
Generalized Domination

by

Daniel J. Hathaway

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mathematics)

in The University of Michigan
2015

Doctoral Committee:

Professor Andreas R. Blass, Chair
Professor Sergey Fomin
Professor Emeritus Peter G. Hinman
Associate Professor Yaoyun Shi
Professor Karen E. Smith



 



To the trees of Ann Arbor (which grow upwards).

ii



ACKNOWLEDGEMENTS

I would like to thank my friends in Ann Arbor: Will Drobny, David Prigge, Chris

Fraser, Alex Mueller, and Becky Hoai. I would also like to thank Karen Smith for

her encouragement and support. Peter Hinman more than kind to read through this

thesis and check for errors. His book on mathematical logic was instrumental in my

choice to study logic. Lastly, I would like to thank Andreas Blass for his inspiration,

undying patience, and wonderful explanations.

iii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Overall Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Generalized Galois-Tukey Connections (Morphisms) . . . . . . . . . . . . . . 4
1.3 Scales and Unbounded Chains . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 The Baire Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 The Results of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.1 Combinatorial Set Theory . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.2 Descriptive Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.3 Functions from ωω to ω . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.4 Functions from ωω to ωω . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

II. Past Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2 Everywhere vs. Eventual Domination . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Functions from λ to λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4 Some Posets in Descriptive Set Theory . . . . . . . . . . . . . . . . . . . . . 36
2.5 Real-valued Measurable Cardinals . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6 Almost Disjoint Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.7 Independent Families of Functions . . . . . . . . . . . . . . . . . . . . . . . . 45
2.8 Dominating Tree Branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.9 Weak Distributivity Laws and Suslin Algebras . . . . . . . . . . . . . . . . . 50

III. Building on Past Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1 Scales at a Measurable Cardinal . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 More on Dominating Tree Branches . . . . . . . . . . . . . . . . . . . . . . . 57
3.3 Changing κ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Singular Strong Limit Cardinals . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5 An Independent Family of Borel Functions . . . . . . . . . . . . . . . . . . . 68

IV. Impossibility of Coding by Continuous Functions . . . . . . . . . . . . . . . . 71

4.1 Well-founded Trees and Continuous Functions . . . . . . . . . . . . . . . . . 71

iv



4.2 The Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4 Nonexistence of Nicely Definable Morphisms . . . . . . . . . . . . . . . . . . 82

V. Everywhere Domination Coding Theorems . . . . . . . . . . . . . . . . . . . . 84

5.1 Clouds and Baire Class One Functions . . . . . . . . . . . . . . . . . . . . . 85
5.2 Basic Construction (Vertical Coding) . . . . . . . . . . . . . . . . . . . . . . 91
5.3 Blow-Up Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4 Modifying the Encoding (Horizontal Coding) . . . . . . . . . . . . . . . . . . 102
5.5 Morphisms Involving Trees and Clouds . . . . . . . . . . . . . . . . . . . . . 106
5.6 Main Coding Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.7 Definitions from Prewellorderings . . . . . . . . . . . . . . . . . . . . . . . . 115
5.8 Complete Boolean Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

VI. Impossibility of Coding for Pointwise Eventual Domination . . . . . . . . . 123

6.1 Considering All Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2 Impossibility of Naive Vertical Coding . . . . . . . . . . . . . . . . . . . . . . 134
6.3 Long Projective Well-orderings . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.4 Beyond Pointwise Eventual Domination . . . . . . . . . . . . . . . . . . . . . 151

VII. Pointwise Eventual Domination Coding Theorems . . . . . . . . . . . . . . . 155

7.1 Less Naive Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.2 Reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.3 Baire Class One Dominator Coding Theorem . . . . . . . . . . . . . . . . . . 167
7.4 Working Towards Baire Class Two Dominators . . . . . . . . . . . . . . . . . 171
7.5 A High Level View of the Theorem . . . . . . . . . . . . . . . . . . . . . . . 174
7.6 Borel Dominator ∆1

2 Coding Theorem . . . . . . . . . . . . . . . . . . . . . . 182
7.6.1 Fixing A, fA, g, and U . . . . . . . . . . . . . . . . . . . . . . . . . 182
7.6.2 The function Ψ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.6.3 The games G≤, G>, and G= . . . . . . . . . . . . . . . . . . . . . . 187
7.6.4 The statement Φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.6.5 The statements Ξ≤ and Ξ> connecting Ψ to G≤ and G> . . . . . . 189
7.6.6 The main induction . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.6.7 Minor cleanup work . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.6.8 Proof of theorem from lemmas . . . . . . . . . . . . . . . . . . . . 203

7.7 Borel Challenge-Response ∆1
2 Coding Theorem . . . . . . . . . . . . . . . . . 207

VIII. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

8.1 Some Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

v



LIST OF APPENDICES

Appendix

A. Absoluteness of Domination for Nice Functions . . . . . . . . . . . . . . . . . . . . . 220

B. Tameness of Cardinal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

C. Sacks Forcing and Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

D. Sacks Forcing and Continuous Reading of Names . . . . . . . . . . . . . . . . . . . . 227

vi



CHAPTER I

Introduction

Within this chapter, we will summarize the results of this thesis. We will also

provide the main definitions needed to understand the results. We will be using

standard notations from set theory, although we will remind the reader of some ba-

sic definitions.

1.1 The Overall Program

A fundamental problem in infinitary combinatorics is to compute the cofinality of

partially ordered sets (posets):

Definition I.1. Given a poset P = ⟨X,≤⟩, a set A ⊆ X is cofinal in P if

(∀x ∈ X)(∃a ∈ A)x ≤ a.

The cofinality of P is defined as

cfP := min{|A| : A ⊆ X is cofinal in P}.

We abuse terminology by calling ⟨X,≤⟩ a poset whenever ≤ is a binary relation

that is reflexive and transitive. That is, we do not insist on antisymmetry, so what

we call posets should technically be called pre-ordered sets. A cofinal subset of a

1



2

poset is also sometimes called a dominating family. Given two subsets A,B of a

poset, we say that B dominates A if (∀a ∈ A)(∃b ∈ B) a ≤ b.

As an example of why we would want to compute the cofinality of a poset, it is

true that for any infinite cardinals λ and κ,

λκ = 2κ · cf⟨[λ]κ,⊆⟩

where [λ]κ is the set of all size κ subsets of λ. The laws of cardinal exponentiation

are not fully understood, and computing the cofinality of ⟨[λ]κ,⊆⟩ turns out to be

a useful way to compute λκ. The study of the cofinalities of partially ordered sets

is fundamental to Shelah’s PCF Theory ([41], [4], [23]), which is a powerful tool for

proving results about cardinal exponentiation.

Let ω be the set of natural numbers (otherwise known as the first infinite ordinal,

which is also the first infinite cardinal ℵ0). Let ω1 be the set of countable ordinals

(otherwise known as the second infinite cardinal, the first uncountable cardinal ℵ1).

Let 2ω be the cardinality of R (the first ordinal which can be bijected with R).

A ubiquitous partially ordered set is the set of functions from ω to ω ordered by

everywhere domination:

f ≤ g :⇔ (∀x ∈ ω) f(x) ≤ g(x).

The cofinality of this poset is denoted d, the dominating number. It is consistent with

ZFC that ω1 < d < 2ω. This number arises naturally in various contexts. For an

exposition of this and related cardinals, see [2]. A closely related poset is ⟨ωω,≤∗⟩,

where ωω is the set of functions from ω to ω and ≤∗ is defined as follows:

f ≤∗ g :⇔ (∀∞n)f(n) ≤ g(n).

By (∀∞n) we mean “for all but finitely many n”, and by (∃∞n) we mean “there exist

infinitely many n”. It is not hard to see that cf ⟨ωω,≤∗⟩ = d.



3

More generally, given infinite cardinals λ and κ, one can consider the poset of

functions from λ to κ ordered by everywhere domination:

f ≤ g :⇔ (∀x ∈ λ) f(x) ≤ g(x).

We denote this poset by ⟨λκ,≤⟩. If we only care about the cofinality of this poset,

then without loss of generality κ is a regular cardinal and κ ≤ λ. Computing this

cofinality turns out to be highly problematic. It is currently unknown whether ZFC

proves cf ⟨ω1ω,≤⟩ = 2ω1 . One might conjecture cf ⟨λκ,≤⟩ = 2λ whenever κ < λ, but

this is false when there exists a real-valued measurable cardinal [43]. However, if

λκ = λ, then cf ⟨λκ,≤⟩ = 2λ. This follows from the classical result (see the end of

Chapter 3 of [5]) that when λκ = λ, there exists a sufficiently independent family of

2λ functions from λ to κ.

The first instance of the equality λκ = λ is when λ = 2ω and κ = ω. In this

situation, we might as well be studying the poset of functions from R to ω ordered

by everywhere domination. The cofinality of this poset is 22ω , but there is more

detailed information we might want to know. For example, if we restrict our attention

to those functions which are Borel, will the cofinality still be as large as possible?

Answering such a question requires us to develop new techniques. These techniques

in turn yield results which are interesting in their own right, such as the following:

for each A ⊆ R, there is a function f : R → ω such that if g : R → ω everywhere

dominates f , then A ∈ L(R, g). The class L(R, g) is the smallest transitive model of

ZF containing all the ordinals, R, and g.

This thesis explores the following idea: we may show that the cofinality of a poset

⟨X,≤⟩ is large by showing that information can be “encoded” into elements of X

in such a way that information can also be decoded from any larger elements in

X. That is, we may show that cf ⟨X,≤⟩ is large by proving an appropriate “infinite



4

coding theorem”. We will explain with an example:

Let X be the set of all functions from R to ω, and let ≤ be the everywhere

domination ordering. Suppose Alice has a message A ⊆ ω which she wants to send

to Bob. There exists a way that Alice can “encode” A into a Baire class one (and

therefore Borel) function fA : R → ω. Alice wants to give Bob the function fA, but

instead an enemy steps in and substitutes a function g : R → ω, which everywhere

dominates fA, and gives this to Bob instead. There is no way that Bob can uniquely

recover the original message. This is because if A1 and A2 are two different messages,

and fA1 and fA2 are encoding A1 and A2 respectively, then the enemy can create the

function g defined by g(x) := max{fA1(x), fA2(x)}. Given g, Bob has no way of

knowing whether A1 or A2 was the original message. However, Bob can guess A by

making only countably many guesses. Specifically, A will be one of the (countably

many) sets which are ∆1
1 definable using a predicate for g. This is a prototypical

example of a result we will prove.

This thesis is organized according to this theme of coding. We will analyze various

situations and determine whether or not such coding results exist.

1.2 Generalized Galois-Tukey Connections (Morphisms)

Before we discuss Galois-Tukey connections, let us define another important con-

cept relevant to the study of posets:

Definition I.2. Given a poset P = ⟨X,≤⟩, a set A ⊆ X is unbounded in P if

(∀x ∈ X)(∃a ∈ A) a ̸≤ x.

The bounding number of P is defined as

bP := {|A| : A ⊆ X is unbounded in P}.



5

A set which is not unbounded is bounded. Sometimes the cofinality cfP of a poset

P is denoted dP and is called the dominating number, to accompany the terminology

for the bounding number.

The class of all partially ordered sets can itself be (pre)ordered by the Tukey

ordering :

Definition I.3. The poset P = ⟨P,≤P ⟩ is Tukey above the poset Q = ⟨Q,≤Q⟩ if

there exists a pair ⟨ϕ−, ϕ+⟩ of functions such that ϕ− : Q→ P , ϕ+ : P → Q, and

(∀q ∈ Q)(∀p ∈ P )[ϕ−(q) ≤P p⇒ q ≤Q ϕ+(p)].

The pair ⟨ϕ−, ϕ+⟩ is called a Galois-Tukey connection from P to Q.

When both P is Tukey above Q and Q is Tukey above P, we say that P and Q

have the same Tukey type, although we will not need this definition. When ⟨P,≤P ⟩

is Tukey above ⟨Q,≤Q⟩, we may depict this using a diagram as follows:

P ≤P

��

P

��
Q

OO

≤Q Q.

Moreover, when this is witnessed by the Galois-Tukey connection ⟨ϕ−, ϕ+⟩, we may

depict this by labeling the appropriate arrows in the diagram:

P ≤P

��

P

ϕ+
��

Q

ϕ−

OO

≤Q Q.

It turns out that the following are equivalent for posets P = ⟨P,≤P ⟩ and Q =

⟨Q,≤Q⟩:

1) P is Tukey above Q;



6

2) There exists a function f : P → Q which maps sets cofinal in P to sets cofinal

in Q;

3) There exists a function g : Q → P which maps sets unbounded in Q to sets

unbounded in P.

If ⟨g, f⟩ is a Galois-Tukey connection that witnesses that P is Tukey above Q,

then f witnesses that 2) is true, and g witnesses that 3) is true. If f witnesses that

2) is true, then there exists a g such that ⟨g, f⟩ witnesses that P is Tukey above Q.

An analogous statement can be made for 3). Calling a Galois-Tukey connection from

P to Q a morphism from P to Q, we have that the class of posets forms a category.

This is sometimes called the Tukey category. In this thesis, when we talk about a

morphism from one poset to another, we mean this notion.

As an example, if κ ≤ λ1 < λ2, then there is a morphism from ⟨λ2κ,≤⟩ to ⟨λ1κ,≤⟩.

However, if κ1 < κ2 ≤ λ, there is no obvious reason why there should be a morphism

in either direction between ⟨λκ1,≤⟩ and ⟨λκ2,≤⟩.

The existence of a morphism from P to Q gives us useful information. Most

importantly, we have the following:

Observation I.4. If there is a morphism from P = ⟨P,≤P ⟩ to Q = ⟨Q,≤Q⟩, then

1) cfQ ≤ cfP;

2) bP ≤ bQ.

In the next section, we will see a few more consequences of the existence of a

morphism. Let us give a classical example of the existence of a morphism. Recall

that ∆1
1 ∩P(ω) is the set of hyperarithmetical subsets of ω. As a consequence of [28]



7

and [42], there exists a morphism from ⟨∆1
1 ∩ ωω,≤⟩ to ⟨∆1

1 ∩ P(ω),≤T ⟩:

∆1
1 ∩ ωω ≤

��

∆1
1 ∩ ωω

��
∆1

1 ∩ P(ω)

OO

≤T ∆1
1 ∩ P(ω).

We will describe this morphism in Section 2.8. The relation ≤T is Turing reducibility,

also called relative recursiveness. That is, a ≤T b iff a is computable by a Turing

machine which uses b as an oracle.

This is an example of a connection between the domination relation and com-

putability theory. In this thesis, we find more connections of this sort.

What we have said can be generalized beyond posets to challenge-response rela-

tions :

Definition I.5. A challenge-response relation is a triple ⟨R−, R+, R⟩ such that R ⊆

R− × R+. The set R− is the set of challenges. The set R+ is the set of responses.

When cRr, we say that r meets c.

There is the appropriate generalization of Galois-Tukey connection:

Definition I.6. Given the challenge-response relations A = ⟨A−, A+, A⟩ and B =

⟨B−, B+, B⟩, we call ⟨ϕ−, ϕ+⟩ a generalized Galois-Tukey connection from A to B if

ϕ− : B− → A−, ϕ+ : A+ → B+, and

(∀b ∈ B−)(∀a ∈ A+)ϕ−(b)Aa⇒ bBϕ+(a).

As before, we may depict that ⟨ϕ−, ϕ+⟩ is a generalized Galois-Tukey connection

by the following diagram:

A− A

��

A+

ϕ+
��

B−

ϕ−

OO

B B+.



8

Also as before, the class of challenge-response relations forms a category with gen-

eralized Galois-Tukey connections as the morphisms. In this thesis, when we talk

about a morphism from one challenge-response relation to another, we mean this

notion.

The analogue of the cofinality of a poset is the norm of a challenge-response

relation:

Definition I.7. Given a challenge-response relation R = ⟨R−, R+, R⟩, a set A ⊆ R+

is adequate for R if

(∀x ∈ R−)(∃a ∈ A) xRa.

The norm of R is defined as

||R|| := min{|A| : A ⊆ R+ is adequate for R}.

Every poset ⟨P,≤P ⟩ can be viewed as a challenge-response relation ⟨P, P,≤P ⟩.

We have that cf ⟨P,≤P ⟩ = ||⟨P, P,≤P ⟩||. A morphism between posets is also a

morphism between the corresponding challenge-response relations. Because of this,

we will sometimes blur the distinction between the poset ⟨P,≤P ⟩ and the challenge-

response relation ⟨P, P,≤P ⟩. For an exposition of the theory of challenge-response

relations, see [2]. Our reason for considering challenge-response relations instead of

just posets is simple: finding the right challenge-response relation can help compute

the cofinality of a poset.

There is also the notion of the dual of a challenge-response relation. That is,

given R = ⟨R−, R+, R⟩, the dual of R is the relation R⊥ = ⟨R+, R−,¬R̃⟩, where

R̃ is the converse of R. If ⟨ϕ−, ϕ+⟩ is a morphism from R1 to R2, then ⟨ϕ+, ϕ−⟩

is a morphism from R⊥
2 to R⊥

1 . If a challenge-response relation is a poset, then its

bounding number equals the norm of the dual challenge-response relation.



9

1.3 Scales and Unbounded Chains

Some structures which help us understand posets are scales and unbounded chains :

Definition I.8. Given a poset P = ⟨P,≤P ⟩ and a sequence S = ⟨sα : α < κ⟩ that is

≤P -increasing, we call S a scale in P if

(∀a ∈ P )(∃β < κ) a ≤P sβ,

and we call S an unbounded chain in P if

(∀b ∈ P )(∃α < κ) sα ̸≤P b.

Of course, every scale is also an unbounded chain (assuming there is no maximal

element of the poset). Also, every unbounded chain has a cofinal subsequence of

length a regular cardinal, and such a cofinal subsequence is also unbounded. For

this reason, when we consider an arbitrary unbounded chain, we will often assume

its length is a regular cardinal.

A poset P need not have a scale. It is straightforward to show that P has a scale

iff the bounding number of P equals the cofinality of P. On the other hand, P does

have an unbounded chain of length the bounding number of P (and there are no

shorter unbounded chains). In general, the set of all lengths of unbounded chains in

a poset can be complicated.

When a poset P has an unbounded chain of length κ, there is a morphism from

P to ⟨κ,≤⟩:

Observation I.9. If P = ⟨P,≤P ⟩ is a poset and ⟨sα : α < κ⟩ is an unbounded chain



10

in P, then there is a morphism ⟨ϕ−, ϕ+⟩ from P to ⟨κ,≤⟩:

P ≤P

��

P

ϕ+

��
κ

ϕ−

OO

≤ κ.

