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ABSTRACT

Efficient Inferential Methods in Regression Models with Change Points or High
Dimensional Covariates

by

Ritabrata Das

Co-Chairs: Moulinath Banerjee and Bin Nan

This dissertation focuses on providing efficient inferential method for estimation in broken-

stick model in cross-sectional as well as longitudinal studies, applying the multivariate adap-

tive elastic-net for statistical inference in a multiple pollutant model and proposing a variable

selection procedure for multiple change-points in a broken-stick framework.

Estimation of change-point(s) in the broken-stick model has significant applications in

modeling important biological phenomena. In the first project, we present a computationally

economical likelihood-based approach for estimating change-point(s) efficiently in both cross-

sectional and longitudinal settings. Our method, based on local smoothing in a shrinking

neighborhood of each change-point, is shown via simulations to be computationally more

viable than existing methods that rely on search procedures, with dramatic gains in the

multiple change-point case. The proposed estimates are shown to have
√
n-consistency

and asymptotic normality – in particular, they are asymptotically efficient in the cross-

sectional setting – allowing us to provide meaningful statistical inference. As our primary

and motivating application, we study the Michigan Bone Health and Metabolism Study

cohort data to describe patterns of change in log estradiol levels around the final menstrual

xi



period, for which a two change-point broken-stick model appears to be a good fit. We also

illustrate our method on a plant growth data set in the cross-sectional setting.

Though there has been a considerable work done on studying the effects of coarse and

fine ambient particles, how the constituent pollutants affect cardiovascular functioning is still

not clearly understood. In the second project, we propose using the multivariate adaptive

elastic-net to capture these effects in a multivariate autoregressive model for time series data.

Because of the large number of highly correlated pollutants, a reliable method must take into

account the high dimensionality as well as the multicollinearity issues. This is accomplished

by using the adaptive elastic-net which deals effectively with the correlated nature of the data

during variable selection. Furthermore, the selection consistency and asymptotic normality

properties allow us to provide meaningful statistical inference in this set-up. The method is

shown to perform well in numerical studies. As our motivating example, we study the effects

of multiple pollutants on several cardiovascular end-points in a rat study based in Dearborn,

Michigan, conducted by the Great Lakes Air Center for Integrative Environmental Research

(GLACIER).

Finally, we look at problems where there are several covariates (large p) and some of

the covariates have a simple linear effect while some have a broken-stick effect. In principle,

we are looking at two separate but similar types of problems–one where we have several

covariates each with possibly a broken-stick effect but with only a single change-point and

the other where the broken-stick effect is exhibited in a single covariate but the number

of change-points is unknown. In both settings we strive for a parsimonious yet accurate

model, which necessitates an effective variable selection procedure. In a sparse setting, we

illustrate the difficulty in using the popular variable selection methods and propose a post

local-smoothing thresholded ridge regression as a method for identifying the non-zero linear

and broken-stick type effects. We illustrate the efficiency of this approach via simulations

and discuss possible routes for theoretical justification.
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CHAPTER 1

Introduction

A principal task in modern statistics is to provide computationally and theoretically

efficient solutions for non-standard regression set-ups. These problems find application in

various disciplines of science including medicine, biology, genomics, environmental sciences

and economics. Coming up with efficient estimation methods and studying their properties

is a major challenge in these settings. One such problem is to devise a computationally fast

as well as theoretically viable estimation method for a broken-stick model in both cross-

sectional and longitudinal set-ups. This problem is studied in detail in Chapter 2. In

Chapter 3, we propose an inference method based on multivariate adaptive elastic-net in a

multiple pollutant set-up. Finally, in Chapter 4, an algorithm for variable selection for high

dimensional sparse regression, where some of the covariate effects may be of the form of a

broken-stick. This thesis covers three main topics. We provide a summary of these topics in

the following section.

1.1 Fast efficient estimation method for broken-stick

The Michigan Bone Health and Metabolism Study (MBHMS) is a population-based lon-

gitudinal natural history study of ovarian aging conducted in a cohort of White women from

the Tecumseh (Michigan) during their young and mid-adulthood years. The goal of Sowers

1



et al. (2008) was to describe the serum estradiol (E2) profile changes before and after Final

Menstrual Period (FMP). Fig. 1 in Sowers et al. (2008) indicates that the mean function can

be fit nicely by a piecewise linear model with multiple change-points (i.e. the broken-stick

model), whose identification is of considerable significance. However, existing methods of

change-point estimation in a broken-stick model are fairly slow for large sample sizes. In

the particular scenario of Sowers et al. (2008), the effective sample-size is of order of 104

and hence a fast method of estimating the change-point locations precisely and providing

corresponding confidence intervals is of considerable importance.

Our method, based on local smoothing in a shrinking neighborhood of each change-point,

is shown via simulations to be computationally much faster than existing methods that rely

on search procedures. The computational gain gets accentuated in multiple change-points

models. The proposed estimates are shown to have
√
n-consistency and asymptotic normality

– in particular, they are asymptotically efficient in the cross-sectional setting (in the sense,

they have the same asymptotic distribution as the exact least squares estimate as shown in

Feder (1975a) ) – allowing us to provide meaningful statistical inference. We use our prosed

estimation method to study the E2 profile, as discussed above.

1.2 High-dimensional Inference based on Multivariate Adaptive

Elastic-net for Multiple Pollutant Data

With advancement in modern technology, high-dimensional regression problems are be-

coming more and more common in all disciplines of science. One such interesting problem

arises in studying the effects of multiple pollutants on cardio-metabolic end-points. Al-

though, the effects of fine particulate matter, as a whole, has been studied in recent years

in quite some detail, how the constituent pollutants affect health responses is still up for

debate. Two of the major problems in a multiple pollutant regression model is the high-

dimensionality and the acute multicollinearity. We propose an inference procedure based on

2



multivariate adaptive elastic-net in a multivariate autoregressive model for time series data.

This method is shown via simulations to effectively address both the major issues with this

type of a modeling strategy. We used our method to study the effects of multiple pollutants

on several cardiovascular end-points in a rat study based in Dearborn, Michigan, conducted

by the Great Lakes Air Center for Integrative Environmental Research (GLACIER).

1.3 Variable selection for high-dimensional broken-stick regres-

sion

This problem is, in some sense, an extension of the problem discussed in 2. Previously,

we were interested in estimating the broken-stick model in a fixed dimensional set-up. Now,

with high dimensional regression techniques becoming more and more useful, the natural

question is how to do variable selection in a usual sparse regression set-up with an added

feature – we allow the covariates to have a broken-stick type effect on the response. This

problem can be viewed from a very general setting with several covariates each with possibly

multiple change-points. But to get a better understanding of the problems at hand, it makes

more sense to look at two separate cases:

(i) There are several covariates, each possibly having a broken-stick effect; but we allow the

broken-stick to have only one change-point.

(ii) The broken-stick effect is limited to only one covariate but it can have several change-

points but the number of change-points is unknown

In both set-ups we need to arrive at a parsimonious yet accurate model, which of course

necessitates an effective variable selection procedure for these models. Because of the lack

of differentiability or restricted strong convexity (Loh and Wainwright , 2015) of the loss

function, it is difficult to see how popular variable selection methods will work for this set-

up. We propose post local smoothing thresholded ridge regression as a method for variable

selection in such a scenario. The method is shown through numerical studies for the first

3



case to have a very high ability not only to separate signals from noise terms, but also to

identify which signals are simply linear and which have a broken-stick type effect.

4



CHAPTER 2

Fast estimation of regression parameters in a broken

stick model for longitudinal data

2.1 Introduction

In regression models, it is often assumed that the regression function throughout the

domain of interest has the same parametric form. But it is also important to consider situa-

tions where the regression function has different functional forms in separate portions of the

domain of interest. A special case of this is the continuous piecewise linear model, popularly

referred to as the “broken-stick model”. This model is frequently useful in environmental and

biological setups where the locations of the change-points are of interest. The broken-stick

with r change-points is

E(Y |X,Z) = β0 + β1X +
r

∑

k=1

βk+1f(X, τk) + ZTλ, (2.1)

where

f(x, τ) = (x− τ)+ =











x− τ, x > τ ;

0, x ≤ τ.

and τj ’s are ordered. Such a modelling strategy is of particular interest for the Michigan

Bone Health and Metabolism Study (MBHMS).
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MBHMS is a population-based longitudinal natural history study of ovarian aging con-

ducted in a cohort of 664 White women from Tecumseh, Michigan during their young and

mid-adulthood (24 − 44) years. Sowers et al. (2008) studied the serum estradiol (E2) hor-

mone levels in 629 women enlisted in the MBHMS over a fifteen year period starting from

1992. The goal of Sowers et al. (2008) was to describe the E2 profile changes before and after

Final Menstrual Period (FMP). A semiparametric mixed model approach was implemented

in Sowers et al. (2008), and smoothing splines were used for estimation. Referring to Fig. 1

in Sowers et al. (2008), it is clear that the mean function can be fit nicely by a piecewise

linear model with multiple change-points, whose identification is of considerable significance.

However, existing methods of change-point estimation in a broken-stick model are fairly slow

for large sample sizes. In the particular scenario of Sowers et al. (2008), the effective sample-

size is of order of 104 and hence a fast method of estimating the change-points precisely is

of considerable importance.

In the early literature, it was generally assumed that either the exact location of the

change-point τ is known (Poirer , 1973), or, at worst, it is known which two observation

points τ should lie between (Robinson, 1964). Also, most of the early work focused on

detection of whether a change-point existed at all. In this article, however, the existence of

change-point(s)is assumed and the exact number of change-points, denoted by r, is assumed

known. The focus here is to propose a quick estimation procedure that gets around the

non-smoothness of the model without compromising asymptotic efficiency in the process.

The principal difficulty in the estimation problem arises when the locations of the change-

points are unknown. For an independent and identically distributed error case, if the location

of these change-points were known, we would have a standard linear regression problem.

Even if a relatively small set of plausible values were known, one could perform least squares

for the slope and intercept parameters for each of these plausible values to find the overall

least squares estimate. However, in most scenarios, this is unlikely, and the set of plausible

values over which one needs to search is typically all r tuples of ordered Xi’s, leading to a

6



very high number of linear regressions,
(

n
r

)

in principle, n being the sample size; see Hudson

(1966).

Bellman and Roth (1969) proposed an alternative method based on dynamic linear pro-

gramming but this method is even slower than the previous method. Feder (1975b) con-

sidered a general case of segmented regression problems and showed that the exact least

squares estimate obtained by Hudson (1966) is asymptotically normal. In particular, for the

broken-stick model, the estimate is
√
n– consistent.

Tishler and Zang (1981) were the first to suggest estimation of change-points using a max-

imum likelihood approach based on smoothing. They argued that the non-differentiability

of the ‘maximum’ and ‘minimum’ operators in piecewise regression was the main problem

in using maximum likelihood. However, if these operators were substituted by smoothed

versions, maximum likelihood could readily be used for fast computation. Tishler and Zang

(1981) suggested using a quadratic approximation, where the length of the interval on which

f is smoothed was taken as an arbitrary small value. However, the behavior of these esti-

mates, as the interval-length shrinks to 0, was not investigated. It is clear that unless the

length of the interval is allowed to decrease with sample size, their algorithm cannot yield a

consistent estimate.

Recent articles for broken-stick models include Bhattachaya (1987), Huskova (1998) and

Muggeo (2003). While the first two deal with theory, Muggeo (2003) tries to develop an

estimation strategy, but does not provide any asymptotic results and thus fails to address

the theoretical efficiency of the approach. For a detailed description of Bayesian methods of

change-point estimation refer to Chen et al. (2011).

In sum, the lack of a suitable method of estimation, that is optimal in terms of both

precision and computational economy, has forced statisticians to fall back on the search-

based algorithm of Hudson or related algorithms thereof. Our paper fills this gap in the

literature.

We should note here that alternative approaches to studying ‘kink-type’ phenomena
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have also been investigated. Chiu et al. (2006) suggested that in certain scenarios, instead

of using the broken-stick as the true model, it might be better to use, what they referred to

as, the “bent-cable model”, which is a quadratic smoothing of the broken-stick model in a γ

neighborhood around τ . Their change-point parameter was defined as the mid-point of the

interval (τ − γ, τ + γ) on which the smoothing was done; here both τ and γ are unknown

parameters. It was shown that τ̂n, the least squares estimate of τ , is
√
n– consistent. Also, for

γ0 > 0, γ̂n is
√
n-consistent as well. In a previous article, Chiu et al. (2002) had shown that

for γ0 = 0, i.e., when the smooth model reduces to the broken-stick model, the asymptotics

are complex and γ̂n is at most n1/3– consistent.

In this chapter, equation (2.1) is used as the true mean model. Ideally, one would want

to minimize the residual sum of squares in this model by a Newton-Raphson type algorithm,

but this is not viable owing to the non-differentiability of f at τ . To this end, we use a twice

differentiable perturbation of f , denoted by qn, as our working model, where qn coincides

with f outside a shrinking neighborhood of τ , say (τ − γn, τ + γn), with γn, a user-specified

tuning parameter, going to 0. Because qn is differentiable, the minimization can be done by

Newton’s algorithm very quickly. For the iid error case, we show that our estimate of τ is

indeed
√
n– consistent for τ , and furthermore has an asymptotic normal distribution with

the same asymptotic variance as the exact least squares estimate of Hudson (1966). For

the longitudinal model, the same method yields
√
n–consistent and asymptotically normal

estimates for the change-points even for misspecified variance structures.

In sections 2.2 and 2.3, we introduce the model for both the cross-sectional and longitu-

dinal set-ups respectively and outline the main steps of the estimation. The main theoretical

results are presented along with the main ideas of the proofs. Section 2.4 contains simulation

results indicating the efficiency of the proposed method while the method is applied to two

real data —plant growth data (cross-sectional study) in section 2.5.1 and estradiol profile

analysis (longitudinal study) in section 2.5.2. Proofs are provided in Appendix A.
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2.2 Cross-sectional Study

We assume that the covariate X is contained in [M1,M2]. The regression parameter in

the cross-sectional set-up (2.1), is denoted by θT = (βT, τT, λT). We assume θ belongs to a

compact set Θ = B×[M1+δ,M2−δ]r×Λ, τk < τk+1, k = 1, 2..., r−1, and |M1|, |M2| <∞ and

δ is a known small positive constant, indicating the change-points need to be well-separated

from the boundaries of the X−space. Without loss of generality, take M1 = 0 and M2 =M .

We write βT = (β0, β1, ..., βr+1) ∈ B, where β0 is the intercept and
∑k

j=1 βj is the slope of

the kth segment, k = 1, 2..., r + 1. B is a compact set in Rk+2; the restriction ζ ≤ βk ≤ B,

2 ≤ k ≤ r+1 is imposed for the sake of identifiability. We also write τT = (τ1, τ2, ..., τr), with

τk denoting the k’th smallest change-point, and again identifiability requires the conditions

τk < τk+1, k = 1, 2..., r− 1, τ1 ≥ δ and τr ≤M − δ. Λ is assumed to be a compact set in Rl.

The errors εi are assumed to be independent and identically distributed with mean 0 and

variance σ2. The true parameter vector θ0 = (β0
0 , β

0
1 , ..., β

0
r+1, τ

0
1 , τ

0
2 , ..., τ

0
r , λ

0)T is assumed

to be an interior point of the compact set Θ. Our data are independent and identically

distributed observations {Yi, Xi, Zi}ni=1 from (2.1) and henceforth, Pn denotes the empirical

measure of the data. Note that, Yi and Xi are scalars while Zi is an l−dimensional vector

of covariates with no change-points.

2.2.1 Estimation

Define,

M(θ, x, y, z) = (y − Eθ(Y |X = x, Z = z))2 =

[

y −
{

β0 + β1x+

r
∑

k=1

βj+1f(x, τk) + zTλ

}]2

.

The exact least squares procedure aims to obtain the minimizer of

Pn(M(θ,X, Y, Z)) =
1

n

n
∑

i=1

M(θ,Xi, Yi, Zi).
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As f(x, τ) is not differentiable at τ , one cannot obtain the minimizer of Pn(M(θ,X, Y, Z)) ≡

Pn(M(θ)) (for notational convenience) by Newton’s algorithm. So, we resort to minimize

Pn(Mn(θ)), where

Mn(θ) ≡Mn(θ, x, y, z) = [y − {β0 + β1x+
r

∑

k=1

βj+1qn(x, τk) + zTλ}]2

is our working model, a smoothed approximation of M(θ). Basically each of the f ’s in M(θ)

is replaced by its corresponding smoothed version qn to obtain Mn(θ).

As far as the functional form of qn is concerned, the motivation lies in the work of Tishler

and Zang (1981) and Chiu et al. (2006). Tishler and Zang (1981) suggested using a quadratic

approximation, where the length of the interval on which f is smoothed was taken as an

arbitrary small value, while Chiu et al. (2006) considered the length of the corresponding

interval as a parameter. We consider the same functional form for qn as in these papers,

but in our model, the length of the interval on which we smooth f is a user-specified tuning

parameter shrinking to 0 with n at an appropriate rate as n→ ∞. More specifically,

qn(x, τ) =































0, if x < τ − γn;

(x−τ+γn)2

4γn
, if τ − γn ≤ x ≤ τ + γn;

(x− τ), if x > τ + γn;

(2.2)

where γn is a deterministic sequence, that approaches zero as n→ ∞.

Define θ̂n = argminθ∈Θ Pn(Mn(θ)). In Appendix A.1, we show that θ̂n is a zero of the

surrogate empirical estimating function Un(θ) = ∂Pn(Mn(θ))/∂θ, with probability increasing

to 1, validating the use of the solution of Un(θ) as our numerical estimate. It is not clear

whether this zero is unique but this is not an issue, since for our asymptotics, how we pick

the minimizer is immaterial, meaning that the results hold true for any choice of zero of

Un(θ). Our numerical results, however, suggest that generally there is a unique minimizer.
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Figure 2.1: qn is the smoothed version of f .

