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ABSTRACT 

To alleviate fossil fuel use, reduce air emissions, and mitigate climate change, “new 

mobility” systems start to emerge with technologies such as electric vehicles, multi-modal 

transportation enabled by information and communications technology, and car/ride sharing. 

Current literature on the environmental implications of these emerging systems is often limited 

by using aggregated travel pattern data to characterize personal mobility dynamics, neglecting 

the individual heterogeneity. Individual travel patterns affect several key factors that determine 

potential environmental impacts, including: charging behaviors, connection needs between 

different transportation modes, and car/ride sharing potentials. Therefore, to better understand 

these emerging systems and inform decision making, travel patterns at the individual level need 

to be taken into account in environmental assessments. Using vehicle trajectory data of over 

10,000 taxis in Beijing, this research demonstrates the benefits of integrating individual travel 

patterns into environmental assessments through three case studies (vehicle electrification, 

charging station siting, and ride sharing) focusing on two emerging systems: electric vehicles and 

ride sharing. Results from the vehicle electrification case study show that individual travel 

patterns can impact the environmental performance of fleet electrification. When unit battery 

cost exceeds $200/kWh, vehicles with greater battery range cannot continuously improve travel 

electrification and may even reduce the overall electrification rate. At the current unit battery 

cost of $400/kWh, targeting subsidies to vehicles with battery range around 90 miles can achieve 

higher electrification rate. The public charging station siting case study demonstrates that 

individual travel patterns can better estimate charging demand and guide public charging 
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infrastructure development. Charging stations sited according to individual travel patterns can 

increase electrification rate by 59% to 88% compared to the existing sites. Lastly, results from 

the ride sharing case study indicate that trip details extracted from vehicle trajectory data enable 

dynamic ride sharing modeling. Shared taxi rides in Beijing can reduce total fleet travel distance 

and air emissions by 33% with 10-minute travel time deviation tolerance. Only minimal 

tolerance to travel time change (4 minutes) is needed from the riders to enable significant ride 

sharing (sharing 60% of the trips and saving 20% of travel distance). In summary, vehicle 

trajectory data can be integrated into environmental assessments to capture individual travel 

patterns and improve our understanding of the emerging transportation systems.
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1 CHAPTER I 

Introduction 

1.1 Overview 

Urban transportation systems contribute significantly to sustainability challenges such as 

fossil fuel consumption, air pollution, and greenhouse gas (GHG) emissions. To alleviate fossil 

fuel use, reduce air emissions, and mitigate climate change, “new mobility” systems have started 

to emerge with technologies such as electric vehicles, multi-modal transportation enabled by 

information and communications technology (ICT), logistics optimization platforms, and car/ride 

sharing [1, 2].  

The current literature on assessing the environmental impacts of these emerging systems is 

often limited to the use of aggregated data to represent personal mobility dynamics such as 

national average annual (or daily) vehicle-miles-travelled (VMT). However, the environmental 

impacts of these emerging transportation systems are highly dependent on mobility dynamics at 

the individual level (e.g., how many miles one travels during a trip; how long one waits to take 

the next trip; and where people travel to and from). Taking electric vehicles (EV) as an example, 

individual travel patterns determine not only how much electricity is used but also whether base 

load or peak load electricity will be dispatched to charge the battery. Both factors affect the 

environmental performance of EVs significantly. Realizing how individual travel patterns can 

impact EV environmental performance, researchers have used travel survey data (e.g. National 

Household Travel Survey) to better model charging behaviors and energy consumption for EVs. 
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While travel survey data provide more detailed travel patterns compared to average values, the 

temporal coverage and spatial resolution of this type of data is low (discussed in more detail in 

Section 2.2.1). To draw conclusions at the fleet level and for particular cities, better 

characterization of travel patterns is needed. For the other emerging technologies, individual 

travel patterns also determine where connections are needed between different transportation 

modes and which trips can be shared. Therefore, to better understand the environmental 

implications of these emerging transportation systems, it is necessary to integrate personal 

mobility dynamics at the individual level into environmental assessments. This is the major 

motivation of this work.  

The recent development of ICT has enabled several types of “big data” that can be used to 

study personal mobility dynamics at the individual level. Vehicle trajectory data collected by 

global positioning system (GPS) devices are particularly useful for environmental assessments of 

emerging transportation systems. This research aims to demonstrate the benefits of incorporating 

individual travel patterns into environmental assessments using vehicle trajectory data. Such 

integration can provide more realistic modeling of system performance and better support 

decision making to improve the sustainability of urban transportation. The contribution of this 

research is twofold. First, it presents a framework of integrating big data-informed travel patterns 

into environmental assessments. Second, each case study in this research also has its own real-

world policy implications. 

1.2 Research Questions 

This research includes three case studies focusing on two emerging transportation systems: 

EV and ride sharing. These systems were chosen because they represent promising opportunities 

to improve transportation sustainability and have received increasing attention and policy 
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support in many countries. Vehicle trajectory data of the taxi fleet in Beijing, China are used in 

all cases, but each case study used a separate data set because more recent data were made 

accessible as the study progressed. All three data sets contain the same type of data in the same 

formats; cover a similar number of vehicles; and are collected through the same process. Details 

of each data set are included in the data section in Chapter III to V. The scope and specific 

research questions for each case are summarized below.  

Case 1: Implications of EV adoption on GHG emissions (Chapter III) 

This case examines how individual travel patterns can affect potential environmental 

impacts of fleet electrification through EV adoption and utilization. Compared to previous 

studies which assume that everyone follows the same travel pattern as the aggregated average 

and neglect the heterogeneity of individual users, this case study not only uses real-world 

trajectory data to better model individual EV utilization, but also includes an adoption model to 

reflect the fact that not all drivers can benefit from EV adoption. Specifically, I addressed the 

following technical, policy, and environmental questions: 

 1) Based on individual travel patterns, what percentage of fleet travel can be electrified?   

2) What is the optimal battery range to achieve the highest level of travel electrification?  

3) How can the government promote electric vehicles more cost effectively?  

4) What are the associated GHG emission impacts of taxi fleet electrification in Beijing? 

Case 2: Public charging station siting based on individual travel demands (Chapter IV) 

The environmental performance of EV systems is highly dependent on the charging 

infrastructure, which determines charging availability and behavior. This case examines the 
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benefit of using big data-informed travel patterns for EV charging infrastructure development. 

Current literature of charging infrastructure siting has two research gaps: inappropriate 

estimation of charging demand and the lack of environmental consideration in the models. This 

case study addresses both gaps by using real world travel pattern data to better represent 

charging demand and developing an optimization model to site charging stations for maximum 

environmental benefits. The research questions are:  

1) How do spatial locations of charging stations impact the electrification rate? 

2) How should public charging stations be sited to maximize potential environmental 

benefits? 

Case 3: Environmental benefits of ride sharing (Chapter V) 

This case demonstrates how individual travel patterns can improve understanding of the 

environmental benefits of ride sharing. While recent ICT development provides unprecedented 

opportunities for dynamic ride sharing at the large scale, the environmental benefits of 

implementing such ride sharing system in urban cities are not yet quantified. This case study 

evaluates the environmental benefits of shared taxis at the city scale. The specific research 

questions include:  

1) How many VMT can be reduced from implementing shared taxis in Beijing?  

2) How much air emissions can be reduced from implementing ride sharing? 

1.3 Structure of the Dissertation 

The remainder of the dissertation is organized as follows. Chapter II reviews relevant 

literatures and identifies research gaps. Chapters III to V present three cases of integrating big 
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data-informed individual travel patterns in evaluating the environmental implications of 

emerging transportation systems. The last chapter concludes and envisions future work. 

Chapter III evaluates the GHG implications of electrifying the taxi fleet in Beijing. Taking 

a data-driven approach, plug-in hybrid electric vehicle adoption and utilization were modeled 

using real-time vehicle trajectory data of 10,375 taxis (18% of the fleet) in Beijing during one 

week. The impacts of government subsidy, battery range and cost, charging infrastructure 

availability, and electricity mix were also examined. The results have been published in 

Environmental Science and Technology (Vol.47, No.16, p.9035-9043) [3].  

Chapter IV investigates how individual travel patterns can inform public charging station 

siting to maximize potential environmental benefits using vehicle trajectory data of 11,880 taxis 

in Beijing for three weeks. This chapter first demonstrates that public charging stations sited 

based on individual travel patterns can lead to higher travel electrification compared to the same 

number of charging stations in existing locations. An optimization model is then developed to 

identify the optimal charging station locations that can maximize electrified VMT at the fleet 

level. The first part of this chapter (Section 4.3.1) has been published in Transportation 

Research Part D: Transport and Environment (Vol.33, p.39-46) [4] and the second part (Section 

4.3.2) has been submitted to the same journal.  

Chapter V evaluates the environmental benefits of taxi ride sharing in Beijing. Passenger 

pick up and drop off locations are extracted from vehicle trajectory data of 12,083 taxis in 

Beijing for one month to identify which trips can be shared and how many VMT can be saved. 

The matching of  the rides to be shared is determined by first identifying all sharable trips and 

then solving an optimization model to maximize saved VMT.   
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2. CHAPTER II 

Literature Review 

2.1 Environmental Implications of Emerging Transportation Systems 

Transportation accounts for approximately 25% of the global energy demand and more 

than 62% of all the oil consumption [5]. In the U.S., transportation contributes 27% of the total 

energy use in 2013 [6]. In addition, over 92% of the transportation energy consumption is 

petroleum based [6], indicating a high dependence on oil of the U.S. transportation sector. In 

addition, the U.S. transportation sector is responsible for 28% of the GHG emissions [6]. 

Transportation also contributes to other air pollutants such as particulate matters (PM), carbon 

monoxide (CO), and volatile organic compounds (VOC) [7]. In the developing countries, on the 

other hand, the transportation sector undergoes rapid development. Passenger road transportation 

in China has increased by eight times during the past two decades [8]. Vehicle ownership is 

growing at a rate of 10.6% in China, 7% in India, and 6.5% in Indonesia each year [9]. 

Keshavarzian et al (2012). estimated that, by 2020, world oil demand of the road transportation 

sector will increase by over 30%, compared to the 2008 level in the business-as-usual case [10].  

New technologies, such as EV, multi-modal transportation, connected and autonomous 

vehicles, and car/ride share, provide potential opportunities to improve urban transportation 

systems and mitigate climate change by reducing carbon emissions [1, 2]. EVs and ride sharing 

are two emerging transportation systems that have received ever greater attention in recent years. 

Currently many countries have policies to incentivize vehicle electrification; and 15 countries, 
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including the U.S., United Kingdom, China, and India, have participated in the Electric Vehicles 

Initiative (EVI), which aims to deploy 20 million electric cars globally by 2020 [11]. Ride 

sharing, an old idea re-boosted by new technologies, has also become increasingly popular. Uber 

recently announced that half of the Uber rides in San Francisco are shared rides using UberPool 

service [12]. These emerging systems are often labelled as “green transportation”; however, their 

environmental impacts are still unclear. 

2.1.1 Vehicle Electrification 

Electric vehicles (EV) include hybrid electric vehicles (HEV), plug-in hybrid electric 

vehicles (PHEV) and battery electric vehicles (BEV) [13]. EV is considered as a potential 

sustainable transportation option because it has two major advantages. First, using electricity 

from the grid as a transportation fuel can diversify fuel sources for the transportation sector. 

Unlike gasoline, electricity can be generated from various sources including renewable ones. 

Second, depending on whether PHEVs or BEVs are adopted, EV system can reduce or eliminate 

tailpipe emissions, presenting potential opportunities to reduce urban air pollution from road 

transportation. However, while EVs can reduce gasoline use, they increase the electricity 

consumption. Depending on how the electricity is generated, emissions of particular air 

pollutants may reduce or increase [14]. Therefore, to fully evaluate the environmental impacts of 

the EV system, life cycle assessment (LCA) is adopted to investigate the life cycle impacts of 

vehicle (and battery) production, fuel production, vehicle use, and end-of-life handling [15]. 

Many studies have evaluated the energy consumption [16-24], GHG emissions [18, 20, 

22-30], and other criteria air pollutants [23, 27, 28, 31-33] of EV systems using LCA. However, 

as Hawkins et al. (2012) pointed out, the scope and model details of these studies are very 

different from one another, leading to highly variable results [15].  One major source of 
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uncertainty Hawkins et al. (2012)  identified is the electricity used to charge EVs [15], which is 

determined by vehicle fuel economy, electricity mix, and charging behavior. While the impacts 

of vehicle fuel economy and regional electricity mix on EV’s environmental performance have 

been well recognized [14, 24], the impact of charging behavior is often overlooked.  

Charging behavior can affect the environmental performances of EVs from the following 

three perspectives. First, charging behavior determines the amount of VMT that can be powered 

by electricity. For PHEVs which can use both electricity and liquid fuel, determining the fuel 

consumption allocation between electricity and liquid fuel (a.k.a., utility factor [34]) is critical in 

estimating the life cycle environmental impacts. On the other hand, for some BEVs, if a vehicle 

is able to charge between two trips, it will have enough energy to fulfill the second trip 

(assuming the trip is within the battery range). Otherwise, the driver will have to seek alternative 

transportation options.  

Second, when EVs are plugged-in determines what types of fuel sources are used to 

generate the electricity used for charging. Many studies have argued that average grid emission 

factors can be misleading and marginal emissions factors should be used to calculate the 

electricity emission changes due to the adoption of new technologies [26, 35, 36].  

Lastly, an EV user’s travel pattern implies his or her potential charging behavior because 

the vehicle parking time and location represents potential charging opportunities. Users whose 

travel patterns allow them to benefit more from EVs are more likely to adopt [37]. Lack of 

economic competitiveness is one of the major barriers for EV adoption [38]. Given the fact that 

electricity is cheaper than liquid fuels on a per mile basis in most cases, EVs become a more 
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viable option for those whose travel patterns and charging behaviors allow them driving more 

VMT on electricity [37]. 

However, in existing literature, most studies make rather simplified assumptions about 

the charging behaviors (e.g., charging once per day at night, or charging during specific hours 

[39]). This neglects the heterogeneity of individual travel needs and charging behaviors, leading 

to unrealistic estimation of the amount of VMT that can be electrified and the source of the 

electricity that will be used to charge EVs. This simplification is due to the use of aggregated 

travel pattern data (e.g., average annual/daily travel distance) traditionally used to study the 

environmental impacts of gasoline vehicles. Considering travel patterns at the individual level is 

necessary to better understand personal mobility dynamics, individual charging behaviors, and 

corresponding environmental impacts. 

Another factor that can also influence charging behavior is the availability of charging 

infrastructure. Current literatures on environmental impacts of EVs focus mostly on home and 

work place charging and pay little attention to the potential contribution of public charging 

infrastructure [17, 22, 25, 39, 40]. Being able to charge outside of home is very important from 

the consumers’ perspective and can significantly impact EV adoption. However, charging 

infrastructure alone will not determine its contribution to vehicle electrification in a city. It’s the 

interaction between charging infrastructure and individual travel needs that matters the most. 

Charging stations built in locations with higher charging demand are more likely to be utilized 

and can support the EV system better. However, two research gaps exist in current studies on 

siting public charging stations: inappropriate estimation of charging demand and the lack of 

environmental consideration in optimization models. First, current studies use approaches similar 

to those used for estimating refueling demand to site gas stations, such as road traffic density 
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[41], distribution of gas stations [42], and vehicle ownership data [43-45], to estimate charging 

demand. Unlike refueling liquid fuels which only takes a few minutes to fill the tank, fully 

recharging the battery on an EV can take a much longer time, from 30 minutes to several hours, 

depending on the charger power, battery size, and the state of charge of the battery [46]. 

Therefore, EV charging is more likely to happen at the end of a trip instead of in the middle of a 

trip. Therefore, traffic volume does not necessarily correspond to charging demand. In addition, 

EV owners can charge their vehicles at home overnight, which means vehicle ownership density 

is not a good proxy for public charging demand either. As a result, to support better planning of 

public charging infrastructure, it is also necessary to consider individual travel patterns to better 

represent charging demand. Second, current siting models focus on minimizing costs or travel 

distance to charging stations [45, 47]. Few studies considered environmental impacts of EV 

charging as the objective function. The ultimate goal of EV system deployment is to meet more 

travel needs using electricity instead of fossil-based liquid fuels. Therefore, models that site 

charging stations to maximize environmental benefits can inform policy making for charging 

infrastructure development. 

