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CHAPTER I

Introduction

The main goal of this thesis is to study some invariants associated to singularities

in positive characteristic and compare them with their counterparts in characteristic

zero. This work contains results obtained in [P1́3, NBP13]. Of these, [NBP13] is

in collaboration with Luis Núñez-Betancourt. Singularities play an important role

as they appear naturally in almost every area of mathematics, including commuta-

tive algebra, algebraic geometry, number theory, representation theory, analysis and

topology.

Singularities

From the geometric point of view, a singularity corresponds to a point where

a given geometric object, for example a manifold or an algebraic variety, has an

unexpected tangent space. For instance, if we consider the following hypersurfaces

y2 = x3 z3 − (y2 + 3x2) = 0 y2 = x3 + x2

Figure I.0.0.1: Examples of Singularities
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we can see that in each case there is a special point where the tangent space is larger

than expected.

Singularities can also be detected algebraically. For example, if f(x) is a poly-

nomial in n variables with real coefficients defining a hypersurface X in Rn, then

the singularities of X are given by those points a ∈ X where the partial derivatives
∂f
∂xi

(a) are zero for all i. For instance, the hypersurface in the middle of the above

figure corresponds to f = z3 − (y2 + 3x2), which has partial derivatives fx = −6x,

fy = −2y, and fz = 3z2. We conclude that the only singular point is the origin,

which corresponds with our geometric intuition.

Classifying singularities has been an object of intense study in both zero and pos-

itive characteristic. In characteristic zero many invariants can be described in terms

of resolutions of singularities and they are related to the minimal model program.

Furthermore, many results in this setting can be approached analytically. However,

in the recent decades, it has become apparent that in order to study singularities in

characteristic zero, one can also reduce to positive characteristic and use Frobenius

techniques to investigate singularities.

Singularities via Frobenius

Let R be a domain of positive characteristic p. The Frobenius map F : R → R

takes an element r to rp, therefore its image is the subring Rp consisting of all the p-th

powers of elements in R. This induces on R a structure of Rp-module. It is a conse-

quence of a theorem of Kunz [Kun69] that, under mild conditions, R is not singular

if and only if R is a locally free Rp-module. This remarkable result tells us that we

can detect singularities via the action of Frobenius. Therefore we can define different

families of singularities by specifying “how close” R is to a locally free Rp-module.

There are many kinds of singularities obtained by imposing restrictions on the action

of Frobenius and one key feature is that they parallel the classes of singularities that

have been studied in characteristic zero. The following diagram shows the relation

among them and how they compare with the singularities in characteristic zero:

We do not give the definitions of these classes of singularities, which are some-

what technical, and we refer instead to Chapter II for the definitions. We also refer

to [BFS13, ST12, TW14, SZ15] for surveys on F -singularities and to [KM98] for an

introduction to singularities in characteristic zero.
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Figure I.0.0.2: Families of Singularities

Multiplier and test ideals

All the invariants that we study in this thesis are related to the notion of multiplier

ideals in characteristic zero, and to the notion of test ideal in positive characteristic.

Multiplier ideals have been intensively studied over the last two decades, as they

play an important role in birational geometry, see for example [Laz04]. Given a

smooth complex variety X and a nonzero ideal sheaf a, one can define for any pa-

rameter c > 0 an ideal J (ac), called multiplier ideal. This ideal is described via a

log resolution π : X ′ → X of the pair (X, a), i.e. a proper birational map, with

X ′ smooth, and such that aOX′ = OX′(−E), where E is a simple normal crossing

divisor. Then,

(I.0.0.1) J (ac) := π∗O(KX′/X − bcEc),

where KX′/X is the relative canonical divisor.

Mixed multiplier ideals extend the previous definition to the case of several ideals:

for nonzero ideals a1, . . . , an and positive numbers c1, . . . , cn we take a log resolution

for the pair (X, a1 · · · an) and set the mixed multiplier ideal to be

J (ac11 · · · acnn ) := π∗O(KX′/X − bc1E1 + . . .+ cnEnc),

where OX′(−Ei) = aiOX′ .
Test ideals were introduced by Hara and Yoshida in [HY03] as an analogue of

multiplier ideals in positive characteristic and are a generalization of the ones defined

by Hochster and Huneke [HH90]. One question that was studied since [HY03] is

which properties of multiplier ideals have analogues for test ideals. For example, for

multiplier ideals the jumping numbers of a are defined as the positive real numbers

c such that J (ac) 6= J (ac−ε) for every ε > 0 (cf. [ELSV04]). It is easy to see

from the definition that for each a these numbers are discrete and rational. Thus it

was expected that this was the case also in positive characteristic. Blickle, Mustaţă

and Smith proved discreteness and rationality of the analogous positive characteristic
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invariants in [BMS08], but the proof was more involved.

The Invariants

Constancy regions

We study the dependence of mixed test ideals on parameters, and show that the

emerging picture is quite different from that in the case of mixed multiplier ideals in

characteristic zero.

In the mixed multiplier ideal setting we consider the map

Ψ: Rn
≥0 → { Ideal sheaves on X }

(λ1, . . . , λn) 7→ J (aλ11 · · · aλnn ).

A nonempty fiber of this map is called a constancy region for the mixed multiplier

ideals of a1, . . . , an. For example, when n = 1, these regions consist of intervals

[0, α1), [α1, α2), . . ., where the αi are the jumping numbers of the ideal. The most

important of these numbers is the smallest one α1, the log canonical threshold of the

ideal. For all n, it is known that the constancy regions are finite unions of polytopes.

In positive characteristic, the mixed test ideal τ(aλ11 · · · aλnn ) plays a role analogous

to that of the mixed multiplier ideal (see Chapter II or [BMS08, HY03] for details),

and we can define the constancy regions for mixed test ideals in a similar way. Blickle,

Mustaţă, and Smith [BMS08] showed that, for n = 1, the same picture holds, in this

setting the αi are called the F-jumping numbers and α1 is the F-pure threshold. At

the end of the paper, the authors asked whether the constancy regions in positive

characteristic should also consist of finite unions of rational polytopes.

In chapter III we prove that this is not the case, but we can still get a nice de-

composition. This decomposition depends on a p-fractal function, that is, a function

ϕ : Rn
≥0 → N satisfying the following property. If we restrict ϕ to a bounded do-

main D, then the vector space generated by the functions φb,e(t1, . . . , tn) = ϕ((t1 +

b1)/p
e, . . . , (tn + bn)/pe) with bi integers and ((t1 + b1)/p

e, . . . , (tn + bn)/pe) ∈ D , is

finite dimensional (Definition III.2.1). Explicitly, we show:

Theorem (Theorem III.2.6). For an F -finite, regular ring R essentially of finite type

over a finite field of positive characteristic and non zero ideals a1, . . . , an of R, there

is a p-fractal function ϕ : Rn
≥0 → N such that

τ(ac11 ...a
cn
n ) = τ(ad11 ...a

dn
n )⇐⇒ ϕ(c1, . . . , cn) = ϕ(d1, . . . , dn),
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and therefore the constancy regions are of the form ϕ−1(i) for i ∈ N.

Roughly speaking, this shows that each constancy region has a p-fractal structure

that, as we see in the examples in Section III.3, can be intricate.

F -Jumping ideals and the modules Mα

For a polynomial f in C[x1, . . . , xn], the Bernstein-Sato polynomial of f is defined

as the nomic polynomial bf (s) ∈ C[s] of minimal degree satisfying a relation of the

form

P · f s+1 = bf (s)f
s

where P is a differential operator in C[x1, . . . , xn, ∂1, . . . , ∂n, s].

The existence of such polynomial was proved by Bernstein [Ber72]. The Bernstein-

Sato polynomial carries important information about the singularities of f and it is

related with many other invariants [Kol95, Bud05]. For example, the smallest jumping

number of f is equal to the negative of the largest root of bf (s).

Let D = C[x1, . . . , xn, ∂1, . . . , ∂n], be the ring of differential operators over the

polynomial ring C[x1, . . . , xn]. When studying the Bernstein-Sato polynomial Kashi-

wara, introduced for any complex number γ the holonomic D-moduleMf (γ) = D·fγ.
Note that when γ, γ − 1, γ − 2, . . . are not roots of the Bernstein-Sato polynomial,

Mf (γ) ∼= Rf as an R-module.

Theorem I.0.1 (Kashiwara, [HTT08] Corollary 6.25). If γ, γ − 1, γ − 2, . . . are not

roots of the Bernstein-Sato polynomial of f then the D-module Mf (γ) is a simple

D-module.

It is worth mentioning that the multiplier ideals can be recovered from the theory

of D-modules [BS05].

For a regular ring R of positive characteristic Lyubeznik introduced the concept

of F e-modules [Lyu97], see Section II.2.3 for the definition. We use the theory of F e-

modules to prove an analogue of Theorem I.0.1 in positive characteristic, but we do

more, we characterize the simplicity depending on the parameter being an F -jumping

number. We briefly describe this next.

Let R be a regular ring of positive characteristic. Blickle, Mustaţă, and Smith

introduced certain F e-modules Mα to study the discreteness and rationality of the F -

jumping numbers of hypersurfaces [BMS09]. Let f be an element in R and α = r
pe−1

a rational number without p in the denominator. The F e-module Mα is an R-module
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isomorphic to Rf , together with a twisted action of the Frobenius operator F e that

depends on α. Explicitly, if we write Mα = Rf · eα, then

F e

(
g

f `
· eα
)

=
gp

e

fpe`+r
· eα.

Note that this action suggests that eα behaves formally like f−α. In joint work

with Núñez-Betancourt, we use these modules to define two families of ideals: the

F -Jumping ideals JF (fα) and the F -Jacobian ideals JF (f). The former ones are used

to detect when α is an F -jumping number:

Theorem (Theorem IV.0.25). Let R, f and α as before. The following are equivalent:

i. α is not an F -jumping number.

ii. Mα is a simple F -module.

iii. Mα is a simple DR-module, where DR is the ring of differential operators on R.

iv. JF (fα) = R.

We can also recover the test ideals from the modules Mα, explicitly:

Proposition (Proposition IV.0.22). The test ideal τ(fα) is a minimal root for the

F e-modules Mα.

F -Jacobian ideals and the intersection homology modules

Suppose that k is a perfect field and f is a polynomial in R = k[x1, . . . , xn]. The

Jacobian ideal of f is defined as

Jac (f) =

(
f,
∂f

∂x1
, . . . ,

∂f

∂xn

)
.

This ideal defines the singular locus of f . Hence R/fR is regular if and only if

Jac(f) = R. Another important property of Jacobian ideals is a Leibniz rule, that is

Jac (fg) ⊆ fJac (g) + gJac (f) .

The equality in the previous containment holds only in specific cases [Fab13,

Proposition 8] and it is used to study transversality of singular varieties [Fab13, FA12].

In order to define the F -Jacobian ideals, we use Blickle’s [Bli04] intersection ho-

mology DR-module L(R/fR,R). This DR-module is the sum of all the simple DR-

submodules of Rf/R. The F -Jacobian ideal of f , denoted by JF (f), is defined as the
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ideal in R that contains f and satisfies

JF (f)
1

f
= L(R/fR,R) ∩R 1

f

in Rf/R. This ideal behaves similarly to the Jacobian ideal. For example, while the

Jacobian ideal detects regularity, the F -Jacobian ideal detects F -regularity. More

explicitly, if R/fR is F -regular, then JF (f) = R (Corollary V.2.11). In fact, if R/fR

is F -pure, then R/fR is F -regular if and only if JF (f) = R (Corollary V.2.13). We

also show that, like the Jacobian ideal, the F -Jacobian ideal satisfies a Leibniz rule

JF (fg) = fJF (g) + gJF (f)

for relatively prime elements f, g ∈ R (Proposition V.1.14). This is a key point, since

it allows us to study interactions among different hypersurfaces.

The F -Jacobian ideals behave well with respect to pe-th powers: JF (fp
e
) =

JF (f)[p
e] (Proposition V.3.1). This property is essential in several proofs and con-

trasts with how the Jacobian ideal changes with pe-th powers:

Jac(fp
e

) = fp
e

R 6=

(
fp

e

,

(
∂f

∂x1

)pe
, . . . ,

(
∂f

∂xn

)pe)
= Jac(f)[p

e].

The F -Jacobian ideal can be computed from the test ideal in certain cases and

they are strongly related (see Proposition IV.0.11). However, they differ in general

(see Example V.5.3). Moreover, the F -Jacobian ideal can be defined for elements f

such that R/fR is not reduced and satisfies properties that the test ideal does not

(eg. Propositions V.1.14 and V.3.1). In Section V.4, we show how the F -Jacobian

arises in other contexts related with Cartier algebras, F -ideals, or R{F}-modules.

Outline

The first part of chapter II contains background in characteristic zero. This section

is not necessary for any of the results in the thesis, but we include it as motivation

for the positive characteristic results. The second part of chapter II contains all the

necessary background in positive characteristic that we need in the later chapters.

Chapter III studies the constancy regions for mixed test ideals. We start by

defining some sets associated to mixed test ideals in Section III.1. We give the

structural result for constancy regions in positive characteristic in Section III.2. We

finish this chapter with some examples and counterexamples in Section III.3.
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In Chapter IV we introduce the F e-modulesMα and we use these modules to define

the F -jumping ideals and to give a characterization of the F -jumping numbers. In

this chapter we also prove several properties of F -jumping ideals. In particular, we

show that they commute with localization and completion. Furthermore, we show

that they can be used to give an algorithm for determining when α is an F -jumping

number, see algorithm IV.0.26.

In Chapter V we discuss the intersection homology modules L (R/fR,R). Even

though the existence of these modules was first shown by Blickle [Bli04], we give a

different proof of their existence in Section V.1. We use the intersection homology

modules to define the F -Jacobian ideals. In Section V.2 we relate the F -Jacobian

ideals with the usual test ideal and F -regularity. We study the behavior of the F -

Jacobian ideals under different extensions in Section V.3. We finish Chapter V with

several examples, see Section V.5.
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CHAPTER II

Background

This chapter is divided in two parts. The first section contains several known

results related to singularities in characteristic zero. Even though we do not need

any of these results in this thesis, we present them so the reader can compare with

the results we obtain in positive characteristic. The second section contains all the

necessary background in positive characteristic.

II.1 Characteristic zero

In this section we recall some relevant results about singularities in characteristic

zero. We first fix some terminology. A variety is an integral scheme X over a field k.

We assume throughout this section that the field k is the field of complex numbers

C.

There are many tools involved in the study of singularities in characteristic zero.

One classic approach is to start with a possibly singular variety Z and embed it in a

smooth ambient space X. This leads to the concept of pairs.

Definition II.1.1. A pair (X,Z) consists of a smooth variety X and a formal sum

Z = c1Z1 + . . . + cnZn, where the ci are real numbers and Zi are subschemes of X.

If I1, . . . , In are the sheaves of ideals defining Z1, . . . , Zn, we also denote (X,Z) by

(X, Ic11 · · · Icnn ).

Let X be a smooth variety over the complex numbers C and a ⊆ OX an ideal

sheaf. Recall that a (Weil) divisor D =
∑
riDi has simple normal crossing support

if each of its irreducible components Di is smooth, and if locally one has coordinates

x1, . . . , xn such that Supp(D) =
∑
Di is defined by a monomial in the xi.

9



II.1.1 Resolution of Singularities

One of the keystone concepts in the study of singularities in characteristic zero is

that of resolution of singularities.

Definition II.1.2. A log resolution of a nonzero ideal a ⊆ OX is a proper birational

map π : Y → X whose exceptional locus is a divisor E such that

1. Y is non-singular.

2. aOY = OY (−F ) with F an effective divisor.

3. F + E has simple normal crossing support.

The existence of a log resolution of singularities for any nonzero sheaf of ideals in

a variety over a characteristic zero field was shown by Hironaka [Hir64]. Furthermore,

Hironaka shows that a log resolution of singularities can be obtained by successively

blowing up smooth subvarieties.

Example II.1.3. Let X = A2 = Spec(C[x, y]) and f(x, y) = x2 − y3. The singular

locus of f is given by

∂f

∂x
= 2x = 0 and

∂f

∂y
= −3y2 = 0,

hence f is only singular at the origin. A log resolution of f is obtained by a sequence

of three blow-ups. We study in detail the first blow-up and leave to the reader the

computation of the other two. The first blow-up X ′ can be described as the union

of two charts, given in local coordinates by C[x, y/x] and C[x/y, y]. The pullback

of f is then x2(1− (y/x)3x) in the first chart and y2 ((x/y)2 − y) in the second one.

Note that in the first chart the pullback of f consists of two disjoint smooth divisors.

By renaming the variables u = x/y and v = y we see that in the second chart the

pullback is given by the union of the divisors v2 = 0 and u2−v = 0, and, even though

both divisors are smooth, they are not in simple normal crossing position. It will be

necessary to blow-up twice more in order to get the simple normal crossing condition.

Figure II.1.3.1 shows this process, with Ei denoting the exceptional divisor of the i-th

blowup.

Example II.1.4. Let D ⊆ An be a hypersurface defined by a homogenous polynomial

f such that G = Proj (k[x1, . . . , xn]/fk[x1, . . . , xn]) is smooth. This is equivalent to

saying that D is the affine cone over a smooth divisor of Pn−1. The origin o is the

10



Figure II.1.3.1: A resolution for x2 − y3

only singular point of D, and a log resolution of singularities for D is obtained by

blowing-up at o. Moreover, in this case the intersection of the exceptional divisor and

of the proper transform of D is isomorphic to G.

II.1.2 Multiplier ideals

Multiplier ideals have been intensively studied over the last two decades, as they

play an important role in birational geometry. In this section we recall the definition

and basic properties of these ideals. See [Laz04] for a more thorough treatment. For

π : Y → X a morphism between smooth varieties we set KY/X := KY − π∗KX =

div(det(Jac(π))). The following result is particularly useful when doing computations:

Proposition II.1.5. [Har77, Exercise II.8.5] Suppose that Y is obtained as the blow-

up of X along a smooth subvariety Z. If the codimension of Z in X is r ≥ 2, then

KY/X = (r − 1)E, where E is the exceptional divisor.

Before we give the definition of multiplier ideal, we need some extra notation:

Let D =
∑
aiDi be a Q-linear combination of distinct prime divisors Di, by bDc we

denote the divisor
∑
baicDi.