2.2.2 Asymptotic Results

For model (2.1) we consider the following regularity conditions.

Condition 1.1: There are r distinct change-points τ1, . . . , τr in model (2.1) for a fixed

integer r ≥ 1; r is known.

Condition 1.2: Covariate X ∈ [0,M ], M < ∞, follows a continuous distribution FX

such that pr(τk < X ≤ τk+1) > 0, k = 0, . . . , r with τ0 = 0 and τr+1 = M . The joint

distribution of Z is denoted by FZ .

Condition 1.3: Changes of slope parameters satisfy 0 < ζ ≤ |βk| ≤ B < ∞, k =

2, 3, . . . , r + 1, for some constants ζ and B.

Theorem 2.1. Under Conditions 1.1-1.3, θ̂n is a consistent estimator for θ0 for any deter-

ministic sequence γn → 0 as n→ ∞.

The proof of Theorem 2.1 is based on the argmax (argmin) continuous mapping theorem

(van der Vaart and Wellner , 1996). First, we show that θ0 is the unique minimizer of

P (M(θ)) in Θ. then, it suffices to show that ‖Pn(Mn) − P (M)‖ := supθ∈Θ |Pn(Mn(θ)) −

P (M(θ))| = op(1); here Pf =
∫

fdP , P being the probability measure that generates the

data. For the case with a single change-point and covariate Z absent, the proof is presented
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in Appendix A.1. The proof for the case with multiple change-points or with other covariates

is an exercise involving extensive algebraic derivations following the same line. Note that,

in Appendix A.1, we also prove that θ0 is the unique solution of U(θ) = ∂P (M(θ))/∂θ = 0,

which implies that the estimate obtained by Newton-Raphson of the smoothed score equation

converges to the true θ0, and not to some local minima.

Theorem 2.2. For γn = n−α with α > 1/2, under Conditions 1.1-1.3, we have that n1/2(θ̂n−

θ0) converges in distribution to a normal random variable with mean 0 and covariance matrix

2σ2U̇−1
∗ (θ0). The kl-th element of matrix U̇∗ is (U̇∗(θ

0))kl = 2P (HT (θ0)H(θ0)), where

H(θ) =
(

1, X, f(X, τ1), . . . , f(X, τr), −β21(X > τ1), . . . ,−βr+11(X > τr), Z

)

1×(2+2r+l)
.

The proof of Theorem 2.2 also consists of two major steps. To this end, let us define

θn as the minimizer of P (Mn(θ)) in Θ closest to θ0. The first step is to show that θn

converges to θ0 with a faster than
√
n rate, which in fact is γn, and the second to show

the asymptotic normality of n1/2(θ̂n − θn). Both steps rely on Taylor series expansions. For

notational simplicity, we provide the proof for the case with single change-point and absence

of Z in Appendix A.2. The case with multiple change-points and other covariates is again a

straightforward extension.

The following Corollary shows that our proposed local smoothing method does not lose

any efficiency. Its proof is provided in Appendix A.3.

Corollary 2.3. The asymptotic distribution of our estimate, as stated in Theorem 2.2, is

exactly the same as that in Feder (1975a) for the exact least squares estimate in the broken

stick model.

Remark 2.4. Please note that for the sake of notational convenience and to keep the results

and proofs terse, only one variable with change-points have been included in model (2.1).

However, the method will work equally well for a model consisting of multiple variables, with
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multiple change-points in each variable, and the results will be analogous.

2.3 Longitudinal study

The model for the longitudinal study with a broken-stick mean function is

E(Yij|Xij, Zi) = µij = β0 + β1Xij +
r

∑

k=1

βk+1f(Xij, τk) + ZT
i λ, (2.3)

where Yij is the response of the ith subject at the jth time-point (tij) and Xij denotes

the corresponding covariate with r change-points, while Zi are l time-invariant covariates,

j = 1, . . . , mi , i = 1, . . . , n.

For the regression parameters, βT = (β0, β1, .., βr+1), we have the same assumptions as in

the cross-sectional model. We assume the effect sizes λ ∈ Λ (a compact set in Rl) and τ is

the vector of change-points, as before. Here, θT = (βT , τT , λT ) is our parameter of interest

and θ0 is the true value of θ.

As far as the variance function is concerned, we postulate the following form:

Cov(Yij, Yik) = g(η, tij, tik), (2.4)

Cov(Yij, Ylk) = 0, i 6= l; j, k = 1, . . . , mi; i = 1, . . . , n,

where η is the vector of covariance parameters. We assume that the observations across

individuals are independent and the correlation between different observations of the same

individual can depend on the time-points but not on the mean parameters, θ.

Yi is used to denote the vector of mi observations for the i−th individual, i = 1, . . . , n.

Y = (Y1, . . . , Yn) is the vector of all responses. We use similar definitions for Xi and X . Let

Σ(i) denote the dispersion matrix of Yi and Σ the dispersion matrix of Y . The true dispersion

matrix is denoted by Σ0, which can be written as Σ(η0), η0 being the true value of η.

To establish the asymptotic results rigorously, the problem needs to be cast in a proper
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mathematical framework. We assume that, the number of repeated measures is denoted by

the random variable D which takes values in the integer-space {1, 2, . . . , L} with probabilities

p1, p2, . . . , pL respectively. Note that this L is assumed fixed and known. Also we have a

triangular array of X-values,

X
(1)
1

X
(2)
1 X

(2)
2

X
(3)
1 X

(3)
2 X

(3)
3

...
. . .

X
(L)
1 X

(L)
2 X

(L)
3 . . . X

(L)
L .

When D = d, the d-th row of this array is selected as the set of time-dependent covariates.

The same is true for the measurement errors {εij} and they are assumed to be independent

of {Xij}’s. Thus,

Y (D) = β0 + β1X
(D) +

r
∑

k=1

βk+1f(X
(D), τk) + ZTλ+ ε(D) = µ(D) + ε(D).

The observation for each individual consists of (D, Y (D), X(D), Z) and our data comprise of

n iid copies of this array. As with most inference methods in longitudinal studies, we allow

for ignorable dropouts (Rubin, 1976).

2.3.1 Estimation

The estimation process is divided into three steps:

Step 1 : Assume working independence, i.e. take Σ(i) = I, i = 1, . . . , n. As for the

cross-sectional study, replace each of the f ’s by their respective smoothed version qn’s. Now,

find the corresponding estimate θ̂
(I)
n as the solution to the estimating equation

∂

∂θ
Pn[(Y

(D) − µ(D)
n )T (Y (D) − µ(D)

n )] = 0,
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where µ
(D)
n is the smoothed version of µ(D).

Step 2 : Then use θ̂
(I)
n to estimate the nuisance parameter η. The specifics will depend

on the nature of the covariance function g in (2.4).

Step 3 : Use η̂n obtained in step 2 to estimate θ. So the final θ̂n is the solution to the

estimating equation

∂

∂θ
Pn[(Y

(D) − µ(D)
n )T Σ̂−1

n (Y (D) − µ(D)
n )] = 0,

where Σ̂−1
n is the block-diagonal dispersion matrix based on η̂n .

2.3.2 Asymptotic Results

As in the cross-sectional model, for the longitudinal model we consider similar regularity

conditions.

Condition 2.1: There are r distinct change-points τ1, . . . , τr in model (2.3) for a fixed

integer r ≥ 1; r is known.

Condition 2.2: Conditional on D = d, covariate X ∈ [0,M ]d, M < ∞, follows a

continuous distribution FX such that pr(τk < Xj ≤ τk+1) > 0, for some j = 1, . . . , d, for

all k = 0, . . . , r with τ0 = 0 and τr+1 = M . Also we assume the covariates Z follow a joint

distribution FZ .

Condition 2.3: Changes of slope parameters satisfy 0 < ζ ≤ |βk| ≤ B < ∞, k =

2, 3, . . . , r + 1, for some constants ζ and B.

Condition 2.4: There exists a positive definite matrix W , such that estimated covari-

ance matrix Σ̂n satisfies
√
n(Σ̂n −W ) = Op(1).

Theorem 2.5. Under Conditions 2.1-2.4,

(a) The estimator θ̂n is consistent for θ0 given any deterministic sequence γn → 0 as

n→ ∞.
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(b) For γn = n−α with α > 1/2, n1/2(θ̂n − θ0) converges in distribution to a normal

random variable with mean 0 and covariance matrix

K(W−1) = 2

L
∑

d=1

P (d)[(HT (θ0)W−1H(θ0))−1(W−1H(θ0))TΣ0(W
−1H(θ0))

(HT (θ0)W−1H(θ0))−1]pd

where

H(θ) =
(

1 X f(X, τ1) . . . f(X, τr) −β21(X > τ1) . . . −βr+11(X > τr) Z

)

d×(l+2r+2)
;

here P (d)f =
∫

fdP (d), P (d) being the probability measure that generates the data given

D = d.

Remark 2.6. If the matrix W in condition 2.4 is indeed the true covariance matrix Σ0, i.e.,

Σ̂n is a
√
n-consistent estimate of Σ0, then for γn = n−α with α > 1/2, n1/2(θ̂n−θ0) converges

in distribution to a normal random variable with mean 0 and covariance matrix

K(Σ−1
0 ) = 2

L
∑

d=1

P (d)[(HT (θ0)Σ0−1

H(θ0))−1]pd.

The proof of Theorem 2.5 is similar to the proofs of Theorems 2.1 and 2.2 in Section 2.2.

The main proof is divided into three major parts. First, we show that
√
n(θ̂

(I)
n −θ0) converges

to N(0, K(I)) in distribution. Next, we prove
√
n(θ̂

(W−1)
n − θ0) converges to N(0, K(W−1)) in

distribution. Here, θ̂
(W−1)
n is defined as the minimizer of Pn(Y −µn)

TW−1(Y −µn), which is

shown to be a zero of U
(W−1)
n (θ) = ∂

∂θ
Pn(Y − µn)

TW−1(Y − µn), with probability increasing

to 1. Finally, we show that
√
n(θ̂n − θ̂

(W−1)
n ) = op(1), which proves Theorem 2.5.

For the sake of notational convenience, the proof is presented in Appendix A.4, for r = 1

and for fixed visit-times, i.e. D ≡ m or equivalently mi = m for all i = 1, . . . , n. Also for

brevity, we exclude the covariates Z in the proof.

16



Though the proof provided in Appendix A.4 is for a fixed number of visit-times, it holds

true for variable number of visit-times, as stated in Theorem 2.5. Notice that, conditional on

D = d (this event has probability pd), it is shown that n1/2(θ̂n−θ0) converges in distribution

to a normal random variable with mean 0 and covariance matrix

K(W−1) = 2P (d)[(HT (θ0)W−1H(θ0))−1(W−1H(θ0))TΣ0(W
−1H(θ0))

(HT (θ0)W−1H(θ0))−1].

Now, the result of Theorem 2.5 easily follows.

Corollary 2.7. Denoting the mean function at X = x, Z = z by µ(x, z, θ), we have

√
n(µ(x, z, θ̂n)−µ(x, z, θ0)) converges in distribution to a normal random variable with mean

zero and variance aTK(W−1)a, where

aT = (1, x, f(x, τ 01 ), . . . , f(x, τ
0
r ),−β0

21(x > τ 01 ), . . . ,−β0
r+11(x > τ 0r ), z)

.

This result is useful in providing pointwise confidence bands for the broken-stick mean

function as illustrated in Fig 2.4. The proof is provided in the Appendix A.8

Remark 2.8. Note that the estimated confidence band for the mean at τ̂n, as provided by

Corollary 2.7 is discontinuous. The asymptotic distribution of
√
n(µ(τ̂n, z, θ̂n)− µ(τ 0, z, θ0))

is not a direct application of this result, but needs separate calculations —a direct application

of the delta method.
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2.4 Simulations

2.4.1 Cross-sectional set-up

Simulations were conducted to compare the proposed method with the existing one.

Models with one and two change-points were both considered. Sample sizes were varied,

n = 50, 200, 1000, 5000. For each of the two models, for a fixed n, 3 different sets of values

of θ were considered within the domain of interest. For each value of θ, the proposed and

existing (Hudson, 1966) methods were both repeated N = 1000 times. The run-times,

a measure of computational efficiency, for each of the methods were then averaged over

these 1000 repetitions and over the 3 different values of θ. This was done to average out

discrepancies being caused by individual θ’s. Error standard deviation σ was taken to be

equal to 0.1 for all cases and M = 1. For all simulations, α was taken to be 1. The

simulations were carried out on an Intel(R) Core(TM) i7 system with 1.6 GHz and 8 GB

RAM in a 64-bit OS.

2.4.1.1 Results

Table 2.1: Simulation results comparing the run-times of the existing (Hudson, 1966) and
proposed methods for one and two change-point(s) model, with ratio of the time
taken by the existing method with respect to that of the proposed one.

Sample Mean Time (Seconds)
Size n One change-point Two change-points

Existing Proposed Ratio Existing Proposed Ratio
50 0.18 0.006 30 2.36 0.02 118
100 0.30 0.008 38 13.86 0.03 462
500 0.97 0.02 49 64.87 0.06 1015

1000 1.89 0.03 63 947.03 0.08 11838
5000 4.98 0.06 83 22843 0.20 114215

From Table 2.1, it is obvious that the proposed method is much faster than the exact least

squares method, especially for two change-point problems. Also Tables 2.2 & 2.3 indicate

that the change-point estimates of the proposed method are almost as accurate as the exact

least squares estimate. The biases are close to zero for all sample sizes, especially for the large
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Table 2.2: Bias and variances for the change-point estimate τ̂n compared for one change-
point problem in 3 setups: A: θT = (0.2, 1, 1, 0.6), B: θT = (0.3, 1.5, 1, 0.8) & C:
θT = (0.3, 1.5,−1, 0.2) (S.D.: Average of estimated standard deviations over 1000
replications; Emp. S.D. : Sample standard deviation based on 1000 replications).

Sample Bias (S.D., Emp. S.D.) Theoretical
Size × 10−3 S.D.

n Existing Proposed × 10−3

Set-up A

50 -8.2 (58.1, 60.3) -12.4 (58.3, 61.0) 57.8
100 -4.3 (41.0, 41.2) -5.2 (41.0, 41.3) 40.9
500 -2.1 (18.3, 18.4) -2.9 (18.3, 18.5) 18.3

1000 -0.6 (12.9, 12.9) -0.9 (12.9, 13.0) 12.9
5000 -0.0 (5.8, 5.8) -0.1 (5.8, 5.8) 5.8

Set-up B

50 -9.2 (71.6, 73.2) -14.1 (71.6, 73.6) 70.7
100 -4.7 (50.1, 50.3) -5.9 (50.1, 50.4) 50.0
500 -2.8 (22.4, 22.4) -3.3 (22.4, 22.5) 22.3

1000 -0.9 (15.8, 15.8) -1.2 (15.8, 15.8) 15.8
5000 -0.1 (7.1, 7.1) -0.1 (7.1, 7.1) 7.1

Set-up C

50 8.1 (71.6, 73.3) 12.8 (71.6, 73.5) 70.7
100 4.7 (50.1, 50.4) 6.2 (50.1, 50.5) 50.0
500 1.8 (22.4, 22.4) 2.0 (22.5, 22.6) 22.3

1000 0.2 (15.8, 15.8) 0.4 (15.8, 15.8) 15.8
5000 0.1 (7.1, 7.1) 0.1 (7.1, 7.1) 7.1

samples. The standard deviation estimates are very close to the sample standard deviations

indicating our standard deviation estimates work well, especially for large samples. The

estimates are also very close to the theoretical standard deviations, indicating the asymptotic

efficiency of our estimates. Although the bias and variances for the β’s have not been

tabulated for the sake of brevity, we observed that our β estimates also have comparable

Mean Squared Errors to their respective exact least squares estimates.
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Table 2.3: Bias and variances for the change-point estimate τ̂n compared for two change-points
problem in 3 setups: D: θT = (0.3, 1, 1, 1, 0.2, 0.8), E: θT = (0.2, 1, 2, 1, 0.4, 0.6) &
F: θT = (0.3, 1,−1, 1, 0.2, 0.8) (S.D.: Average of estimated standard deviations over
1000 replications; Emp. S.D. : Sample standard deviation based on 1000 replica-
tions).

Sample τ̂1n τ̂2n
Size Bias (S.D., Emp. S.D.) Theo. Bias × 10−3 (S.D., Emp. S.D.) Theo.
(n) × 10−3 S.D. × 10−3 S.D.