2.1.2 Ride Sharing  

In the U.S., the average vehicle occupancy rate is 1.13 for commute and  1.67 for all trip 

purposes (shopping, recreational, etc.) [48]. Ride sharing, as a way to increase vehicle occupancy 

rate, can potentially reduce transportation energy consumption and alleviate traffic congestion. 

The idea of ride sharing is not new. As early as during World Word II, the U.S. government had 

organized ride sharing (Car-Sharing Club) to conserve fuel [49]. Other programs and policies, 

such as employer vanpool programs and High-Occupancy Vehicle (HOV) lanes, are also 

established to encourage ride sharing. Although ride sharing can provide benefits both to the 
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society (e.g., reduce traffic and emissions) and the participants (e.g., save fuel and parking cost), 

due to the complexity in ride sharing arrangements and safety concerns of riding with strangers, 

ride sharing has been deployed only at a relatively small scale [49-51]. 

However, the recent wide adoption of smartphone and various applications (apps) has 

provided new opportunities for ride sharing at a larger scale. The GPS-enabled smartphone apps 

allow people to easily share their travel information, such as trip origin (or current location), trip 

destination, and desired departure and arrival time. Based on that information, a matching 

algorithm can then be developed to quickly identify matches and optimize supply-demand 

opportunities [52]. This dynamic ride sharing (a.k.a., real-time ride sharing) system only requires 

a minimal amount of lead-time, which overcomes the arrangement barrier. In addition, the 

involvement of social network and reputation systems in many apps help build trust and makes 

people feel more comfortable to share information and properties with strangers (e.g., Uber, 

Sidecar, Lyft, Airbnb) [53, 54]. This helps to overcome the psychological barrier of ride sharing. 

While ride sharing face unprecedented opportunities, it is still not clear how much a city can 

benefit from an environmental perspective. Understanding the environmental impacts of ride 

sharing and the key factors that determine the potential impacts can help inform policymaking to 

improve urban sustainability. 

The current literature focuses on ride sharing on a small geographic scale [51], the 

characteristics of people who ride share [55, 56], and fast algorithms for ride matching and 

recommender system development [52, 57-61]. The environmental benefits of large-scale ride 

sharing are yet to be quantified. Jacobson and King (2009) pointed out that the fuel saving 

potential from ride sharing is largely dependent on the additional travel required to pick up 
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additional passengers [62]. Therefore, knowing travel demands at the individual level is critical 

to assessing the environmental impacts of ride sharing. 

2.2 Characterization of Individual Travel Patterns  

Having recognized the importance of understanding personal mobility dynamics in 

different fields, different types of data are explored to characterize individual travel patterns. 

2.2.1 Travel Survey Data 

Travel surveys are conducted in many countries to understand national travel and 

transportation patterns. In the U.S., the National Household Travel Survey (NHTS) is conducted 

every five to eight years to compile an inventory of daily travels [63]. The most recent 2009 

NHTS data collect daily travel data from 150,147 households selected randomly from landline 

telephone numbers. Each household is assigned a travel day (from 4:00am to 3:59am the 

following day) and reports on a travel dairy the start and end time of each trip taken in the day, 

purpose of the trip, transportation mode, and trip distances [64]. The NHTS data also include the 

demographic and vehicle ownership information of each surveyed household.  

NHTS data at different aggregated levels are used to study the potential travel and 

charging behaviors of EVs (Table 2-1). At the most aggregated level, the daily vehicle travel 

distances from all trips are used to generate a frequency distribution curve of daily VMT. The 

portion of the travel where the daily VMT is less than the all-electric range of the EV can be 

considered substitutable by electricity (e.g., in [20, 25]). Mid-day charging at work places or 

public charging stations is not considered in these studies. At a less aggregated level, distribution 

of home arrival time of the last vehicle trip derived from NHTS data is used to estimate 

unconstrained and constrained EV charging at home (e.g., in [65]). At the most granular level, 
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detailed trip chain information is used to estimate PHEV charging and energy use under different 

charring scenarios (e.g., home only versus home and work, and slow versus fast charging [34, 40, 

66]). Although NHTS data provide very detailed information on daily trip chains (e.g., trip 

purpose, occupancy rate, demographics information), each household is surveyed for one day 

only. It is uncertain whether that assigned travel day represents a typical travel pattern for that 

household. Therefore, the day-to-day variation in travel patterns for each household cannot be 

assessed. Aggregating NHTS data at the regional or national data to obtain “typical” travel 

patterns assumes that every person has the same travel pattern as the aggregated average and 

may lead to unrealistic results [37]. In addition, because the travel diaries are self-reported, the 

accuracy of the information cannot be checked. Furthermore, the exact location of trip origins, 

destinations, and the routes taken for the trip cannot be accurately recorded in travel diaries, 

making it impossible to perform location-specific analysis such as ride sharing matches. Lastly, 

NHTS sample size at the local level is small, limiting the ability to use NHTS data to draw 

conclusions specific to individual cities [67]. 

Table 2-1. Summary of previous studies on environmental impacts of EVs 

  EV Type Scope Trip distance Charging behavior 

Shen and Han (2013) BEV Energy use, GHG 
Average fuel 

economy Not considered 

Ma et al. (2012) BEV GHG 
Average fuel 

economy Not considered 

Wang et al. (2013) BEV 
Energy use, GHG, 
criteria pollutants Average Not considered 

Huo etal. (2012) BEV GHG, criteria pollutants 
Average fuel 

economy Not considered 

Huo et al. (2009) BEV Criteria pollutants 
Average fuel 

economy Not considered 

Ji et al. (2011) 
BEV, 
eBike Criteria pollutants 

Average fuel 
economy Not considered 

Tessum et al. (2014) BEV O3, PM2.5 
Average fuel 

economy NHTS trips 
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Smith (2010) BEV Energy use, CO2 
Simulated driving 

cycles Not considered 
Stephan and Sullivan 

(2007) PHEV Energy use, CO2 Daily average Night time spare 
Samaras and 

Meisterling (2007) PHEV GHG UHTS distribution Once per day, fully charged 
Elgowainy et al. 

(2013) PHEV Energy use, GHG NHTS distribution Once per day, fully charged 

Graver et al. (2011) PHEV 
Energy use, CO2, 
criteria pollutants 

Tested driving 
cycles Once per day, fully charged 

Raykin et al. (2012) PHEV Energy use, GHG 
Simulated driving 

cycles 
Assumed full battery at beginning 

of each cycle 

Marshall et al. (2013) PEHV 
Energy use, GHG, 
criteria pollutants NHTS trips Once daily upon arriving home 

Peterson (2011) PHEV CO2, SO2, Nox NHTS trips Home/work/smart charging 

Kelly et al. (2012) PHEV 
Utility factor, charging 

load NHTS trips Home/work charging 
 

2.2.2 Emerging “Big Data” Applications in New Mobility 

The rapid development of ICT provides unpreceded opportunities to study individual travel 

patterns. The broad adoption of smartphones and various location-enabled applications, GPS 

devices, and other location-tracked systems (e.g., smart bus cards) have significantly improved 

our ability to collect, store, and analyze large-scale datasets (a.k.a., “big data”), which enables 

studying personal mobility at a wide range of spatial and temporal scales [68]. These emerging 

big data are known to have the characteristics of “3Vs”: volume (data size is large), variety (data 

types are various), and velocity (the data are generated at high frequency, such as every second, 

minute) [69]. Although there is no consensus in the definition of big data yet, it is believed that 

data complexity instead of data size is the determining factor for big data [70]. The data sets 

introduced in this section are considered as big data because they can be used to characterize 

complex behaviors of the underlying systems. 
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Common types of big data used to study personal mobility dynamics include mobile phone 

traces, GPS trajectories, smart transit card records, and geo-tagged social media. These data have 

been used in many fields such as epidemics [71, 72], urban planning [73], and genetics [74] to 

characterize human travel dynamics. For example, cellphone data are used to identify urban 

activity patterns [75] and infer land use patterns [76]; GPS trajectories of individuals and 

vehicles are analyzed to study emergency response after natural disasters [77] and detect social 

events [78]; and geo-tagged social media data are used to study urban growth boundaries [79] 

and quantify tourism [80]. Transportation research, specifically, has also benefited from these 

above-mentioned datasets. Mobile phone call data are used to develop origin-destination 

matrices [81], identify human mobility motifs [82], and identify road usage patterns [82]. GPS 

traces are used to model urban traffic [83], facilitate route planning [84, 85], and detect 

anomalous traffic patterns [86]. Bus smart card data are analyzed to identify commuting patterns 

[87, 88] and evaluate the performance of public transit systems [89]. Because most of these 

datasets are not originally designed or collected for travel pattern modeling, each type of data has 

its own advantages and drawbacks. 

Mobile phone trace data are collected by mobile network carriers for billing and 

operational purposes. It records the date, time, phone number (anonymized) of each cellphone 

activity (making or receiving a phone call or text message), and the coordinates of the cellphone 

tower routing the communication [90]. Compared to travel survey data, mobile phone traces 

have a much larger sample size and a broader spatial and temporal coverage. In addition, because 

the data are routinely collected for business operation purposes, the data collection cost is low 

[67]. However, mobile phone trace data also have several drawbacks: 1) because data recording 

is only triggered by cellphone use, the travel activity happened between two phone activities are 
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not captured; 2) only the location of the nearest cellphone tower is recorded instead of the exact 

location of the user, introducing spatial uncertainties; and 3) due to privacy concerns, these data 

normally do not contain any social-economic or demographic information associated with the 

cellphone users.  

Geo-tagged social media data are publicly shared information (e.g., tweets, photos, check-

ins) on different social media sites (e.g., Twitter, Facebook, Google+, Flickr, Foursquare) with 

location data (typically as GPS coordinates) associated. Depending on each social media site’s 

policy, large scale social media data could be hard to obtain [91]. Most of the large scale geo-

tagged social media data used for research are streamed from Twitter API [92]. Geo-tagged 

social media data normally also have a large sample size. Except for the geolocation data, the 

additional information carried in geo-tagged social media data vary significantly and require 

additional data mining to be useful. In contrast to cellphone traces, geo-tagged social media data 

contain the exact location of the users. Depending on what the users choose to share with the 

public, geo-tagged social media data may include social-economic, demographic, and social 

network information.  However, because the data are proactively generated by the social media 

site users, travel information between two active posts can get lost. In addition, how users arrive 

at each location is largely unknown.  

Smart transit card data record the travel information when the card holders use the transit 

systems which accept such smart transit cards. The data normally include card id (anonymized), 

transportation mode and route (e.g., bus versus subway), onboard- and off-stations and time. 

However, if the transit system has a flat rate scheme and one only needs to swipe the card when 

he or she gets on the buses/subways, only the onboard locations are collected [79]. The data are 

constrained to the specific transit transportation mode and may not reflect the exact trip origins 
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and destinations, because card holders could walk, bike, take a taxi, or drive to/from the transit 

stations from/to their trip origins/destinations. 

GPS traces data are location trajectories collected continuously (sampled every a few 

seconds or minutes) by GPS devices equipped on vehicles [37, 46, 93-95], bikes [85], or 

individuals [96, 97]. Because the data are collected passively and do not require active 

participation of the user, in contrast to other types of data mentioned above, GPS traces normally 

have finer granularity both spatially (more accurate location information) and temporally (high 

frequency of sampling)  [95]. Because of the high sample rate, the route of travel can be easily 

inferred. However, because only location data are collected, GPS traces data normally do not 

contain any social-economic, demographic, or social network information about the users. Due 

to privacy concerns and the cost associated with data collection, the sample size of GPS traces 

for private vehicles or individuals are normally small (100 to 300 samples). But the sample size 

of GPS traces for public vehicles (e.g., taxis) is normally much larger, covering a large portion of 

the fleet or the entire fleet. 

2.2.3 Data Types and Characteristics 

The aforementioned data types are compared from the perspectives of sample size, 

demographic information availability, trip purpose, transportation mode, the accuracy of location 

data, route information, and spatial and temporal resolutions (Table 2-2). As the purpose of this 

research  is to study individual travel patterns to better understand the environmental impacts of 

emerging transportation systems, the ideal dataset should have high spatiotemporal resolution, 

accurate location data, detailed route and transportation mode information (for driving), and 

large sample size to support fleet level conclusions. Based on these criteria, GPS traces of 

vehicles (a.k.a., vehicle trajectory data) are the most suitable. Although currently only public 
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vehicle trajectory data are available at the large scale, the framework and methods developed 

using public fleet vehicle trajectory data will be readily applicable to private vehicles. In addition, 

studying the public vehicles itself is also meaningful because public fleets are likely to be early 

adopters of these new technologies [98].  

Table 2-2. Comparison of different types of data used for travel pattern analysis. 

Data Sample 
size 

Demo-
graphic 

info 

Trip 
purpose 

Transpor-
tation mode 

Accuracy 
of location 

Route 
info 

Spatial-
temporal 
resolution 

Travel survey Small Yes Yes Yes Low No Low 

B
ig

 d
at

a 

Cellphone 
traces Large No No No Low No Medium 

Geotagged 
social media 

data 
Large Maybe Maybe Maybe High No Medium 

Smart bus 
cards 

records 
Large No No Yes High Yes Medium 

Vehicle 
trajectory 

data 
Large No No Yes High Yes High 

Vehicle trajectory data are collected by GPS devices equipped on vehicles. It includes car 

id (anonymized), a time stamp of when the data point is recorded, the location of the vehicle in 

longitude and latitude at the time of recording, and the speed and direction of the vehicle (Table 

2-3). Currently, most of the available vehicle trajectory data are for taxis, so some datasets also 

include the status of the vehicle (occupied or unoccupied). 

Table 2-3. A sample set of vehicle trajectory data.  

CARID TIME LONGITUDE LATITUDE SPEED CAR 
STATUS 

DIRECTION 

806910942721  3/2/2009 9:24 116.37529 39.82684 0 0 0 
806466435796  3/2/2009 9:24 116.12856 39.94698 0 0 357 
806466446011  3/2/2009 9:24 116.41796 39.98082 0 0 0 
806436736335  3/2/2009 9:24 116.46572 39.94891 61 0 345 
806436741157  3/2/2009 9:22 116.42018 39.9548 0 1 0 
806488638642  3/2/2009 9:24 116.32062 39.8887 11 1 267 
…. …. …. …. …. …. …. 



19 
 

Vehicle trajectory data can contain errors due to sensor noise or poor GPS signals (e.g., in 

cities with skyscrapers blocking the signals). In addition, for each vehicle, the raw data contain a 

series of points over time (p1  p2….  pn). The trip origins, destinations, travel distances, 

and staying points and durations need to be inferred from the raw data. Therefore, data cleaning 

and processing are required before vehicle trajectory data can be used for analysis [99, 100]. 

After cleaning, some studies separate vehicle trajectory data into trip chains (a series of driving 

and parking events) (e.g., in [37, 95]), while others retain more of the travel details (e.g., in [86, 

101]). 

2.4 Summary 

With many emerging transportation systems (e.g., electric vehicles and ride sharing) 

offering opportunities to improve the sustainability of urban transportation, the environmental 

implications of these emerging systems are not well understood. Considering individual travel 

patterns is crucial to the evaluation of these environmental implications. Large-scale datasets 

made available by the recent ICT development offer unprecedented opportunities to study 

individual travel patterns. Among all available data types, vehicle trajectory data are the most 

suitable for environmental assessments of emerging transportation systems. 

  



20 
 

 
 
 
 

3 CHAPTER III 

Greenhouse Gas Implications of Taxi Fleet Electrification 

3.1 Introduction 

Fossil fuel-based transportation contributes significantly to global GHG emissions and 

urban air pollution [102]. Fleet electrification through either PHEVs or BEVs is widely 

considered as a promising alternative to reduce the dependence on fossil fuels, mitigate GHG 

emissions, and improve air quality in urban areas. While PHEV/BEV technology develops 

rapidly in recent years, there exist great uncertainties in terms of market acceptance. Previous 

studies evaluated factors that impact PHEV/BEV adoption, including infrastructure support, 

economies of scale, word of mouth effects (influence from other people’s perception of EVs), 

age of current vehicle, consumer income, and travel patterns [40, 103-110].  