Proof. Let ϕ− : κ→ P be defined by

ϕ−(α) = sα,

and let ϕ+ : P → κ be defined by

ϕ+(b) := min{α < κ : sα ̸≤P b}.

When the unbounded chain is also a scale, there is a morphism in the opposite

direction:

Observation I.10. If P = ⟨P,≤P ⟩ is a poset and ⟨sα : α < κ⟩ is a scale in P, then

there is a morphism ⟨ψ−, ψ+⟩ from ⟨κ,≤⟩ to P:

κ ≤

��

κ

ψ+

��
P

ψ−

OO

≤P P.

Proof. Let ψ− : P → κ be defined by

ψ−(a) := min{β < κ : a ≤P sβ},

and let ψ+ : κ→ P be defined by

ψ+(β) := sβ.

These two observations make precise the idea that if P has a scale of length κ,

then numerous questions about P can be reduced to questions about the cardinal κ.

Unfortunately, the posets we will study will generally not have scales.



11

1.4 The Baire Hierarchy

There is a natural hierarchy on the set of Borel functions called the Baire hierarchy.

Before defining this hierarchy, recall the following:

Definition I.11. A topological space is Polish if it has a countable dense subset and

its topology is that of a complete metric space.

Examples of Polish spaces include R with the usual topology and ω with the

discrete topology. Another important example is Baire space, which is the set ωω of

functions from ω to ω with the topology generated by the sets of the form

{x ∈ ωω : x(0) = n0, ..., x(k) = nk}

for some finite sequence ⟨n0, ..., nk⟩. Equivalently, the topology is induced by the

metric

d(x, y) =


2−min{n+1:x(n) ̸=y(n)} if x ̸= y,

0 otherwise.

For technical reasons, many of the results will involve Baire space instead of an

arbitrary Polish space. All Polish spaces are somewhat similar to Baire space. For

example, for each Polish space X, there is a continuous surjection from Baire space to

X. See [30] for the precise relationship between Baire space and other Polish spaces.

Our choice for focusing on Baire space is to keep the exposition simple. We may

confront the fundamental issues at hand without getting sidetracked by generalities.

In the few places where using Baire space as opposed to an arbitrary Polish space

makes a difference, we will say so. We will now define the Baire hierarchy.

Definition I.12. Fix a Polish space Y . B0(Y ) is the set of continuous functions

from ωω to Y . For α satisfying 1 ≤ α < ω1, Bα(Y ) is the set of functions which are



12

pointwise limits of sequences of functions in
∪
β<α Bβ(Y ). Functions in Bα(Y ) are

called Baire class α. Finally, Bω1(Y ) :=
∪
β<ω1

Bβ(Y ).

It is well known (see [30]) that a function f : ωω → Y is Borel iff f ∈ Bα(Y ) for

some α < ω1. Hence, Bω1(Y ) is the set of Borel functions from ωω to Y . For each

α < ω, there are two partially ordered sets (Bα(ω,≤) and Bα(ωω,≤∗)) whose study

will guide the results of this thesis:

Definition I.13. Given a Polish space Y and a partial ordering ≺ on Y , Bα(Y,≺)

is the set Bα(Y ) ordered pointwise by ≺. We will denote this partial ordering by the

same symbol ≺, so (∀f, g ∈ Bα(Y ))

f ≺ g ⇔ (∀x ∈ ωω) f(x) ≺ g(x).

We make a similar definition for considering arbitrary functions:

Definition I.14. Given a set Y and a partial ordering ≺ on Y , All(Y,≺) is the set

All(Y ) of all functions from ωω to Y ordered pointwise by ≺. We denote this partial

ordering by the same symbol ≺.

We will see that while our techniques to compute cfBω1(ω,≤) can also be applied

to compute cf All(ω,≤), this is not the case when passing from cfBω1(
ωω,≤∗) to

cf All(ωω,≤∗).

1.5 The Results of this Thesis

The results of this thesis can be broken into two categories: combinatorial set the-

ory and descriptive set theory. While the guiding problem is to compute cfBα(ω,≤)

and cfBα(ωω,≤∗) for all α ≤ ω1, during this process it is natural to consider appli-



13

cations to combinatorial set theory.

1.5.1 Combinatorial Set Theory

In Chapter II we will summarize past work relevant to generalized domination.

This is mostly combinatorial set theory. Starting with Chapter III, all the results

are new. We will discuss the relationship between ⟨λκ1,≤⟩ and ⟨λκ2,≤⟩. This turns

out to be surprisingly subtle. We will also prove that when λ is a singular strong

limit cardinal and κ < λ, then cf ⟨λκ,≤⟩ = 2λ.

In Chapter V, when we develop some of our main coding theorems, we will prove

the following:

Proposition I.15. Let κ and λ be infinite cardinals. For each A ⊆ λ, there is a

function f : κλ → κ such that whenever M is a transitive model of ZF satisfying

κλ ∈M and some g : κλ→ κ in M everywhere dominates f , then A ∈M .

We can remove the requirement that κλ ∈M and replace it with the requirements

that κ = ω and λ ∈ M (and therefore <κλ ⊆ M). Hence, in a certain situation, we

may remove the requirement that κλ ∈M , and this is very important. The proof of

this special result uses the fact that well-foundedness of trees is absolute, and does

not immediately generalize to the case that κ > ω. With this special result, we

obtain a surprising fact about complete Boolean algebras:

Theorem I.16. Let λ be an infinite cardinal. Let B be a complete Boolean algebra.

If B is weakly (λω, ω)-distributive, then B is (λ, 2)-distributive.

By B being weakly (µ, κ)-distributive, we mean that when forcing with B, func-

tions from µ to κ in the extension are everywhere dominated by functions from µ

to κ in the ground model. There is a more algebraic characterization of both dis-



14

tributivity and weak distributivity which we will describe in Section 2.9. We may

replace the component of the proof that uses the fact that well-foundedness of trees

is absolute with a different absoluteness result concerning the existence of length κ

paths through subtrees of κλ. We get the following variation of the theorem above:

Theorem I.17. Let κ be a weakly compact cardinal. Let B be a complete Boolean

algebra. If B is weakly (2κ, κ)-distributive and is (α, 2)-distributive for each α < κ,

then B is (κ, 2)-distributive.

It is important that κ is weakly compact, and not just that κ has the tree property.

Another variation along these lines is the following:

Theorem I.18. Let B be a complete Boolean algebra. If B is weakly (2ω1 , ω1)-

distributive, B is (ω, 2)-distributive, and 1 
B (ω1 < t), then B is (ω1, 2)-distributive.

The cardinal t is the tower number, which we will define in Section 5.6. The

requirement that 1 
B (ω1 < t) cannot be removed in the sense that if there exists a

Suslin tree, then there is a complete Boolean algebra which is simultaneously weakly

(2ω1 , ω1)-distributive and (ω, 2)-distributive but is not (ω1, 2)-distributive.

1.5.2 Descriptive Set Theory

As stated before, the guiding problem of this thesis is to compute both cfBα(ω,≤)

and cfBα(ωω,≤∗) for all α ≤ ω1. This will require us to develop new techniques,

which we will then apply to prove some diverse and surprising results. These posets

are interesting in their own right, but the original motivation for studying Bω1(
ωω,≤∗)

was to provide insight into the notion of Borel boundedness ([3], [45]) which appears

in the theory of Borel equivalence relations on ωω all of whose equivalence classes

are countable. We hope that our techniques may have applications there. Also, we



15

chose to investigate Bα(ωω,≤∗) instead of Bα(ωω,≺) for some other ordering ≺ on

ωω because ≤∗ is concrete and it captures the main idea for any reasonable ≺. Our

final result (Theorem I.27) can be viewed as applying to any reasonable ≺ because

it applies to the weakest relation: non-equality of reals.

Observation I.19. For each α ≤ ω1,

d ≤ cfBα(ωω,≤∗) ≤ cfBα(ω,≤) ≤ 2ω.

Proof. Fix α ≤ ω1. By mapping functions from ωω to ωω to their value at some fixed

point, and by mapping an element of ωω to the corresponding constant function, we

easily get a morphism from Bα(ωω,≤∗) to ⟨ωω,≤∗⟩. By Observation I.4,

d ≤ cfBα(ωω,≤∗).

Next, by partitioning ωω into blocks of size ω, we see that each function in Bα(ω) cor-

responds to a function in Bα(ωω). It is important that this correspondence respects

the levels of the Baire hierarchy, but this is routine to verify. With this correspon-

dence, we see that there is a morphism from Bα(ω,≤) to Bα(ωω,≤). This implies

there is a morphism from Bα(ω,≤) to Bα(ωω,≤∗), so by Observation I.4,

cfBα(ωω,≤∗) ≤ cfBα(ω,≤).

Finally, |Bα(ω,≤)| ≤ 2ω, so of course cfBα(ω,≤) ≤ 2ω.

There is no reason a priori for there to be any relationship between the cofi-

nalities of the posets Bα(ω,≤) for varying α ≤ ω1. The same can be said for the

posets Bα(ωω,≤∗) for varying α ≤ ω1. We will separate the discussion of the posets

Bα(ω,≤) from the discussion of the posets Bα(ωω,≤∗).



16

1.5.3 Functions from ωω to ω

In Chapter III, we will show that the classical proof to produce large indepen-

dent families of functions can be arranged to produce Borel functions. This implies

cfBα(ω,≤) = 2ω for all but very small α < ω. However, this observation sheds no

light on Bα(ωω,≤∗).

In Chapter IV, we will show

cfB0(ω,≤) = d.

This implies that an arbitrary A ⊆ ω cannot be encoded into a continuous function

f : ωω → ω so that A can be guessed from a dominator of f using countably many

guesses. The “reason” why cfB0(ω,≤) = d is the following more combinatorial result,

which we will prove:

Theorem I.20. Let W be the set of well-founded subtrees of <ωω. Then

cf ⟨W ,⊆⟩ = d.

This in turn follows from the existence of a morphism from a challenge-response

relation, which will easily be seen to have norm d, to ⟨W ,⊆⟩. That morphism gives

us another interesting application:

Theorem I.21. Let M be a transitive model of ZF. Assume that

(∀f1 ∈ ωω)(∃f2 ∈ ωω ∩M) f1 ≤ f2.

Assume also that ω1 = (ω1)
M . Then for each well-founded tree T1 ⊆ <ωω, there is

some well-founded tree T2 ⊆ <ωω in M satisfying T1 ⊆ T2.

Unfortunately, to show B0(ω,≤) = d, it is important that B0(ω) is the set of

continuous functions from ωω to ω, as opposed to the set of continuous functions

from some other Polish space X to ω.



17

In Chapter V, we will see a sharp transition as we pass from continuous func-

tions to Baire class one functions. We will present a novel technique for computing

cfBα(ω,≤) for all α ≥ 1. The technique will have significant applications, such

as the implications between weak distributivity laws for complete Boolean algebras.

Computing cfBα(ωω,≤∗) for α ≥ 1, on the other hand, will be of an entirely different

nature. As the inclusion ordering on trees was the key to understanding continuous

functions, the inclusion ordering on clouds turns out to be the right way to under-

stand Baire class one functions and beyond. We will quickly develop the theory of

clouds, and using them we will show that for each α ≥ 1,

cfBα(ω,≤) = 2ω.

We will establish this by constructing, for α ≥ 1, a morphism from Bα(ω,≤) to

⟨P(ω),≤∆1
1
⟩:

Bα(ω) ≤

��

Bα(ω)

ϕ+
��

P(ω)

ϕ−

OO

≤∆1
1

P(ω).

The same morphism works for each α ≥ 1. By ≤∆1
1
, we mean that A ≤∆1

1
B iff A

is definable by a ∆1
1 formula using B as a predicate. When A ≤∆1

1
B, we say that

A is hyperarithmetical in B. We use the same definition even if instead B is a type

2 object, such as a function from ωω to ωω. We make similar definitions for other

classes, such as ∆1
2 and Σ0

1. The following gives us the desired morphism (and much

more):

Theorem I.22. For each A ⊆ ω, there is a function f ∈ B1(ω,≤) such that if

g : ωω → ω is any function satisfying (∀x ∈ (ωω)L[g]) f(x) ≤ g(x), then A ≤∆1
1
g.

The set A is not only ∆1
1 definable using g as a predicate, but we can arrange f



18

so that there exist nodes t1, t2 ∈ <ωω satisfying the following:

A = {n ∈ ω : (∀x ⊒ t⌢1 n) g(x) ≥ |t⌢1 n|},

ω − A = {n ∈ ω : (∀x ⊒ t⌢2 n) g(x) ≥ |t⌢2 n|}.

We may view this as an infinite coding result. This is precisely what we described

in the first section: Alice wants to send A ⊆ ω to Bob. She encodes A into the

Baire class one function f : ωω → ω. She tries to send f to Bob, but instead an

enemy steps in and substitutes a function g : ωω → ω which everywhere dominates

f . Given g, Bob can guess A by making countably many guesses: he simply guesses

each subset of ω that is definable by some ∆1
1 formula which uses g as a predicate.

We discuss two encoding techniques: horizontal coding and vertical coding. The

theorem above can be proved using either one. We will see that the two techniques

have different useful generalizations, so we must study both. We will analyze exactly

how sloppy we can be to still perform vertical coding. The following is an example

of that analysis:

Proposition I.23. Let a ∈ R be a real. Let f : R → R be the function

f(x) :=


1

x−a if x ̸= a,

0 if x = a.

If g : R → R is a function which everywhere dominates f , then a ∈ L[g]. Hence, if

g is also Borel, then a ∈ L[c] where c is any Borel code for g.

In this proposition, the relation “a ∈ L[g]” is replacing the “A ≤∆1
1
g” of the

theorem above, but this is not essential. Using horizontal coding, we will prove the

following:

Proposition I.24. For each A ⊆ ωω, there is a function f : ωω → ω such that

whenever g : ωω → ω is any function satisfying f ≤ g, then A is ∆1
1 in g.



19

By ∆1
1, we mean definable by a ∆1

1 formula using g as a predicate and some real

as a parameter. The proposition implies the following:

Corollary I.25. For each A ⊆ R, there is a function f : R → ω such that if

g : R → ω satisfies f ≤ g, then A ∈ L(R, g).

1.5.4 Functions from ωω to ωω

In Chapter VI, we will discuss various obstructions to computing the cofinality

of Bα(ωω,≤∗) for α ≥ 1. We also establish various limits to what kinds of infinite

coding theorems can exist. First, we show that if we consider the poset All(ωω,≤∗)

of all functions from ωω to ωω (instead of just the Borel ones) ordered by pointwise

eventual domination, then there is no way in ZFC to prove that an arbitrary subset

of R can be encoded into one of these functions. This contrasts with the situation

with All(ω,≤), because a result like Corollary I.25 shows that encoding of arbitrary

subsets of R into that poset is possible. In essence, the problem with All(ωω,≤∗) is

that there might exist a scale in ⟨ωω,≤∗⟩ of length 2ω. A scale, however, is an object

whose existence requires some amount of the axiom of choice, and it is not relevant

when we investigate Bα(ωω,≤∗) for α ≤ ω1.

Next in Chapter VI, we will establish that some naive attempts using vertical

coding to show cfBα(ωω,≤∗) = 2ω (for α ≥ 1) fail. To prove the failure of the

techniques, we will use Sacks forcing. Our reason for spending the energy to do this

is because we want to be sure we have the simplest encoding scheme possible. As we

will see in Chapter VII, an encoding scheme does exist, but the proof that it works is

very complicated and was time consuming to discover. We do not want the readers



20

to waste time exploring paths on their own that we know lead to dead ends.

Next in Chapter VI, we observe that if we consider projective (instead of just

Borel) functions from ωω to ωω ordered by pointwise eventual domination, then

arbitrary subsets of ω cannot be encoded into these functions (in a canonical way)

assuming the following: 1) there is a projective well-ordering of ωω, and 2) ω2 ≤ b.

Since it is consistent with ZFC that these conditions may be satisfied simultaneously,

we have that ZFC cannot prove an infinite coding theorem for projective functions

from ωω to ωω. This leaves open the question of whether further natural axioms (for

example, the axiom of projective determinacy) imply a coding theorem for projective

functions.

In Chapter VII, we establish that for each α ≥ 1,

cfBα(ωω,≤∗) = 2ω.

We start the chapter by illustrating what was lacking from the naive vertical coding

attempt of the previous chapter. We then present a proof that

cfB1(
ωω,≤∗) = 2ω

using techniques entirely different from those in Chapter V. However, still as be-

fore, we will prove this by constructing a morphism from B1(
ωω,≤∗) to the relation

⟨P(ω),≤∆1
1
⟩:

B1(
ωω) ≤∗

��

B1(
ωω)

��
P(ω)

OO

≤∆1
1

P(ω).

Next, the challenge becomes to show that

cfB2(
ωω,≤∗) = 2ω.



21

Ultimately, this requires us to clarify the argument for B1(
ωω,≤∗) and develop a

more powerful technique. We isolate the right statements to prove using induction

to handle Bα(ωω,≤∗) for α < ω1. This will give us, for each α satisfying 1 ≤ α < ω1,

a morphism from Bα(ωω,≤∗) to ⟨P(ω),≤∆1
2
⟩:

Bα(ωω) ≤∗

��

Bα(ωω)

��
P(ω)

OO

≤∆1
2

P(ω).

Indeed, it suffices to construct the following morphism:

B1(
ωω) ≤∗

��

Bω1(
ωω)

��
P(ω)

OO

≤∆1
2

P(ω).

The existence of this follows from the next theorem. The reason for ∆1
2 is because

of the complexity of the graph of the function Ψ used in the proof:

Theorem I.26 (Borel Dominator ∆1
2 Coding Theorem). For each A ⊆ ω, there is

a Baire class one function f : ωω → ωω such that whenever g : ωω → ωω is a Borel

function satisfying

(∀x ∈ ωω)(∃c ∈ ω) f(x)(c) ≤ g(x)(c),

then A is ∆1
2 in any code for g.

We have now completed our quest to compute Bα(ω,≤) and Bα(ωω,≤∗) for all

α ≤ ω1. We can now justify that our choice of considering ≤∗ instead of some other

relation on ωω did not matter. The theorem above involves the relation

(∃c ∈ ω) f(x)(c) ≤ g(x)(c)

between f(x) and g(x). The proof generalizes easily to handle any reasonable relation

R between f(x) and g(x). Specifically, all we need is for R ⊆ ωω × ωω to be any



22

relation such that there exists a continuous function j : ωω → ωω satisfying

(∀y ∈ ωω)¬j(y)Ry.

Fixing such an R, the generalization may be stated as follows: for each A ⊆ ω, there

is a Baire class one function f : ωω → ωω such that whenever g : ωω → ωω is a Borel

function satisfying

(∀x ∈ ωω) f(x)Rg(x),

then A is ∆1
2 in any code for g.