Existing Proposed × 10−3 Existing Proposed × 10−3

Set-up D

50 10.2 (63.2, 63.9) 20.3 (63.3, 64.1) 62.0 -11.1 (55.0, 55.5) -19.2 (55.1, 55.6) 54.0
100 5.1 (44.2, 44.6) 6.3 (44.3, 44.8) 43.8 -4.8 (38.7, 39.2) -5.9 (38.8, 39.3) 38.2
500 2.8 (19.7, 19.8) 3.7 (19.8, 19.9) 19.6 -3.0 (17.3, 17.5) -4.0 (17.3, 17.5) 17.1

1000 0.9 (13.9, 13.9) 1.1 (13.9, 14.0) 13.9 -1.0 (12.2, 12.3) -1.1 (12.2, 12.3) 12.1
5000 0.1 (6.2, 6.2) 0.2 (6.2, 6.2) 6.2 -0.1 (5.4, 5.5) -0.1 (5.4, 5.5) 5.4

Set-up E

50 -32.9 (14.1, 17.9) -41.1 (14.8, 19.0) 11.0 40.0 (22.4, 24.1) 51.2 (22.8, 24.9) 21.0
100 -7.2 (9.6, 10.2) -9.0 (10.0, 10.5) 7.7 8.1 (15.5, 16.4) 9.7 (15.8, 16.7) 14.8
500 -5.1 (3.7, 3.7) -6.2 (3.7, 3.8) 3.5 6.0 (6.8, 7.0) 6.8 (6.9, 7.1) 6.6

1000 -1.3 (2.5, 2.5) -1.4 (2.5, 2.5) 2.4 1.4 (4.8, 4.8) 1.5 (4.8, 5.0) 4.7
5000 -0.1 (1.1, 1.1) -0.1 (1.1, 1.1) 1.1 0.1 (2.1, 2.1) 0.2 (2.1, 2.2) 2.1

Set-up F

50 10.2 (63.2, 64.0) 19.8 (63.3, 64.7) 62.0 -10.4 (55.0, 0.155) -19.0 (55.3, 55.8) 54.0
100 4.9 (44.0, 44.6) 6.0 (44.3, 44.8) 43.8 -5.3 (38.7, 39.1) -6.1 (38.8, 39.3) 38.2
500 3.0 (19.7, 19.8) 4.0 (19.8, 19.9) 19.6 -3.8 (17.2, 17.5) -4.3 (17.3, 17.4) 17.1

1000 0.9 (13.9, 14.0) 1.2 (13.9, 14.0) 13.9 -0.8 (12.1, 12.2) -1.0 (12.2, 12.3) 12.1
5000 0.1 (6.2, 6.2) 0.1 (6.2, 6.2) 6.2 -0.1 (5.4, 5.5) -0.1 (5.4, 5.5) 5.4

2.4.1.2 Choice of α for finite samples

Although asymptotic results were established for all α > 1/2, what a proper choice of α

should be for finite samples is a very pertinent question. We performed extensive simulations

for different sample-sizes, to explore the robustness of different choices of α values.

We tried a sample situation with one change-point, β0
0 = 0.3, β0

1 = 1.5, β0
2 = 1 and

σ = 0.1 with covariate X-space = [0, 1]. The τ -values were varied between 0 and 1 and

the Mean Square Errors were plotted against log10 α values for various sample-sizes. We

found that the M.S.E. vs log10 α graphs are almost invariant with changing sample-sizes.

To change the signal-to-noise ratio, the β-values were kept constant but σ was changed to

0.5 (Fig.2.2) and 1. The patterns are exactly similar for all parameter values and signal-to-
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noise ratios. However, for a small n and a very large value of α, the algorithm occasionally

breaks down because U̇n(θ) becomes (almost) singular for computational purposes. This

is clearly indicated by the very large average MSE for α = 50 or 100 when sample-size is

small (n = 50). So, very large α’s (greater than 10) are not recommended for small samples

(less than 50).We would also like to point out the robustness of the M.S.E.’s to the choice

of tuning parameter in the range of α’s for which the algorithm is numerically stable. This

is reflected by the flat stretch of the M.S.E. curves for each n, before numerical instability

sets in. In other words, so long as the algorithm works, any choice of α > 1/2 is essentially

as effective as any other. So, searching for an optimal α is unlikely to yield any significant

gains. Our recommendation is to use α = 1, which works very well in terms of M.S.E. for all

sample-sizes, as low as 30. The same α value (1) is used for all data anlyses in the subsequent

sections. The simulations indicate that computational efficiency is insensitive to the choice

of α. A more detailed version of Fig.2.2 is provided in Appendix A.6.

2.4.2 Longitudinal set-up

Simulations were conducted for the longitudinal case as well to compare the efficiency of

our proposed method to the search-based algorithm. We considered an AR(1) correlation

structure with ρ = 0.6 to model the dependence among observations within subject. For each

subject, we considered 10 observations in scenarios G and H (Table 2.4). For set-up J, we

considered varying number of observations for each individual, which is uniformly distributed

over integer-space {1, 2, . . . , 20}. Error standard deviation σ was taken to be equal to 0.1

for all cases and M = 1. For all simulations, α was taken to be 1. The computational

efficiency of our proposed method is huge compared to the search-based algorithm, as in

the cross-sectional case (Table 2.1). So, in Table 2.4, we have just compared the bias and

standard errors to illustrate the validity and estimation efficiency of our method.

Results from Table 2.4, clearly indicate that our method yields almost the same standard

error estimates as the search-based algorithm. Although for both methods with small sample-
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Figure 2.2: Mean Square Errors vs log10 α for varying sample-sizes with different τ -values,
where β0

0 = 0.3, β0
1 = 1.5, β0

2 = 1 and σ = 0.5. From the top below, the solid
line corresponds to n = 50, dashed line corresponds to n = 100, the dotted line
corresponds to n = 500, the dot-dash line corresponds to n = 1000 and the
longdash line corresponds to n = 5000.

sizes, the bias is comparatively high and the standard deviation estimates are higher than

the theoretical values, the differences become smaller for larger sample sizes. The M.S.E.’s

for the slope and intercept parameters also behave similar to those of the change-points.

2.5 Applications

2.5.1 Plant growth data analysis

Vernalization, a requirement for plants to experience a period of cool conditions to accel-

erate flowering, is an important determinant of flowering date in winter wheat. In Brooking

and Jameison (2002), controlled environment studies were carried out to quantify the re-

sponse of vernalization rate to temperature for two near-isogenic lines of the wheat cultivar
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Table 2.4: Bias and variances for the change-point estimate τ̂n compared for two change-
points problem in 3 longitudinal setups: G: θT = (0.3, 1, 1, 1, 0.2, 0.8), H: θT =
(0.2, 1, 2, 1, 0.4, 0.6) & J: θT = (0.2, 1, 2, 1, 0.4, 0.6). 10 observations per individual in
set-ups G and H. In set-up J, number of observations per individual D ∼ Discrete
Uniform {1, 2, . . . , 20}(S.D.: Average of estimated standard deviations over 1000
replications; Emp. S.D. : Sample standard deviation based on 1000 replications).
Sample τ̂1n τ̂2n

Size Bias (S.D., Emp. S.D.) Theo. Bias × 10−3 (S.D., Emp. S.D.) Theo.
(n) × 10−3 S.D. × 10−3 S.D.

Existing Proposed × 10−3 Existing Proposed × 10−3

Set-up G

10 5.4 (74.2, 74.6) 6.9 (74.3, 74.8) 62.8 -5.3 (56.7, 57.3) -6.6 (56.8, 58.3) 43.2
50 3.2 (27.7, 27.9) 4.0 (27.8, 27.9) 21.4 -3.3 (21.3, 21.5) -4.3 (21.3, 21.5) 19.8

100 1.1 (19.8, 20.0) 1.4 (19.9, 20.1) 16.0 -1.2 (15.3, 15.4) -1.5 (15.4, 15.5) 14.1
500 0.2 (7.7, 7.7) 0.3 (7.9, 8.2) 6.9 -0.2 (6.4, 6.5) -0.2 (6.4, 6.5) 5.9

Set-up H

10 -7.5 (13.6, 13.2) -9.7 (13.8, 13.5) 8.7 8.1 (25.5, 26.4) 9.8 (25.8, 27.7) 17.1
50 -5.3 (6.7, 6.7) -6.8 (6.7, 6.8) 4.6 6.3 (9.9, 10.2) 7.1 (9.8, 10.1) 8.2

100 -1.4 (4.5, 4.4) -1.6 (4.5, 4.5) 2.9 1.4 (6.8, 6.4) 1.7 (6.8, 6.1) 5.5
500 -0.1 (2.8, 2.8) -0.1 (2.8, 2.8) 1.9 0.1 (4.1, 4.1) 0.2 (4.1, 4.2) 2.8

Set-up J

10 5.8 (77.1, 77.6) 7.1 (77.2, 77.8) 64.4 -6.1 (57.7, 59.4) -6.8 (57.2, 59.1) 44.1
50 3.5 (28.5, 28.7) 4.1 (28.5, 28.7) 22.9 -3.9 (22.0, 22.2) -4.4 (21.8, 22.0) 20.6

100 1.2 (20.3, 20.6) 1.4 (20.4, 20.6) 16.6 -1.3 (15.7, 15.8) -1.5 (15.8, 15.9) 14.9
500 0.2 (7.9, 8.0) 0.3 (8.0, 8.2) 7.2 -0.2 (6.8, 6.9) -0.2 (6.8, 6.9) 6.4

Batten: Spring Batten, vernalization insensitive; and Winter Batten, vernalization sensitive.

Plants were sampled for dissection at intervals during the treatment and post-treatment pe-

riod, until the flag leaf could be distinguished. The authors investigated the co-ordination

of primordium initiation and leaf appearance, quantified by the Haun stage. The authors

observed that Spring Batten plants grown under fully inductive conditions, 25/20oC, 16 hrs

photoperiod, produced eight leaves on average, and the rate of primordium initiation per

emerged leaf increased markedly with the transition from leaf initiation to spikelet initiation.

This represents an important phase transition in the growth of the plant. From Fig. 2.3, it

is quite clear that the model which best fits the scenario is a broken-stick model with two

change-points. The authors had estimated the change-points by naked eye and then fitted

three line-segments for the three regions. We provide a fast as well as statistically rigorous
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analysis using the approach developed in this paper.
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Figure 2.3: Co-ordination of primordium initiation and leaf emergence from Spring Batten
treatments resulting in a final leaf number of 8 Brooking and Jameison (2002).
The solid bold line represents the one estimated by our approach while the
broken line represents the one estimated by Brooking and Jameison (2002). The
dotted vertical lines give the confidence intervals for the estimated change-points
given by the solid lines while the vertical broken-lines indicate the eye-estimated
change-points.

The change-point estimates of Brooking and Jameison (2002) by naked eye were 2.6 and

5 on the Haun stage scale, whereas ours are 2.931(2.715, 3.147) and 4.764(4.647, 4.881), with

95% confidence intervals provided in parentheses. From Fig. 2.3 we see that the estimates

in Brooking and Jameison (2002) do not lie within our confidence intervals, emphasizing

the importance of a principled analysis such as the one we have proposed. The main con-

clusion in Brooking and Jameison (2002) was that the rate of primordium initiation per

emerged leaf, the slope parameter, jumped from 1.9 primordia per leaf to 7.11 primordia

per leaf and then became constant. Our estimates of the slopes of the three segments are

2.67(2.46, 2.88), 8.19(7.84, 8.54) and −0.02(−0.16, 0.12) primordia per leaf. Our estimates,

qualitatively, corroborate their conclusion that there are two sharp phase transitions in the
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growth pattern whereby the initial growth rate gets more than tripled and then becomes

more or less constant.

2.5.2 Estradiol hormone profile analysis

We applied our proposed method to analyze the longitudinal estradiol data as discussed

in Section 2.1. For our purpose, we considered only women whose Final Menstrual Period

(FMP) had already been observed. This was done so as to avoid scenarios with censored

FMP’s (Lu et al., 2010). Among all these women, eight were left out either because their

observed FMP was too early or too late or had less than three data-points. The remaining

sample of n = 156 women with identified FMP was our sample of interest who in total gave

1396 observations, with each woman contributing 3 to 10 observations over time, covering

11 years before to 10 years after FMP. This gave an average of about 8.95 observations

per woman. There were 75(48%) smokers at baseline and the baseline BMI mean(SD) was

27.4(6.56). Please note that the data we use here have longer follow-up and hence more

subjects with identified FMP, compared to the data on which the analysis in Fig. 1 in

Sowers et al. (2008) is based. A log transformation was applied to the Estradiol hormone

level to make the normality assumption more plausible.

Denote by Yij the jth log-transformed E2 value measured at day tij centered around

FMP Ti, for the ith woman and by SMOKEi and BMIi baseline smoking habit (0 meaning

smoker at baseline, 1 otherwise) and the baseline body mass index, centered at the grand

mean, respectively. We consider the following model:

Yij = β0+β1Xij+β2f(Xij , τ1)+β3f(Xij, τ2)+λ1SMOKEi+λ2BMIi+bi+Ui(tij)+εij (2.5)

where Xij = tij − Ti, the bi are random intercepts following a N(0, φ) distribution, the

Ui(t) are mean zero Gaussian processes modeling serial correlation and εij are independent

measurement errors following a N(0, σ2) distribution. We assume Ui(t) is a nonhomogenous
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OrnsteinUhlenbeck process, which satisfies Var(Ui(t)) = ξ(t) where logξ(t) = ξ0 + ξ1t+ ξ2t
2

and corr(Ui(t), Ui(s)) = ρ|t−s|. We also assume that for each i, εi, bi and Ui(t) are independent

of one another. Further, we assume, −11.9 ≤ τ1 < τ2 ≤ 9.9 (in general, we assume for all

our theoretical results that the covariate X is contained in some compact interval [M1,M2];

here from the nature of the study and previous work we knew the scope of the study was

between 12 years before and 10 years after the FMP) and that 10−6 ≤ |β2| ≤ 106 and

10−6 ≤ |β3| ≤ 106 for the sake of identifiability. Also, the variance function part does not

include any mean function parameters and so even in the presence of unknown change-points,

the model remains identifiable.

As illustrated in section 2.3, we estimate the regression parameters in a three step

procedure. In the first step, we assume working independence to estimate θ̂
(I)
n . Then

η = (φ, σ2, ξ0, ξ1, ξ2, ρ) is estimated by maximizing the conditional log-likelihood,

l(η) = −1/2
n

∑

i=1

[

(Yi − µ
(I)
n,i)

TΣ(η)(Yi − µ
(I)
n,i) + log

∣

∣Σ(i)(η)
∣

∣

]

. (2.6)

Therefore, Σ̂n = Σ(η̂n) which is subsequently used in Step 3 to obtain θ̂n. Condition 2.4 is

verified to hold for this model; in fact W here turns out to be Σ0 = Σ(η0). The proof for

this is provided in Appendix A.7.

Our results indicate the presence of change-points at −2.174 (−2.554,−1.794) and 1.733

(1.513, 1.953) years (Table 2.5).

Table 2.5: Regression parameter estimates along with their respective standard errors
Parameter Estimate Standard Error

β0 4.116 0.139
β1 -0.006 0.002
β2 -0.259 0.009
β3 0.199 0.008
τ1 -2.192 0.197
τ2 1.738 0.11
λ1 0.047 0.072
λ2 0.005 0.005
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Figure 2.4: E2 profile analysis at baseline mean BMI for a non-smoker: the solid line repre-
sents the mean estimator using two change-point broken-stick model, the short-
broken lines the corresponding pointwise 95% confidence bands; the long-broken
lines represent the smooth estimator of the mean function from semiparametric
mixed effects model using the same method as in Sowers et al. (2008); the shaded
regions represent the 95% confidence intervals for the two change-points.

In Sowers et al. (2008), the change-points had been roughly thought to be around 2

years before and after FMP. Although this was a good estimate, we can see that actually

the 95% confidence interval for the second change point does not contain 2 years after FMP,

indicating the change of estradiol levels actually happen slightly sooner than anticipated

in Sowers et al. (2008). Also BMI and smoking habits do not seem to alter this pattern

significantly. But, our contribution, above all, is providing statistically meaningful inference

about the change-points. Also the form of the confidence bands indicate that a two-change

point model is indeed a good fit for the E2-hormone profile.

2.6 Discussion

We have proposed a method of estimating change-points in a broken stick model which

is computationally much more efficient than existing methods, and demonstrated that it is
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asymptotically as efficient. The method of estimation is also numerically stable. An added

advantage of this method is that, as shown in section 2.3, it can be readily extended to

generalized linear models with repeated measures, examples of which are abundant. The

estimates in those frameworks have shown similar desirable asymptotic properties.

It seems reasonable to assume that this idea should work equally efficiently in estimat-

ing change-points in a time-series framework, at least under short-range dependence. For

instance, estimation of change-points is of considerable significance in climatic series data

(Lund et al., 1995; Lund and Reeves , 2002) and such data sets tend to be really large. Hence

our idea would likely prove even more economic in this setting. This is underscored by the

fact that even for a sample size of 50, our method is more than a hundred times faster than

the exact least squares method with multiple change points, and at large samples, thousands

of times faster. Also, in a linear spline model with knot-locations unknown (number of knots

known), the proposed method provides a faster alternative for locating these knots.

We cannot stress enough that this is a very generic idea which can be used for computa-

tional economy in several settings without giving up on asymptotic efficiency. For example,

the same idea should be applicable for estimating change-points in a multivariable setup

where the change-points are observed in more than one variable. While, for a search based

algorithm, the computational time will increase many folds with the number of variables

having change-points, it will scale much more favorably for our approach.

However, we would like to point out if the investigators feel that the linearity of broken-

stick model is not best suited for their data, our method of estimation or for that matter

any method of estimation based on the broken-stick model may not be reliable.

Also if the coefficients of two consecutive regimes are very close, then trying to fit separate

segments for the two regimes is strongly discouraged. We performed extensive simulations

and both our approach and the search-based approach yield poor estimates. Thus before

fitting a broken-stick model, we would strongly suggest the investigators check that the

assumptions for the model are valid.
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In this article, we were interested in modeling the mean hormone profile of all subjects in

the cohort discussed in Section (2.5.2). A possible way to model individual-specific hormone

profiles is via multi-path change-points models. Major work done in regards to multi-path

change-points include Joseph and Wolfson (1993) and Asgharian and Wolfson (2001). Most

of this literature has treated change-point as the observation at which a transition has

occurred, rather than a point in the X−space. Broken-stick models with random change-

points and random intercept-slopes is a possible interesting avenue for future work in this

field. The simplest possible model with one change-point is:

E(Y |X) = β0 + β1X + β2(X − τ)+,

where θT = (β0, β1, β2, τ) follows, say, a multivariate N(θ0,Υ) distribution. Estimating

methods will rely on minimizing criterion functions involving several integrals and is beyond

the scope of this work.

