.e. EX #3) inspects the importance of social network 

type on building intervention outcomes. Here, one EC is inserted into the building system along 

with the feedback system. Only one EC is added based on the results my previous work that 

showed that the addition of more than one EC did not affect EUS change and only contributed to 

reducing time to reach equilibrium in specific scenarios.  The EC is created by selecting the 

occupant with the lowest EUS and making them unsusceptible to negative influence.  This is 

done by setting their si is set to zero. 

 

3.4 RESULTS 

EX #1 tested building connectivity. The baseline networks (N=35, K=6) were expanded to 

include five additional values of connectivity, two, four, eight, ten and twelve. Each set of 

conditions was simulated over 90 times to produce sufficiently large sample sizes, resulting in 

over 2000 simulation runs. I ran ordinary least squares dummy variable regressions with 

interactions to see how each categorical variable and interaction terms are related to the outcome 

of interest (EUS change, time to reach equilibrium, and standard deviation of EUS). Network 

type is a dummy variable with 0 for REG, 1 for RND, 2 for SWN, and 3 for SFN. Network 

connectivity, K, is a covariate. Network size is a dummy variable with 0 for small, 1 for medium, 

and 2 for large networks. Simulation results and behavior varied considerably across the four 

social network types and different levels of connectivity (Figure 3.3).  
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Table 3.2: Regression of network type and connectivity level on time with interactions 

 Time 

VARIABLES Coefficient Standard Error 

   

RND -150.4*** 3.618 

SWN -74.88*** 3.446 

SFN -180.9*** 3.581 

K 4 -169.2*** 3.411 

K 6 -180.2*** 3.411 

K 8 -184.9*** 3.419 

K 10 -186.8*** 3.411 

K 12 -188.1*** 3.411 

RND x K 4 132.0*** 5.003 

RND x K 6 142.1*** 5.009 

RND x K 8 146.6*** 4.984 

RND x K 10 148.5*** 4.978 

RND x K 12 149.7*** 4.972 

SWN x K 4 65.50*** 4.849 

SWN x K 6 70.82*** 4.849 

SWN x K 8 73.33*** 4.855 

SWN x K 10 73.92*** 4.849 

SWN x K 12 74.69*** 4.849 

SFN x K 4 161.9*** 5.065 

SFN x K 6 172.5*** 5.073 

SFN x K 8 177.1*** 5.024 

SFN x K 10 179.0*** 5.040 

SFN x K 12 180.3*** 5.065 

Constant  214.7*** 2.412 

   

Observations 2,268 

R-squared 0.768 
*** p<0.01, ** p<0.05, * p<0.1 

 

Each social network type resulted in different distributions of energy use change over 

time, with comparable means of roughly zero energy use change at equilibrium. This is 

significantly different from our previous work where energy use actually tended to increase due 

to the limited allowable rate of change (Anderson et al. 2012). Time to reach equilibrium on the 

other hand was found to depend on level of social connectivity and network type (Table 3.2). 

With fewer relationships, lower values of K, the interventions took more time to reach to 

equilibrium and experienced the emergence of grouping of behaviors. Beyond the lowest 

connectivity level, K=2, grouping of behavior happened rarely as almost all simulation runs 
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resulted in system convergence of behavior. This convergence happened more and more quickly 

as the number of relationships increased. Across network types these behavioral observations are 

fairly consistent; however, time to reach equilibrium differs significantly when few relationships 

exist and the range of potential outcomes in EUS change can fluctuate dramatically from one 

network type to another. These observations are in contrast to my previous work where grouping 

had continued well beyond the lowest levels of connectivity depending on the rate of allowable 

change, and time to reach equilibrium could be several factors of time longer (Anderson et al. 

2012). Further, previously due to assumptions about rate of change EUS would increase in all 

scenarios, but here all scenarios concluded with no change in mean EUS. 

Table 3.3: Regression of network type and network size on time with interactions 

 Time 

VARIABLES Coefficient Standard Error 

   

RND 3.943 4.513 

SWN -0.0591 4.462 

SFN 0.108 4.425 

N 35 19.37*** 4.369 

N 441 320.1*** 4.369 

RND x N 35 -22.27*** 6.298 

RND x N 441 -322.3*** 6.259 

SWN x N 35 -9.321 6.221 

SWN x N 441 -273.8*** 6.221 

SFN x N 35 -19.07*** 6.349 

SFN x N 441 -318.9*** 6.203 

Constant 26.11*** 3.113 

   

Observations 1,149  

R-squared 0.895  
*** p<0.01, ** p<0.05, * p<0.1 

 

EX #2 investigated the effect of social network size. For this experiment the baseline 

networks (N=35 and K=4) were expanded to model the effect of increasing and decreasing 

building size across network type. The level of social connectivity for this experiment was 

reduced from six to four since when the network is only seven people since a connectivity of six 

would make all occupants in the network connected to each other. Again each configuration was 

simulated over 90 times. Mean EUS change for each scenario remained around zero, but again 
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the range of potential outcomes depended on network type and network size (Figure 3.4). 

Method of reaching equilibrium only varied for one scenario, REG in the large network, where it 

grouped regularly. Outside of this scenario, all networks exclusively reach conclusion through 

the convergence of behavior. Time to reaching equilibrium was found to not be significant the 

network type alone but was for the interaction terms between network type and building size, 

expect for in one instance (Table 3.3). 

 

 

Figure 3.4: Average EUS change per occupant at equilibrium and time to reach equilibrium by 

social network size and type. 

 

EX #3 examined the impact of inserting an EC into the building; this experiment took the 

baseline networks (K=6 and N=35) add an EC. Unlike the intervention with only providing 

feedback, adding the EC resulted in substantial declines in energy use upon reaching equilibrium 
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(Figure 3.5). Here similar distributions of energy use change are observed between network 

types in contrast to when no EC is present. During individual simulation runs, behavior followed 

similar patterns as simulations without EC, but when the system would previous stall and stop 

experiencing behavior change the EC would slowly reduce all other members in the network 

behavior. Naturally by prolonging the simulations, the time required to achieve this reduction in 

energy use increased by an order of magnitude (Figure 3.6). All simulation runs for all network 

types concluded by reaching convergence of behavior. 

 

 

Figure 3.5: Change in average EUS per occupant caused by inserting an EC across network type. 

 

3.5 MODEL VALIDATION 

One of the most difficult problems when creating and working with simulation models is 

in determining whether or not the simulated model is actually representative of the system being 

modeled, or in other words if the model is valid.  Validation is critical because if a model is not 

deemed valid the results and findings it produces are not useful. Therefore, it is of paramount 
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importance to keep in mind the objective of the model when considering which criteria to judge 

the model by for whether or not it has met the burden to be considered validated (Law and 

Kelton 2000). For model based research, validity can be demonstrated in a number of forms. 

According to Zeigler et al. (2000), model validity can be shown in three ways, 1) the model has 

replicative validity, or that it is able to replicate data acquired from a real system, 2) the model 

possess predictive validity, the model is able to generate data that fits data from real world 

systems prior to being created, and 3) the model can have structural validity, the model 

accurately reflects how the real system operates. Analogous to structural validity, one can 

consider the conceptual validity of a model (Robinson 1999). 

 

 

Figure 3.6: Effect of adding an EC on time to reach equilibrium across network type. 

 

To validate this model efforts have been focused on conceptual model validation to align 

with the objectives of the model. This model aims to provide insight into the impact of SNTS 

modeling assumptions on intervention outcomes, and not to make accurate predictions of the 

interventions itself, making conceptual validation appropriate and meaningful. I employed 
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several techniques to enhance conceptual model validity. First the model and submodels were 

verified by using extreme value testing and unit testing during development. Next the 

construction of the model relied on the application of established and validated theories from 

social psychological research to properly describe how interventions that target behavior change, 

through the use of social norms, propagate through social networks. More specifically, 

submodels used to calculate how occupants changed their energy use, via social influence and 

learning, depending on their social network, were based on work from various researchers in the 

field, in particular from Noah Friedkin (Marsden and Friedkin 1993; Friedkin 1998; Friedkin 

2001). Although these theories have been previously validated, it is important to be aware of the 

inherent difficulties in modeling human behavior. This is why it is crucial must evaluate the 

validity of the model considering its purpose, a comparative analysis of SNTS as opposed to 

making detailed and definitive predictions of intervention outcomes.  

In addition, input parameters for the model were based on observations and results from 

previous studies and further subjected to sensitivity analysis. Furthermore, to improve the 

validity of the modeling assumptions and in turn the model itself, conversations were held with a 

subject matter expert in the field of complex system for their input in modeling group behavior 

dynamics. The aforementioned techniques are all established and recognized methods to enhance 

model validity (Law and Kelton 2000).  Lastly, the model has limited replicative validity as the 

results found from the first two simulation experiments, low energy users increasing their use 

and high energy users decreasing their use, are consistent with findings from previous field 

studies that employed comparative feedback to modify household energy use (Bittle et al. 1979b; 

Brandon and Lewis 1999; Schultz et al. 2007). 

 

3.6 DISCUSSION 

In this chapter, impact on behavioral interventions were measured using three metrics, 

network energy use change, time for this change to occur, and what network behavior was 

observed when change concluded. Although EUS change in all scenarios showed no mean 

differences for different SNTS, range of outcome distributions in EUS change varied 

substantially across different network types and to a lesser extent with level of social 
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connectivity. The range of potential energy use change was the most dramatic in the SFN. Such 

wide ranges in outcomes are believed to be caused by highly central people with low 

susceptibility exerting disproportionate amount of influence through the network on other 

occupants. This explains why there is such low variance in the REG, since all members are 

roughly equivalently central.  From a building management perspective, this implies that it 

would be worthwhile for managers to attempt to determine social network type prior to 

implementing specific additional interventions.  In the case of the SFN, identifying who central 

persuasive personalities are in the building social network would be useful as these individuals 

should be targeted and efforts focused on them to alter their energy use behavior as such changes 

in their energy use are likely to have meaningful impacts on building energy use and time to 

achieve changes in behavior. However, as seen that central figures are of less importance in other 

network types, such strategies as individually targeting key people would likely be a less 

effective intervention strategy. 

Beyond differences in ranges of energy use change, time to grouping or convergence 

showed significant differences over levels of social connectivity as expected. With few 

relationships in networks occupants only have a few friends, except possibly in the SFN, and 

each time step they evaluate their energy EUS against their peers at the previous time step. When 

occupants look at their peer’s EUS they will change to be in line with them and their peers will 

do the same. This creates, in a sense, a switching of EUS practices that slowly move towards 

each other. At low levels of connectivity the occupants were prone to stalling and grouping of 

behavior. This explains why when they compare with larger number of peers they do not just 

emulate the behavior of one or two people but instead many which lessens the oscillation of 

behavior for an individual each time step leading to faster system convergence. Additionally, it 

describes why changes in time to reach equilibrium with increases in connectivity and grouping 

behavior are much less pronounced in the SFN, since in the SFN relationships per individual are 

not evenly distributed so less oscillation of behaviors take place and grouping occurs less 

frequently.  

Contrary to Chen et al. (2012) the simulations suggest that only adding peer feedback into 

a building that previously did not have it will not necessarily result in the desired outcome, lower 

mean energy use in the building. This finding, that net energy use in the building did not result in 
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the desired behavior, is consistent with several studies that employed social norm comparisons 

which found that social-norm marketing campaigns either resulted in undesired effects or none at 

all (Wechsler et al. 2003; Werch et al. 2000). As can be seen in the first two experiments, the 

mean EUS change, considering all simulations for each scenario, does not change. This does not 

imply that nothing is happening in the system but rather that the high energy users move closer 

to the system mean and that occupants who are already exhibiting desired behavior are subject to 

what is referred to as the boomerang effect where their energy use increases (Schultz et al. 2007). 

This implies that building managers and intervention designers should look to design 

interventions that can minimize negative consequences of normative feedback. This can be 

accomplished by combining multiple intervention methods.  One such intervention which was 

demonstrated to have potential to combat this is the use of intervening agents. Adding the 

intervening agent to the network had a substantial impact on combating this boomerang effect 

and served as a means to slowly decrease the system mean EUS. By slowly decreasing the 

system mean EUS, occupants who previously might have been below the mean might now be 

above the mean and alter their behavior to conform to group standards. Changing one of the 

occupants into an environmental champion could be practically applied in many building 

environments where a central authority is responsible for energy costs.  Individual occupants can 

be elected to act as an EC and incentivized or rewarded to promote conservation behavior in a 

manner similar to targeting influential persons to reduce their energy use. Alternative 

intervention strategies could also be tested and employed to combat the boomerang effect such as 

the use of injunctive messages (Schultz et al. 2007). Rather than informing well behaving 

occupants specifically how well they perform and the mean performance, individual feedback 

can be supplement with an injunctive message that indicates desired or undesired behavior. 

 

3.7 LIMITATIONS 

The model and experiments are not without some limitations. First time steps represent an 

arbitrary unit of time, could represent an hour or a month, since it is not known at what actual 

rate energy use behavior changes. Change is assumed to be based on viewing and altering ones 

behavior to align themselves with social norms, but further work is needed to determine what 

frequency people view and adapt to feedback information to identify the rate of behavior change. 
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Accurately identifying rate of behavioral change would have large implications on whether or 

not intervention methods would achieve expected results in feasible amounts of time given a 

particular SNTS since time steps required to reach equilibrium varied significantly based on the 

network properties. In addition, work needs to be conducted measuring and identifying what 

SNTS are most prevalent across different building types (e.g. dormitories, commercial office 

buildings, affordable housing projects). Field experiments that identify these parameters, rate of 

behavioral change, frequency of interaction with feedback interfaces, and common network 

structures in various building types would substantially enhance the model’s predictive validity. 

Knowing these values would also allow us to make more definitive predictions about the effect 

of interventions without relegating to relative analysis. The model is also limited in replicative 

validity as it relies on result comparisons with previous studies alone. These previous studies did 

not consider network structure but instead only evaluated comparative feedback. The replicative 

validity of the model could benefit from small scale field experiments that test how energy use 

behavior diffuses across social networks through the use of general social influence formulas to 

model this propagation. 

 

3.8 CONCLUSIONS 

This chapter contributes to the body of knowledge on modeling energy use interventions 

by systematically testing the importance of social network modeling assumptions for use in 

predicting energy intervention outcomes. Previous modeling efforts have given little attention to 

social network structure and even less to social network type when modeling interventions. 

Findings indicate that while different network types and structure over many trials result in 

similar mean net changes in system energy use, the process of achieving the final outcome (time 

to reach and method of reaching) and the distributions of potential outcomes depend on SNTS. 

This is of importance when attempting to generalize conclusions about findings particular to one 

building to another, as distributions of outcomes and time to achieve behavior change vary 

widely depending on SNTS. Therefore, when selecting and designing social norm based 

interventions, expected interventions outcomes should not be assumed based solely on previous 

outcomes, but consideration should also be given to the uncertainty of potential outcomes based 

upon specific social network properties in which they were found.  
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CHAPTER 4 

LONGITUDINAL ANALYSIS OF NORMATIVE FEEDBACK EXPERIMENTS ON 

DORMITORY OCCUPANTS 

 

4.1 INTRODUCTION 

Simulation models, such as the model presented in the previous chapter, can be a very 

useful tool to explore and better understand behavior interventions. However, to enhance the 

credibility of the models, calibrate the models, and validate assumptions used in these models as 

well as model performance it is necessary to conduct experiments in the field in the actual target 

populations. In addition, field experiments are often necessary to test new fundamental 

hypotheses which cannot be tested in virtual environments, e.g., do behavior changes persist in 

the longer term.  