Definition II.1.6. Let α1, . . . , αn be nonnegative real numbers, a1, . . . , an nonzero

sheaves of ideals on X, and X ′ be a log resolution for the pair (X, a1 · · · an). The

mixed multiplier ideal of a1 . . . an with parameters α1, . . . , αn is defined as

J (aα1
1 · · · aαn

n ) := π∗O(KX′/X − bα1E1 + . . .+ αnEnc),

11



where OX′(−Ei) = aiOX′ .

It can be shown that this definition does not depend on the log resolution π :

X ′ → X. In the case n = 1 these ideals are just called multiplier ideals and when

the ideals are principal and define divisors D1, . . . , Dn we also denote this ideal by

J (α1D1 + . . .+ αnDn).

Let D be the divisor associated to f ∈ Γ(X,OX). The multiplier ideals J (αD)

satisfy:

• If α < α′ then J (αD) ⊇ J (α′D).

• For any α ∈ R≥0, there exists ε > 0 such that J (αD) = J (α′D) for every

α′ ∈ [α, α + ε).

The numbers α for which J (αD) 6= J ((α− ε)D) for all ε > 0 are the jumping

numbers of D. The most important jumping number is the smallest one; this is the

log canonical threshold of f .

Example II.1.7. If f(x, y) = x2 − y3, we can compute the multiplier ideal of f and

the jumping numbers via the log resolution in Example II.1.3. If µ : Y → X is this

log resolution, then f · OY = OY
(
−6E3 − 3E2 − 2E1 − D̃

)
. By Proposition II.1.5,

the relative canonical divisor is KY/X = 4E3 + 2E2 + E1, hence

J (fα) = µ∗OY
(

4E3 + 2E2 + E1 − b6αE3 + 3αE2 + 2αE1 + αD̃c
)

(II.1.7.1)

= µ∗OY
(
d4− 6αeE3 + d2− 3αeE2 + d1− 2αeE1 − bαD̃c

)
(II.1.7.2)

=

{
f bαc if α− bαc < 5/6,

f bαc(x, y) 5/6 ≤ α− bαc < 1.
(II.1.7.3)

It follows that the jumping numbers of f are {5/6, 1, 1 + 5/6, 2, 2 + 5/6, . . .}.

II.1.3 The constancy regions

Let X be a smooth variety over the complex numbers, and a1, . . . , an nonzero ideal

sheaves on X. The definition of mixed multiplier ideals allows us to define a map

Ψ : Rn
>0

// { Ideal sheaves of OX}

(α1, . . . , αn) � // J (aα1
1 · · · aαn

n )
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Definition II.1.8. The fibers of the map Ψ are called the constancy regions for the

mixed multiplier ideals J (aα1
1 · · · aαn

n ).

The following proposition follows immediately from the definition of mixed mul-

tiplier ideal.

Proposition II.1.9. A constancy regions for a collection of ideal sheaves a1, . . . , an

consist of finite unions of rational polytopes with non-overlapping interiors.

Clearly any pair of constancy regions are disjoint and the union of the constancy

regions is the region α1, . . . , αn ≥ 0. Besides the trivial cases (when the ideals are

either 0 orR) there are infinitely many constancy regions. But, as the next proposition

shows, they have a periodic behavior.

Proposition II.1.10. [Laz04, Skoda’s Theorem, Theorem 11.1.1] Let a1, . . . , an be

ideal sheaves on a non-singular variety X. Assume further that a1 is generated by s

elements, then for all l ≥ s

J (al1a
α2
2 · · · aαn

n ) = a1 · J (al−11 aα2
2 · · · aαn

n ).

From Proposition II.1.10 it follows the above-mentioned periodicity of the con-

stancy regions.

Corollary II.1.11. There is an integer N such that for all integers l1, . . . , ln > N

and any constancy region A, the intersection A ∩ [l1, l1 + 1) × · · · × [ln, ln + 1) is a

translation of the intersection of a constancy region B with [l1−1, l1)×· · ·×[ln−1, ln).

Example II.1.12. The constancy regions for f(x, y) = x2− y3 are given by intervals

of the form [i, i+ 5/6) and [i+ 5/6, i+ 1) for i ≥ 0.

Example II.1.13. Let f1 = xy and f2 = x+y and D1, D2 the corresponding divisors

in A2. A log resolution of singularities for xy(x + y) is obtained by blowing-up at

the origin. Let π : Y → X be such blow-up. We have KY/X = E, where E is the

exceptional divisor. By Proposition II.1.10, it is enough to compute the constancy

regions for α and β less than 1. We have

J (fλ11 fλ22 ) = π∗OY (E − bλ1π∗D1 + λ2π
∗D2c) = π∗(b1− {2λ1} − {λ2}cE))

=

R if 2λ1 + λ2 < 2

(x, y) if 2 ≤ 2λ1 + λ2 < 3.
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Hence there are only two constancy regions inside [0, 1)×[0, 1), which are separated

by the line 2λ1 + λ2 = 2. The constancy regions are shown in Figure II.1.13.1:

Figure II.1.13.1: Constancy regions for xy, x+ y

II.1.4 DR-modules associated to subvarieties

Many important invariants associated to singularities come from the DR-module

theory. This theory is quite rich and involved and we refer the reader to [HTT08]

for a complete treatment. In this subsection we limit ourselves to giving the basic

definitions and properties of DR-modules. We also introduce two important DR-

modules that carry information about the singularities of a regular function.

Throughout this subsection we set R = C[x1, . . . , xn] the polynomial ring over the

complex numbers and X = An = Spec(R).

Definition II.1.14. The ring of differential operators is the non-commutative ring

DR := C[x1, . . . , xn, δ1, . . . , δn] where the ∂i satisfy the relations

[∂i, xj] = δij [∂i, ∂j] = 0.

Note that R itself has a natural structure of DR-module with ∂i · f = ∂f
∂xi

. A

module over the ring DR is called a DR-module. We are interested in two families of

DR-modules associated to subvarieties of the smooth variety X.

II.1.4.1 The DR-modules Mα

For f ∈ C[x1, . . . , xn] nonzero, consider the ring DR[s] obtained by adding to DR a

variable s commuting with the elements of DR. We consider the DR[s]-module Rf ·f s

14



where f s is a formal symbol and the ∂i act by

∂if
s =

s

f
(∂if) f s

The Bernstein-Sato polynomial bf (s) associated to f is the unique monic polyno-

mial of minimal degree satisfying a relation

P (x1, . . . , xn, ∂1, . . . , ∂n, s)f
s+1 = bf (s)f

s,

for some P ∈ DR[s].

The Bernstein-Sato polynomial has been broadly studied and there still are many

open questions in relation to it. The roots of this polynomial are always negative

rational numbers [Kas76]. Furthermore, if λ is a jumping number less than 1 then

−λ is a root of bf (s) [ELSV04].

Given any complex number α, we can specialize the DR-module Rf ·f s by making

s = α. We set

Mf (α) = D · fα.

Proposition II.1.15. Let f ∈ R be a nonzero polynomial. If α, α− 1, α− 2, . . . are

not roots of the Bernstein-Sato polynomial bf (s) then Mf (α) ∼= Rf as an R-module.

Proof. Clearly Mf (α) ⊆ Rf · fα. Let P (s) ∈ DR[s] be the differential operator

such that P (s) · f s+1 = bf (s)f
s. We will show by induction on i that fα−i is in

Mf (α) for all i ≥ 0. The case i = 0 is given by the definition of Mf (α). Assume

that fα−i ∈ Mf (α), from the relation P (α − i) · fα−i = bf (α − i)fα−(i+1) and the

fact that α − i is not a root of the Bernstein-Sato polynomial bf (s), it follows that

fα−(i+1) ∈Mf (α). The result is now immediate.

Theorem II.1.16 (Kashiwara, [HTT08] Corollary 6.25). If α, α − 1, α − 2, . . . are

not roots of the Bernstein-Sato polynomial, then the DR-module Mf (α) is a simple

DR-module.

It is an open question whether the converse holds. More precisely, if Mf (α) ∼=
Rf ·fα is a simple DR-module, does it follow that α is not a root of the Bernstein-Sato

polynomial?

II.1.4.2 The Brylinski-Kashiwara intersection homology DR-modules

Suppose that I = (f1, . . . , fl) is an ideal of R = C[x1, . . . , xn] defining a subvariety

Y ⊆ X = An of dimension d. We recall that the local cohomology modules H i
I(R)

15



are defined as the cohomology modules of the Čech complex

0 // R // ⊕Rfi
// ⊕Rfifj

// ... // Rf1f2···fl
// 0.

As the localization of a DR-module has a natural structure of DR-module, the

previous complex can be seen as a complex of DR-modules. Hence the R-modules

H i
I(R) are also DR-modules. The Brylinski-Kashiwara intersection homology DR-

module, denoted L (Y,X), is defined as the unique simple DR-submodule of Hn−d
I (R).

The existence of the DR-module L (Y,X) is nontrivial and can be found in [Bjö84].

This modules can also be obtained via the Riemann-Hilbert correspondence from the

pushforward of the intersection homology complex ICY to X.

II.2 Positive characteristic

This section gives the necessary background in positive characteristic. We start by

covering test ideals and some classical classes of singularities in positive characteristic.

In the second section we follow [BMS08] to give a description of the test ideals in the

regular case. In the last section we go over the F -module theory introduced by

Lyubeznik [Lyu97].

II.2.1 Test ideals and singularities via Frobenius

Test ideals were originally defined by Hoschter and Huneke [HH90] and later Hara

and Yoshida extended this definition to include pairs [HY03]. In this subsection we

recall their definition. We finish the subsection with several definitions of classes of

singularities obtained by the action of Frobenius. There are several excellent surveys

in this topic, see for example [BFS13, ST12, TW14, SZ15].

For every e ≥ 1 we denote by R(e) the R − R-bimodule that as abelian group is

isomorphic to R, with the usual left R-module structure, while the right one is given

by the Frobenius action F e : R → R. Given an inclusion of R-modules N ⊆ M , by

tensoring with R(e) we obtain a map of (left) R-modules

R(e) ⊗N → R(e) ⊗M.

We denote the image of this map by N
[pe]
M . Note for example that if I is an ideal of

R then I
[pe]
R = I [p

e] =
(
ip

e
: i ∈ I

)
R.

Definition II.2.1 (Hara-Yoshida [HY03], Hochster-Huneke [HH90]). Given a posi-

16



tive real number c, the ac-tight closure of N in M is the R-submodule N∗a
c

M of M

consisting of all elements m ∈ M for which there exists u ∈ R, not in any minimal

prime, such that

image
(
uadcp

ee ⊗m
)
∈ N [pe]

M

for all e � 0. When N = I is an ideal of M = R we denote by I∗ the (R1)-tight

closure of I in R.

For a maximal ideal m ⊆ R we denote by ER(R/m) the injective hull of the

residue field R/m. We set

E :=
⊕

m∈maxSpec(R)

ER(R/m).

Definition II.2.2 (Hara-Yoshida [HY03]). The ac-test ideal τ(ac) is defined as

τ(ac) =
⋂
M⊆E

AnnR(0∗a
c

M )

where the intersection runs over all finitely generated submodules of E.

Remark II.2.3. We can recover the classical (finitistic) test ideal of Hochster and

Huneke (defined in [HH90]) by taking a = R and c to be any positive number. We

denote this ideal by τ(R).

These definitions can easily be extended to the case of several ideal a1, . . . , an and

positive real numbers c1, . . . , cn. In this case we call the corresponding ideal the mixed

test ideal associated to a1, . . . , an and we denote it by τ(ac11 · · · acnn ), see II.2.14 for a

precise definition in the regular case.

We can use tight closure theory to define important families of singularities as

follows.

Definition II.2.4. [HH90, FW89a] Let R be a reduced ring of characteristic p > 0.

a. We say that R is weakly F -regular if every ideal I in R is tightly closed, that

is if I∗ = I. We say that R is F -regular if every localization of R is weakly

F -regular.

b. A local ring (R,m) is said to be F -rational if every parameter ideal is tightly

closed. When R is not local, we say that R is F -rational if the local ring Rp is

F -rational for every maximal ideal p of R.
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Another family of singularities in positive characteristic appears naturally as a

consequence of the following theorem of Kunz.

Theorem II.2.5 (Kunz’s Theorem [Kun69]). Given a local ring R, the following are

equivalent:

a. The ring R is regular.

b. The Frobenius map F : R→ R is a flat morphism.

c. R is a free Rpe-module of rank pe dim(R) for some e > 0.

c. R is a free Rpe-module of rank pe dim(R) for every e > 0.

This remarkable result tells us that we can detect singularities via the action of

Frobenius. Therefore we can define different families of singularities by specifying

“how close” R is to a locally free Rp-module. We borrow notation from the scheme

setting and denote by F e
∗R the R-module whose underlying group structure is R and

whose R-module structure is given by the Frobenius action F e : R→ R. A ring R is

F -finite if F∗R is a finite R-module.

Definition II.2.6. [HH89, HR76] Let R be an F -finite ring of prime characteristic

p. We say that a ring R is F -pure if the Frobenius map F : R → F∗R splits as an

R-module homomorphism. We say that R is strongly F -regular if for every c ∈ Ro,

there exists some e ∈ N such that the map

cF e : R F e
// F e
∗R

×F e
∗ c // F e

∗R

x � // F e
∗ (x

pe) � // F e
∗ (cx

pe)

splits as an R-module homomorphism.

II.2.2 Test ideals in the regular case

When R is a regular F -finite ring, Manuel Blickle, Mircea Mustaţă and Karen

Smith [BMS08] gave an alternative description of test ideals. Here we recall this

construction following loc. cit. and therefore throughout this subsection we will

assume that R is a regular F -finite ring.

Recall that for an ideal I ⊆ R we denote by I [p
e] the ideal generated by the

pe-powers of elements in I.
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Lemma II.2.7. Given u ∈ R, we have up
e ∈ I [pe] if and only if u ∈ I.

Proof. The question is local so we may assume that R is local. From the exact

sequence

0→ I → R→ R/I → 0

and the flatness of Frobenius in the regular case we have that the sequence

0 // R(e) ⊗ I // R(e) ⊗R // R(e) ⊗ (R/I) // 0

is exact. But as R(e)⊗I ∼= I [p
e] and R(e)⊗R ∼= R it follows that R(e)⊗(R/I) ∼= R/I [p

e].

Hence if up
e ∈ I [pe] it follows that 1 ⊗ u = 0 in R(e) ⊗ (R/I), which in turn implies

u = 0 in R/I. The result follows.

Given an ideal I in R, we denote by I [1/p
e] the smallest ideal J such that I ⊆ J[pe].

The existence of a smallest such ideal is a consequence of the flatness of the Frobenius

map in the regular case. We record some basic properties of the ideals I [1/p
e].

Proposition II.2.8. [BMS08, Lemma 2.4] Let a, b be ideals in R. If e and e′ be

positive integers, then the following statements hold.

(a) If a ⊆ b, then a[1/p
e] ⊆ b[1/p

e].

(b) (a · b)[1/p
e] ⊆ a[1/p

e] · b[1/pe].

(c) a[1/p
e] ⊆

(
ap

e′
)[1/pe+e′ ]

.

The following proposition gives an explicit description of I [1/p
e] when R is free

over Rpe . This holds, for example, if R is a polynomial ring or a local ring.

Proposition II.2.9. [BMS08, Proposition 2.5] Suppose that R is free over Rq, for

q = pe, and let e1, . . . , eN be a basis of R over Rq. If h1, . . . , hn are generators of an

ideal I of R, and if for every i = 1, . . . , n we write

hi =
N∑
j=1

aqi,jej

with ai,j ∈ R, then

I [1/p
e] = (ai,j|i ≤ n and j ≤ N).

In the regular case we have the following description of the test ideals:
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Proposition II.2.10. [BMS08, Proposition 2.22] Given a positive number c and a

nonzero ideal a, the generalized test ideal of a with exponent c can be described as

τ(ac) =
⋃
e>0

(adcp
ee)[1/p

e],

where dce stands for the smallest integer ≥ c.

The ideals in the above union form an increasing chain of ideals; therefore, as R

is Noetherian, they stabilize. Hence for e large enough τ(ac) = (adcp
ee)[1/p

e]. In the

principal ideal case we can say more.

Proposition II.2.11. [BMS09, Lemma 2.1] If λ = m
pe

for some positive integer m,

then τ(fλ) = (fm)[1/p
e].

It can be shown that as the parameter c varies over the reals, only countably many

different test ideals appear; moreover, we have:

Theorem II.2.12. [BMS08, Proposition 2.14] For every nonzero ideal a and every

non-negative number c, there exists ε > 0 such that τ(ac) = τ(ac
′
) for c ≤ c′ < c+ ε.

Definition II.2.13. A positive real number c is an F-jumping exponent of a if τ(ac) 6=
τ(ac−ε) for all ε > 0.

The F -jumping exponents of an ideal a form a discrete set of rational numbers,

that is, there are no accumulation points of this set. In fact, they form a sequence

with limit infinity (see [BMS08, Theorem 3.1]).

As in the case of one ideal, one can define the mixed test ideal of several ideals as

follows.

Definition II.2.14. Given nonzero ideals a1, ..., an of R and non-negative real num-

bers c1, ..., cn, we define the mixed generalized test ideal with exponents c1, . . . , cn as:

τ(ac11 · · · acnn ) =
⋃
e>0

(a
dc1pee
1 · · · adcnpeen )[1/p

e].

As in the case of τ(ac), we have τ(ac11 · · · acnn ) = (a
dc1pee
1 · · · adcnp

ee
n )[1/p

e] for all e

large enough.

Theorem II.2.15. Let a1, . . . , an be nonzero ideals in the polynomial ring R =

k[x1, . . . , xr], and let c1 = r1/p
s, . . . , cn = rn/p

s be such that r1, . . . , rn are natu-

ral numbers. If each ai can be generated by polynomials of degree at most d, then the
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ideal τ(ac11 · · · acnn ) can be generated by polynomials of degree at most bd(c1+. . .+cn)c.
Here brc stands for the biggest integer ≤ r.

Proof. We argue as in [BMS08, Proposition 3.2], where the result was proven for the

case of one ideal. We know that R is free over Rpe with basis

{βjxα1
1 · · ·xαr

r |0 ≤ αi < pe and βj part of a basis for k over kp
e}.

The ideal a
dpec1e
1 · · · adp

ecne
n can be generated by polynomials of degree at most ddpec1e+

. . .+ ddpecne. Hence taking e > s large enough by Proposition II.2.9 the ideal

τ(ac11 · · · acnn ) = (a
dpec1e
1 · · · adpecnen )[1/p

e]

is generated by polynomials of degree at most (ddpec1e+. . .+ddpecne)/pe = (dpe−sr1+

. . .+ dpe−srn)/pe = d(r1 + ...+ rn).