Although this chapter focuses only on estimating change-points in a situation where

their exact number is known beforehand, this approach can also be deployed for detection

of change-points, where likelihood ratio type test-statistics can be computed much faster in

comparison to search-based algorithms.
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CHAPTER 3

High-dimensional Inference based on Multivariate

Adaptive Elastic-net for Multiple Pollutant Data

3.1 Introduction

While studying the adverse health effects of air pollution, it is common practice to as-

sess the effects of composite mass as a single pollutant. But single-pollutant modeling in

air-pollution epidemiology does not suffice for gaining significant insight into understanding

the exact association of air pollution with adverse health effects, i.e. exactly what biological

mechanisms are linked with pollutants, and thus provide scientific support for certain regu-

latory public health guidelines. Estimating the adverse health effects in presence of multiple

pollutants can aid significantly (Dominici et al., 2010; Johns et al., 2012; Brown et al., 2007).

Air pollution is not a single mass, rather a composite of ambient particles,gases and vapors

whose compositions vary spatio-temporally and depend on a variety of issues (for instance,

meteorological conditions). Thus, clearly, treating air-pollution as a single mass will lead to

missing out on much of the information inside the data.

Fine particulate matter (PM2.5; aerodynamic diameter < 2.5 micron) has been one of the

most frequently studied pollutants in air-pollution epidemiology. Recent studies have shown

high ambient levels of PM2.5 are associated with cardiovascular morbidity and mortality

(Min et al., 2009; Brook et al., 2010). Individuals with the metabolic syndrome (MetS) are
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believed to be more susceptible to the adverse health effects of this type of pollutant (Min

et al., 2009; NCEP , 2001; Brook and Rajagopalan, 2012).

Using a rat model of experimental MetS,Wagner et al. (2014) hypothesized that the

cardiovascular responses caused by PM2.5 would be higher among individuals with diet-

induced MetS. However, compared with traditional mass-based PM standards,identifying

the most harmful constituent elements will assist policy makers in developing better targeted

air pollution regulations. But, teasing out the exact health effects of constituent elements of

the complex mixture of ambient PM2.5 remains challenging.

In this study, four male rats were fed high fructose diet (HFrD) to induce MetS and four

were fed normal diet (ND) and then exposed in real time to concentrated ambient paricles

(CAPs) for nine days. Data related to several cardiovascular end-points (Heart Rate, Systolic

Blood Pressure, Diastolic Blood Pressure, Pulse Pressure, Mean Arterial Pressure, Temper-

ature and QA Interval) were recorded at five-minute intervals from 7:30 am to 3:30 pm

each day. The concentration of 28 constituent elements in the concentrated ambient PM2.5

were measured between the same hours of the day, but at thirty minute intervals. Exten-

sive CAP characterization, including use of a Semicontinuous Elements in Aerosol Sampler

(SEAS), was performed, and positive matrix factorization was applied to investigate source

factors. SEAS (Kidwell and J.M., 2001, 2004) uses high-resolution inductively coupled plas-

mamass spectrometry (ICP-MS) to perform every thirty minutes multi-elemental analysis

of PM2.5 samples. The increased temporal resolution of the dataand thus the number of

data pointscoupled with repeated measures on individual animals, increases the statistical

power to observe an effect. U.S. Environmental Protection Agency (EPA) Positive Matrix

Factorization (PMF) 3.0 (Agency), 2010) was used to investigate source factors; PMF is a

variant of factor analysis that constrains factor loadings and factor scores to nonnegative

values and has been described in detail in Paatero and Tapper (1994). For more details on

these procedures, please refer to Morishita et al. (2011) and Rohr et al. (2011).

The cardiovascular measures were averaged over thirty minute intervals to make the
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elements and responses data conformable. From the nature of the gathered data, it is quite

evident that there is an AR(1) type correlation between consecutive cardiovascular measures.

Two simple modeling strategies facilitate the understanding of the effects of these constituent

elemental pollutants:

(i) One approach looks at the simple association between a single element and a single

response in each diet group separately. The major problem with this type of naive modeling

is firstly, that it gives us only the marginal association and secondly, more than a thousand

such models exist, in totality, leading to multiple hypotheses testing issues.

(ii) The other simple way is to jointly model all the 28 pollutants in a single multiple

linear model (one for each diet group). However, the elemental pollutants are all quite

highly correlated (median absolute correlation=0.43, maximum absolute correlation=0.81)

and thus this model has inherent multicollinearity issues.

Thus the principal challenge in estimating the health effects of multiple pollutants is

to devise a modeling strategy which can handle the multicollinearity issues as well as the

high-dimensional nature of the data. Classification and regression tree (CART) (Breiman

et al., 1984; Hastie et al., 2001), Deletion/ Substitution/Addition (DSA) (Haight et al., 2010;

Sinisi and van der Laan, 2004), Supervised principal component analysis (SPCA) (Roberts

and Martin, 2006; Bair et al., 2006), Partial least-squares regression (PLSR) (Wold et al.,

2001), Bayesian model averaging (BMA) (Hoeting et al., 1999; Raftery , 1996; Raftery et al.,

1997) and Least absolute shrinkage and selection operator (LASSO)(Mauderly et al., 2010,?)

have been suggested as possible methodologies to determine the health effects of multiple

pollutants. Sun et al. (2013) provides a detailed comparison of these methods.

Variable-selection methods like LASSO and elastic-net are suitable for dimension re-

duction in these problems, however Sun et al. (2013) notes that inference based on these

methods are not trivial. However, it is interesting to note that the adaptive versions of these

variable-selection methods actually do have asymptotic normality of the estimated effect-

sizes of the selected variables (Zou and Zhang , 2009). Also, it is important to point out that
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adaptive elastic-net (Zou and Zhang , 2009) can handle correlated predictors better than

adaptive LASSO (Zou, 2006). Of course, because we have several correlated cardiovascular

end-points, multivariate adaptive elastic-net (Caner and Zhang , 2014) is going to be more

efficient for estimating the health effects of the pollutants.

On the basis of these ideas, we propose a general inferential method based on multivariate

adaptive elastic-net for correlated high-dimensional autoregressive set-ups in Section 3.2. The

effectiveness of this method is verified via simulations in Section 3.3. Finally, in Section 3.4,

we analyze the multiple pollutant data for the rat study described previously.

3.2 Methods

Consider the general case where we have k types of responses and n individuals. Also

there are p pollutants. We will be considering the following model:

y
(t)
j = αjy

(t−1)
j +X(t)βj + ε

(t)
j ; j = 1, . . . , k; t = 1, . . . , T,

where y
(t)
j is the jth response variable and X(t) is the matrix of pollutant concentrations at

tth time-point.

For notational convenience, let us define the following:

y(t) =













y
(t)
1

...

y
(t)
k













, ε(t) =













ε
(t)
1

...

ε
(t)
k













,

βT = (βT
1 , . . . , β

T
k ) and α

T = (α1, . . . , αk).

Also, let Z
(t)
1 =Diag(y(t−1), . . . , y(t−1)) and Z

(t)
2 =Diag(X(t), . . . , X(t)). Finally, defining
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Z(t) = (Z
(t)
1 : Z

(t)
2 ) and θT = (αT , βT ), the above model simplifies to

y(t) = Z(t)θ + ε(t).

Without loss of generality we assume that y(t) is centered so that we have no intercept

in the model. Also assume Cov(ε
(t)
i , ε

(t)
j ) = σij for i, j = 1, . . . , k. Clearly, σij = σji. Now,

define Σij as an n × n matrix with all entries zero except the first entry which is equal to

σij , i, j = 1, . . . , k. Clearly, the dispersion matrix of ε(t) is the nk× nk block matrix Σ, with

Σij the blocks. Also, θ0
T
= (α0T , β0T ) is the true parameter vector.

Now, our variable selection method is divided into three steps:

In the first step, we assume working independence of the responses i.e. Σ = Ink. Then

we use adaptive elastic net (Zou and Zhang , 2009) to estimate the parameter vector θ i.e.

θ̂(I)n = (1 +
λ2
n
) argmin

θ

{

T
∑

t=1

||y(t) − Z(t)θ||22 + λ2||θ||22 + λ1Σ
(k+1)p
j=1 ŵj|θj |

}

,

where {ŵj}(k+1)p
j=1 are adaptive weights as described in Zou and Zhang (2009). Note that,

{ŵj}pj=1 are all set as zero (i.e. no penalization on α) to maintain the AR(1) correlation

structure.

In the next step, we use θ̂
(I)
n obtained from previous step to calculate the residuals and

thereby estimate the σij ’s and hence the Σ matrix.

Finally, we estimate θ by minimizing the weighted adaptive elastic net criterion function

as described by Caner and Zhang (2014) i.e.

θ̂n = (1 +
λ2
n
) argmin

θ

{

T
∑

t=1

(y(t) − Z(t)θ)T Σ̂−1
n (y(t) − Z(t)θ) + λ2||θ||22 + λ1Σ

(k+1)p
j=1 ŵj|θj |

}

.

Again in this situation, to preserve the AR(1) correlation structure, {ŵj}pj=1 are all set as

zero. For notational consistency, we let θ̂Tn = (α̂T
n , β̂

T
n ).
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We make the same assumptions as in Zou and Zhang (2009) and Caner and Zhang (2014):

(A1) We use λmin(M) and λmax(M) to denote the minimum and maximum eigen values

of a positive definite matrix M, respectively. Then, we assume

b ≤ λmin

(

1

n
(Z(t))T (Z(t))

)

≤ λmax

(

1

n
(Z(t))T (Z(t))

)

≤ B,

where b and B are two positive constants.

(A2) limn→∞
maxi=1,...,n

∑p
j=1((Z

(t)))2ij
n

= 0;

(A3) E
[

|ε|2+δ
]

<∞ for some δ > 0.

(A4) limn→∞
log(p)
log(n)

= ν for some 0 ≤ ν < 1.

(A5) limn→∞
λ2

n
= 0 and limn→∞

λ1√
n
= 0.

(A6) ||Σ̂−1
n −W ||22 →P 0, where W is finite and positive.

Under assumptions (A1)−(A6), following the theoretical results of Zou and Zhang (2009)

and Caner and Zhang (2014), we get,

(i) Consistency in Selection:

P (An = A) → 1

where A = {j : β0
j 6= 0} is the set of true signals and An = {j : β̂n,j 6= 0} is the set of

estimated signals.

(ii) Asymptotic normality:

δT
I + λ2Ω

−1
A

1 + λ2/n
Ω

1/2
A (β̂n,A − β0

A) → N(0, 1)

in distribution, where ΩA = ZT
2,AΣ

−1Z2,A is a matrix of dimension equal to the cardinality of

A, say pA and δ is a vector of norm 1.

On the set {An = A},

δT
I + λ2Ω

−1
A

1 + λ2/n
Ω

1/2
A (β̂n,A − β0

A) = δT
I + λ2Ω

−1
An

1 + λ2/n
Ω

1/2
An

(β̂n,An
− β0

An
),
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where ΩAn
= ZT

2,An
Σ̂−1

n Z2,An
is a matrix of dimension equal to the cardinality of An, say pAn

and δ is a vector of norm 1.

This means that, on the set {An = A},

δT
I + λ2Ω

−1
An

1 + λ2/n
Ω

1/2
An

(β̂n,An
− β0

An
)

d−→ N(0, 1). (3.1)

Now from (i), we have P (An = A) → 1. This implies that, (3.1) holds, where ΩAn
=

ZT
2,An

Σ̂−1
n Z2,An

is a matrix of dimension equal to the cardinality of An, say pAn
and δ is a

vector of norm 1.

We are going to use this asymptotic result for our inferential procedures.

3.3 Simulations

Extensive simulations were conducted to evaluate the performance of this inferential

procedure. We considered k = 10, n = 10 and T = 100. The value of p was varied over

{30, 50, 80}. α0
j was taken to be 0.5 for all j = 1, . . . , 10. All σij ’s (i 6= j) were fixed at 0.6

while σii’s were taken as 1. We considered β0
j = (2.5, 2.5, 2.5,−2.5,−2.5, 0, 0, . . . , 0) for all

j = 1, . . . , 10 (note the dimension of β0
j varies with changing p).

To model the correlation between the covariates, rows of X are considered as iid realiza-

tions from N(0,Ω). The following correlation structures were looked at:

A. Ωii = 1 for all i = 1, . . . , p, Ωij = 0.8 for i, j = 1, . . . , 10, i 6= j and Ωij = 0.1 for

i, j = 11, . . . , p, i 6= j.

B. Ωij = (0.9)|i−j|, i, j = 1, . . . , p.

C. Ωii = 1 and Ωij = 0.8, i, j = 1, . . . , p, i 6= j .

Now, we used our inferential procedure to calculate confidence intervals for each of the

βj ’s in each of the nine situations (three choices of correlation structure and three choices

of p). In each situation, the experiment was repeated 1000 times. A particular co-ordinate
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of β was defined as a signal if its 95% confidence interval did not contain 0. CIj is the 95%

confidence interval of βj, j = 1, . . . , 10p. The performance of the procedure was evaluated

by two separate measures:

I. Coverage Probability (CP) at jth co-ordinate: P̂(β0
j ∈ CIj) and

II. True Positives (TP) at jth co-ordinate: P̂(0 /∈ CIj |β0
j 6= 0) and False Positives (FP)

at jth co-ordinate: P̂(0 /∈ CIj|β0
j = 0),

where P̂ is the empirical probability. In each situation, for each βj, these two measures

were calculated. We also provide the simulation results for the same data-sets using simple

adaptive elastic-net for one response at a time. The results have been summarized in Table

3.1.

From the high percentages of the True Positives measure for the proposed method, it is

evident that the method is very well equipped to identify the correct signals. Also, for such

highly correlated set-ups, the method provides a fair control over detection of false positives

(maximum of False Positives measure below 20%). Finally, the coverage probabilities are

not very far away from the nominal coverage probability (95%), indicating the efficiency of

the inference procedure. Comparing the results in Table 3.1, we can clearly see that there is

a very nominal gain in False Positives and Coverage Probability measures but a sizeable loss

in terms of True Positives measures, which clearly indicates the effectiveness of the proposed

inference procedure.

3.4 Rat-data analysis

We used our proposed inferential strategy to analyze the rat-data as discussed in Sec-

tion 3.1. We have seven cardiovascular end-points and 28 elemental pollutant concentrations,

measured at 30-minute intervals. We have two diet-groups (HFrD and ND), each of which

we are going to model separately. So, for our example, k = 7, n = 4, p = 28 and T = 71.

The results of the analysis are presented in Figures 3.1-3.7.

37



Figure 3.1: Confidence intervals of effects of standardized pollutant concentrations on Sys-
tolic Blood Pressure

Figure 3.2: Confidence intervals of effects of standardized pollutant concentrations on Dias-
tolic Blood Pressure

Figure 3.3: Confidence intervals of effects of standardized pollutant concentrations on Mean
Arterial Pressure
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Figure 3.4: Confidence intervals of effects of standardized pollutant concentrations on Pulse
Pressure

Figure 3.5: Confidence intervals of effects of standardized pollutant concentrations on Heart
Rate

Figure 3.6: Confidence intervals of effects of standardized pollutant concentrations on Tem-
perature
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Figure 3.7: Confidence intervals of effects of standardized pollutant concentrations on QA
Interval

Note that, the figures contain the confidence intervals of only the variables selected by

the procedure; the variables which are not selected are set to zero, and hence by definition,

they are not significant.

A major concern with such data-sets where we have so many correlated pollutants is

whether the statistical significance observed is truly significant or merely a statistical artifact.

Thus, possibly we could have a scenario where two positively correlated pollutants, none of

which are actually signals, are both deemed to be significant in the analysis, albeit having

opposite signs. Simply speaking, in this situation we have two false positives. To address

this concern, we would like to point out that our simulations indicate even for such strongly

correlated data-sets this procedure does provide a fair amount of control on the rate of false

positives. Also, as a post-analysis sensitivity check we tried the following– if two highly

correlated pollutants were both deemed to be significant, we randomly dropped one of the

two pollutants. Then we reran the entire procedure with the remaining 27 pollutants to see

how sensitive the behavior of the other pollutant was to this. There was, understandably, a

slight change in the estimated effect sizes and confidence intervals for the pollutants but there

were no major changes to the significance status or signs of the pollutant effects (only twice

there were changes in significance status, but both times the pollutants were marginally
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significant). This type of sensitivity analysis verifies that our results are not statistical

artifact but are ‘true’ results.

Given that a single emission source produces particles that contain multiple elements,

it is not surprising that we observed correlations with two or more elements. The site

of the current study in an industrial area of Dearborn is within a mile of a steel mill,

automotive assembly facilities, and an oil refinery. As such our findings of associations of

iron, barium, titanium, cobalt and molybdenum are consistent with the high concentration

of metal-associated industries in the area.

Consistent with our biological hypothesis, our results demonstrate significant differences

in the effect of the pollutants in the two diet groups. Also, specific pollutants are associated

with an increase in a certain cardiovascular measure (e.g. Barium with an increase of systolic

blood pressure in the HFrD diet group) while some others are associated with a decrease

in the same (e.g. Iron is linked with a decrease of systolic blood pressure in the HFrD diet

group). This outcome should not be interpreted to indicate one element is harmful while

the other is protective. It is worth remembering that either an increase or a decrease of

a cardiovascular end-point like systolic blood pressure can be harmful. Furthermore these

elements may be an indicator of a certain type of PM combustion source (e.g., metal coating,

steel processing, or oil combustion, etc), and may not themselves be mediating the cardio-

vascular effect. The statistical interpretation of these results, while quite straightforward,

need to be incorporated cautiously into the calculation for biological plausibility to inform

the assessment of PM2.5 exposure for cardiovascular health risks.