In the extensive literature testing pro-environmental behavior interventions very few 

studies have investigated anything beyond the short-term effects of intervening and only a 

handful of studies have given any consideration to treatment effects in the longer term 

(Abrahamse et al. 2005; Geller 2002; Osbaldiston and Schott 2012). In a rare study which 

investigated the longer term effects of behavior interventions Staats et al. (2004) found that the 

Eco-team approach, an intensive and in-depth intervention methodology which combines many 

intervention techniques, produced durable behavior change. However, most studies apply an 

intervention and measure change in behavior only over a short period, usually less than three 

months (De Young 2013). Then the intervention is withdrawn and no more measurements are 

taken. No data is collected and no insight is gained into whether or not treatment effects persist 

over time or what contributes to the persistence of treatment effects. Current carbon emission 

goals require approximately 2% reductions annually (Wolske 2011), so if curtailment behavior 
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interventions are going to be used to achieve this goal behavioral improvements must be 

sustained over time. Thus it is imperative that we explore the long term effects of behavior 

interventions. 

The long term effects of feedback messages, in particular normative feedback, remain 

unclear despite the substantial amount of recent research work investigating these intervention 

methodologies (Darby 2006). Further, the relative benefit of adding normative elements to 

individual feedback messages remains debated. Therefore this chapter focuses on investigating 

the durability of feedback interventions and specifically addresses the relative impact of 

normative feedback relative to generic individual feedback.   

To date only a few studies have been conducted which have investigated normative 

feedback in the longer term, and to the best of my knowledge all have relied on data from the 

company oPower (e.g.., Allcott (2012), Allcott and Rodgers (2013), and Ayres et al. (2013)). 

oPower conducted opt-out messaging experiments on a monthly and quarterly feedback cycles. 

While these studies provide a great foundation for exploring the durability of normative feedback 

they are not without limitation and several key research questions remain unanswered. First the 

oPower studies do not isolate the effect of normative messaging but rather confound the effect of 

the normative messages with individual energy use feedback as well as education and 

information making the relative effect of the normative elements of the intervention ambiguous. 

Second, the studies attempt to induce households through financial information/education to 

engage in capital improvements. This makes it impossible to determine how much energy 

improvements are a result of behavioral improvements versus capital improvements. Lastly, and 

perhaps most importantly, the studies only collect energy data. Without data on the behavioral 

determinants (e.g., environmental attitudes) of the households it is not possible to gain significant 

insight into understanding what drives the effectiveness of the intervention (i.e., identify with 

what type of individuals the intervention is successful and with whom it is not) (Abrahamse et al. 

2005). 

Therefore in this chapter I conduct and analyze two separate year-long field experiments 

testing the durability and effect of normative feedback messaging on energy consumption. In the 

study I specifically aim to answer the follow questions: 1) how do energy use behavioral 

determinants relate to each other as well as energy consumption, 2) does adding normative 
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elements to individual energy use feedback messaging improve energy use behavior, 3) what 

type of person is affected by normative messaging, 4) does normative messaging promote more 

durable behavior change, and 5) does the duration of normative messaging contribute to the 

durability of behavior change?  

This chapter will proceed with an overview of the experiment. This is followed by the 

empirical strategies employed for analysis along with the results. Then I present a discussion of 

the results and end the chapter with conclusions from the work. 

 

4.2 EXPERIMENT OVERVIEW 

4.2.1 Site and Population Overview 

The experiment site is the same as that of the study detailed in Chapter 2, a dormitory 

complex on a university in Seoul, South Korea. Seoul is a heating dominated climate; annually 

heating is the largest energy expenditure. As mentioned previously, the site consists of seven 

mid-rise dormitories up to eight stories tall and features single occupancy as well as double 

occupancy rooms (Figure 4.1). Each room has a built in radiant floor heating system and air 

conditioning system in the ceiling. All rooms also have a bathroom and shower as well as mini-

fridge. Six of the buildings mainly consist of graduate students and one building almost 

exclusively houses undergraduate students.  

Undergraduate student presence in the dormitories often revolves around the academic 

calendar whereas graduate students tend to remain in the buildings year round. The academic 

year for schools in South Korea begins the first week of March and concludes the last week in 

December. The school has two semesters, spring and fall. The spring semester commences in 

March and ends the last week of June. From this time until the fall semester begins, the first 

week of September, undergraduate students do not reside in the dormitories. When the fall 

semester starts the undergraduate students move back into their previously occupied rooms. 

Alternatively, graduate students move into their units the first week of March and live 

continuously in the same room until their contract expires, if they do not extend it, until the last 



51 

week of February the following year. Both undergraduate and graduate students may live in the 

same unit for more than one year. 

 

 

Figure 4.1: Dormitory buildings located in Seoul, South Korea (Top). The bottom image shows a 

typical interior of a single occupancy room.  

 

4.2.2 Feedback Messages 

The energy use feedback messages were delivered in both English and Korea and were 

sent based on the language participants selected for their intake survey. One of two different 

messages was sent to each participant during the course of the intervention, a control (Figure 

4.2a) or treatment message (Figure 4.2b). Both the control and treatment messages feature 
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common energy use feedback information including how much energy in kWh was consumed 

during the last reporting period, the previous week, along with a few energy conservation tips. 

The treatment message adds a descriptive norm message and an injunctive norm message. The 

descriptive norm message informs the participant of the mean energy use of other similar 

residents and the mean use of efficient residents, the top 10% of users, which provides a target 

for participant behavior. Complementing the descriptive norm messages is the injunctive norm 

message which comments on social desirability of the participant’s current behavior (e.g., Best! 

Good job!). The top 10% of users receive the top rating “Best! Good job!/최상! 참 잘 했어요!” 

and two stars. The next 40% of users who have energy use below the median receive the rating 

“Good, keep working at it!/상, 계속 노력하세요!” and one star. Finally, participants who use 

more energy use than the median user receive the message “Poor, but keep working at it!/하, 

조금 더 노력하세요!” and a frowning emoticon. Lastly, since all participants are renters, energy 

conservation tips provide suggestions for ways to improve energy consumption through 

behavioral improvement.  

Table 4.1: Study timeline 

  Study Phase 

  

Baseline Data 

Collection Intervention 

Follow-up Data 

Collection 

Dates 3/3/14 thru 4/20/14 4/21/14 thru 9/28/14 9/29/14 thru 2/22/15 

Duration 7 Weeks 16 Weeks 21 Weeks 

 

4.2.3 Experimental Design 

The graduate and undergraduate student samples are divided into two separate 

experiments due to differences in occupancy throughout the year in addition to being physically 

segregated into different buildings. The graduate students are dispersed across six buildings and 

the undergraduate population is almost exclusively contained in a single building. Initially across 

the six graduate buildings 220 rooms participated with a total of 276 individual participants. In 

the undergraduate building 152 rooms signed up to participate with a total of 219 individual 

participants.   
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Figure 4.2a: Control message with individual feedback and conservation tips in English and 

Korean.  
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Figure 4.2b: Treatment message in English and Korean. The treatment message adds a 

descriptive and injunctive normative message. 
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For both the undergraduate and graduate student experimental groups’ data collection 

began on March 3, 2014 and concluded on February 22, 2015 (Table 4.2). Pre-intervention 

baseline data was collected for seven weeks from March 3 through April 20. For 16 weeks from 

April 21 through September 28 both experiments conducted their respective the feedback 

interventions. After September 29 the interventions were stopped. Post-intervention data was 

collected for 21 weeks until February 22, 2015 for both experiments in order to examine the 

durability of the methods.  

Three surveys were conducted during the course of the experiment. An intake survey was 

distributed to participants during a dormitory move in orientation held by the university which 

took place between March 3 and March 28. Surveys were handed out and collected in person.  

The second and third surveys were conducted electronically and sent out via email. The second 

survey was sent out upon withdrawal of the intervention on October 6, 2014. The final survey 

was sent out upon the conclusion of the follow-up period on March 1, 2015. 

In the undergraduate building experimental treatments were randomly assigned resulting 

in 76 rooms in both the treatment and control groups. Treatment and control rooms are randomly 

assigned throughout the building and not separated by floor level. The use of random assignment 

allows me to clearly isolate treatment effects. Previous normative energy use feedback studies 

have suggested that it is not necessary to physically segregate treatment and control samples 

based off of concerns for geographic spillover, i.e., people talking with their neighbors about the 

reports, and random assignment at the household has become standard practice for such studies 

(Allcott and Rodgers 2012).  Feedback messages were sent weekly to participants for seven 

weeks from April 21 to June 8. Messaging was halted after this data until students returned from 

the summer recess on September 1 after which time messaging resumed for three more weeks. 

Unlike the undergraduate student population, the graduate student population remained in 

their units throughout the year and was dispersed across six buildings. For this experiment with 

the graduate student population treatment groups were assigned by building resulting in six 

treatment groups. As mentioned previously, the graduate student population followed the same 

pre-intervention and post-intervention as the undergraduate student population; however, the 

intervention schedule differed substantially. In contrast to the undergraduate student experiment 

where the treatment and control groups continuously received the same message throughout the 
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entire intervention period, the graduate student treatment groups received both the control and 

treatment feedback messages. Upon the start of the intervention all treatment groups received the 

control message for the first three weeks. Every three weeks thereafter a new treatment group 

received the treatment message (Figure 4.3). Phasing in a new treatment group every three weeks 

allowed me to test the effect of messaging duration of normative messaging on behavior change 

durability. This experimental design has many benefits. First it allows me to control for building 

effects which may be present. Second, and most importantly, it permits me to test the effect of 

the intensity of messaging on both immediate behavior change and long term behavior change; 

this is also referred to as messaging duration throughout this section. 

 

 

Figure 4.3: Graduate student experiment messaging schedule by treatment group.  

4.2.4 Data 

Data on each room’s electricity consumption was collected on an hourly basis. The 

electricity energy use data includes all plug loads as well as heating, cooling, and lighting 

electricity usage. During the course of the intervention this data was aggregated weekly and used 

in the feedback messages. For analysis purposes for both the graduate and undergraduate 

population this data has been aggregated into four values to smooth out the significant hour to 

hour and week to week fluctuations in energy use. The four values are: pre-intervention mean 

weekly energy use (this is also termed baseline energy use), mean weekly energy use during the 

intervention period, mean short-term follow-up weekly energy use, and mean full-term follow-up 
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weekly energy use. Follow-up energy use value has been decomposed into two periods, short-

term and full-term. The short-term period consists of only the first 12 of the 21 weeks of the 

follow-up period. The reason for this separation is that a significant portion of the undergraduate 

student population, 85% (185 out of 219) vacated their rooms beginning during the twelfth week 

of the follow-up period. For the graduate student experiment the weekly energy use during the 

intervention is also aggregated into blocks to match the treatment schedule presented in Figure 

4.3. 

Table 4.2: Undergraduate students’ pre-intervention Spearman Rank correlation coefficients 

between behavioral determinants and baseline energy used 

 
Variable (1) (2) (3) (4) (5) 

(1) Baseline Energy Use 1.000 
    

(2) Attitude 0.000 1.000 
   

(3) Subjective Norm 0.005 -0.022 1.000 
  

(4) Perceived Behavioral Control -0.133' 0.363* 0.034 1.000 
 

(5) Behavioral Intention 0.078 -0.474* 0.078 -0.357* 1.000 

Notes: A lower attitude value indicates that one has negative attitudes toward energy conservation 

in the home. A lower subjective norm value indicates a higher level of concern and motivation to 

comply with the norm. A lower perceived behavioral control value indicates a low level of 

perceived control over one's energy consumption. The sample size is 219. Significant results at 

the .01 and .05 levels are respectively marked * and '. 

 

Three surveys were also conducted over the course of the study. The first survey, the 

intake survey, had 495 respondents and is the main source of data for occupant behavioral 

determinants (Appendix A). The survey was based off of the Theory of Planned Behavior and 

was designed to elicit occupant behavioral beliefs, normative beliefs, control beliefs, and 

behavior intention related to energy conservation in their home (Ajzen 1991; Ajzen 2015). 

Questions were asked using multiple bi-polar Likert items and transformed into Likert scale 

values which represent the individuals’ attitude, subjective norm, and perceived behavioral 

control towards energy conservation in the home (Ajzen 1991). Table 4.2 and 4.3 present the 

initial correlations between these behavioral determinants and baseline energy consumption for 

the undergraduate and graduate student samples. The correlations for the undergraduate and 

graduate student samples are highly similar and highlight some surprising relationships. 

Interestingly one’s behavior intention, a direct measure of one’s intention to conserve energy or 
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not, is not correlated with actual energy use. However, all the behavioral determinants, with the 

exception of the subjective norm, are significantly and meaningfully correlated with each other 

for both samples. 

In addition to gathering information on behavioral determinants the survey’s collected 

data on self-reported pro-environmental behaviors which will be used in my future work. 

Questions also attempted to solicit social network information, but unfortunately proved to be 

unusable due to excessive missing data. The latter two surveys replicated the questions presented 

in the intake survey and had 173 and 144 responses respectively. Beyond asking the same 

questions, these surveys added a few questions for use in my subsequent modeling work and for 

data verification (Appendices B and C).  

Table 4.3: Graduate students’ pre-intervention Spearman Rank correlation coefficients between 

behavioral determinants and baseline energy used 

 
Variable (1) (2) (3) (4) (5) 

(1) Baseline Energy Use 1.000 
    

(2) Attitude -0.112 1.000 
   

(3) Subjective Norm 0.058 -0.134' 1.000 
  

(4) Perceived Behavioral Control -0.150' 0.356* -0.104 1.000 
 

(5) Behavioral Intention 0.071 -0.554* 0.133' -0.351* 1.000 

Notes: A lower attitude value indicates that one has negative attitudes toward energy conservation 

in the home. A lower subjective norm value indicates a higher level of concern and motivation to 

comply with the norm. A lower perceived behavioral control value indicates a low level of 

perceived control over one's energy consumption. The sample size is 276. Significant results at 

the .01 and .05 levels are respectively marked * and '. 

 

Over the course of the study rooms were lost to attrition and error. From the two samples 

74 graduate rooms and 34 undergraduate rooms (15 treatment group rooms and 19 control group 

rooms) had to be removed. Of these room 102 have been removed due to occupancy changes 

(i.e., occupants moved out or changed rooms), one due to a data recording malfunction, and five 

were identified as outliersenergy use more than three standard deviations away from the mean 

in any of the four periods being analyzed. No participants elected to opt out of the study. I am 

not concerned that the dropped data could bias the results as in both samples the baseline energy 

consumption of the dropped rooms does not significantly vary from the rooms included in the 

analysis (undergraduate population: Welch t-test t=0.7045, df=41.578, p-value=0.485; graduate 
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population: Welch t-test t=-1.4848, df=116.237, p-value=0.1403). Further, there is no reason to 

suspect that moving is related to the behavioral characteristics of the occupants which are of 

interest for energy conservation. In addition to the data lost from the dropped rooms, lightning 

struck the building complex on June 9 and caused the site’s data recording system malfunction. 

No data was collected between June 9 and June 23. This malfunction had no effect on the 

undergraduate student study; however, it slightly interrupted the graduate student experiment. As 

a result, no messages were sent out for the week of June 16, June 23, or June 30. Data was 

collected for the week of June 30 though and used as the input data for the July 7 messages. 

Table 4.4: Graduate student mean energy use in kWh per week by floor and period 

 

Floor   

Time Period First Second Third Forth Fifth Sixth Seventh Eighth All 

Baseline  59.2 43.8 30.8 31.5 31.2 24.1 28.2 30.0 33.4 

 

(18.3) (29.0) (18.0) (22.9) (20.3) (10.7) (16.2) (15.3) 

 Intervention  22.4 16.7 15.1 16.1 15.2 14.8 16.6 15.3 16.2 

 

(6.8) (5.0) (4.7) (4.3) (4.8) (4.7) (6.5) (5.1) 

 Short-term Follow-up 86.1 71.4 67.4 64.2 59.1 58.7 63.0 75.6 66.5 

 

(20.3) (23.7) (31.6) (22.9) (17.5) (14.1) (19.5) (24.2) 

 Full-term Follow-up 105.4 92.5 85.2 82.6 74.4 76.1 77.7 94.5 84.3 

 

(18.4) (25.4) (32.8) (26.6) (19.8) (14.9) (20.6) (25.8) 

 Mean 62.3 51.0 43.7 43.4 40.3 38.3 40.8 46.6 45.8 

Rooms 9 24 13 22 21 21 21 15 146 

Note: Standard deviations are shown in parentheses. 