II.2.3 D-modules and F -modules

II.2.3.1 D-modules

In Section II.1.4 we defined a D-module as a module over the Weyl algebra

C[x1, . . . , xn, ∂1, . . . , ∂n]. In general, for rings that do not contain a field of char-

acteristic zero, the ring of differential operators is more complicated. For example, in

the case that R is the polynomial ring Fp[x1, . . . , xn] it is not true that DR is generated

by the partial differentials ∂1, . . . , ∂n. Instead, we need a more general definition.

LetR be a commutative ring andA be a subring ofR. The elements of HomA(R,R)

induced by multiplication by elements in R are called A-linear differential operators

of order zero. We say that θ ∈ HomA(R,R) is an A-linear differential operator of

order less than or equal to k + 1, if for every r ∈ R the element [θ, r] = θ · r − r · θ
is an A-linear differential operator of order less than or equal to k. The subset of

HomA(R,R) consisting of all A-linear differential operators forms a ring that we de-

note by D(R,A). If A = Z/pZ, we write DR for D(R,Z/pZ), or just D if R is clear

from the context.

D(R,A)-modules behave well under localization, that is if M is a D(R,A)-module

and W ⊆ R is a multiplicative system, then W−1M acquires a natural structure

of D(R,A)-module such that the localization map M → W−1M is a morphism of

D(R,A)-modules. Furthermore W−1M is also a D(W−1R,A)-module.

A nonzero D(R,A)-module M is simple if the only D(R,A)-submodules of M are

the trivial ones, that is 0 and M . Assume R is a reduced F -finite ring of positive
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characteristic p. For any multiplicative system W ⊂ R and any simple DR-module

M , the DR-module W−1M is either zero or a simple DW−1R-module. Therefore, for

every DR-module of finite length N we have lengthDW−1R
W−1N ≤ lengthDR

N .

Note that D is a subring of HomZ/pZ(R,R), hence R has a natural structure of

D-module. We can use D-modules to measure F -singularities.

Proposition II.2.16. [Smi95a, Theorem 2.2] If R is an F -finite domain of positive

characteristic p > 0, then R is a strongly F -regular ring if and only if R is F -pure

and a simple DR-module

In addition, we have:

Proposition II.2.17. [Yek92] If R is an F -finite domain of positive characteristic

p > 0, then

DR =
⋃
e∈N

HomRpe (R,R).

We denote HomRpe (R,R) by D
(e)
R . We finish this subsection with a proposition

that will be frequently use in Chapter IV.

Proposition II.2.18. [ÀMBL05, Proposition 3.1] Let R be an F -finite regular ring

of positive characteristic p. If f in a nonzero element of R, then

D
(e)
R · f =

(
(f)[1/p

e]
)[pe]

,

for all e > 0.

II.2.3.2 F -modules

The theory of F -modules was introduced by Lyubeznik [Lyu97] to study finiteness

properties of local cohomology modules. In this section we recall the basic definitions

and properties. Throughout this section we assume that R is a regular ring of positive

characteristic p > 0.

Every morphism of rings ϕ : R → S defines a functor from R-modules to S-

modules ϕ∗, defined by ϕ∗M = S ⊗RM . If S = R and ϕ is the Frobenius morphism,

we denote by FM the R-module ϕ∗M = R(e) ⊗M . This is the Frobenius functor

introduced by Peskine and Szpiro [PS73]. If R is regular, the flatness of Frobenius

implies that F is an exact functor. We denote the e-th iterated Frobenius functor by

F e.
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Example II.2.19. If M is the cokernel of a matrix (ri,j), then F eM is the cokernel

of the matrix (rp
e

i,j). In particular, if I ⊂ R is an ideal, then F e (R/I) = R/I [p
e].

An F e-module is a pair (M, φ) consisting of an R-moduleM and an isomorphism

of R-modules φ : M → F eM. The isomorphism φ is called the structural isomor-

phism. We note that an F e-module has a natural structure as an F `·e-module for

every ` ∈ N given by the composition

M ν→ F eM F eν→ F 2eM . . .
F (`−1)ν→ F `·eM.

Let R[F e] be the skew-ring generated by the symbol F e and the relation F er =

rp
e
F e for any r ∈ R. Any F e-module has a structure of R[F e]-module. Indeed, if

M is an F e-module with structural morphism φ : M → F eM = R(e) ⊗M then the

action of F e is given by:

F e : M //M

m � // F e(m) = φ−1(1⊗m).

One way to produce F e-modules is by using generating morphisms. More explic-

itly, let M be an R-module and β : M → F eM be a morphism of R-modules. We

consider

M = lim
→

(M
β→ F eM

Fβ→ F 2eM
F 2β→ . . .)

and note that the Frobenius functor F e commutes with direct limits; therefore

F eM = lim
→

(F eM
Fβ→ F 2eM

F 2β→ F 3eM
F 3β→ . . .) ∼=M.

This givesM a structure of an F e-module. In this case we say thatM is generated

by β, or that β is a generating morphism for M. If β is an injective map, then M

injects into M. In this case β is called a root morphism for M. If β is understood

from the context, we only say that M is a root for M. If there is a root M which is

finitely generated as an R-module, then M is called an F e-finite F e-module

Example II.2.20. R has a natural structure of an F e-module for all e. Indeed, this

follows from the fact that F eR = R; hence, the structure morphism ν : R→ R is the

identity map.

The next example plays an important role in Chapter IV.
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Example II.2.21 ([BMS09, Pag. 6653]). For every element f ∈ R and r, e ∈ N, we

take α = r
pe−1 and define Mα as the F e-finite F e-module that is generated by

R
fr→ F eR = R.

If we choose another representation α = r′

pe′−1 we obtain similarly an F e′-module.

However, these two are canonically isomorphic as F ee′-modules.

We say that φ : M → N is a morphism of F e-modules if the following diagram

commutes:

M φ //

νM
��

N
νN
��

FM Fφ // FN .
The F e-modules form an Abelian category and the F e-finite F e-modules form a

full Abelian subcategory. Moreover, if M is F e-finite, then Mf is also F e-finite.

In addition, if R is a local ring, then every F e-finite F e-module has a minimal root

[Bli04, Lyu97].

Example II.2.22. The localization map R → Rf is a morphism of F -modules for

every f ∈ R. Moreover, the cokernel of the localization map R → Rf is an F -finite

F -module for every f ∈ R. Indeed, Rf/R = H1
f (R) is generated by R/fR

fp−1

→
F (R/fR) = R/f pR.

We recall that every F e-submodule M ⊂ Rf/R is a D-module [Lyu97, Exam-

ple 5.2]. We end this section by stating two important structural properties of F e-

modules.

Theorem II.2.23 ([BB11, Bli04, Lyu97, Theorem 5.13]). If R is a regular F -finite

ring of positive characteristic, then every F e-finite F e-module over R has finite length

in the category of F e-modules.

Corollary II.2.24. If R is a regular F -finite ring of positive characteristic, then

every F e-finite F e-module over R has finite length in the category of D-modules.

Proof. By Theorem II.2.23, R satisfies the hypotheses of [Lyu97, Theorem 5.6], which

states that every simple F e-module is a finite direct sum of simple D-modules. Then

M has finite length as a D-module.
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CHAPTER III

Constancy Regions in Positive characteristic

In this chapter we prove the first main result. The first section introduces some sets

associated to mixed test ideals. In the second section we use these sets to describe the

structure of the constancy regions in positive characteristic. We conclude this chapter

with an example exhibiting the complexity of the constancy regions. In particular,

the example shows that a constancy region in positive characteristic does not need

to be a finite unions of rational polytopes.

III.1 Some sets associated to mixed test ideals

In this section we introduce the definitions needed for our study of mixed test

ideals and derive some basic properties. Throughout this chapter R denotes a regular

ring essentially of finite type over an F -finite field k of positive characteristic.

In order to simplify notation we denote ac11 ...a
cn
n by ac, where a = (a1, ..., an),

c = (c1, ..., cn) ∈ Rn
≥0. We similarly denote the vector (dr1e, ..., drne) by dre, where

r = (r1, . . . , rn) ∈ Rn
≥0.

Definition III.1.1. Given nonzero ideals a1, . . . , an, and I in R, we define

V I(a, pe) =

{
1

pe
c =

(
c1
pe
, . . . ,

cn
pe

)
∈ 1

pe
Zn≥0| ac 6⊆ I [p

e]

}
and

BI(a, pe) =
⋃

[0, l1]× . . . .× [0, ln] ⊂ Rn,

where the union runs over all (l1, . . . , ln) ∈ V I(a, pe).

From this definition it follows that if e′ ≥ e, then V I(a, pe) ⊆ V I(a, pe
′
) and

BI(a, pe) ⊆ BI(a, pe
′
). Indeed, if ac 6⊆ I [p

e], then there is an element f ∈ ac with
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f /∈ I [pe], hence fp
e′−e ∈ ap

e′−ec and, by the flatness of the Frobenius morphism, we

get fp
e′−e

/∈ I [pe
′
]. Therefore ap

e′−ec 6⊆ I [p
e′ ] and we get the first inclusion. The second

one is then straightforward.

Definition III.1.2. Let BI(a) =
⋃
e>0B

I(a, pe) and define χIa : Rn → N to be the

characteristic function of the set BI(a). That is, χIa(c) is 1 if c is in BI(a) and it is 0

otherwise.

In order to study the sets BI(a) it is crucial to understand how they intersect any

increasing path. This motivates the following definition.

Definition III.1.3. Let a1, . . . , an, and I 6= R be nonzero ideals as before and let

r = (r1, . . . , rn) ∈ Zn≥0 be such that that ar ⊆ rad(I). We denote

V I
r (a, pe) = max{m ∈ Z≥0| amr 6⊆ I [p

e]}.

Remark III.1.4. While in the definition of V I(a, pe) one does not require any relation

between a and I, observe that we require that ar ⊆ rad(I) when we consider V I
r (a, pe).

Note that if amr 6⊆ I [p
e] then apmr 6⊆ I [p

e+1]. Therefore pV I
r (a, pe) ≤ V I

r (a, pe+1),

hence

(III.1.4.1)

(
V I
r (a, pe)

pe

)
e≥1

is a non-decreasing sequence.

Proposition III.1.5. The sequence (III.1.4.1) is bounded, hence it has a limit.

Proof. If ar is generated by s elements, then a(s(p
e−1)+1)r ⊆ (ar)[p

e]. For l large enough

such that alr ⊆ I, we have V I
r (a, pe) ≤ l(s(pe − 1) + 1) − 1 for all e. Therefore

V I
r (a, pe)/pe ≤ ls, thus the sequence is bounded.

Definition III.1.6. We call this limit the F -threshold of a associated to I in the

direction r = (r1, . . . , rn), and we denote it by CI
r(a).

Remark III.1.7. In the case n = 1 we recover the usual definition of F -threshold

[MTW05], [BMS08, Section 2.5].

Lemma III.1.8. Let 1
pe
b = ( b1

pe
, . . . , bn

pe
) and 1

pe
′ c = ( c1

pe
′ , . . . , cn

pe
′ ) be two elements in

Rn
≥0, such that b, c ∈ Zn≥0. If bi

pe
≤ ci

pe′
, for every i, and e′ ≤ e then (ac)[1/p

e′ ] ⊆
(ab)[1/p

e].
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Proof. The assertion follows as in [BMS08, Lemma 2.8]. The condition bi ≤ cip
e−e′

implies that abii ⊇ acip
e−e′

i for every i. Therefore

(ab)[1/p
e] ⊇ (ap

e−e′c)[1/p
e] ⊇ (ac)[1/p

e′ ],

where the last inclusion follows from Proposition II.2.8.

Proposition III.1.9. Given any c = (c1, . . . , cn) ∈ Rn
≥0, there is ε = (ε1, . . . , εn) ∈

Rn
>0 such that for every r = (r1, . . . , rn) with 0 ≤ ri < εi, we have τ(ac) = τ(ac+r).

Proof. We argue as in the proof of [BMS08, Proposition 2.14]. We first show that

there is a vector ε = (ε1, . . . , εn), with εi > 0 for all i, such that for all vectors

r = (r1, . . . , rn) ∈ Zn≥0 with ci ≤ 1
pe
ri < ci + εi we have that (ar)[1/p

e] is constant.

Indeed, otherwise there are sequences rm = (rm,1, . . . , rm,n) ∈ Zn≥0 and em ∈ Z≥0 such

that 1
pem
rm converges to c,

(
1

pem
rm,i

)
m

is a decreasing sequence for every i, em ≤ em+1,

and (arm)[1/p
em ] 6= (arm+1)[1/p

em+1 ]. It follows from Lemma III.1.8 that (arm)[1/p
em ] (

(arm+1)[1/p
em+1 ] for all m, but this contradicts the fact that R is Noetherian.

Assume now that ε = (ε1, . . . , εn) is as above and let I = (ar)[1/p
e] for all r =

(r1, ..., rn) ∈ Zn≥0 with ci ≤ 1
pe
ri < ci + εi. We show that I = τ(ac). Take e large

enough such that τ(ac) = (adp
ece)[1/p

e] and dp
ecie
pe

< ci+εi for every i. If all peci are non-

integers then dp
ecie
pe

> ci and τ(ac) = I. Let us suppose that peci is an integer precisely

when i = i1, ..., il. Let d = (d1, . . . , dn) be the vector whose ij coordinates are 1 and all

the other are 0. As e is arbitrarily large we may also assume that ci < ci+
1
pe
di < ci+εi

for all i ∈ {i1, . . . , il}, hence I = (adp
ece+d)[1/p

e] ⊆ (adp
ece)[1/p

e] = τ(ac).

The reverse inclusion follows by showing adp
ece ⊆ I [p

e]. Let u ∈ adp
ece. If e′ > e

and e′ is large enough, then ci < ci + 1
pe′

< ci + εi, hence adp
e′ce+1 ⊆ I [p

e′ ]. Here

1 denotes the vector whose coordinates are all 1. Thus, for v a nonzero element in

a1 · · · an we have

vup
e′−e ∈ ap

e′−edpece+1 ⊆ adp
e′ce+1 ⊆ (I [p

e])[p
e′−e].

This implies that u is in the tight closure of I [p
e], but as R is a regular ring, the

tight closure of I [p
e] is equal to I [p

e](see [HH90]). This gives adp
ece ⊆ I [p

e] hence, by

definition, τ(ac) = (adp
ece)[1/p

e] ⊆ I.

Definition III.1.10. A positive real number c is called an F -jumping number of a in

the direction r 6= 0 ∈ Zn≥0, if c is such that τ(acr) 6= τ(a(c−ε)r) for every real number

ε > 0.
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Proposition III.1.11. If r ∈ Zn≥0 and λ ∈ R≥0, then

τ(aλr1 · · · aλrn) = τ(Jλ),

where J = ar11 · · · arnn .

Proof. By Propostion III.1.9, we may assume λ = s
pe′

with s ∈ Z≥0. For e sufficiently

large, we have

τ(aλr1 · · · aλrn) = (adλr1p
ee · · · adλrnpee)[1/pe] = (asr1p

e−e′ · · · asrnpe−e′

)[1/p
e]

= ((ar1 · · · arn)sp
e−e′

)[1/p
e] = ((ar1 · · · arn)λp

e

)[1/p
e] = τ(Jλ).

Corollary III.1.12. The F -threshold of a associated to I in the direction r =

(r1, . . . , rn) is equal to the F -threshold of ar11 · · · arnn associated to I.

Corollary III.1.13. The set of F -jumping numbers of a in direction r is equal to

the set of F -jumping numbers of ar.

Therefore [BMS08, Corollary 2.30] implies the following.

Corollary III.1.14. The set of F -jumping numbers of a in the direction r is equal

to the set of F -thresholds of a, associated to various ideals I, in the direction r.

Given l1, . . . , ln positive real numbers we denote by [0, l] the set [0, l1]× . . .× [0, ln].

Proposition III.1.15. Given nonzero ideals a1, . . . , an of R, where R is a regular,

F -finite ring essentially of finite type over a finite field, the set {τ(ac)| c ∈ [0, l]} is

finite.

Proof. Since R is assumed to be essentially of finite type over k, arguing as in the

proof of [BMS08, Theorem 3.1], one can see that the assertion for all such R follows

if we know it for R = k[x1, . . . xr], with r ≥ 1. We will therefore assume that we are

in this case.

By Lemma III.1.9, we may assume that c = (α1

pe
, ..., αn

pe
) with αi ∈ Z≥0 and

e ≥ 1. Let d be an upper bound for the degrees of the generators of ai, for all i. By

Theorem II.2.15 we have that τ(ac) is generated by polynomials of degree ≤ ndL,

where L = max{li}. Since k is finite, there are only finitely many sets consisting of

polynomials of bounded degree and therefore only finitely many ideals τ(ac) where

c ∈ [0, l].
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Definition III.1.16. The constancy region for a test ideal τ(ac) is defined as the set

of points c′ ∈ Rn
≥0 such that τ(ac) = τ(ac

′
).

Lemma III.1.17. If J is an ideal of R, then BJ(a) consists of the points c ∈ Rn
≥0

such that τ(ac) 6⊆ J .

Proof. Assume first that c = (α1

pe
, . . . , αn

pe
) with αi ∈ N. Choose a representation of c

with e large enough such that τ(ac) = (aα)[1/p
e]. In this case we have

c ∈ BJ(a)⇐⇒ aα 6⊆ J [pe] ⇐⇒ (aα)[1/p
e] 6⊆ J ⇐⇒ τ(ac) 6⊆ J.

For the general case, let c ∈ BJ(a), this implies that c ∈ BJ(a, pe) for some e.

Therefore we can find r = (α1

pe
, . . . , αn

pe
) ∈ BJ(a, pe) ⊆ BJ(a), with αi ∈ N, αi

pe
≥ ci. By

the first part this implies τ(ar) 6⊆ J , but as αi

pe
≥ ci for all i, we have that τ(ar) ⊆ τ(ac)

hence τ(ac) 6⊆ J .

For the reverse inclusion, let c ∈ Rn
≥0 be such that τ(ac) 6⊆ J. By Proposition

III.1.9 there is a point r = (α1

pe
, . . . , αn

pe
) with αi ∈ N, αi

pe
≥ ci and τ(ac) = τ(ar),

therefore τ(ar) 6⊆ J . We use the first part again and conclude r ∈ BJ(a), but as
αi

pe
≥ ci for all i, we deduce that c ∈ BJ(a).