Essentially all relations studied in the area of cardinal characteristics of the con-

tinuum (are equivalent to relations which) satisfy this hypothesis. There is a weakest

relation out of all these: non-equality. We now have a remarkably strong result with

an analysis flavor. We can use an arbitrary Polish space X instead of ωω, at the cost

of perhaps slightly increasing the complexity of f :

Theorem I.27. Let X and Y be Polish spaces with X uncountable. For each A ⊆ ω,

there is a Borel f : X → Y such that whenever g : X → Y is Borel, then at least

one of the following holds:

1) (∃x ∈ X) f(x) = g(x);

2) A is ∆1
2 in any code for g.

The strength of this result is a testament to the underlying method. The devel-

opment of the method is by far the deepest contribution of this thesis.

We leave the reader with a puzzling question: can Theorem I.27 be generalized

to work when g is a projective function? By the observation that there can exist

a long projective well-ordering of the reals while simultaneously ω2 ≤ b, we cannot

expect ZFC to prove such a generalization. We may ask whether it follows from



23

projective determinacy or the existence of large cardinals. If so, this would likely

require inventing a different proof of Theorem I.27, which is no easy task.

Finally, in the appendix we will present a few lemmas about Sacks forcing which

we use. We will also present several ideas which, although they were not used in this

thesis, are still natural for tackling problems in the area of cardinal characteristics.

1.6 Notation

In addition to what we have defined in this introduction, within this section we

will fix the rest of the notation for this thesis. With very few exceptions, we will

use standard set theoretic notation and terminology. When we say cardinal, we will

always mean infinite cardinal. By antichain, we mean strong antichain (elements are

pairwise incompatible). We write a ⊥ b when a and b are incompatible. The reader

should have basic familiarity with forcing, including nice names. Given two sets X

and Y , X⊔Y is the disjoint union of X and Y . Given a set X and a cardinal κ, [X]κ

is the collection of size κ subsets of X, and [X]<κ is the collection of size < κ subsets

of X. By λ-tree, we mean a tree all of whose levels have size < λ. By µ → (κ)nν ,

we mean the standard partition relation (given any coloring of [κ]n using ν colors,

there is a homogeneous subset of κ of size µ). By MA, we mean Martin’s axiom (the

version consistent with CH).

When we say that A ⊆ ω is Π1
1 in a set B, we mean that membership in A is

determined by a Π1
1 formula which uses B as a predicate. We say that A is ∆1

1 in

B if both A and ω − A are Π1
1 in B. We use a similar definition for A being ∆1

2

in B. By ≤T , we mean Turing reducibility. These are the only recursion theoretic

definitions we will need.



24

We will use a number of concepts from descriptive set theory. We will use codes

for Borel and projective sets. The theory of such codes can be found in [30] and

[39]. The point is that Borel sets, and more generally projective sets, can be coded

by individual real numbers, and properties of the sets can be reduced to properties

of the reals which code them. From a real which codes a Borel set, the process by

which the set is built up in the Borel hierarchy may be recovered. By AD we mean

the axiom of determinacy. Θ is the smallest ordinal which R cannot be surjected

onto. We use w.s. as an abbriviation for winning strategy.

Whenever we say cardinal, we shall mean infinite cardinal. Given sets A and B, let

AB denote the set of functions from A to B. As usual, given a function f : X → Y ,

we write Dom(f) = X for the domain of f , Im(f) ⊆ Y for the image of f , and given

S ⊆ X, f � S is the restriction of f to S. Given S ⊆ Dom(f), we write f“(S) for

Im(f � S). Given an expression e(x) which depends on x, we write

x 7→ e(x)

for the function which given x returns e(x). By a sequence, we mean a function whose

domain is an ordinal. The expression ⟨a, b, c⟩ denotes the sequence which maps 0 to

a, 1 to b, and 2 to c. Given an ordinal κ and a set X, let <κX be the collection of

all functions whose domain is a proper initial segment of κ:

<κX :=
∪
α<κ

αX.

Given two sequences t and s, we write t ⊑ s if s is an end-extension of t. That is,

t ⊑ s iff s � Dom(t) = t.

Given two sequences t and s, we write t⌢s for the concatenation of t and s. Given

t ∈ <κX and a ∈ X, we may abuse notation and write t⌢a when we mean t⌢⟨a⟩.



25

A set T ⊆ <κX is a tree if it is closed under taking initial segments. Elements of

T we generally call nodes. We call ∅ the root of T (assuming T is non-empty). Nodes

which have no proper end-extensions in T we call leaf nodes. We write [T ] ⊆ κX for

the set of all length κ paths through T :

{x ∈ κX : (∀α < κ)x � α ∈ T}.

Of course, this definition depends on κ, but it will always be clear from context what

we mean. Given t ∈ <ωω, we write [t] for the set of all x ∈ ωω satisfying x ⊒ t. Given

x ∈ ωω, we write [[x]] for the set of t ∈ <ωω satisfying t ⊑ x (this is not standard

notation). Given α < κ, the α-th level of T is the set

T ∩ αX.

The height of T is

sup{α < κ : T ∩ αX ̸= ∅}.

Given t ∈ T , we define

SuccT (t) := {a ∈ X : t⌢a ∈ T}.

If κ = ω, we say that T is well-founded if it has no infinite paths. If T is well-founded

then to each t ∈ T we may assign a rank rank(T, t) as follows:

rank(T, t) :=


1 if t is a leaf node of T,

sup{rank(T, t⌢a) + 1 : a ∈ SuccT (t)} otherwise.

Note that we are using the convention that leaf nodes of T have rank 1, which allows

us define the rank of those t ∈ <ωX not in T to be 0. The rank of the tree T itself

we define to be the rank of the root:

rank(T ) := rank(T, ∅).



26

The following definitions will help us define functions which are difficult to every-

where dominate.

Definition I.28. Let X be a set and κ be a cardinal. Let T ⊆ <κX be a tree. The

function Exit(T ) : κX → κ is defined by

Exit(T )(x) :=


0 if x ∈ [T ],

min{α : x � α ̸∈ T} otherwise.

That is, Exit(T )(x) is the level at which x exits the tree T (and is 0 if x does not

exit the tree). A more general definition is the following:

Definition I.29. Let X be a set and κ be a cardinal. Let C ⊆ <κX be such

that for each x ∈ κX, {α < κ : x � α ∈ C} is bounded below κ. The function

Rep(C) : κX → κ is defined by

Rep(C)(x) := sup{α : x � α ∈ C}.

A set C ⊆ <κX which satisfies the hypothesis of this definition we call a cloud.

This definition allows us to define more functions than the previous one because

given a tree T ⊆ <κX, the set C of sequences just outside the tree forms a cloud and

Exit(T ) = Rep(C). The set of all initial segments of elements of a cloud need not

be a cloud. We will generally be concerned with clouds in the case that κ = ω. If

T ⊆ <κX is a tree with no length κ branches, then T is a cloud. The abbreviation

“Rep” stands for representation.



CHAPTER II

Past Work

The purpose of this chapter is to summarize relevant past work on the problem

of understanding the cofinality of ⟨λκ,≤⟩, and generalized domination in general.

The reader may skip this chapter without loss of continuity. On the other hand, the

reader interested in ⟨λκ,≤⟩ but not Bα(ω,≤) or Bα(ωω,≤∗) for α ≤ ω1 will enjoy

this self contained chapter. There are many statements that have implications for

the cofinality of ⟨λκ,≤⟩ scattered throughout the literature. We have collected and

organized them together.

To compute cfBα(ω,≤) and cfBα(ωω,≤∗), one would first look to the “usual

techniques”. We feel obligated to collect a list of these, even though they do not

solve our problem. Most of them belong to what may be called uncountable infinitary

combinatorics (in contrast to those combinatorial questions about the continuum

which are of a countable nature). Also, our approach for computing cfBα(ω,≤)

and cfBα(ωω,≤∗) is to prove theorems about encoding and decoding, which is quite

different from most of these combinatorial methods.

We begin by describing the simplest ways to show cf ⟨λκ,≤⟩ is large. The un-

bounded subset bound is still used by the more subtle methods. Next, we explain

why we are studying ⟨λκ,≤⟩ instead of ⟨λκ,≤∗⟩, and point out that their cofinali-

27



28

ties are equal. We then describe some of what is known about ⟨λλ,≤∗⟩. Next, we

change gears slightly to summarize work on posets in descriptive set theory similar

to Bα(ω,≤) and Bα(ωω,≤∗).

We then return to infinitary combinatorics, and first summarize the implications

for cf ⟨λκ,≤⟩ when 2ω is a real-valued measurable cardinal. We then discuss one

of the most important problems related to computing cf ⟨λκ,≤⟩: constructing large

I-almost disjoint families for some κ+-complete ideal I on λ. There are various

techniques for creating new families from old ones, which we have organized together.

Next, we discuss a problem whose importance rivals the construction of large I-

disjoint families: the construction of large κ+-independent families. From this, we

get that λκ = λ implies cf ⟨λκ,≤⟩ = 2λ.

At the end of the chapter, we show a connection between everywhere domina-

tion and finding paths through trees. This illustrates the essential idea behind the

Jockusch [28] and Solovay [42] result that ∆1
1 subsets of ω can be encoded into

⟨ωω,≤⟩. Finally, we show the important connection to weak distributivity laws for

complete Boolean algebras.

2.1 Basics

Given a cardinal λ and a regular cardinal κ ≤ λ, we will review the basic ways

to show that cf ⟨λκ,≤⟩ is large. These are different from the techniques we will

develop to “encode information” into functions which can then be “decoded” from

dominators of those functions.

Proposition II.1 (Standard Diagonalization Bound). For any regular cardinal κ

and any cardinal λ ≥ κ, cf ⟨λκ,≤⟩ ≥ λ+.



29

Proof. Consider any G = {gα ∈ λκ : α < λ} of size at most λ. Define f ∈ λκ by

f(α) := gα(α) + 1.

Then f is not everywhere dominated by any member of G, so G is not cofinal.

Indeed, this proof can be easily modified to show cf ⟨λκ,≤∗⟩ ≥ λ+, but we will

wait until the next section to discuss ⟨λκ,≤∗⟩. This argument is atypical in that

we start with an alleged dominating family, and then we use this to create a novel

function to get a contradiction. This contrasts with the approach of first building a

large family of functions all of whose subsets of a certain size are unbounded, and

then appealing to the pigeon hole principle to select one of these subsets. We will

describe this approach now. First, recall the following.

Proposition II.2 (Infinite Pigeon Hole Principle). Let µ be an infinite cardinal and

suppose it is partitioned into pieces.

1) If there are < cf(µ) pieces, then there is a piece with µ elements.

2) If there are < µ pieces, then for each µ′ < µ there is a piece with more than µ′

elements.

Proposition II.3 (Unbounded Subset Bound). Let µ be an infinite cardinal and

P = ⟨X,≤⟩ be a poset. Suppose F ⊆ X and all size µ subsets of F are unbounded

in P (and µ ≤ |F|). Assume one of the following:

1) µ < |F|;

2) µ = |F| and µ is regular.

Then F cannot be dominated by < |F| elements of X. Hence,

cfP ≥ |F|.



30

Proof. Let G ⊆ X have size < |F|. Suppose, towards a contradiction, that

(∀f ∈ F)(∃g ∈ G) f ≤ g.

Partition F into |G| pieces, where all elements of a piece are below a single element

of G. Since we are assuming either 1) or 2), by the infinite pigeon hole principle,

there is a single piece with at least µ elements. That is, there are µ elements of F

all below a single element of G. This is a contradiction, because we assumed each

size µ subset of F is unbounded in P.

Apparently all classical ways to show that cf ⟨λκ,≤⟩ is large use this bound. Often

the arguments use µ = κ. However, in the next chapter when we prove cf ⟨λκ,≤⟩ = 2λ

for λ a singular strong limit cardinal and κ < λ, we will see that it is useful for µ to

satisfy the partition relation

µ→ (κ)2cf(λ).

Note the requirement that all size µ subsets of F are unbounded can be weakened

to almost all with respect to a sufficiently complete ideal on F . We will not need this

generalization, but the interested reader may find it useful. We say that an ideal I

is κ-complete if unions of < κ sets in I are in I. Also, given an ideal I, the set I+

is the collection of subsets of the underlying set not in I. The κ-completeness of an

ideal can be viewed as a pigeon hole principle:

Proposition II.4 (Idealized Infinite Pigeon Hole Principle). If µ is an infinite car-

dinal, I is a κ-complete ideal on µ, and µ is partitioned into < κ pieces, then one of

the pieces is in I+.

Proposition II.5 (Idealized Unbounded Subset Bound). Let P = ⟨X,≤⟩ be a poset.

Let F ⊆ X be infinite and let I be a κ-complete ideal on F . Suppose all subsets of



31

F in I+ are unbounded in P. Then F cannot be dominated by < κ elements of X.

Hence, cfP ≥ κ.

Proof. The proof is almost identical to that of Proposition II.3, except we use the

idealized infinite pigeon hole principle.

2.2 Everywhere vs. Eventual Domination

Let κ ≤ λ be infinite cardinals with κ regular. In the literature, the poset ⟨λκ,≤∗⟩

of functions from λ to κ ordered by eventual domination is studied more than ⟨λκ,≤⟩.

We say g eventually dominates f , and write f ≤∗ g, precisely when

(2.1) {x ∈ λ : f(x) > g(x)}

is bounded below λ. In general, for any ideal I on λ, f ≤I g iff the set (2.1) is in I.

More generally, given any product of regular cardinals
∏

α<λ κα (treating κα as the

poset ⟨κα,≤⟩) and any ideal I on λ, we can consider the poset

⟨
∏
α<λ

κα,≤I⟩

defined in the expected way. The problem of understanding the cofinality of these

posets is extremely broad. Indeed, it encompasses PCF theory and ultrapowers of

ω. Because of the breadth of this problem, we need to restrict our attention to

specific cases to make progress. For further information on ⟨λκ,≤I⟩ and even more

general posets, see [37]. We will now explain why we are investigating everywhere

domination.

First, everywhere domination serves as a natural boundary for the general prob-

lem. That is, for any ideal I on λ, there is a (trivial) morphism from ⟨
∏

α<λ κα,≤⟩



32

to ⟨
∏

α<λ κα,≤I⟩. Hence, this is the “top layer” of the hierarchy of these posets.

This layer also has internal structure. For example, given a sequence ⟨κα : α < λ2⟩

of regular cardinals and λ1 ≤ λ2, there is a (trivial) morphism from ⟨
∏

α<λ2
κα,≤⟩ to

⟨
∏

α<λ1
κα,≤⟩. In particular, for infinite cardinals κ ≤ λ1 ≤ λ2, there is a morphism

from ⟨λ2κ,≤⟩ to ⟨λ1κ,≤⟩. In the next chapter in Section 3.3, we will show there is

more subtle structure. For example, if λ is an infinite cardinal and κ1 ≤ κ2 ≤ λ

are regular cardinals satisfying κκ12 ≤ λ, then there is a morphism from ⟨λκ1,≤⟩ to

⟨λκ2,≤⟩.

Since everywhere domination is at the top of the hierarchy, it is the natural relation

to attempt to “encode information into”. For example, if Γ ⊆ P(ω) and ≤L is the

constructibility ordering, then if there is a morphism from ⟨ω1ω,≤I⟩ to ⟨Γ,≤L⟩ for

some ideal I on ω1, then there is one when I = {∅}. Since we want to prove that

these kinds of morphisms do exist, posets of the form ⟨λκ,≤I⟩ for I = {∅} are the

appropriate candidates to investigate.

However, since eventual domination is studied much more than everywhere dom-

ination, we will explain how they are related. First, note that the standard diago-

nalization bound from the previous section easily extends to eventual domination:

Proposition II.6 (Standard Diagonalization Bound). If κ is a regular cardinal and

λ ≥ κ is a cardinal, then cf ⟨λκ,≤∗⟩ ≥ λ+.

Proof. Let {Xα : α < λ} be a partition of λ into sets of size λ. Consider any

G = {gα ∈ λκ : α < λ}. Define f ∈ λκ such that

(∀α ∈ λ)(∀x ∈ Xα) f(x) = gα(x) + 1.

Then f is not eventually dominated by any member of G.

Indeed, the same argument shows that whenever I is an ideal on λ such that λ



33

can be partitioned into λ sets Xα each in I+, then cf ⟨λκ,≤I⟩ ≥ λ+.

Now, of course there is a morphism from ⟨λκ,≤⟩ to ⟨λκ,≤∗⟩. Even though a

morphism need not exist in the opposite direction, it turns out that the posets have

the same cofinality. First, note the following:

Lemma II.7. For any κ ≤ λ,

cf ⟨λκ,≤⟩ = cf ⟨λκ,≤∗⟩ ·
∑
x<λ

cf ⟨xκ,≤⟩.

Proof. The ≥ direction is easy. For the other direction, let F ⊆ λκ be cofinal in

⟨λκ,≤∗⟩ having minimal cardinality. For each x < λ, let Hx ⊆ xκ be cofinal in

⟨xκ,≤⟩ having minimal cardinality. For each f ∈ F , x < λ, and h ∈ Hx, define

gf,x,h ∈ λκ by

gf,x,h(α) :=


h(α) if α < x,

f(α) otherwise.

The family {gf,x,h : f ∈ F ∧ x < λ ∧ h ∈ Hx} is cofinal in ⟨λκ,≤⟩ and has size

|F| ·
∑
x<λ

|Hx|,

so we are done.

The idea in this proof is present in the proof that when A is a progressive set

(|A| < minA) of regular cardinals, max pcf(A) = cf ⟨
∏
A,≤⟩ ([23] Theorem 3.4.21).

The relevant part of the argument is the (easily verifiable) fact that given ideals

I1 ⊆ I2 on a cardinal λ and any sequence ⟨κα : α < λ⟩ of regular cardinals,

cf ⟨
∏
α<λ

κα,≤I1⟩ ≤ cf ⟨
∏
α<λ

κα,≤I2⟩ ·
∑
X∈I2

cf ⟨
∏
α∈X

κα,≤I1⟩.

This is an inequality instead of an equality because we have a sum of possibly 2λ

terms on the right hand side. Here is the other trick:



34

Lemma II.8. Let κ, λ1, λ2 be infinite cardinals with λ1 < λ2. Then

cf ⟨λ1κ,≤⟩ ≤ cf ⟨λ2κ,≤∗⟩.

Proof. For each f ∈ λ1κ, let f ′ ∈ λ2κ be the function defined by

f ′(λ1 · α + β) := f(β)

for α < λ2 and β < λ1. That is, f ′ is the function f repeated λ2 times. Let G ⊆ λ2κ

be cofinal in ⟨λ2κ,≤∗⟩. For each g ∈ G and α < λ2, let gα ∈ λ1κ be the function

gα(β) := g(λ1 · α + β).