In particular, consumer travel patterns (i.e., travel behavior) have increasingly received 

significant attentions, because they directly determine whether PHEV/BEV is acceptable to 

consumers and how it is utilized for daily travels [37, 94, 111]. However, previous research has 

predominately used aggregated travel pattern data [34, 40], such as the often cited National 

Household Travel Survey (NHTS), which assumes that everyone follows the same travel pattern 

as the aggregated average and neglects the heterogeneity of individual users and their specific 

travel patterns. Recent attempts to differentiate the impacts of individual travel patterns on 

PHEV/BEV market acceptance have also been constrained by the size of travel pattern samples 
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(usually in the dozens or hundreds) [37, 94] due to the difficulty in collecting travel behavior 

data from the private fleet.  

Fortunately, the rapid development of ICT has increasingly made massive amount of 

travel behavior data available at a much larger scale. The availability of these “big data” 

(commonly referring to large-scale datasets [112]) on individual travel patterns, especially for 

public fleets, represents untapped opportunities to better understand how individual travel 

behavior affects the PHEV/BEV market acceptance and the associated environmental impacts. 

This research examines a large-scale dataset containing real-time trajectories of 10,375 

taxis in Beijing for one week [93, 113, 114] to explore the impacts of individual travel patterns 

on PHEV acceptance and associated GHG emission implications. Public fleets such as taxis, city 

buses, and government fleets, are likely to be early EV adopters in China [98]. Given that this 

dataset represents approximately 15% of Beijing’s taxi fleet, the results provide useful 

information on the feasibility and environmental implications of fleet electrification, which is 

promoted by the Chinese government in large cities [115]. More generally, the method of this 

study is applicable to other cities for which similar data are available. This research represents 

the first of a series of studies exploring the role of big data in environmental systems analysis for 

the emerging PHEV/BEV systems. 

 

3.2 Data and Methods 

3.2.1 Data 

The dataset used in this study contains real-time trajectories of 10,357 taxis in Beijing 

over one week (February 2 to 8, 2008). The data were retrieved using global positioning system 
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(GPS) devices installed in taxis [93, 113]. Each trajectory data point includes a unique taxi ID, 

the time (to the seconds) of recording, and the position (longitude and latitude) of the taxi at the 

specific time. Depending on the GPS device settings in each vehicle, the frequency of recording 

ranges from five seconds to ten minutes, but stays consistent for the same vehicle. To clean up 

the raw data, I applied a filter to eliminate 1) empty data points, 2) duplicate data points, 3) taxis 

with less than seven data points, and 4) unreasonable off-the-chart locations. The weather 

condition during the week was mostly sunny and cloudy, with high temperature ranged from 0 to 

2°C (32 to 36 °F), low temperature ranged from -8 to -6°C (18 to 20°F), and no precipitation 

(typical February weather for Beijing) [116-119]. The sixth day of the week (February 7th) was 

the New Year’s Day based on the lunar calendar, a Chinese national holiday. The impact of the 

holiday and weather condition on the results is analyzed in the sensitivity analysis and also 

discussed in the limitation section (Section 3.3.8). The dataset includes data from multiple taxi 

companies. Taxi companies in China provide universal services throughout the city. So there are 

no service territories for each taxi company. 

3.2.2 Driving Segments and Charging Opportunities 

Taxis are different from private vehicles in the way that taxis do not have uniformly 

regular parking time. Some taxi drivers take evening and late night shifts; some choose to pick 

up early morning businesses; and some drivers pair up to drive the same taxi in rotation to 

minimize costs. Therefore, “daily driving distance” is not a good metric to characterize taxi trips, 

because taxis may have significantly different starting and ending time of each “day”; and the 

length of a “day” may also be different from taxi to taxi (e.g., one-driver taxi versus two-driver 

taxi).   
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To address this issue, I introduce the concept of “driving segments.” A driving segment is 

the total distance driven between two major resting periods when the vehicle is parked with a 

predetermined duration threshold. One segment can contain several separate trips, similar to the 

“trip chains” used in previous studies [37]. The resting periods between driving segments 

represent potential charging opportunities.  

In this study, I range the predetermined resting threshold from 30 minutes to eight hours 

to test the impact of charging opportunities on PHEVs adoption. For example, 4-hr segments 

mean that each segment contains trips between two resting periods of at least four hours each. In 

other words, charging opportunities are only available if the vehicles have a resting time of four 

hours or longer. In this chapter, I focus the discussion on two extreme cases: the “home-charging 

only” scenario and the “ubiquitous charging” scenario. The home-charging only scenario 

represents a relatively conservative case that vehicles can only be charged at home, thus requires 

longer resting period (eight hours in this study). On the other hand, the ubiquitous charging 

scenario represents an extremely optimistic case that public charging stations are ubiquitously 

available, allowing drivers to charge their vehicles as long as they have more than half an hour to 

rest.  

3.2.3 Charging Algorithm 

I developed a charging algorithm to model PHEV charging activities based on taxi 

trajectories (Figure 3-1). For each taxi (taxi i), based on the predetermined resting period (𝛿), the 

trajectory can be translated into a series of driving segments and resting periods in temporal 

sequences. At the beginning of each driving segment (segment j), the condition of the vehicle’s 

battery is represented by a “state of charge” (SOCj), which means the remaining capacity of the 

battery relative to the all-electric range (AER). The SOCj depends on the battery size of the 
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PHEV, driving distance, and charging opportunities of all segments prior of segment j. “Battery 

size” in this study refers to vehicle on-road AER in miles, and PHEVs in this study utilize a 

serial configuration. Based on SOCj and battery size, whether available battery electricity is able 

to cover the travel needs of the entire segment can then be decided. If the entire segment can be 

powered by electricity, the total distance driven in this segment (Dj) is added to the total 

electrified mileage of taxi i (Ei). The SOC is then updated with electricity consumed in this 

segment and available charging time during resting period j. If the available electricity is not 

enough to cover the entire driving segment, the battery will be entirely depleted and the 

remaining mileage will be fueled by gasoline. Because the battery has been depleted, the SOC at 

the beginning of the next driving segment j+1 (SOCj+1) will depend on the available charging 

time in the resting period j. Then the same process goes for the next segment (segment j+1). 

When all segments are analyzed, the portion of the trips of taxi i that can be electrified if using a 

PHEV under given battery AER and charging opportunities  can be computed. 
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Figure 3-1. Charging algorithm for PHEVs. 

 

3.2.4 Fuel Cost Saving and Electrification Rate 

The main incentive for drivers to adopt PHEVs is the potential fuel cost savings, because 

electricity is cheaper than gasoline on a per VMT basis. To explore the heterogeneity of fuel cost 

saving potentials at the individual level, I calculated the probability distribution of fuel cost 

savings and payback time for the cost of batteries for Beijing’s taxi fleet. Factors affecting fuel 

cost savings include gasoline cost, electricity cost, battery cost depending on battery size and unit 

price, fuel economy, charging opportunities, and charging speed (charging voltage, ampere, and 

battery size dependent).  
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In this study, I used the electricity price in 2012 of $0.078/kWh (0.488 CNY/kWh), 

gasoline price of $1.29/L (8.06 CNY/L), fuel economy at charge depleting mode of 0.35 

kWh/mile (based on 2013 Volt) [120], fuel economy at charge sustaining mode of 35 mile/gal 

(city travel of 2013 Volt) [120], charging voltage at 240V, charging current at 16A [34], and 

charging efficiency of 88% [34]. The fuel economy of gasoline vehicles is assumed to be the 

same as in the PHEV charge sustaining mode (35 mile/gal). Currencies are converted based on 

an exchange rate of 6.23 CNY/USD. It is also assumed that all vehicles have a fully charged 

battery (SOC = 100%) at the beginning of the simulation. Battery size is measured by AER in 

miles, which is the maximum distance a fully charged vehicle can drive on electricity. I 

examined battery size ranging from 0 to 250 miles, battery cost from $500/kWh (price at the 

time of the study) to $100/kWh (future target) [121], and charging opportunity from “home-

charging only” to “ubiquitous charging” to explore their impacts on fuel cost savings for 

individual vehicles and the overall electrification rate. This study simplifies the battery charging 

and discharging process with a linear change of SOC between 0% and 100%. I assumed that the 

price difference between a PHEV and a comparable conventional gasoline vehicle is solely due 

to the cost of the battery, which increases linearly with the battery’s capacity. To evaluate battery 

cost payback time, I used a discount rate of 5% to calculate the net present value (NPV) of future 

fuel cost savings. The impacts of these assumptions are tested by conducting a sensitivity 

analysis (Section 3.3.7). 

3.2.5 PHEV Adoption 

Previous studies based on the aggregated travel patterns (e.g. in [20, 25]) have an 

underlying assumption that the entire population will adopt PHEV. However, this assumption 

can lead to overestimation of electrification rates because the adoption rate is unlikely to be 100% 
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[37]. The cost of battery also plays a key role in PHEV adoption, because drivers who do not 

drive enough mileage to achieve payback of the battery cost within the vehicle life time are less 

likely to adopt PHEVs. In addition, drivers whose travel patterns allow few charging 

opportunities are also less likely to buy PHEVs or less likely to utilize PHEVs in charge 

depletion mode even if they adopt. Therefore, I used a payback model to allow drivers to adopt 

PHEVs only if they can payback the cost of batteries within eight years (regulated maximum 

service time of taxis in China [122]). If the payback time is longer than eight years, I assume that 

the driver will decline switching to PHEV and this taxi will stay as a conventional gasoline 

vehicle [37]. The utilization of PHEVs is modeled using the travel patterns detected for each 

individual vehicle. The fleet level VMT electrification rate is defined as the ratio of total 

electrified mileage to total mileage traveled.  

The model is verified at both of the lower and upper boundaries. At the lower boundary, 

with extremely high battery cost and short payback time, no taxis adopt PHEVs and both of the 

adoption rate and electrification rate are zero. At the upper boundary, the parameters are relaxed 

to have zero battery cost, long payback time, and extremely large battery range to ensure that 100% 

adoption rate and electrification rate can be achieved. 

3.2.6 Government Subsidy 

I study two types of government subsidies in this research. The first is a one-time refund 

depending on the size of batteries. At the time of the study, the Chinese government offers a 

subsidy of $482/kWh (3,000 CNY/kWh) with a maximum per-vehicle ceiling at $8,026 (50,000 

CNY) in total for PHEVs and $9,631 (60,000 CNY) for BEVs [123]. Several local governments 

(e.g., Shanghai) also offer an additional subsidy of $8,026 (50,000 CNY) for each PHEV. I 

examined the impact of government subsidy on fleet level VMT electrification with subsidies 
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ranged from $0 to $803/kWh (5,000 CNY/kWh) with a cap of $16,051 (100,000 CNY) per 

vehicle. The other subsidy type studied is the “electricity subsidy”, meaning that the government 

subsidizes electricity to enlarge the fuel cost savings for PHEVs. The current electricity price is 

$0.078/kWh (0.488 CNY/kWh) in Beijing. I studied electricity subsidy ranged between $0 and 

$0.064/kWh (0.4 CNY/kWh). I set the upper limit for government subsidy based on the rationale 

that if the drivers do not pay for electricity at all or even receive money from charging, their 

travel patterns might be significantly altered (e.g., drive more). I assumed that the electricity 

subsidy will be constant for eight years. 

3.2.7 Greenhouse Gas Emissions 

In general, PHEVs can eliminate or reduce tailpipe emissions but the life cycle GHG 

emissions may or may not decrease, depending on the electricity mix. The life cycle GHG 

emissions of a vehicle come from two parts: the vehicle cycle and the fuel cycle [124]. The 

vehicle cycle includes the production, operation, and end-of-life management of vehicles and 

batteries, while the fuel cycle includes the extraction, production, transportation, and 

consumption of the fuels.  

GHG emissions associated with the production of a medium-sized passenger car in China 

is approximately 6,675 kg CO2-eq/vehicle [125]. It is assumed that emissions associated with the 

manufacturing of PHEVs and conventional gasoline vehicles are identical, except that PHEVs 

need additional battery production. This assumption can be justified by the fact that smaller 

internal combustion engines (ICEs) in PHEVs can account for the difference due to electric 

motors and additional control equipment [25]. GHG emissions from the Li-ion battery 

production is approximately 120 kg CO2-eq/kWh battery capacity [25]. The fuel cycle emissions 

are tightly tied to the carbon intensity of electricity production. China has six large power grids. 
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Beijing belongs to the North China Grid with a GHG emission factor of 236.7 g CO2-eq/km 

traveled [126]. GHG emissions of conventional gasoline vehicles are approximately 224.4 g 

CO2-eq/km [126]. Results obtained from the present dataset are scaled up to reflect total 

emissions of the entire taxi fleet electrified by PHEVs with different battery size. The change of 

electricity mix over time is not included in the modeling, but the potential impact of  future 

electricity mix change is discussed. 

 

3.3 Results and Discussion 

3.3.1 Travel Patterns 

The dataset after the filtration contains trajectories of 9,951 taxis with a total of 16.2 

million data points and 7.7 million miles traveled. Figure 3-2 provides an overview of the 

dataset by visualizing individual vehicle’s average speed between sampling points. The black 

vertical bands represent the daily night-time parking. More than 60% of the taxis have over 

1,000 data points. The predetermined resting periods used to define driving segments determine 

the distribution of distance traveled in each segment as well as the charging opportunities 

between segments (Figure 3-3). Segments with per-segment travel distance between 100 and 

2,000 miles represent approximately 80% of the total VMT. Taxis gave people the impression 

that they are always in operation and would rarely park for an extended amount of time (e.g. 8 

hours). Unexpectedly, the distribution of per-segment travel distance for 4-hour segments and 8-

hour segments are quite similar. In particular, the distributions are almost identical between the 

4-hourr and 8-hour segments  when per-segment travel distance is between 50 and 100 miles  

(Figure 3-3 insert). Using household vehicle travel data in Minnesota, Tamor et al. (2013) 



30 
 

observed similar results that if a vehicle has a charging opportunity for 4 hours, that charging 

opportunity is very likely to be over 8 hours as well [37].  

 
Figure 3-2. Average speed of each taxi based on the filtered dataset. 

 

 

Figure 3-3. Complementary cumulative probability distribution of per-segment distance with different 
charging opportunities. 

 

3.3.2 Fuel Cost Saving 

Individual taxis with the same battery size can have very different fuel cost savings from 

adopting PHEVs, depending on different individual travel patterns. Figure 3-4a shows the 

complementary cumulative probability distribution of fuel cost savings from PHEV adoption, 
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representing the probability of a randomly picked vehicle to have more fuel cost savings than the 

corresponding x-axis value. If the taxi fleet adopts PHEVs with 40-mile battery range (PHEV40), 

90% of the taxis can save more than $5 per week while 10% of them can save more than $40 per 

week. When PHEVs with 240-mile battery range (PHEV240) are adopted by the fleet, 90% of 

the drivers can save more than $26 per week and 10% of them can save more than $79 per week.   

Therefore, 90% of the taxis can save more than 5% of their fuel costs while 10% can save 

more than 57% with PHEV40. With PHEV240, 90% of the taxis can save at least 24% of the 

total fuel cost, while 35% can save at least 77% (Figure 3-4a insert). There is no correlation 

between absolute fuel cost savings and the percentage of total fuel cost reduction for individual 

taxis (Figure 3-5), indicating high variation in total fuel costs. The percent fuel cost saving that 

can be achieved by adopting PHEVs with large battery is significant. However, larger battery 

also increases upfront vehicle cost and therefore prolongs the payback time. Figure 3-4b 

presents the probability distribution of payback time for PHEVs with different battery sizes. At 

the time of the study, the unit battery cost is $500/kWh. It is notable that a significant portion of 

the vehicles (38% for PHEV40 and 99% for PHEV240) cannot compensate for the additional 

battery cost from their life time fuel savings at this cost. This indicates that fuel cost-saving itself 

is not enough to incentivize high PHEV adoption. Unit battery cost reduction can significantly 

shorten the payback time, especially for large batteries (Figure 3-6). Government subsidy also 

becomes critical in promoting PHEVs adoption at least at the early stage of market penetration.  

3.3.3 Electrification Rate 

To quantify fleet-level travel electrification, the ratio of total electrified VMT to the 

fleet’s total VMT is defined as the electrification rate. The electrification rate is related to both 

PHEV battery size and unit cost of the battery, as presented in Figure 3-4c. When battery unit 
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cost is relatively high ($300/kWh to $500/kWh), the overall electrification rate increases initially 

with the increased battery size but decreases after a tipping point. This result is interpreted as 

follows. When the battery unit cost is high, large batteries require high upfront vehicle premiums 

so that only few drivers with higher fuel cost-saving potentials can afford PHEVs. Where the 

electrification rate peaks represents the optimal battery size under each scenario. At current 

battery cost ($400/kWh), the optimal battery size is approximately 90 miles for this fleet. It is 

worth noting that the overall electrification rate stabilizes at around 40% when the battery unit 

cost is reduced to $200/kWh, indicating that battery cost is no longer a barrier to increase the 

electrification rate. Results in Figure 3-4c are based on ubiquitous charging scenario (30-min 

segments). When charging opportunity is limited to home-charging only, the same trend holds, 

but the overall electrification rate decreases (Figure 3-4d). These factors cannot be easily 

assessed using aggregated data and the electrification rate could be overestimated (Figure 3-7). 