Theorem III.1.18. If a1, ..., an are all contained in a maximal ideal m, then for each

c ∈ Rn
≥0, there exist ideals I1, ..., Id and J such that the constancy region for the test

ideal τ(ac) is given by
⋂
i=1,...,dB

Ii(a)\BJ(a).

Proof. We first show that this constancy region is bounded. As ai ⊆ m for all i we

have that for any c′ ∈ Rn
≥0and e sufficiently large

τ(ac
′
) = (a

dc′1pee
1 · · · adc′npeen )[1/p

e] ⊆ (mdc
′
1p

ee+...+dc′npee)[1/p
e]

⊆ (mdc
′
1p

e+...+c′np
ee−n)[1/p

e] ⊆ mdc
′
1+...+c

′
ne−n+1.

Since ∩sms = 0, there is L such that τ(ac) 6⊆ mL, we deduce that for any c′ in the

constancy region τ(ac
′
) = τ(ac) 6⊆ mL, hence c′1 + . . .+ c′n ≤ L. This implies that the

constancy region for τ(ac) is bounded.

To deduce our description consider a sufficiently large hypercube [0, l] containing

the constancy region for τ(ac). By Propostion III.1.15, we know that the set A =

{τ(ac)|c ∈ [0, l]} is finite. Let I1, . . . , Id be the ideals in A that are strictly contained

in τ(ac) and let J = τ(ac). We claim that the constancy region for τ(ac) is equal to⋂
i=1,...,dB

Ii(a)\BJ(a). Lemma III.1.17 implies that the set
⋂
i=1,...,dB

Ii(a)\BJ(a) is
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equal to the set of all r such that τ(ar) 6⊆ Ii for all i and τ(ac) ⊆ τ(ar), or equivalently,

τ(ar) = τ(ac) by our choice of Ii.

Remark III.1.19. We can remove the condition that all ideals ai are contained in a

maximal ideal and still get a similar description. Explicitly, in each hypercube [0, l]

the constancy region is given by
⋂
i=1,...,dB

Ii(a)\BJ(a) ∩ [0, l], for suitable I1, . . . , Id

and J .

We now give a version of Skoda’s theorem for mixed test ideals (see [BMS08,

Proposition 2.25] for the case of one ideal). This theorem allows us to describe the

constancy regions in the first octant by describing only the constancy regions in a

sufficiently large hypercube [0, l] = [0, l1]× . . .× [0, ln].

Theorem III.1.20. (Skoda’s Theorem) Let e1, ..., en be the standard basis for Rn,

and assume 1 ≤ i ≤ n. If ai is generated by mi elements, then for every s =

(s1, . . . , sn) with si ≥ mi, we have

τ(as) = aeiτ(as−ei).

Proof. We only need to prove (adp
ese)[1/p

e] = aei(adp
e(s−ei)e)[1/p

e] for e large enough.

Let d = (d1, .., dn) be a vector with integer coordinates and di ≥ pesi. We want

to show that

(ad)[1/p
e] = aei(ad−p

eei)[1/p
e],

from which the result follows.

Since ad−p
eei · a[p

e]
i ⊆ ad ⊆ ((ad)[1/p

e])[p
e], we have

ad−p
eei ⊆

(
((ad)[1/p

e])[p
e] : a

[pe]
i

)
=
(
(ad)[1/p

e] : ai
)[pe]

,

where the equality is consequence of the flatness of Frobenius. Therefore

(ad−p
eei)[1/p

e] ⊆ ((ad)[1/p
e] : ai),

that is,

aei(ad−p
eei)[1/p

e] ⊆ (ad)[1/p
e].

For the reverse inclusion, note that since di ≥ mi(p
e − 1) + 1, in the product of di

of the generators of ai at least one should appear with multiplicity ≥ pe. Therefore

ad = a
[pe]
i · ad−p

eei , hence

ad ⊆ a
[pe]
i · ad−p

eei ⊆ a
[pe]
i ·

(
(ad−p

eei)[1/p
e]
)[pe]

=
(
aei · (ad−peei)[1/pe]

)[pe]
,
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which clearly implies (ad)[1/p
e] ⊆ aei(ad−p

eei)[1/p
e].

Proposition III.1.21. If c is an F -jumping number in the direction r = (r1, . . . , rn)

then also cp is an F -jumping number in the direction r.

Proof. Note that V I
r (a, pe+1) = V I[p]

r (a, pe), hence pCI
r(a) = CI[p]

r (a).

III.2 The constancy regions

In this section we prove our main result, Theorem III.2.6 below. We begin by

recalling our definition of p-fractals.

Let F be the algebra of functions φ : Rn
≥0 → Q. For each q = pe and every

b = (b1, . . . , bn) ∈ Zn with 0 ≤ bi < q we define a family of operators Tq|b : F → F by

Tq|bφ(t1, . . . , tn) = φ((t1 + b1)/q, . . . , (tn + bn)/q).

Definition III.2.1. Let φ : [0, l]n → Q be a map and let denote also by φ its extension

by zero to Rn
≥0. We say that φ is a p-fractal if all the Tq|bφ span a finite dimensional

Q-subspace V of F . Furthermore, we say that an arbitrary φ ∈ F is a p-fractal if its

restriction to each hypercube [0, l] is a p-fractal.

Remark III.2.2. This definition is similar to the one in [MT04, Definition 2.1]. The

only difference is that in [MT04, Definition 2.1] the domain of the functions is the

hypercube [0, 1]× . . .× [0, 1].

In this section we assume that R is a regular, F -finite ring essentially of finite

type over a finite field of characteristic p > 0, and ai ⊆ R are nonzero ideals.

Lemma III.2.3. Let c = (c1, . . . , cn) ∈ Rn
≥0, and a1, . . . an be nonzero ideals of R

then τ(ac)[1/p
e] = τ(a

1
pe

c).

Proof. Taking k large enough

τ(ac)[1/p
e] =

(
(a
dc1pke
1 · · · adcnpken )[1/p

k]
)[1/pe]

and by [BMS08, Lemma 2.4] the later contains

(a
dc1pke
1 · · · adcnpken )[1/p

k+e] = (a
d c1
pe
pk+ee

1 · · · a
d cn
pe
pk+ee

n )[1/p
k+e]

= τ(a
1
pe

c).
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Therefore τ(ac)[1/p
e] ⊇ τ(a

1
pe

c).

For the other inclusion note that

τ(ac) = (a
dc1pke
1 · · · adcnpken )[1/p

k]

= (a
d c1
pe
pk+ee

1 · · · a
d cn
pe
pk+ee

n )[p
e/pk+e]

that by [BMS08, Lemma 2.4] is contained in(
(a
d c1
pe
pk+ee

1 · · · a
d cn
pe
pk+ee

n )[1/p
k+e]

)[pe]

= τ(a
1
pe

c)[p
e]

but this is equivalent to say

τ(ac)[1/p
e] ⊆ τ(a

1
pe

c).

Lemma III.2.4. Let l = (l1, . . . ln) ∈ Zn be such that li is the minimum number of

generators of the ideal ai. Let b ∈ Zn such that li − 1 ≤ bi . For all e, we have

Tpe|bχ
I
a = Tp0|(l−[1])χ

(I[p
e]:ab−l+1)

a ,

where χIa denotes the characteristic function introduced in Definition III.1.2.

Proof. We have that

Tpe|bχ
I
a([t]) = χIa

(
1

pe
([t] + b)

)
is equal to 1 if and only if, by Lemma III.1.17, to

τ(a
1
pe

(t+b)) 6⊆ I,

and by Lemma III.2.3 this is

τ(at+b)[1/p
e] 6⊆ I,

but the later is equivalent to

τ(at+b) 6⊆ I [p
e].
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As bi ≥ li − 1 by Skoda’s Theorem the previous expresion becomes

ab−l+1 · τ(at+l−1) 6⊆ I [p
e]

Wich in turn is equivalent to

τ(at+l−1) 6⊆ (I [p
e] : ab−l+1)

but this is the case if and only if

Tp0|(l−1)χ
(I[p

e]:ab−l+1)
a (t) = χ(I[p

e]:ab−l+1)
a (t+ l− 1)

is equal to 1

Note that a point of the form 1
pk
r + (l − 1) with r ∈ Zn is in B(I[p

e]:ab−l+1)(a) if

and only if ar+p
k(l−1) 66⊆ (I [p

e] : ab−l+1)[p
k] if and only if ar · apk(l−1) · (ab−l+1)[p

k] 6⊆
I [p

e+k] this by Lemma III.2.3 occurs if and only if ar+p
kb 6⊆ I [p

e+k], or equivalently
1

pe+kr + 1
pe
b ∈ BI(a). From this the result follows easily.

This lemma is especially useful when the ideals are principal, as we will see in the

examples of Section 5.

Lemma III.2.5. If R is a regular, F -finite ring essentially of finite type over a finite

field, then in each hypercube [0, l] there are only finitely many functions χIa. That is,

the set {χIa|[0,l]; I ⊆ R} is finite.

Proof. By Lemma III.1.17, BI(a) is the set of all points c = (c1, . . . , cn) ∈ Rn
≥0 such

that τ(ac) 6⊆ I, hence BI(a) is a union of constancy regions. By Lemma III.1.15,

we know that there are only finitely many constancy regions for bounded exponents,

therefore there are only finitely many functions χIa|[0,l].

Theorem III.2.6. There is a p-fractal function ϕ : Rn
≥0 → N for which

τ(ac11 ...a
cn
n ) = τ(ad11 ...a

dn
n )⇐⇒ ϕ(c1, ..., cn) = ϕ(d1, ..., dn),

and therefore the constancy regions are of the form ϕ−1(i) for some number i.

Proof. We first show that the functions χIa are p-fractal. We want to prove that all

the Tpe|bχ
I
a span a finite dimensional space. Lemma III.2.4 states that all but finitely

many of these functions have the form Tp0|(l−1)χ
J
a for different ideals J . Lemma III.2.5

ensures that there are only finitely many of those in each hypercube [0, l]. From this

it follows that χIa is a p-fractal.
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For c ∈ Rn
≥0, let ηc be the characteristic function associated to the constancy

region τ(ac). Remark III.1.19 implies that that in each hypercube [0, l], ηc|[0,l] =(
χI1a · · ·χIda − χJa

) ∣∣
[0,l] for some ideals I1, . . . , Id and J , therefore ηc is p-fractal.

Clearly there are countably many constancy regions, so we can numerate them.

For every i, let ci = (ci1, . . . , cin) a point in the i-th constancy region, and we define

ϕ =
∑
i∈N

i · ηci .

This function satisfies the desired conditions.

Corollary III.2.7. Let R be a regular, F -finite ring essentially of finite type over a

finite field. Let ηc be the characteristic function associated to the constancy region of

τ(ac), then ηc is a p- fractal.

III.3 Some examples

In section III.2 we showed that the characteristic functions of the constancy regions

are p-fractal functions, see Corollary III.2.7. We use this fact and Proposition II.2.9 to

compute an explicit example. Throughout this section we use a subscript ∗p to denote

that a number ∗ is written in base p. More explicitly, given integers 0 ≤ ai ≤ p−1 by

(arar−1 . . . a0.a−1 . . . a−l)p we mean the rational number
∑r

j=−lmjp
j. For example,

12.13 denotes the number 1 · 3 + 2 · 30 + 1 · 3−1 = 16
3

written in base 3. One of the

main tools for computing examples is the following theorem:

Theorem III.3.1. (Lucas’ Theorem [Luc78]) Fix non-negative integers m ≥ n ∈
N and a prime number p. If we write m and n in their base p expansions: m =

(mrmr−1 . . .m1m0)p =
∑r

j=0mjp
j and n = (nrnr−1 . . . n1n0)p =

∑r
j=0 njp

j, then(
m

n

)
≡
(
m0

n0

)
·
(
m1

n1

)
· · ·
(
mr

nr

)
mod p

where we interpret
(
a
b

)
as zero if a < b. In particular,

(
m
n

)
is nonzero mod p if and

only if mj ≥ nj for all j = 1, . . . r.

Remark III.3.2. In particular, if m = pk − 1, then all coefficients in the expansion

of (x+ y)m are nonzero.

Example III.3.3. (The Devil’s Staircase) Let R = F3[x, y], f1 = x+ y, and f2 = xy.

We want to describe the constancy regions for the test ideals τ(fc).
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We first show that there are five different test ideals in the region [0, 1] × [0, 1].

More precisely, we show that

τ(fc) =



R or (x, y), c ∈ [0, 1)× [0, 1)

(x+ y), c ∈ {1} × [0, 1)

(xy), c ∈ [0, 1)× {1}

(xy(x+ y)), c = (1, 1).

We want to compute the test ideal at (1
3
, 2
3
). By Proposition III.1.11, we have

τ(f (0.13,0.23)) = τ((f1 · f 2
2 )

1
3 ).

By Proposition II.2.11, we have

τ((f1 · f 2
2 )

1
3 ) = ((x+ y)(xy)2)[

1
3
] = (x3y2 + x2y3)[

1
3
].

Finally, Proposition II.2.9 gives

(x3y2 + x2y3)[
1
3
] = (x, y),

and therefore

τ(f c11 · f c22 ) ⊆ (x, y) if c1 ≥ 1/3 and c2 ≥ 2/3.

In particular, the test ideal associated to the points (1 − 1
3k
, 1 − 1

3k
) is contained in

(x, y). Now

τ(f (1− 1

3k
,1− 1

3k
)) = ((x+ y)3

k−1(xy)3
k−1)[

1

3k
]

= ((x2y + xy2)3
k−1)[

1

3k
].

Since the terms x2(3
k−1)y3

k−1 and x3
k−1y2(3

k−1) appear in the expansion of (x2y +

xy2)3
k−1 with nonzero coefficient, we conclude that τ(f (1− 1

3k
,1− 1

3k
)) ⊇ (x, y). Therefore

τ(f (1− 1

3k
,1− 1

3k
)) = (x, y).

Thus there are only two test ideals in the region [0, 1)×[0, 1), namely R and (x, y).

Clearly τ(f (1,0)) = (x+ y), and by Skoda’s Theorem

τ(f (1,1− 1

3k
)) = f1 · τ(f (0,1− 1

3k
))
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= (x+ y) · ((xy)3
k−1)[

1

3k
]

= (x+ y),

hence the only test ideal in the region {1} × [0, 1) is (x+ y).

In a similar way, τ(f (0,1)) = (xy) and

τ(f (1− 1

3k
,1)) = f2 · τ(f (1− 1

3k
,0))

= (xy) · ((x+ y)3
k−1)[

1

3k
]

= (xy).

Thus (xy) is the only test ideal that appears in the region[0, 1)× {1}.
Finally, note that the test ideal at (1, 1) is

τ(f (1,1)) = ((x+ y)xy).

We now show that (1
3
, 2
3
) is a point in the boundary of B(x,y)(f) and then use the

p-fractal structure to sketch the constancy regions.

For every k

τ(f ( 1
3
− 1

3k
, 2
3
− 1

3k
))

= ((x+ y)3
k−1−1(xy)2·3

k−1−1)[
1

3k
].

But in the expansion of (x+y)3
k−1−1 every term appears with nonzero coefficient, see

Remark III.3.2. In particular, the term (xy)
3k−1−1

2 (xy)2·3
k−1−1 appears with non-zero

coefficient when expanding the product (x + y)3
k−1−1(xy)2·3

k−1−1. Since the degrees

in x and y of this monomial are smaller than 3k, by Proposition II.2.9 we conclude

that τ(f ( 1
3
− 1

3k
, 2
3
− 1

3k
)) = R . Thus

χ
(x,y)
f

(
1

3
,
2

3

)
= 0

and

χ
(x,y)
f ([0,

1

3
)× [0,

2

3
)) = 1.

The later shows that the point (1
3
, 2
3
) is in the boundary of constancy regions for

R and (x, y). We can use the p-fractal structure to find more points in this boundary.

The idea is to break the region [0, 1]× [0, 1] into squares of length 1/3 and find which

of these must contain a boundary point. Then we apply the p-fractal structure to
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these squares to find the points.

For the points (0, 2
3
), (2

3
, 1
3
), (1

3
, 1), and (1, 2

3
) we have:

τ(f (0, 2
3
)) = ((xy)2)[

1
3
] = R,

τ(f ( 2
3
, 1
3
)) = ((x+ y)2xy)[

1
3
] = (x3y − x2y2 + xy3)[

1
3
] = R

and

τ(f ( 1
3
,1)) = ((x+ y)(xy)3)[

1
3
] = (xy) ⊂ (x, y),

τ(f (1, 2
3
)) = ((x+ y)3x2y2)[

1
3
] = (x+ y) ⊂ (x, y).

Therefore there should be boundary points in the squares [0, 1/3) × [2/3, 1) and

[2/3, 1)×[0, 1/3). It is easy to check that there are no boundary points in all the other

squares. From this and Lemma III.2.4 we know that T3|(0,2)χ
(x,y)
f = T3|(2,1)χ

(x,y)
f =

χ
(x,y)
f , since χ

(x,y)
f is the only characteristic function that is non-constant in [0, 1) ×

[0, 1). Moreover,

χ
(x,y)
f (0.013, 0.223) = χ

(x,y)
f (03 + 0.013, 0.23 + 0.023)

= χ
(x,y)
f

(
03 + 0.13

3
,
23 + 0.23

3

)
= T3|(0,2)χ

(x,y)
f (0.13, 0.23)

= χ
(x,y)
f (0.13, 0.23) = χ

(x,y)
f

(
1

3
,
2

3

)
= 0.

Similarly, we have

χ
(x,y)
f (0.213, 0.123) = 0

and

χ
(x,y)
f ([0, 0.013)× [0, 0.223)) = χ

(x,y)
f ([0, 0.213)× [0, 0.123)) = 1.

That is, the points (0.013, 0.223) and (0.213, 0.123) are also in the boundary. We can

repeat the proccess by subdividing the squares [0, 1/3)× [2/3, 1) and [2/3, 1)× [0, 1/3)

into smaller squares of length 1/9 and obtain more points of the boundary. This

process can be summarized as follows. Let A be the set of points obtained from

(0.13, 0.23) by successively applying the operations

(0.a1 . . . an13, 0.b1 . . . bn23) 7→

(0.a1 . . . an013, 0.b1 . . . bn223)

(0.a1 . . . an21, 0.b1 . . . bn123).