 

Looking at room energy use, energy consumption was highly affected by seasonality and 

weather as well as by room floor level (Table 4.4). Energy use varies substantially by floor due 

to how heat flows through buildings, e.g., heating in the ground level floor diffuses to the second 

level which reduces the required heating load for the second floor
5
. As a result interior floors in 

buildings require less space conditioning. The baseline period is at the end of the winter months 

and occupants use substantially more energy for space conditioning than they do during the 

intervention which takes place in spring and summer. The follow-up period extends from fall 

through winter and units use considerably more electricity during this period for space heating. 

This increase in heating demand is clearly evident in the large difference in weekly energy 

                                                           
5
 Ground temperatures have a similar effect on the first floor. 
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consumption between the short-term and full-term follow-up periods. In addition as mentioned in 

Chapter 2, room occupancy type, single or double occupancy, also contributes to room energy 

consumption.  The graduate student population has both single and double occupancy rooms, but 

the undergraduate population only has double occupancy rooms. 

 

4.3 EMPERICAL STRATEGIES & RESULTS 

4.3.1 Graduate Student Experiment 

4.3.1.1 Room Level Analysis 

I begin the analysis of the graduate student experiment by estimating the following 

regression: 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐸𝑛𝑒𝑟𝑔𝑦𝑈𝑠𝑒𝑟𝑓𝑡 = 𝛽0 + 𝛽1𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑟𝑓𝑡 + 𝛼𝑓 + 𝛼𝑡 + 𝜀𝑟𝑓𝑡   (1) 

where BaselineEnergyUserft is the mean weekly energy use of room r during baseline period and 

Durationrft is the duration in weeks that room r received normative feedback. Two separate 

dummy variables are also added to absorb fixed effects for each room floor level, αf, and room 

type, αt. The equation, and all others presented in this chapter are estimated using Ordinary Least 

Squares (OLS) unless otherwise specified. This analysis is run as a check to test and see if initial 

differences exist between the assigned treatment groups prior to intervention.  

Table 4.5: Graduate room baseline energy use comparisons by group selection 

Explanatory Variable (1) (2) (3) 

Duration of Normative Messaging (weeks) -0.008 -0.001 -0.002 

 
(0.012) (0.012) (0.012) 

Floor Fixed Effects No Yes Yes 

Room Type Fixed Effects No No Yes 

Adjusted R
2
 .000 .092 .095 

Notes: OLS on log transformed baseline mean weekly energy use (kWh/week). 

Significance at the 0.05, 0.01, and 0.001 levels are designated by *, **, *** 

respectively. Standard error terms are in parentheses. The sample size is 146. 

Data is transformed to meet normality assumptions. Duration of messaging 

ranged from three to sixteen weeks. 
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Regression results are presented in Table 4.5. To meet normality assumptions mean 

weekly energy consumption during the baseline period was log transformed. Column 1 omits the 

addition of floor and room type dummies; columns 2 and 3 add in the dummies. Results indicate 

there are no differences in energy use behavior prior to intervention by group selection. 

Findings from the literature suggest that the addition of normative feedback to weekly 

messages should be more effective at inducing improvements in energy behavior. Therefore I 

used difference-in-difference estimations to test the relative effect of a receiving normative 

feedback compared to individual feedback. For each pair of consecutive periods, e.g., period 1 to 

2 (see Figure 4.3), mean difference in energy use between treatment and control groups was 

tested. No significant mean differences were found between any pair of periods. These results are 

likely a consequence of the high variance in energy use behavior among rooms and the limited 

sample size. 

While effects were not present using higher frequency energy consumption data, it is 

possible the effects may be present when the variance in behavior is less. To reduce the variance 

in energy use behavior all energy consumption data during the intervention is aggregated. The 

literature suggests that since normative feedback is more effective than individual feedback 

alone, the duration for which rooms received normative messages would be hypothesizes to have 

lower levels of energy consumption. To test the effect of the duration of normative messaging on 

energy consumption during the course of the intervention I use the following model 

specification: 

𝐼𝑛𝑡𝐸𝑛𝑔𝑈𝑠𝑒𝑟𝑓𝑡 = 𝛽0 + 𝛽1𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑟𝑓𝑡 + 𝛽2𝐵𝑎𝑠𝑒𝐸𝑛𝑔𝑈𝑠𝑒𝑟𝑓𝑡 + 𝛼𝑓 + 𝛼𝑡 + 𝜀𝑟𝑓𝑡         (2) 

 where IntEngUserft is the mean weekly energy use of room r during the course of the 

intervention and BaseEngUserft is the mean weekly energy use of room r during baseline period. 

The remaining variables are the same as in model specification (1).  

Results from the regressions are presented in Table 4.6. Once again to meet normality 

assumptions all energy use values are log transformed. Column 1 omits fixed effects dummies 

and the covariate for baseline energy consumption. Column 2 adds a covariate for room baseline 

energy use and columns 3 and 4 add in fixed effect dummies for floor and room type 

respectively. Here, much like with the difference-in-difference estimations, normative messaging 
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is found to have no effect on energy consumption. Previous energy use behavior is the most 

significant predictor of current energy use behavior. 

Table 4.6: Effect of duration of normative messaging on energy use during the intervention 

Explanatory Variable (1) (2) (3) (4) 

Duration of Normative Messaging (weeks) -0.004 -0.002 0.001 0.001 

 
(0.006) (0.005) (0.005) (0.006) 

Log Baseline Energy Use (kWh/week) --- 0.246*** 0.227*** 0.227*** 

  
(0.036) (0.040) (0.040) 

Floor Fixed Effects No No Yes Yes 

Room Type Fixed Effects No No No Yes 

Adjusted R
2
 .000 .233 .225 .219 

Notes: OLS on log transformed energy use during the intervention (kWh/week). Significance at the 0.05, 0.01, and 

0.001 levels are designated by *, **, *** respectively. Standard error terms are in parentheses. The sample size is 

146. Data is transformed to meet normality assumptions. Duration of messaging ranged from three to sixteen 

weeks. 

 

The results so far suggest that normative messaging in this sample had no significant 

effect on energy use behavior during the intervention. However, it is possible that differences 

could not be identified due to limitations of the study, e.g., sample size, and that receiving 

normative messages for longer durations had a positive effect the durability behavior change 

after the intervention was withdrawn. To test the effect of duration of normative messaging on 

energy use during the post-intervention the following modeling specification was used: 

𝑃𝑜𝑠𝑡𝐼𝑛𝑡𝐸𝑛𝑔𝑈𝑠𝑒𝑟𝑓𝑡 = 𝛽0 + 𝛽1𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑟𝑓𝑡 + 𝛽2𝐵𝑎𝑠𝑒𝐸𝑛𝑔𝑈𝑠𝑒𝑟𝑓𝑡 + 𝛼𝑓 + 𝛼𝑡 + 𝜀𝑟𝑓𝑡        (3)  

where PostIntEngrft is the mean energy use of a room in the post-intervention follow-up period. 

Regression results are shown in Table 4.7 and the columns present the same regressions as 

the columns in Table 4.6. In contrast to the previous results, during the post-intervention follow-

up period the duration of normative messaging significant affected energy use. For each week a 

room received the normative message they used on average 0.85 kWh of energy less per week. 

To put this quantity into perspective rooms that received normative messages for between three 

and sixteen weeks and mean weekly energy use during the follow-up period across all rooms was 

84 kWh. The explanatory power of the duration of messaging however is quite low as would be 

expected since it is unlikely that the addition of normative message would cause very large 
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swings in behavior. Once again previous behavior has the greatest explanatory power as would 

be expected. 

Table 4.7: Effect of duration of normative messaging on energy use in the post-intervention 

follow-up period 

Explanatory Variable (1) (2) (3) (4) 

Duration of Normative Messaging (weeks) -0.818' -0.760* -0.790* -0.849* 

 
(0.471) (0.374) (0.378) (0.355) 

Baseline Energy Use (kWh/week) --- 0.687*** 0.681*** 0.631*** 

  
(0.074) (0.080) (0.076) 

Floor Fixed Effects No No Yes Yes 

Room Type Fixed Effects No No No Yes 

Adjusted R
2
 .014 .378 .400 .470 

Notes: OLS on energy use after intervention withdrawal (kWh/week). Significance at the 0.1, 0.05, 0.01, and 0.001 

levels are designated by ', *, **, *** respectively. Standard error terms are in parentheses. The sample size is 146. 

Duration of messaging ranged from three to sixteen weeks. 

 

4.3.1.2 Individual Level Analysis 

The previous section analyzed the effects of the intervention on the total sample and 

provided insight into system level outcomes and behavior. To enhance our understanding of who 

changed their energy use behavior as a result of the intervention it is necessary to jointly consider 

intervention outcomes and individual behavioral determinants.  

It is unlikely that the entire sample of participants would be equally affected by the 

addition of the normative element of the feedback message. It is reasonable to hypothesize that 

individuals who perceive pressure to conform to group norms and who possess a high motivation 

to comply with social norms would be more likely to be affected by normative messaging. Also 

individuals who have a high intention to conserve energy use may receive more benefit from the 

additional normative information in the messages which could improve behavior. On the other 

hand given the normative nature of the intervention there is little reason to suspect individual 

attitudes and perceived behavioral control toward energy conservation in the home would predict 

normative messaging effectiveness. 
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To begin this analysis I cut the data into subsets conditional on occupant behavioral 

characteristics. For each behavioral determinant, I cut the data to only leave occupants with 

extreme values, approximately the top and bottom 25% of occupants for the given behavioral 

determinant under investigation. For instance, I took the occupants who identified themselves as 

being highly influenceable by social norms and the occupants who identified themselves as being 

highly un-influenceable by social norms. This process was repeated all four behavioral 

determinants (attitudes, social norms, perceived behavioral control, and intention). 

Using theses subsets I estimated the following regressions: 

𝐼𝑛𝑡𝐸𝑛𝑔𝑈𝑠𝑒𝑖𝑓𝑡 = 𝛽0 + 𝛽1𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖𝑓𝑡 + 𝛽2𝐵𝑎𝑠𝑒𝐸𝑛𝑔𝑈𝑠𝑒𝑖𝑓𝑡 + 𝛼𝑓 + 𝛼𝑡 + 𝜀𝑖𝑓𝑡           (4) 

𝑃𝑜𝑠𝑡𝐼𝑛𝑡𝐸𝑛𝑔𝑈𝑠𝑒𝑖𝑓𝑡 = 𝛽0 + 𝛽1𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖𝑓𝑡 + 𝛽2𝐵𝑎𝑠𝑒𝐸𝑛𝑔𝑈𝑠𝑒𝑖𝑓𝑡 + 𝛼𝑓 + 𝛼𝑡 + 𝜀𝑖𝑓𝑡        (5)  

These regressions are slightly different from model (2) and (3) as they are run on the individual 

response level, i, and not the room level, r. In addition standard errors are robust and clustered at 

the room level to control for correlations for rooms with multiple participants. All regressions 

using the sub-samples on mean participant energy consumption during the intervention, model 

(4), resulted in no significant differences between treatment groups once again. However, during 

the post-intervention follow-up, model (5), some sub-samples were significantly affected by the 

duration of normative messaging (Table 4.8).  

Columns 1 through 3 include the entire population and sequentially add fixed effect 

dummies for floor and room type. Column 4 uses the same model specifications as column 3 

except is run using only individuals who are highly influenceable by social norms. The effect of 

normative messaging duration is meaningfully larger than for the entire population at -2.084 

compared to -0.942. This suggests that highly influenceable individuals receive additional 

benefit from receiving normative message for a longer duration. These equate to a treatment 

effects of 1.2% less energy use per week of messaging for the entire population and 2.4% per 

week of messaging for highly influenceable individuals. Column 5 uses the sub-population of 

individuals who have low motivation to comply with social norms and perceive little social 

pressure to conform to norms. As could be expected, longer exposure to normative messaging 

had no significant effect on these individuals. Column 6 shows the results using individuals who 

self-identified as high intention to conserve. Most occupants in the study stated they have a fairly 
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high intention to use less energy in the home so this sub-population includes two-thirds of the 

entire population.  For this group the duration of treatment was significant but the effect is not 

meaningfully different from that of the entire population (column 1). Lastly, subsets based on 

attitudes towards conserving and perceived behavior control had no significant effects. The lack 

of significance considering that the entire population (column 1) had a significant result is not 

meaningful, but rather a consequences of the smaller sample size as the non-significant treatment 

effects are approximately -1.0.  

Table 4.8: Effect of duration of normative messaging on energy use in the post-intervention 

follow-up period conditional on occupant behavioral determinants 

Explanatory Variable (1) (2) (3) (4) (5) (6) 

Duration of Normative Messaging 

(weeks) 

-0.942** -0.953** -1.008** -2.084* -0.900 -1.052* 

(0.335) (0.334) (0.317) (1.010) (0.595) (0.407) 

Baseline Energy Use (kWh/week) 0.790*** 0.764*** 0.727*** 0.473* 0.786*** 0.733*** 

 
(0.071) (0.075) (0.072) (0.177) (0.124) (0.091) 

Floor Fixed Effects 
 

Yes Yes Yes Yes Yes 

Room Type Fixed Effects 
  

Yes Yes Yes Yes 

Highly Influenceable by Norms 
   

Yes 
  

Highly Un-influenceable by Norms 
    

Yes 
 

High Intention to Conserve 
     

Yes 

Adjusted R
2
 .417 .457 .512 .392 .570 .482 

Observations 183 183 183 47 52 118 

Notes: OLS on energy use after intervention withdrawal (kWh/week). Significance at the 0.1, 0.05, 0.01, and 0.001 

levels are designated by ', *, **, *** respectively. Standard error terms are clustered at the room level and shown in 

parentheses. Duration of messaging ranged from three to sixteen weeks. 

 

4.3.2 Undergraduate Student Experiment 

4.3.2.1 Room Level Analysis 

The analysis of the undergraduate student experiment follows the same form as the 

graduate student experiment. Analysis of this experiment differs in three regards. First, this 

experiment used random assignment of treatment and control and the message that was sent to 

each room and participant remained constant. Second, the post-intervention follow-up period is 

shorter. Third, the undergraduate population only has double occupancy rooms so there is no 
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fixed effect dummy for room type. To begin the analysis of this experiment I estimate the 

following regressions: 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐸𝑛𝑒𝑟𝑔𝑦𝑈𝑠𝑒𝑟𝑓 = 𝛽0 + 𝛽1𝑇𝑟𝑓 + 𝛼𝑓 + 𝜀𝑟𝑓              (6) 

𝐼𝑛𝑡𝐸𝑛𝑔𝑈𝑠𝑒𝑟𝑓 = 𝛽0 + 𝛽1𝑇𝑟𝑓 + 𝛽2𝐵𝑎𝑠𝑒𝐸𝑛𝑔𝑈𝑠𝑒𝑟𝑓 + 𝛼𝑓 + 𝜀𝑟𝑓        (7) 

𝑃𝑜𝑠𝑡𝐼𝑛𝑡𝐸𝑛𝑔𝑈𝑠𝑒𝑟𝑓 = 𝛽0 + 𝛽1𝑇𝑟𝑓 + 𝛽2𝐵𝑎𝑠𝑒𝐸𝑛𝑔𝑈𝑠𝑒𝑟𝑓 + 𝛼𝑓 + 𝜀𝑟𝑓            (8) 

where Trf is a dummy variable which takes a value of 0 for control group rooms and 1 for 

treatment group rooms, and PostIntEngrf is the mean energy use of a room in the post-

intervention follow-up period. The remaining terms are identical to those used in model (1) and 

model (2). Model (6) tests whether or not there are initial differences in the randomly assigned 

groups prior to intervention. Model (7) tests the effect of adding normative messages to the 

individual feedback on energy consumption during the intervention. Finally, model (8) tests this 

effect during the follow-up period.  