           

(a) (b) 

  

(c) (d) 
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Figure 3-4. Fuel cost reduction, payback time, and electrification rate based on different vehicle battery 
ranges.  
Note: a) Complementary cumulative probability distribution of weekly fuel cost saving with PHEVs 
regarding different battery sizes modeled with ubiquitous charging. Inserted graph shows percent saving 
of total fuel cost. b) Complementary cumulative probability distribution of payback time for PHEVs with 
different battery size modeled with ubiquitous charging and battery cost at $500/kWh. c) Electrification 
rates of total fleet VMT based on acceptance criteria of paying back battery cost within eight years for the 
ubiquitous charging scenario (charging opportunities exist when resting for longer than half an hour). d) 
Electrification rates of total fleet VMT based on acceptance criteria of paying back battery cost within 
eight years for home-charging only scenario (charging opportunities exist resting for longer than eight 
hours). 

 
Figure 3-5. The relationship between percent saving and absolute fuel cost reduction. 

 

 
Figure 3-6. The complementary cumulative probability distribution of payback time with PHEVs 
regarding different battery sizes  
Note: modeled with 30-min segments and battery cost at $250/kwh. 
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Figure 3-7. Aggregated daily VMT data of February 4, 2008.  
Note: Estimating electrification rate based on aggregated daily VMT could lead to statement such as that 
“Taxis with daily VMT less than 150 miles drive 40% of total VMT. Therefore, 150-mile batteries could 
electrify 40% of total taxi VMT.” 

 

3.3.4 Impact of Subsidy 

Government subsidy can significantly increase the fleet VMT electrification rate by 

offsetting high battery costs. Figure 3-8a shows that moderate government subsidy can increase 

overall electrification rate from 27% to as high as 45% with unit battery cost at $500/kWh. 

Similar to Figure 3-4c, tipping points can also be observed in Figure 3-8a, showing that the 

electrification rate first increases and then declines with increasing battery size if holding the 

government subsidy rate constant. Figure 3-8a also shows that, with the same battery size, a 

higher government subsidy rate only has marginal impacts on the electrification rate after 

reaching a threshold (dependent on battery size) due to the subsidy cap of $16,051 per vehicle.  

In addition to a subsidy rate based on battery capacity, the total amount of subsidies is 

also relevant to policy making. The contour lines in Figure 3-8a represent the total government 

expenditures to subsidize the fleet electrification. It is interesting to note that the same amount of 

subsidies can achieve very different electrification results with different subsidy rates and battery 
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sizes. Figure 3-8a suggests that PHEVs with battery size of 80 to 120 miles can potentially reach 

a maximal electrification rate of 45% with relatively low subsidies at a modest rate of $300 to 

$400/kWh. In the home-charging scenario, a modest government subsidy at $385/kWh is able to 

increase overall electrification rate from 10% to 31% (Figure 3-8b). When unit subsidy is above 

$385/kWh, electrification rate declines rapidly when battery size exceeds 115 miles. This is 

because the per-vehicle subsidy limit is reached and fuel cost savings required to breakeven with 

battery cost increase dramatically (Figure 3-9). 

Government can also incentivize PHEVs adoption and utilization by subsidizing 

electricity cost for charging or even providing free recharging [37, 127]. Figure 3-8c and Figure 

3-8d show fleet VMT electrification with electricity subsidies up to $0.064/kWh (82% of the 

electricity price). I assumed that individual travel behavior does not change with electricity 

subsidies, which may underestimate the electrification rate if drivers actively seek charging 

opportunities. Figure 3-8c and Figure 3-8d also show that subsidizing electricity is less effective 

than subsidizing battery cost in promoting fleet electrification, but it is also relatively less 

expensive. If designed well, the same budget can achieve similar level of electrification rate with 

either subsidy option. The advantage of subsidizing electricity is that it requires substantially less 

money each year by spreading the financial investment over a longer period of time, while the 

purchasing subsidy requires greater upfront capital. 
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Figure 3-8. Impact of subsidies on fleet VMT electrification.  
Note: One time purchasing subsidy from $0 to $803/kWh based on battery capacity with a maximum of 
$16,051 per vehicle and unit battery cost at $500/kWh under a) the ubiquitous charging scenario and b) 
the home-charging only scenario. Charging subsidy from $0 to $0.0644/kWh based on charged electricity 
for ten years under c) the ubiquitous charging scenario and d) the home-charging only scenario. Contour 
lines show total costs to government from subsidies in billion dollars. 

 
Figure 3-9. Minimum fuel cost saving required to payback battery cost under different purchasing 
subsidy scenarios. Note: modeled with battery cost at $500/kwh and payback time is ten years. 

 

  

 
(a) (b) 

(c) (d) 
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3.3.5 Impact on GHG Emissions 

Previous research examines environmental implications of PHEVs adoption often on a 

per-vehicle or per-VMT basis, assuming specific battery size or VMT. This approach does not 

reflect the role of individual travel patterns and battery size variations in determining fleet 

electrification rate which in turn determines the environmental impacts. For example, 

considering two identical PHEVs with the same battery size and total annual VMT but different 

travel patterns, the vehicle that takes shorter trips between charging events tends to charge more 

often and can displace more gasoline than the other one which takes longer trips and has less 

frequent charging events. In addition, larger battery can electrify more VMT (Figure 3-10), but 

also implies more life cycle energy input, material use, and GHG emissions from the battery 

production. Can the GHG emission reduction from VMT electrification offset the emissions 

from battery production? Figure 3-11a shows that the marginal electrification rate, defined as 

the amount of VMT electrified per vehicle due to one mile of additional battery range, 

diminishes in general with increasing battery size. Note that government subsidy can actually 

reduce the marginal electrification rate by offering adoption incentives to vehicles that do not 

benefit much from PHEVs due to travel patterns. Similar to results showed in Figure 3-4c and 

Figure 3-4d, with current battery cost, limited public charging infrastructure, and no government 

subsidy, the greatest amount of gasoline displacement (1.1 million gallons per year) can be 

achieved by modest battery size (approximately 90 miles); larger batteries do not necessarily 

mean more VMT electrification or gasoline displacement (Figure 3-11b). The sudden drop of 

marginal electrification rate in the home-charging with subsidy scenario in Figure 3-11a (also in 

b, c and d) at around 120-mile battery size is due to the fact that the maximum per-vehicle 

subsidy ($16,051/vehicle) is reached, as explained earlier in discussing Figure 3-8b. 
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Given that electricity in China is largely produced from coal, especially in the northern 

region where Beijing is located, displacing ICE vehicles with electric vehicles can actually 

increase fuel cycle GHG emissions by 12.3 g CO2-eq/km [126]. Figure 3-11c shows the life 

cycle emission changes of the fleet with PHEVs adoption and utilization modeled based on 

different battery sizes as described above. Because emissions in the fuel cycle dominate in the 

life cycle of a vehicle[128], life cycle GHG emissions increase and peak (at 38 kiloton CO2-eq 

per year) without subsidies at around 80-mile battery range where the electrification rate is at the 

highest (Figure 3-4c and Figure 3-4d). With government subsidies, life cycle GHG emissions 

increase up to 115 kiloton CO2-eq per year due to increased electrification rate. GHG reduction 

can be achieved if the electricity grid of Beijing becomes less carbon-intensive. Currently, 

Beijing is planning on decarbonizing its grid through measures such as increasing natural gas 

power generation, improving efficiency of existing plants, and diversifying fuel sources with 

renewables [129].  If the fuel cycle emission factor of electricity can be reduced to 168.7g/km 

(which can be achieved by replacing 40% coal with natural gas in electricity generation and 

increasing efficiency of coal-fired power plants by 10%), emission reduction of up to 36.5 

kiloton CO2-eq per year can be achieved (Figure 3-11d). In addition, although the total 

emissions increase with vehicle electrification using the current gird, vehicle electrification 

relocates emissions from mobile sources (tailpipes) to stationary sources (power plants), making 

it relatively easier and cheaper to implement treatment measures [126]. Government subsidy 

does not result in more GHG reduction at low battery range (less than 120 miles), because 

vehicles that benefit less from PHEVs due to travel patterns are encouraged by the subsidy to 

adopt PHEVs while emissions reduced from gasoline displacement are not sufficient to make up 

the additional emissions from battery manufacturing. 
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Figure 3-10. Electrified miles per vehicle regarding to battery sizes. 

 

Figure 3-11. Marginal electrification rate, displaced gasoline and life cycle GHG emission change. 
Note: a) Marginal electrification rate (the amount of VMT electrified per vehicle due to one mile of 
additional battery range) and b) displaced gasoline with different PHEV battery size under different 

  

  

(a) (b) 

(c) (d) 
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charging and subsidy scenarios. Life cycle GHG emission change with different PHEV battery size under 
different charging and subsidy scenarios using fuel cycle emission factor of c) North China grid (which 
Beijing belongs to) and d) a cleaner grid scenario with 40% natural gas power plants and 10% efficiency 
improvement in coal-fired power plants. These scenarios are all modeled with battery cost at $500/kWh 
and subsidy at $401/kWh if applicable. 

 

3.3.6 Policy Implications 

At the current battery cost (approximately $400/kWh [130]), larger battery does not 

necessarily imply higher rate of adoption, utilization, and electrification of PHEVs due to the 

heterogeneous individual travel patterns. The VMT electrification rate peaks when PHEV battery 

range is around 90 miles, which represents the optimal battery size for the fleet at the current 

technologies. 

While battery range is one of the major concerns from the consumers’ perception [38], 

the results show that a larger battery can actually decrease the VMT electrification rate when unit 

battery cost exceeds $200/kWh. Only when unit battery cost is lower than $200/kWh, extended 

electric drive range can increase the adoption and thus electrification rate. In addition, the results 

show that charging opportunities (i.e., how frequently a driver can charge a vehicle) also play a 

key role in VMT electrification. Increasing charging speed only has marginal impacts, because 

when charging opportunities are limited (e.g., home charging only), each charging event has a 

relatively long duration, which allows most of the vehicles being fully charged even at the 

current charging speed.  

Subsidy can effectively increase the VMT electrification rate by filling the gap between 

fuel cost savings and the premium cost of PHEVs. The results show that focusing on PHEVs 

with modest electric ranges (80 to 120 miles) can most efficiently boost taxi fleet VMT 

electrification with a fixed amount of budget. Iinstead of providing more subsidies for PHEVs 
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with larger batteries, the government can design the subsidy program to target PHEVs with this 

medium battery range to achieve higher VMT electrification. The government can also consider 

an alternative program to subsidize electricity. Results from this study indicate that, with the 

same amount of total government spending, the same level of VMT electrification can be 

achieved by both types of subsidy programs. Different from a lump sum subsidy to incentivize 

PHEVs purchases, subsidizing electricity costs can further encourages PHEV owners to drive 

more on electricity. Currently most countries provide subsidies for EV purchases and only a few 

have additional subsidies for recharging electricity [127]. Because only adoption rates are 

currently reported as policy outcomes instead of VMT electrification rates, the contribution of 

subsidizing electricity for charging to current EV adoption and utilization is not clear and needs 

further exploration. In summary, this study demonstrates that better understanding of the 

individual travel patterns using large-scale trajectory data can help design better subsidy 

programs for PHEVs/BEVs adoption and utilization. 

Last but not least, previous research on environmental impacts of PHEVs is often 

conducted based on average daily or annual VMT [131, 132]. This study demonstrates how 

individual travel patterns, charging opportunities, and battery size influence life cycle GHG 

emissions due to PHEVs adoption and utilization at the individual vehicle level. It also sheds 

light on the utilization of large-scale vehicle trajectory data for enhancing assessments of 

environmental impacts of PHEVs/BEVs. 

3.3.7 Sensitivity Analysis 

To assess the impacts of parameter variations on the results, I conducted a sensitivity 

analysis in reference to the baseline scenario. The baseline scenario has the following 

assumptions: home-charging only, no government subsidy, charging efficiency at 88%, 
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electricity price at $0.078/kWh, gasoline price at $1.29/L, fuel economy for charging depletion 

mode at 0.35 kWh/mile, fuel economy for charging sustaining mode or conventional gasoline 

vehicle at 35 mile/gal, charging voltage at 240V, charging current at 16A, battery range at 80 

miles, and battery unit cost at $500/kWh.  

Results from the sensitivity analysis indicate that fuel cost reduction is more sensitive to 

charging opportunities than to charging speed (Figure 3-12). It is also more sensitive to gasoline 

cost and fuel economy than to electricity cost. In addition to these parameters, the electrification 

rate is also sensitive to acceptable payback time and the fuel economy in charge depletion mode 

Figure 3-13). I also tested the impact of the holiday on the electrification rate by separating the 

data into two subsets: before-holiday data and holiday data and compared the results obtained by 

using the entire dataset with those using the subsets. Results show that all three datasets lead to 

results with similar patterns (Figure 3-14 and Figure 3-15). On holidays, the fleet has higher 

electrification rate because taxis drive less during the holiday and have more time to charge. In 

addition, electrification rates based on the entire week’s data are generally lower than those 

based on the subset data, especially at larger battery range. This is due to the fact that segments 

crossing February 5th and 6th are cut into two shorter segments when data are separated into two 

subsets, which inflates the overall electrification rates.  
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Figure 3-12. The sensitivity of fuel cost reduction to different model parameters. 
Note: a) charging opportunities, b) charging efficiency, c) electricity price, d) gasoline price, e) fuel 
economy for charge depletion mode, f) fuel economy for charge sustaining mode, g) charging voltage and 
current. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) 
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Figure 3-13. The sensitivity of electrification rate to different model parameters. 
Note: a) charging opportunities, b) charging efficiency, c) electricity price, d) gasoline price, e) fuel 
economy for charge depletion mode, f) fuel economy for charge sustaining mode, g) charging voltage and 
current, h) acceptable payback time. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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Figure 3-14. Impacts of the holiday on the electrification rate (ubiquitous charging). 
Note: a) with subset of data before the holiday, b) with holiday data, c) with the full dataset, d) 
comparisons at $500/kWh battery cost, e) comparisons at $300/kWh unit battery cost, f) 
comparisons at $100/kWh unit battery cost. 
 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 3-15. Impacts of the holiday on the electrification rate (home charging). 
Note: a) with subset of data before the holiday, b) with holiday data, c) with the full dataset, d) 
comparisons at $500/kWh battery cost, e) comparisons at $300/kWh unit battery cost, f) 
comparisons at $100/kWh unit battery cost. 
 

3.3.8 Study Limitations 

While the data used in this study have the merit of including a large number of vehicles, 

the time span of available data for each vehicle is limited to a week including a national holiday. 

Because taxi usage is reduced during the holidays, the present dataset including taxi trajectories 

for the holiday may cause overestimation of the electrification rate. Given that weather 

conditions can also potentially impact the usage of taxis (e.g., more people may take taxis when 
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it is raining), data with larger temporal coverage for a more representative period of time can 

improve this study. Nevertheless, the analytical framework developed in this study and key 

findings are still valid and valuable. This research also demonstrates the benefits of using 

individual travel patterns to study environmental implications of fleet electrification. 

Another limitation of this study is that I assumed the adoption criteria are the same (i.e., 

payback battery cost within eight years) for everyone, and the entire fleet will choose PHEVs 

with the same battery size. While similar assumptions have been made in previous studies (e.g., 

[37]), the heterogeneity of tolerance level and diversity of consumer choices are lost. Although 

the taxi fleet is likely to use identical vehicles, individual drivers can have different adoption 

criteria regarding to payback time depending on their own risk tolerance levels and economic 

preferences. A survey of drivers’ preferences can be supplementary to improve this study. Other 

factors impacting consumer choices (e.g., age of the current vehicle, drivers’ economic 

conditions) are not considered in this study either. But this study can provide important guidance 

on developing realistic agent-based models (ABMs) with more sophisticated design of agents 

(i.e., consumers) that have heterogeneous adoption criteria and vehicle choices. Current ABMs 

(e.g. [103-105]) have not included the heterogeneity of individual travel patterns. 