37



We have

χ
(x,y)
f (p) = 0

and

χ
(x,y)
f ([0,p)) = 1

for all p ∈ A. That is, the points of A are points in the boundary. We can now sketch

the regions of constancy in [0, 1]× [0, 1]:

Figure III.3.3.1: The constancy regions for f1 = xy and f2 = (x+ y) in [0, 1]× [0, 1]

Using Skoda’s theorem, we can describe the whole diagram of test ideals.

Figure III.3.3.2: The constancy regions for f1 = xy and f2 = (x+ y)
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Remark III.3.4. We chose the name Devil’s Staircase for this example because of

the resemblance to the Devil’s Staircases or Cantor functions that appear in the basic

courses of analysis.

Example III.3.5. It can be similarly shown that for any characteristic p the same

polynomials give a staircase that has infinitely many steps. Indeed,

τ(f
( 1

pk
,1− 1

pk
)
) = ((x+ y)(xy)p

k−1)
[ 1

pk
]
= (x, y)

but

τ(f
( 2

pk
,1− 2

pk
)
) = ((x+ y)2(xy)p

k−2)
[ 1

pk
]
= R.

Which forces an infinite step situation as in the previous example. Therefore we can

not expect that there are characteristics for which the region given by the test ideals

will be the same as the one given by the multiplier ideals, see Example II.1.13.
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CHAPTER IV

The Modules Mα and the F -jumping ideals

In this chapter we define the F -jumping ideals and give some basic properties. In

particular, we relate them with the generalized test ideals, F -jumping numbers, and

the modules Mα.

Throughout this chapter R denotes an F -finite regular domain of characteristic

p > 0 and α denotes a rational number whose denominator is not divisible by p.

As the denominator of α is not divisible by p we can write α = r
pe−1 for some

e > 0. An easy, but crucial consequence of this is that

(pe(`−1) + . . .+ pe + 1)r + α = pe`α

for every ` ∈ N.

Lemma IV.0.6. If f be an element in R, then τ(fpλ) ⊂ τ(fλ)[p].

Proof. We have that dpp
jλe
pj
≤ pdpjλe

pj
and lim

j→∞
pdpjλe
pj

= pλ. Then,

τ(fpλ) =
⋃
j∈N

(
fpdp

jλe
)[1/pj ]

=
⋃
j∈N

(
f dp

jλe
)[1/pj−1]

⊂
⋃
j∈N

((
f dp

jλe
)[1/pj ])[p]

= τ(fλ)[p]

by the properties of the ideals I [1/p
j ] [BMS08, Lemma 2.4].

Recall from Example II.2.21 that

Mα = lim
→
R

fr→ R
fp

er

→ F (R) = R
fp

2er

→ . . . .

Hence, as an Rf -module, Mα is free of rank one. Let eα denote the generator

obtained as the image of 1 ∈ F 0R = R in the previous direct limit. We think of eα

as 1/fα.
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Note that Mα carries a natural structure of a DR-module, which does not depend

of the presentation of α [BMS09, Remark 2.4]. Given P ∈ D
(se)
R and c ∈ R, it is

shown in loc. cit. that

P ·
(
c

fm
· eα
)

=
P (cfm(pes−1)+r(1+pe+...+pe(s−1)))

fmpes+r(1+pe+...pe(s−1))
· eα.

When m = 0, the previous expression is equal to

P · (c · eα) =
P (cf r(1+p

e+...pe(s−1)))

f r(1+pe+...+pe(s−1))
· eα.

We also recall that eα generates Mα as a DR-module [BMS09, Theorem 2.11].

We now are ready to introduce the F -jumping ideals in terms of the DR-module

structure of Mα.

Definition IV.0.7. Let Nα = DRf
dαe · eα, which is the smallest DR-submodule of

Mα containing f dαeeα. We define the F -jumping ideal associated to f and α as the

ideal JFR
(fα) of R such that JFR

(fα) · eα = Nα ∩ R · eα. Whenever the ring is clear

from the context, we simply write JF (fα).

Lemma IV.0.8. Given any ideal I ⊆ R, the DR-module generated by Ieα is

DR · Ieα =
⋃
s≥0

(
D

(es)
R (f r(1+...+p

e(s−1))I)/f r(1+...+p
e(s−1))

)
· eα.

The intersection of this DR-module with Reα is equal to Jeα, where

J =
⋃
s≥0

(
D

(es)
R (f r(1+...+p

e(s−1))I) : f r(1+...+p
e(s−1))

)
.

In particular,

JFR
(fα) =

⋃
s≥0

(
D

(es)
R (f r(1+...+p

e(s−1))f dαe) : f r(1+...+p
e(s−1))

)
.

Proof. This follows from the description of the action of the differential operators on

Mα given above. Indeed,

DR · Ieα =
⋃
s≥0

D
(e)
R Ieα
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=
⋃
s≥0

D
(e)
R (If r(1+p

e+...+pe(s−1)))

f r(1+pe+...+pe(s−1))
eα.

Which gives the first part. To get the second statement, note that

D
(e)
R (If r(1+p

e+...+pe(s−1)))

f r(1+pe+...+pe(s−1))
eα ∩Reα =

(
D

(es)
R (f r(1+...+p

e(s−1))I) : f r(1+...+p
e(s−1))

)
eα.

For test ideals, if α < β then τ(fα) ⊇ τ(fβ). The same statement is not true for

the F -jumping ideals, but we can give a relation if β = α+ l for l ∈ N. Before stating

this result, we need a lemma.

Lemma IV.0.9. The morphism Mα → Mα+1 defined by sending eα 7→ feα+1 is an

isomorphism of F e-modules (as well as of DR-modules). In particular, Nα
∼= Nα+1 =

DRf
dα+1e · eα+1.

Proof. Consider the following commutative diagram of R-modules

0

��

0

��

0

��
R

fr //

f
��

R
frp

e

//

fp
e

��

R
frp

2e

//

fp
2e

��

. . .

R
fr+pe−1

//

��

R
f (r+pe−1)pe

//

��

R
f (r+pe−1)p2e

//

��

. . .

R/f
fr+pe−1

//

��

R/f p
e f (r+pe−1)pe

//

��

R/f p
2ef (r+pe−1)p2e

//

��

. . .

0 0 0

We note that R/f
fr+pe−1

→ R/f p
e

is the zero map because r ≥ 1 (recall α > 0).

By taking direct limits, we obtain that the induced morphism Mα → Mα+1 is an

isomorphism of F -modules, hence of DR-modules.

Proposition IV.0.10. If ` ∈ N, then f `JF (fα) ⊂ JF (fα+`).

Proof. Let φ : Mα → Mα+` be the morphism of DR-modules given by eα 7→ f `eα+`.

We know that φ is an isomorphism by Lemma IV.0.9. We obtain

f `JF (fα)eα+` = JF (fα)f `eα+` = φ(JF (fα)eα) = φ(Nα ∩Reα)
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= φ(Nα) ∩ φ(Reα) = Nα+` ∩Rf `eα+` ⊂ Nα+` ∩Reα+` = JF (fα+`)eα+`.

We now define inductively a sequence of ideals IjR(fα) associated to fα. These

ideals will help us relate the test ideals to the F -jumping ideals.

Definition IV.0.11. Given a representation of α = r
pe−1 . We set I1R(fα) = τ(fα).

Given IjR(fα), we let

Ij+1
R (fα) =

((
IjR(fα)

)[pe]
: f r
)
.

If it is clear in which ring we are taking these ideals, we simply write Ij(fα).

We collect some basic properties of this sequence of ideals in the following propo-

sition.

Proposition IV.0.12. If IjR(fα) is the sequence of ideals associated to f ∈ R and

α = r
pe−1 , then for every positive integer j:

(i) IjR(fα) ⊂ Ij+1
R (fα), hence InR(fα) = In+jR (fα) for some n sufficiently large.

(ii) f rIj+1
R (fα) ⊂ IjR(fα)[p

e].

(iii) For all j > 1 there is an equality IjR(fα) = (τ(fα)[p
je] : f r(1+p

e+...+pe(j−1))).

Proof. We note that

f rI1(fα) = f rτ(fα) = τ(f r+α) = τ(fp
eα) ⊂ τ(fα)[p

e] = I1(fα)[p
e].

The second equality follow from Skoda’s Theorem (Proposition III.1.20) and the last

containment from Lemma IV.0.6. As a consequence, I1(fα) ⊂ I2(fα) and f rI2(fα) ⊂
I1(fα)[p

e]. The assertions in (i) and (ii) follow by induction. Part (iii) follows in the

case j = 2 by definition. Suppose that we know the result for j − 1, then

IjR(fα) =
((
Ij−1R (fα)

)[pe]
: f r
)

=

((
τ(fα)[p

e(j−1)] : f r(1+p
e+...+pe(j−2))

)[pe]
: f r
)
,

which, by the flatness of Frobenius and the properties of colon ideals in the regular

case, is equal to (
τ(fα)[p

ej ] : f r(1+p
e+...+pe(j−1))

)
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As far as we know the flag of ideals associated to f and α may depend on the

presentation of α. But, as the next proposition shows, the union of these ideals does

not depend on the presentation of α.

Proposition IV.0.13. JF (fα) =
⋃
j Ij(fα) = In(fα) for n� 0.

Proof. By the definition of τ(fα) and Proposition II.2.18, we have that, for a positive

integer n ∈ N, τ(fα)[p
se] =

((
f dp

eαe)[1/pse])[pse] = D
(es)
R (f dp

seαe) for s ≥ n. Then, by

Lemma IV.0.8,

JF (fα)eα = Nα ∩Reα = DRf
dαe · eα ∩Reα

=
⋃
s≥0

(
D

(es)
R (f r(1+...+p

e(s−1))f dαe) : f r(1+...+p
e(s−1))

)
eα

=
⋃
s≥n

(
D

(es)
R (f r(1+...+p

e(s−1))f dαe) : f r(1+...+p
e(s−1))

)
eα

=
⋃
s≥n

(
D

(es)
R (f dr(1+...+p

e(s−1))+αe) : f r(1+...+p
e(s−1))

)
eα

=
⋃
s≥n

(
D

(es)
R (f dp

esαe) : f r(1+...+p
e(s−1))

)
eα

=
⋃
s≥n

(
τ(fα)[p

se] : f r(1+...+p
e(s−1))

)
eα =

⋃
s≥n

Is(fα)eα.

The F -jumping ideals behave well with respect to localization and completion.

Proposition IV.0.14. If W ⊂ R is a multiplicative system in R, then JFW−1R
(fα) =

W−1JF (fα).

Proof. Choose n such that JFR
(fα) = InR(fα). By Proposition IV.0.12(iii) we have

JFR
(fα) = (τ(fα)[p

je] : f r(1+p
e+...+pe(j−1)))

for all j > n. We know that test ideals commute with localization [BMS08, Proposi-

tion 2.13]. Since colon ideals and Frobenius powers of ideals commute with localiza-

tion as well, the result follows from Proposition IV.0.13.

Proposition IV.0.15. If R is a local ring and R̂ is the completion of R with respect

to the maximal ideal, then JF
R̂

(fα) = JFR
(fα)R̂.

Proof. This proof is analogous to the proof of Proposition IV.0.14.
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Notation IV.0.16. Every F e-submodule of Mα is determined by an ideal I ⊂ R

such that we have an induced map I
fr→ I [p

e], that is f rI ⊂ I [p
e], [Lyu97, Corollary

2.6]. The F e-submodule of Mα generated by I is given by

NI = lim
→

(
I
fr→ I [p

e] f
per

→ I [p
2e] f

p2er

→ . . .

)
.

Lemma IV.0.17. If I, J ⊂ R are ideals such that f rI ⊂ I [p
e], f rJ ⊂ J [pe], and

I ⊂ J , then the F e-submodule of Mα generated by I is equal to the one generated by

J if and only if there exists ` ∈ N such that f r(1+...+p
e(`−1))J ⊂ I [p

e`].

Proof. Let NI and NJ be the F e-submodules of Mα generated by I and J respectively.

In this case J/I
fr→ J [pe]/I [p

e] generates the F e-module NJ/NI . Since J/I is a finitely

generated R-module, NJ = NI if and only if there exists ` such that

J/I
fr(1+...+pe(`−1))

→ J [pe`]/I [p
e`]

is the zero morphism. Therefore, NI = NJ if and only if there exists ` ∈ N such that

f r(1+...+p
e(`−1))J ⊂ I [p

e].

Proposition IV.0.18. Nα is an F e-submodule of Mα. Moreover, the morphisms

JF (fα)
fr→ JF (fα)[p

e] and τ(fα)
fr→ τ(fα)[p

e] generate Nα as an F e-module.

Proof. By the definition of τ(fα) and Proposition II.2.18, there is an integer ` such

that τ(fα)[p
se] =

((
f dp

seαe)[1/pse])[pse] = D
(es)
R (f dp

esαe) for all integers s ≥ `. Then,

Nα = DR · f dαeeα =
⋃
s≥0

D
(es)
R · f dαeeα =

⋃
s≥`

D
(es)
R · f dαeeα

=
⋃
s≥`

(
D(es)(f r(1+...+p

e(s−1))f dαe)/f r(1+...+p
e(s−1))

)
· eα

=
⋃
s≥`

(
D

(es)
R (f dp

esαe)/f r(1+...+p
e(s−1))

)
· eα

=
⋃
s≥`

(
τ(fα)[p

se]/f r(1+...+p
e(s−1))

)
· eα.

By Lemma IV.0.6, we have f rτ(fα) = τ(f r+α) = τ(fp
eα) ⊂ τ(fα)[p

e]. Hence

τ(fα)
fr→ τ(fα)[p

e] is a root for the F e-submodule of Mα⋃
s

(
τ(fα)[p

se]/f r(1+...+p
e(s−1))

)
· eα.
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We conclude that Nα is the F e-submodule of Mα generated by the morphism τ(fα)
fr→

τ(fα)[p
e].

For the second part, we note that f rIs(fα) ⊂ Is(fα)[p
e] for every s by Propo-

sition IV.0.12 (i) and (ii). As a consequence, we deduce that Is(fα) also generates

an F e-submodule of Mα. By the same proposition f rIs+1(fα) ⊂ Is(fα)[p
e]. There-

fore the F e-submodules generated by Is(fα) are all the same by Lemma IV.0.17. As

JF (fα) = Is(fα) for sufficiently large s, the result follows.

Lemma IV.0.19. If I ⊂ R is a nonzero ideal such that I ⊆ (I [p
e] : f r), then f ∈

√
I.

Proof. The hypothesis is equivalent to f rI ⊆ I [p
e]. Let P be a prime ideal of R. If

f /∈ P then IRP ⊆ (IRP )[p
e]. Therefore, by Nakayama’s Lemma, we have IRP = RP .

Hence if a prime ideal P contains I, then it must contain f as well. The result follows

since
√
I is the intersection of all prime ideals containing I.

Proposition IV.0.20. For any nonzero F e-submodule N of Mα, we have Nα ⊂ N.

In particular, Nα is a simple F e-module.

Proof. Since any two R-modules intersect nontrivially in Rf , we deduce that there

is a minimal simple F e-submodule N. If I is the ideal such that Reα
⋂
N = Ieα,

we have I = (I [p
e] : f r) [Lyu97, Corollary 2.6]. Moreover, N = NI (see Notation

IV.0.16). Then fn ∈ I for some n ∈ N by Lemma IV.0.19.

Choose ` large enough such that τ(fα)[p
se] =

((
f dp

seαe)[1/pse])[pse] = D
(es)
R (f dp

seαe)

and τ(f
n

pse
+α) = τ(fα) for all s ≥ ` (cf. Proposition II.2.18). We have

DR · fneα =
⋃
s≥0

D
(es)
R · fneα =

⋃
s≥`

D
(es)
R · fneα

=
⋃
s≥`

(
D

(es)
R (f r(1+...+p

e(s−1))fn)/f r(1+...+p
e(s−1))

)
· eα

=
⋃
s≥`

(
D

(es)
R (fn+r(1+...+p

e(s−1)))/f r(1+...+p
e(s−1))

)
· eα

=
⋃
s≥`

(((
fn+r(1+...+p

e(s−1))
)[1/pse])[pes]

/f r(1+...+p
e(s−1))

)
· eα

=
⋃
s≥`

(
τ(f

n
pes

+
r(1+...+pe(s−1))

pes )[p
es]/f r(1+...+p

e(s−1))

)
· eα

⊃
⋃
s≥0

(
τ(f

n
pes

+α)[p
es]/f r(1+...+p

e(s−1))
)
· eα
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⊃
⋃
s≥`

(
τ(fα)[p

es]/f r(1+...+p
e(s−1))

)
· eα = DR · f dαeeα = Nα.

Since DR · fneα ⊆ N , we conclude Nα ⊆ N .

Corollary IV.0.21. Nα is a simple DR-module.

Proof. Since Nα is a simple F e-module, it is a direct sum of simple DR-modules by

Corollary II.2.24. Using the fact that any two R-modules in Rf intersect nontrivially,

Nα must be a simple DR-module.

Proposition IV.0.22. If I ⊂ τ(fα) is a nonzero ideal such that I ⊂ (I [p
e] : f r), then

I = τ(fα). In particular, τ(fα)eα is a minimal root for Nα.

Proof. The flatness of Frobenius and the properties of colon ideals in the regular case

imply that

(I [p
se] : f r(1+p

e+...+pe(s−1))) =

((
I [p

(s−1)e] : f r(1+p
e+...+pe(s−2))

)[pe]
: f r
)
.

Hence, by a trivial induction, we deduce that I ⊂ (I [p
se] : f r(1+p

e+...+pe(s−1))) for every

s ∈ N. There exists n ∈ N such that fn ∈ I by Lemma IV.0.19, and we can choose

it such that n > α. Hence fn+
pes−1
pe−1

r ∈ I [pes] which implies(
fn+

pes−1
pe−1

r
)[1/pes]

⊂ I.

Note that (pe − 1)n > r. Thus,

1

pes

(
n+

pes − 1

pe − 1
r

)
=

(pe − 1)n+ (pes − 1)r

pes(pe − 1)
=

((pe − 1)n− r
pes(pe − 1)

+
r

pe − 1
>

r

pe − 1
,

and

lim
s→∞

(pe − 1)n+ (pes − 1)r

pes(pe − 1)
=

r

pe − 1
= α.

Then, by Theorem II.2.12 and Proposition II.2.11, we have that for ` sufficiently large,

τ(fα) =

(
fn+

pe`−1
pe−1

r

)[1/pe`]

⊂ I ⊂ τ(fα). Therefore I = τ(fα).