Table 4.9: Undergraduate room OLS regressions on energy consumption by treatment group 

Explanatory Variable (1) (2) (3) 

Treatment Group 0.075 -0.298 2.095 

 
(0.077) (1.012) (3.151) 

Baseline Energy Use (kWh/week) --- 0.211*** 0.527*** 

  
(0.022) (0.067) 

Floor Fixed Effects Yes Yes Yes 

Adjusted R
2
 .153 .495 .463 

Notes: OLS on energy use (kWh/week). Significance at the 0.05, 0.01, and 0.001 

levels are designated by *, **, *** respectively. Standard error terms are in 

parentheses. The sample size is 118. (1) is on mean baseline energy use and is log 

transformed to meet normality assumptions. (2) is on mean weekly energy use 

during the intervention. (3) is on mean weekly energy use during the post 

intervention follow-up period. There are two groups, treatment and control. 

 

Regression results are presented in Table 4.9. To meet normality assumptions for model 

(6) mean weekly energy consumption during the baseline period was log transformed. The other 

two models use untransformed data. Column 1 shows the results for model (6). The random 

room assignment resulted in both treatment groups not differing statistically when controlling for 
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floor fixed effects. Model (7) results are presented in column 2. In contrast to previous studies, 

likely partially due to the limited sample size, no statistical differences in energy use are found 

between the two groups. During this period the room’s floor level and previous energy use have 

significant explanatory power and explain roughly 50% of the variance in energy use. In the 

post-intervention follow-up period, Model (8) and column 3, the treatment groups once again do 

not statistically differ and room floor level and previous behavior retain their high explanatory 

power. 

4.3.2.2 Individual Level Analysis 

To investigate the effect of normative messaging on sub-samples the same procedure of 

regressing subset samples based on behavioral determinants that was used in the graduate student 

study is used again here. For this analysis I re-use the basic models from the room level analysis, 

models (6) through (8), except now the analysis is run using individual level data, i, instead of 

room level data, r. Once again standard errors are robust and clustered at the room level to 

control for correlations for rooms with multiple participants. In this investigation in addition to 

creating subset with the top and bottom 25% of each behavioral determinants I also look at very 

extreme users, the top and bottom 10% to see if more extreme behavioral values results in 

stronger treatment effects. 

Running the regression model on mean baseline energy use for each sub-sample did not 

result with any statistical differences for any of the sub-samples based on treatment group 

assignment.  This suggests that the randomization worked as intended.  

Next I estimated model (7) with the changes as noted above.  Regression results are 

presented in Table 4.10. Of all the behavioral determinants treatment only differed in the sub-

samples for level of normative influencability. Column 1 shows the base model for the entire 

sample with the room floor dummy omitted. Column 2 adds in the room floor dummy. Floor 

effects explain approximately 3% of the total variance in energy use. Columns 3 through 6 

present the results for the sub-samples based on level of social norm influencability. During the 

intervention the treatment had a significant and meaningful effect on energy consumption 

conditional on occupant self-identified influencability to social norms. Across the continuum of 

influencability to social norms the most extreme occupant, both high and low, had the most 
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dramatic treatment effects. These results should be seen with some caution given the very limited 

sample sizes; however, steps were taken to check the robustness of the results against the 

influence of highly influential data points
6
. Extremely influenceable occupants who receive the 

normative message used on average 8.5 kWh less per week relative to their counterparts who 

received the control message. At the other end of the influencability spectrum the opposite effect 

is seen where recipients of the normative message actually used 5 kWh per week more than 

recipients of the control message. These two changes represent significant treatment effects of 

approximately 25% and 50% reductions. Looking at the larger sub-samples, top 25% of each end 

of the continuum, the same direction of behavior is seen but with smaller treatment effects. 

Table 4.10: Effect of normative messaging on energy use during the intervention conditional on 

occupant behavioral determinants in the undergraduate experiment 

Explanatory Variable (1) (2) (3) (4) (5) (6) 

Treatment Group -0.746 -0.799 -8.450** -1.247 4.096* 5.070* 

 
(0.808) (0.805) (2.467) (1.563) (1.532) (2.073) 

Baseline Energy Use (kWh/week) 0.199*** 0.201*** 0.083 0.205*** 0.125** 0.097* 

 
(0.016) (0.017) (0.056) (0.037) (0.039) (0.043) 

Floor Fixed Effects 
 

Yes Yes Yes Yes Yes 

Highly Influenceable by Norms 

(top 10%)   
Yes 

 

 

 

Highly Influenceable by Norms 

(top 25%)    
Yes 

 

 

Highly Un-influenceable by Norms 

(top 25%)     
Yes 

 

Highly Un-influenceable by Norms 

(top 10%)      
Yes 

Adjusted R
2
 .461 .490 .511 .441 .438 .686 

Observations 181 181 18 47 45 21 

Notes: OLS on energy use during the intervention. Significance at the 0.1, 0.05, 0.01, and 0.001 levels are 

designated by ', *, **, *** respectively. Standard error terms are clustered at the room level and shown in 

parentheses. 

 

                                                           
6
 Since the sample size in the extreme samples is so limited the possibility of results being driven by a few 

highly influential data points is increased. Therefore, I used Cook’s distance to identify highly influential 

data points (Cook 1977). If data points were identified as being highly influential they were removed and 

the regressions re-run. The results from the re-run regressions are presented in Table 4.9. In both cases, 

treatment effects matched significance levels and were in the same direction suggesting that the results 

are robust to influential data points.  
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This same procedure was used to test the effect of normative messaging on energy 

consumption in the post-intervention follow-up period conditional on behavioral determinants 

using the modified model (8). In contrast to the results just described, in the follow-up period the 

energy use of individuals based on treatment group did not statistically differ in any of the sub-

samples.  The social norm sub-samples did exhibit similar trends in treatment effects though 

where highly influenceable individuals who received the normative messages continued to use 

less energy and high un-influenceable individuals used more (Table 4.11). To put these values in 

perspective, the mean energy use in the follow-up period for the undergraduate students was 

approximately 66 kWh. 

Table 4.11: Effect of normative messaging on energy use in the post-intervention follow-up 

period conditional on occupant behavioral determinants in the undergraduate experiment 

Explanatory Variable (1) (2) (3) (4) 

Treatment Group -3.513 -0.312 5.850 4.005 

 
(5.797) (5.676) (5.569) (4.873) 

Baseline Energy Use (kWh/week) 1.172*** 0.627*** 0.623*** 0.306* 

 
(0.132) (0.136) (0.142) (0.102) 

Floor Fixed Effects Yes Yes Yes Yes 

Highly Influenceable by Norms 

(top 10%) 
Yes 

   

Highly Influenceable by Norms 

(top 25%)  
Yes 

  

Highly Un-influenceable by Norms 

(top 25%)   
Yes 

 

Highly Un-influenceable by Norms 

(top 10%)    
Yes 

Adjusted R
2
 .903 .339 .530 .817 

Observations 18 47 45 21 

Notes: OLS on energy use during the intervention. Significance at the 0.1, 0.05, 0.01, and 

0.001 levels are designated by ', *, **, *** respectively. Standard error terms are clustered 

at the room level and shown in parentheses. 

 

4.4 DISCUSSION & CONCLUSION 

The two longitudinal field experiments detailed in this chapter aimed to address several 

important gaps in the literature on normative feedback interventions. The first question of 

interest is how the suspected behavioral determinants (behavior intention, attitude, social norms, 

and perceived behavioral control) of energy consumption relate to each other and how do they 
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relate to actual energy consumption. Attitude toward conserving and intention to conserve in the 

home had the highest correlation at -0.55 (a more favorable attitude correlated with higher 

intention). Interestingly though, positive attitudes towards conserving and behavior intention 

were not significantly correlated with energy. The Theory of Planned Behavior postulates that 

behavior intention is usually fairly correlated and predictive of behavior when subjects have 

sufficient degrees of actual behavioral control and this has been found to be true in numerous 

studies (Ajzen 1991). This was not found to be true in this study in either of the experiments as 

intention was neither correlated with energy use prior to intervention. I suspect the reason for the 

lack of correlation between these two variables has to do with the nature of the question which 

solicited the occupant’s behavioral intention to conserve energy. The question that directly 

measured behavior intention asked participants to what degree do they “plan to conserve more 

energy in the home.” The responses to this question were heavily skewed towards strongly agree 

(Mean 2.37 on a bipolar scale from 1 to 7 with 1 being ‘strongly agree’) with only 3.8% of 

responses indicating no intention or negative intention to conserve.  This could suggest that 

although occupants intend to conserve they lack the tools (e.g., procedural knowledge) or 

sufficient motivation necessary to translate this intention into action.  

In the undergraduate study on the whole adding normative elements to the feedback 

messages did not result in statistically significant less energy consumption relative to the 

individual feedback only messages either during the intervention or during the post-intervention 

follow-up period. This finding conceptually conflicts with the previous research which suggests 

that normative messages with both descriptive and injunctive norms will improve the 

effectiveness of energy use feedback messages (Schultz et al. 2007). In Schultz et al. (2007) it 

was found that feedback messages with both the injunctive and descriptive norm elements 

reduced energy consumption in high energy users and reduced the ‘boomerang effect’ of low 

energy users increasing their consumption to be in line with group norms. The combination of 

these two phenomena should in turn result in net energy reductions for rooms receiving 

normative messages relative to individual feedback only. This was not found in the 

undergraduate study.  

Many potential reasons exist which could explain this divergence in results. First, the 

Schultz et al. (2007) study intervened on a different demographic of occupants households where 



71 

occupants were responsible for energy expenditures whereas participants in the experiments in 

this chapter are indirectly billed for their energy expenditures The additional inherent financial 

incentives to reduce energy consumption could have contributed to the effectiveness of the 

messages in the Schultz et al. (2007) study. Second, feedback in their study was hand delivered, 

incorporated hand written elements, and placed on their front doors. These characteristics could 

make the messages seem more personal and consequently make the participants feel a greater 

sense of social pressure and concern for the messages. Emails can be seen as distant and 

impersonal relative to hand written notes. The handwritten notes were also publicly visible as 

they were place on front doors to homes which could further enhance the perceived social 

pressure to comply.  

Additionally, it is possible that weather contributed to the lack of system level treatment 

effects in both the graduate and undergraduate studies during the intervention. During the 

intervention the weather in Seoul was relatively mild and required almost no heating and cooling 

as evident by a mean weekly energy use rate of approximately 16 kWh per room. With limited 

space conditioning requirements the relative control occupants have over their energy 

consumption is greatly reduced. Reducing energy consumption through behavioral changes 

related turning on and off lights in a single room dwelling are quite limited. This could explain 

why in the graduate student experiment differences in energy consumption based on the duration 

of normative messaging became apparent in the post-intervention follow-up period when energy 

consumption demand was much greater. 

The graduate experiment found that normative messaging duration had a significant effect 

on energy consumption in the longer term. Given this finding one would suspect that the same 

pattern would be present in the undergraduate experiment but it was not. The difference in 

intervention messaging schedule could potentially explain this discrepancy. The graduate 

students received continuous normative feedback for up to sixteen weeks. The undergraduate 

treatment group received messaging for seven week then had a three month hiatus from living in 

the facility and receiving feedback before returning and receiving three more feedback messages. 

The long break could have nullified the effect of the previous seven weeks of messaging and 

made the intervention essentially equivocal to just the last three weeks of treatment. This would 

then imply that residents did not have enough time to develop and reinforce the perceived social 
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norm and behavioral changes necessary to see improvements in the post-intervention period. The 

need for longer periods of continuous messaging is consistent with the finding from the graduate 

population where groups that received normative feedback for longer used less energy in the 

follow-up period. Findings from Allcott and Rogers (2012) support this hypothesis. 

The experiments also attempted to unearth information as to the prerequisite individual 

behavioral characters that moderate the effectiveness of normative feedback messages. In both 

experiments it was found that only individuals who had a high motivation to comply with social 

norms and perceived positive social norms exhibited statistically and meaningfully improved 

behavior as a result of receiving normative messages. While this finding is intuitive it had not yet 

been found in the field to the best of my knowledge. It was also found that individuals who 

reported having little to no motivation to comply with social norms and perceived no social 

pressure increased their energy consumption when they received the normative message. Since 

these individuals reported essentially not caring about social norms it is interesting that they 

responded negative to receiving them. Lastly, the fact that only individual social norm levels 

influenced the effectiveness of the treatment provides important insight into the role of the other 

behavioral determinants, particularly about attitude. Specifically, that it is not beneficial to 

attempt to change individual attitudes when conducting normative based feedback interventions 

and that effort would be better spent attempting to persuade occupants that a positive norm of 

energy conservation exists.  

In conclusion, the studies presented in this chapter found that the normative messaging 

duration positively influences in the durability of behavior change. Further, not all individuals 

are equally influenced by normative messaging. High norm individuals were found to be 

positively induced to change their energy use behavior whereas low norm individuals had the 

opposite effect. Developing and testing interventions to take advantage of this finding has the 

potential to reduce cost of intervention by limiting the population which should receive 

normative feedback. It also has the potential to improve the effectiveness of such programs by 

avoiding undesirable behavior change in large subsets of the population.  
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CHAPTER 5 

AN EMPIRICALLY GROUNDED MODEL FOR SIMULATING NORMATIVE 

FEEDBACK INTERVENTION STRATEGIES 

 

5.1 INTRODUCTION 

Behavior intervention simulation models to date can be classified into one of two 

categories: 1) highly conceptual exploratory models that intend to provide insight into how 

complex factors affect intervention strategies (Anderson et al. 2012; Anderson and Lee 2013; 

Anderson et al. 2013; Chen et al. 2012; or 2) models which aim to estimate the impact of 

changes in occupant behavior on energy consumption (Azar and Menassa 2012a; Azar and 

Menassa 2015; Zhang et al. 2011). While these models have provided unique insights into 

potential energy savings as a result of improved occupant behavior and how complex factors can 

affect intervention success, these models have not yet reached the capability to be used for 

predictive modeling purposes.  

According to Axtell and Epstein (1994), the performance of an agent-based model can be 

assessed and categorized by how accurately it represents reality. Their classification focuses on 

accurately, both qualitatively and quantitatively, reflecting both macro level structures (e.g., 

group level behavior) and micro level structures (e.g., individual occupant behavior). Their tiers 

of modeling performance build upon each of the previous. The lowest level of modeling 

performance and accuracy is present when the agent behavior rules are in qualitative agreement 

with the micro behavior. The second tier is achieved when the model’s behavior is in qualitative 

agreement with empirical macro structures. The third tier is achieved when the model’s behavior 

is in quantitative agreement with empirical macro level structures. Lastly, the highest level of 
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modeling performance is achieved when the model’s behavior exhibits quantitative agreement 

with micro level structures. 

In the previous studies most models have only achieved the first tier of performance, 

model performance is in qualitative agreement with micro level structures, and a few could be 

argued to have not even achieved even the lowest tier of performance. If these behavior models 

are to be used for predictive modeling purposes and “what if” scenario analysis it is crucial that 

higher performance models are developed which are grounded in sound conceptual theories on 

human behavior as well as empirical data.  Therefore, this chapter builds on the model presented 

in Chapter 3 and develops a refined empirically and conceptually grounded occupant behavior 

model for simulating normative feedback interventions. This model aims to be capable of 

qualitatively and quantitatively exhibiting agreement in both macro- and micro-level structure 

behavior found in the field. This model will then in turn be used to conduct “what if” analyses 

testing several novel normative messaging feedback intervention strategies. 

  

5.2 METHODS 

In this section I detail the new model once again using the ODD (Overview, Design 

concepts, Details) protocol for describing agent-based models (Grimm et al. 2006; Grimm et al. 

2010). This protocol is applied to help improve the clarity, completeness and reproducibility of 

the model. The model has been in Java using Repast J v 3.0 (North et al. 2006).  