Now, if f ′ ≤∗ g, then (∃α < λ2) f ≤ gα. Thus, {gα : g ∈ G ∧ α < λ2} is cofinal in

⟨λ1κ,≤⟩ and has size |G|.

Corollary II.9. For any κ ≤ λ,

cf ⟨λκ,≤⟩ = cf ⟨λκ,≤∗⟩.

Proof. By the preceding two lemmas,

cf ⟨λκ,≤∗⟩ ≤ cf ⟨λκ,≤⟩

= cf ⟨λκ,≤∗⟩ ·
∑
x<λ

cf ⟨xκ,≤⟩

≤ cf ⟨λκ,≤∗⟩ ·
∑
x<λ

cf ⟨λκ,≤∗⟩

= cf ⟨λκ,≤∗⟩.

This chain of inequalities gives us the desired equivalence.



35

2.3 Functions from λ to λ

Instead of studying ⟨λκ,≤∗⟩ in general, one usually studies ⟨λλ,≤∗⟩ (assuming λ

is regular). Moreover, usually λ = ω. The poset ⟨ωω,≤∗⟩ is the one most likely to

appear in applications to other branches of mathematics. In the study of the set

theory of the real line, ⟨ωω,≤∗⟩ is near the center of a complicated interconnected

plethora of structures, which taken together we may call the continuum. It is also

highly chaotic in the sense that we can force its cofinality and bounding number to

be almost anything we want (subject to the constraints given by its interconnections

to the rest of the structures of the continuum).

Hechler [21] has shown that given a poset Q in which every countable subset has

an upper bound, there is a c.c.c. forcing H which forces a strictly order-preserving

cofinal embedding of Q into ⟨ωω,≤∗⟩. Now, let λ be a regular cardinal. To be concise,

let us write b(λ) for b ⟨λλ,≤∗⟩ and d(λ) for cf ⟨λλ,≤∗⟩. Cummings and Shelah [7]

have generalized Hechler’s result as follows:

Theorem II.10. (Cummings-Shelah) Let λ be a regular cardinal satisfying λ<λ = λ,

and suppose that Q is any well-founded poset in which b(Q) ≥ λ+. Then there is a

forcing D(λ,Q) satisfying the following:

1) D(λ,Q) is λ-closed and λ+-c.c.;

2) 1 
 Q̌ can be cofinally embedded into ⟨λ̌λ̌,≤∗⟩;

3) If b(Q) = β, then 1 
 b⟨λ̌λ̌,≤∗⟩ = β̌;

4) If d(Q) = δ, then 1 
 d⟨λ̌λ̌,≤∗⟩ = δ̌.

By λ-closed, we mean that any decreasing chain of length < λ has a lower bound.

Since the forcing is both λ-closed and λ+-c.c., it preserves all cofinalities. Cummings



36

and Shelah go on to show that if we assume GCH, then for any class function F that

maps each regular cardinal λ to a triple of cardinals ⟨β(λ), δ(λ), µ(λ)⟩ satisfying

λ+ ≤ cf β(λ) = β(λ) ≤ cf δ(λ) ≤ δ(λ) ≤ µ(λ)

and

λ < cfµ(λ)

for all λ, there exists a forcing P, preserving all cardinals and cofinalities, such that

in the generic extension, b(λ) = β(λ), d(λ) = δ(λ), and 2λ = µ(λ) for all regular

λ. By what we will observe in Section 3.1, it follows that if the functions satisfy

(∀λ < κ) β(λ) = δ(λ) but β(κ) < δ(κ), then κ cannot be measurable in the generic

extension.

2.4 Some Posets in Descriptive Set Theory

Recall that Bα(ω,≤) is the poset of Baire class α functions from ωω to ω ordered

pointwise by ≤, and Bα(ωω,≤∗) is the poset of Baire class α functions from ωω to

ωω ordered pointwise by ≤∗. We will eventually compute the cofinalities of these

posets. As we stated earlier, the choice of ωω as the domain for the functions is out

of convenience and is not essential.

In the literature, the question of what well-orderings (and more generally, linear

orderings) embed into posets similar to Bα(ω,≤) has been investigated. In [12],

Elekes and Kunen show that for any Polish space X, a well-ordered sequence of

length ξ can be embedded into the poset of continuous functions fromX to R (ordered

pointwise) iff ξ < ω1. In fact, they show that for any metric space X, a well-ordered

sequence of length ξ can be embedded into the poset iff ξ < d(X)+, where d(X) is the

smallest size of a dense subset of X. They then show that the separable metric space



37

X = P(ω) is such that for each ξ < ω2, there is a well-ordered chain of Baire class 1

functions from X to R of length ξ. The question of whether there exists a separable

metric space in which there are such chains of length ω2 or longer is independent of

ZFC (even assuming ¬CH).

In [34] (24.III, Theorem 2′), Kuratowski shows that for any Polish space X, a

well-ordered sequence of length ξ can be embedded into the poset of Baire class 1

functions from X to R iff ξ < ω1. The same question but with Baire class α functions

for any fixed α ∈ [2, ω1) is independent of ZFC [31]. Recently, a characterization has

been found [13] of what linear orderings can be embedded into the poset of Baire

class 1 functions from X to R.

Our original motivation for studying Bω1(
ωω,≤∗) was to get insight into the poset

used in the definition of Borel boundedness. This notion appears in the theory of Borel

equivalence relations E ⊆ ωω × ωω all of whose equivalence classes are countable

(which hereafter we call countable Borel equivalence relations). Many notions of

equivalence in mathematics fit into this framework. An important example is Turing

equivalence. Given two such equivalence relations E and F on Polish spaces X and Y

respectively, a Borel reduction from E to F is a Borel function f : X → Y satisfying

(∀x1, x2 ∈ ωω)x1Ex2 ⇔ f(x1)Ff(x2).

An equivalence relation E is Borel bounded [3] iff for each Borel φ : ωω → ωω,

there exists a Borel ψ : ωω → ωω which pointwise eventually dominates φ and is =∗

constant on E classes. Hence, this is a statement about the relationship between E

and Bω1(
ωω,≤∗).

A sufficient understanding of which equivalence relations are Borel bounded will

solve the long-standing but still open Union Problem, which conjectures that the

increasing union E of a sequence of hyperfinite countable Borel equivalence relations



38

is hyperfinite. Indeed, such an E is hyperfinite iff it is Borel bounded. By hyperfinite,

we mean the increasing union of Borel equivalence relations all of whose equivalence

classes are finite. It is currently unknown (in ZFC) whether any Borel equivalence

relation, all of whose classes are countable, is not Borel bounded. However, Martin’s

conjecture (a deep problem in computability theory concerning the structure of the

Turing degrees) implies that Turing equivalence is not Borel bounded [45]. This is

a mysterious situation, because it suggests a connection between two difficult open

problems in seemingly unrelated areas.

To investigate Bω1(
ωω,≤∗) we must ask precise questions, the most natural being

“what is its cofinality?”. We will prove Theorem VII.28, which implies the answer is

2ω. The proof will have a computability theoretic nature. This reinforces the hope

that there is a connection between Borel boundedness and computability theory.

Finally, we hope that our techniques can be generalized enough to have implica-

tions for the hierarchy of norms (also called the Steel hierarchy) [35]. This is the

poset of surjections φ : ωω → α to ordinals ordered by φ ≤FPT ψ iff there exists a

continuous f : ωω → ωω satisfying

(∀x ∈ ωω)φ(x) ≤FPT ψ(f(x)).

The FPT stands for “First Periodicity Theorem”. This poset is important when one

assumes the axiom of determinacy. If the encoding theorems in this thesis could

be sufficiently generalized, we would have (assuming AD) that for each limit ordi-

nal α < Θ and for each A ⊆ ω, there is some φA : ωω → α such that whenever

ψ : ωω → α satisfies φ ≤FPT ψ, then A ∈ L[c] where c is any “code” for ψ.



39

2.5 Real-valued Measurable Cardinals

Recall that a cardinal δ is real-valued measurable if there is a real-valued function

µ : P(δ) → R satisfying the following:

1) µ(δ) = 1;

2) (∀x ∈ δ)µ({x}) = 0;

3) (∀λ < δ) if ⟨Aα : α < λ⟩ is a sequence of pairwise disjoint subsets of δ, then

µ(
∪
α<λ

Aα) =
∑
α<λ

µ(Aα).

Given a real-valued measurable cardinal δ, the following are equivalent:

1) δ is not measurable;

2) δ ≤ 2ω;

3) There exists a function µ witnessing that δ is real-valued measurable such that

if A ⊆ δ satisfies µ(A) > 0, then there exists some B ⊆ A such that µ(B) > 0

and µ(A−B) > 0.

When 2ω is a real-valued measurable cardinal, we can compute the cofinality of

⟨λκ,≤⟩ whenever κ ≤ λ ≤ 2ω and κ ̸= 2ω. Especially notable is that cf ⟨λκ,≤⟩ < 2λ

when κ is a regular uncountable cardinal < 2ω and λ ∈ [κ, 2ω). We will summarize

these known facts now.

Fact II.11. If 2ω is real-valued measurable and κ < 2ω, then 2κ = 2ω.

This is due to Prikry [40]. A proof can be found in Fremlin’s article on real-valued

measurable cardinals [17]. When we discuss independent families of functions, we will

see that λκ = λ implies cf ⟨λκ,≤⟩ = 2λ. Hence, if λ = 2ω is real-valued measurable

and κ < 2ω, then cf ⟨λκ,≤⟩ = 2λ.



40

Fact II.12. If 2ω is real-valued measurable, then cf ⟨ωω,≤⟩ < 2ω.

This is due to Kunen [32]. In [43], Szymański shows the stronger result that if

there exists a σ-additive probability measure on P(2ω) such that each measure 1 set

has size 2ω, then cf ⟨ωω,≤⟩ < 2ω.

Fact II.13. If 2ω is real-valued measurable and ω < λ < 2ω, then cf ⟨λω,≤⟩ = 2ω.

The case where λ = ω1 is due to Jech and Prikry [27]. The general case is proved

in [43]. In [43], the unnecessary requirement is made that λ be regular.

Fact II.14. If 2ω is real-valued measurable and ω < κ ≤ λ < 2ω with κ regular, then

cf ⟨λκ,≤⟩ < 2ω.

This is proved in [43].

2.6 Almost Disjoint Functions

Although the question of whether cf ⟨λκ,≤⟩ = 2λ for cardinals κ < λ has not had

much attention in the literature, the related problem of constructing large almost

disjoint families of functions has been well studied. First, we will explain the connec-

tion between the two problems, which ultimately comes from the Unbounded Subset

Bound (Proposition II.3). Then, we will survey some standard ways of creating large

almost disjoint families. All the significant results in this section can be found in

[27].

Definition II.15. Let λ and κ be infinite cardinals. Let I be an ideal on λ. A

family F ⊆ λκ is I-disjoint if for distinct f1, f2 ∈ F ,

{x ∈ λ : f1(x) = f2(x)} ∈ I.

If I is the ideal of bounded subsets of λ, then we call F an almost disjoint family.



41

This is why we care about I-disjoint families:

Lemma II.16. Let I be a κ+-complete ideal on λ and let F ⊆ λκ be I-disjoint.

Then each size κ subset of F is unbounded in ⟨λκ,≤⟩. Hence, assuming |F| > κ,

cf ⟨λκ,≤⟩ ≥ |F|.

Proof. By Proposition II.3, it suffices to show the first claim. Let F ⊆ F be a size κ

subset of F . Given distinct f1, f2 ∈ F , define

Xf1,f2 := {x ∈ λ : f1(x) = f2(x)}.

Since there are only κ such Xf1,f2 and I is κ+-complete, there exists some x ∈ λ not

in any Xf1,f2 . Fix such an x. The values of f(x) for f ∈ F are all distinct. Hence,

{f(x) : f ∈ F}

is unbounded in κ. This implies that no single g ∈ λκ can everywhere dominate each

f ∈ F .

This leads us to define the following interval of cardinals:

Definition II.17. Given infinite cardinals λ and κ,

ID(λ, κ) := {|F| : F ⊆ λκ is I-disjoint for some κ+-complete ideal I}.

By the lemma above,

cf ⟨λκ,≤⟩ ≥ sup ID(λ, κ)

(assuming κ+ ∈ ID(λ, κ)). There are various ways to prove that sup ID(λ, κ) is large.

We will present some now.

Lemma II.18. There exists a size λ+ almost disjoint family F of functions from λ

to λ. Hence,

λ+ ∈ ID(λ, λ).



42

Proof. The constant functions form an almost disjoint family of size λ. By diagonal-

ization, no size λ almost disjoint family can be maximal.

Lemma II.19. There exists a size κ+ almost disjoint family F of functions from κ+

to κ. Hence,

κ+ ∈ ID(κ+, κ).

Proof. Using the Axiom of Choice, we may easily construct F = ⟨fα : α < κ+⟩ such

that for each α < κ+, the values of fβ(α) for β < α are distinct from one another.

Lemma II.20. There exists a size 2λ almost disjoint family F of functions from λ

to 2<λ. Hence,

2λ ∈ ID(λ, 2<λ),

and therefore max ID(λ, 2<λ) = 2λ.

Proof. There are 2λ paths through the tree <λ2. By injecting each level into 2<λ, we

may easily create the desired family.

These last three propositions are basic building blocks for constructing I-disjoint

families of functions. There are also methods for creating new families from old ones,

which we will present now.

Lemma II.21 (Tensor Lemma). If µ ∈ ID(λ, κ) and ν ∈ ID(λ, µ), then ν ∈ ID(λ, κ).

Proof. Let

F1 = {f1,α ∈ λκ : α < µ}

and I1 ⊆ P(λ) witness that µ ∈ ID(λ, κ). Let

F2 = {f2,β ∈ λµ : β < ν}

and I2 ⊆ P(λ) witness that ν ∈ ID(λ, κ).



43

Let I2 ⊗ I1 be the κ-complete ideal on λ× λ defined by

X ∈ I2 ⊗ I1 ⇔ ((I2 ⊗ I1)
∗⟨x2, x1⟩) ⟨x2, x1⟩ ̸∈ X :⇔ (I∗

2x2)(I∗
1x1) ⟨x2, x1⟩ ̸∈ X.

By I∗, we mean the filter dual to I. By (Sx)ϕ(x) we mean {x : ϕ(x)} ∈ S. For

each β < ν, let fβ : λ× λ→ κ be the function

fβ(x1, x2) := f1,f2,β(x2)(x1).

Now, for distinct β1, β2 < ν,

(I∗
2x2) f2,β1(x2) ̸= f2,β2(x2)

⇒ (I∗
2x2) f1,f2,β1 (x2) is I1-disjoint from f1,f2,β2 (x2)

⇒ (I∗
2x2)(I∗

1x1) f1,f2,β1 (x2)(x1) ̸= f1,f2,β2 (x2)(x1)

⇒ fβ1 is I2 ⊗ I1-disjoint fromfβ2 .

Thus, {fβ ∈ λ×λκ : β < ν} is an I1 ⊗ I2-disjoint family of functions. By bijecting λ

with λ×λ, we get the desired family of functions from λ to κ, and so ν ∈ ID(λ, κ).

Lemma II.22 (Crusher Lemma 1). If ν ∈ ID(λ, κ), λ < cf(κ), and cf(κ) < cf(ν),

then (∃α < κ) ν ∈ ID(λ, α). Moreover, if F ⊆ λκ witnesses that ν ∈ ID(λ, κ), then

there exists α < κ and a size ν subfamily G ⊆ F satisfying G ⊆ λα.

Proof. This is easy.

The following hypothesis is needed for the second crusher lemma.

Definition II.23. A family F ⊆ λκ is branching if it is almost disjoint and moreover

whenever f1, f2 ∈ F and α < λ satisfies f1(α) ̸= f2(α), then (∀β > α) f1(β) ̸= f2(β).

Equivalently, F ⊆ λκ is a branching family iff it is included in the set of paths

through some tree T ⊆ <λκ all of whose levels have size ≤ κ. The families given by

Lemma II.19 and Lemma II.20 can be assumed to be branching.



44

Lemma II.24 (Crusher Lemma 2). Let F ⊆ λκ be branching of size ν. Suppose

cf(κ) < cf(λ), cf(κ) < cf(ν), and λ < κ. Then there is some size ν subfamily G ⊆ F

satisfying

(∀β < κ) |{f(β) : f ∈ G}| ≤ α

for some α < κ. Hence, there is a size ν branching subfamily of λα.

Proof. Let ⟨αγ : γ < cf(κ)⟩ be cofinal in κ. For each f ∈ F , let γf < cf(κ) satisfy

f(β) < αγf for λ many β < λ. Since cf(κ) < cf(λ), these γf do in fact exist. Since

cf(κ) < cf(ν), there is some size ν family G ⊆ F and some γ < cf(κ) such that (∀f ∈

G) f(β) < αγ for λ many β < λ. We claim that (∀β < κ) |{f(β) : f ∈ G}| ≤ λ · αγ.

Pick any β. For each η ∈ {f(β) : f ∈ G}, let ⟨xη, yη⟩ be such that xη > β

and there exists some f ∈ G satisfying f(β) = η and f(xη) = yη < αγ. The

pair ⟨xη, yη⟩ is well-defined because (∀f ∈ G) f(x) < αγ for λ many x. Now, the

function η 7→ ⟨xη, yη⟩ must be an injection (because G is a branching family). Hence,

|{f(β) : f ∈ G}| ≤ λ · αγ.

We will now give an example of how to apply these lemmas. Let λ be a cardinal

and assume 2<λ < ℵcf(λ) and 2<λ < cf(2λ). Applying Lemma II.20, we get a size 2λ

branching subfamily of functions from λ to 2<λ. Note that each cardinal < ℵcf(λ)

is either regular or has cofinality < cf(λ). This allows us to apply the Crusher

Lemmas repeatedly until we get a size 2λ branching family G of functions from λ to

λ. If in particular λ = ω1, then at the end we may apply the Tensor Lemma with

G and a size ω1 almost disjoint family of functions from ω1 to ω to conclude that

max ID(ω1, ω) = 2ω1 . Hence, cf ⟨ω1ω,≤⟩ = 2ω1 .

In [27] (as well as [26]), it is shown how to replace the hypothesis 2<ω1 < cf(2ω1)

with the weaker one that 2<ω1 < 2ω1 . Let us summarize that cf ⟨ω1ω,≤⟩ = 2ω1



45

whenever either of the following hold:

1) 2ω ≤ ω2;

2) 2ω < 2ω1 and 2ω < ℵω1 .

Also, given cardinal arithmetic assumptions, it is shown in [27] that there exist large

almost disjoint families when there do not exist inner models with large cardinals

(by applying a covering theorem).