We now prove that τ(fα) is a minimal root. First, we note that Proposition

IV.0.18 guaranties that τ(fα) is indeed a root for Nα. If I is any other root for Nα,

then it must satisfy f rI ⊆ I [p
e], hence I ⊂ (I [p

e] : f r). Therefore, by the first part,

τ(fα) ⊂ I. The result follows.
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Using ideas analogous to the ones used in the previous proof, we recover a result

previously obtained by Blickle [Bli08, Note before Proposition 3.5]

Proposition IV.0.23. Let β = a
b
∈ Q>0. If α > β, then f rτ(fβ) ⊂ τ(fβ)[p

e] and

τ(fβ) generates Mα as F e-module.

Proof. Since r
pe−1 >

a
b
, we have that br + a > pea. Then

f rτ(fβ) = τ(fβ+r) = τ(f
a+br

b ) ⊂ τ(f
pea
b ) = τ(fp

eβ) ⊂ τ(fβ)[p
e],

where the last containment follows from Lemma IV.0.6. Thus τ(fβ) generates an

F -submodule of Mα.

Clearly lim
`→∞

r(1+...+pe(`−1))
pe`

= α, so we can pick ` ∈ N such that r(1+ . . .+pe(`−1)) >

pe`β. With this choice of `, we have by Proposition II.2.11

f r(1+...+p
e(`−1))R ⊂

((
f r(1+...+p

e(`−1))
)[1/pel])[pel]

= τ

(
f

r(1+...+pe(`−1))

pe`

)[pel]

.

Then τ

(
f

r(1+...+pe(`−1))

pe`

)
generates Mα as an F e-module by Lemma IV.0.17. In

view of τ(f
r(pe(`−1)+...1)

pe` ) ⊂ τ(fβ), we deduce that τ(fβ) also generates Mα as an F e-

module.

Remark IV.0.24. The result in [Bli08] shows more; the test ideal τ(fα−ε) is a

minimal root for the F e-module Mα.

Theorem IV.0.25. Let R be an F–finite regular domain and f ∈ R be a nonzero ele-

ment. Let α ∈ Q be a rational number with no positive power of p in the denominator.

Suppose that (pe − 1)α ∈ N. The following are equivalent:

(i) α is not an F -jumping number;

(ii) Nα = Mα;

(iii) Mα is a simple DR-module;

(iv) Mα is a simple F e-module (with the structure induced by the representation for

α);

(v) JF (fα) = R.
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Proof. By definition, α = r
pe−1 is not an F -jumping number if and only if τ(fα) =

τ(fα−ε). By Proposition IV.0.22 and Remark IV.0.24 we know that these ideals are

the miminal roots of the F e-modules Mα and Nα. Therefore the equality τ(fα) =

τ(fα−ε) happens if and only if Nα = Mα, which is equivalent to JF (fα) = R. The

rest follows the fact that Nα is a the unique simple F e-submodule/DR-submodule of

Mα, see Proposition IV.0.20 and Corollary IV.0.21.

By Theorem IV.0.25 there is an algorithm to decided whether a number of the

form r
pe−1 is an F -jumping number for f ∈ R, if there is an algorithm to compute

JF (fα). We describe this algorithm next:

Algorithm IV.0.26.

Input: α = r
pe−1 and f ∈ R.

Output: R if α is not F -jumping number for f and a proper ideal otherwise.

Process: Compute τ(fα)1;

Take J1 = τ(fα);

Compute Jn+1 = (J
[pe]
n : f r) until there is an ` such that J` = J`+1;

Return: JF (fα) = J`.

Example IV.0.27. Let R = F13[x, y] and f = x2 + y3. Therefore:

(i) If α = 11
12
, τ(fα) = (x, y)R, J1 = (x, y)R, and J2 = ((x13, y13) : f 11) = R because

f 11 is equal to x22 − 2x20y3 + 3x18y6 − 4x16y9 + 5x14y12 − 6x12y15 − 6x10y18 +

5x8y21−4x6y24+3x4y27−2x2y30+y33. Therefore 11
12

is not an F -jumping number.

(ii) If α = 10
12
, τ(fα) = (x, y)R, J1 = (x, y)R, and J2 = ((x13, y13) : f 10) = (x, y)

because f 10 is equal to x20 − 3x18y3 + 6x16y6 + 3x14y9 + 2x12y12 + 5x10y15 +

2x8y18 + 3x6y21 + 6x4y24 − 3x2y27 + y30. Therefore 10
12

is an F -jumping number.

Proposition IV.0.28. Let R be an F -finite regular domain and f a nonzero element

of R. If α is a rational number such that p does not divide its denominator, then√
JF (fα) =

√
(τ(fα) : τ(fα−ε)).

Proof. We consider a prime ideal Q ⊂ R. We have JFRQ
(fα) = JFR

(fα)RQ = RQ if

and only if α is not an F -jumping number for f inRQ. This is equivalent to (τ(fαRQ) :

τ(fα−εRQ)) = RQ. We conclude that SuppRR/JF (fα) = SuppRR/(τ(fα) : τ(fα−ε)),

hence
√
JF (fα) =

√
(τ(fα) : τ(fα−ε)).

1There are algorithms for computing the test ideal τ(fα), some of which have been implemented
for Macaulay 2 by Daniel Hernández, Moty Katzman, Sara Malec, Karl Schwede, Pedro Teixeira
and Emily Witt.
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Remark IV.0.29. In general, JF (fα) is not equal to (τ(fα) : τ(fβ)). For example,

let R = F7[x, y], f = x3y2, and α = 4
6
. In this case, β = 3

6
is the biggest F -

jumping number smaller than α. We have τ(fβ) = xyR and τ(fα) = x2yR, hence

(x2yR : xyR) = xR. However, JF (fα) = x2.

For test ideals, we have τ(fpα) ⊂ τ(fα)[p]. We finish this section by showing that

for F -jumping ideals a stronger result is true. In the process we use the sequence of

ideals from Definition IV.0.11.

Lemma IV.0.30. If f and α are as above, then Ij(fpeα) = Ij−1(fα)[p
e] for j ≥ 2.

Proof. We will prove that Ij(fpeα) = Ij−1(fα)[p
e] for j ≥ 2 by induction on j. If

j = 2, then

I2(fpeα) = I2(fα+r) = (τ(fα+r)[p
e] : fp

er)

by the flatness of Frobenius in the regular case, the later expression is equal to

= (τ(fα+r) : f r)[p
e] = (f rτ(fα) : f r)[p

e] = τ(fα)[p
e] = I1(fα)[p

e].

If the assertion is true for j, then,

Ij+1(fp
eα) = (Ij(fpeα)[p

e] : fp
er) = (Ij(fpeα) : f r)[p

e]

= (Ij−1(fα)[p
e] : f r)[p

e] = Ij(fα)[p
e].

Proposition IV.0.31. Let R be an F -finite regular domain and f a nonzero element

of R. If α is a rational number such that p does not divide its denominator, then

JF (fpα) = JF (fα)[p].

Proof. We first note that JF (fp
eα) = JF (fα)[p

e] because

JF (fp
eα) =

⋃
j

Ij(fpeα) =
⋃
j

Ij(fα)[p
e] = JF (fα)[p

e],

here the first equality follows from Proposition IV.0.13, and the second one from

Lemma IV.0.30. In addition, from Proposition IV.0.13 and the definition of Ij(fpeα),

we have that for n large enough

JF (fα)[p] = In(fα)[p] =
(
In(fα)[p

e] : f r
)[p]

= (JF (fα)[p
e+1] : fpr).
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Hence, JF (fα)[p] defines the F e-submodule of Mpα generated by the morphism

JF (fα)[p]
fpr→ JF (fα)[p

e+1].

Since JF (fpα) defines the unique simple F -submodule of Mpα by Propositions IV.0.18

and IV.0.20, JF (fpα) ⊂ JF (fα)[p]. Combining these two observations we have that

JF (fp
eα) ⊂ JF (fp

e−1α)[p] ⊂ . . . ⊂ JF (fpα)[p
e−1] ⊂ JF (fα)[p

e] = JF (fp
eα).

We conclude that all the containments are equalities. Since the Frobenius map is

faithfully flat, we deduce that JF (fpα) = JF (fα)[p].
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CHAPTER V

The intersection homology modules and the

F -Jacobian ideals

The purpose of this chapter is two-fold: First, to extend the the notion of the

intersection homology modules for hypersurfaces, introduced by Blickle [Bli04] in the

local case, to the case of an arbitrary regular F -finite ring R of positive characteristic.

Second, to introduced the F -Jacobian ideal of an element f ∈ R.

Notation V.0.32. Throughout this chapter R denotes an F -finite regular domain

of characteristic p > 0. For f ∈ R, let σ : R/fR → Rf/R be the R-linear morphism

given by σ([a]) = [a/f ]. Since σ is injective, we identify R/fR with its image in

Rf/R. For example, by R/fR ⊂ Rf/R we mean σ(R/fR) ⊆ Rf/R.

V.1 Definition and first properties

In this section we define the F -Jacobian ideal and deduce some of its properties.

We start with a few preliminary lemmas.

Lemma V.1.1. Let f ∈ R be an element and π : R → R/fR be the quotient

morphism. If

N = {N ⊂ Rf/R | N is an F -submodule} and I = {I ⊂ R | f ∈ I, (I [p] : fp−1) = I},

then there is a bijective correspondence between N and I, given by sending N to

IN = π−1(N ∩ R/fR). Its inverse is defined by sending the ideal I ∈ I to the

F -module NI generated by

I/fR
fp−1

→ F (I/fR) = I [p]/fpR.

52



Proof. Since φ : R/fR
fp−1

→ R/f pR is a root for Rf/R, its F -submodules are in

bijective correspondence with ideals J ⊂ R/fR such that φ−1(F (J)) = J [Lyu97,

Corollary 2.6]. If J = I/fR for an ideal I ⊂ R, then F (J) = I [p]/fpR. Therefore,

φ−1(I [p]/fp) = {h ∈ R/fR | fp−1h ∈ I [p]/fp}

= {h ∈ R | fp−1h ∈ I [p]}/fR = (I [p] : fp−1)/fR

and the result follows.

Lemma V.1.2. Suppose that R is a UFD. If f ∈ R is an irreducible element, then

N ∩M 6= 0 for any nonzero R-submodules M,N ⊂ Rf/R.

Proof. Let a/fβ ∈M \{0} and b/fγ ∈ N \{0}, where β, γ ≥ 1. Since R is a UFD and

f is irreducible, we may assume that gcd(a, f) = gcd(b, f) = 1. Then, gcd(ab, f) = 1,

hence ab/f 6= 0 in Rf/R. We have ab/f = bfβ−1(a/fβ) = afγ−1(b/fγ) 6= 0, and we

conclude that ab/f ∈ N ∩M.

Lemma V.1.3. Suppose that the ring R is a UFD. If f ∈ R is an irreducible element,

then there is a unique simple DR-submodule in Rf/R. In particular, the result holds

if R is a local ring.

Proof. Since Rf/R is a DR-module of finite length [Lyu97, Example 5.2], there exists

a simple DR-submodule M ⊂ Rf/R. Let N be any simple DR-submodule of Rf/R.

Since M ∩ N 6= 0 by Lemma V.1.2 and M is a simple DR-module, M = M ∩ N .

Likewise, N = M ∩N. Therefore we have a unique nonzero simple DR-submodule of

Rf/R.

Remark V.1.4. Let I ⊂ R be an equidimensional ideal of codimension 1. Let

Q1, . . . , Q` be the minimal primes of I. By applying the Mayer-Vietories sequence

[BS98, Chapter 3], we obtain, for all 2 ≤ i ≤ `, the exact sequence

H1
Q1∩...∩Qi−1+Qi

(R)→ H1
Q1∩...∩Qi−1

(R)⊕H1
Qi

(R)→ H1
Q1∩...∩Qi

(R).

Furthermore, since depth(Q1∩. . .∩Q`−1+Q`) = 2, it follows thatH1
Q1∩...∩Q`−1+Q`

(R) =

0. Therefore we have injective morphisms

H1
Q1∩...∩Qi−1

(R)⊕H1
Qi

(R)→ H1
Q1∩...∩Qi

(R).
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We deduce that there is an injective map

η : H1
Q1

(R)⊕ . . .⊕H1
Q`

(R)→ H1
Q1∩...∩Q`

(R) = H1
I (R).

Where the equality follows from the fact that Q1, . . . , Q` are the minimal primes of

I.

Let m ⊂ R be any maximal ideal of R. Since Rm is a UFD, there exist elements

gi, f ∈ Rm such that QiRm = giRm, IRm = fRm and f = g1 · · · g`. In this case we

have H1
Qi

(Rm) ∼= (Rm)gi/Rm, H1
I (Rm) ∼= (Rm)f/Rm, and the map H1

Qi
(Rm)→ H1

I (Rm)

is induced by the localization map (Rm)gi → (Rm)f . As a consequence, we deduce

that the map η is a morphism of F -modules and that H1
Qi

(R) ∼= H0
Qi
H1
I (R).

Propositions V.1.5 and V.1.8 are extensions of [Bli04, Theorem 4.1]. We point

out that the proofs presented in this manuscript use neither étale invariance nor

Kashiwara equivalence.

Proposition V.1.5. If Q is a prime ideal of height 1, then H1
Q(R) has a unique

simple DR-submodule, which is denoted by L(R/Q,R).

Proof. Recall that H1
Q(R) has finite length as an F -module by Theorem II.2.23.

Therefore H1
Q(R) has finite length as a DR-module by Corollary II.2.24. Suppose

that M,N are simple DR-submodules of H1
Q(R). We pick a maximal ideal m ⊂ R.

If Q 6⊆ m, then Mm = Nm = 0. So we can assume that Q ⊂ m. Note that QRm

is a principal ideal in Rm because every regular local ring is a UFD. Therefore we

can find g ∈ Rm such that gRm = QRm. We note that AssRH
1
Q(R) = {Q}. There-

fore AssRN = {Q} because N 6= 0 and AssRN ⊂ AssRH
1
Q(R). As a consequence,

Nm 6= 0. Furthermore, lengthDRm
Nm = 1 because the length as a DR-module cannot

increase under localization. Therefore, Nm is a simple DRm-submodule of H1
g (Rm).

Similarly, Mm is a simple DRm-module of H1
g (Rm) ∼= (Rm)g/Rm. We note that g is

an irreducible element because (g) = QRm is a prime ideal. Therefore Mm = Nm by

Lemma V.1.3. Since this holds for every maximal ideal m, we obtain the assertion in

the proposition.

In [Bli04] Blickle defined the intersection homology DR-modules for a regular local

ring of positive characteristic. We now present an extension of this notion to the case

of any regular ring of positive characteristic.

Definition V.1.6 (cf. [Bli04]). Let I ⊂ R be an equidimensional ideal of codimension

1, and Q1, . . . Q` ∈ R be the minimal primes of I. We define the intersection homology
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DR-module of I by

L(R/I,R) =
∑̀
i=1

L(R/Qi, R),

where this sum is taken in H1
I (R), given that H1

Q1
(R) ∼= H0

Q1
H1
I (R) by Remark V.1.4.

Remark V.1.7 (see [Bli04, Corollary 4.2]). Let I ⊂ R be am equidimensional ideal

of codimension 1. Let N be a simple DR-submodule of H1
I (R) and Q an associated

prime of N . Since H0
Q(N) is a nonzero DR-submodule of N , we have N = H0

Q(N).

We deduce that N is a simple DR-submodule of H0
QH

1
I (R); therefore N = L(R/Q,R)

by Remark V.1.4 and Proposition V.1.5. We conclude that L(R/I,R) is the direct

sum of all simple DR-submodules of H1
I (R) via the inclusion in Remark V.1.4.

Proposition V.1.8. If I ⊂ R is an equidimensional prime ideal of codimension 1,

then L(R/I,R) is an F -submodule of H1
I (R).

Proof. Since the sum of F -submodules is again an F -submodule, by Remark V.1.7 it

suffices to prove the claim for prime ideals. Let Q be a prime ideal of height 1 and

let N denote the intersection homology module L(R/Q,R).

Let H1
Q(R)

θ→ FH1
Q(R) be the structure morphism as an F -module. Let m ⊂ R

be a maximal ideal containing Q. Since Rm is a UFD, there exists g ∈ Rm such that

QRm = gRm. By a similar argument to the one given in the proof of Proposition

V.1.5, we conclude that Nm is the unique simple DR-submodule of H1
g (Rm). That is

Nm is equal to the intersection homology of Rm/gRm, namely L(Rm/gRm, Rm). Then,

Nm = L(Rm/gRm, Rm) is an F -submodule of H1
g (Rm) [Bli04, Theorem 4.3].

We have θm(Nm) = FNm for every maximal ideal because N is locally an F -

submodule of H1
Q(R). Then, θ(N) = FN and N is an F -submodule of H1

Q(R).

Remark V.1.9. Let Q ⊂ R be a prime of height 1. Since L(R/Q,R) is a simple

DR-module and an F -finite F -module, we deduce that it is a simple F -module by

Corollary II.2.24.

Remark V.1.10. Suppose that R is a UFD. As a consequence of Remark V.1.7, we

deduce that if f = f1 · · · f`, with the f1, . . . , f` are relatively prime, then

L(R/fR,R) = L(R/f1R,R)⊕ . . .⊕ L(R/f`R,R) ⊆ Rf/R.

Indeed, this follows from the fact that, for all elements g, h ∈ R such that gcd(g, h) =

1, the intersection of Rg and Rh, as R-submodules of Rgh, is R.

We are ready to introduce the main object studied in this section.
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Definition V.1.11. Let f ∈ R be a nonzero element, Q1, . . . Q` ⊆ R the minimal

primes of R/fR, and π : R→ R/fR the quotient morphism. We denote the pullback

of L(R/fR,R)∩R/fR to R by JF (f) and we call it the F -Jacobian ideal of f . That

is

JF (f) = {a ∈ R| [a/f ] ∈ L(R/fR,R)} .

Proposition V.1.12. Suppose that R is a UFD. If g ∈ R is an irreducible element

and f = gn for some integer n ≥ 1, then there exists a unique ideal I ⊂ R such that:

(i) f ∈ I,

(ii) I 6= fR,

(iii) (I [p] : fp−1) = I, and

(iv) I is contained in any other ideal satisfying (i), (ii), and (iii).