5.2.1 Purpose  

The model detailed below has been developed to provide a means to test new and 

alterative normative feedback intervention strategies which attempt to reduce energy 

consumption for the building community studied in Chapter 4. Given the uncertainty of the 

social network structure in building communities this model also compares how these 

interventions are affected by the classification of social network in which they take place, 

specifically how they propagate in block configuration networks (BCN) (Chen et al. 2013) and 

small world networks (SWN) (Watts and Strogatz 1998). 

5.2.2 Entities, State Variables, and Scales  
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The agents in this model are the building occupants. Each building occupant has multiple 

attributes. Every building occupant is assumed to have a unique set of energy use practices which 

are summarized into a single variable that represents their power rating, or energy use behavior 

(EUB). Individual energy use behaviors, such as constantly using the heater or leaving on the 

television while away from home, are reflected in this one rating to match the aggregated level of 

the collected energy use data from the field experiment (Chapter 4).  

Agents are also stochastically provided a value which combines their motivation to 

comply with subjective norms and their perceived social pressure to or not to conserve energy in 

their dwelling. Alternatively stated, this value represents the agent’s susceptibility or lack of 

susceptibility to social influence. Additionally, each occupant is assigned a likelihood of 

checking their email in a given week and reading their feedback message. 

Agents can also have relationships with other agents in the model. These relationships are 

expressed through the models of social network where occupants connect to each other. All 

relationships between occupants are reciprocal to match modeling assumptions that will be 

detailed in Section 5.2.4. Lastly, each time step in the simulation represents one week to match 

the frequency at which feedback messages were distributed in the field experiment. The 

simulations run for 50 time steps, or a simulated 50 weeks. 

5.2.3 Process Overview and Scheduling  

When the model is initialized it first creates all occupants present in the simulated housing 

community and sets, and stores, their initial EUB and likelihood of checking their feedback 

report during the week. Agents are also assigned a value representing their susceptibility to 

social influence; this is unlike the previous model detailed in Chapter 3 where an occupant’s 

susceptibility to social influence stemmed solely from their location in social network. Following 

the assignment of these variables, the model creates the building community’s social network 

and assigns social relationships to the occupants. How this is done is contingent on which type of 

social network is being created. Specifically how the social connections amongst occupants are 

created is detailed completely in Section 5.2.6.1. 

 Next the model begins to progress forward in time and collects initial descriptive 

statistics regarding the EUB of all occupants and social network properties. During each time 
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step, every occupant has a chance to check their email for their feedback message. Occupants 

also have a chance to talk with their friends, social network connections, about their feedback 

messages and how much energy they consumed over the last observation period. Whether or not 

an occupant checks their energy use feedback message, and/or talks with their peer or friends 

about their behavior, determines how the occupant’s EUB changes. Specifically how their new 

EUB is calculated is explained in further detail in Section 5.2.6.2. If the occupant did not receive 

any new external input, be it through reading their feedback message or gaining new insight into 

the energy behavior of their social connections, their behavior remains constant at what it was 

during the last period. Once the occupant’s EUB has been calculated, this value is subjected to a 

degree of random noise.  

After all occupants have had the opportunity to change their behavior the model updates 

synchronously and data is collected about energy used during that time step. The simulation run 

terminates after two years of simulated time. The complete model flow of logic in the model is 

depicted in Figure 5.1.  

5.2.4 Design Concepts  

The premise for this model is based on a combination of theories and concepts from social 

science research as well as from the findings and observations of the field study I conducted 

which was detailed in Chapter 4. The first concept incorporated into this model relies on the 

observation that people will adjust their behavior to conform to group norms (Epstein 2001; 

Schultz et al. 2007). The second concept incorporated into the model comes from the literature 

on social impact and asserts that the impact of social sources on behavior is a multiplicative 

function of the number of sources and is subject to diminishing returns with each additional 

source (Latane 1981).  The third concept built into the model reflects from the findings of the 

field experiment presented in Chapter 4; when presented with the group norm, occupants with a 

strong motivation to comply with social norms wish to be at or below the norm more whereas 

those with the least motivation to comply behave in the opposite manner. The study in Chapter 4 

was based in part on the Theory of Planned Behavior which includes attitude and perceived 

behavioral control as two key variables in the model. These variables have not been included in 

this model though as it was found that they had no predictive power on behavior in the study in 

Chapter 4.  
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Figure 5.1: A high level flowchart of the model’s operation. Please note that ‘NumOcc’ is the 

number of occupants in the simulation.  

 

In this model, similar to the model presented in Chapter 3, model occupants are provided 

with feedback regarding their energy use, however, unlike the previous model occupants are not 

directly presented with feedback of their peers’ energy use through the feedback system. In this 

model occupants receive one of two types of feedback messages that replicate the types of 

messages used in the field experiment in the previous chapter: 1) individual energy use feedback 
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or 2) individual energy use feedback along with the mean use of the entire community 

(descriptive norm). If the occupants read their feedback they can be influenced by it in one of 

two ways. They can be influenced by the normative aspect of the message (if they received 

normative feedback) to positively or negatively alter their energy use to be more in line with the 

group norm (Schultz et al. 2007). Occupants can also be influence by learning of the energy use 

of their friends which is assumed to occur through direct conversation which happens 

infrequently. In the model it is assumed that occupants do not try to adjust their behavior to 

match their peers through observing their friend’s behavior, but instead only adjust their behavior 

to their peer’s after they are explicitly told it (i.e., energy use comes up in a conversation the two 

individuals have). There are two primary reasons for this assumption: 1) the physical structure 

and layout of the housing community being model makes it impossible to directly observe the 

energy use of another from the outside their residence, and 2) even from inside the residence it is 

difficult to accurately estimate an individual’s energy use through observation giving the 

numerous sources that contribute to energy consumption (e.g., heater, air conditioner, lighting, 

plug loads) and few individuals have the expertise required to estimate such values.  

An important aspect of occupant behavior in the model is that behavior remains relatively 

stable when not subjected to external sources of influence. This is because people often develop 

automated responses to stimuli in their behavior setting, or habits, which are persistent. 

However, the model does account for ‘unexplained’ behavior changes by incorporating in 

stochasticity in behavior change. Allowing for factors beyond the feedback messages to change 

an occupants’ energy use is required to make agent behavior more realistic. It is well known that 

how humans determine to make decisions regarding behavior is extremely complex and subject 

to numerous determinants. It is also possible that residents make physical or structural changes to 

their home which would influence their energy consumption (e.g., purchased a new TV or 

computer). 

 



79 

 

Figure 5.2a: A graphical illustration of block configuration network which is comprised of giant 

component and small components of various sizes (Chen et al. 2013). 

 

 Lastly, the social network in which the occupants reside is assumed to be one of two 

varieties, a block configuration network or a small world network (Figure 5.2a and Figure 5.2b). 

Unfortunately, the data collected regarding the social network structure in the field experiment 

was unusable due to missing data; therefore, the model relies on observations from other studies 

which suggest that these two networks structures are likely to be present in the dormitory 

community. The block configuration network is based off of observations of the social network 

structure in American dormitories. The network features a giant component which includes 

approximately 55% of all occupants and small components that account for the remainder. This 

network is detailed further in section 5.2.6.1. The small world network on the other hand features 

many of the same properties, such as many tightly connected groups of individuals, i.e. clichés. 

However, the network differs in that all occupants are loosely connected together.  
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In the model stochasticity is used when setting social ties among occupants, computing the 

size of small components in the block configuration network, determining the rate at which an 

occupant checks their feedback messages, checking if an occupant converses with friends about 

energy use, checking whether or not an occupant reads their feedback message in a given week, 

and whether to change their energy use as a consequence of factors not accounted for directly in 

the model. 

 

 

Figure 5.2b: A graphical illustration of a small world network with an average degree peer node 

of two. Here it can be seen that all nodes are connected and part of the same component (Galan 

et al. 2011). 

 

5.2.5 Initialization  

The model initializes with 1,225 occupants to approximate the size of the dormitory 

community that was invested in Chapter 4. The initial energy use behavior of the occupants is 

generated from a normal distribution with a mean of 63 kWh per week and standard deviation of 
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25 kWh per week to match data from the baseline period in the field study. Occupants who are 

given extreme values for their energy use, both high and low, have their energy use bound to 

match high and low observations. A minimum value of 15 kWh per week and a maximum value 

of 125 kWh per week are enforced. In the same fashion occupants are given a value to represent 

their susceptibility and motivation to comply with social influence which represents the Likert 

scale norm value calculated using data collected in the field experiment intake survey. These 

values are generated from a normal distribution with a mean of four and standard deviation of 

one to match observations. Extreme values are once again bound with a minimum of one and a 

maximum of seven to properly correspond with the input data.  

Social network properties for the block configuration network are based off observations 

from Chen et al. 2013 and statistics of configuration network properties from Newman 2010. The 

percentage of occupants in the giant component is set at approximately 58%. Based off the size 

of the giant component the mean degree per node is 1.5 (Newman 2010).  For the small world 

networks to approximately match the properties of the block configuration networks I use the 

smallest available mean degree per node valuable possible, 2. The probability of randomly re-

wiring a connection in the small world network, p, is 0.1. Specifically how these networks are 

generated is discussed in Section 5.2.6.1. 

Additional model input variables including the weight of normative influence on an 

occupant’s decision making, the multiplicative factor for the impact of multiple sources of 

information on behavior, probability to check feedback messages, and probability of conversing 

about energy use among friends have been configured based off a combination of literature, 

observations, informal survey, and sensitivity analyses. These values have been calibrated so the 

model replicates both macro- and micro-level behavior observed in the field experiment for 

individuals whom received only individual feedback and individuals who received individual 

and normative feedback. The weight of normative influence wn, is set at 0.35.  The multiplicative 

factor, m, is 1.9 if the occupant receives normative information from peers and the feedback 

message, else it is 1. Probabilities to check feedback messages have been set using data collected 

in the second survey from the field experiment. One percent of occupants never check their 

feedback, 16% of all occupants have a 40% probability to read their feedback in a given week, 

28% have an 80% chance to check, and 55% read their feedback every week (Table 5.1). Lastly, 
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occupants have a 1% chance to talk with each friend weekly about their energy consumption 

data. 

Table 5.1: Distribution of feedback reading rates for occupants 

Percentage of 

Occupants 

Probability to 

Check Feedback 

1 0% 

16 40% 

28 80% 

55 100% 

 

Using these calibrated values, the micro-level behavior of the shift in energy use discussed 

in Chapter 4 of high norm occupants reducing their energy use and low norm occupants 

increasing their energy use when a the normative feedback is added to the weekly message is 

evident in the simulation while retaining a good approximation of the overall distribution of 

behavior of all occupants relative to the field observations (Figure 5.3). In this figure it can be 

seen that occupants with high motivation to comply use less energy when the normative message 

is added to the feedback in both the field experiment and simulation experiment. The opposite 

effect is seen for occupants at the other end of the norm spectrum. This effect is once again seen 

for both the field collected data and simulation data. It should be noted that the experiment 

scatterplots in Figure 5.3 differ in scale from the simulation plots with regard to energy use due 

the fact that the simulations are based off of baseline energy use and do not model changes in 

weather and or model differences in energy use by location in the building. The change in 

weather from the baseline period through the intervention reduced energy consumption and 

altered the distribution of energy use among occupants.  These factors which affect energy 

consumption, occupant floor in the building and weather, are not modeled in the simulation 

model so it is not possible to make quantitative comparisons between collected data and 

simulated data. 
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Figure 6.3: Plots of experimental and simulated data. These plots show the observed and 

simulated average weekly energy use of occupants by their norm rating at the end of the 

intervention (a lower norm rating value indicates a higher concern and motivation to comply 

with the norm). The simulation model accurately models the shift downward in energy use when 

normative feedback is added to the weekly message.  Lines are least squared lines. The upper left 

plot has 86 observations; the bottom left plot 99, and each of the simulation plots have 1225. 
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5.2.6 Submodels 

5.2.6.1 Social Network Generation 

Two different social network structures are being created and evaluated with this model, 

small world networks and block configuration networks. The process to generate these two social 

network structures varies considerably. The method of construction for the small world network 

is identical to the method previous presented in Chapter 3 Section 3.6.1 so it will not be 

reiterated here. It should be noted though that in this study only one specific small world network 

is considered. This is a network with an average node degree of two and a probability of 

reconnection of 10%.  

The block configuration network on the other hand has not been previously detailed and 

will be here. The configuration network stems from a model for generating random networks by 

Newman (2003) which was modified by Chen et al. (2013) to match the observed properties of 

networks from a small sample of dormitories in the US.  This network is created based on 

observed properties reported in Chen et al. (2013) and is conceptually very different from the 

small world network. In this network not all occupants are connected to each other and many 

have a chance of no other social connections within the building community. This can clearly be 

seen in Figure 5.2a. As can be seen in this imagine there is one giant component with over half 

of the occupants and many smaller components with a range of sizes running from 

approximately 1 to 15.  Observations from Chen et al. (2013) suggest that the giant component 

should consist of approximately 58% of all the occupants. 

To generate this model 58% of all the occupants, 710 in total, are randomly selected to be 

part of the giant component and the remaining 42% will comprise the small components. The 

giant component is constructed first, but the order of construction is unimportant.  The size of the 

giant component is a function of the average degree, therefore in order to generate a network 

with the appropriate size of the giant component to match observations one must use the 

corresponding average degree, which is 1.5 (Newman 2010).  Using these values the giant 

component is constructed in a manner very similar to how the scale free, or preferential 

attachment, network is generated in Chapter 3 Section 3.6.1. First two occupants are randomly 

selected and connected to each other. Next a randomly selected occupant from the remaining 708 
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occupants is added. In order to match the desired average node degree of the network the current 

occupant only adds one connection and connects to the existing occupants already in the network 

with the probability of that node’s number of connections divided by the total number of 

connections in the network at the current time. For example, if there are currently four nodes in 

the network and node A has three connections and each of the other nodes only have one 

connection (to node A), the probability if tested that the new node would connect to node A 

would be 50% (3/6).  To ensure there is no bias in generating these connections the list of all 

nodes currently in the giant component is randomly shuffled before each new node attempts to 

join and the connecting node cycles through this list until it connects to another node. This 

process is repeated until all remaining nodes destined for the giant component have been added 

to it. 

The small components are generated in a similar fashion. The size of small components do 

not scale as the size of the network increases and the probability that a node belongs to a small 

component of size s is given by the following formula (Newman et al. 2010), 

𝜋𝑠 =
𝑒−𝑠𝑐(𝑠𝑐)𝑠−1

𝑠!
 

where c is the mean degree of the network (1.5) and s is the size of the randomly selected small 

component. The probabilities associated with small component sizes given an average degree of 

1.5 are shown in Table 5.2. I have limited the maximum size of the small components to fifteen 

since the probabilities associated with each size larger rapidly decreases and all remaining sizes 

occur only two percent of the time (only 1% are larger than 25). While generating the small 

components the model first randomly draws a number and using the probabilities in Table 5.2 

determines the size of the new small component. If the random draw between 0 and 1 falls above 

.9791 a size of fifteen is used. Once the size has been determined a check is conducted to ensure 

there are enough occupants still available to construct the new small component. If there are it is 

constructed, if there are not enough remaining occupants the process repeats. After the size has 

been determined the occupants are added and connected using the same procedure that is used to 

construct the giant component. 
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Table 5.2: Probabilities for the small component sizes with an average degree of 1.5 

Small 

Component Size Probability 

Cumulative 

Probability 

1 53.13% 53.13% 

2 17.78% 70.91% 

3 8.93% 79.83% 

4 5.31% 85.15% 

5 3.47% 88.62% 

6 2.41% 91.03% 

7 1.74% 92.77% 

8 1.30% 94.07% 

9 0.99% 95.06% 

10 0.77% 95.84% 

11 0.61% 96.44% 

12 0.49% 96.93% 

13 0.39% 97.32% 

14 0.32% 97.64% 

15 0.26% 97.91% 

 

5.2.6.2 Energy Use Calculations 

When occupants check their weekly normative feedback or discuss energy consumption 

with their friends they adjust their energy use behavior to conform to the mean of these outside 

influences. At the same time occupants remember and consider their initial behavioral 

preferences and partially remain true to their original behavior as well. If the occupants do not 

receive any new normative information during a given week their behavior remains the same as 

it was during the previous period but is subjected to random change as a result of influences 

beyond the scope of the behavior rules. 