In addition to the serial powertrain configuration considered in this study, the power-split 

configuration can also be used for PHEVs, especially for vehicles with smaller batteries. Because 

the power-split configuration uses a combination of electricity and gasoline to power the vehicle, 

the overall electrification rates will be lower than using the serial configuration.  

Furthermore, this study models SOC change as a linear process between 0% and 100% 

during charging and discharging. This simplification can lead to overestimation of electrification 



48 
 

rates because the operating range of SOC is normally less than 100% for battery protection and 

the change of SOC becomes nonlinear when the battery is nearly depleted or almost fully 

changed [133]. More sophisticated battery charging and discharging simulation can improve this 

study with more accurate SOC estimations. 

Lastly, temporal changes of emission factors, fuel economies, energy prices, and VMT 

are not accounted for in this study. These parameters are modeled as constants through the eight-

year life time of taxis. While changes are expected with the rapid development of China, 

projections of these parameters over time bear high uncertainties and are thus out of the scope of 

this study. For the purpose of this study, perhaps it is better to evaluate the impacts of fleet 

electrification in isolation of these uncertain parameters.  

3.3.9 Contribution of Individual Travel Pattern Data 

Aggregated travel data can overestimate travel electrification by neglecting the variations 

of trip distances (and the existence of long trips) and assuming universal adoption of EVs. 

However, they can also underestimate travel electrification due to the lack of mid-day charging. 

Individual travel pattern data enable more flexible charging behavior and adoption modeling, and 

can better estimate the level of travel electrification that can be reached. Using average daily trip 

distance of 39 miles, Stephan and Sullivan (2007) assumed that PHEVs with 40 miles range can 

electrify 100% of the travel [22]. Based on aggregated travel distance distribution curve from 

travel survey data, Samaras and Meisterling (2007) calculated the utility factors for PHEVs with 

30, 60, and 90 miles to be 47%, 68%, and 76%, respectively [25]. Using more detailed trip chain 

information from NHTS, Kelly et al. (2012) concluded that the utility factors can range from  63% 

to 76% for PHEVs with 42 miles and from 68% to 80% for PHEVs with 80 miles under different 

charging scenarios [34]. In this study, the electrification rates are much lower, at 22% to 28% for 
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PHEVs with 40-mile battery. These studies examine different fleets and have different model 

parameters and therefore cannot be directly compared. However, the lower rates of this research 

are mainly a result of the consideration of individual travel patterns and the usage of adoption 

model which allows the drivers whose travel patterns do not favor EV adoption to stay as ICE 

vehicles. In addition, this study shows that larger battery size may even reduce electrification rate 

compared to smaller ones. This mechanism cannot be captured if aggregated travel pattern data 

are used. Although results in Kelly et al. (2012) showed that improvement of utility factors using 

large battery size is constrained, the trend is still monotonously increasing or flattening out.  

If aggregated travel pattern data are used for this study, for example, knowing the average 

daily VMT is 50 miles, the relationship between electrification rate and battery range is then 

linear as sketched in Figure 3-12. The electrification rate increases linearly with PHEV battery 

size until the battery size reaches 50 miles where the entire day’s VMT can be electrified. The 

electrification rate stays at 100% when the battery size is over 50 miles and then suddenly 

dropped to zero when the large battery becomes too expansive to be paid back. Using aggregated 

data also limits the ability to analyze mid-day charging and has to assume that charging happens 

once per day at night after each day’s travel. By providing the details of each driving and parking 

event, individual travel pattern data better support charging behavior modeling and better capture 

the system dynamics. 
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Figure 3-16. Relationship of electrification rate and battery size if aggregated travel pattern (average 
daily VMT at 50 mile is used). 

 

3.4 Summary 

Examining real-time vehicle trajectory data for 10,375 taxis in Beijing in one week, this 

study evaluates the impacts of adopting PHEVs in the taxi fleet on life cycle greenhouse gas 

emissions, considering the influences of individual travel patterns on PHEV adoption and 

utilization. The results indicate that 1) the largest gasoline displacement (1.1 million gallons per 

year) can be achieved by adopting PHEVs with modest electric range (approximately 90 miles) 

with current battery cost, limited public charging infrastructure, and no government subsidy; 2) 

reducing battery cost has the largest impact on increasing the electrification rate and gasoline 

displacement, followed by diversified charging opportunities; 3) government subsidies can be 

more effective to increase the VMT electrification rate and gasoline displacement if targeted to 

the PHEVs with modest electric ranges (80 to 120 miles); and 4) while taxi fleet electrification 

can increase greenhouse gas emissions by up to 115 kiloton CO2-eq per year with current grid in 

Beijing, emission reduction of up to 36.5 kiloton CO2-eq per year can be achieved if the fuel 

cycle emission factor of electricity can be reduced to 168.7 g/km. Although the results are based 

on a specific public fleet, this study demonstrates the benefit of using large-scale individual-

based trajectory data to better understand environmental implications of fleet electrification and 

inform decision making. 
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4 CHAPTER IV 

Public Charging Infrastructure Siting Informed by Individual Travel 

Patterns  

4.1 Introduction 

Charging infrastructure is critical to the development of the EV system [38]. Low 

availability of charging infrastructure can hinder EV adoption, which in turn reduces incentives 

to invest in charging infrastructure development [134]. Although charging stations have been 

increasingly installed in many cities, limited research has been done to study where charging 

stations should be built to maximize overall travel electrification. Mismatch of charging demand 

and charging infrastructure siting can lead to under-utilized charging infrastructure [135].  In 

Chapter III, two extreme charging scenarios are assumed: ubiquitous charging and home 

charging. Additionally, those assumptions consider only the vehicle resting time available for 

charging, but not the spatial distribution of charging demands and charging infrastructure. 

Realistically, a vehicle can only use the resting time to charge when it rests near a charging 

station. How will the spatial distribution of charging stations impact the electrification rate? 

Additionally, can individual travel patterns be used to better plan for siting charging stations? 

This chapter aims to answer these questions. 

Estimating charging demand, especially public charging demand, is a difficult task due to 

the lack of realistic travel pattern data [136]. Previous studies use road traffic density [41], 

distribution of gas stations [42], and vehicle ownership [43-45] as proxies for charging demand. 
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Unlike gasoline or hydrogen fueling which only takes a few minutes, electric charging process is 

normally much longer and can take up to hours. As a result, charging is more likely to happen at 

the end of a trip rather than in the middle of a trip [46, 137]. Furthermore, in addition to charging 

vehicles at public charging stations, EV owners may have the option to charge at home. 

Therefore, traffic flow volume or vehicle ownership density does not necessarily represent the 

demand for public charging infrastructure. Realizing the importance of charging opportunity at 

the trip destinations, trips simulated with origin-destination pairs are also used to study charging 

demand [138-141]. Household travel surveys can provide detailed trip and parking information 

for surveyed individuals [137], but each individual is only surveyed for a limited duration (e.g., a 

day or two) with limited representativeness.  

Recent attempts to use real world travel data to study charging infrastructure planning is 

constrained by the limited sample size of private vehicles [46]. Due to sampling cost and privacy 

concerns, sample size of private vehicles is usually in the hundreds. Because public charging 

demand is an emergent property of heterogeneous individual travel patterns, it is hard to draw 

conclusions at the fleet or city level using samples the size of which is several magnitudes lower 

than the fleet population. Fortunately, large-scale travel trajectory data of public fleets 

increasingly become available by the recent development of ICT. This affords unprecedented 

opportunities to better understand how charging infrastructures can be better planned to match 

real world charging needs. Although results concluded based on the public fleet data may not be 

directly applicable to private vehicles, methods developed for public fleets can be directly 

applied to private vehicles with similar travel trajectory data. 

Another research gap for charging infrastructure siting is that, although different 

mathematical models are proposed [45-47, 138, 140], few studies consider potential 
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environmental benefits of EV charging as the objective function. The ultimate goal of EV system 

deployment is to fulfill more travel needs using electricity instead of fossil-based liquid fuels. 

Higher fleet level travel electrification indicates higher potential environmental benefits from an 

EV system (assuming a low carbon grid). Therefore, given the transportation infrastructure’s 

path dependence nature, it is also important to develop the charging infrastructure in a way that it 

can best realize the potential environmental benefits. 

I aim to address both research gaps in this study by 1) using large-scale real world vehicle 

trajectory data to better model charging demand, 2) demonstrating that travel-pattern-informed 

charging stations can provide higher level of travel electrification, and 3) developing an 

optimization model to identify optimal charging station locations that can maximize fleet level 

electrifiedVMT. Using Beijing as a case study, this research examines a large-scale dataset 

containing travel trajectories of 11,880 taxis in Beijing for a month to study the impact of travel 

patterns on public charging needs and develops an optimization model that sites public charging 

stations to maximize potential environmental benefits. Public fleets (i.e., taxis and buses) are 

likely early adopters of EVs [98]. Beijing aims to put 100,000 EVs on roads by 2015 and build 

466 charging stations to support these vehicles [142].  Results of this research can provide policy 

guidance for early stage charging infrastructure development in Beijing. In addition, this study 

demonstrates the benefit of using large-scale individual-based trajectory data to inform charging 

infrastructure development. Although this study only includes data from one type of fleet in a 

specific city, the framework and model developed are readily applicable to other fleets in other 

cities with similar data. 
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4.2 Data and Methods 

There are two major views pertaining to the integration of public charging infrastructure 

into a city, gas-station-based and parking-lot-based, both of which has its own merits and 

disadvantages. Gas-station-based charging stations fit the existing consumer habits of vehicle 

refueling and can help reduce “range anxiety”. In addition, in the long term, while EVs gradually 

replace ICE vehicles, the increasing charging service can balance the decreasing refueling 

service at the gas stations and maintain efficient utilization of public infrastructure [143]. 

However, it is unrealistic to expect drivers to wait at gas stations if charging takes hours.  

Parking-lot-based charging stations are more ideal for slow charging because it makes 

charging an add-on activity of a trip (e.g., work, shopping) and does not require extra time. 

However, in order to charge at the parking-lot-based stations, EV drivers often have to pay for 

parking fees which can be more expensive than the fuel cost saving. Because taxis in Beijing do 

not normally park for an extensive amount of time during the day and drivers tend to avoid 

paying unnecessary parking fees, this research focuses on the gas-station-based public charging 

stations. This gas-station-based charging approach has also been adopted in previous studies (e.g., 

[42, 143]). 

This study includes two major tasks: 1) assessment of travel-pattern-informed charging 

infrastructure development; and 2) optimization of public charging station locations. The first 

task aims to demonstrate that using collective travel patterns to guide infrastructure development 

can help improve system level travel electrification. It also evaluates the environmental and 

electricity grid load impacts due to public charging. The selection of the charging station 

locations in this task is based on a simple scoring mechanism and therefore is suboptimal. The 

optimal solution also needs to consider the path dependence of vehicle SOC (whether the vehicle 
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is charged at the previous resting event will determine the charging demand at the current resting 

location). The goal of the second task is to develop and solve an optimization model to identify 

charging station locations that can maximize system level travel electrification. The same vehicle 

trajectory dataset and model parameters are used in both tasks. The details of each task, data, and 

model parameters are explained in the subsections below. 

4.2.1 Assessment of Travel Pattern-Informed Charging Station Siting 

As shown in Figure 4-1, the first step is to extract taxi stop events from the trajectory 

data to evaluate public charging opportunities. Collective charging opportunity exists in locations 

where many taxis choose to stop for long durations. I then score each existing gas station based 

on how well it aligns with identified charging opportunity. A non-overlapping set of existing gas 

stations are then selected based on different criteria (e.g., maximal number of parking events, 

maximal daily parking time, or maximal average parking time per vehicle) as charging stations. 

It is worth noting that the identified charging opportunity is not the same as the charging demand. 

True charging demand depends on not only the parking time and location, but also the state-of-

charge (SOC, representing the remaining capacity of the battery relative to the all-electric range) 

of the battery at the beginning of the parking event. A vehicle can park at a location for a long 

time but has low charging demand if its SOC is almost one (full battery) when it arrives at that 

location. To capture the true charging demand, I use trip chains extracted from the trajectory data 

and the selected charging stations to simulate PHEV adoption and charging. I assumed PHEV 

instead of BEV in this study for taxi electrification to allow drivers to finish trips that exceed the 

battery range on gasoline. The outputs of the mode are fleet level electrification rate, 

environmental impacts, and power load profile.  
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Figure 4-1. Model framework for Task 1 

Similar to the adoption model described in Section 3.2.5, the adoption of PHEV is 

determined by the life time cost. Taxis will adopt PHEV if the life time cost of PHEV is cheaper 

than that of ICV. Adopted PHEVs will charge at home when they are parked at home (within 0.1 

miles of identified home location). Because utility companies in Beijing currently offer to install 

free home charging outlets or posts for EV owners, I assumed that home charging is universally 

available without additional cost. The implications of this assumption on results are discussed in 

the Sensitivity Analysis (Section 4.3.1.5). When taxis are parked at non-home locations for more 

than 10 minutes, they will use the parking time to charge if there are public charging stations 

within 1 mile (1.6km) of the parked location. The service radius of 1 mile is used in this study to 

account for limited willingness of taxi drivers to change their behavior to accommodate for 

charging needs. This service radius is similar to the 2km range suggested by [42] but is less than 

the 5km range proposed by Beijing government [144]. Charging is assumed to start immediately 

after each vehicle is parked to fully utilize the resting time. The impact of this assumption is also 

evaluated in the Sensitivity Analysis (Section 4.3.1.5). Waiting in line for the charging port to 

become available or set up payment at the charging station can delay charging and reduce total 

charging time. I also assumed that the drivers are willing to charge their vehicle whenever they 

park near a charging station regardless of the current SOC of the vehicle. It is possible that the 

drivers only start to consider charging when the SOC is below a certain level. Therefore, the 
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results in this study represent the upper bound of the fleet electrification rate.  The detailed 

charging algorithm can be found in Section 3.2.3. Vehicle age is not considered in this study. 

4.2.2 Optimization of Public Charging Station Locations 

Let G(i,j,k) be a network with i candidate locations for installing public charging stations, 

j individual PHEVs, and k trips for each vehicle during the examined period. The time spent 

between two consecutive trips is defined as the dwell time.  

Each vehicle (j) has a remaining battery charge (Rjk) at the end of each trip (k) before 

starting its dwell time. For the convenience of modeling, Rjk is measured as the mileage that the 

vehicle can travel with the remaining electricity (battery range). Rjk can be formulated as shown 

in Eq. (1), with negative values of Rjk representing the mileage that cannot be powered by 

electricity (i.e., powered by liquid fuels) in trip k [46]. Eq. (2) shows the real remaining battery 

range (𝑅�𝑗𝑗) of vehicle j at the end of trip k, which is forced to be non-negative.  

𝑅𝑗𝑗 =  𝑅�𝑗𝑗−1 + 𝐸𝑗𝑗−1 − 𝑑𝑗𝑗    ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾 (1) 

𝑅�𝑗𝑗−1 = 𝑚𝑚𝑚�𝑅𝑗𝑗−1, 0�         ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾 
 

(2) 
 

where Rjk is the remaining battery range of vehicle j at the end of trip k (mile); Ejk-1 is the 

electricity recharged (measured in miles) for vehicle j during the dwell time between trip k-1 and 

trip k; and djk is the travel distance (miles) of vehicle j during trip k. 

Similar to the simulation in Task 1, this model also differentiates home charging and 

public charging. If vehicle j does not park at home after trip k (hjk = 0), the vehicle seeks public 

charging opportunities. Electricity recharged for vehicle j after trip k (Ejk), as shown in Eq. (3), 

equals to the difference between the full battery range and the remaining battery range if the 

dwell time is longer than what is required to fully charge the battery, or the exact amount of 
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electricity that can be charged if a full charge cannot be achieved within the dwell time. Ejk 

equals to 0 if no charging station is available for vehicle j at the end of trip k. If vehicle j parks at 

home after trip k (hjk = 1), home charging is utilized. Recharged electricity at home, as shown in 

Eq. (4), equals to the difference between the full battery range and the remaining battery charge 

if the home parking time is longer than what is required to fully charge the battery, or the exact 

amount of electricity that can be charged during home dwell time.  