Furthermore, in this case I = JF (f)

Proof. We note that Rf/R = Rg/R and therefore L(R/fR,R) = L(R/gR,R). As g is

an irreducible element of R, Lemma V.1.2 and Remark V.1.9 imply that L(R/fR,R)

is a simple F -module. Let I be the ideal corresponding to L(R/fR,R) given in

Lemma V.1.3 under the bijection in Lemma V.1.1. Therefore, from Lemma V.1.1, we

deduce that I satisfies (i)-(iv) and that I = JF (f).

Remark V.1.13. Suppose that R is a UFD. If f ∈ R is an irreducible element, then:

(i) L(R/fR,R) = L(R/fnR,R) for every n ∈ N because Rfn/R = Rf/R.

(ii) JF (f) is the minimal element of the family of ideals I containing properly fR

such that (I : fp−1) = I by Proposition V.1.12.

(iii) JF (f) is not the usual Jacobian ideal of f . For example, if R = F3[x, y, z, w]

and f = xy + zw, the Jacobian ideal of f is m = (x, y, z, w)R. However,

m 6= (m[3] : f 2) = (x2, y2, z2, w2).

(iv) JF (f) = R if and only if Rf/R is a simple F -module by the proof of Proposition

V.1.12.

(v) Rf/R is a simple DR-module if and only if JF (f) = R. Indeed, both conditions

are equivalent to saying that L(R/fR,R) = Rf/R
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We now study how the F -Jacobian ideal interacts with different elements. In

particular, we start by proving the Leibniz Rule for F -Jacobian ideals.

Proposition V.1.14. Suppose that R is a UFD. If f, g ∈ R are relatively prime

elements, then JF (fg) = fJF (g)+gJF (f). Moreover, we have fJF (g)∩gJF (f) = fgR.

Proof. We consider Rf/R and Rg/R as a F -submodules of Rfg/R, where the inclusion

is induced by the localization maps ιf : Rf → Rfg and ιg : Rg → Rfg.

Let π : R→ R/fgR and ρ : R→ R/fR be the quotient morphisms. The limit of

the vertical morphism in the commutative diagram

0

��

0

��

0

��

R/fR
fp−1

//

g

��

R/f pR
fp

2−p
//

gp

��

R/f p
2
R

gp
2

��

fp
3−p2

// . . .

R/fgR
(fg)p−1

// R/f pgpR
(fg)p

2−p

// R/(fg)p
2
R

(fg)p
3−p2

// . . .

is the morphism Rf/R → Rfg/R induced by ιf . Moreover, the correspondence in

Lemma V.1.1 gives the commutative diagram

0

��

0

��

0

��

JF (f)/fR
fp−1

//

g

��

JF (f)[p]/fpR
fp

2−p
//

gp

��

JF (f)[p
2]/fp

2
R

gp
2

��

// . . .

gJF (f)/fgR
(fg)p−1

// gpJF (f)[p]/fpgpR
(fg)p

2−p

// gp
2
JF (f)[p

2]/(fg)p
2
R // . . .

such that the limit of the vertical maps give the isomorphism of F -modules, ι̃f :

L(R/fR,R)→ ι̃f (L(R/fR,R)). We have

gJF (f) = π−1(L(R/fR,R) ∩R/fgR) ⊂ π−1(L(R/fgR,R) ∩R/fgR) = JF (fg).

In addition, gJF (f) is the ideal that corresponds to ι̃f (L(R/fR,R)) ⊆ Rfg/R via

the bijection in Lemma V.1.1. Likewise, fJF (g) ⊂ JF (fg) and it corresponds, via

Lemma V.1.1, to ι̃g (L(R/gR,R)) as an F -submodule of Rfg/R. Therefore we can

conclude that fJF (g) + gJF (f) ⊂ JF (fg).

We claim that

(
(fpJF (g)[p] + gpJF (f)[p]) : fp−1gp−1

)
= fJF (g) + gJF (f).
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Consider first h ∈ (fpJF (g)[p]+gpJF (f)[p] : fp−1gp−1). Then fp−1gp−1h = fpv+gpw

for some v ∈ (JF (g))[p] and w ∈ JF (g)[p]. Since f and g are relatively prime, fp−1

divides w and gp−1 divides v. Thus, there exist a, b ∈ R such that v = gp−1a and

w = gp−1b. Then, a ∈ (JF (g)[p] : gp−1) = JF (g) and b ∈ (JF (f)[p] : fp−1) = JF (f).

Since fp−1gp−1h = fpv + gpw = fpgp−1a + gpfp−1b, we deduce that h = fa + gb ∈
fJF (g) + gJF (f).

For the reverse inclusion, it is straightforward to check that

fJF (g) + gJF (f) ⊂
(
(fpJF (g)[p] + gpJF (f)[p]) : fp−1gp−1

)
.

Therefore fJF (g) + gJF (f) generates an F -submodule of Rfg/R. If N is such F -

submodule, then N contains both L(R/fR,R) and L(R/gR,R), we conclude that

ι̃f (L(R/fR,R))⊕ ι̃g (L(R/gR,R)) ⊂ N . Therefore, JF (fg) ⊂ fJF (g) + gJF (f) and

the first statement of the proposition follows.

The last part of the proposition is an immediate consequence of the fact that

gcd(f, g) = 1, f ∈ JF (f) and g ∈ JF (g).

Proposition V.1.15. If m,n ∈ N are such that m < n, then fn−mJF (fm) ⊂
JF (fn) ⊂ JF (fm).

Proof. From the definition of F -Jacobian ideal we have

fn−mJF (fm) =
{
a ∈ R|fn−m · [a/fm] ∈ L(R/fR,R)

}
⊂ {a ∈ R| [a/fn] ∈ L(R/fR,R)}

= JF (fn).

The second assertion can be proved in a similar way.

Remark V.1.16. The first inclusion in Proposition V.1.15 can be strict strict. In-

deed, let R = Fp[x] and f = x. In this case, Rf/R is a simple F -module. Therefore,

JF (xm) = R for every m ≥ 1 and fn−mJF (fm) 6= JF (fn) for every n > m.

Corollary V.1.17. If f, g ∈ R are such that f divides g, then, JF (g) ⊂ JF (f).

Proof. It suffices to prove the statement for local rings, hence we may assume that R

is a UFD. In this case, the claim follows from Propositions V.1.14 and V.1.15.
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V.2 Relations with test ideals and F -regularity

In this section we give some further properties of the F -Jacobian ideal. In partic-

ular, we relate it to the study of singularities in positive characteristic.

Notation V.2.1. If f ∈ R is an element such that R/fR is a reduced ring, we denote

by τf the pullback of the test ideal τ(R/fR) of R/fR to R.

Proposition V.2.2. Suppose that R is a UFD. If f ∈ R is an irreducible element,

then

JF (f) =
⋂

gcd(a,f)=1

(⋃
e∈N

(((
fp

e−1a
)[1/pe]

, f
)[pe]

: fp
e−1
))

.

Proof. For 0 6= a/fn ∈ L(R/fR,R), such that gcd(a, f) = 1, we know that 0 6=
a/f ∈ L(R/fR,R), since R is a UFD and f is an irreducible element. Therefore

the simplicity of L(R/fR,R) implies DR · a/f = L(R/fR,R). We can conclude

that L(R/fR,R) is the intersection of all nonzero cyclic DR-submodules generated

by elements a/f ∈ Rf/R. Hence,

JF (f)/f =
⋂

gcd(a,f)=1

((DR · a/f) ∩R · 1/f) =
⋂

gcd(a,f)=1

(⋃
e∈N

(
D

(e)
R · a/f ∩R · 1/f

))
.

Note that b ∈ JF (f) iff b/f ∈ L(R/fR,R) =
⋂

gcd(a,f)=1

⋃
e∈N
(
D(e) · a/f

)
. In this

case, for every a ∈ R such that gcd(a, f) = 1, there exists e ∈ N such that b/f ∈
D

(e)
R · a/f . Thus, there exists φ ∈ D(e)

R such that φ(a/f) = 1/fp
e
φ(fp

e−1a) = b/f in

Rf/R. Then, there exists an element r ∈ R such that φ(a/f) = 1/fp
e
φ(fp

e−1a) =

b/f + r in Rf . We deduce that, fp
e−1b = φ(fp

e−1a) − fper and b ∈ (I : fp
e−1) for

I = D
(e)
R · (fp

e−1a) + fp
e
R. Since

(
(fp

e−1a)[1/p
e]
)[pe]

= D
(e)
R

(
fp

e−1a
)

by Proposition

II.2.18, we conclude that b ∈
⋂

gcd(a,f)=1

(⋃
e∈N

(((
fp

e−1a
)[1/pe]

, f
)[pe]

: fp
e−1
))

.

On the other hand, if

b ∈
⋂

gcd(a,f)=1

⋃
e∈N

(((
fp

e−1a
)[1/pe]

, f
)[pe]

: fp
e−1
)
,

then for every a ∈ R such that gcd(a, f) = 1, there exist e ∈ N, φ ∈ D
(e)
R and

r ∈ R such that fp
e−1b = φ(fp

e−1a)+fp
e
r because

((
fp

e−1a
)[1/pe])[pe]

= D
(e)
R (fp

e−1a).

Therefore, after dividing by fp
e
, we have that b/f ∈ D

(e)
R · a/f in Rf/R, hence,

b ∈ JF (f)
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The following proposition shows that the F -Jacobian ideal commutes with local-

ization.

Proposition V.2.3. If f ∈ R is nonzero and W ⊂ R is a multiplicative system, then

JFW−1R
(f) = W−1JFR

(f).

Proof. Let Q1, . . . , Q` be the minimal primes of fR. We note that for every i,

W−1L(R/QiR,R) is zero if Qi∩W 6= ∅ or a simple DW−1R-submodule of H1
f (W−1R)

if Qi ∩ W = ∅. Hence, if Qi ∩ W = ∅, then W−1L(R/Qi, R) is the intersection

homology of W−1(R/Qi) by Proposition V.1.5. As a consequence, W−1L(R/fR,R)

is the intersection homology of W−1R/fW−1R. Then,

JFW−1R
(f)/fW−1R = W−1R/fW−1R ∩ L(W−1R/fW−1R,W−1R)

= W−1(R/fR ∩ L(R/fR,R)) = W−1(JFR
(f)/fR),

and the result follows.

We now give a theorem that relates the F -Jacobian ideal with F -regularity. We

point out that since R/fR is a Gorenstein ring this theorem is a consequence of a

result of Blickle [Bli04, Corollary 4.10]. However, our proof is different from the one

given there.

Theorem V.2.4. Let f ∈ R be nonzero, such that R/fR is an F -pure ring. If

JF (f) = R, then R/fR is strongly F -regular.

Proof. We may assume that (R,m, K) is local and f ∈ m, because F -purity and

F -regularity are local properties for R/fR and the F -Jacobian ideal commutes with

localization by Proposition V.2.3. We recall that every F -pure ring is reduced [Fed87].

Note that if f = gh for g, h non unit relative primes, then Proposition V.1.14 implies

JF (f) ⊂ (g, h). Hence JF (f) = R implies that f = gn for some irreducible g in R and

some n > 0, but since R/fR is reduced we have n = 1 and therefore f is irreducible.

Due to the fact that JF (f) = R, we obtain that for every a such that gcd(a, f) = 1

there exists an e ∈ N such that R =

(((
fp

e−1a
)[1/pe]

, f
)[pe]

: fp
e−1
)

by Lemma

V.2.2. Then, fp
e−1 ∈

((
fp

e−1a
)[1/pe]

, f
)[pe]

. Since fp
e−1 6∈ m[pe] for every e ∈ N

by Fedder’s criterion [Fed87], R =
(
fp

e−1a
)[1/pe]

; otherwise, (
(
fp

e−1a
)[1/pe]

, f) ⊂ m.

Therefore, there exists a morphism φ ∈ HomRpe (R,Rpe) such that φ(fp
e−1a) = 1.

Let ϕ : R/fR → R/fR be the morphism defined by ϕ([x]) = [φ(fp
e−1x)]. This

corresponds to an R-linear map ϕ′ : R1/pe → R that sends [a]1/p
e → [1]. Hence, R/fR

is strongly F -regular.
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Remark V.2.5. JF (f) = R does not imply that R/fR is F -pure. For example, let

R = F2[x] and f = x2. In this case, JF (f) = R and R/fR is not even reduced.

Remark V.2.6. Blickle showed that the intersection homology module of f is has

the test ideal of R/fR as minimal root [Bli04, Proposition 4.5]. As a consequence,

we have fp−1τf ⊂ τ
[p]
f .

We now turn to the relations between Jf (f) and τf .

Lemma V.2.7. Suppose that R/fR is reduced and let Ij(f) = (τ
[pj−1]
f : fp

j−1−1)

for j > 0. Then Ij(f) ⊂ Ij+1(f) and Ij+1(f) = (Ij(f)[p] : fp−1). Moreover,

Ij(f)/fR
fp−1

→ Ij(f)[p]/fpR generates L(R/fR,R) as an F -module.

Proof. We note that I1(f) = τf and this is a root for L(R/fR,R) by Remark V.2.6. In

addition, fp−1I1(f) = fp−1τf ⊂ τ
[p]
f = I1(f)[p]. Thus, I1(f) ⊂ I2(f) and fp−1I2(f) ⊂

I1(f)[p]. Moreover, I2(f)/fR is also a root for L(R/fR,R) because I2(f)/I1(f) is

the kernel of the map R/I1(f)
fp−1

→ R/I1(f)[p]. Inductively, we obtain that Ij(f) ⊂
Ij+1(f), Ij+1(f) = (Ij(f)[p] : fp−1) and that Ij(f)/fR is a root for L(R/fR,R) for

every j ∈ N. The result follows.

The following proposition allows us to compute the F -Jacobian ideal from the

classical test ideal of R/fR.

Proposition V.2.8. If f is nonzero and R/fR is reduced, then JF (f) =
⋃
j≥1 I

j(f)

and

JF (f)/fR
fp−1

→ JF (f)[p]/fpR

generates L(R/fR,R) as an F -module.

Proof. By the Noetherian property, the flag of ideals

I1(f) ⊂ I2(f) ⊂ I3(f) ⊂ . . .

eventually stabilizes. Let k be such that Ik(f) = Ij(f) for j ≥ k. Then, Ik(f) =

Ik+1(f) = (Ik(f)[p] : fp−1) by Lemma V.2.7. Thus, Ik(f) is an ideal satisfying

the conditions in Proposition V.1.12, hence Jf (F ) ⊂ Ik(f). Since Ik(f)/fR
fp−1

→
Ik(f)[p]/fpR generates L(R/fR,R), we conclude that Ik(f)/fR ⊂ L(R/fR,R) ∩
R/fR = JF (f)/fR. Therefore we have,

JF (f) = Ik(f) =
⋃
j≥1

Ij(f).
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Remark V.2.9. In general, we do not have τf = JF (f). For example let R = K[x],

where K is any perfect field of characteristic p > 0 and let f = x2. In this case, τf =

xR 6= R = JF (f). Example V.5.3 below shows another situation when τf 6= JF (f).

Corollary V.2.10. Suppose that R is an UFD and that it is a Zh-graded ring. If

f ∈ R is a nonzero homogeneous element, then JF (f) is a homogeneous ideal.

Proof. It suffices to prove that L(R/fR,R) is a Zh-graded submodule of Rf/R.

We may assume that R/fR is reduced since
√
f is principal and L(R/

√
fR,R) =

L(R/fR,R). It is known that τ(R/fR) is a homogeneous ideal, see [HH94b, Theo-

rem 4.2]. This implies that IjR(f) is a homogeneous ideal for every j. Therefore, JF (f)

is homogeneous and L(R/fR,R) is a Zn-graded submodule of Rf/R.

Corollary V.2.11. If f ∈ R is nonzero, such that R/fR is reduced, then

V (JF (f)) ⊂ {Q ∈ Spec(R) | RQ/fRQ is not F -regular}.

Moreover, if R/fR is an F -pure ring, then

V (JF (f)) = {Q ∈ Spec(R) | RQ/fRQ is not F -regular}.

Proof. For every prime ideal Q ∈ V (JF (f)), JF (f)RQ = JFRQ
(f) 6= RQ.We have

τfRQ ⊂ JFRQ
(f) ⊂ QRQ. Therefore, RQ is not F -regular.

Now, we suppose that R/fR is F -pure. For every prime ideal Q ⊂ R such that

RQ/fRQ is not F -regular, we have JFRQ
(f) 6= RQ by Theorem V.2.4. Therefore

Q ∈ V (JF (f)).

Lemma V.2.12. Let f ∈ R be a nonzero element. If R/fR is F -pure, then R/JFR
(f)

is F -pure.

Proof. We may assume that R is local with maximal ideal m. Since R/fR is F -pure,

we have fp−1 6∈ m[p] by Fedder’s Criterion [Fed87]. We know that fp−1 ∈ (JF (f)[p] :

JF (f)), hence (JF (f)[p] : JF (f)) 6⊂ m[p]. Therefore, R/JF (f) is F -pure by Fedder’s

Criterion loc. cit.

Corollary V.2.13. Let f ∈ R. If R/fR is an F -pure ring, then JF (f) = τf .

Proof. We have
√
JF (f) =

√
τf by Corollary V.2.11 because

{Q ∈ Spec(R) | RQ/fRQ is not F -regular} = V (τ(R/fR))
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in this case. Since R/JF (f) is F -pure by Lemma V.2.12, JF (f) is a radical ideal. In

addition, τ(R/fR) is a radical ideal [FW89b, Proposition 2.5], hence τf is a radical

ideal. Therefore JF (f) = τf .

V.3 Behavior under extensions

In this subsection we study the behavior of F -Jacobian ideals under completion

and other flat extensions.

Proposition V.3.1. If f ∈ R is nonzero, then JF
R1/p

(f) = JFR
(f)R1/p. Equivalently,

JFR
(fp) = JFR

(f)[p].

Proof. By Proposition V.2.3, since taking p-roots commutes with localization, it suf-

fices to prove the statement for regular local rings. Therefore we may assume that R

is a UFD. By Proposition V.1.14, we may assume that f = gn, where g is irreducible.