3.5 Discussion

The aim of this work was to propose a high-dimensional inference method for multiple

pollutants model and then use that procedure to analyze this important data-set.

Note that, because this inference procedure is based on adaptive elastic-net, this method

41



will always work for effective p < effective n. However, for the effective p > effective n

scenario, this method may not work. There are certain situations when even in this set-

up this procedure might work, but that is difficult to say beforehand (for details please

refer to Zou and Hastie (2005)). In our analysis, we have ignored the interaction effects of

pollutants for two main reasons. Firstly, including interaction effects would have led us to

a situation where n < p and also because interpretation of variable-selection based results

in the presence of interactions is not straightforward. For instance, one might run into a

situation where the main effect of a pollutant is not selected but the interactions are, in

which case the interpretation is not valid. This can be avoided by doing a group-penalty like

in group LASSO (Yuan and Lin, 2006; Meier et al., 2008). However, statistical inference

based on this type of method is not known.

So, we believe before including such terms in the model and making the inference proce-

dure harder, it is worth interpreting the results of this simpler model carefully and under-

standing the biological mechanisms of pollutant toxicity and thus be able to guide public

health regulatory standards.
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Table 3.1: Simulation results comparing the proposed method with inference method based on simple adaptive elastic-net:
min:= minimum over all the co-ordinates, max:= maximum over all the co-ordinates and mean:= mean over all the
co-ordinates

p
Corr. Proposed method Simple adaptive elastic-net based method
Struct. TP (%) FP (%) CP (%) TP (%) FP (%) CP (%)

min max mean min max mean min max mean min max mean min max mean min max mean

30
A 90.4 100 96.9 7.3 15.4 11.5 84.6 96.0 89.2 79.2 93.2 85.7 7.0 15.0 11.3 85.0 97.1 89.9
B 91.8 100 98.2 5.9 9.2 7.1 90.8 96.4 93.6 82.7 94.9 87.2 5.7 8.9 6.9 91.1 97.7 94.2
C 89.9 99.9 96.0 8.8 17.3 13.7 82.7 95.8 87.2 77.1 90.7 82.4 8.6 16.9 13.6 83.1 97.0 88.1

50
A 90.1 99.9 96.2 8.2 15.9 12.8 84.1 95.3 87.4 78.7 92.1 84.9 8.0 15.5 12.7 84.5 96.2 88.4
B 91.2 100 97.1 6.7 10.0 8.4 90.0 95.8 91.7 81.3 93.8 86.8 6.5 9.7 8.2 90.3 96.8 92.6
C 89.0 99.7 94.9 11.6 17.5 15.1 82.5 95.1 85.2 76.1 89.9 83.0 11.5 17.3 14.9 82.7 96.0 86.4

80
A 89.4 99.8 95.8 9.3 17.1 13.5 82.9 95.0 86.6 77.9 90.7 84.0 9.0 16.8 13.3 83.2 95.9 87.9
B 90.2 99.9 96.4 7.8 10.8 9.1 89.2 95.2 90.4 80.1 92.9 86.2 7.6 10.6 8.8 89.4 96.2 91.7
C 88.8 99.7 94.0 12.9 18.6 16.0 81.4 94.8 84.1 74.8 87.8 80.9 12.7 18.3 15.9 81.7 95.7 85.6
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CHAPTER 4

Variable selection for high-dimensional broken-stick

regression

4.1 Introduction

As we have discussed in Chapter 2, the regression function need not have the same

parametric form in the entire domain of interest. The broken-stick is a specific model of

interest, where the regression function is comprised of line-segments, joined at certain un-

known change-points. The broken-stick with r change-points is defined in Eq. (2.1). For the

serum estradiol hormone profile analysis that we discussed in detail in Chapter 2, we fit a

broken stick with two change-points. The main reasons for using this model were the results

from Sowers et al. (2008b) and also the fact that scientists felt that there were changes in

the hormone secretion twice, once before and one after the Final Menstrual Period (FMP).

However, a major limitation of the Michigan Bone Health and Metabolism Study (MBHMS)

was that several of the subjects did not have records for more advanced years, i.e. more than

8 years after FMP. With a more detailed study, where we have more observations in the

latter years, epidemiologists think that there might be a third or even a fourth change-point.

This scenario raises the question: do we know how many change-points we should include in

our model?
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To get a better insight, first let us consider the standard linear model,

yi = xT

i β + εi; i = 1, . . . , n, (4.1)

where for the i−th subject, yi is the observed response, xi is the p−dimensional observed

covariate (or design points associated with yi) and εi’s are independent and identically dis-

tributed random errors with mean 0 and unknown variance σ2; β is a p−dimensional vector

of unknown parameters.

For this model, the theory is very well established for the traditional set-up where p is

fixed and p < n. However, with advancements in modern technology in several biological,

medical and economics-related fields, we have data-sets with growing p, comparable or even

larger than n. This makes standard inferencial procedures invalid.

A rich literature exists on variable selection procedures, i.e. identifying the non-zero

entries of β in (4.1), for the case of p < n, as well as for p > n, especially in the last

decade. For further details, see Fan and Peng (2004); Hunter and Li (2005); Meinshausen

and Bhlmann (2006); Zhao and Yu (2006); Zou (2006); Wang et al. (2007); Fan and Lv

(2008); Zhang and Huang (2008); Meinshausen and Yu (2009); Wang (2009); Fan and Lv

(2010).

So returning to our motivating example of the serum estradiol hormone-profile analysis,

one possible solution is to start with a complicated overfit model, say 10 change-points and

then do some sort of variable selection to see which of these change-points are actually true.

To illustrate this point further, if one takes a look at the model (2.1), it is quite clear that

βj+1 and τj , j = 1, . . . , r are very closely related; in the sense that if for some j, βj+1 = 0,

then there is no change in regime i.e. for that particular j, τj is a nonsensical parameter.

This means that if we can do some sort of variable selection on the β’s, which are changes

of slope parameters, we should be able to identify which of the change-points are actually

meaningful and be able to select the best model, i.e., the one with the appropriate number
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of change-points. We introduce a problem which has the same flavor, but is more suitable

to introduce our variable selection procedure. We believe this procedure can be extended to

solve the problem discussed above.

4.1.1 Problem Formulation

The problem we are going to look into is when we have p covariates, each of which could

possibly have a broken-stick, with one change-point, effect on Y . We assume of all the p

covariates, several have no effects, some have simple linear effects and the remaining have

broken-stick, with one change-point, effects. Mathematically speaking, this means,

yi = β0 +

p
∑

j=1

mθj (xij) + εi, i = 1, . . . , n, (4.2)

where,

m(β1,β2,τ)(x) = β1x+ β2f(x, τ). (4.3)

Here, f(x, τ) = (x − τ)+, as defined in (2.1) and θj = (β1j , β2j , τj). Also, we define θ =

(β0, θ1, θ2, . . . , θp)
T as the (3p+ 1)−dimensional vector of all the unknown parameters.

We assume that X ∈ [0, 1]. From the above representation, it appears as if we are

assuming that each of the p covariates has one change-point. For instance, say, xj has a

change-point at τj where the linear effect size of xj changes from β1j to β1j + β2j . But, for

the model we described above, we assumed that not all the regressors have a broken-stick

type effect. So, for the sake of identifiability, we assume that if, for example, xk does not have

a broken-stick type effect, β2k = 0 and τk = 1/2. This leads to the following characterization
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of θ:

no effect ⇒ β1 = 0, β2 = 0, τ = 1/2,

effect with no change-point ⇒ β1 6= 0, β2 = 0, τ = 1/2 and

broken-stick effect with one change-point ⇒ β2 6= 0, τ ∈ (0, 1). (4.4)

We assume that most of the Xj ’s, j = 1, . . . , p, do not have an effect on the Y which, of

course, means that most of the β’s are zero. This agrees perfectly with the usual assumption

of sparsity that we get for high-dimensional regression problems. No literature exists on

variable selection for such regression models. Thus, providing a proper variable selection

procedure is of particular importance in this set-up.

The commonly used variable selection procedures such as LASSO, elastic-net, SCAD,

etc will not readily work for this model. We illustrate why these methods fail to work in

this set-up in the following section (4.2). In Section 4.3, we introduce post local smoothing

thresholded ridge regression as an effective variable selection procedure for this model. In

Section 4.4, we provide simulation results which indicate the effectiveness of the proposed

method. Finally, in Section 4.6, we try to indicate our ideas about how we plan to develop

theoretical results for our approach and possible extensions of our methods.

4.2 Difficulty with existing variable selection procedures

From equations (4.2) and (4.3), we can see that our basic objective is to minimize the

least squares criterion:

n
∑

i=1

[yi − β0 −
p

∑

j=1

{β1jxij + β2jf(xij , τj)}]2 (4.5)
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under sparsity assumptions. The total number of unknown parameters in this model is 3p+1.

For now, we assume that n > 3p+ 1.

Our aim is to solve this problem from a penalized regression point of view, i.e., to minimize

the regularized least squares criterion. So we define,

θ̂n = argmin
θ

n
∑

i=1

[yi − β0 −
p

∑

j=1

{β1jxij + β2jf(xij, τj)}]2 + pλ(β, (τ −
1

2
)), (4.6)

where β is the (2p+1)-dimensional vector of β0, all β1j’s and β2j ’s, while τ is the p-dimensional

vector of all τj ’s and pλ is an appropriate penalty depending on the unknown parameter λ.

It is quite clear that because of the sparsity assumption, we want most of the β-parameters

to be zero, hence the penalty on the β’s. It is worth noting that we are overfitting, in some

sense, i.e. using a one change-point broken-stick model when in truth, say, that particular xj

has a simple linear effect. In this kind of a scenario, because of the intrinsic co-dependence

of the β2 and the τ parameters, we need to be cautious. We might run into a situation

where τj is estimated very close to one of the boundaries and the β2j parameter is assigned

a nonsensical estimate or the other way round, β2j is estimated very close to zero and the τj

parameter is assigned a meaningless estimate. We have avoided this type of identifiability

issue by our definitions in (4.4). Thus, we want to make sure that the τj-estimates are always

well separated from the boundary and in case β2j is estimated at zero (or very close to zero),

then the τj estimate automatically becomes 1/2 (or very close to 1/2). Thus our aim is to

shrink the β−estimates towards zero, for sparsity, and shrink the τ−estimates towards 1/2.

This is the motivation behind putting a penalty on |τj − 1/2|.

Now, the least squares criterion in (4.5) is clearly not differentiable because the function

f(x, τ) is not differentiable at τ . In general, we find that a usual necessity for most of the

commonly used variable selection procedures, reliant on coordinate descent type algorithms,

is to have a differentiable loss function (Loh and Wainwright , 2015). We aim to resolve

this by replacing the f− function in the least squares criterion by the twice-differentiable
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smooth local approximation qn as we had done in Chapter 2. This makes our loss function

differentiable; but it still needs to satisfy at least the restricted strong convexity assumption

as in Loh and Wainwright (2015); Negahban et al. (2012); Agarwal et al. (2012); Wang et al.

(2014) to use the popular variable selection approaches such as LASSO, elastic-net or SCAD.

It is not clear if this assumption is going to be satisfied by our loss function and thus we

cannot justify the usage of these procedures.

4.3 Post local smoothing thresholded ridge regression

From arguments given in the previous section, it is clear that it is not possible to use the

traditional variable selection procedures for our set-up. However, from the previous argu-

ments we also understand that we do need some kind of penalty for shrinking the β estimates

towards zero and τ estimates towards 1/2. We choose a ridge regression type penalty as this

is a smooth penalty which allows us to use simple Newton-Raphson type algorithms for

finding the minimum of the penalized regression criterion function, by solving for the zero of

the score function, corresponding to this penalized regression objective function. However,

clearly, this does not perform variable selection; to that end we use hard thresholding. The

algorithm is described below:

Step I: We replace the f−function in (4.5) by the twice differentiable local approximation

qn, where qn is as in Chapter 2. The functional form of qn is:

qn(x, τ) =































0, if x < τ − γn;

(x−τ+γn)2

4γn
, if τ − γn ≤ x ≤ τ + γn;

(x− τ), if x > τ + γn;

(4.7)

where γn is a deterministic sequence, that approaches zero as n→ ∞ (Figure 2.1).
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Step II: We choose a ridge-regression type penalty, i.e.,

θ̃n = argmin
θ

n
∑

i=1

[yi−β0−
p

∑

j=1

{β1jxij+β2jqn(xij , τj)}]2+λ[β2
0+

p
∑

j=1

{β2
1j+β

2
2j+(τj−

1

2
)2}]. (4.8)

We look at the score function corresponding to the criterion function in Eq. (4.8). We

solve for this score function by Newton-Raphson algorithm, as we did in Chapter 2 and

define the resulting estimate as θ̃n.

Step III: Now we do a hard thresholding on the β’s, i.e. β̂ = β̃1(|β̃| < a). Note that if

|β̃1j | ≥ a and |β̃2j| < a, then xj has only linear effect, while if both |β̃1j| < a and |β̃2j| < a,

then xj has no effect. If |β̃2j | < a, then we make τ̂j = 0.5. This is our final estimate, θ̂n.

Step IV: We choose the tuning parameters λ and a by cross-validation. For our simu-

lations, in the following section, we use 5-fold cross-validation and minimize the average

prediction mean squared error. Here, we are basically adopting ideas from the thresholded

ridge regression procedure for linear models, with fixed design, as described in Shao and

Deng (2012).

4.4 Simulation study

We considered model (4.2) with normally distributed εi. To vary the signal-to-noise ratio,

the standard deviation of εi was varied over the following three set-ups: σ = 0.1 (A), 0.3

(B), 0.6 (C). Three sets of variables and sample sizes were also considered, (p, n) = (30, 100),

(100, 320) and (300, 920). A set of X1, . . . , Xn were independently generated with Xi coming

from a truncated (in (0, 1)) multivariate normal distribution with (µ = 0.5∗1,Σ), where the

diagonal elements of Σ are all equal to 1/6 and off-diagonal elements of Σ are all equal to

0.1.

Set-up 1: (p, n) = (30, 100). Of these 30 x−variables, the first two have a broken-stick,

with single change-point effect (β1j = 1, β2j = 0.5 for j = 1, 2 and τ1 = 0.4 and τ2 = 0.6),
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the next three have only linear effects (β1j = 1, β2j = 0 and τj = 0.5, for j = 3, 4, 5) and the

last 25 do not have any effects (i.e. β1j = β2j = 0 and τj = 0.5, for j = 6, 7, . . . , 30).

Set-up 2: (p, n) = (100, 320). Of these 100 x−variables, the first five have a broken-

stick, with single change-point effect (β1j = 1, β2j = 0.5 and τj = 0.1(j+2) for j = 1, . . . , 5),

the next five have only linear effects (β1j = 1, β2j = 0 and τj = 0.5, for j = 6, . . . , 10) and the

last ninety do not have any effects (i.e. β1j = β2j = 0 and τj = 0.5, for j = 11, 12, . . . , 100).

Set-up 3: (p, n) = (300, 920). Of these 300 x−variables, the first 15 have a broken-stick,

with single change-point effect (β1j = 1, β2j = 0.5 and τj = 0.1(1+8j/15) for j = 1, . . . , 15),

the next 15 have only linear effects (β1j = 1, β2j = 0 and τj = 0.5, for j = 16, 17, . . . , 30) and

the last 270 do not have any effects (i.e. β1j = β2j = 0 and τj = 0.5, for j = 31, 32, . . . , 300).

For all the set-ups, β0 is taken as 5. The proposed algorithm described in Section 4.3

is then used to perform variable selection for the simulated data-sets and the experiment

is repeated 1000 times for each set-up. We noted for each set-up, the percentage of times

the method is able to identify the variable accurately, i.e. whether it is a signal with one

change-point, or a signal with no change-point or just a noise term. The high percentages of

correct variable identification, as noted in Table 4.1, indicate the effectiveness of the proposed

method.