The method of calculating peer influence in this model is based on the social network 

influence work of Friedkin (2001) in conjunction with observations and findings from the field 

study I conducted. I borrow his equations for calculating the effect of social influence on 

behavior change and simplify them by making each peer of the occupant being evaluated have 

equal weight of influence. An occupants energy use for a given time step if they either spoke 

with at least one peer or read their normative feedback message is calculated using the following 

equation, 
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𝐸𝑈𝐵𝑖,𝑡+1 = (1 − 𝑚 ∗ 𝑤𝑛)𝐸𝑈𝐵𝑖,0 + (𝑚 ∗ 𝑤𝑛)

(𝑓 ∗
∑ 𝐸𝑈𝐵𝑗,𝑡

𝐹𝑖
𝑗

𝐹𝑖
+ 𝑔 ∗

∑ 𝐸𝑈𝐵𝑘,𝑡
𝑛
𝑘

𝑛 )

𝑓 + 𝑔
+ 𝜀 

where EUBi,t+1 is the EUB of occupant i at time t+1, EUBi,0 is the initial EUB of occupant i, m is 

the multiplicative effect of receiving influence from multiple sources, wn is the weight of 

normative influence towards determining an occupant’s energy use behavior, Fi is the number of 

friends occupant i has which he has received energy use information from, EUBj,t is the EUB of 

the j-th friend of occupant i at time t, EUBk,t is the EUB of the k-th person in the building 

community at time t, n is the total number of occupants in the housing community, f and g are 

binary values for whether or not the occupant received information from at least one friend or 

read their normative feedback message,  and Ɛ  represents the random movement of energy use 

behavior due to outside influences. The norm of one’s peers is 
∑ 𝐸𝑈𝐵𝑗,𝑡

𝐹𝑖
𝑗

𝐹𝑖
 and the group norm of 

the community is 
∑ 𝐸𝑈𝐵𝑘,𝑡

𝑛
𝑘

𝑛
. Let the average of these two values for occupant i at time t be termed 

Normi,t. When an occupant receives information from both sources the weight of normative 

influence is multiplied by the factor m. When only one source of information is received m is set 

to one. 

From the study I conducted in Chapter 4 I found that the effect and direction of change in 

energy use based on receiving the normative feedback message is conditional on the occupant’s 

concern and motivation to comply with the norm. Therefore, the value wn is assigned using two 

conditional step functions (Figure 5.4). When the occupant has a low norm rating value, high 

concern, they are induced to reduce their energy use until they are below the weighted norm of 

their friends and the building community. On the other hand, those with high norm rating values, 

low motivation to comply, respond in the opposite manner increasing their energy use when they 

are below the mean. Individuals between the two extremes tend to move towards the mean 

regardless if they are above or below it. 
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Figure 5.4: Condition step functions for the weight of normative influence on occupant 

energy use behavior. 

 

The formula presented above is used to calculate the energy use behavior of an occupant 

for the following time period except when a) the occupant has no peers and only receives their 

individual feedback with no descriptive norm, or b) the occupant receives no new information by 

not talking to peers and not reading their normative feedback. In both cases since the occupant is 

not subject to any social influence they continue to behave as they did in the previous step but 

once again are subjected to random fluctuations in their behavior. 

5.2.7 Experiments  

This model simulates five different intervention strategies across the two network 

structures. To calibrate and assess the model the first two intervention strategies match those that 

were applied in the student population in the field experiment. The first strategy sends only 

individual feedback to all occupants and can be considered the baseline scenario since a scenario 

where no intervention is applied would simply result in random movement of the occupants. The 

second strategy sends individual and normative feedback to all occupants. The next three 

intervention strategies are new and previously untested messaging strategies. 

The third strategy and first new strategy sends normative messages only to occupants who 

have been identified as highly susceptible to normative influence. Conceptually the motivation 
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for testing such a strategy is very straightforward given the findings from the field experiment 

since these individuals responded favorably to receiving normative information in addition to 

their individual feedback. 

The fourth strategy, and second alternative strategy, being evaluated is sending normative 

information to individuals based on their consumption relative to the community norm, or the 

mean energy use of all the occupants in the dormitory community. Occupants who use more 

energy than the average occupant will receive a normative feedback message in addition to their 

individual feedback and occupants who use less than the group norm will only receive their 

individual energy use feedback. The literature, and specifically the theory of social influence, 

assert and provide evidence that individuals conform to the norm. Therefore, in an attempt to 

mitigate the boomerang effect of low consuming individuals moving in the undesired direction 

up towards the norm one would only provide the normative information to those who 

presumably would adjust their behavior as desired. This strategy, unlike the previous would also 

be very easy to apply in the field. Since this strategy relies only on knowing the individuals 

energy use along with the group norm and no self-reported information it could readily be 

implemented. 

  For the fifth strategy and last alternative strategy I use a variant of the third intervention 

strategy where only the highly susceptible individuals receive any sort of feedback. In this 

scenario the high norm individuals receive normative and individual feedback messages. All 

other individuals receive no feedback and therefore only alter their behavior through random 

change. This scenario acts to a degree as a barometer for the maximum possible reduction that 

could be expected using the aforementioned behavior rules. 

Each of these five intervention strategies are tested using both network structures to 

explore the effect that social network structure has on their outcomes. Every specification is run 

five hundred times using the same initialization values for all but those which are being 

evaluated.  

Several dependent variables are being collected from each simulation for statistical 

analysis: total energy use consumption during the intervention, change in mean EUB from initial 

to the end of the intervention, the standard deviation in EUB at the end of the intervention, mean 
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energy use of high norm rating individuals, and mean energy use of low norm rating individuals. 

Monitoring total energy use permits us to see differences in the net outcome of implementing the 

different messaging strategies. Tracking the energy use behavior of the individuals based on their 

norm rating is a means to validate the behavior of the model against collected data from the field 

experiment. Lastly, the standard deviation of EUB helps identify what sort of dynamics are 

taking place within the model, i.e., do occupants tend to converge to a common norm or do other 

patterns of EUB emerge? 

 

5.3 RESULTS 

In total five thousand simulations were run to explore the effect of the five intervention 

strategies given the two different social network structures. Statistical differences between the 

variables of interest are tested using simple t-tests and the Kruskal-Wallis test since normality 

assumptions for non-parametric tests could not be met even after applying various data 

transformations. Complete descriptive statistics of the output variables of interest are shown in 

Table 5.3. 

From Table 5.3 it can be seen that in both network structures the mean energy use change 

of the average occupant in the building only marginally differs from zero for the first two 

strategies. This result matches the findings from the field experiment where energy use change at 

the system level showed no difference in energy use due to adding a normative element to the 

feedback messages. However, looking closer at the difference in energy use of occupants based 

on their susceptibility to influence it can be seen that the addition of the normative message 

causes a 5% reduction (
61.26−58.00

61.26
) and a 5% increase (

65.46−68.82

65.46
) in energy use for highly 

susceptible and highly unsusceptible individuals respectively. These counter balancing changes 

mimic the results found in the field experiment and cause the system level behavior to remain 

essentially unchanged. 
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Table 5.3: Descriptive statistics of simulation results 

Network 

Structure 

Messaging 

Strategy 

Mean 

EUB 

Change 

Mean 

Occupant 

EUB 

EUB 

Standard 

Deviation 

Mean EUB 

of High 

Norm 

Occupants 

Mean EUB 

of Low 

Norm 

Occupants 

Total Energy 

Consumed 

(mWh) 

BCN 
       

 
One 0.10 63.31 23.24 61.26 65.46 3875.7 

  
(0.29) (0.74) (0.43) (1.34) (1.39) (43.25) 

 
Two 0.09 63.29 19.22 58.00 68.82 3873.9 

  
(0.26) (0.75) (0.39) (1.17) (1.21) (44.31) 

 
Three -0.68 62.51 22.43 58.38 65.45 3824.5 

  
(0.28) (0.75) (0.42) (1.24) (1.34) (43.93) 

 
Four -1.29 61.95 21.08 59.83 65.10 3781.9 

  
(0.31) (0.75) (0.41) (1.19) (1.42) (43.08) 

 
Five -1.43 61.79 23.08 57.64 63.37 3799.6 

  
(0.17) (0.72) (0.43) (1.16) (1.40) (43.58) 

SWN 
       

 
One 0.09 63.34 22.53 60.19 66.58 3878.4 

  
(0.21) (0.75) (0.43) (1.34) (1.37) (44.73) 

 
Two 0.16 63.36 18.69 57.32 69.73 3876.6 

  
(0.24) (0.73) (0.40) (1.16) (1.14) (43.60) 

 
Three -0.54 62.65 21.80 58.07 66.37 3829.4 

  
(0.22) (0.70) (0.41) (1.18) (1.34) (42.37) 

 
Four -0.89 62.32 20.46 60.22 65.75 3792.3 

  
(0.21) (0.74) (0.41) (1.11) (1.36) (44.26) 

 
Five -1.67 61.56 23.01 56.68 63.47 3791.7 

  
(0.18) (0.70) (0.44) (1.15) (1.41) (42.66) 

Notes: Intervention strategies are as follows: One - individual feedback to all occupants, Two - normative feedback 

to all occupants, Three - normative feedback to occupants with a norm rating less than 3.3 and individual feedback 

to all others, Four - normative feedback to all individuals with energy use above the group norm and users below 

the norm receive individual feedback, and Five - occupants with a norm rating less than 3.3 receive a normative 

message and all other occupants receive no feedback. Standard deviations are in parentheses. All values are in kWh 

per week unless otherwise stated. Each intervention strategy has a sample size of 500. All values are in kWh per 

week. 

 

The effectiveness of the alternative strategies can clearly be seen in Figure 5.5. In both the 

block configuration network and the small world network the each alternative intervention 

strategies have a statistically significant effect on reducing energy consumption (H = 2070.861, p 

< 2.2e-16, df = 4; H = 2204.33, p < 2.2e-16, df = 4). Using the block configuration network there 

is no difference between intervention strategies one and two, but when using the small world 
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network structure they statistically differ although not meaningfully. For both network structures 

the three new intervention strategies made a marked improvement on system level energy 

consumption. Sending normative messages only to highly susceptible individuals reduced mean 

occupant energy use by roughly 0.7 kWh per week relative to the previous strategies. 

Intervention strategies four and five produced even larger reductions at approximately 1.2 and 

1.65kWh per week per occupant each respectively. These reductions amount to system level 

reductions in energy consumption of 1.1%, 1.9% and 2.6% relative to the first two intervention 

strategies. Over the course of the intervention the reductions in individual energy consumption in 

aggregate amount to tangle savings ranging from roughly 48 to 88 mWh over the fifty weeks. 

 

 

Figure 5.5:Boxplots of simulation results by network structure. Left – Mean energy use 

change by intervention strategy in the block configuration network. Right – Mean energy use 

change by intervention strategy in the small world network. Change values are in kWh per week 

per occupant. Letters indicate statistical differences between intervention strategies. 
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Of the new strategies at the end of the fifty simulated weeks, strategy five clearly produces 

the largest average occupant reduction in energy use at -1.67 kWh a week, but over the course of 

the intervention is not the most effective at reducing total energy consumption (Table 5.3). 

Intervention strategy four actually reduces net energy consumption more during the fifty weeks 

of the simulated intervention. This result stems from the difference in dynamics of how the 

interventions affect the population. Individual runs of intervention four and five using the same 

random seed are shown in Figure 5.6. 

The social network structure did affect the average net energy use change per occupant for 

all of the intervention strategies with the exception of providing occupants only with individual 

feedback (One - H = 0.0251, p= 0.8741, df =1;Two -  H = 22.3436, p = 2.28e-6, df = 1;Three -  

H = 100.1531, p < 2.2e-16, df = 1;Four -  H = 374.2755, p < 2.2e-16, df = 1;Five -  H = 

340.5062, p < 2.2e-16, df = 1). Despite having statistically different outcomes for the second 

intervention method, the difference between the two is not meaningfully different at 0.09 to 0.16 

kWh per week per occupant. The same is true for strategy three and five. However, a more 

meaningful difference between the two social network structures appears when applying the 

fourth messaging strategy. The difference is 0.4 kWh per week per occupant, almost 45%. The 

fifth scenario also exhibits a modest difference between the two structures at 0.24 kWh per week 

per occupant. As note previously, these differences in mean occupant change in the final time 

step of the model due to network structure do not translate into differences in the overall 

effectiveness of the interventions between the two as measured by net energy consumption. 

The network structure also affects the change in use of the high and low norm rating users.  

The small world network’s structure tends to exacerbate the behavior change of these two groups 

beyond what is seen in the block configuration network by approximately one percent. Upon 

conclusion of intervention, the standard deviation of energy use behavior is also slightly lower in 

every intervention scenario for the small world network as well. 
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Figure 5.6:  Single run mean energy use (black line) and the standard deviation of mean 

energy use (red line) for strategy four (top) and five (bottom) in the block configuration network 

using the same random generator seed. Please note that standard deviation values are multiplied 

by 3 to be able to be shown on the same scale. The x-axis in the plot is time steps and the y-axis 

is kWh per week. The images on the left graphically show the energy use behavior of every 

occupant in the network. The brighter the color the lower the energy use of the occupant (e.g., 

black occupants use near 125 kWh per week). 
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5.4 DISCUSSION 

The model presented in this chapter simulated applying various feedback intervention 

strategies in a college dormitory community using theories from the literature and observations 

from the field study that was conducted in Chapter 4. When simulating the application of the 

intervention methods applied in the field study the model is able to accurately reflect both the 

macro level outcomes as well as the micro level behavior of the occupants to match field 

observations. When individual feedback or normative is sent to all the occupants in the network 

at the macro level we see no reduction in energy use, the same as found in the field experiment 

and other normative feedback studies (Schultz et al. 2007). The reason for the lack of system 

level change is that some occupants increase their energy consumption as a result of the 

normative feedback and move toward the mean, the boomerang effect, whereas others reduce 

their energy consumption as desired. This is reflected in the model at the micro level where we 

see a shift in the energy use behavior of individuals who are highly susceptible and unsusceptible 

to normative influence. With both the macro level and micro level behavior of the model 

reflecting real world observations it provides confidence in the agent behavioral rules. 

With the model calibrated and validated against field data it was used to test the 

effectiveness of three new feedback intervention strategies on the effect of social network 

structure on intervention outcomes and to test the effectiveness of these strategies. The three 

alternative intervention scenarios include sending normative messages to only highly susceptible 

individuals (third scenario), sending the normative message only to individuals who use more 

energy than the group norm (fourth scenario), and sending normative feedback only to high norm 

individuals and no feedback to any other occupants (fifth scenario).  Of these strategies the fifth 

proved to be the most effective at changing the average occupant’s energy use behavior upon the 

conclusion of the intervention as expected, since it essentially only allowed for downward 

movement in energy use behavior. The forth method was almost equally effective when applied 

in the block configuration network but performed meaningfully worse when applied in the small 

world network.  However, when considering the net energy used over the course of the two 

interventions, these methods proved to be equivocal. With the forth intervention method 

occupants immediately shift their energy use down upon the receipt of the first few feedback 

messages (Figure 5.6). This immediate downward shift upon receiving feedback is commonly 
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seen in this type of intervention (Allcott and Rogers 2012). Alternatively in the fifth scenario 

mean occupant energy use slowly drifts lower each time step. If the simulations had run for a 

longer duration, the fifth scenario would have performed better with regards to net energy 

consumption. 

The social network structure in which the interventions were conducted did affect the 

outcome in terms of macro level behavior and micro level behavior for all intervention strategies 

except for when individual only feedback was used. These two network structures despite having 

comparable average degrees are conceptually very different. While both networks are believed to 

occur in social systems I believe that the block configuration network better represents the social 

network structure of residential communities. The small world network can be thought to 

represent that everyone knows their neighbors immediately adjacent to them and a few 

individuals may know a person on a different floor of their building or in a different building. 