Let h denote the length of Rf/R in the category of F -modules. Let G : R1/p → R

be the isomorphism defined by r → rp. Under the isomorphism G, R
1/p
f /R1/p corre-

sponds to Rfp/R. Therefore the length of R
1/p
f /R1/p in the category of FR1/p-modules

is h. Let 0 = M0 ⊂ . . . ⊂Mh = Rf/R be a chain of FR-submodules of Rf/R such that

Mi+1/Mi is a simple FR-module. Let fR = J0 ⊂ . . . ⊂ Jh = R be the corresponding

chain of ideals under the bijection given in Lemma V.1.1. By Proposition V.1.3 and

since f = gn and g is irreducible, M1 = L(R/fR,R) and J1 = JFR
(f). We note that

(J
[p]
i R

1/p : fp−1R1/p) = JiR
1/p and JiR

1/p 6= Ji+1R
1/p because R1/p is a faithfully flat

R-algebra.

Then, we have a strictly ascending chain of ideals

fR1/p = J0R
1/p ⊂ . . . ⊂ JhR

1/p = R1/p

that corresponds to a strictly ascending chain of FR1/p-submodules of R
1/p
f /R1/p. Since

f =
(
g1/p

)p
, g1/p is irreducible and the length of R

1/p
f /R1/p is h, we have

JFR
(f)R1/p = J1R

1/p = JF
R1/p

(f).

We conclude that

JFR
(f)[p] = G(JFR

(f)R1/p) = G(JF
R1/p

(f)) = JFR
(fp).
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Proposition V.3.2. If R→ S is a flat morphism of regular F -finite domains, then

JFS
(f) ⊂ JFR

(f)S.

Proof. By Proposition V.2.3, since flatness is a local property, it suffices to prove our

claim for local rings. By Proposition V.1.14 we may assume that f = gβ, where g

is an irreducible element in R. Since S is flat, (JFR
(f)[p]S : fp−1) = JFR

(f)S. Let

M denote the FS-submodule of Sf/S given by JFR
(f)S under the correspondence in

Lemma V.1.1. If f is a unit in S, then JF (f)S = S and the result is immediate. We

may assume that f is not a unit in S. Since JF (f) 6= fR, we can pick a ∈ JF (f)\fR.
Then, a = bgγ for some 0 ≤ γ < β and b ∈ R such that gcd(b, g) = 1. In this case,

R/g
b→ R/g is injective, hence S/gS

b→ S/gS is also injective. Thus, gcd(b, g) = 1 in

S. Hence, b/g is not zero in Sg/S. Moreover, b/g = gβ−γ−1a/f ∈M and it is not zero.

Let g1, . . . , g` ∈ S be irreducible relatively prime elements such that g = gβ11 · · · g
β`
` .We

have b/gi = hib/g ∈ Sgi/S ∩M \ {0}, where hi = gβ11 · · · g
βi−1
i · · · gβ`1 . In particular, as

L(S/giS, S) is the unique simple F -submodule of Sgi/S and the intersection Sgi/S∩N
is nontrivial we have that L(S/giS, S) ⊂ Sgi/S∩M ⊂M for every i. Hence we deduce

L(S/fS, S) ⊂M , which implies JFS
(f) ⊂ JFR

(f)S.

Proposition V.3.3. Suppose that R is a local ring. If f ∈ R is nonzero, then

JF
R̂

(f) = JFR
(f)R̂, where R̂ denotes the completion of R with respect to the maximal

ideal.

Proof. We have L(R̂/fR̂, R̂) = L(R/fR,R)⊗R R̂ [Bli04, Theorem 4.6], hence

JF
R̂

=
(
R̂/fR̂

)
∩ L(R̂/fR̂, R̂) = ((R/fR) ∩ L(R/fR,R))⊗R R̂ = JFR

(f)R̂.

Proposition V.3.4. Suppose that (R,m, K) is local. Let (S, η, L) denote a regular

F -finite ring. If R → S is a flat local morphism such that the closed fiber S/mS is

regular and L/K is separable, then JFS
(f) = JFR

(f)S.

Proof. We can assume without loss of generality that R/fR is reduced because

the intersection homology depends only on the local cohomology H1
f (R). We have

JF
R̂

(f) = JFR
(f)R̂ and JF

Ŝ
(f) = JFS

(f)Ŝ by Proposition V.3.3. In addition, the

induced morphism R̂→ Ŝ is still a flat local morphism. Since JFS
(f) ⊂ JFR

(f)S and

JF
Ŝ
(f) ⊂ JF

R̂
(f)Ŝ by Proposition V.3.2, JF

R̂
(f)Ŝ/JF

Ŝ
(f) = (JFR

(f)S/JFS
(f))⊗S Ŝ.

Therefore, we can assume that R and S are complete. In this case, we know that

S/fS is reduced and τ(R/fR)S = τ(S/fS) [HH94a, Theorem 7.2]. Therefore,

IjS(f) = IjR(f)S and JFS
(f) = JFR

(f)S by Proposition V.2.8.
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We now focus on F -Jacobian ideals in polynomial rings over a field. In particular,

we study how the F -Jacobian ideal behaves under field extensions.

Lemma V.3.5. Let R = K[x1, . . . , xn], where K is a perfect field. If K → L is a

finite algebraic field extension, S = L[x1 . . . , xn], and R → S is the map induced by

the extension, then JFS
(f) = JFR

(f)S.

Proof. Note that L is F -finite since the extension is finite, therefore so is S. By

V.1.14, we can assume that f = gβ, where g is an irreducible element in R. By

Proposition V.3.2, it suffices to show that JFR
(R)S ⊂ JFS

(S).

There is an inclusion φ : Rf/R → Sf/S, which is induced by R → S. We take

M = L(S/fS, S) ∩Rf/R. We claim that M is a DR-submodule of Rf/R. Since K is

perfect, we have

DR = D(R,Z/pZ) =
⋃
e∈N

HomRpe (R,R) = D(R,K) = R[
1

t!

∂t

∂xti
].

We note that DR = D(R,K) ⊂ D(S,K) ⊂ DS, and that φ( 1
t!
∂t

∂xti
v) = 1

t!
∂t

∂xti
φ(v)

for every v ∈ Rf/R. As a consequence, ∂t

∂xti
v ∈ M for every v ∈ M. Therefore, M is

a DR-module.

Let I = M ∩R/fR. We note that

I = L(S/fS, S) ∩R/fR = (JFS
(f)/fS) ∩R/fR

and that S/fS is an integral extension of R/fR because L is an algebraic extension

of K. Let r ∈ JFS
(f)/fS not zero, and aj ∈ R/fR such that a0 6= 0 and rn +

an−1r
n−1 + . . . + a1r + a0 = 0 in S/fS. Then, r(an−1r

n−1 + . . . + a1) = −a0, and so

a0 ∈ I = (JFS
(f)/fS) ∩ R/fR, and then M 6= 0. Therefore, L(R/fR,R) ⊂ M and

so JF (f)/f ⊂ I. Let π : R→ R/fR be the quotient morphism. Then,

JFR
(f) ⊂ π−1(I) = JFS

(f) ∩R, and JFR
(f)S ⊂ (JFS

(f) ∩R)S ⊂ JFS
(f).

Lemma V.3.6. Let R = K[x1, . . . , xn], where K is an F -finite field. Let L = K1/p,

S = L[x1 . . . , xn], and R → S the map induced by the extension K → L. Then

JFS
(f) = JFR

(f)S.

Proof. We have that R ⊂ S ⊂ R1/p. Then, by Proposition V.3.2,

JF
R1/p

(f) ⊂ JFS
(f)R1/p ⊂ (JFR

(f)S)R1/p = JFR
(f)R1/p.
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Since JF
R1/p

(f) = JFR
(f)R1/p by Proposition V.3.1,

0 = JFS
(f)R1/p/(JFR

(f)S)R1/p = (JFS
(f)/JFR

(f)S)⊗S R1/p.

Therefore, JFS
(f) = JFR

(f)S because R1/p is a faithfully flat S-algebra.

Lemma V.3.7. Let R = K[x1, . . . , xn], where K is an F -finite field. Let L be the

perfect closure of K, S = L[x1 . . . , xn], and R→ S the map induced by the extension

K → L. Then JFS
(f) = JFR

(f)S.

Proof. We may assume that f = gn for an irreducible g ∈ R by Proposition V.1.14.

Let Se = K1/pe [x1, . . . , xn]. Let h1, . . . , h` denote a set of generators for JFS
(f). In

this case, (JFS
(f)[p] : fp−1) = JFS

(f). Then there exist ci,j ∈ S such that fp−1hj =∑
ci,jh

p
j . Since S =

⋃
e S

e, there exists m such that ci,j, hj ∈ Sm. Let I ⊂ Sm be the

ideal generated by h1, . . . , h`. We note that IS = JFS
(f); moreover, JFS

(f)∩ Sm = I

because Se → S splits for every e ∈ N.

We claim that (I [p] : fp−1) = I. We have that fp−1h` ∈ I [p] by our choice of

m and so I ⊂ (I [p] : fp−1). If g ∈ (I [p] : fp−1), then fp−1g ∈ I [p]S ⊂ JFS
(f)[p] and

g ∈ JFS
(f) ∩ Sm = I.

As in the proof of Lemma V.3.5, (JFS
(f)/fS)∩ (Sm/fSm) 6= 0 and then JFS

(f)∩
Sm = I 6= fS. Therefore, JFSm (f) ⊂ I by Proposition V.1.12. Hence,

JFSm (f)S ⊂ IS = JFS
(f) ⊂ JFSm (f)S,

and the result follows because

JFR
(f)S = (JFR

(f)Sm)S = JFSm (f)S.

Theorem V.3.8. Let R = K[x1, . . . , xn], where K is an F -finite field. Let L be

an algebraic extension of K, S = L[x1 . . . , xn], and R → S the map induced by the

extension K → L. Then JFS
(f) = JFR

(f)S.

Proof. By Proposition V.3.2, it suffices to show JFR
(f)S ⊂ JFS

(f). Let K∗ and L∗

denote the perfect closure of K and L respectively. Let R∗ = K∗[x1, . . . , xn] and

S∗ = L∗[x1, . . . , xn]. Then,

(JFR
(f)S)S∗ = JFR

(f)S∗ = (JFR
(f)R∗)S∗ = JFR∗ (f)S∗ = JFS∗ (f) = JFS

(f)S∗
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by Lemma V.3.5 and V.3.7. Therefore,

(JFR
(f)S/JFS

(f))⊗S S∗ = (JFR
(f)S)S∗/(JFS

(f))S∗ = 0.

Hence JFR
(f)S/JFS

(f) = 0 because S∗ is a faithfully flat S-algebra.

Example V.3.9. We can use the previous theorems to compute examples of F -

Jacobian ideals. Let R = F3[x, y], and f = x2 + y2 and m = (x, y). We have that

(m[p] : fp−1) = m. Then, JFR
(f) ⊂ m. Let L = F3[i] the extension of F3 by

√
−1,

S = L[x, y] and φ : R → S be the inclusion given by the field extension. Then,

JFS
(f) = (x, y)S by Proposition V.1.14 because x2 + y2 = (x+ iy)(x− iy). Since φ is

a flat extension, JFS
(f) ⊂ JFR

(f)S. Then, m = R ∩ JFS
(f) ⊂ R ∩ JFR

(f)S ⊂ JFR
(f)

Hence, JF (f) = m.

V.4 Relation to R{F}-modules and Cartier modules

In this section, we discuss two different settings in which F -Jacobian ideals appear.

These connections arise naturally from the relation of test ideals with Cartier modules

and R{F} modules. We refer to [BB11, Bli13, BB11, ST12] for details about Cartier

modules and test ideals, and to [LS01, Sha07, Smi97, Smi95b] for R{F}-modules and

test ideals.

Suppose that (R,m, K) is an F -finite reduced local Gorenstein ring. In this

case, HomR(R1/pe , R) has a structure of an R1/pe-module given by precomposition

of maps: if φ ∈ HomR(R1/pe , R), then r1/p
e · φ is defined by the rule r1/p

e · φ(x1/p
e
) =

φ(r1/p
e
x1/p

e
). As an R1/pe-module, HomR(R1/pe , R) is isomorphic to R1/pe [Fed87,

Lemma 1.6], and we pick a generator Φ. We say that an ideal I ⊂ R is a Cartier

ideal, or an ideal compatible with Φ, if Φ(I1/p
e
) ⊂ I. We point out that this is not the

standard definition in the general theory of Cartier modules, and the one given here

requires that the ring is Gorenstein.

Suppose that (R,m, K) is an F -finite regular local ring. Let f ∈ m and R = R/fR.

Let Φ ∈ HomR(R1/p, R) be a generator of this module over R1/p. We point out that

Φ−1(I) = IR1/p for every ideal I ⊂ R because R1/p is a free R-module. Then, the

map, Φf : R
1/p → R, defined by Φ(x1/p) = φ(f

p−1
p x

1
p ) is a generator for R

1/p
[Fed87,

Lemma 1.6 and Corollaries].

Proposition V.4.1. If R = R/fR is reduced, then JF (f)R is a Cartier ideal of R.

Furthermore, JF (f) is the largest Cartier idea I ⊂ R such that Φ
j
(I1/p

j
) ⊂ τ(R) for

some j ∈ N.
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Proof. Since fp−1JF (f) ⊂ (JF (f))[p], we have that f
p−1
p (JF (f)R)1/p ⊂ JF (f)R

1/p
.

Hence, Φ(JF (f)R
1/p

) ⊂ JF (f)R. Therefore, JF (f) is a Cartier ideal.

For now prove the second statement, we have that Φ
−1

(J) = (JR
1/p

:
R

1/p f
p−1
p )

for any ideal J ⊂ R. If J ′ is the lift of J to R, then (JR
1/p

:
R

1/p f
p−1
p ) = (J ′R1/p :R1/p

f
p−1
p )R

1/p
because f ∈ J ′. Combining this with Proposition V.2.8, we obtain that

JF (f) = Φ
−j (

τ(R)
)

for j � 0. The result follows.

Note that the proposition shows more, it shows that the ideals τ(R) and JF (f) are

equal up to nilpotency of Cartier modules. By the duality between Cartier modules

and R{F}-modules [BB11, Proposition 5.2], we have that Ann
H

dim(R)
m (R)

τ(R) and

Ann
H

dim(R)
m (R)

JF (f) are R{F}-modules, the following is an immediate consequence of

[BB11, Theorem 5.3].

Corollary V.4.2. Up to nilpotency of R{F}-modules, we have that Ann
H

dim(R)
m (R)

τ(R)

and Ann
H

dim(R)
m (R)

JF (f) are equal.

V.5 Examples

In this section we present several examples of F -Jacobian ideals. These compu-

tations are based on previous calculations of the F -pure threshold and the classical

test ideal.

Proposition V.5.1. Let f ∈ R be an element with an isolated singularity at the

maximal ideal m. If Rm/fRm is F -pure, then

JF (f) =

R if R/fR is F -regular

m otherwise

Proof. Since R/fR has an isolated singularity at m, we have JF (f)RP = RP for every

prime ideal different from m, hence m ⊂
√
JF (f).

If Rm/fRm is F -regular, then R/fR is F -regular, and therefore JF (R) = R by

Corollary V.2.11.

On the other hand, if Rm/fRm is not F -regular, then JF (R) 6= R by Corollary

V.2.11. Therefore we have m =
√
JF (f). Since Rm/fRm is F -pure, we deduce that

Rm/JF (f)Rm is F -pure by Lemma V.2.12. Therefore, Rm/JF (f)Rm is a reduced ring,

hence JF (f) = m.
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Example V.5.2. Let K be an F -finite field and let E be an elliptic curve over K.

We choose a closed immersion of E in P2
K and set R = K[x, y, z], the homogeneous

coordinate ring of P2
K . We take f ∈ R as the cubic form defining E. We know that

f has an isolated singularity at m = (x, y, z)R. If the elliptic curve is ordinary, then

R/fR is F -pure [Har77, Proposition 4.21] [BS13, Theorem 4.1]. We know that R/fR

is never an F -regular ring [HH94b, Discussion 7.3b(b), Theorem 7.12]. Therefore

JF (f) = m by Proposition V.5.1.

Example V.5.3. Let R = K[x, y, z], where K is an F -finite field of characteristic

p > 3 and let f = x3+y3+z3 ∈ R. We consider the quotient morphism π : R→ R/fR

and the maximal ideal m = (x, y, z)R. We have τf = m [Smi95b, Example 6.3].

Therefore, m ⊂ JF (f) by Proposition V.2.8. It is known that R/fR is F -pure if and

only if p ≡ 1( mod 3). We have (m[p] : fp−1) = m if p ≡ 1( mod 3)[REFERENCE],

and (m[p] : fp−1) = R if p ≡ 1 mod 2. Therefore, JF (f) = R if p ≡ 2 mod 3, and

JF (f) = m if p ≡ 1 mod 3.

Example V.5.4. Let R = K[x1, . . . , xn], where K is an F–finite field of characteristic

p > 0. Let f = a1x
d1
1 + . . . + anx

dn
n be such that ai 6= 0 for all i. The ring R/fR has

an isolated singularity at the maximal ideal m = (x1, . . . , xn). If 1
d1

+ . . . + 1
dn

= 1,

then R/fR is F -pure for p� 0 [Her14, Theorem 3.1]. In addition, R is not F -regular

[Gla96, Theorem 3.1] because fp−1 is congruent to cxp
e−1

1 · · ·xpe−1n module m[pe] for

some element c ∈ K \ {0}. Therefore JF (f) = R for p� 0 by Proposition V.5.1.

Remark V.5.5. Let R = K[x1, . . . , xn] be a polynomial ring and f ∈ R be such

that R/fR is reduced. We can obtain JF (f) from τ(R/fR) by Proposition V.2.8. In

the case n > 3, f = xd1 + . . .+ xdn and DR is not divisible by the characteristic of K,

there is an algorithm to compute the test ideal of R/fR [McD03]. Therefore, when

f = xd1 + . . .+ xdn there is an algorithm to compute JF (f).

Example V.5.6. Let R = K[x1, . . . , xn], where K is a field of characteristic p > 0,

and let f = xd1 + . . .+xdn. This example is based on computations done by McDermott

[McD03, Examples 11, 12 and 13].

If p = 2, n = 5 and d = 5, τf = (x2ixj)1≤i,j≤5. Therefore,

(x21, x
2
2, x

2
3, x

2
4, x

2
5, x1x2x3x4x5)R = (τ

[2]
f : f)

and R = (τ
[4]
f : f 3), hence, JF (f) = R.

If p = 3, n = 4 and d = 7, τf = (x2ix
2
j)1≤i,j≤4. In this case R = (τ

[3]
f : f 2) and

JF (f) = R.
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If p = 7, n = 5 and d = 4, we have τf = (x1, . . . , x5)R and R = (τ
[7]
f : f 6), hence

JF (f) = R.
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