2.7 Independent Families of Functions

To show cf ⟨λκ,≤⟩ = 2λ, by the unbounded subset bound (Proposition II.3) it

suffices to construct a size 2λ family F ⊆ λκ all of whose size κ subsets are unbounded

in ⟨λκ,≤⟩. There are two main ways to get such an F :

1) F can be I-almost disjoint for some κ-complete ideal on λ;

2) F can be κ+-independent.

We will recall the classical theorem which constructs κ+-independent families. This

will give us that λκ = λ implies cf ⟨λκ,≤⟩ = 2λ.

Definition II.25. Let λ, κ, and ν be infinite cardinals. A family F ⊆ λκ is said to

be ν-independent if

(∀F ∈ [F ]<ν)(∀φ : F → κ)(∃x ∈ λ)(∀f ∈ F ) f(x) = φ(f).

That is, a family F ⊆ λκ is ν-independent if the functions in each size < ν subset

take specified values at some point x ∈ λ. Another name for this is “a family with

ν-oscillations” [5]. From the definition, it is clear that if F ⊆ λκ is κ+-independent,

then every size κ subset of F is unbounded in ⟨λκ,≤⟩.



46

We will now recall an old result to construct such families. For the sake of this

section, let I(λ, κ, ν, µ) be the statement “there exists a family F ⊆ λκ that is ν-

independent and of size µ”. I(ω, 2, ω, 2ω) and I(2ω, 2, ω, 22ω) were both shown in [16]

by Fichtenholz and Kantorovitch. For an arbitrary infinite λ, I(λ, 2, ω, 2λ) was shown

in [20] by Hausdorff. For infinite cardinals λ and κ such that 2<κ ≤ λ, I(λ, 2, κ, 2λ)

was shown in [44] by Tarski. Finally, for infinite cardinals λ and κ such that λ<κ = λ,

I(λ, λ, κ, 2λ) was shown in [14] by Engelking and Kartowicz. We state this last result

as the theorem below. For a proof of this theorem, see (a) ⇒ (d) of Theorem 3.16 in

[5]. In the next chapter, we will present an instance of this proof in order to analyze

the complexity of the functions involved. See also the end of Chapter 3 in [5] for

more information.

Theorem II.26. If λκ = λ, then there is a κ+-independent family of 2λ functions

from λ to κ. More generally, if λ<κ = λ, then there is a κ-independent family of 2λ

functions from λ to κ.

Note that the following statements are equivalent (for κ ≤ λ):

1) λκ = λ;

2) I(λ, λ, κ+, 2λ);

3) I(λ, λ, κ+, κ).

That is, the theorem gives that 1) implies 2). We see that 2) trivially implies 3).

Finally, 3) implies 1) because given an F ⊆ λλ that is κ+-independent of size κ,

every φ : F → κ corresponds to a unique x ∈ λ. Here is the corollary of the theorem

relevant to us:

Corollary II.27. If λκ = λ, then cf ⟨λκ,≤⟩ = 2λ.



47

This corollary was surely known by anyone aware of theorem, but the author

could find no reference for it. With the special case λ = 2ω and κ = ω, we have the

following:

Corollary II.28. The cofinality of the set of all functions from 2ω to ω ordered by

everywhere domination is 22ω . That is, cf All(ω,≤) = 22ω .

This then has a simple corollary:

Corollary II.29. Assume CH. Then cf ⟨ω1ω,≤⟩ = 2ω1.

This is attributed to Kunen (as stated in [27]). Note that this corollary is implied

by the comments at the end of the previous section. Hence, there are two quite

different proofs that cf ⟨ω1ω,≤⟩ = 2ω1 assuming CH. From Corollary V.21, we will

see a third completely different proof of this.

The existence of sufficiently independent families of functions has an implication

for the theory of challenge-response relations. Recall that given R = ⟨R−, R+, R⟩,

the cardinal ||R⊥|| is the smallest size of a set of challenges X ⊆ R− not met by a

single response y ∈ R+.

Proposition II.30. Let R = ⟨R−, R+, R⟩ be a challenge response relation. Let

κ = ||R⊥||. Let λ be a cardinal satisfying λκ = λ. Let R̃ := ⟨λR−,
λR+, R̃⟩ be the

conjunction of R with itself λ many times. That is, fR̃g iff (∀x ∈ λ) f(x)Rg(x).

Then ||R̃|| = 2λ. In fact, there is a set F ⊆ λR− of size 2λ such that for each size κ

subset F ′ of F , there is no g ∈ λR+ meeting each element of F ′.

Proof. Let A = {aα : α < κ} ⊆ R− be a set of κ challenges not met by any single

response b ∈ R+. Using Theorem II.26, we obtain a set F = {fβ : β < 2λ} ⊆ λR− of

size 2λ such that for each injection i : κ→ 2λ, there exists an x ∈ λ satisfying

(∀α < κ) fi(α)(x) = aα.



48

The set F is as desired.

2.8 Dominating Tree Branches

There is an important situation involving trees where the domination relation

is relevant. Specifically, let λ and κ be infinite cardinals and T ⊆ <λκ be a tree.

Suppose f ∈ λκ is in [T ]. If g ∈ λκ everywhere dominates f , then f is also a path

through the tree

T≤g := {t ∈ T : (∀α ∈ Dom(t)) t(α) ≤ g(α)}.

Thus, to certify that [T ] ̸= ∅, it suffices to find a function g ∈ λκ satisfying [T≤g] ̸= ∅.

This is interesting, because it breaks the problem of certifying that [T ] ̸= ∅ into two

steps:

1) Find a function g ∈ λκ sufficiently high up in the ordering ⟨λκ,≤⟩.

2) Certify that [T≤g] ̸= ∅.

Recall that a set A ⊆ ω is Π1
1 iff there exists a computable function F : ω →

P(<ωω) such that each F (n) is a tree and

n ∈ A⇔ [F (n)] = ∅.

By computable, we mean the set {(n, t) : t ∈ F (n)} ⊆ ω × <ωω is computable.

Fix such an A and F . By hanging each tree F (n) below a stem of length n, we

may assume that each F (n) has a stem consisting of 0’s of length at least n. Now,

for each n such that [F (n)] ̸= ∅, choose some pn ∈ [F (n)]. Let g ∈ ωω everywhere

dominate each pn (which is possible by the assumption on the F (n)’s). The statement



49

[F (n)≤g] = ∅ is Σ0
1 as a relation of n and g. That is, by compactness, [F (n)≤g] = ∅

iff

(∃l ∈ ω)(∀t ∈ lω) t ̸∈ F (n)≤g.

It is not difficult to see (using the same trick) that in fact g can be chosen to be Π1
1

in A. We have just proved the following:

Proposition II.31. Suppose A ⊆ ω is Π1
1. Then there is some g ∈ Π1

1 ∩ ωω such

that for any g′ ≥ g, A is (uniformly) Σ0
1 in g′.

Hence, we get the existence of the following morphism:

Π1
1 ∩ ωω ≤

��

Π1
1 ∩ ωω

��
Π1

1 ∩ P(ω)

OO

≤Σ0
1

Π1
1 ∩ P(ω).

Of course, making finite modifications to g′ does not change which sets are ≤Σ0
1

below

it, so we can replace the top relation ≤ with ≤∗, but never mind this. This morphism

be viewed as an encoding theorem: a Π1
1 set can be encoded into a function from ω

to ω, and that set can be guessed from any dominator of that function (by guessing

all sets Σ0
1 in the dominator). Our encoding theorems have this same spirit, although

the proofs are completely different.

Now ⟨ωω,≤⟩ is directed, a set is ∆1
1 (also called hyperarithmetical) iff both it and

its complement are Π1
1, and ≤∆0

1
is the same as Turing reduction ≤T . Thus, we get

the following:

Corollary II.32. Suppose A ⊆ ω is ∆1
1. Then there is some g ∈ ∆1

1 ∩ ωω such that

for any g′ ≥ g, A is (uniformly) computable from g′. Hence,

∆1
1 ∩ ωω ≤

��

∆1
1 ∩ ωω

��
∆1

1 ∩ P(ω)

OO

≤T ∆1
1 ∩ P(ω).



50

This result is due to Jockush [28] and Solovay [42]. It is optimal in the sense that

for each A ⊆ ω that is not ∆1
1 and each g ∈ ωω, there is some g′ ≥ g that does not

compute A. It can be said that the subsets of ω needed for ⟨ωω,≤⟩ are precisely

those that are ∆1
1 [1].

The trick we described in this section applies not only to ⟨ωω,≤⟩ but to ⟨λλ,≤⟩

whenever λ is strongly inaccessible and has the tree property (a.k.a. weakly com-

pact). In the next chapter, we will describe a slightly different trick where we fix an

enumeration of each level of a tree. There, only the tree property and not full weak

compactness is what matters.

2.9 Weak Distributivity Laws and Suslin Algebras

The study of properties of complete Boolean algebras is a central area in set theory.

From our perspective, it is essentially the same as the theory of forcing. That is,

which statements hold in the extension after forcing with a c.B.a. is a property of

the c.B.a. and the ground model. Thus, we want to know the effect that axioms

(statements in the ground model) have on properties of c.B.a.’s.

Given a challenge-response relation R = ⟨R−, R+, R⟩, we may ask which complete

Boolean algebras (hereafter called c.B.a.’s) B are those that after forcing with them,

every challenge in the extension is met by a response in the ground model. That is,

(2.2) 1 
B (∀x ∈ R−)(∃y ∈ R+ ∩ V̌ )xRy.

Of course, this statement only makes sense when the forcing extension has its own

version of R. We generally assume the relation is sufficiently absolute (so that it

means what we expect in the extension). If B and R satisfy (2.2), then let us say B

is R-adequate. Fixing R, this gives us a property of c.B.a.’s.



51

If there is a morphism from one relation R1 to another R2, and the morphism

is sufficiently absolute, then any B that is R1-adequate is also R2-adequate. Hence,

the program to find morphisms between (useful) challenge-response relations is a

combinatorial approach to finding relationships between properties of c.B.a.’s.

We mention all this because various results on the combinatorial nature of dom-

ination are inherent in discussions of distributivity laws for c.B.a.’s. As defined in

[26], given infinite cardinals λ and κ, we say that a c.B.a. B is (λ, κ)-distributive if∏
α<λ

∑
β<κ

uα,β =
∑
f :λ→κ

∏
α<λ

uα,f(α)

for any ⟨uα,β ∈ B : α < λ, β < κ⟩. Given maximal antichains A1, A2 ⊆ B, we

say that A2 refines A1 if (∀a2 ∈ A2)(∃a1 ∈ A1) a2 ≤B a1. It is a fact that B is

(λ, κ)-distributive iff each size λ collection of size κ maximal antichains in B has

a common refinement. Hence, B is (λ, κ)-distributive for every cardinal κ iff it

is (λ, |B|)-distributive. This is also called being (λ,∞)-distributive. There is an

important characterization in terms of forcing (which can be found in [26] as Theorem

15.38), which is why we care about (λ, κ)-distributivity:

Fact II.33. A complete Boolean algebra B is (λ, κ)-distributive iff

1 
B (∀f : λ̌→ κ̌) f ∈ V̌ .

Unfortunately, the definition of weak distributivity varies in the literature (for

example [29]). We will be using the one given by Jech (see [26]). That is, we say

that a c.B.a. B is weakly (λ, κ)-distributive if∏
α<λ

∑
β<κ

uα,β =
∑
g:λ→κ

∏
α<λ

∑
β<g(α)

uα,β

for any ⟨uα,β ∈ B : α < λ, β < κ⟩. Of course, this also has a characterization in

terms of refining antichains. The following connects everywhere domination to weak

distributivity of c.B.a.’s:



52

Fact II.34. A complete Boolean algebra B is weakly (λ, κ)-distributive iff

1 
B (∀f : λ̌→ κ̌)(∃g : λ̌→ κ̌) g ∈ V̌ ∧ f ≤ g.

For an introduction to distributive laws in c.B.a.’s, see [25]. There are games

related to distributive laws in c.B.a.’s. There are implications between distributive

laws and players either having or not having winning strategies for these games. In

addition to [25], see [9] for a systematic investigation of these properties. There is a

large and still growing body of literature on the subject.

The following is often mentioned when discussing distributivity laws for c.B.a.’s:

Definition II.35. A c.B.a. is a Suslin algebra if it is atomless, (ω,∞)-distributive,

and c.c.c.

It is a theorem of ZFC that there exists a Suslin algebra iff there exists a Suslin

tree. Furthermore, given a Suslin algebra B, there is a Suslin tree (turned upside

down) that completely embeds into B, so B is not (ω1, 2)-distributive (see [26]). If a

c.B.a. is c.c.c, then it is also weakly (λ, κ)-distributive for every λ and every regular

uncountable κ. We will now recall the proof of a stronger statement. Recall that a

forcing has the κ-c.c. if every antichain has size < κ:

Lemma II.36. If λ and κ are infinite cardinals with κ regular, P is a forcing with

the κ-c.c, p ∈ P, ḟ ∈ V P, and p 
 ḟ : λ̌→ κ̌, then there is some g : λ→ κ satisfying

p 
 ḟ ≤ ǧ.

Proof. For each α < λ, consider the set

Sα := {β < κ : (∃p′ ≤ p) p′ 
 ḟ(α̌) = β̌}.

Since P has the κ-c.c., it must be that each Sα has size < κ. For each α < λ, define

g(α) := supSα.



53

If it was not the case that p 
 (∀α < λ̌) ḟ(α) ≤ ǧ(α), then there would be some

p′ ≤ p, α < λ, and β < κ satisfying

p′ 
 ḟ(α̌) = β̌ > ǧ(α̌),

but this would contradict the definition of g.

Corollary II.37. If a c.B.a. is κ-c.c, then for each λ it is weakly (λ, κ)-distributive.

The problem of finding weakly (λ, κ)-distributive c.B.a.’s which are not κ-c.c. is

somewhat of a mystery. Now, the lemma above gives us that p 
 ḟ ≤ ǧ and not just

that there exists some p′ ≤ p satisfying p′ 
 ḟ ≤ ǧ. This important point gives us

the next corollary. We are not being pedantic: there is consistently, relative to large

cardinals, a forcing P (see [36]) which does not collapse cardinals and does not add

reals, but still

1 
 cf ⟨ωω,≤⟩ <
ˇ︷ ︸︸ ︷

cf ⟨ωω,≤⟩.

If there exists a forcing with this property, then the following hold: (by [36])

1) the forcing must collapse some cardinal’s cofinality;

2) there exists an inner model with a measurable cardinal.

Statement 2) follows from 1) and the fact that the forcing does not collapse

cardinals. This next corollary uses the lemma above for both directions. While

the author could not find a reference for the following corollary, it is surely folklore

knowledge.

Corollary II.38. If λ and κ are cardinals with κ regular and P is a forcing with the

κ-c.c, then

1 
 cf ⟨λ̌κ̌,≤⟩ =
ˇ︷ ︸︸ ︷

cf ⟨λκ,≤⟩.



54

Proof. Let ν := cf ⟨λκ,≤⟩. To see why 1 
 cf ⟨λ̌κ̌,≤⟩ ≤ ν̌, note that the lemma above

implies that if A ⊆ λκ is cofinal in ⟨λκ,≤⟩, then 1 
 (Ǎ is cofinal in ⟨λ̌κ̌,≤⟩).

For the more difficult direction, we must show that in the extension there is no

cofinal family of size strictly smaller than ν̌. Suppose, towards a contradiction, that

1 ̸
 cf ⟨λ̌κ̌,≤⟩ ≥ ν̌. Then there exists some p ∈ P satisfying p 
 cf⟨λ̌κ̌,≤⟩ < ν̌. Pick

p, µ < ν, and τ̇ ∈ V P so that p 
 (τ̇ : µ̌→ λ̌κ̌) and

p 
 (∀g ∈ λ̌κ̌)(∃γ < µ̌) g ≤ τ̇(γ).

For each γ < µ, applying the lemma above to (a name which 1 forces is equivalent

to) τ̇(γ̌) produces a function gγ ∈ λκ satisfying

p 
 τ̇(γ̌) ≤ ǧγ.

We claim that {gγ : γ < µ} ⊆ λκ is cofinal in ⟨λκ,≤⟩. Once this is shown, we will

have the contradiction.

Consider any g ∈ λκ. We will find γ < µ satisfying g ≤ gγ. We have p 
 (∃γ <

µ̌) ǧ ≤ τ̇(γ). Pick p′ ≤ p and γ < µ satisfying p′ 
 ǧ ≤ τ̇(γ̌). We now have

p′ 
 ǧ ≤ τ̇(γ̌) ≤ ǧγ.

Since p′ 
 ǧ ≤ ǧγ, we have

g ≤ gγ.

The proof is complete.

An easily verifiable fact that we should mention is that any forcing which collapses

the cofinality of a cardinal λ to µ < λ is not weakly (λ, µ)-distributive.



CHAPTER III

Building on Past Work

This chapter is mostly a continuation of the last, with the difference being these

results are new. The last section of this chapter, however, is relevant to the goal

of computing Bα(ω,≤) and Bα(ωω,≤∗) for all α ≤ ω1. We begin with the easy

observation that just as GCH cannot first fail at a measurable cardinal, neither can

the equality b ⟨λλ,≤∗⟩ = cf ⟨λλ,≤∗⟩. Next, we describe a trick relating everywhere

domination to the existence of paths through trees of a slightly different nature than

the one in the previous chapter. This allows us to make observations such as the

following: 2ω1 = max{cf ⟨ω1ω,≤⟩, µ}, where µ is the smallest size of a collection of

ω1-trees T ⊆ <ω1ω such that every element of ω1ω is a path through one of them.

Also, forcing (non-trivially) with an Aronszajn tree is not weakly (ω1, ω)-distributive.

In the next section, we discuss the relationship between ⟨λκ1,≤⟩ and ⟨λκ2,≤⟩ for

κ1 ̸= κ2. This is surprisingly subtle. After that, we prove a result which implies

that whenever λ is a singular strong limit cardinal and κ < λ, then cf ⟨λκ,≤⟩ = 2λ.

At the same time, we discuss the relationship between the poset ⟨λκ,≤⟩ and those

studied in PCF theory.

Finally, we analyze the complexity of the functions created by an instance of the

classical theorem to create large independent families of functions. This allows us to

55



56

conclude that cfBα(ω,≤) = 2ω for all but very small α ≤ ω1.

3.1 Scales at a Measurable Cardinal

Given any poset P = ⟨X,≤⟩, bP = cfP if and only if P has a scale. This is

interesting because it implies the statement bP = cfP is equivalent to one which

uses different quantifiers. Specifically, the statement bP = cfP appears to involve a

universal quantification over all subsets of P. On the other hand, the statement that

P has a scale is asserting the existence of a sequence ⟨xα ∈ P : α < κ⟩ satisfying

[(∀α < β < κ)xα ≤ xβ] ∧ [(∀x ∈ X)(∃α < κ)x ≤ xα].