In Table 4.2, we have recorded the bias and standard deviations of the estimates over

the 1000 replications for Set-up 1. We can see there seems to be a small systematic bias

present for the estimates. However, because the accuracy of variable identification is so high,

as illustrated in Table 4.1, we can see that there is almost no bias in the extra parameters

(i.e. for the signals with no change-point, the β2 parameter is almost bias-free and similarly

for the noise terms both the β parameters are almost bias free). This makes sense because

we are able to identify the variables accurately; hence in both these situations most of these

noise-type parameters are thresholded to zero. The same pattern is repeated in Tables 4.3

and 4.4 where the biases are recorded for Set-ups 2 and 3. It appears from the simulation

results the bias does decrease with increasing sample-size(n). However, even if the estimates

51



Table 4.1: Percentage of times the method was able to identify the variable correctly

Signal with single change-point Signal with no change-point Noise term

Set-up A

Set-up 1 99.42 99.60 99.15
Set-up 2 99.49 99.61 99.23
Set-up 3 99.64 99.60 99.28

Set-up B

Set-up 1 95.83 96.65 96.83
Set-up 2 95.98 96.82 96.97
Set-up 3 96.04 96.91 97.02

Set-up C

Set-up 1 92.26 92.86 92.47
Set-up 2 92.43 93.05 92.70
Set-up 3 92.64 93.19 92.89

Table 4.2: Bias and standard deviations, in parentheses, of the estimates over 1000 replica-
tions for Set-up 1

A B C

Single change point signals

β11 0.04 (0.02) 0.09 (0.03) 0.17 (0.06)
β21 -0.06 (0.03) -0.10 (0.05) -0.16 (0.07)
τ1 0.02 (0.01) 0.02 (0.01) 0.03 (0.01)
β12 0.04 (0.02) 0.10 (0.03) 0.18 (0.06)
β22 -0.06 (0.03) -0.10 (0.04) -0.17 (0.07)
τ2 -0.02 (0.01) -0.03 (0.01) -0.03 (0.01)

No change point signals

β13 0.05 (0.02) 0.08 (0.03) 0.17 (0.06)
β14 0.04 (0.02) 0.08 (0.03) 0.16 (0.06)
β15 0.04 (0.02) 0.09 (0.03) 0.18 (0.06)
β2 0.0001 0.0004 0.0008

Noise terms
β1 0.0002 0.0006 0.0011
β2 < 0.0001 < 0.0001 0.0001
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Table 4.3: Bias and standard deviations, in parentheses, of the estimates over 1000 replica-
tions for Set-up 2

A B C

Single change point signals

β11 0.03 (0.01) 0.08 (0.02) 0.15 (0.06)
β21 -0.06 (0.02) -0.09 (0.05) -0.15 (0.07)
τ1 0.01 (< 0.01) 0.01 (0.01) 0.02 (0.01)
β12 0.04 (0.02) 0.10 (0.03) 0.17 (0.07)
β22 -0.05 (0.02) -0.09 (0.04) -0.17 (0.06)
τ2 0.01 (< 0.01) 0.02 (< 0.01) 0.01 (< 0.01)
β13 0.04 (0.01) 0.09 (0.03) 0.16 (0.05)
β23 -0.06 (0.03) -0.09 (0.05) -0.16 (0.06)
τ3 < 0.01 (< 0.01) < 0.01 (< 0.01) 0.01 (< 0.01)
β14 0.03 (0.01) 0.09 (0.03) 0.17 (0.05)
β24 -0.06 (0.03) -0.10 (0.05) -0.16 (0.06)
τ4 -0.01 (< 0.01) -0.02 (< 0.01) -0.02 (0.01)
β15 0.03 (0.01) 0.08 (0.03) 0.16 (0.05)
β25 -0.05 (0.02) -0.09 (0.04) -0.17 (0.07)
τ5 -0.01 (< 0.01) -0.01 (< 0.01) -0.02 (< 0.01)

No change point signals

β16 0.05 (0.02) 0.08 (0.03) 0.16 (0.06)
β17 0.05 (0.02) 0.09 (0.03) 0.16 (0.05)
β18 0.04 (0.01) 0.09 (0.03) 0.18 (0.06)
β19 0.05 (0.01) 0.08 (0.02) 0.17 (0.05)
β1,10 0.04 (0.02) 0.09 (0.03) 0.18 (0.06)
β2 < 0.0001 0.0002 0.0005

Noise terms
β1 0.0001 0.0004 0.0010
β2 < 0.0001 < 0.0001 < 0.0001

are asymptotically unbiased for a proper choice of the tuning parameters (λn and an), it

does appear that the rate at which the bias converges to zero is quite slow. This will need

to be investigated in more detail.

4.5 Extension to multiple change-points model

4.5.1 The idea

We would also like to extend this method to broken-stick effects with multiple change-

points, as described in Section 4.1. The principal difficulty is that we need to penalize

the distance between consecutive change-points, which will lead to penalties of the form
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Table 4.4: Average bias of the estimates over 1000 replications for Set-up 3

A B C

Single change point signals
β1 0.03 0.09 0.17
β2 -0.05 -0.10 -0.16
τ 0.0008 0.0002 -0.0003

No change point signals
β1 0.04 0.08 0.15
β2 < 0.0001 0.0001 0.0003

Noise terms
β1 < 0.0001 0.0002 0.0007
β2 < 0.0001 < 0.0001 < 0.0001

λ
∑

j |τj+1 − τj |. Quite clearly, this penalty is not separable in the coordinates of θ, because

of which the problem becomes trickier. However, it is our understanding that if we have a

good idea about the maximum possible number of change-points, then our proposed method

can be extended to the multiple change-points set-up as well. For instance, let us look at

the E2 hormone profile analysis that we performed in Chapter 2. If we do not believe our

initial assumption that this is a broken-stick model with two change-points, then we can

use a modified version of our algorithm in this chapter to determine the correct number of

change-points. Say, we assume that there are, at most, possibly k change-points. Then, we

modify Step II of our algorithm, as described in Section 4.3 to the following:

θ̃n = argmin
θ

[
n

∑

i=1

{yi − β0 − β1xi −
k

∑

j=1

βj+1qn(xi, τj)}2

+λ1{
k

∑

j=0

β2
j + (τ1 −

1

k
)2 + (τk −

k − 1

k
)2}+ λ2

k−1
∑

j=1

(τj+1 − τj −
1

k
)2], (4.9)

the idea being we do not want the change-point estimates too close to the boundaries or con-

secutive change-points too close to one another. After this step, the remaining steps remain

unaltered. We seek to find the most parsimonious yet accurate model. We investigated the

merit of this approach via some simple simulations.
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4.5.2 Simulations

We considered the simple model where the mean function is a broken-stick with three

change-points and normally distributed errors with mean zero and standard deviation 0.1.

The covariate X is generated from a uniform distribution in (0,1). Sample-sizes (n) are

varied over 50, 100, 500 and 1000. The initial guess about the maximum possible number

of change-points as defined in Eq (4.9) is denoted by k; k is varied over 10, 6 and 4. For

all these set-ups, the change-points’ locations were fixed at 0.4, 0.6 and 0.8 and change of

slope parameters equal to 0.5 (i.e. β2 = β3 = β4 = 0.5). For each set-up, the experiment

was repeated 1000 times and the results are presented in Table 4.5.2.

It is quite evident from the results in Table 4.5.2, for all (n, k) pairs, the approach

detects the correct model with a high probability. Also, as one would expect, this proportion

increases with increasing sample-sizes as well as when we have a better initial guess about

the correct number of change-points in the broken-stick.

4.6 Future work

We expect to have selection consistency for the proposed algorithm in the same way as

in Shao and Deng (2012), for proper choice of λn → 0 and an → 0. Here λn is the tuning

parameter in the ridge regression step (Step II) while an is the cut-off tuning parameter

in Step III. For linear regression with n > p, Shao and Deng (2012) established selection

consistency for gaussian errors, i.e., for any constant t > 0,

P (̥θ̂n,an
= ̥θ0,an) = 1− O(n−t),

where ̥ξ,cn denotes the set of indices of components of ξ whose absolute values are larger

than cn. For the n > p set-up, these results, we believe, can be extended to the random

design model. We aim to establish a similar result for our broken-stick model.
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Firstly, for a fixed p set-up, we wish to look at the score functions corresponding to

Eq. (4.8) and put everything into a general M-estimation framework, as we did in Chapter 2

to understand the asymptotic properties of θ̂n. Of course, this would mean we need to

understand at what rates λn and an converge to zero. Once, we have an understanding of

the asymptotic behavior of our estimate for a fixed p, we hope to be able to provide good

theoretical insight into a growing p set-up for this problem.

For a fixed p, when the number of change-points for the broken-stick model is known, an

efficient method of estimation has been presented in Chapter 2. Variable selection procedures

for large p in a linear regression set-up are very well known in literature. However, there is

no known method of variable selection when the covariates can possibly have a broken-stick

type effect. This is the gap in literature that we are aiming to bridge. In this chapter,

we have provided a numerically efficient method for broken-stick effect with single change-

point. Our immediate aim is to show theoretical efficiency of the proposed method, in terms

of selection/prediction consistency, as described above.

Finally, we would like to investigate how the proposed extension of our method will work

for detecting the number of change-points in a multiple change-points model. Because this

approach is closely related to the problem we have looked at in more detail in this chapter, we

feel this should work. However, we note that the simulation study for the multiple change-

points model is quite limited and more comprehensive investigation, both on the simulation

and theoretical fronts are called for. This will be pursued in the future.
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Table 4.5: Distribution (in percentages) of the estimated number of change-points by the proposed approach

Estimated n=50 n=100 n=500 n=1000
number of

change-points k = 10 k = 6 k = 4 k = 10 k = 6 k = 4 k = 10 k = 6 k = 4 k = 10 k = 6 k = 4
≤ 1 0.7 0.7 0.3 0.3 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0
2 14.4 14.0 8.6 12.6 11.1 8.5 10.9 10.1 7.1 10.2 7.8 5.9

3 (truth) 64.9 68.8 79.0 70.2 74.8 80.8 73.9 78.1 84.0 76.2 82.0 86.9
4 16.3 14.7 12.1 15.4 12.9 10.5 14.1 11.3 8.9 13.0 10.0 7.2

≥ 5 3.7 1.8 0.0 1.5 1.0 0.0 1.0 0.5 0.0 0.6 0.2 0.0

57



APPENDIX

58



APPENDIX A

Proofs for Chapter 2

A.1 Proof of Theorem 2.1

It is clearly seen that U(θ0) = 0, here U(θ) = ∂P (M(θ))/∂θ is the population score

function. The proof of consistency is based on the following two facts:

Fact 1: θ0 is the unique minimizer of P (M(θ)) in Θ.

Fact 1∗: θ0 is also the unique solution of U(θ) = 0. Note that, this is not required

for proving Theorem 2.1; however, this does imply that the estimate obtained by Newton-

Raphson of the smoothed score equation converges to the true θ0, and not to some local

minima.

Fact 2: ‖Pn(Mn)− P (M)‖ := supθ∈Θ |Pn(Mn(θ))− P (M(θ))| = op(1).

Now, from Fact 1, we get θ0 is the unique minimizer of P (M(θ)) in Θ. This along with Fact

2, proves consistency of θ̂n by the argmax (argmin) continuous mapping theorem (van der

Vaart and Wellner , 1996). Note that, since θ0 is an interior point of Θ and θ̂n, the minimizer

of Pn(Mn(θ)) is consistent for θ0, hence θ̂n is also an interior point of Θ with probability

increasing to 1. Of course, this also implies with probability increasing to 1, θ̂n is a zero of

Un(θ).
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To show Fact 1, observe that,

P (M(θ)) = P (M(θ0)) + P
[

(β0 − β0
0) + (β1 − β0

1)X + {β2f(X, τ)− β0
2f(X, τ

0)}
]2
.

This, of course, implies that θ0 minimizes P (M(θ)) in Θ. Now, assuming θ1 is also a

minimizer of P (M(θ)), we get

(β1
0 − β0

0) + (β1
1 − β0

1)x+ {β1
2f(x, τ

1)− β0
2f(x, τ

0)} = 0

holds for all x ∈ [0,M ]. Putting x = 0, we get β1
0 = β0

0 . So, now we have,

(β1
1 − β0

1)x+ {β1
2f(x, τ

1)− β0
2f(x, τ

0)} = 0

holds for all x ∈ [0,M ]. Next, if we take 0 < x < min(τ 0, τ 1), then we get (β1
1 − β0

1)x = 0 ⇒

β1
1 = β0

1 . Thus, we are now left with

β1
2f(x, τ

1)− β0
2f(x, τ

0) = 0

holds for all x ∈ [0,M ]. Now, taking x = min(τ 0, τ 1), we have τ 0 = τ 1 because β2 6= 0.

Finally, we get,

(β1
2 − β0

2)f(x, τ
0) = 0

holds for all x ∈ [0,M ], implying β1
2 = β0

2 . So, we have θ1 = θ0, implying that θ0 is indeed

the unique minimizer of P (M(θ)) in Θ. We now have established Fact 1.

To establish Fact 2, observe that |Pn(Mn(θ)) − P (M(θ))| ≤ |Pn(Mn(θ)) − P (Mn(θ))| +

|P (Mn(θ)−M(θ))|. Direct calculation yields P (Mn(θ)−M(θ)) = 2P [{f(X, τ)−qn(X, τ)}{Y−

β0−β1X−β2
f(X,τ)+qn(X,τ)

2
})] = O(γn) = o(1). Now we show that, (Pn−P )(Mn(θ)) = op(1).

Observe that Mn(θ) = (Y − β0 − β1X − β2qn(X, τ))
2. Now, Θ being compact, it is clear
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that β0, β1X and β2qn(X, τ) are all bounded monotones as functions of θ. Theorem 2.7.5 in

van der Vaart and Wellner (1996) shows that bounded monotone functions have a bracketing

number of order (1/ǫ), wrt L1(P ) norm and hence a similar bound on the covering number

with respect to the same norm. So they have bounded uniform entropy integral (BUEI)

property and hence belongs to a Glivenko-Cantelli class. Theorem 3 in van der Vaart and

Wellner (1999) shows that simple operations such as addition or multiplication preserves

the Glivenko-Cantelli property and hence Mn(θ) belongs to a Glivenko-Cantelli class. This

implies that (Pn −P )(Mn(θ)) = op(1) (van der Vaart and Wellner , 1996), which establishes

Fact 2, and hence Theorem 2.1.

To show Fact 1∗, we consider the simpler model E(Y |X) = β1X+β2f(X, τ) by absorbing

the intercept into Y , and then show that θ0 = (β0
1 , β

0
2 , τ

0) is the unique zero of U(θ), here,

U(θ) =













−2P [X(Y − β1X − β2f(X, τ))]

−2P [f(X, τ)(Y − β1X − β2f(X, τ))]

−2β2P [−1(X > τ)(Y − β1X − β2f(X, τ))]













=













−2P [X(β0
1X + β0

2f(X, τ
0)− β1X − β2f(X, τ))]

−2P [f(X, τ)(β0
1X + β0

2f(X, τ
0)− β1X − β2f(X, τ))]

−2β2P [−1(X > τ)(β0
1X + β0

2f(X, τ
0)− β1X − β2f(X, τ))]













.

Now to solve the system of equations U(θ) = 0, we eliminate β1 to obtain,

P (Xf(X, τ 0))P (Xf(X, τ))− P (f(X, τ)f(X, τ 0))P (X2)

P 2(Xf(X, τ))− P (f 2(X, τ))P (X2)

=
P (Xf(X, τ 0))P (X1(X > τ))− P (1(X > τ)f(X, τ 0))P (X2)

P (Xf(X, τ))P (X1(X > τ))− P (1(X > τ)f(X, τ))P (X2)

=
β2
β0
2

. (A.1)
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From the first equality in (A.1) we obtain

P (X2)P (1(X > τ)f(X, τ 0))[P (f 2(X, τ))− P (f(X, τ)f(X, τ 0))]

+P (f(X, τ)f(X, τ 0))P (Xf(X, τ))P (X1(X > τ))

−P 2(Xf(X, τ))P (1(X > τ)f(X, τ 0))

+P (1(X > τ)f(X, τ))P (Xf(X, τ 0))P (Xf(X, τ))

−P (f 2(X, τ))P (X1(X > τ))P (Xf(X, τ 0)) = 0. (A.2)

We now show that this cannot be true for any τ 6= τ 0. Suppose τ > τ 0. Clearly,

P (f 2(X, τ))− P (f(X, τ)f(X, τ 0)) = P [f(X, τ)(f(X, τ)− f(X, τ 0))] < 0,

which implies

P (X2)P (1(X > τ)f(X, τ 0))[P (f 2(X, τ))− P (f(X, τ)f(X, τ 0))] < 0.

Let hk(τ) = P (Xk1(X > τ)). We have

P (f(X, τ)f(X, τ 0))P (Xf(X, τ))P (X1(X > τ))− P 2(Xf(X, τ))P (1(X > τ)f(X, τ 0))

+P (1(X > τ)f(X, τ))P (Xf(X, τ 0))P (Xf(X, τ))

−P (f 2(X, τ))P (X1(X > τ))P (Xf(X, τ 0)) = [h21(τ)− h2(τ)h0(τ)]ττ
0(g(τ 0)− g(τ)),

where g(τ) = {h2(τ)−τh1(τ)}/τ . Now, h′k(τ) = τh′k−1(τ). So, g
′(τ) = {h′2(τ)−τh′1(τ)}/τ 2−

{h2(τ)}/τ 2 = −{h2(τ)}/τ 2 < 0. Hence, we have g(τ 0)−g(τ) > 0. Also, the Cauchy-Schwarz

inequality yields h21(τ) − h2(τ)h0(τ) < 0, thus [h21(τ) − h2(τ)h0(τ)]ττ
0(g(τ 0) − g(τ)) < 0.

Hence for all τ > τ 0 the left hand side of (A.2) is negative. Similarly we can show that it is

positive for all τ < τ 0. Thus (A.2) yields τ = τ 0.
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Clearly from the second equality in (A.1) we have β2 = β0
2 , then β1 = β0

1 and thus θ = θ0.

This proves Fact 1∗

A.2 Proof of Theorem 2.2

Since n1/2(θ̂n − θ0) = n1/2(θ̂n − θn) + n1/2(θn − θ0), the asymptotic distribution of θ̂n is a

direct result of the following two facts when γn = n−α with α > 1/2.

Fact 3: ‖θn − θ0‖ = O(γn).

Fact 4: n1/2(θ̂n − θn) converges in distribution to N(0, 2σ2U̇−1
∗ (θ0)).

We first show Fact 3. Observe that a simple Taylor series expansion of Un(θn) around θ
0

yields

Un(θn)− Un(θ
0) =



















U̇1n(θ̃
(1)
n )

U̇2n(θ̃
(2)
n )

U̇3n(θ̃
(3)
n )

U̇4n(θ̃
(4)
n )



















(θn − θ0) = An(θn − θ0),

where each of θ̃
(i)
n , i = 1, 2, 3, 4, lies on the straight line joining θn and θ0 and U̇in = ∂Un

∂βi−1
,

i = 1, 2, 3, and U̇4n = ∂Un

∂τ
. Now, we know from the proof of Fact 1, supθ∈Θ |P (Mn(θ)) −

P (Mn(θ))| = o(1), hence θn − θ0 = o(1). This in turn implies that for sufficiently large n, θn

is an interior point of Θ and hence, a zero of Un(θn).