𝐸𝑗𝑗 = min �𝐸𝑗 − 𝑅�𝑗𝑗 , 𝐿𝐿 𝑡𝑗𝑗
𝑟𝑗

,𝑀∑ 𝑃𝑖𝑖𝑖𝑖∈𝐼  �       𝑖𝑖 ℎ𝑗𝑗 = 0  (3) 

𝐸𝑗𝑗 = min �𝐸𝑗 − 𝑅�𝑗𝑗 , 𝐿ℎ 𝑡𝑗𝑗
𝑟𝑗

 �                              𝑖𝑖 ℎ𝑗𝑗 = 1          (4) 

 

where hjk equals to 1 if vehicle j is parked at home after trip k and 0 otherwise; Ej is the effective 

all-electric range (AER) of vehicle j’s battery (measured in miles); Le is the charging power level 

(kW) at each of the public charging stations (assuming same for all public charging stations); Lh 

is home charging power level; tjk is dwell time of vehicle j at the end of trip k (hour); rj is the 

average electricity consumption rate of vehicle j in charge depletion (CD) mode (kWh/mile); M 

is a large number greater than Ej; and Pijk is the availability of charging station for vehicle j at 

location i after trip k. Pijk equals to 1 if candidate location i is accessible for vehicle j at the end of 

trip k and a charging station is installed at location i. Accessibility of charging station at location 

i by vehicle j is measured by the distance between location i and vehicle j at the end of trip k. If 

this distance is less than the service range of charging stations, location i is accessible.  

The optimal selection of charging station locations in an area using the travel patterns of 

individual vehicles defined in this task is given by Eqs. (5) - (14). The objective function, as 

shown in Eq. (5), minimizes the total travel distances that cannot be fulfilled by electricity. This 

is equivalent as maximizing the electrified fleet VMT. Eqs. (6) to (8) formulate the remaining 
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battery range of vehicle j at the end of trip k. In Eq. (7), Rj is the remaining battery range of 

vehicle j at the beginning of trip 1. Recharged electricity of vehicle j at the end of trip k is shown 

in Eqs. (9) and (10). Eq. (11) shows the budget constraint, limiting the maximum number of 

public charging stations as B. Charging opportunity is available at candidate location i for 

vehicle j at the end of trip k if two conditions are satisfied simultaneously, as shown in Eq. (12). 

The first condition requires the distance between candidate location i and the location of vehicle j 

at the end of trip k is less than the specified charging station service range. If vehicle j at the end 

of trip k is within the service range of candidate location i, Zijk equals to 1, otherwise zero. The 

second condition is that a charging station is installed at location i (yi = 1). The model solves yi 

for the optimal solutions. Eqs. (13) and (14) show the binary and positive variables, respectively. 

min  ∑ ∑ �𝑅�𝑗𝑗 − 𝑅𝑗𝑗�𝑗∈𝐽𝑘∈𝐾   (5) 
 

Subject to: 

𝑅𝑗𝑗 =  𝑅�𝑗𝑗−1 + 𝐸𝑗𝑗−1 − 𝑑𝑗𝑗                            ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾 (6) 

𝑅𝑗1 =  𝑅𝑗 − 𝑑𝑗1                                                  ∀𝑗 ∈ 𝐽 (7) 

𝑅�𝑗𝑗 = 𝑚𝑚𝑚�𝑅𝑗𝑗, 0�                                           ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾 (8) 

𝐸𝑗𝑗 = min �𝐸𝑗 − 𝑅�𝑗𝑗 , 𝐿𝐿 𝑡𝑗𝑗
𝑟𝑗

,𝑀∑ 𝑃𝑖𝑖𝑖𝑖∈𝐼  �    𝑖𝑖 ℎ𝑗𝑗 = 0, ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾  
 

(9) 

𝐸𝑗𝑗 = min �𝐸𝑗 − 𝑅�𝑗𝑗 , 𝐿ℎ 𝑡𝑗𝑗
𝑟𝑗

 �                       𝑖𝑖 ℎ𝑗𝑗 = 1, ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾  
(10) 

  
∑ 𝑦𝑖𝑖∈𝐼 ≤ 𝐵  (11) 

 
𝑃𝑖𝑖𝑖 = 𝑍𝑖𝑖𝑖 𝑦𝑖                                                      ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾,∀𝑖 ∈ 𝐼 (12) 

𝑃𝑖𝑖𝑖, 𝑦𝑖  ∈ {0,1}                                                    ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾,∀𝑖 ∈ 𝐼 (13) 

𝑅�𝑗𝑗 ,𝐸𝑗𝑗 ≥ 0                                                           ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾 (14) 

  
where the decision variables of the problem are as follows: 

𝑅𝑗𝑗: The remaining battery range of vehicle j at the end of trip k (mile) 
𝑅�𝑗𝑗: The real remaining battery range of vehicle j at the end of trip k (mile) 
𝑃𝑖𝑖𝑖: Binary variable which shows the availability of public charging for vehicle j at the 

end of trip k at location i, with 1 indicating available and otherwise 0 
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𝑦𝑖: Binary variable which shows whether a charging station is installed at location i, 
with 1 indicating present and otherwise 0 

𝐸𝑗𝑗: Battery electricity recharged for vehicle j at the end of trip k (mile) 
 

Vehicle travel behavior varies from day to day. To capture this variation and examine 

model sensitivity, I separate the trajectory data into three weekly datasets and apply model to 

each. For each week, the data are prepared into four input matrixes, D(djk), T(tjk), H(hjk), and Z 

(Zijk), where djk is the travel distance of vehicle j during trip k (mile), tjk is dwell time of vehicle j 

at the end of trip k and before trip k+1 (hour), hjk is a 0-1 matrix with 1 indicating that vehicle j 

parks at home during its dwell time at the end of trip k and 0 indicating that it does not park at 

home during the dwell time, and Zijk is 1 if vehicle j is parked within the service range of 

candidate location i at the end of trip k, and zero otherwise. The same service range of 1 mile is 

used in this task as well. 

The proposed optimization model is a Mixed Integer Problem (MIP). It is implemented in 

GAMS with Cplex solver. Although only gas-station-based charging stations are evaluated in 

this study, the same optimization model can be applied to candidate locations based on other 

criteria (e.g., parking-lot-based) as well with modified inputs reflecting the new candidate 

locations. 

4.2.3 Data and Model Parameters 

Data used in this study are vehicle trajectory data of Beijing taxis. Currently there are 

approximately 66,000 taxis in Beijing [101, 145]. Taxis generally do not work for a dispatch 

center. Instead, they mainly provide hail service, which means that the taxis cruise along the 

streets and look for clients who signal their needs for taxis. Drivers possess the vehicle 24/7 and 

normally park it where they live when they are off work. These properties make Beijing taxis 
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share some characteristics with private vehicles (e.g., park at home at night and routine trips 

leaving and returning home). Although some taxis may have multiple shifts (two or more drivers 

drive the same vehicle in turns), the majority of the taxis only have one dedicated driver (single 

shift) [146]. Approximately 79.8% of the taxis analyzed in this study have an average dwell time 

of at least five hours per day. 

After data curation, the dataset used in this study contains continuous trajectory data of 

11,880 taxis (18% of the fleet) in Beijing over a period of three weeks (March 2 to 25, 2009). It 

includes a total of 255 million data points which covers 3.4×107 miles of travel and over 2 

million trips. Each data point contains the timestamp up to seconds (when the data is recorded), 

vehicle ID, and vehicle location at the recorded time (in longitude and latitude). Home locations 

are identified as the location where taxis consistently park at night. Trip chains are extracted with 

a threshold of minimum parking for five minutes for Task 1 and a threshold of fifteen minutes 

for Task 2. The higher threshold set for Task 2 is with the consideration of reducing computation 

intensity for solving the optimization problem and reflecting more conserved charging behavior 

(I assumed that drivers are unlikely to go through the hassle of charging if they have too little 

time).  

This study includes the following key parameters. Home charging has a voltage and 

current at 220V and 10A. Public fast charging has power output of 37.5kW [147], while public 

slow charging is at 220V and 32A [148]. Charging efficiency is 88% [34]. The all-electric range 

(AER) of the modeled PHEV is 100 miles. Unit battery cost is at $300/kWh. The electricity price 

is at $0.078/kWh while the gasoline price is at $4.86/gal. Life time of a taxi is eight years. It is 

assumed that no battery replacement is needed during the taxi’s life time. Each vehicle’s mileage 

varies depending on its travel pattern. The net present value (NPV) is calculated with a discount 
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rate of 5%. Fuel cost escalation over time is not considered in this model. Fuel efficiency is 

0.35kWh/mile during electric mode and 35 mile/gal during gasoline mode [120]. The current 

government subsidy for PHEV purchase is $11,240 per vehicle ($5,620 central government 

subsidy with an additional 1:1 match from the Beijing government) [149]. For environmental 

impacts, I used emission factors adopted from other studies focused on vehicle emissions in 

China. The emission factors are 236.7 g CO2-eq/km [126], 0.0797g PM2.5/km, 0.1336g PM10/km, 

11.457g SO2/km, 0.5384g NOx/km, and 0.138g CO/km [32] for distance driven in electricity; 

and 224.4 g CO2-eq/km [126], 0.0045g PM2.5/km, 0.012g PM10/km, 0.135 SO2/km, 0.42g 

NOx/km, and 1.905g CO/km [32] for distances driven in gasoline. I use 0.47 kg CO2/kWh for 

CO2 emission from natural gas generated electricity [150].  

4.3 Results and Discussion 

4.3.1 Assessment Results (Task 1) 

4.3.1.1 Public Charging Opportunity  

The duration when a taxi is parked at non-home locations (e.g., for the driver to rest, have 

dinner, or wait for the next client) represents public charging opportunities for this taxi without 

requiring behavior change from the driver. Therefore, locations near which many taxis choose to 

park for an extensive amount of time can be candidates to build charging infrastructure. This 

overall charging opportunity can be quantified using “vehicle-hour”, where 1 vehicle-hour means 

the equivalent of one vehicle parks at a location for an hour (or equivalently two vehicles each 

park for half an hour). The probability density distribution of vehicle-hour shows that while most 

parking events happen in the city, regional “hotspots” exist for both suburbs (Figure 4-2a) and 

inner city (Figure 4-2b). 
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Figure 4-2. The probability density distribution of vehicle-(parking)-hour for taxis in Beijing. 
Note: a) shows the entire Beijing administrative region and b) shows zoomed inner city. Both figures are 
in log scale. 

4.3.1.2 Evaluation of Gas-Station-Based Charging Stations 

I use three criteria to select existing gas stations for their suitability to be expanded as 

charging stations: 1) the total number of parking events happened in the service range (1 mile) of 

the gas stations; 2) average vehicle-hour per day within the service range of each gas station; and 

3) average vehicle-hour per vehicle within the service range of each gas station. Gas stations 

with the most parking events (Figure 4-3a) and daily vehicle-hours (Figure 4-3b) are 

concentrated in the center of the city while gas stations with the highest vehicle-hour per vehicle 

located in the suburb (Figure 4-3c). This difference shows that charging stations located in the 

center of the city can provide access to more taxis but may not provide long enough time to 

achieve full charge due to limited charging time. In contrast, charging stations located in the 

suburb may provide longer charging time but will only be able to serve a small number of taxis. 

At the time of the study, Beijing had 40 charging stations/posts built (Figure 4-3d). I 

compared the overall mileage electrification rate of the taxi fleet provided by the 40 existing 

charging stations and 40 gas-station-based charging stations selected based on each of the three 

different criteria. The results show that gas-stations selected based on either the total number of 

a) b) 
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parking events or vehicle-hours per day are more suitable for adding charging capability in order 

to achieve higher electrification rate (Figure 4-4). Well selected gas-station-based charging 

stations can improve the overall fleet level electrification rate by 37%. Home charging alone can 

electrify 24% of the mileage for the taxi fleet. This can be improved to 35% with existing 40 

charging stations and 48% with the same number of gas-station-based charging stations selected 

using the total number of parking events with fast public charging. The increased electrification 

rate means that up to 46.4 million gallon of gasoline can be displaced per year by having 40 

public charging stations. Average per vehicle parking time is not a good selection criterion when 

the density of the charging stations is still low. With slow public charging, the same trend exists 

but the overall electrification rates are reduced by 20% for existing charging stations and by 45% 

for gas-station-based charging stations selected with total number of charging events. The 

disproportional reduction shows that it is more critical to build fast charging stations at locations 

that match charging demand. 
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Figure 4-3. Locations of existing gas stations in Beijing. 
Note: The stations are color-coded with a) total number of parking events within service range (1 mile) of 
the gas station; b) average daily vehicle-hour within service range; and c) parking time per vehicle. d) 
Location of currently existing charging stations and posts.  

 

 

 Figure 4-4. Overall mileage electrification rate of the taxi fleet with different charging scenarios. 

a) b) 

c) d) 



66 
 

4.3.1.3 Environmental Impacts 

In addition of displacing gasoline, higher electrification rate of the taxi fleet will impact 

air emissions as well. Because electricity in the North Grid, where Beijing is located, is currently 

generated with 98% coal [126], CO2, PM2.5, PM10, SO2, and NOx emissions will increase with 

higher electrification rate while  CO emissions can be reduced (Table 4-1). Although the current 

grid mix makes EVs cause more emission than ICE vehicles in Beijing, it is promising to achieve 

emission reduction when the grid becomes cleaner [126]. For example, as discussed in Chapter 

III (Section 3.3.5), when the penetration of natural gas-fired electricity reaches more than 10.3%, 

CO2 emissions can then be reduced. In addition, relocation of emissions from mobile sources 

(tailpipes) to concentrated sources (power plants) makes it easier to implement emission 

reduction and treatment mechanisms [151].  

Table 4-1. Emission change under different charging scenarios. 

 
Emission changes (ton/year) CO2 PM2.5 PM10 SO2 NOx CO 

Fast 
charging 

Home charging only                     
1,063  

                            
7  

                          
11  

                       
979  

                          
10  

                     
-153 

With existing charging stations                     
1,530  

                            
9  

                          
15  

                    
1,409  

                          
15  

                     
-220 

Location selected with total 
number of parking events 

                    
2,103  

                          
13  

                          
21  

                    
1,935  

                          
20  

                     
-302 

Location selected with total 
vehicle-hour 

                    
2,054  

                          
13  

                          
20  

                    
1,891  

                          
20  

                     
-295 

Location selected with average 
parking time per vehicle 

                    
1,161  

                            
7  

                          
11  

                    
1,069  

                          
11  

                     
-167 

Slow  
charging 

 

Home charging only                     
1,063  

                            
7  

                          
11  

                       
979  

                          
10  

                     
-153 

With existing charging stations                     
1,267  

                            
8  

                          
13  

                    
1,166  

                          
12  

                     
-182 

Location selected with total 
number of parking events 

                    
1,442  

                            
9  

                          
14  

                    
1,328  

                          
14  

                     
-207 

Location selected with total 
vehicle-hour 

                    
1,427  

                            
9  

                          
14  

                    
1,313  

                          
14  

                     
-205 

 Location selected with average 
parking time per vehicle 

                    
1,064  

                            
7  

                          
11  

                       
980  

                          
10  

                     
-153 
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4.3.1.4 Power Grid Load Impact 

Based on the scenario of 40 charging stations, the average power grid load impact from 

public charging is presented in Figure 4-5. The peak demand is around noon time which 

overlaps with the city’s day time electricity demand peak [42]. Fast public charging results a 

more significant load shock comparing to slow public charging, which indicates that charging 

time management policies need to be implemented with the deployment of fast public charging 

stations. 

  

Figure 4-5. Electricity load profile with 40 public charge stations. 

 

4.3.1.5 Sensitivity Analysis 

Key assumptions and parameters made in this task include the availability of home 

charging, parking time, and battery range. This section discusses how these assumptions and 

parameters affect the results.  

I assume that home charging is available for all taxis. Among all parking events during a 

day, home parking is usually the longest and represents important charging opportunities. While 

it is important to capture these charging opportunities at home, significant barriers (e.g., 
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requirement of dedicated parking space and accessible residential outlets) still exist to reach 

universal accessibility [152, 153]. If home charging is not available, the overall electrification 

rate is reduced for all charging scenarios (Figure 4-6). 

 

Figure 4-6. Overall mileage electrification rate of the taxi fleet with different charging scenarios when 
home charging is not available. 