This is second order existential quantification over P followed by first order quantifi-

cation. This implies that having a scale is upwards absolute:

Observation III.1. Let M be a transitive model of ZFC and P ∈ M be a poset. If

(P has a scale)M , then P has a scale.

Hence, ifM is a transitive model of ZFC and P ∈M is a posetx, then (bP = cfP)M

implies bP = cfP. This allows us to conclude the following, which is very similar to

the fact that GCH cannot first fail at a measurable cardinal:

Proposition III.2. Let U be a normal ultrafilter on a measurable cardinal κ. If

{λ < κ : ⟨λλ,≤∗⟩ has a scale} ∈ U,

then ⟨κκ,≤∗⟩ has a scale.

Proof. Let M be the transitive collapse of the ultrapower of V by U . By  Loś’s

theorem, (⟨κκ,≤∗⟩ has a scale)M . Since κM ⊆ M , we have ⟨κκ,≤∗⟩M = ⟨κκ,≤∗⟩.

Combining these two facts with the previous observation, we see that ⟨κκ,≤∗⟩ has a

scale.



57

For each regular cardinal λ, let b(λ) := b ⟨λλ,≤∗⟩ and d(λ) := cf ⟨λλ,≤∗⟩. The

proposition above shows that if {λ < κ : b(λ) = d(λ)} is included in some normal

ultrafilter on κ, then b(κ) = d(κ).

3.2 More on Dominating Tree Branches

We will present a trick similar to the one in Section 2.8. We hope to convince

the reader that the problem of finding paths through trees is significantly related to

the everywhere domination relation; trees are an important source of examples to

understand ⟨λκ,≤⟩. Recall the following:

Definition III.3. Let λ be an infinite cardinal and X be a set. A λ-tree is a tree

all of whose levels have size < λ.

Definition III.4. A cardinal λ has the tree property if every λ-tree T of height λ

has a length λ branch.

For notational simplicity, let µ ≤ λ be infinite cardinals. Suppose we have a tree

T ⊆ <λX all of whose levels have size ≤ µ, as well as a sequence S = ⟨ηα : α < λ⟩

such that each ηα is a surjection from µ onto T ∩ αX. Suppose f ∈ λX is in [T ].

Define the function fS ∈ λµ by

fS(α) := min{β < µ : ηα(β) = f � α}.

If g ∈ λµ everywhere dominates fS , then f is also a path through the tree

T≤g := {t ∈ T : (∀α ∈ Dom(t))(∃β ≤ g(α)) ηα(β) = t � α}.

Note the difference between this definition of T≤g and the definition of T≤g in Sec-

tion 2.8. Of course, T≤g depends on the sequence S. Like before, we see that to



58

certify that [T ] ̸= ∅, it suffices to find a function g ∈ λµ satisfying [T≤g] ̸= ∅.

There are two interesting cases. The first is that µ = λ and λ has the tree property.

Hence, T≤g is a λ-tree. This is the situation most analogous to Section 2.8, because

[T≤g] ̸= ∅ iff T≤g has λ non-empty levels. Hence, [T ] ̸= ∅ iff there exists a g ∈ λλ

such that T≤g has λ non-empty levels. This shows that testing whether [T ] ̸= ∅

breaks into the difficult task of finding a function g sufficiently high up in ⟨λλ,≤⟩,

and the comparatively easy task of testing whether T≤g has λ non-empty levels.

The other interesting case is that µ+ = λ (the remaining case that µ+ < λ

trivializes our discussion). Given T and a transitive model M of ZFC with T ∈ M ,

it cannot be said in general that M contains every element of [T ]. Indeed, [T ] could

be non-empty and yet M ∩ [T ] = ∅. For example, T could be a Suslin tree in M

and V could be a forcing extension of M by T . However, if g ∈ λµ∩M and S ∈M ,

then T≤g ∈M and [T≤g] ⊆M . The second conclusion follows easily from a standard

observation:

Lemma III.5. If T ′ ⊆ <λµ is a tree with µ < λ both cardinals with λ regular and

each level of T ′ has size < µ, then for each f ∈ [T ′] there is some α < λ such that f

is the only length λ path through T ′ extending f � α.

Proof. Suppose, towards a contradiction, that there is a set H ⊆ [T ′] disjoint from

{f} such that the elements of H deviate from f at levels unbounded in λ. Then

since λ is regular and µ < λ, we may fix an α < λ such that there is a set K of

≥ µ elements of H which deviate from f before level α, and they deviate from f at

distinct levels. Then {k � α : k ∈ K} is a set of ≥ µ elements of the α-th level of T ′,

which we assumed had size < µ.

Corollary III.6. Let T ′ be as in the lemma above.



59

1) If M is a transitive model of ZFC and T ′ ∈M , then [T ′] ⊆M .

2) [T ′] has size at most λ.

The arguments we have given easily show the following:

Proposition III.7. Let µ be a cardinal, λ := µ+, X be a set, and T ⊆ <λX be a

tree such that each level of T has size ≤ µ. If T , as a forcing, adds a path through

T , then it is not weakly (λ, µ)-distributive.

Proof. Fix an appropriate sequence S of surjections onto the levels of T . Let f be

a path through T added in the forcing extension. If the forcing is weakly (λ, µ)-

distributive, then we may fix a g ≥ fS in the ground model. Then the tree T≤g is

in the ground model, f is a path through it, and all paths through T≤g are in the

ground model.

For example, a pruned Aronszajn tree T ⊆ <ω1ω is not weakly (ω1, ω)-distributive

as a forcing.

As a final observation, let T be a family of minimal cardinality of ω1-trees such

that each x ∈ ω1ω is a path through one of them. Of course, if there are no ω1-trees

with 2ω1 branches, then |T | = 2ω1 . If there are such trees, then perhaps |T | < 2ω1 ,

and in this case we will argue that cf ⟨ω1ω,≤⟩ = 2ω1 . Thus, we claim the following

(potentially non-trivial) equality:

2ω1 = max{cf ⟨ω1ω,≤⟩, |T |}.

Here is the proof: let G ⊆ ω1ω be cofinal in ⟨ω1ω,≤⟩ of minimal cardinality. For each

T ∈ T , we have

[T ] =
∪

{[T≤g] : g ∈ G}.



60

By Lemma III.5, each [T≤g] has size ≤ ω1, so [T ] ≤ |G|. Hence, 2ω1 = max{|G|, |T |}.

3.3 Changing κ

As we noted in the introduction, for a fixed cardinal λ and regular cardinals

κ1 < κ2 ≤ λ, there is no immediate reason for there to be any relationship between

cf ⟨λκ1,≤⟩ and cf ⟨λκ2,≤⟩. Indeed, since every size κ1 set in ⟨λκ2,≤⟩ is bounded

but this is not the case for ⟨λκ1,≤⟩, there cannot exist a morphism from ⟨λκ2,≤⟩ to

⟨λκ1,≤⟩. However, the following is a way to convert a large number of “κ1 challenges”

into a single “κ2 challenge”. We get an immediate improvement in that we can

convert that large number of κ1 challenges into that same number of κ2 challenges.

Lemma III.8 (Increasing Range Characterization). Let λ be an infinite cardinal

and let κ1 < κ2 be regular cardinals. The following are equivalent:

1) There exists a size κ2 family F ⊆ λκ1 all of whose size κ2 subsets are unbounded

in ⟨λκ1,≤⟩.

2) There exists a morphism from ⟨λκ1,≤⟩ to ⟨κ2,≤⟩.

3) There exists a morphism from ⟨λκ1,≤⟩ to ⟨λκ2,≤⟩.

Proof. First, note that 2) and 3) are equivalent. The 3) implies 2) direction is

easiest because there is a morphism from ⟨λκ2,≤⟩ to ⟨κ2,≤⟩. For the 2) implies 3)

direction, if there was a morphism from ⟨λκ1,≤⟩ to ⟨κ2,≤⟩, then there would also

be a morphism from ⟨λ×λκ1,≤⟩ to ⟨λκ2,≤⟩, and of course ⟨λ×λκ1,≤⟩ is isomorphic

to ⟨λκ1,≤⟩.

We will now show that 2) implies 1). Let ⟨ϕ−, ϕ+⟩ be a morphism from ⟨λκ1,≤⟩

to ⟨κ2,≤⟩. Then Im(ϕ−) ⊆ λκ1 has size κ2, and all its size κ2 subsets are unbounded



61

in ⟨λκ1,≤⟩.

Finally, for the 1) implies 2) direction, fix a size κ2 family {fα ∈ λκ1 : α < κ2} all

of whose size κ2 subsets are unbounded. We will define the morphism:

λκ1 ≤

��

λκ1

ϕ+

��
κ2

ϕ−

OO

≤ κ2.

Define ϕ−(α) := fα and

ϕ+(g) := sup{α < κ2 : fα ≤ g}.

Note that ϕ+ is well-defined by the hypothesis on F .

The morphisms given by this lemma are destroyed if we force an everywhere dom-

inating function from λ to κ1, because F becomes bounded. Indeed, the morphisms

are not “canonical”. This contrasts with the morphisms we will construct in the

main part of this thesis, which are canonical. This next proposition applies the

lemma above using two ways of building families F all of whose size |F| subsets are

unbounded.

Proposition III.9. Let λ be an infinite cardinal and κ1 < κ2 ≤ λ be regular cardi-

nals. Assume one of the following:

1) κκ12 ≤ λ;

2) (∃n ∈ ω)κ2 = κ

n︷ ︸︸ ︷
+...+
1 .

Then there exists a morphism from ⟨λκ1,≤⟩ to ⟨λκ2,≤⟩.

Proof. First assume 1). Let µ := κκ12 . Since µκ1 = µ, by Corollary II.27 there is

a size 2µ family F ⊆ µκ1 that is κ+1 -independent. Letting F ′ ⊆ F be a size κ2

subfamily of F , we see that F ′ is also κ+1 -independent. Every size κ1 subset of F ′



62

is unbounded. Thus, every size κ2 subset of F ′ is unbounded. We may arbitrarily

extend the functions in F ′ to be defined on all of λ. We now have a size κ2 family

F ′′ ⊆ λκ2 all of whose size κ2 subsets are unbounded. Applying the lemma above,

we are done.

Now assume 2). Since morphisms compose together, we may assume κ2 = κ+1 .

Let F ⊆ κ2κ1 be a size κ2 family of almost disjoint functions given by Lemma II.19.

Note that all size κ1 (and therefore all size κ2) subsets of F are unbounded. Extend

each function in F arbitrarily to obtain a size κ2 family F ′ ⊆ λκ1 all of whose size

κ2 subsets are unbounded.

Similarly to 2) in the proposition above, one also gets an appropriate F provided

κ2 ∈ ID(λ, κ1), where ID is from Definition II.17. We now have a pleasant picture

(omitting unnecessary arrows) of some of the morphisms between the first few posets

of the form ⟨λκ,≤⟩:

⟨ω2,≤⟩ ⟨ω2ω2,≤⟩oo ...oo

⟨ω1,≤⟩ ⟨ω1ω1,≤⟩oo ⟨ω2ω1,≤⟩oo

OO

...oo

⟨ω,≤⟩ ⟨ωω,≤⟩oo ⟨ω1ω,≤⟩oo

OO

⟨ω2ω,≤⟩oo

OO

...oo

We have omitted each ⟨λκ,≤⟩ where λ < κ because there are morphisms in both

directions between each such a ⟨λκ,≤⟩ and ⟨κ,≤⟩. By the reason we gave at the

beginning of this section, there are no arrows from a given row to a strictly lower

row. Of course, there are no arrows between ⟨κ1,≤⟩ and ⟨κ2,≤⟩ when κ1 ̸= κ2

are regular. An example question we may ask is the following: is there an arrow

from ⟨ωω,≤⟩ to ⟨κ,≤⟩ for some regular uncountable κ? This, by Lemma III.8, is

equivalent to asking what are the sizes of families F ⊆ ωω all of whose size |F| subsets



63

are unbounded in ⟨ωω,≤⟩. Kunen discusses this in part of [32]. The statement that

there is no such family of size κ he calls D(κ).

We may ask if there are any arrows that go to the right (and also possibly up).

Such morphisms would be counterintuitive, but we see no ZFC proof that none

exist. Here is an easy argument assuming GCH that none exist: if κ ≤ λ are infinite

cardinals, then λ+ ≤ cf ⟨λκ,≤⟩ ≤ 2λ = λ+. Thus, given λ1 < λ2 with κ1 ≤ λ1 and

κ2 ≤ λ2 regular, we have cf ⟨λ1κ1,≤⟩ = λ+1 < λ+2 = cf ⟨λ2κ2,≤⟩. This prevents there

being a morphism from cf ⟨λ1κ1,≤⟩ to cf ⟨λ2κ2,≤⟩.

Finally we must ask if every poset in a lower row has an arrow to a higher row

(except in the leftmost column). This appears to be a subtle problem. Each such

morphism is an example of “non-reflection” (borrowing the terminology that is used

in a significant portion of infinitary combinatorics [6]). The following definition

appears to be the relevant concept:

Definition III.10. Let R = ⟨R−, R+, R⟩ be a challenge-response relation. Let κ ≥ µ

be infinite cardinals. We say that R has (κ, µ)-non-reflection if there exists a set of

κ challenges such that no µ members are all met by a single response.

We say R has (κ, µ)-reflection just when it does not have (κ, µ)-non-reflection.

That is, when for every set of κ challenges, there are µ elements of that set met

by a single response. Of course, these definitions are only interesting when there

exist µ challenges not met by a single response. If µ1 ≤ µ2 ≤ κ, then R being

(κ, µ2)-reflecting implies it is (κ, µ1)-reflecting.

A challenge-response relation having (κ, µ)-non-reflection is the analogue of part

1) of Lemma III.8. By a similar argument to the 1) iff 2) part of that lemma, we

see that R = ⟨R−, R+, R⟩ has (κ, κ)-non-reflection iff there exists a morphism from

R to ⟨κ,≤⟩. Similarly, Given µ ≤ κ, R has (κ, µ)-non-reflection iff there exists a



64

morphism from R to ⟨κ, [κ]<µ,∈⟩.

3.4 Singular Strong Limit Cardinals

Let λ be a strong limit cardinal and κ < λ be regular. If λ is regular, then

since λκ = λ, we have cf ⟨λκ,≤⟩ = 2λ. The question arises whether we can drop

the hypothesis that λ be regular. We will first give in Proposition III.11 a direct

combinatorial proof that the answer is yes. In fact, the full hypothesis of λ being a

strong limit cardinal is not needed. After, we will show that standard PCF theory

facts imply most instances of the problem. This is because there exist morphisms

from posets of the form ⟨λκ,≤⟩ to posets of the form ⟨
∏

α<δ λα,≤⟩ where ⟨λα : α < δ⟩

is cofinal in λ and cf(λ) ≤ δ < λ.

Proposition III.11. Let λ be a singular cardinal. Let κ < λ be regular. Assume

(∀σ < λ) σκ < λ

and 2cf(λ) < λ. Let ν = max{(2κ)+, (2cf(λ))+}. Then there exists a size 2λ family

F ⊆ λκ all of whose size ν subsets are unbounded in ⟨λκ,≤⟩. Hence, cf ⟨λκ,≤⟩ = 2λ.

Proof. Once we construct the family F so that all its size ν subsets are unbounded, it

will follow from the unbounded subset bound (Proposition II.3) that cf ⟨λκ,≤⟩ = 2λ

(because ν < λ < 2λ = |F|). To begin, let ⟨λα < λ : α < cf(λ)⟩ be an increasing

sequence with limit λ. Letting

T :=
∏

α<cf(λ)

λα

denote the Cartesian product of these sets, we have |T | = 2λ. For each t ∈ T we will



65

define a function ft, and our final family F will be

F := {ft : t ∈ T}.

Let ⟨Xα ⊆ λ : α < cf(λ)⟩ be a sequence of disjoint subsets of λ satisfying |Xα|κ =

|Xα| and λα ≤ 2|Xα| for each α < cf(λ). Such a sequence exists because of the

assumption that (∀σ < λ)σκ < λ. For each α < cf(λ), let Fα be a size λα family of

functions from Xα to κ all of whose size κ subsets are unbounded in ⟨λκ,≤⟩. In fact,

since |Xα|κ = |Xα| there is such a family of size 2|Xα| (by Corollary II.27).

We are now ready to define our family F . For each t ∈ T , let ft ∈ λκ be any

function such that for each α < cf(λ), ft � Xα equals the t(α)-th element of Fα. Let

F := {ft : t ∈ T}. Of course, t1 ̸= t2 implies ft1 ̸= ft2 . There is an important way to

color pairs from T . Namely, let

c : [T ]2 → cf(λ)

be the function which given the pair {t1, t2} ∈ [T ]2 returns the unique α = c({t1, t2})

satisfying t1(α) ̸= t2(α) and (∀β < α) t1(β) = t2(β). Given {t1, t2} ∈ [T ]2 and

α = c({t1, t2}), the functions ft1 � Xα and ft2 � Xα are distinct elements of Fα. Now,

let µ satisfy the partition relation

µ→ (κ)2cf(λ).

By the Erdös-Rado theorem we have (2γ)+ → (γ+)2γ for all γ, so we may assume

µ ≤ ν = max{(2κ)+, (2cf(λ))+}.

Of course ν < 2λ, so F does indeed have size ν subsets.

We will now show that size µ (and therefore size ν) subsets of F = {ft : t ∈ T}

are unbounded in ⟨λκ,≤⟩. Let T ′ be an arbitrary size µ subset of T . Since

c � [T ′]2 : [T ′]2 → cf(λ)



66

and |T ′| = µ, we may fix a size κ subset T ′′ of T ′ that is monochromatic with respect

to c � [T ′]2. Let α < cf(λ) be the unique color assigned to all pairs from T ′′. The

functions ft � Xα for t ∈ T ′′ are distinct elements of Fα. Hence, {ft � Xα : t ∈ T ′′} is

an unbounded family of functions from Xα to κ. Thus, {ft : t ∈ T ′′} is unbounded

in ⟨λκ,≤⟩.

We will now present a different way to understand functions from λ to κ < λ where

λ is singular. The following is a souped-up version of part 1) of Proposition III.9,

and it is the natural way to show cf ⟨λκ,≤⟩ is large using PCF theory:

Lemma III.12. Let λ′ ≤ λ be infinite cardinals. Let κ < λ be regular. Let f be

a function that maps elements of λ′ to regular cardinals in the interval [κ, λ]. Also

assume

(∀α < λ′) f(α)κ ≤ λ.