This means that everyone knows someone else in the housing community. This does not seem to 

be a realistic assumption for large scale housing communities, especially in highly transient 

communities.  The survey questionnaires completed by occupants in the dormitory community 

partially corroborates this, as many individuals when asked where they spend time outside of 

their residence in the building community provided no answers. While it is unclear if the lack of 

response is due to not having social ties in the building or respondents simply skipping the 

question, based off of  data in the literature (Chen et al. 2013), it seems reasonable to assume that 

some respondents do not have social ties within the building community. The block 

configuration network structure reflects this as approximately 22% of all individuals have no 

social connections in the housing community. To be clear this does not mean these individuals 

have no friends or peers, just none that live in the dormitories.  

This difference between the two networks’ structures, the completely connected small 

world network versus the segregated small components of the block configuration network, can 

explain the differences in intervention outcomes caused by the two networks. In the small world 

network since all individuals are connected the change in behavior in one can eventually 

propagate to all other individuals in the network, but in the block configuration network this is 

not possible through peer feedback. The complete connectedness of the network means 

occupants indirectly influence every other occupant, although very minimally. This is reflected 
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in the slightly lower standard deviation of energy use behavior of the occupants in each 

intervention scenario except the fifth. This is not found in the fifth scenario since three quarters 

of the population receive no feedback and simply move about randomly. The variation in 

structure of the two networks also affects the effectiveness of each intervention method in 

absolute terms, but not in relative. Therefore, even if the network structure were unknown and 

one were to simulate new alternative strategies for reducing energy use, expected reductions 

might vary, but the conclusion as to which intervention to should be applied likely would not. 

While these three new intervention methods all improved upon the two tested in the field 

experiment, there are practical limitations to consider. In the field to implement the third and 

fifth scenarios the intervener would have to elicit information from the occupants to derive a 

value for their susceptibility to normative influence which would limit the wide scale application 

of these methods. On the other hand, scenario four, which was found to be the second most 

effective intervention strategy, is highly non-particular  (De Young 1993) and could be easily 

applied everywhere as it requires no self-reported data from occupants. 

Lastly, while the model achieved a high level of performance in simulating occupant 

behavior, this does not imply that the model could not be further improved. The model assumes 

that the influence from the group norm message and peer norms had an equal weight on 

influencing the occupants behavior. This assumption, while plausible, would benefit from 

evidence from the field. Secondly, the relative impact of receiving information from multiple 

sources was assumed based on observations from the literature (Latane 1981). Collecting data on 

the relative effectiveness of receiving norm messages from these two types of sources would 

further benefit the model. 

 

5.5 CONCLUSIONS 

In this study a novel behavior model was created to test the effectiveness of three behavior 

interventions and the effect that social network structure has on their outcomes. All three 

alternative intervention strategies generated marked improvements upon the generic application 

of individual or normative feedback messaging. Although each method resulted in marked 

improvements in energy consumption, from an application perspective one strategy is 
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significantly superior to the others, normative messaging based upon energy consumption 

relative to the group norm. This method resulted in a mean energy use reduction of 1.4 kWh per 

week per occupant, 2.2%, relative to the two baseline intervention techniques and can readily be 

applied today. 

Lastly, the social network structure in which the interventions took place affected the 

absolute outcomes of the simulations but not the relative outcomes. This suggests that while 

accurately modeling the social network structure is important to gauge potential cost and benefits 

of applying these normative interventions it will likely not influence the selection of which 

intervention strategies should be applied.  
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 SUMMARY OF RESEARCH  

This research effort started with the following overarching research goals:  (1) to improve 

our understanding of the impact of occupant decision making in residential energy consumption, 

(2) to enhance our understanding of how individual characteristics and complex contextual 

factors influence change in individual behavior and its diffusion through communities when 

subjected to normative intervention, and (3) to identify more effective normative behavioral 

strategies for reducing energy consumption in the built environment. Considering these goals, the 

research had these four more specific research objectives: (1) to measure the operational 

efficiency of residences, (2) to explore the relationship between social network structure and pro-

environmental behavior intervention outcomes, (3) to identify and measure relationships between 

behavioral determinants and normative feedback intervention effectiveness in both the short and 

long term, and (4) to create a formal behavior model for occupant behavior in order to 

predictively model normative feedback interventions. 

In order to achieve the research goals and objectives an iterative research framework was 

developed and four studies were conducted. A summary of the results and implications from the 

studies follows.  

1. To measure the operational efficiency of residences: In this study I conducted an 

investigation into the quantity of energy spent in unoccupied households, focusing specifically 

on dormitories. It was found that over 30% of all electrical energy consumption (which accounts 

for plug loads, lighting, heating, and cooling) took place in unoccupied residences. Across the 

seasons the percentage of energy consumed in vacant rooms ranged from around 3% to over 
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80%. The amount of energy consumed in unoccupied households, while highly correlated with 

how often the household is vacant, was also strongly influenced by occupant behavior. In 

addition no meaningful relationship was found between total a residences total energy 

consumption and the percentage of energy that was used while unoccupied. These findings 

suggest that there are significant opportunities to improve the sustainability of households 

through behavioral approaches.  

2. To explore the relationship between social network structure and pro-environmental 

behavior intervention outcomes: In this study I investigated how social network structure 

influenced the outcome of normative behavior interventions. It was found that while different 

network types and structure over many trials result in similar mean net changes in system energy 

use, the process of achieving the final outcome (time to reach and method of reaching) and the 

distributions of potential outcomes highly depend on social network properties. This is of 

importance when attempting to generalize conclusions about intervention results from one 

building to another, as distributions of outcomes and time to achieve behavior change vary 

widely depending on network structure. Therefore, when selecting and designing social norm 

based interventions, expected interventions outcomes should not be assumed based solely on 

previous outcomes, but consideration should also be given to the uncertainty of potential 

outcomes based upon specific social network properties in which they were found.         

3. To identify and measure relationships between behavioral determinants and 

normative feedback intervention effectiveness in both the short and long term: In this study 

conducted and analyzed two separate year-long field experiments testing the durability and effect 

of normative feedback messaging on energy consumption. It was found that normative 

messaging duration positively influenced the durability of behavior change. Further, not all 

individuals were equally influenced by normative messaging. High norm individuals were found 

to be positively induced to change their energy use behavior whereas low norm individuals had 

the opposite effect. Developing and testing interventions to take advantage of this finding has the 

potential to reduce cost of intervention by limiting the population which should receive 

normative feedback. More importantly, it also has the potential to improve the effectiveness of 

such programs by avoiding undesirable behavior change in large subsets of the population. 
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4. To create a formal behavior model for occupant behavior in order to predictively 

model normative feedback interventions: In this study I created a refined behavior model 

building on the model presented in Chapter 3 by integrating in new theories on social influence, 

social network formation in buildings, and empirical data and findings from the studies 

conducted in Chapter 4. The new behavior model was calibrated and validated against the 

studies’ results from Chapter 4 and conducted ‘what if’ analysis of three alternative intervention 

strategies. All three alternative intervention strategies generated marked improvements upon the 

generic application of individual or normative feedback messaging. Although each method 

resulted in marked improvements in energy consumption, from an application perspective one 

strategy is significantly superior to the others, normative messaging based upon energy 

consumption relative to the group norm. This method resulted in a mean energy use reduction of 

1.4 kWh per week per occupant, 2.2%, relative to the two baseline intervention techniques and 

could readily be applied today. Lastly, the social network structure in which the interventions 

took place affected the absolute outcomes of the simulations but not the relative outcomes. This 

suggests that while accurately modeling the social network structure is important to gauge 

potential cost and benefits of applying these normative interventions it will likely not influence 

the selection of which intervention strategies should be applied. 

   

6.2 FUTURE RESEARCH  

While this work has expanded our understanding of occupant behavior in dormitories and 

the role social networks play in the diffusion of energy use behavior many questions remain 

which still warrant further attention in future research efforts. A few such questions follow.  

1. Precisely how much of the energy consumed in unoccupied residences is spent on 

useful services (e.g., refrigeration, maintaining minimum indoor temperatures)? Further, what 

are the exact distributions of energy consumption by energy source in unoccupied residences? 

2. How do social network structures change over time and can this dynamicity be 

leveraged to encourage the desirable diffusion of pro-environmental behaviors? Also do social 

networks vary in different building communities (e.g., apartment communities, traditional 

detached-home neighborhoods, work places)? 
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3. Is there a particular threshold in terms of time or exposure that must be crossed in 

order for normative message to have a positive effect on behavior change durability and how 

does this vary for each individual? Or by what function does this enhancement in durability 

manifest? Further, do behavioral improvements or deterioration in energy consumption spill-

over into other pro-environmental behaviors? 

4.  Do residents discuss energy consumption and if so how frequently do they discuss it? 

How much influence do interpersonal communications have on energy use decisions relative to 

descriptive norms? What at what rate do additional sources of information increase the 

influence to partake in a behavior and how are conflicting behaviors from sources interpreted? 

 

6.3 FINAL REMARKS 

In this research the methodologies and framework that were developed and used focused 

specifically on energy consumption behavior in the built environment, these methods however, 

are not conceptually constrained to the study of energy use behavior. It is reasonable to assert 

that many other pro-environmental behaviors (e.g., water consumption) would be affected by the 

similar social and psychological mechanisms. Thus, the extension of methods in this research 

could be of potential benefit to the study of many other pro-environmental behaviors. Additional 

research efforts investigating alternative pro-environmental behaviors could further enhance the 

sustainability of the built environment and enhance our general understanding of how these 

behaviors are influenced by social mechanisms and diffusion through our environment.  
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APPENDIX A – INTAKE SURVEY 
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APPENDIX B – SECOND SURVEY: ADDITIONAL QUESTIONS 
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APPENDIX C – THIRD SURVEY: ADDITIONAL QUESTIONS 

ENGLISH VERSION 

 

 

 

 

 

 

 

 



117 

KOREAN VERSION 

 

 

 

 

 

 

 

 



118 

 

 

 

BIBLIOGRAPHY 

  

[1] Abrahamse, W., Steg, L., Vlek, C., and Rothengatter, T. (2005). “A review of intervention 

studies aimed at household energy conservation.” Journal of Environmental Psychology, 

25(3), 273–291. 

[2] Ajzen, I. (1991). “The theory of planned behavior.” Organizational behavior and human 

decision processes, 50(2), 179–211. 

[3] Ajzen, I. (2015) “Constructing a Theory of Planned Behavior Questionnaire.” 

<http://people.umass.edu/~aizen/pdf/tpb.measurement.pdf> (Last accessed July 7, 2015). 

[4] Anderson, K., Lee, S., & Menassa, C. (2012). “Effect of social network type on building 

occupant energy use.” In Proceedings of the Fourth ACM Workshop on Embedded 

Sensing Systems for Energy-Efficiency in Buildings, ACM, 17–24. 

[5] Anderson, K. and Lee, S. (2013). “Modeling Occupant Energy Use Interventions in 

Evolving Social Networks." 2013 Winter Simulation Conference, Washington, DC. 

[6] Anderson, K., Lee, S., and Menassa, C. (2014). “Impact of Social Network Type and 

Structure on Modeling Normative Energy Use Behavior Interventions.” Journal of 

Computing in Civil Engineering, 28(1), 30-39. 

[7] Allcott, H. (2011). “Social norms and energy conservation.” Journal of Public Economics, 

95(9-10), 1082–1095. 

[8] Allcott, H., and Rogers, T. (2012). “The short-run and long-run effects of behavioral 

interventions: experimental evidence from energy conservation.” NBER Working Paper 

Series, WP 18492. 

[9] Anderson, K., Lee, S., and Menassa, C. (2012). “Effect of Social Network Type on 

Building Occupant Energy Use.” 4th ACM Workshop on Embedded Sensing Systems for 

Energy-Efficiency in Buildings, Toronto, CA. 

http://people.umass.edu/~aizen/pdf/tpb.measurement.pdf


119 

[10] Axtell, R. L., and Epstein, J. M. (1994). “Agent-based modeling: Understanding our 

creations.” The Bulletin of the Santa Fe Institute, 9(2), 28–32. 

[11] Ayres, I., Raseman, S., & Shih, A. (2013). “Evidence from two large field experiments 

that peer comparison feedback can reduce residential energy usage.” Journal of Law, 

Economics, and Organization, 29(5), 992-1022. 

[12] Azar, E., and Menassa, C. (2012a). “Agent-Based Modeling of Occupants’ Impact on 

Energy Use in Commercial Buildings.” Journal of Computing in Civil Engineering, 26(4), 

506–518. 

[13] Azar, E., and Menassa, C. (2012b). “A comprehensive analysis of the impact of 

occupancy parameters in energy simulation of office buildings.” Energy and Buildings, 

55, 841-853.  

[14] Azar, E., and Menassa, C. (2015). “Evaluating the impact of extreme energy use behavior 

on occupancy interventions in commercial buildings.” Energy and Buildings, 97, 205-218. 

[15] Bahaj, A. S., Myers, L., and James, P. A. B. (2007). “Urban energy generation: Influence 

of micro-wind turbine output on electricity consumption in buildings.” Energy and 

Buildings, 39(2), 154–165. 

[16] Barabási, A., and Albert, R. (1999). “Emergence of scaling in random networks.” Science, 

286, 509–512. 

[17] Bearden, W., Netemeyer, R., and Teel, J. (1989). “Measurement of consumer 

susceptibility to interpersonal influence.” Journal of Consumer Research, 15(4), 473–481. 

[18] Bendor, J., and Swistak, P. (2001). “The Evolution of Norms.” American Journal of 

Sociology, 106(6), 1493–1545. 

[19] Berkowitz, L., and Lundy, R. M. (1957). “Personality characteristics related to 

susceptibility to influence by peers or authority figures.” Journal of Personality, 25(3), 

306–16. 

[20] Bittle, R. G., Valesano, R.M., and Thaler, G. (1979a). “The effects of daily cost feedback 

on residential electricity consumption.” Behavior Modification, 3(2), 187-202. 

[21] Bittle, R. G., Valesano, R. M., and Thaler, G. M. (1979b). “The effects of daily feedback 

on residential electricity usage as a function of usage level and type of feedback 

information.” Journal of Environmental Systems, 9(3), 275-287. 

[22] Brandon, G., & Lewis, A. (1999). “Reducing household energy consumption: A 



120 

qualitative and quantitative field study.” Journal of Environmental Psychology, 19(1), 75–

85.  

[23] Brown, N., Wright, a. J., Shukla, A., and Stuart, G. (2010). “Longitudinal analysis of 

energy metering data from non-domestic buildings.” Building Research & Information, 

38(1), 80–91. 

[24] Chen, J., Jain, R. K., and Taylor, J. E. (2013). “Block Configuration Modeling: A novel 

simulation model to emulate building occupant peer networks and their impact on building 

energy consumption.” Applied Energy, 105, 358–368. 

[25] Chen, J., Taylor, J. E., and Wei, H.-H. (2012). “Modeling building occupant network 

energy consumption decision-making: The interplay between network structure and 

conservation.” Energy and Buildings, 47, 515–524. 

[26] Cook, R. D. (1977). “Detection of influential observation in linear regression.” 

Technometrics, 15-18. 

[27] Cowan, R., and Jonard, N. (2004). “Network structure and the diffusion of knowledge.” 

Journal of Economic Dynamics and Control, 28(8), 1557–1575. 

[28] Cox, D. F., and Bauer, R. A. (1964). “Self-Confidence and Persuasibility in Women.” The 

Public Opinion Quarterly, 28(3), 453–466. 

[29] Darby, S. (2006). “The effectiveness of feedback on energy consumption: A review for 

DEFRA of the literature on metering, billing and direct displays.” Environmental Change 

Institute, University of Oxford, (April). 

[30] De Young, R. (1993). “Changing behavior and making it stick: The conceptualization and 

management of conservation behavior.” Environment and Behavior, 25(3), 485-505. 