 

Parking time determines how much electricity taxis can charge at each station. When 

parking time is increased or decreased by 10%, electrification rate increases or decreases by 3-5% 

for the fast charging scenario (Figure 4-7a). Slow charging is slightly more sensitive to parking 

time: electrification rate increases or decreases by 5-6% in response to 10% parking time 

changes (Figure 4-7b). When single-shift taxis convert to double-shift ones, in addition to losing 

home charge opportunities and increased number of trips, parking time at each park event may 

also be reduced because drivers may rest less to take advantage of the fixed 12-hour shift time. In 

an extreme scenario that all taxis have multiple shifts, the overall electrification rate is lower than 

those shown in Figure 4-6 for no-home-charging conditions. 
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Figure 4-7. Sensitivity of electrification rate to the change of parking time.  
Note: Baseline parking time is represented as “1”. “1.1” means increase parking time at each parking 
event by 10% while “0.9” means decrease by 10%. a) Fast charging and b) Slow charging. 
 
 

The relationship between electrification rate and battery range is an inversed “U” shaped 

curve (Figure 4-8), similar to what is observed in Chapter III. A battery with larger all-electric 

range can initially increase the overall electrification rate, which declines when increased battery 

cost causes adoption reduction. Electrification rate peaks earlier for slow charging than for fast 

charging, which means that the benefit of having larger batteries will be constrained by the 

charging speed. 

 

Figure 4-8. Sensitivity of electrification rate to the change of battery range. 
Note: a) Fast charging and b) Slow charging 
 

a) 

a) b) 

b) 
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4.3.2 Optimization Results (Task 2) 

4.3.2.1 The 40-Station Scenario 

Similar to Task1, I compare the optimized results with those of the 40 existing charging 

stations. As shown in Figure 4-9, while existing charging stations can electrify 29±3% and 

35±2% of the fleet VMT with slow charging and fast charging respectively, location-optimized 

stations can effectively increase electrified fleet VMT to 46±4% and 66±2%, on average an 59% 

and 88% improvement. Compared to the locations of the existing stations, the optimized stations 

are concentrated in the inner city regardless of the variations in the weekly data (Figure 4-10a to 

c). It is notable that, while the location of optimized stations in the suburban area varies from 

week to week, the selection of optimized stations in the inner city is quite consistent (Figure 

4-10d). By zooming into the inner city, it is clear that the locations of the optimized stations are 

quite different from those existing ones (Figure 4-11a to c). The significant charging demand 

near the Beijing Capital International Airport is not currently covered by the existing stations 

(Figure 4-11d).  

 
Figure 4-9. Electrified fleet VMT as percentage of total fleet VMT (electrification rate) for 
existing and optimal public charging stations  
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Figure 4-10. Locations of the optimized charging stations in the 40-station scenario. 
Note: the locations are selected using a) data from week 1; b) data from week 2, and c) data from 
week 3. Charging stations selected as the optimal choices in two or three weeks are highlighted 
in d) with blue and red color, respectively. 
 

a) b) 

c) d) 
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Figure 4-11. Location comparison of optimized stations and existing stations in the inner city of 
Beijing 
Note: a) optimization results with data for week 1; b) optimization results with data for week 2; c) 
optimization results with data for week; and d) optimal locations selected in two or three weeks. 

 

4.3.2.2 Impacts of Increased Number of Charging Stations 

To evaluate the impact of the total number of stations that can be installed (B) on the 

optimization results, I ran models ranging B from 20 to 500. The results show that, while 

increasing the total number of charging stations increases electrified fleet VMT regardless of 

charging speed, the marginal electrified fleet VMT for both type of charging stations quickly 

diminishes (Figure 4-12). The difference in electrified fleet VMT between installing the same 

c) 

a) b) 

d) 

Airport 
region 
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number of fast and slow charging stations diverges initially but stays stable at about 20% when 

there are 40 or more charging stations.  

 

Figure 4-12. Change electrification rate and marginal electrification rate with increasing number 
of charging stations 

 

Optimized stations concentrate in the inner city in all scenarios, gradually expanding to 

the suburban area with increasing number of charging stations (Figure 4-13). To measure how 

many of the selected stations remain the optimal choice when the total number of charging 

stations is increased, I define retention rate as the percentage of selected stations in a scenario 

with smaller number of stations remains as the optimal choices in a scenario with greater number 

of stations. For example, if half of the stations in the 40-station scenario are also selected as the 

optimal choices in the 60-station scenario, the retention rate is 50% (20 divided by 40). As 

shown in Figure 4-14, on average, the overall retention rate is 70% to 88% for slow charging 

and 67% to 88% for fast charging, which indicates that the majority of the optimal stations are 

consistently selected even when the total number of charging stations are increased by 25 times. 

In general, the optimal slow charging stations have higher retention rate than the fast charging 

ones, showing that slow charging stations selected for short term planning (i.e., scenarios with 
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less total number of stations) are more likely to stay as the optimal choices for long term 

planning (i.e., scenarios with larger total number of stations). Additionally, the standard 

deviation of the retention rate reduces with increasing total number of charging stations, showing 

that the variation of travel pattern among different weeks can be better covered with more 

charging stations. With 200 charging stations, the standard deviation of retention rate can be 

effectively reduced to less than 3%.  

 

Figure 4-13. Locations of optimized stations in scenarios with different total number of charging 
stations. 
Note: a) 60 stations, b) 100 stations, c) 200 stations, and d) 500 stations. 

 

a) 

b) 

c)

 
  

d) 
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Figure 4-14. Retention rate of selected stations when increasing total number of charging 
stations 

 

4.3.3 Limitations 

This study demonstrates the benefits of using individual travel patterns derived from 

large-scale real-world vehicle trajectory data to inform public charging infrastructure 

development. It proposes a novel approach to estimate public charging demand and develops an 

optimization model to site public charging stations to maximize travel electrification. However, 

due to data availability and the assumptions made, this study has the following limitations. 

First, this study assumes that data collected for the 11,880 taxis are representative for the 

entire taxi fleet which consists of approximately 66,000 taxis. Although I have not observed any 

specific bias in the data, the representativeness of the spatial distribution and travel patterns of 

the sampled taxis needs to be further examined when additional datasets become available. In 

addition, taxi usage can exhibit seasonal variations (e.g., more people may take taxis when it is 



76 
 

snowing), which may not be captured by analyzing the particular dataset for three weeks in a 

March. Data with greater temporal coverage or multiple datasets collected at different time of the 

year could improve this study. 

Additionally, one key assumption made in this research is that PHEV taxis exhibit the 

same travel pattern as ICE taxis. It is possible that PHEV taxis will change travel patterns to 

drive more on electricity and take advantage of the potential fuel savings. However, currently 

there is no data available to estimate the change of travel behaviors in response to adoption of 

EVs and this assumption is commonly made in other studies [37, 94]. 

Furthermore, this study does not take into consideration the space constraints and the 

capacity limits of the charging stations. Depending on the location of the existing gas stations, 

certain stations may be constrained by space, the number of charging posts, and the associated 

parking space it can accommodate. If all charging posts are occupied at a given time, nearby 

vehicles with charging needs will either need to wait in line and delay/reduce their charging time 

or have to go to a different station. With 500 charging stations, the maximum number of vehicles 

simultaneously charging at the same station can be up to 16 during peak hours. Considering that 

only 18% of the taxi fleet is included in this study, the competition for charging ports at popular 

stations can be a more significant problem for a fully electrified taxi fleet. Therefore, future 

studies need to include the “crowd out” effect in the model to better reflect vehicle charging 

behaviors.  

Lastly, while the methodological framework developed in this study is applicable to other 

fleets and other cities, conclusions drawn in this study should not be generalized to private 

vehicles in Beijing or taxi fleets in other cities. This study assumes that charging stations are 
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dedicated to taxis and the charging demand of private vehicles is not considered in the siting 

process. Travel trajectory data for private vehicles need to be collected and analyzed if the 

charging stations are designed to also serve private vehicles. In addition, when evaluating 

charging station candidates for private vehicles, the parking-lot-based approach should be used 

instead of the gas-station-based approach. 

4.3.4 Contribution of Individual Travel Pattern Data 

Aggregated travel pattern data present representative travel statistics (e.g., average VMT, 

trip length). However, there is no “representative” location for vehicle public charging; therefore 

aggregated travel pattern cannot be used to support charging station siting. As a compromise, 

indicators such as traffic volume and vehicle ownership have been used as proxy of charging 

demand. However, as discussed earlier, due to the difference between charging and refueling, 

these proxies do not necessarily represent charging demand. Individual travel pattern data enable 

modeling of charging needs for each individual vehicle at each specific location, which can be 

used to identify fleet level charging demand to site public charging stations. 

The study conducted by Liu (2012) is the most related to this research because it also 

evaluates charging infrastructure planning for the city of Beijing [42]. Liu (2012) used the 

distribution of gas stations to represent geographical variations of charging demand and assigned 

home charging posts, public charging posts, and batter swap stations based on the locations of 

residential communities, gas stations, parking lots, and power transmission stations. Lacking 

individual travel pattern data, Liu (2012) made many assumptions for charging time, charger 

occupation rate, and charging demand allocation. In contrast, these parameters can be directly 

calculated from travel pattern data in this research. Charging stations sited in this research are 

more concentrated in the inner city while those in Liu (2012) are more spread out. 
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4.4 Summary 

Using the taxi fleet in Beijing as a case study, this study examines large-scale vehicle 

trajectory data to study public charging station planning and potential environmental and power 

grid impacts from electric taxi fleet charging. The results show that: 1) public charging 

opportunities identified using collective vehicle parking events can be used as good indicators 

for public charging demand; 2) comparing to existing charging stations, the same amount of gas-

station-based charging stations selected based on travel patterns can improve overall 

electrification rate by 37%, which can lead to gasoline displacement for the taxi fleet of up to 

46.4 million gallon per year; 3) with current grid mix, CO2, PM2.5, PM10, SO2, and NOx 

emissions will increase with higher electrification rate while CO emissions will decrease; and 4) 

power demand for public electric taxi charging has peak load around noon time, overlapping 

with Beijing’s summer peak power, which means that charging time management techniques are 

potentially needed, especially for fast charging stations. 

The optimization results further show that: 1) the optimal locations of charging stations 

can have significant improvements on electrification rate comparing to the existing ones and the 

suboptimal ones selected based on simple rules; 2) charging stations in Beijing should be first 

built in the inner city first and then expand outward; 3) while more charging stations increase 

electrified fleet VMT, the marginal gain diminishes quickly regardless of charging speed. The 

difference of electrified fleet VMT between the same number of slow and fast charging stations 

stays constantly at 20% with more than 40 charging stations; and 4) the majority of the stations 

selected in a model with smaller number of charging stations remain as the optimal choices when 

the total number of charging stations increases. 
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5. CHAPTER V 

Environmental Benefits of Ride Sharing in Cities 

5.1. Introduction 

With over half of the global population now living in urban areas, urban sustainability is 

becoming increasingly important [154]. Vehicle transportation is a critical component of urban 

sustainability because it contributes significantly to energy consumption and emission generation. 

For example, the transportation sector accounted for 28% of total energy use and 27% of total 

GHG emissions in the U.S. in 2013 [6, 155]. As the economy grows and population increases in 

urban centers in developing countries, improving efficiencies in public transportation services 

and personal automobile uses can provide more cost-effective and environmentally friendly 

transportation solutions.  

Sharing rides as a way to reduce transportation energy consumption is not new. As early 

as in the 19th century, the U.S. government has implemented policies to organize ride sharing 

(Car-Sharing Club) to conserve transportation fuel during World War II [49]. In addition to the 

societal benefits of reducing congestion, alleviating emissions, and conserving energy, ride 

sharing also offers benefits to the participants, which include lowering travel cost, gaining access 

to HOV lanes, and avoiding the search for parking. However, due to the lack of attractive market 

mechanisms, difficulties of arrangement, and safety concerns to ride with strangers [49, 50], ride 

sharing has largely been constrained to the small scale (e.g., with families, friends, and 

colleagues) and is mostly prearranged (e.g., airport shuttles, van pools) [51].  
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The recent development in ICT such as smartphones and various apps has enabled users 

to exchange information in real-time and makes participation in the “sharing economy” more 

feasible, both technically and socially. Technically, the availability of real-time rider travel 

information, such as trip origin, trip destination, and desired departure and arrival time, has made 

it possible to develop a dynamic ride sharing (a.k.a., real-time ride sharing) system which only 

requires minimal amount of lead time to identify sharing matches. Socially, the involvement of 

social networks and reputation systems to help build trust makes people feel more comfortable to 

share with strangers (e.g., Uber, Sidecar, Lyft, Airbnb) [53, 54]. Therefore, ICT-enabled real-

time ride sharing presents unprecedented opportunities to improve urban transportation 

efficiency. The technology and cyberinfrastructure for dynamic ride sharing at the large scale has 

already partially existed. Several startup companies have already started to provide dynamic ride 

sharing services (e.g. Uberpool1, Split2). 

The current literature on ride sharing mainly focuses on developing efficient algorithms 

for rides matching and recommender systems [52, 57-61]. Limited attention has been paid to 

quantifying the “shareability” of travel demand at the city level, which is important to persuade 

investors to invest in and promote such systems [156]. This research aims to fill this gap to 

quantify the environmental benefits of ride sharing in urban cities, taking into account the 

heterogeneous individual travel demands. 

Four types of data are currently used to study ride sharing: travel survey data, cellphone 

traces, geo-tagged social media data, and trip origin and destination data. Based on commuting 

survey data, Amey (2010) estimated that sharing rides can reduce commuting VMT by 6% to 19% 

                                                           
1 https://get.uber.com/cl/uberpool/ 
2 http://split.us/ 



81 
 

for the Massachusetts Institute of Technology (MIT) communities [51]. Although travel survey 

data are best suited to serve the purpose of analyzing ride sharing at the small scale (e.g., 

commuting within the MIT community), the information provided by survey data is static and 

cannot be used to study dynamic ride sharing at the larger geographic scale. Using cellphone 

records and geo-tagged tweets, Cici et al. (2014) estimated that ride sharing with friends’ friends 

can reduce the number of cars in a city by 31% [92]. However, cellphone traces and geo-tagged 

social media data have very coarse granularity because the geolocation data of a user are only 

recorded when the user makes a phone call or posts a tweet. Trips that occur between two 

consecutive phone calls or tweets cannot be captured and may lead to inaccurate travel demand 

inference. In a study that evaluated trip origins and destinations of taxi trips in New York City, 

Santi et al. (2014) concluded that sharing taxi trips can cut trip length by 40% or more [156]. 

Trip origins and destination data can more accurately describe the travel demand of each traveler 

and therefore can support large scale dynamic ride sharing analysis better.  

Using trip origins and destinations extracted from the taxi trajectory data in Beijing, 

China as a case study, this research further evaluates the environmental benefits of shared taxis. 

Although ride sharing using private vehicles may be different from shared taxi rides, the 

framework and methods developed in this research can be applied to private vehicles when trip 

origins and destinations using private vehicles become available at the large scale. In addition, 

compared to ride sharing among private drivers, which requires more individual initiatives, 

shared taxi rides are more readily implemented. 
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5.2. Data and Methods 

5.2.1 Data 

Data used in this study are vehicle trajectory data for 12,083 taxis in Beijing from 

November 1 to December 1 in 2012. After data cleaning, the dataset includes a total of 894.5 

million data points, covering 69.3 million miles of travel. Each data point includes a vehicle id 

number, operation status (occupied by passengers, parked, or unoccupied), a time stamp when a 

data point is recorded, the location of the taxi at the time of recording (longitude and latitude), 

GPS speed, GPS direction, and GPS status (whether the GPS device is functioning). The data are 

cleaned to remove scattered points that are outside of the main time span, duplicate points, and 

points that are shown as invalid according to the GPS status information. Vehicles with less than 

27 days of data during the period of November 1 to December 1 in 2012 are also removed from 

the dataset. The origins and destinations of passenger trips are identified based on the taxi 

operation status. Locations where the operation status changes from other status (either parked or 

unoccupied) to occupied are identified as trip origins. Similarly, locations where the operation 

status changes from occupied to other status are identified as trip destinations. Trip distance is 

calculated as the summation of the Manhattan distances of each pair of consecutive points in the 

trip. The Manhattan distance, which measures the distance between two points (X1, Y1) and (X2, 

Y2) as |X1-X2| + |Y1-Y2|, can provide better estimates for the actual travel distance between two 

locations in a road network. A total of 5.2 million occupied trips are extracted. 

5.2.2 Shared Rides Matching Analysis 

In the shared rides matching analysis, I assumed that a maximum of two trip parties can 

share one taxi. This assumption is made because having more parties share a ride significantly 

complicates computation but only offers marginal ride sharing benefits [156]. The analysis 
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includes two components: identification of all sharable trips and optimization of shared trips to 

maximize the total avoided VMT. 