Then there exists a morphism from ⟨λκ,≤⟩ to ⟨
∏

α<λ′ f(α),≤⟩.

Proof. This is very similar to case 1) of Proposition III.9. The point is that for each

α < λ′, there is a morphism from ⟨λκ,≤⟩ to ⟨f(α),≤⟩, and these can all be combined

together.

Recall from PCF theory that given λ′ ∈ [cf(λ), λ) with λ singular, ppλ′(λ) is

the supremum of all cofinalities of ultraproducts of sets of regular cardinals A ⊆ λ

satisfying |A| ≤ λ′. The fact that this definition involves domination mod ultrafilters

rather than everywhere domination is irrelevant because of the following:

1) the sets A in the definition can be assumed to be progressive (|A| < min(A));

2) if A is any progressive set of regular cardinals, then

max pcf(A) = cf ⟨
∏

A,≤⟩.



67

For a proof of 2), see Theorem 3.4.21 in [23]. On the other hand, the restriction

λ′ < λ instead of merely λ′ ≤ λ is unfortunate for our situation. The following shows

the importance of the ppλ′(λ) function:

Fact III.13. Let λ be a singular cardinal. Let λ′ ∈ [cf(λ), λ) be a cardinal and

assume (∀σ < λ)σλ
′
< λ. Also assume one of the following:

1) λ is not a fixed point of the aleph function;

2) cf(λ) > ω.

Then ppλ′(λ) = λλ
′
.

Proof. See Theorems 9.1.1 and 9.1.3 of [23].

With this fact, we get another proof that cf ⟨λκ,≤⟩ = 2λ in almost all instances

in which λ is a singular strong limit cardinal:

Proposition III.14. Let λ be a singular cardinal, λ′ ∈ [cf(λ), λ) be a cardinal, and

κ < λ be regular. Let ν = max{λ′, κ} and assume (∀σ < λ)σν < λ. Also assume one

of the following:

1) λ is not a fixed point of the aleph function;

2) cf(λ) > ω.

Then cf ⟨λκ,≤⟩ ≥ λλ
′
. In particular, if λ is also a strong limit cardinal, and λ′ = cf(λ)

then

cf ⟨λκ,≤⟩ = 2λ.

Proof. It suffices to prove only the claim cf ⟨λκ,≤⟩ ≥ λλ
′
, because if λ is a strong

limit cardinal then λcf(λ) = 2λ. Since (∀σ < λ) σλ
′
< λ and we are assuming either

1) or 2), by Fact III.13 we have

ppλ′(λ) = λλ
′
.



68

We now must show

cf ⟨λκ,≤⟩ ≥ ppλ′(λ).

It suffices to show that for an arbitrary set A ⊆ λ of regular cardinals satisfying

|A| ≤ λ′ that

cf ⟨λκ,≤⟩ ≥ max pcf(A).

Fix such an A. Without loss of generality, by deleting an initial segment of A we

may assume A ⊆ [κ, λ). Of course,

cf ⟨
∏

A,≤⟩ ≥ max pcf(A).

In fact, this is an equality when we assume A is progressive, but never mind this.

Since A ⊆ [κ, λ) and (∀σ < λ)σκ < λ, applying Lemma III.12 we get that there is a

morphism from ⟨λκ,≤⟩ to ⟨
∏
A,≤⟩. Hence,

cf ⟨λκ,≤⟩ ≥ cf ⟨
∏

A,≤⟩,

and we are done.

3.5 An Independent Family of Borel Functions

We will now give a proof that cfBω1(ω,≤) = 2ω. We do this by constructing a size

2ω family of Borel functions from ωω to ω that is ω+-independent, which is certainly

sufficient. Indeed, we may easily convert the functions produced by the appropriate

instance of Theorem II.26 into Borel functions from ωω to ω.

To see this, let

Λ := {(S, g) : S ∈ [P(ω)]ω, g : S → ω}.



69

For each A ⊆ ω, define fA : Λ → ω by

fA(S, g) :=


g(A) if A ∈ S,

0 otherwise.

Let

F := {fA : A ⊆ ω}.

We will first show that F is ω+-independent. That is,

(∀F ′ ∈ [F ]ω)(∀φ : F ′ → ω)(∃x ∈ Λ)(∀f ∈ F ′) f(x) = φ(f).

Pick any F ′ ∈ [F ]ω and φ : F ′ → ω. Let S ∈ [P(ω)]ω be the set

S := {A ⊆ ω : fA ∈ F ′}.

Let g : S → ω cause the following diagram to commute:

S
A7→fA//

g
  B

B
B

B F ′

φ

��
ω.

Let x = (S, g). Then certainly

(∀fA ∈ F ′) fA(x) = fA(S, g) = g(A) = φ(fA).

Hence, F is ω+-independent.

Now, by the definition of the functions fA, we see that there is a nicely definable

bijection η : ωω → Λ such that each function f̃A : ωω → ω defined by

f̃A(x) := fA(η(x))

is Borel. Hence,

F̃ := {f̃A : A ⊆ ω}



70

is an ω+-independent size 2ω family of Borel functions from ωω to ω. Applying

Proposition II.3 to the family F̃ with µ = ω, we see that cfBω1(ω,≤) = 2ω.

Indeed, the functions f̃A are low down in the Baire hierarchy, so we have cfBα(ω,≤) =

2ω for all but very small α ≤ ω1. We will not fret now about at which α this hap-

pens, because in Chapter IV we will prove that B0(ω,≤) = d, and at the beginning

of Chapter V we will prove that Bα(ω,≤) = 2ω for all α ≥ 1 in a way that provides

much more information.

Now, if 2b = 2ω, by applying Theorem II.26 we get a b+-independent size 2ω

family of functions from ωω to ωω, and therefore each size b subset is unbounded

with respect to ≤∗. However, it is not clear how to convert that into a family of Borel

functions. The problem is the corresponding definition of Λ would involve [P(ω)]b,

and so there should be no “nice” way to biject ωω with Λ. Indeed, we see no easy

way to prove that Bω1(
ωω,≤∗) = 2ω.



CHAPTER IV

Impossibility of Coding by Continuous Functions

Consider the poset B0(ω,≤) of continuous functions from ωω to ω ordered by ev-

erywhere domination. The purpose of this chapter is to prove that cfB0(ω,≤) = d

and discuss related problems. Combining this with the fact that d < 2ω is consistent

with ZFC, we conclude that ZFC cannot prove the following: for each A ⊆ ω, Alice

can construct a continuous function f : ωω → ω such that if g : ωω → ω is a continu-

ous function which everywhere dominates f , then Bob can guess A from g using only

countably many guesses. This is an impossibility of coding result. The combinatorial

core of this chapter is that if we let W denote the set of well-founded subtrees of

<ωω, then cf ⟨W ,⊆⟩ = d. This in turn follows from there existing a morphism from

⟨Bω1
− , Bω1

+ , Bω1⟩ (which we will define soon) to ⟨W ,⊆⟩. This chapter is not needed

to understand the chapters which follow.

4.1 Well-founded Trees and Continuous Functions

Recall from Observation I.19 that

d ≤ cfB0(
ωω,≤∗) ≤ cfB0(ω,≤) ≤ 2ω.

71



72

Within this chapter, we will show that

cfB0(ω,≤) ≤ d,

which will imply

d = cfB0(
ωω,≤∗) = cfB0(ω,≤).

To be more concise in this chapter, we make the following two definitions:

Definition IV.1. Given α ≤ ω1, let Wα be the set of well-founded subtrees of <ωω

of rank < α. Let W := Wω1 be the set of all well-founded subtrees of <ωω.

Definition IV.2. Given α ≤ ω1, let Bα
− be the set of all functions from <ωω to α, let

Bα
+ be the set of all functions from <ωω to [α]<ω, and let Bα ⊆ Bα

− ×Bα
+ be defined

by

fBαg iff (∀t ∈ <ωω) f(t) ∈ g(t).

In the definition above, we chose to use <ωω as the domain of the functions instead

of ω so that later we will not fuss with bijections between <ωω and ω.

Temporarily fixing α that satisfies ω < α < ω1, we summarize in the following

diagram the morphisms whose existence is either self-evident or we will prove in this

chapter. A one-sided arrow represents the existence of a morphism, and a two-sided

arrow represents the existence of a morphism in each direction.

B0(ω,≤) // ⟨W ,⊆⟩oo ⟨Bω1
− , Bω1

+ , Bω1⟩oo

��
⟨Wα,⊆⟩ // ⟨Bα

−, B
α
+, B

α⟩oo // ⟨ωω,≤⟩oo

The key result is that there exists a morphism from ⟨Bω1
− , Bω1

+ , Bω1⟩ to ⟨W ,⊆⟩. This,

combined with the fact that ||⟨Bω1
− , Bω1

+ , Bω1⟩|| = d, implies that cfB0(ω,≤) ≤ d. We

see no immediate reason for there to be a morphism from ⟨W ,⊆⟩ to ⟨Bω1
− , Bω1

+ , Bω1⟩,

but we have not explicitly ruled out the possibility.



73

We will now look closely at how continuous functions from ωω to ω are specified.

Definition IV.3. A barrier is a set S ⊆ <ωω satisfying

(∀x ∈ ωω)(∃!l ∈ ω)x � l ∈ S.

Proposition IV.4. A function f : ωω → ω is continuous iff there exist a barrier

S ⊆ <ωω and a function f̃ : S → ω satisfying

(∀x ∈ ωω)(∀l ∈ ω)[x � l ∈ S ⇒ f(x) = f̃(x � l)].

Proof. The (⇐) direction is clear. For the (⇒) direction, suppose that f : ωω → ω

is continuous. This implies that for each x ∈ ωω, there is some shortest finite initial

segment sx of x such that for all y ∈ ωω extending sx, f(x) = f(y). Let

S := {sx : x ∈ ωω}

and f̃ : S → ω be defined by

f̃(s) := f(x) where x satisfies s = sx.

The function f̃ is well-defined and the condition is satisfied.

If S ⊆ <ωω is a barrier, then the set of all initial segments of elements of S

is a well-founded tree. Because of this, one might expect that B0(ω,≤) is related

to ⟨W ,⊆⟩. This is indeed the case: as stated earlier, we will show that there are

morphisms in both directions between B0(ω,≤) and ⟨W ,⊆⟩.

Note that by associating well-founded trees to continuous functions from ωω to ω,

we may put these functions into a length ω1 hierarchy based on the ranks of these

trees.



74

4.2 The Morphisms

To begin, recall some basic definitions for maps from one poset to another:

Definition IV.5. Let ⟨P,≤P ⟩ and ⟨Q,≤Q⟩ be two posets and let i : P → Q be a

function. We say that i is monotone if

(∀p1, p2 ∈ P ) p1 ≤P p2 ⇒ i(p1) ≤Q i(p2),

i is cofinal if

(∀q ∈ Q)(∃p ∈ P ) q ≤Q i(p),

and i is convergent if it sends cofinal subsets of ⟨P,≤P ⟩ to cofinal subsets of ⟨Q,≤Q⟩.

In the literature, what we call a convergent map is sometimes called a cofinal

map (which is confusing). It is not hard to see that a map i : P → Q that is

both monotone and cofinal is also convergent. When we introduced the concept

of a morphism between posets in Section 1.2, we remarked that the existence of a

convergent map is equivalent to the existence of a morphism (in the same direction).

We will now connect B0(ω,≤) with ⟨W ,⊆⟩.

Proposition IV.6. The map Exit : W → B0(ω) from ⟨W ,⊆⟩ to B0(ω,≤) is both

monotone and cofinal. Hence, there is a morphism from ⟨W ,⊆⟩ to B0(ω,≤):

W ⊆

��

W
Exit
��

B0(ω)

j

OO

≤ B0(ω)

Proof. Recall the definition of Exit(T ) from Section 1.6. Certainly if T1 ⊆ T2, then

Exit(T1) ≤ Exit(T2), which shows that Exit is monotone. To see that Exit is cofinal,

fix a continuous f ∈ B0(ω). Let S ⊆ <ωω be a barrier and f̃ : S → ω be a

function specifying f as in Proposition IV.4. Let S ′ ⊆ <ωω be a barrier such that



75

each s′ ∈ S ′ extends some s ∈ S and |s′| ≥ f̃(s). Let j(f) be the set of all initial

segments of elements of S ′. It is not hard to see that j(f) is a well-founded tree and

f ≤ Exit(j(f)). Thus, Exit is cofinal. The pair ⟨j,Exit⟩ is a morphism from ⟨W ,⊆⟩

to B0(ω,≤).

For completeness, let us state the complementary result:

Proposition IV.7. There is a morphism from B0(ω,≤) to ⟨W ,⊆⟩. Hence, there

are morphisms in both directions between these relations.

B0(ω) ≤

��

B0(ω)

j

��
W

Exit

OO

⊆ W

Proof. Let j : B0(ω) → W be defined as in the proof of the proposition above. It is

routine to verify that indeed ⟨Exit, j⟩ is a morphism.

The following characterization of the (ordinary) dominating number is more suit-

able for handling well-founded trees:

Proposition IV.8. Let X and Y be any two countably infinite sets. Then d is the

smallest cardinality of a family A of functions from X to [Y ]<ω such that for each

f : X → Y , there is some g ∈ A satisfying (∀x ∈ X)f(x) ∈ g(x).

Proof. Without loss of generality X = Y = ω. Given a set A satisfying the property

in the statement of this proposition,

{n 7→ max f(n) : f ∈ A} ⊆ ωω

is cofinal in ⟨ωω,≤⟩. Conversely, given a set D cofinal in ⟨ωω,≤⟩,

{n 7→ {m : m ≤ f(n)} : f ∈ D}

satisfies the property in the statement of this proposition.



76

Here is the morphism version of the proposition above, using the particular sets

X and Y that we will use for the main combinatorial result of this section:

Proposition IV.9. Fix α satisfying ω ≤ α < ω1. There are morphisms in both

directions between ⟨ωω,≤⟩ and ⟨Bα
−, B

α
+, B

α⟩.

Proof. This is routine using the ideas in the proof of the proposition above.

The following is a curious result that builds upon the idea in Proposition IV.8:

Proposition IV.10. For each n ∈ ω, max{ωn, d} is the smallest cardinality of a

family A of functions from ω to [ωn]<ω such that for each f : ω → ωn, there is some

g ∈ A satisfying (∀n ∈ ω)f(n) ∈ g(n).

Proof. We will prove this by induction. The n = 0 case follows by Proposition IV.8.

For the successor step, assume the proposition holds for some fixed n ∈ ω. We will

show that it holds for n + 1. Let λ be the smallest cardinality of a family B of

functions from ω to [ωn+1]
<ω such that for each f : ω → ωn+1, there is some g ∈ B

satisfying (∀n ∈ ω)f(n) ∈ g(n). By considering the constant functions from ω to

ωn+1, we see that λ ≥ ωn+1. By considering the functions from ω to [ω]<ω ⊆ [ωn+1]
<ω,

we see that λ ≥ d. Thus, we have λ ≥ max{ωn+1, d}.

For the other direction, we will use the induction hypothesis. That is, for each

α < ωn+1, there is some family Aα of cardinality max{ωn, d} of functions from ω to

[α]<ω such that for each f : ω → α, there is some g ∈ Aα satisfying (∀n ∈ ω)f(n) ∈

g(n). Let A :=
∪
α<ωn+1

Aα. Given an f : ω → ωn+1, there is some α < ωn+1 such

that Im(f) ⊆ α, so there is some g ∈ Aα ⊆ A satisfying (∀n ∈ ω)f(n) ∈ g(n). Doing

an easy calculation, we see that

|A| =
∑

α<ωn+1

max{ωn, d} = max{ωn+1,max{ωn, d}} = max{ωn+1, d}.



77

Hence, λ ≤ max{ωn+1, d}.

We will now prove the main combinatorial result of this section:

Proposition IV.11. Fix α satisfying ω < α ≤ ω1. There is a morphism ⟨ϕ−, ϕ+⟩

from ⟨Bα
−, B

α
+, B

α⟩ to ⟨Wα,⊆⟩:

Bα
− Bα

��

Bα
+

ϕ+
��

Wα

ϕ−

OO

⊆ Wα.

Proof. Given a well-founded tree T ⊆ <ωω, each element of T has a rank. Let us

use the convention for this proof that leaf nodes have rank 1. This allows us to say

that elements of <ωω− T have rank 0 (which we will do). Given a well-founded tree

T ⊆ <ωω, let ϕ−(T ) : <ωω → α be the function that assigns each element of <ωω its

rank.

Fix a function g : <ωω → [α]<ω. We will soon define the well-founded tree

T = ϕ+(g) ⊆ <ωω. First, we will define a function h : <ωω → α such that for all

t1, t2 ∈ <ωω satisfying t1 ⊑ t2 and t1 ̸= t2, either h(t1) = h(t2) = 0 or h(t1) > h(t2).

Given such an h, it follows that {t ∈ <ωω : h(t) > 0} is a well-founded tree, and this

will be our T . Let h(t) be defined by recursion on the length of t as follows:

1) h(∅) := max g(∅);

2) h(t⌢n) :=


0 if h(t) = 0,

max{β ∈ g(t⌢n) : β < h(t)} otherwise.

The function h is well-defined (we use the convention that max ∅ = 0). It is also easy

to see that h satisfies the desired condition, so T is indeed well-founded.

We have now defined ϕ− and ϕ+. All that remains is to verify that indeed

(∀T1 ∈ Wα)(∀g ∈ Bα
+)ϕ−(T1)B

αg ⇒ T1 ⊆ ϕ+(g).



78

Fix any well-founded tree T1 ⊆ <ωω. Let f = ϕ−(T1). That is, f is the rank function

of T1. Fix any function g : <ωω → [α]<ω satisfying (∀t ∈ <ωω)f(t) ∈ g(t). Let

T2 = ϕ+(g). We will show that T1 ⊆ T2, and then the proof will be complete.

Let h : <ωω → α be the function defined from g as above. If we show

(∀t ∈ <ωω)f(t) ≤ h(t),

then we will have T1 ⊆ T2, because T1 = {t ∈ <ωω : f(t) > 0} and T2 = {t ∈

<ωω : h(t) > 0}. We will show this by induction on the length of t. The base case is

simple: f(∅) ≤ max g(∅) =: h(∅), because f(∅) ∈ g(∅). For the successor step, assume

f(t) ≤ h(t). Fix n ∈ ω. We will show f(t⌢n) ≤ h(t⌢n). There are two cases. The

first case is that f(t) = 0, which implies f(t⌢n) = 0, so certainly f(t⌢n) ≤ h(t⌢n).