[31] De Young, R. (2013). “Evaluating Interventions,” Lecture in Psychology of 

Environmental Stewardship (NRE 561 University of Michigan). 

[32] Dietz, T., Gardner, G. T., Gilligan, J., Stern, P. C., & Vandenbergh, M. P. (2009). 

“Household actions can provide a behavioral wedge to rapidly reduce US carbon 

emissions.” Proceedings of the National Academy of Sciences of the United States of 

America, 106(44), 18452–6. 

[33] Druckman, A., Chitnis, M., Sorrell, S., and Jackson, T. (2011). “Missing carbon 

reductions? Exploring rebound and backfire effects in UK households.” Energy Policy, 

39(6), 3572–3581. 



121 

[34] Emery, A. F., and Kippenhan, C. J. (2006). “A long term study of residential home heating 

consumption and the effect of occupant behavior on homes in the Pacific Northwest 

constructed according to improved thermal standards.” Energy, 31(5), 677–693. 

[35] Epstein, J. M. (2001). “Learning to be thoughtless: Social norms and individual 

computation.” Computational Economics, 18(1), 9–24. 

[36] European Commission. (2013). “Final energy consumption by sector.” 

<http://epp.eurostat.ec.europa.eu/tgm/refreshTableAction.do?tab=table&plugin=1&pcode

=tsdpc320&language=en> (Last accessed on June 15, 2015). 

[37] Foley, H. C. (2012). “Challenges and Opportunities in Engineered Efficiency and 

Habitability.” AIChE Journal, 58(3), 658–667. 

[38] Franz, M., and Nunn, C. L. (2009). “Network-based diffusion analysis: a new method for 

detecting social learning.” Proceedings. Biological sciences / The Royal Society, 

276(1663), 1829–36. 

[39] Friedkin, N. E. (2001). “Norm formation in social influence networks.” Social Networks, 

23(3), 167–189. 

[40] Friedkin, N. E. (1998). A structural theory of social influence. Cambridge University 

Press, Cambridge, UK. 

[41] Galan, J. M., Latek, M. M., and Rizi, S. M. M. (2011). “Axelrod’s metanorm games on 

networks.” PLoS ONE, 6(5), 1–11. 

[42] Gardner G. T., Stern P. C. (2008). “The short list: The most effective actions U.S. 

households can take to curb climate change.” Environment, 50, 12–23. 

[43] Geller, E. (2002). “The challenge of increasing proenvironmental behavior.” Handbook of 

environmental psychology, 525–540. 

[44] Gilbert, N. (2008). Agent-based models (No. 7). Sage Publications, Los Angeles. 

[45] Gill, Z. M., Tierney, M. J., Pegg, I. M., and Allan, N. (2010). “Low-energy dwellings: the 

contribution of behaviours to actual performance.” Building Research & Information, 

38(5), 491–508. 

[46] Goldstein, N. J., Cialdini, R. B., and Griskevicius, V. (2008). “A Room with a Viewpoint: 

Using Social Norms to Motivate Environmental Conservation in Hotels.” Journal of 

Consumer Research, 35(3), 472–482. 

[47] Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., 

http://epp.eurostat.ec.europa.eu/tgm/refreshTableAction.do?tab=table&plugin=1&pcode=tsdpc320&language=en
http://epp.eurostat.ec.europa.eu/tgm/refreshTableAction.do?tab=table&plugin=1&pcode=tsdpc320&language=en


122 

Grand, T., Heinz, S. K., Huse, G., Huth, A., Jepsen, J. U., Jørgensen, C., Mooij, W. M., 

Müller, B., Pe’er, G., Piou, C., Railsback, S. F., Robbins, A. M., Robbins, M. M., 

Rossmanith, E., Rüger, N., Strand, E., Souissi, S., Stillman, R. a., Vabø, R., Visser, U., 

and DeAngelis, D. L. (2006). “A standard protocol for describing individual-based and 

agent-based models.” Ecological Modelling, 198(1-2), 115–126. 

[48] Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., and Railsback, S. F. 

(2010). “The ODD protocol: A review and first update.” Ecological Modelling, 221(23), 

2760–2768. 

[49] Haldi, F., and Robinson, D. (2011). “The impact of occupants’ behaviour on building 

energy demand.” Journal of Building Performance Simulation, 4(4), 37–41. 

[50] Hines, J. M., Hungerford, H. R., and Tomera, A. N. (1987). “Analysis and Synthesis of 

Research on Responsible Environmental Behavior: A Meta-Analysis.” Journal of 

Environmental Education, 18(2), 1–8. 

[51] Hepbasli, A., and Akdemir, O. (2004). “Energy and exergy analysis of a ground source 

(geothermal) heat pump system.” Energy Conversion and Management, 45(5), 737–753. 

[52] Houwelingen, J. V., and Raaij, W. V. (1989). “The effect of goal-setting and daily 

electronic feedback on in-home energy use.” Journal of Consumer Research, 16(1), 98–

105. 

[53] Houghton, J. T., Ding, Y. D. J. G., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, 

X., ... & Johnson, C. A. (2001). Climate change 2001: the scientific basis (Vol. 881). 

Cambridge: Cambridge University Press. 

[54] Hutton, R., Mauser, G., Filiatrault, P., and Ahtola, O. (1986). “Effects of cost-related 

feedback on consumer knowledge and consumption behavior: A field experimental 

approach.” Journal of Consumer Research, 13(3), 327–336. 

[55] Janis, I. L. (1954). “Personality correlates of susceptibility to persuasion.” Journal of 

Personality, 22(4), 504–18. 

[56] Kaplan, S., and Kaplan, R. (2009). “Creating a larger role for environmental psychology: 

The Reasonable Person Model as an integrative framework.” Journal of Environmental 

Psychology, 29(3), 329–339. 

[57] Katzev, R., Cooper, L., and Fisher, P. (1981). “Effect of Feedback and Social 

Reinforcement on Residential Electricity Consumption.” Journal of Environmental 



123 

Systems, 10(3), 215-227. 

[58] Latane, B. (1981). “The psychology of social impact.” American Psychologist, 36(4), 

343–356. 

[59] Law, A.M. and Kelton, W.D. (2000).  Simulation Modeling and Analysis. 3rd eds, 

McGraw-Hill Companies, Boston. 

[60] Liljeros, F., Edling, C. R., Amaral, L. A, Stanley, H. E., and Aberg, Y. (2001). “The web 

of human sexual contacts.” Nature, 411(6840), 907–8. 

[61] Lindelöf, D., & Morel, N. (2006). “A field investigation of the intermediate light 

switching by users.” Energy and Buildings, 38(7), 790-801. 

[62] Mahdavi, A., Mohammadi, A., Kabir, E., & Lambeva, L. (2008). “Occupants' operation of 

lighting and shading systems in office buildings.” Journal of Building Performance 

Simulation, 1(1), 57-65. 

[63] Marsden, P. V., and Friedkin, N. E. (1993). “Network Studies of Social Influence.” 

Sociological Methods & Research, 22(1), 127–151. 

[64] Masoso, O. T., and Grobler, L. J. (2010). “The dark side of occupants’ behaviour on 

building energy use.” Energy and Buildings, 42(2), 173–177. 

[65] McClelland, L., and Cook, S. W. (1979). “Energy conservation effects of continuous in-

home feedback in all-electric homes.” Journal of Environmental Systems, 9(2), 169-173. 

[66] McKenzie-Mohr, D. (2000). “Fostering sustainable behavior through community-based 

social marketing.” American Psychologist, 55(5), 531–537. 

[67] Meyers, R. J., Williams, E. D., and Matthews, H. S. (2010). “Scoping the potential of 

monitoring and control technologies to reduce energy use in homes.” Energy and 

Buildings, 42(5), 563–569. 

[68] Miller, J.H. and Page, S.E. (2007). Complex Adaptive Systems. Princeton University Press, 

New Jersey. 

[69] Mundaca, L., Neij, L., Worrell, E., and McNeil, M. (2010). “Evaluating Energy Efficiency 

Policies with Energy-Economy Models.” Annual Review of Environment and Resources, 

35(1), 305–344. 

[70] Newman M. (2003). “Random graphs as models of networks.” Handbook of graphs and, 

networks, 35–68. 

[71] Newman, M. (2010). Networks: an introduction. Oxford University Press. 



124 

[72] Nolan, J. M., Schultz, P. W., Cialdini, R. B., Goldstein, N. J., and Griskevicius, V. (2008). 

“Normative social influence is underdetected.” Personality & Social Psychology Bulletin, 

34(7), 913–23. 

[73] North, Michael J., Nicholson T. Collier, and Jerry R. Vos. "Experiences creating three 

implementations of the repast agent modeling toolkit." ACM Transactions on Modeling 

and Computer Simulation (TOMACS) 16, no. 1 (2006): 1-25. 

[74] Osbaldiston, R., and Schott, J. P. (2011). “Environmental Sustainability and Behavioral 

Science: Meta-Analysis of Proenvironmental Behavior Experiments.” Environment and 

Behavior, 44(2), 257–299. 

[75] Parys, W., Saelens, D., and Hens, H. (2009). “Impact of occupant behaviour on lighting 

energy use.” Proceedings of Building Simulation 2009, 1143–1150. 

[76] Pérez-Lombard, L., Ortiz, J., and Pout, C. (2008). “A review on buildings energy 

consumption information.” Energy and Buildings, 40(3), 394–398. 

[77] Peschiera, G., Taylor, J. E., and Siegel, J. A. (2010). “Response–relapse patterns of 

building occupant electricity consumption following exposure to personal, contextualized 

and occupant peer network utilization data.” Energy and Buildings, 42(8), 1329–1336. 

[78] Petty, R. E., and Cacioppo, J. T. (1981). Attitudes and persuasion--classic and 

contemporary approaches. William C Brown Pub., Boulder, CO. 

[79] Poel, B., van Cruchten, G., and Balaras, C. A. (2007). “Energy performance assessment of 

existing dwellings.” Energy and Buildings, 39(4), 393–403. 

[80] Repast. (2012). “Recursive Porus Agent Simulation Toolkit.” 

<http://repast.sourceforge.net/repast_3/> (Last accessed Jun 15, 2015). 

[81] Robinson, S. (1999). “Simulation verification, validation and confidence: a tutorial.” 

Transactions of the Society for Computer Simulation International, 16(2), 63–69. 

[82] Robinson, D., and Haldi, F. (2011). “Modelling Occupants’ Presence and Behaviour–Part 

I.” Journal of Building Performance Simulation, 4(4), 3–5. 

[83] Santin, O. G., Itard, L., and Visscher, H. (2009). “The effect of occupancy and building 

characteristics on energy use for space and water heating in Dutch residential stock.” 

Energy and Buildings, 41(11), 1223–1232. 

[84] Schultz, P. W., Nolan, J. M., Cialdini, R. B., Goldstein, N. J., and Griskevicius, V. (2007). 

“The constructive, destructive, and reconstructive power of social norms.” Psychological 



125 

Science, 18(5), 429–34. 

[85] Sexton, R. J., Johnson, N. B., and Konakayama, A. (1987). “Consumer response to 

continuous-display electricity-use monitors in a time-of-use pricing experiment.” Journal 

of Consumer Research, 55-62. 

[86] Simpson, J., and McPherson, E. (1996). “Potential of tree shade for reducing residential 

energy use in California.” Journal of Arboriculture, 22(1), 10–18. 

[87] Sorrell, S., Dimitropoulos, J., and Sommerville, M. (2009). “Empirical estimates of the 

direct rebound effect: A review.” Energy Policy, 37(4), 1356–1371. 

[88] Staats, H., Harland, P., & Wilke, H. a. M. (2004). “Effecting Durable Change: A Team 

Approach to Improve Environmental Behavior in the Household.” Environment & 

Behavior, 36(3), 341–367.  

[89] Stern, P. C. (2000). “Toward a Coherent Theory of Environmentally Significant 

Behavior.” Journal of Social Issues, 56(3), 407–424. 

[90] Stern, P. C. (2011). “Contributions of psychology to limiting climate change.” The 

American Psychologist, 66(4), 303–14. 

[91] Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, 

Y. C., ... & Williams, S. E. (2004). “Extinction risk from climate change.” Nature, 

427(6970), 145–148. 

[92] U.S. Census Bureau (USCB) (2013a). Selected Housing Characteristics: 2011 American 

Community Surevey 1-Year Estimates. 

<http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_

13_1YR_DP04&prodType=table> (Last accessed: July 1, 2015). 

[93] U.S. Census Bureau. (2013b). American Housing Survey for the United States: 2011. 

Current Housing Reports, Series H150/11, Washington, DC. 

[94] U.S. Congress. (2007). Energy independence and security act of 2007. Public Law, (110-

140), 2. <http://frwebgate.access.gpo.gov/cgi-

bin/getdoc.cgi?dbname=110_cong_public_laws&docid=f:publ140.110> (Last accessed: 

June 15, 2015). 

[95] U.S. Energy Information Administration (EIA). (2014). “Annual Energy Outlook 2014: 

Early Release Overview.” DOE/EIA-0383ER(2014), Washington, DC.  

[96] U.S. Environmental Protection Agency (EPA). (2012). “Inventory of the U.S. Greenhouse 

http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_13_1YR_DP04&prodType=table
http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_13_1YR_DP04&prodType=table
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=110_cong_public_laws&docid=f:publ140.110
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=110_cong_public_laws&docid=f:publ140.110


126 

Gas Emissions and Sinks: 1990-2010.” EPA 430-R-12-001, Washington, DC. 

[97] Watts, D. J., and Strogatz, S. H. (1998). “Collective dynamics of ‘small-world’ networks.” 

Nature, 393(6684), 440–2. 

[98] Weather Underground. (2014). “Weather History for Seoul Kimpo Airport, South Korea.” 

<http://www.wunderground.com/history/airport/RKSS/2013/12/9/MonthlyHistory.html>  

(Last accessed June 15, 2015). 

[99] Wechsler, H., Nelson, T., Lee, J.E., Seiberg, M., Lewis, C., & Keeling, R. (2003). 

“Perception and reality: A national evaluation of social norms marketing interventions to 

reduce college students’ heavy alcohol use.” Quarterly Journal of Studies on Alcohol, 64, 

484–494. 

[100] Werch, C. E., Pappas, D. M., Carlson, J. M., DiClemente, C. C., Chally, P. S., & Sinder, J. 

A. (2000). “Results of a social norm intervention to prevent binge drinking among first-

year residential college students.” Journal of American College Health, 49(2), 85-92. 

[101] Wilhite, H., and Ling, R. (1995). “Measured energy savings from a more informative 

energy bill.” Energy and Buildings, 22(2), 145–155. 

[102] Wilson, C., and Dowlatabadi, H. (2007). “Models of Decision Making and Residential 

Energy Use.” Annual Review of Environment and Resources, 32(1), 169–203. 

[103] Wolske, K. S. (2011). Encouraging climate-friendly behaviors through a community 

energy challenge: The effects of information, feedback, and shared stories (Doctoral 

dissertation, The University of Michigan). 

[104] Yu, Z., Fung, B. C. M., Haghighat, F., Yoshino, H., and Morofsky, E. (2011). “A 

systematic procedure to study the influence of occupant behavior on building energy 

consumption.” Energy and Buildings, 43(6), 1409–1417. 

[105] Yun, G. Y., and Steemers, K. (2011). “Behavioural, physical and socio-economic factors 

in household cooling energy consumption.” Applied Energy, 88(6), 2191–2200. 

[106] Zeigler, B. P., Praehofer, H., and Kim, T. G. (2000). Theory of modeling and simulation: 

Integrating discrete event and continuous complex dynamic systems. Academic Press, San 

Diego, CA. 

[107] Zhang, T., Siebers, P.-O., and Aickelin, U. (2011). “Modelling electricity consumption in 

office buildings: An agent based approach.” Energy and Buildings, 43(10), 2882–2892. 

http://www.wunderground.com/history/airport/RKSS/2013/12/9/MonthlyHistory.html