5.2.2.1 Identification of All Sharable Trips 

For each trip i, the trip origin (Oi), trip destination (Di), trip distance (di), departure time 

from trip origin (t_Oi), and arrival time at destination (t_Di) are known. Trip i is sharable with 

another trip (e.g., trip j) if the shared trip ij can reduce total travel distance and only tolerably 

impact trip departure and arrival time for both trip parties in trip i and trip j. Figure 5-1 presents 

the framework for sharable trip identification.  

 

Figure 5-1. Framework for sharable trip identification  

 

The candidate shared trip ij is identified as the route (Rij) that can lead to the minimum 

shared trip distance (dij) among all possible routes. For sharing two trips, there are four possible 

route: Oi - Oj - Di - Dj; Oi - Oj - Dj - Di; Oj - Oi - Di - Dj; and Oj - Oi - Dj - Di. I do not consider trips 

without overlap (e.g., Oi - Di - Oj - Dj ) as sharable in this study. If the total distance of the 

candidate shared trip (dij) is less than that of the two individual trips (di + dj), the candidate 

shared trip ij passes the distance check. Next, the travel time impact check examines whether the 
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deviations of trip departure and arrival time are tolerable to passengers in both trips. I assumed 

that both early departure and trip delay can equally cause inconvenience to the passengers. The 

passengers have a pre-specified tolerance level (Ө, in minutes), indicating their flexibility in of 

the deviations of departure and arrival time caused by ride sharing. Only when the deviations of 

trip departure and arrival time are within the tolerant level for passengers in both trips, the 

candidate shared trip passes the trip time impact check. In this study, I assumed that all 

passengers have the same tolerance level and the tolerance level for both early departure and trip 

delay is the same. The default tolerance level is 10 minutes. This value is chosen based on Li et 

al. (2007) which reported that over 75% of the carpool participants they surveyed spent less than 

10 minutes for carpool formation [56]. The impacts of different tolerance levels are examined in 

the sensitivity analysis in Section 5.3.2. This study also assumed a 1 minute passenger 

loading/debussing time to account for the time required for the taxis to slow down, stop, and for 

the passengers to get on and off. 

To calculate the departure and arrival time at each origin and destination locations for the 

shared trip, I assumed that the travel speed for the portion of the shared trip that deviates from 

the original trips to accommodate for ride sharing (e.g., pick up the second passenger) is the 

average of the travel speeds for the individual trips. I also assumed that ride sharing will not 

impact the traffic conditions for the portion of the shared trip that is identical to one of the 

original trips. Equations (1) to (7) present an example of travel time calculation for the route Oi - 

Oj - Dj - Di. 

vi = di/(t_Di – t_Oi)       (1) 

vj = dj/(t_Dj – t_Oj)       (2) 

vij = (vi + vj)/2        (3) 
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t_Oi’ = t_Oi        (4) 

t_Oj’ = t_Oi + dist(Oi – Oj)/vij     (5) 

t_Dj’ = t_Oj’ + (t_Dj – t_Oj)      (6) 

t_Di’ = t_Dj’ + dist(Dj – Di)/vij     (7) 

where vi, vj, and vij are the average travel speeds for trip i, trip j, and shared trip ij; t_Oi’, t_Di’, 

t_Oj’, t_Dj’ are the departure and arrival time in a shared trip for passengers from trip i  and trip j, 

respectively; t_Oi, t_Di, t_Oj, t_Dj are the departure and arrival time for individual trip i  and trip 

j, respectively; and dist(Oi – Oj) and dist(Dj – Di) are the distances between trip origin locations 

for the two shared trips and the distances between the trip destination locations for the two 

shared trips. 

The travel distance of a trip is normally greater than the Manhattan distance between the 

trip origin and destination (Figure 5-2) due to required extra travel (e.g., extra distance traveled 

to get onto a highway or detour due to one-way streets). Therefore, I estimated trip travel 

distance in the portion of the shared trip that deviates from the original trips to accommodate for 

ride sharing based on the relationship observed in Figure 5-2. For example, 

dist(Oi – Oj) = 1.163 * MD(Oi, Oj)+0.293    (8) 

where MD(Oi, Oj) is the Manhattan distance between point Oi and Oj. 
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Figure 5-2. Relationship between trip travel distance and Manhattan distance between trip 
origins and destinations (R2 = 0.775 for the fitted line) 

 

Only when the candidate shared trip passes both of the distance and trip time impact 

checks, the two trips are identified as sharable. I identified all sharable trips that meet the above 

criteria. The outputs of this component are two n-by-n matrices A and S with n being the total 

number of trips. Aij equals to 1 if trips i and j are sharable and equals to 0 otherwise. Sij equals to 

the VMT that can be saved by sharing trip i and j if Aij is 1 and equals to 0 otherwise. 

5.2.4.2 Optimization 

The pairs of rides to be shared are then identified to maximize the total VMT savings. 

The objective function is to max ∑ ∑  𝐿𝑖𝑖 × 𝑆𝑖𝑖𝑖𝑗    (9) 

Subject to: 

∑ 𝐿𝑖𝑖 ≤ 1𝑖         (10) 

∑ 𝐿𝑖𝑖 ≤ 1𝑗         (11) 

𝐿𝑖𝑖 ≤ 𝐴𝑖𝑖        (12) 
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𝐿𝑖𝑖 ≥ 0        (13) 

where Lij equals to 1 when trip i and j are shared and equals to 0 otherwise. 

 

5.2.3 Emission Factors 

To calculate the emission reduction from ride sharing, the following well-to-tank 

emission factors for gasoline vehicles are used: 0.28 g/mile for VOCs, 0.3 g/mile for NOx, 0.08 

g/mile for PM10, 0.038 g/mile for  PM2.5, and 3.6 g/mile for CO [31].  

 

5.3. Results and Discussion 

5.3.1 Sharing Benefits 

Regardless of the variations in the total number of trips accrued during the day, the ride 

sharing benefits (miles saved and trips shared) are relatively stable (Figure 5-3). On average, 

about 77% of the trips can be shared, leading to 33% of the total VMT saved. The day-to-day 

variances of hourly sharing benefits are also relatively small, regardless of weekdays and 

weekends.  These results indicate that the travel patterns of taxi riders in Beijing offer consistent 

high sharability. Based on the average daily VMT saved, I then calculated the daily criteria 

emissions reduced due to ride sharing (Figure 5-3). Scaling up to the entire taxi fleet over the 

entire year, shared taxis can reduce 186 tons of VOC, 199 tons of NOx, 53 of tons PM10, 25 tons 

of PM2.5, and 2,392 tons of CO emissions annually. Based on the annual on-road vehicle 

emission in Beijing estimated in [157], the shared taxi trips can reduce total NOx, PM10, and CO 

emissions by 0.24%, 1.4%, and 0.28%, respectively. 
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Figure 5-3. Ride sharing benefits. a) Hourly trip VMT saved and shared trip percentages 
comparing to the number of total trips. b) Daily avoided criteria pollutants. 
 

5.3.2 Impact of Tolerance to Trip Time Deviation 

Sharing benefits are most sensitive to rider’s tolerance level to trip time change (Ө). The 

sensitivity analysis shows that it does not require too much tolerance from riders to enable ride 

sharing (Figure 5-4). As long as the riders can tolerant a trip departure or arrival time change of 

four minutes, 60% of the trips departing between 8am to 8:59am can be shared with 20% of the 

VMT saved. 

 
Figure 5-4. The impact of rider’s tolerance level of trip time change (Ө) to sharing benefits for 
trips departing between 8am to 8:59am. 

 

a) b) 
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5.3.3 Limitations and Future Research 

First, trip sharing opportunities are only evaluated using hourly data according to trip 

start time (e.g. trips start between 8:00am an 8:59am as a group). The use of hourly data limits 

the sharing possibilities of trips that depart close to the cut-off time. For example, a trip that 

departs at 7:59am cannot be shared with a trip that departs at 8:01am. Implementing a sliding 

window can cover the potential sharing opportunities better. 

In addition, in the process of identifying sharable trip, I assumed that ride sharing has a 

minimal impact on traffic conditions in the road network for calculating trip time deviation. This 

assumption needs to be further validated. If ride sharing can help increase average travel speed 

on a congested road, ride sharing can provide additional benefits in improving the fuel economy 

and lowing air emissions of the whole on-road fleet. The increased travel speed can also help 

reduce trip delays due to ride sharing and make more trips sharable. On the hand, however, 

picking up and dropping additional passengers requires the taxis to stop multiple times during a 

trip, which can increase emissions due to the increased deceleration and acceleration. 

Furthermore, when scaling up the emissions reduction from ride sharing from the 

sampled taxis to the entire fleet, I assumed that the percent of VMT that can be saved stays the 

same. With more vehicles and travel demands, it is possible for the ride sharing benefits to 

increase with more riders (e.g., trips currently cannot be shared can then find a match). The 

relationship of ride sharing benefits and the total number of riders needs to be further explored. 

It is also notable that the emission reductions in this study are based on average emission 

factors. Driving conditions (e.g. travel speed and acceleration) and ambient environment (e.g. 

cold or hot weather which results the use of heating and AC in the vehicle) can also affect 
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vehicular emissions. More detailed modeling of emissions considering these factors can improve 

this analysis. 

Lastly, the rebound effect is not considered in this research. Shared taxis can free taxi 

capacities and reduce taxi fares which may motivate more people to take taxis. If these additional 

taxi riders are diverted from users of the public transit systems, the environmental benefits of 

ride sharing can be undermined as a result of the rebound effect [158]. 

5.3.4 Contribution of Individual Travel Pattern Data 

Evaluating the potential for ride sharing requires detailed information on trip origins, 

destinations, and travel time, which cannot be obtained from aggregated travel data. Without 

individual travel pattern data, previous studies have used assumed distributions of home and 

work locations to estimate the benefits of shared commuting trips [159]. However, these 

assumed distributions may not reflect real world conditions and can underestimate the 

sharaeability of trips [92]. 

5.4 Summary 

Using shared taxis in Beijing as an example, this study evaluates the environmental 

benefits of ride sharing. Shared taxis can provide stable sharing benefits in total VMT and 

emissions reduction, regardless of the travel volume and daily travel pattern variations. With a 

rider’s tolerance level at 10 minutes, ride sharing can reduce fleet VMT by 33%. If implemented 

for the entire taxi fleet, shared taxis can reduce 186 tons VOC, 199 tons NOx, 53 tons PM10, 25 

tons PM2.5, and 2,392 tons CO emissions annually. Although the sharing benefits significantly 

depend on riders’ tolerance level to trip time deviation, not much tolerance is required to gain 

significant ride sharing benefits.   
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CHAPTER VI 

Conclusions 

Through three case studies (vehicle electrification, charging infrastructure siting, and ride 

sharing), this research demonstrates that integrating individual travel patterns into environmental 

assessments can enhance our understanding of the environmental implications of these emerging 

transportation systems and better support decision making. Based on the results of this research, 

following major conclusions can be drawn. 

1. Vehicle trajectory can be integrated into environmental assessments to capture 

individual travel patterns. 

Vehicle trajectory data collected by GPS devices are proved to be helpful in capturing 

travel patterns for each individual vehicle, which can be used to better analyze charging 

behaviors and ride sharing potentials in environmental assessments. Compared to travel survey 

data and other types of big data on personal mobility (e.g., geo-tagged social media data, 

cellphone records), vehicle trajectory data have the advantages in large sample size, more 

accurate location information, known transportation mode, inferable travel route, and high 

spatiotemporal resolution. However, vehicle trajectory data normally do not contain social-

economic and demographic information of the drivers and the transportation mode is apparently 

limited to vehicles. Therefore, when studying more complex systems (e.g., multi-model 

transportation), a combination of different types of data may be required. 
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2. Individual travel patterns can impact the environmental performance of fleet 

electrification.  When unit battery cost exceeds $200/kWh, vehicles with greater battery 

range may not promote more travel electrification and can even reduce electrification rate.  

The case study of Beijing taxi fleet electrification (Chapter III) shows that individual 

travel patterns can significantly influence the adoption and utilization of EV and therefore 

determine the potential environmental benefits of electrifying the taxi fleet. At the current battery 

cost ($400/kWh), medium range PHEV with around 90 miles AER can provide the highest travel 

electrification and oil displacement for the fleet. Because PHEVs with larger battery range are 

too expansive for adoption based on the observed travel patterns, larger battery range can reduce 

electrification rate. This mechanism cannot be captured if using aggregated travel pattern data. 

Previous studies show that utility factors of PHEV either monotonously increase with battery 

range or flatten out. 

3. Individual travel patterns can guide public charging infrastructure development. 

Charging stations sited according to individual travel patterns can electrify more VMT. 

Traditional approaches used to estimate refueling demand (e.g., traffic density, vehicle 

ownership) cannot appropriately represent public charging demand for EV system, because 

charging takes longer than refueling and may also happen at home. The case study of charging 

station siting using vehicle trajectory data (Chapter IV) demonstrates that the collective vehicle 

parking pattern can be a good indicator for charging demand and provide better basis for 

modeling charging behaviors. Better matching of charging stations and charging demands can 

achieve higher fleet level travel electrification. Compared to the existing 40 stations, selected 

optimal gas-station-based charging stations can improve the electrification rate by 59% and 88% 
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with slow and fast charging, respectively. Without using travel pattern data, previous studies had 

to make many assumptions for charging time, charger occupation rate, charging demand 

allocations etc. These parameters can be directly calculated from individual travel pattern data in 

this research. 

4. Trip details extracted from vehicle trajectory data enable dynamic ride sharing 

modeling. Shared taxi rides can reduce total travel distance by 33% with 10-minute travel 

time deviation tolerance.  

Evaluating the potential environmental benefits of dynamic ride sharing requires detailed 

travel demand information, which can be extracted from vehicle trajectory data. Results from the 

case study of taxi ride sharing (Chapter V) indicate that ride sharing can provide stable benefits 

in total VMT saving and emissions reduction. It only requires the riders to have a minimal 

tolerance level to trip time deviation (4 minutes and above) to achieve significant reduction in 

total travel distance (20% or more). Without individual travel pattern data, previous studies are 

either limited to the small scale (e.g. in a community) or have to assume distributions of trip 

origins and destinations. Vehicle trajectory data provide more accurate information to assess the 

shareability of trips and the associated environmental impacts. 

Future Research 

This research has the following limitations which also provide directions for future 

research. First, this study assumed that the data collected for the over 10,000 taxis are 

representative for the entire taxi fleet (approximately 66,000 taxis). Although no specific biases 

are observed in the data, this assumption needs to be verified using additional datasets. While it 

is ideal to have data for the entire population, the computational cost will also increase. 
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Therefore, an interesting question for future research is how much data is required to describe the 

collective travel pattern while preserving the individual heterogeneity. 

In addition, using historical travel data to study emerging transportation systems assumes 

that people will not change their behaviors. While this assumption has been made by many 

relevant studies, the impact of potential behavior change needs to be further explored. EV drivers 

can actively seek charging opportunities to save fuels, leading to higher percentage of electrified 

travel than expected. Reduced taxi fares due to ride sharing can potentially divert public transit 

users to take taxis which may reduce the environmental benefits of ride sharing.  

Furthermore, this study evaluates the electric vehicle systems and ride sharing systems 

separately. These systems can also be integrated, such as shared electric taxis. The integrated 

systems can cause behaviors change and have different system optimal solutions. For example, 

with ride sharing, the resting time (and charging opportunities) for electric taxis can potentially 

be increased due to elimination of unoccupied trips searching for customers or decreased due to 

longer trips delivering multiple customers. The change of travel patterns can also affect charging 

demands and the optimal locations for charging stations. Future studies can analyze such 

integrated systems by combining the different models developed in this research. 

The models developed in this study can also be expanded to evaluate other objective 

functions. In addition of the electrification rate used in this study, other potential objective 

functions include total emission or emission reduction (for GHG or a particular criteria pollutant), 

human health impact, water impact, energy consumption etc. 

Lastly, the case studies only used data from one particular type of fleet in a specific city.  

While the methods and framework developed in this research is generally applicable to other 



95 
 

fleets and cities, the conclusions cannot be directly generalized to private vehicles or fleets in 

other cities. Private vehicles may have very different travel patterns from taxis. Urban 

infrastructure also impacts vehicle travel patterns in different cities. Therefore, additional 

research on travel patterns of individual private vehicles and comparison among multiple cities 

will provide valuable information for decision making in sustainable urban transportation 

systems.   
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