Now, U(θ0) = 0. Thus for sufficiently large n, the above equality becomes

Un(θ
0)− U(θ0) = −An(θn − θ0).
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It is clearly seen from

Un(θ)− U(θ)

=



















−2β2P (f(X, τ)− qn(X, τ))

−2β2P [X(f(X, τ)− qn(X, τ))]

2P [(f(X, τ)− qn(X, τ))(Y − β0 − β1X − β2(qn(X, τ) + f(X, τ)))]

2β2P [(−1(X ≥ τ)− ∂
∂τ
qn(X, τ))(Y − β0 − β1X − β2(qn(X, τ) + f(X, τ)))]



















,

that ‖Un − U‖ = O(γn). Thus Fact 3 is established if An is invertible for large n. Now,

U̇n(θ) =















2 2P (X) 2P (qn(X, τ)) 2β2P ( ∂

∂τ
qn(X, τ))

2P (X) 2P (X2) 2P (Xqn(X, τ)) 2β2P (X ∂

∂τ
qn(X, τ))

2P (qn(X, τ)) 2P (Xqn(X, τ)) 2P (q2n(X, τ)) an(θ)

2β2P ( ∂

∂τ
qn(X, τ)) 2β2P (X ∂

∂τ
qn(X, τ)) an(θ) bn(θ)















,

where,

an(θ) = 2β2P

{

qn(X, τ)
∂

∂τ
qn(X, τ)

}

− 2P

{

(Y − β0 − β1X − β2qn(X, τ))
∂

∂τ
qn(X, τ)

}

,

bn(θ) = 2β2
2P

{

(

∂

∂τ
qn(X, τ)

)2
}

− 2β2P

{

(Y − β0 − β1X − β2qn(X, τ))
∂2

∂τ 2
qn(X, τ)

}

.

A direct calculation shows that all the elements of U̇n(θ) apart from bn(θ) converge uniformly

to continuous finite limits. Since ‖Un − U‖ = O(γn) = o(1) and θ0 is the unique root of

U(θ), we have θn → θ0, thus θ
(i)
n → θ0, i = 1, 2, 3, 4 as n→ ∞. Hence, by continuity, all the

elements of An apart from bn(θ̃
(4)
n ) converge to a finite limit.

To check the convergence of bn(θ̃
(4)
n ), we write bn(θ) = b

(1)
n (θ)− b

(2)
n (θ) where

b(1)n (θ) = 2β2
2P

{

(

∂

∂τ
qn(X, τ)

)2
}

,

b(2)n (θ) = 2β2P

{

(Y − β0 − β1X − β2qn(X, τ))
∂2

∂τ 2
qn(X, τ)

}

.
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It can be clearly seen that b
(1)
n (θ) → 2β2

2P (1(X > τ)), a continuous function, uniformly.

Hence b
(1)
n (θ̃

(4)
n ) → 2β

(0)2

2 P (1(X > τ 0)).

For notational simplicity we denote θ̃
(4)
n = (β̃0n, β̃1n, β̃2n, τ̃n). Then,

P

{

(Y − β̃0n − β̃1nX − β̃2nqn(X, τ̃n))
∂2

∂τ 2
qn(X, τ̃n)

}

= P

{

ε
∂2

∂τ 2
qn(X, τ̃n)

}

+ P

{

∂2

∂τ 2
qn(X, τ̃n)

{

(β
(0)
0 − β̃0n) + (β

(0)
1 − β̃1n)X

+(β
(0)
2 − β̃2n)f(X, τ

0) + β̃2n(f(X, τ
0)− qn(X, τ̃n))

}

}

= I + II + III + IV + V.

We then have, I = P [ε∂2qn(X, τ̃n)/∂τ
2] = 0, and

II = P

∣

∣

∣

∣

1

2γn
(β

(0)
0 − β̃0n)1(τ̃n − γn ≤ X ≤ τ̃n + γn)

∣

∣

∣

∣

= |β(0)
0 − β̃0n|P

∣

∣

∣

∣

1

2γn
1(τ̃n − γn ≤ X ≤ τ̃n + γn)

∣

∣

∣

∣

= o(1)O(1)

= o(1).

Similarly the result of convergence to 0 can be shown for III, IV and V. Also, β̃2n → β2
(0).

Thus we have b
(2)
n (θ̃

(4)
n ) → 0.

So we have established U̇n(θ) converges uniformly, implying An converges as well. Let

U̇∗(θ
0) denote the limit of An, where

U̇∗(θ
0) = 2















1 P (X) P (f(X, τ0)) −β0
2P (1(X > τ0))

P (X) P (X2) P (Xf(X, τ0)) −β0
2P (X1(X > τ0))

P (f(X, τ0)) P (Xf(X, τ0)) P (f2(X, τ0)) −β0
2P (f(X, τ0))

−β0
2P (1(X > τ0)) −β0

2P (X1(X > τ0)) −β0
2P (f(X, τ0)) (β0

2)
2P (1(X > τ0))















.
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Now, for any vector a = (a1, . . . , a4)
T 6= 0, we have

aTU̇∗(θ
0)a = 2P{a1 + a2X + a3f(X, τ

0)− a4β
0
21(X > τ 0)}2 > 0,

which implies that U̇∗(θ
0) is positive definite and hence nonsingular. Thus An is nonsingular

for large enough n, and we have

|θn − θ0| = An
−1‖Un − U‖ = O(γn).

We next show Fact 4. Denote Gn = n1/2(Pn − P ). Again, observe that by Taylor Series

expansion of Un(θn) around θ̂n yields

Un(θ̂n)− Un(θn) =



















U̇1n(θ
∗(1)
n )

U̇2n(θ
∗(2)
n )

U̇3n(θ
∗(3)
n )

U̇4n(θ
∗(4)
n )



















(θ̂n − θn) = Bn(θ̂n − θn),

where θ
∗(i)
n , i = 1, 2, 3, 4 lie on the straight line joining θn and θ̂n. Since, with probability

increasing to 1, Un(θ̂n) = Un(θn) = 0, the following equality holds with probability increasing

to 1:

Un(θ̂n)− Un(θ̂n) = −Bn(θ̂n − θn).
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Now,

n1/2[Un(θ̂n)− Un(θ̂n)] = −2Gn



















Y − β0 − β1X − β2qn(X, τ)

X(Y − β0 − β1X − β2qn(X, τ))

qn(X, τ)(Y − β0 − β1X − β2qn(X, τ))

β2
∂
∂τ
qn(X, τ)(Y − β0 − β1X − β2qn(X, τ))



















θ=θ̂n

= −2Gn



















g
(1)
n (θ̂n)

g
(2)
n (θ̂n)

g
(3)
n (θ̂n)

g
(4)
n (θ̂n)



















= −2Gn(gn(θ̂n)).

Clearly, each of the g
(i)
n , i = 1, . . . , 4, as a function of θ is addition and/or multiplication of

bounded monotones. We know from Theorem 2.7.5 in van der Vaart and Wellner (1996),

that bounded monotones are Donsker. Also addition/multiplication of bounded functions

preserves Donsker property as in Theorem 2.10.6 in van der Vaart and Wellner (1996).

Hence, each of the g
(i)
n , i = 1, . . . , 4, belongs to a Donsker class. The same can be said about

the following vector of functions

g =



















g(1)

g(2)

g(3)

g(4)



















=



















Y − β0 − β1X − β2f(X, τ)

X(Y − β0 − β1X − β2f(X, τ))

f(X, τ)(Y − β0 − β1X − β2f(X, τ))

−β21(X > τ)(Y − β0 − β1X − β2f(X, τ))



















.
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Now, uniformly with respect to θ, we have,

P (g(1)n (θ)− g(1)(θ))2 = β2
2

∫

(f(x, τ)− qn(x, τ))
2dH(x)

≤ cβ2
2

τ+γn
∫

τ−γn

γ2ndH(x)

= cβ2
2γ

3
nO(1) = o(1);

P (g(2)n (θ)− g(2)(θ))2 = β2
2

∫

(f(x, τ)− qn(x, τ))
2X2dH(x)

≤ cβ2
2

τ+γn
∫

τ−γn

γ2nX
2dH(x) = o(1);

P (g(3)n (θ)− g(3)(θ))2 = β2
2

∫

(f 2(x, τ)− q2n(x, τ))
2dH(x)

= c1β
2
2

∫

(f(x, τ)− qn(x, τ))
2dH(x)

≤ c2β
2
2

τ+γn
∫

τ−γn

γ2ndH(x) = o(1);

P (g(4)n (θ)− g(4)(θ))2 = β2
2

∫
(

−f(x, τ)1(X > τ)− qn(x, τ)
∂

∂τ
qn(X, τ)

)2

dH(x)

≤ c2β
2
2γ

3
nO(1) = o(1).

Hence P (g
(i)
n (θ̂n) − g(i)(θ̂n))

2 = op(1), i = 1, . . . , 4. Then, by the asymptotic equicontinuity

property, we have Gn(gn(θ̂n)−g(θ̂n)) = op(1) (van der Vaart and Wellner , 1996). It can also

be shown that P (g(i)(θ̂n) − g(i)(θ0))2 = op(1), i = 1, . . . , 4. Hence, again by the asymptotic

equicontinuity property, we have Gn(g(θ̂n) − g(θ0)) = op(1) (van der Vaart and Wellner ,
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1996). Now,

n1/2[Un(θ̂n)− Un(θ̂n)] = −2Gn(gn(θ̂n))

= −2Gn(gn(θ̂n)− g(θ̂n))− 2Gn(g(θ̂n)− g(θ0))− 2Gn(g(θ
0))

= −2Gn(g(θ
0)) + op(1).

Thus by the central limit theorem, the above expression converges in distribution to a normal

random variable with mean zero and variance matrix

V (θ0) = 4



















P (g(1))2 P (g(1)g(2)) P (g(1)g(3)) P (g(1)g(4))

P (g(1)g(2)) P (g(2))2 P (g(2)g(3)) P (g(2)g(4))

P (g(1)g(3)) P (g(2)g(3)) P (g(3))2 P (g(3)g(4))

P (g(1)g(4)) P (g(2)g(4)) P (g(3)g(4)) P (g(4))2



















= 2σ2U̇∗(θ
0).

By the same argument, as for An, we can show that Bn converges to U̇∗(θ
0) in probability.

Thus n1/2(θ̂n − θn) converges to N(0, 2σ2U̇−1
∗ (θ0)) in distribution.

A.3 Proof of Corollary 2.3

We now show that the asymptotic distribution of θ̂n is same as that shown by Feder

(1975a) for the exact least square estimates. Remember our broken-stick model with 1

change-point for Z = 0 is

E(Y |X) = β0 + β1X + β2(X − τ)+. (A.3)
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Example 1 discussed by Feder (1975a) is a similar model as (2.1). His model is as follows:

E(Y |X) =















ψ11 + ψ12X, if 0 ≤ x < τ

ψ21 + ψ22X, if τ ≤ x ≤M

(A.4)

where τ = (ψ11 −ψ21)/(ψ22−ψ12) to ensure continuity. Denote ψ = (ψ11, ψ12, ψ21, ψ22)
T and

ψ0 is the true parameter value while as usual τ 0 is the true value of τ .

Quite clearly, the parameter τ is same for both models. Feder (1975a) showed that

n1/2(ψ̂n − ψ0) converges in distribution to N(0, G−1), where

σ2G =



















P (1(X ≤ τ 0)) P (X1(X ≤ τ 0)) 0 0

P (X1(X ≤ τ 0)) P (X21(X ≤ τ 0)) 0 0

0 0 P (1(X > τ 0)) P (X1(X > τ 0))

0 0 P (X1(X > τ 0)) P (X21(X > τ 0))



















=







G11 02

02 G22






.

Now, β0 = ψ11, β1 = ψ12, β2 = ψ22 − ψ12 ⇒ τ = (ψ11 − ψ21)/β2. Observe that,

(1, τ 0,−1,−τ 0)(ψ̂n − ψ0) = β̂2n(τ̂n − τ 0).

So as in Feder (1975a), we have

(τ̂n − τ 0) =
1

β̂2n
(1, τ 0,−1,−τ 0)(ψ̂n − ψ0).

Thus,

n1/2(τ̂n − τ 0) =
1

β0
2

(1, τ 0,−1,−τ 0)n1/2(ψ̂n − ψ0) + op(1),
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which yields

n1/2(θ̂n − θ0) =







I2 02

A(θ0) −A(θ0)






n1/2(ψ̂n − ψ0) + op(1),

where

A ≡ A(θ0) =







0 −1

1
β0
2

τ0

β0
2






.

Letting D =







I2 02

I2 −A−1






, we have n1/2(θ̂n − θ0) = D−1n1/2(ψ̂n − ψ0). So according

to Feder’s work, the asymptotic variance of n1/2(θ̂n − θ0) is (DTGD)−1. Now A−1(θ0) =






τ 0 β0
2

−1 0






, we have DTGD =







G11 +G22 −G22A
−1

(−G22A
−1)T (A−1)TG22A

−1






= (1/2σ2)U̇∗(θ

0). Thus

by Feder’s calculation, the asymptotic variance of n1/2(θ̂n− θ0) is 2σ2U̇−1
∗ (θ0)), which proves

Corollary 2.3.

A.4 Proof of Theorem 2.5

The three main steps of this proof has been already outlined in Section 2.3.2. The proof

of Theorem 2.5 relies on the following lemma:

Lemma A.1. Under Conditions 2.1-2.3 in Section 2.3.2, and for D ≡ m, for any positive

definite matrix Vm×m and γn = n−α with α > 1/2, n1/2(θ̂
(V )
n − θ0) converges to N(0, K(V ))

in distribution, where

K(V ) = 2P [(HT (θ0)V H(θ0))−1HT (θ0)V TΣ0V H(θ0)(HT (θ0)V H(θ0))−1].

Here, θ̂
(V )
n := argminθ∈Θ Pn[(Y − µn)

TV (Y − µn)], which is shown to be a zero of U
(V )
n (θ) =

∂
∂θ
Pn(Y − µn)

TV (Y − µn), with probability converging to 1.
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The proof of lemma A.1 is similar to the proof of Theorem 2.2. The details of the proof

have been provided in the following section.

Now to prove Theorem 2.5, using V = I, we obtain from Lemma A.1 that n1/2(θ̂
(I)
n − θ0)

converges to N(0, K(I)) in distribution, for γn = n−α, with α > 1/2.

Now because of Condition 2.4
√
n(Σ̂−1

n −W−1) = Op(1) implying,

√
n(Un(θ̂

(W−1)
n )− U

(W−1)
n (θ̂(W

−1)
n ))

=
∂

∂θ
Pn

[

(Y − µn)
T{

√
n(Σ̂−1

n −W−1)}(Y − µn)
]

∣

∣

∣

∣

∣

θ=θ̂
(W−1)
n

= Op(1)
∂

∂θ
Pn

[

(Y − µn)
T (Y − µn)

]

∣

∣

∣

∣

∣

θ=θ̂
(W−1)
n

= Op(1)U
(I)
n (θ̂(W

−1)
n ).

Again ||U(I)
n −U (I)|| = op(1) (proof in A.5). This implies that, U

(I)
n (θ̂

(W−1)
n ) = U (I)(θ̂

(W−1)
n )+

op(1). Also θ̂
(W−1)
n converges in probability to θ0 and U (I) is continuous, which together

imply that U (I)(θ̂
(W−1)
n ) = U (I)(θ0) + op(1) = op(1), since U

(I)(θ0) = 0. Thus, we obtain

U
(I)
n (θ̂

(W−1)
n ) = op(1), which implies that

√
n(Un(θ̂

(W−1)
n )− U

(W−1)
n (θ̂(W

−1)
n )) = op(1).

Also, with probability increasing to 1, Un(θ̂n) = U
(W−1)
n (θ̂

(W−1)
n ) = 0, which implies that the

following holds with probability increasing to 1:

√
n(Un(θ̂n)− Un(θ̂

(W−1)
n )) = −

√
n(Un(θ̂

(W−1)
n )− U

(W−1)
n (θ̂(W

−1)
n )) = op(1).

Taylor series expansion of Un(θ̂n) around θ̂
(W−1)
n provides

√
n(Un(θ̂n)− Un(θ̂

(W−1)
n )) = U̇n(θ̃n

∗
)
√
n(θ̂n − θ̂(W

−1)
n ),
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for some θ̃n
∗
lying on the straight line joining θ̂n and θ̂

(W−1)
n . As shown for An in the proof

of Theorem 2, we can show that U̇n(θ̃n
∗
) converges in probability to U̇∗(θ

0), which in turn

implies that
√
n(θ̂n − θ̂

(W−1)
n ) = op(1).

Also, notice that, clearly with V = W−1, from Lemma A.1, n1/2(θ̂
(W−1)
n − θ0) converges

to N(0, K(W−1)) in distribution. Along with the fact that
√
n(θ̂n − θ̂

(W−1)
n ) = op(1), we have

proved Theorem 2.5.

A.5 Proof of Lemma A.1

For some positive definite m×m matrix V , define

U (V )(θ) =
∂

∂θ
P (M (V )(θ)) =

∂

∂θ
P [(Y − µ)TV (Y − µ)],

U (V )
n (θ) =

∂

∂θ
P (M (V )

n (θ)) =
∂

∂θ
P [(Y − µn)

TV (Y − µn)],

U
(V )
n (θ) =

∂

∂θ
Pn(M

(V )
n (θ)) =

∂

∂θ
Pn[(Y − µn)

TV (Y − µn)].

Define θ
(V )
n and θ̂

(V )
n as minimizers of P (M

(V )
n (θ)) and Pn(M

(V )
n (θ)) respectively in Θ,

which can be shown to be zeros of U
(V )
n (θ) and U

(V )
n (θ) respectively, with probability increas-

ing to 1. Now,

U
(V )
n (θ)− U (V )

n (θ) = (Pn − P )

[

∂

∂θ
(Y − µn)

TV (Y − µn)

]

.

So as in the proof of Theorem 2.1, the expression in parentheses above belongs to Glivenko-

Cantelli class and hence ||U(V )
n − U

(V )
n || = op(1).
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Observe,

U (V )
n (θ) =

∂

∂θ
[P (Y − µn)

TV (Y − µn)]

= P [2{ ∂
∂θ

(Y − µn)
T}V (Y − µn)]

= −2P [{∂µn

∂θ

T

}V (Y − µn)]

= −2P [Dn(θ)
TV (Y − µn)],

where

Dn(θ) =



















1T

XT

qn(X, τ)
T

β2
∂
∂τ
qn(X, τ)

T



















4×m

.

Hence,

U (V )
n (θ) = −2P



















(Y − µn)
TV 1

(Y − µn)
TV X

(Y − µn)
TV qn(X, τ)

β2(Y − µn)
TV ∂

∂τ
qn(X, τ)



















T

1×4

.

Similarly, U (V )(θ) = −2P [D(θ)TV (Y − µ)], where,

D(θ)T =



















1T

XT

f(X, τ)T

−β21(X > τ)T



















4×m

,
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and so,

U (V )(θ) = −2P



















(Y − µ)TV 1

(Y − µ)TV X

(Y − µ)TV f(X, τ)

−β2(Y − µ)TV 1(X > τ)



















T

1×4

.

Clearly, as in proof of Theorem 2.1, ||U (V )
n − U (V )|| = O(γn).

Hence, ||U(V )
n −U (V )|| ≤ ||U(V )

n −U
(V )
n ||+ ||U (V )

n −U (V )|| = op(1), which yields ||θ̂(V )
n − θ0|| =

op(1).

Now Taylor series expansion of U
(V )
n (θ

(V )
n ) around θ0 yields,

U (V )
n (θ(V )

n )− U (V )
n (θ0) =



















U̇
(V )
1n (θ̃

(1)
n )

U̇
(V )
2n (θ̃

(2)
n )

U̇
(V )
3n (θ̃

(3)
n )

U̇
(V )
4n (θ̃

(4)
n )



















(θ(V )
n − θ0) = An(θ

(V )
n − θ0),

where each of θ̃
(i)
n , i = 1, 2, 3, 4, lies on the straight line joining θ

(V )
n and θ0 and U̇

(V )
in = ∂U

(V )
n

∂βi−1
,

i = 1, 2, 3, and U̇4n = ∂U
(V )
n

∂τ
. Now, U (V )(θ0) = U

(V )
n (θ

(V )
n ) = 0 for sufficiently large n. Hence,

the following is true for sufficiently large n:

U (V )
n (θ0)− U (V )(θ0) = −An(θ

(V )
n − θ0).
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Now we show An is invertible for large enough n. Observe,

U̇ (V )
n (θ) = 2











1T V 1 P (1T V X) P (1TV qn(X, τ)) β2P (1T V ∂
∂τ

qn(X, τ))

P (1T V X) P (XTV X) P (XTV qn(X, τ)) β2P (XT V ∂
∂τ

qn(X, τ))

P (1T V qn(X, τ)) P (XT V qn(X, τ)) P (qTn (X, τ)V qn(X, τ)) aVn (θ)

β2P (1T V ∂
∂τ

qn(X, τ)) β2P (XTV ∂
∂τ

qn(X, τ)) aVn (θ) bVn (θ)











where,

aVn (θ) =β2P
{

qTn (X, τ)V
∂
∂τ
qn(X, τ)

}

− P
{

(Y − β0 − β1X − β2qn(X, τ))
TV ∂

∂τ
qn(X, τ)

}

,

bVn (θ) =β
2
2P

{

(

∂
∂τ
qn(X, τ)

)T
V
(

∂
∂τ
qn(X, τ)

)

}

− β2P
{

(Y − β0 − β1X − β2qn(X, τ))
TV ∂2

∂τ2
qn(X, τ)

}

.

As in proof of Theorem 2.2, it can be shown that all the elements of U̇
(V )
n (θ) converge

uniformly to a finite limit and hence, U̇
(V )
n (θ) converges uniformly to a finite limit, implying

An converges too. Let U̇ (V )(θ0) denote the limit of An, where U̇
(V )(θ) = 2P (HT (θ0)V H(θ0)),

H(θ) =

(

1 X f(X, τ) −β21(X > τ)

)

m×4

As before, it can be easily seen that U̇ (V )(θ0) is positive definite. Thus An is nonsingular for

large enough n, and we have for sufficiently large n,

|θ(V )
n − θ0| = An

−1‖U (V )
n − U (V )| = O(γn).

Denote Gn = n1/2(Pn − P ). Again, observe that Taylor Series expansion of U
(V )
n (θ

(V )
n )
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around θ̂
(V )
n yields

U (V )
n (θ̂(V )

n )− U (V )
n (θ(V )

n ) =



















U̇
(V )
1n (θ

∗(1)
n )

U̇
(V )
2n (θ

∗(2)
n )

U̇
(V )
3n (θ

∗(3)
n )

U̇
(V )
4n (θ

∗(4)
n )



















(θ̂(V )
n − θ(V )

n ) = Bn(θ̂
(V )
n − θ(V )

n ),

where θ
∗(i)
n , i = 1, 2, 3, 4 lie on the straight line joining θ

(V )
n and θ̂

(V )
n . Now, with probability

increasing to 1, U
(V )
n (θ̂

(V )
n ) = U

(V )
n (θ

(V )
n ) = 0. Thus, the following equality is true with

probability increasing to 1:

U
(V )
n (θ̂(V )

n )− U (V )
n (θ̂(V )

n ) = Bn(θ̂
(V )
n − θ(V )

n ).

Now,

n1/2[U(V )
n (θ̂(V )

n )− U (V )
n (θ̂(V )

n )] = −2Gn



















(Y − µn)
TV 1

(Y − µn)
TV X

(Y − µn)
TV qn(X, τ)

β2(Y − µn)
TV ∂

∂τ
qn(X, τ)



















θ=θ̂
(V )
n

= −2Gn



















g
(1)
n (θ̂

(V )
n )

g
(2)
n (θ̂

(V )
n )

g
(3)
n (θ̂

(V )
n )

g
(4)
n (θ̂

(V )
n )



















= −2Gn(gn(θ̂
(V )
n )).

Clearly, each of the g
(i)
n , i = 1, . . . , 4, is addition and/or multiplication of bounded mono-

tone functions and hence belongs to a Donsker class (van der Vaart and Wellner , 1996).
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The same can be said about the following vector of functions

g =



















g(1)

g(2)

g(3)

g(4)



















=



















(Y − µ)TV 1

(Y − µ)TV X

(Y − µ)TV f(X, τ)

−β2(Y − µ)TV 1(X > τ)



















.

As in the proof of Theorem 2.2, P (g
(i)
n (θ̂

(V )
n )− g(i)(θ̂

(V )
n )2 = op(1), i = 1, . . . , 4. Then, by the

asymptotic equicontinuity property, we have Gn(gn(θ̂
(V )
n ) − g(θ̂

(V )
n )) = op(1) (van der Vaart

and Wellner , 1996). It can also be shown that P (g(i)(θ̂
(V )
n )− g(i)(θ0))2 = op(1), i = 1, . . . , 4.

Hence, again by the asymptotic equicontinuity property, we have Gn(g(θ̂
(V )
n )−g(θ0)) = op(1)

(van der Vaart and Wellner , 1996). Now,

n1/2[U(V )
n (θ̂(V )

n )− U (V )
n (θ̂(V )

n )] = −2Gn(gn(θ̂
(V )
n ))

= −2Gn(gn(θ̂
(V )
n )− g(θ̂(V )

n ))− 2Gn(g(θ̂
(V )
n )− g(θ0))

−2Gn(g(θ
0))

= −2Gn(g(θ
0)) + op(1).

Thus by the central limit theorem, the above expression converges in distribution to a

normal random variable with mean zero and covariance matrix

4



















P (g(1))2 P (g(1)g(2)) P (g(1)g(3)) P (g(1)g(4))

P (g(1)g(2)) P (g(2))2 P (g(2)g(3)) P (g(2)g(4))

P (g(1)g(3)) P (g(2)g(3) P (g(3))2 P (g(3)g(4))

P (g(1)g(4)) P (g(2)g(4)) P (g(3)g(4)) P (g(4))2



















= 2P (HT (θ0)V TΣ0V H(θ0)).

As shown earlier for An, we can prove Bn converges to U̇ (V )(θ0) in probability. Thus
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n1/2(θ̂
(V )
n − θ

(V )
n ) converges to N(0, K(V )) in distribution, where

K(V ) = 2P [(HT (θ0)V H(θ0))−1HT (θ0)V TΣ0V H(θ0)(HT (θ0)V H(θ0))−1].

Now, if γn = n−α with α > 1/2, then n1/2(θ
(V )
n − θ0) = o(1), implying that n1/2(θ̂

(V )
n − θ0)

converges to N(0, K(V )) in distribution.

A.6 Detailed Figure: Choice of α

Figure A.1: Mean Square Errors vs log10 α for varying sample-sizes with different τ -values,
where β0

0 = 0.3, β0
1 = 1.5, β0

2 = 1 and σ = 0.5. From the top below,the
shortdash-longdash line corresponds to n = 30, the solid line corresponds to
n = 50, dashed line corresponds to n = 100, the dotted line corresponds to
n = 500, the dot-dash line corresponds to n = 1000 and the longdash line
corresponds to n = 5000.
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A.7 Verifying Condition 2.4 for model 2.5

Define,

Uη(θ, η) = P

[

{(Y − µ)(Y − µ)T − Σ−1(η)}∂Σ
−1(η)

∂η

]

Uη
n(θ

(I)
n , η) = P

[

{(Y − µ(I)
n )(Y − µ(I)

n )T − Σ−1(η)}∂Σ
−1(η)

∂η

]

U
η(θ, η) = Pn

[

{(Y − µ(I)
n )(Y − µ(I)

n )T − Σ−1(η)}∂Σ
−1(η)

∂η

]

Now, as before, it easily follows, ||Uη
n − Uη|| = O(γn). Also, observe that, (θ0, η0) is the

unique zero of Uη. Define (θn, ηn) as a zero of Uη
n . This implies that |(θn, ηn) − (θ0, η0)| =

O(γn) = o(1).

Next we show that, {(Y − µn)(Y − µn)
T − Σ−1(η)}∂Σ−1(η)

∂η
belongs to Glivenko-Cantelli

class, which implies that ||Uη−Uη|| = o(1), implying |η̂n−ηn| = op(1), hence |η̂n−η0| = op(1).

Consider the case when d = 2 for simplicity.

Σ(η) =







φ+ σ2 + ξ(ti1) φ+ ρ|ti1−ti2|
√

ξ(ti1)ξ(ti2)

φ+ ρ|ti1−ti2|
√

ξ(ti1)ξ(ti2) φ+ σ2 + ξ(ti2)






.

Clearly this is a non-singular matrix and η → |Σ(η)| is a continuous map in a compact

neighborhood around η0. Hence, minimum value of |Σ(η)| is attained, which is strictly

greater than zero. Now,

Σ−1(η) =
1

|Σ(η)|







φ+ σ2 + ξ(ti2) −φ − ρ|ti1−ti2|
√

ξ(ti1)ξ(ti2)

−φ− ρ|ti1−ti2|
√

ξ(ti1)ξ(ti2) φ+ σ2 + ξ(ti1)






.

In a compact neighborhood around η0, since X ∈ [M1,M2], implying the tij ’s are also

finite, each element of Σ−1(η) is bounded. Thus each elements of Σ−1(η) is addition and/or

multiplication of bounded monotone functions and hence belongs to Glivenko-Cantelli as
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well as Donsker classes (van der Vaart and Wellner , 1996).

Next, ∂Σ−1(η)
∂η

= −Σ−1(η)∂Σ(η)
∂η

Σ−1(η).

Now,

∂

∂η
Var(Yij) =

































1

1

ξ(tij)

ξ(tij)tij

ξ(tij)tij
2

0

































,

while,

∂

∂η
Cov(Yij) =

































1

0

ρ|tij−tik|
√

ξ(tij)ξ(tik)

ρ|tij−tik |
√

ξ(tij)ξ(tik)(tij + tik)/2

ρ|tij−tik|
√

ξ(tij)ξ(tik)(tij
2 + tik

2)/2

|tij − tik|ρ|tij−tik |−1
√

ξ(tij)ξ(tik)

































.

These are all nice functions in compact neighborhood around η0 and tij ’s are finite since

X belongs in [M1,M2]. Clearly, these functions are measureable and belong to a finite-

dimensional vector-space. Hence, they belong to VC class (van der Vaart and Wellner ,

1996). Also matrix multiplication is just composition of products and sums and hence

{(Y −µn)(Y −µn)
T−Σ−1(η)}∂Σ−1(η)

∂η
indeed belongs to Glivenko-Cantelli and Donsker classes

for d = 2 (van der Vaart and Wellner , 1996). For, a general d, this follows by induction.

Observe that, Taylor series expansion of Uη
n(θ

(I)
n , η̂n) around (θ

(I)
n , ηn) yields

Uη
n(θ

(I)
n , η̂n) = Uη

n(θ
(I)
n , ηn) +

∂

∂η
Uη
n(θ

(I)
n , η∗n)(η̂n − ηn)

= U
η(θ(I)n , η̂n) +

∂

∂η
Uη
n(θ

(I)
n , η∗n)(η̂n − ηn)
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where η∗n lies on the straight line joining η̂n and ηn. This is true because Uη
n(θ

(I)
n , ηn) =

Uη(θ
(I)
n , η̂n) = 0. This implies that

Gn

[

{(Y − µ(I)
n )(Y − µ(I)

n )T − Σ−1(η)}∂Σ
−1(η)

∂η

]

= − ∂

∂η
Uη
n(θ

(I)
n , η∗n)

√
n(η̂n − ηn).

Now, {(Y − µn)(Y − µn)
T − Σ−1(η)}∂Σ−1(η)

∂η
belongs to Donsker class. Thus following argu-

ments similar to those in the proof of Lemma A.1, we get
√
n(η̂n − ηn) = Op(1). Thus for

proper choice of γn, we get
√
n(η̂n − η0) = Op(1). Now, since η → Σ(η) is a differentiable

function, we get
√
n(Σ(η̂n)− Σ(η0)) = Op(1), i.e.,

√
n(Σ̂n − Σ0) = Op(1). Hence, condition

2.4 is verified.

A.8 Asymptotics of the Mean Function

Observe that µ(x, θ) ≡ E(Y | X = x) = β0 + β1x + β2f(x, τ) for the one change-point

model. We will work out the calculations with this model for simplicity of presentation, but

the idea can be readily extended for the general case.

We are looking at the asymptotics of
√
n(µ(x, θ̂n) − µ(x, θ0)). Clearly the complicated

part is
√
n[β̂2,nf(x, τ̂n)− β0

2f(x, τ
0)]. Observe,

√
n[β̂2,nf(x, τ̂n)− β0

2f(x, τ
0)] =

√
n(β̂2,n − β0

2)[(x− τ̂n)1(x > τ̂n)− (x− τ 0)1(x > τ 0)]

+
√
n(β̂2,n − β0

2)(x− τ 0)1(x > τ 0)

+β0
2

√
n[(x− τ̂n)1(x > τ̂n)− (x− τ 0)1(x > τ 0)].

Now,

(x− τ̂n)1(x > τ̂n)− (x− τ 0)1(x > τ 0) = −(τ̂n − τ 0)1(x > τ̂n)

+(x− τ 0)[1(x > τ̂n)− 1(x > τ 0)].
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Notice that, (τ̂n− τ 0) = op(1) implies that
√
n[1(x > τ̂n)−1(x > τ 0)] = op(1), which in turn

implies that

√
n[(x− τ̂n)1(x > τ̂n)− (x− τ 0)1(x > τ 0)] = −

√
n(τ̂n − τ 0)1(x > τ̂n) + op(1)

= −
√
n(τ̂n − τ 0)1(x > τ 0) + op(1).

This means that

√
n[β̂2,nf(x, τ̂n)− β0

2f(x, τ
0)] = −

√
n(β̂2,n − β0

2)(τ̂n − τ 0)1(x > τ 0)

+
√
n(β̂2,n − β0

2)(x− τ 0)1(x > τ 0)

−β0
2

√
n(τ̂n − τ 0)1(x > τ 0) + op(1)

= (x− τ 0)1(x > τ 0)
√
n(β̂2,n − β0

2)

−β0
21(x > τ 0)

√
n(τ̂n − τ 0) + op(1).

From the above calculation, we have,

√
n(µn(x, θ̂n)− µ(x, θ0)) =

√
n(β̂0,n − β0

0) + x
√
n(β̂1,n − β0

1) + f(x, τ 0)
√
n(β̂2,n − β0

2)

−β0
21(x > τ 0)

√
n(τ̂n − τ 0) + op(1)

= aT
√
n(θ̂n − θ0) + op(1),

where aT = (1, x, f(x, τ 0),−β0
21(x > τ 0)), which proves Corollary 2.3.
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