The other case is that f(t) > 0. When this happens, f(t⌢n) < f(t). Combining this

with the induction hypothesis that f(t) ≤ h(t) gives us that f(t⌢n) < h(t). Since

also f(t⌢n) ∈ g(t⌢n), we have

f(t⌢n) ≤ max{β ∈ g(t⌢n) : β < h(t)} = h(t⌢n).

The proof is now complete.

For completeness, we prove a partially complementary result:

Proposition IV.12. Fix α satisfying ω < α < ω1. There is a morphism from

⟨Wα,⊆⟩ to ⟨Bα
−, B

α
+, B

α⟩.

Proof. We showed in Proposition IV.9 that there is a morphism from ⟨ωω,≤⟩ to

⟨Bα
−, B

α
+, B

α⟩. Hence, since morphisms can be composed together, it suffices to show

that there is one from ⟨Wα,⊆⟩ to ⟨ωω,≤⟩:

Wα ⊆

��

Wα

j

��
ωω

i

OO

≤ ωω



79

Given f ∈ ωω, let i(f) ∈ Wω+1 ⊆ Wα be a tree which contains all sequences of the

form

⟨n⟩⌢
f(n)︷ ︸︸ ︷

⟨0, ..., 0⟩

for n ∈ ω. Given T ∈ Wα, let j(T ) ∈ ωω be the function such that for each n ∈ ω,

j(T )(n) is the largest k satisfying

⟨n⟩⌢
k︷ ︸︸ ︷

⟨0, ..., 0⟩ ∈ T.

The pair ⟨i, j⟩ is the desired morphism.

Incidentally, Proposition IV.11 was discovered by first looking at whether each

well-founded tree T1 ⊆ <ωω in the Sacks forcing extension is a subset of one such

tree the ground model (with the hope of showing cfB0(ω,≤) < 2ω in the Sacks

model). This was shown to be the case by using the Sacks property. That is, the

ground model can guess the rank of each node of T1. The Sacks property was then

replaced with the weaker property of being ωω-bounding (which we will define in the

next section). At this point, no other facts about the forcing were used. Then, the

combinatorics of what was “really going on” was extracted. This is an example of

forcing being used to discover a ZFC theorem.

4.3 Applications

Proposition IV.11 immediately allows us to prove some interesting results.

Theorem IV.13. For each α satisfying ω < α ≤ ω1, cf ⟨Wα,⊆⟩ = d.

Proof. Let D be a size d family of functions from <ωω to [α]<ω such that for each

f : <ωω → α, there is some g ∈ D satisfying (∀t ∈ <ωω)f(t) ∈ g(t). Let ϕ+ be the



80

function given by Proposition IV.11. Then

A := {ϕ+(g) : g ∈ D}

is cofinal in ⟨Wα,⊆⟩ of size at most d. On the other hand, since ω < α, it is clear that

cf ⟨Wα,⊆⟩ ≥ d. For a formal explanation of this, we showed in Proposition IV.12

that there is a morphism from ⟨Wα,⊆⟩ to ⟨ωω,≤⟩.

We can now compute cfB0(ω,≤) and cfB0(
ωω,≤∗) as promised.

Corollary IV.14. cfB0(ω,≤) = cfB0(
ωω,≤∗) = d.

For the skeptic who questions the need for the generality given by all these mor-

phisms, we state some practical results which make use of them. Indeed, it is good

practice to state results in terms of morphisms whenever possible, because this gen-

erality is required for certain proofs.

Recall the following:

Definition IV.15. Let M and N be transitive models of ZF with M ⊆ N . We say

that N is ωω-bounding over M if (ωω)M is cofinal in ⟨(ωω)N ,≤⟩.

The morphisms we constructed provide useful information when V is ωω-bounding

over M and ωM1 = ω1:

Theorem IV.16. Let M be a transitive model of ZF such that V is ωω-bounding

over M . Assume also that ωM1 = ω1. Given any well-founded tree T1 ⊆ <ωω, there

is some well-founded tree T2 ⊆ <ωω in M satisfying T1 ⊆ T2.

Proof. Let T1 ⊆ <ωω be an arbitrary well-founded tree. Fix its rank α < ω1. By

combining Proposition IV.11 and Proposition IV.9, we get a morphism ⟨i, j⟩ from



81

⟨ωω,≤⟩ to ⟨Wα+1,⊆⟩:

ωω ≤

��

ωω

j
��

Wα+1

i

OO

⊆ Wα+1.

Since V is ωω-bounding over M , there is some g ∈ (ωω)M satisfying i(T1) ≤ g. Let

T2 := j(g). Since ⟨i, j⟩ is a morphism, T1 ⊆ T2. Once we show T2 ∈ M , we will be

done.

Being a model of ZF, M has its own version

jM : (ωω)M → (Wα+1)
M

of the function j. The function j is certainly Borel, which gives us enough absolute-

ness to conclude that j �M = jM . Hence,

j(g) = (j �M)(g) = jM(g),

so T2 ∈M .

The ωM1 = ω1 hypothesis in the theorem above is certainly necessary, because

ωM1 is the supremum of the set of ranks of well-founded subtrees of <ωω in M , and

T1 ⊆ T2 implies rank(T1) ≤ rank(T2).

Corollary IV.17. Let M be a transitive model of ZF such that V is ωω-bounding

over M . Suppose also that ωM1 = ω1. Then for each Borel code c1 for a continuous

function from ωω to ω, there is a Borel code c2 in M for a continuous function such

that the function coded by c2 everywhere dominates the function coded by c1.

Proof. Let c1 be a Borel code for a continuous function f1 from ωω to ω. By Propo-

sition IV.6, there is a map i : W → B0(ω) from ⟨W ,⊆⟩ to B0(ω,≤) that is monotone

and cofinal. Since i is cofinal, fix a well-founded tree T1 ⊆ <ωω satisfying f1 ≤ i(T1).



82

By the previous theorem, fix a well-founded tree T2 ⊆ <ωω in M such that T1 ⊆ T2.

Since i is monotonic, i(T1) ≤ i(T2).

Now, since M is a model of ZF, it has its own version of i, which we denote by

iM . Within M , there is a Borel code c2 for iM(T2). In V , c2 codes f2 := i(T2). We

now have

f1 ≤ i(T1) ≤ i(T2) = f2,

and the proof is complete.

The cost of not using morphisms is having multiple proofs with duplicated com-

binatorial content. That is, if we proved both of the above theorems directly, then

the content of Proposition IV.11 would be written twice.

4.4 Nonexistence of Nicely Definable Morphisms

We close this chapter with a negative result: there cannot exist a “nicely” definable

morphism ⟨ϕ−, ϕ+⟩ from ⟨ωω,≤⟩ to ⟨Bω1
− , Bω1

+ , Bω1⟩. For example, if we assume L(R)

satisfies AD, then since there cannot be an injection from ω1 into ωω in L(R) and (ω1

is regular)L(R), there cannot exist such a morphism ⟨ϕ−, ϕ+⟩ where ϕ−, ϕ+ ∈ L(R).

In fact, an analysis of the proofs below show that there cannot exist a ⟨ϕ−, ϕ+⟩ where

ϕ− ∈ L(R).

Proposition IV.18. (ZF) Assume there is no injection from ω1 into ωω and ω1 is

regular. Then there is no morphism from ⟨ωω,≤⟩ to ⟨ω1,≤⟩.

Proof. Assume ω1 is regular. Let ⟨ϕ−, ϕ+⟩ be a morphism from ⟨ωω,≤⟩ to ⟨ω1,≤⟩:

ωω ≤

��

ωω

ϕ+

��
ω1

ϕ−

OO

≤ ω1.



83

We will construct (in ZF) an injection from ω1 into ωω. It suffices to construct a size

ω1 set A ⊆ ω1 such that ϕ− � A is injective. First note that |Im(ϕ−)| = ω1 because if

not, then by the pigeon hole principle (since ω1 is regular), there would be a single

g ∈ ωω such that ϕ−(α) = g for ω1 many α < ω1. Since ⟨ϕ−, ϕ+⟩ is a morphism, this

would imply that α ≤ ϕ+(g) for ω1 many α < ω1, which is clearly impossible.

We may now inductively define A := {aα : α < ω1} as follows: let a0 := 0. For

each α > 0, let aα < ω1 be the smallest ordinal such that ϕ−(aα) ̸= ϕ−(aβ) for all

β < α. We will never get stuck because |Im(ϕ−)| = ω1. By construction, ϕ− � A is

injective.

Proposition IV.19. (ZF) Assume there is no injection from ω1 into ωω and ω1 is

regular. Then there is no morphism from ⟨ωω,≤⟩ to ⟨Bω1
− , Bω1

+ , Bω1⟩.

Proof. We will prove the contrapositive. Let ⟨ϕ−, ϕ+⟩ be a morphism:

ωω ≤

��

ωω

ϕ+
��

Bω1
−

ϕ−

OO

Bω1 Bω1
+ .

There is also a morphism ⟨ψ−, ψ+⟩ from ⟨Bω1
− , Bω1

+ , Bω1⟩ to ⟨ω1,≤⟩ given by ψ−(α) :=

(t 7→ α) and ψ+(g) := sup
∪
t∈<ωω g(t):

Bω1
− Bω1

��

Bω1
+

ψ+

��
ω1

ψ−

OO

≤ ω1.

By composing these morphisms together, we get one from ⟨ωω,≤⟩ to ⟨ω1,≤⟩. We

now apply the proposition above to complete the proof.



CHAPTER V

Everywhere Domination Coding Theorems

In this chapter, we will see that Bα(ω,≤) for α ≥ 1 has a completely different

nature than B0(ω,≤). First, we will show that while well-founded trees were the key

to understanding B0(ω,≤), clouds are the key to understanding B1(ω,≤). Clouds

allow us to convert the problem of computing cfB1(ω,≤) into a problem that is more

combinatorial. This quickly leads to the proof that cfBα(ω,≤) = 2ω for each α ≥ 1.

The essential observation is that for each a ∈ ωω, if g : ωω → ω is any function which

satisfies Exit([[a]]) ≤ g, then a is ∆1
1 in a predicate for g. In particular, if g is Borel,

then a is ∆1
1 in any code for g. We may view this as an infinite coding result: Alice

encodes her message a ∈ ωω into the function f = Exit([[a]]), and when an enemy

steps in and produces a function g which satisfies f ≤ g, then Bob can guess a from

g by making countably many guesses: guessing each real which is ∆1
1 in a predicate

for g.

The encoding a 7→ Exit([[a]]) we may call vertical coding. There is a different

natural encoding scheme we may use: horizontal coding. With horizontal coding, we

easily get a new proof that cf All(ω,≤) = 22ω by showing that for each A ⊆ ωω, there

is a function f : ωω → ω such that if g : ωω → ω satisfies f ≤ g, then A is ∆1
1 in a

predicate for g. The two methods are incomparable in that they generalize in different

84



85

but important ways (and so we must keep both methods). Unfortunately, there is not

one single unifying coding theorem we may prove and then derive all related coding

results from that. The contribution of this chapter is a general argument which can

be enhanced in various ways, but all enhancements cannot be made simultaneously.

We have taken the approach of presenting each argument in a self contained way at

the expense of being slightly repetitive.

A desirable feature of our prototypical coding result is that it only requires

(∀x ∈ (ωω)L[g]) f(x) ≤ g(x)

instead of f ≤ g. This generality is important because it gives rise to applications to

weak distributivity laws for complete Boolean algebras. After we sufficiently under-

stand Bα(ω,≤) for α ≥ 1, we change gears to apply the arguments to combinatorial

set theory. That is, we apply our coding arguments to functions from κλ to κ for

infinite cardinals κ and λ. In this context, we get the “main coding theorems” which

quicky give us the implications for weak distributivity laws for complete Boolean

algebras.

Specifically, if B is a complete Boolean algebra which is weakly (λω, ω)-distributive

for an infinite cardinal λ, then B is (λ, 2)-distributive. Next, if κ is a weakly com-

pact cardinal, B is weakly (2κ, κ)-distributive, and B is (α, 2) distributive for each

α < κ, then B is (κ, 2)-distributive. Finally, if B is weakly (2ω1 , ω1)-distributive, B

is (ω, 2)-distributive, and 1 
B (ω1 < t), then B is (ω1, 2)-distributive.

5.1 Clouds and Baire Class One Functions

Recall that B1(ω,≤) is the set B1(ω) of Baire class one functions from ωω to ω

ordered pointwise by ≤. That is, B1(ω) is the set of pointwise limits of continuous



86

functions from ωω to ω. There is an apparently easier to understand cofinal subset

of B1(ω,≤):

Definition V.1. F1 ⊆ B1(ω) is the set of all functions each of which is the pointwise

maximum of an ω-sequence of elements of B0(ω).

This is indeed cofinal because if g ∈ B1(ω) is the pointwise limit of the sequence

of continuous functions ⟨fn : n ∈ ω⟩, then

h(x) := max{fn(x) : n ∈ ω}

is in F1 and g ≤ h.

In fact, if we start with B0(ω) and alternate between taking pointwise maximums

and pointwise minimums, then after ω1 stages we will have precisely all Borel func-

tions from ωω to ω. This is because if ⟨fn : n ∈ ω⟩ is a sequence of functions from

ωω to ω and for each x the limit limn→∞ fn(x) exists, then for each x we have

lim
n→∞

fn(x) = max
n

min
m≥n

fm(x) = min
n

max
m≥n

fm(x).

This shows that the hierarchy we get by alternating between taking maximums and

minimums is closely related to the Baire hierarchy. For example, they are equal at

limit stages.

We should point out that there is another way to construct the Baire hierarchy [8].

That is, first construct the smallest collection of filters on ω starting with the cofinite

filter and closed under sums V–
∑

i Ui. Then the collection of Borel functions is the

same as the collection of filter limits, using filters in this collection, of continuous

functions.

The reason for introducing F1 is because it has a simple combinatorial character-

ization in terms of clouds which is useful for us. In the same way that well-founded



87

trees were the right way to understand B0(ω,≤) (Propositions IV.6 and IV.7), clouds

are the right way to understand ⟨F1,≤⟩ (and therefore cfB1(ω,≤)). We use the con-

vention that max ∅ = 0.

Definition V.2. A set C ⊆ <ωω is called a cloud if for each x ∈ ωω,

{l ∈ ω : x � l ∈ C}

is finite. The function Rep(C) : ωω → ω is defined by

Rep(C)(x) := max{l : x � l ∈ C}.

That is, a subset of <ωω is a cloud if its intersection with each path through <ωω

is finite. The function Rep(C) (“Rep” for “Representation”) outputs the greatest

level at which x hits C. This can be generalized to handle functions from κX to κ,

where κ is a cardinal and X is a set (this is precisely Definition I.29 given in the

introduction). Here is the promised characterization:

Proposition V.3. A function f : ωω → ω is in F1 iff there is a cloud C ⊆ <ωω and

a function f̃ : C → ω such that for all x ∈ ωω,

f(x) = max{f̃(x � l) : x � l ∈ C}.

Proof. First, if there is such a cloud C and a function f̃ , then for each c ∈ C define

fc : ωω → ω to be the continuous function

fc(x) :=


f̃(c) if x ⊒ c,

0 otherwise.

It is clear that for each x, f(x) = max{fc(x) : c ∈ C}, and so f ∈ F1.

For the other direction, suppose f ∈ F1. Let ⟨fn : n ∈ ω⟩ be an ω-sequence of

continuous functions such that for each x, f(x) = max{fn(x) : n ∈ ω}. We may



88

assume, without loss of generality, that for each x, fn1(x) ≤ fn2(x) whenever n1 ≤ n2.

For each n ∈ ω, by Proposition IV.4 let Sn ⊆ <ωω be a barrier and f̃n : Sn → ω be

a function such that fn(x) = f̃n(t) whenever x extends t and t ∈ Sn. We may also

assume that Sn2 properly extends Sn1 whenever n1 < n2, by which we mean for all

x ∈ ωω, the level where x hits Sn1 is strictly below the level where x hits Sn2 . Hence,

the sets Sn are pairwise disjoint.

For each n > 0, define the set S ′
n ⊆ Sn as follows:

S ′
n := {c ∈ Sn : (∀x ⊒ c) fn(x) > fn−1(x)}.

Note that also

S ′
n = {c ∈ Sn : (∃x ⊒ c) fn(x) > fn−1(x)}.

Define C := S0 ∪
∪
n>0 S

′
n. We claim that C is a cloud. Let x ∈ ωω be arbitrary. We

must show that x hits C at only finitely many places. If not, then by construction

{fn(x) : n ∈ ω} is unbounded, which contradicts the fact that f is well-defined at x.

Hence, C is a cloud, and we may define f̃ : C → ω in the natural way: f̃(c) := f̃n(c)

where n is the unique number satisfying c ∈ Sn. It is not difficult to check that f̃ is

as desired.

Notice in the construction above that f̃(t1) < f̃(t2) for all t1, t2 ∈ C with t1 a

proper initial segment of t2. The collection of clouds itself has structure. There is a

natural ω1-length hierarchy into which all clouds may be placed.

Definition V.4. Given α < ω1, a cloud C is an α-cloud if α is ≥ the rank of the

well-founded tree that is the set C ∪ {∅} ordered by end-extension.

Here we use the convention that leaf nodes have rank 0. Thus, if each x ∈ ωω hits

C at most 1 time, then C is a 1-cloud. The functions represented by clouds form a

cofinal subset of F1 which is simpler to understand.



89

Proposition V.5. For each f ∈ F1, there exists a cloud C ⊆ <ωω satisfying f ≤

Rep(C). Moreover, if f is specified by a cloud Cf ⊆ <ωω and a function f̃ : Cf → ω

as in the proposition above, then if Cf is an α-cloud, then C can be chosen to be an

α-cloud.

Proof. Let Cf ⊆ <ωω and f̃ : Cf → ω specify f as in the proposition above. Assume

Cf is an α-cloud. Without loss of generality, Cf is infinite. The idea of how to

proceed is simple: we replace each node c ∈ Cf with an appropriate set of nodes

extending it. We must be careful to ensure the resulting cloud C is indeed an α-cloud.

First, let e : ω → Cf be a bijection that respects the ordering on Cf by extension.

That is, for all n1, n2 ∈ ω, if e(n1) ⊑ e(n2), then n1 ≤ n2. We may easily define a

function l : ω → ω that is both strictly increasing and such that for all n ∈ ω,

l(n) ≥ f̃(e(n)).

Given such an l, define the function S : ω → P(<ωω) as follows:

S(n) := {c′ ∈ l(n)ω : c′ ⊒ e(n)}.

That is, S(n) is the set of all extensions of e(n) on level l(n). We may now define C

as follows:

C :=
∪
n∈ω

S(n).

It is not difficult to see that C is a cloud. We have f ≤ Rep(C) because l(n) ≥ f̃(e(n))

for all n ∈ ω. Moreover, since we were careful (by requiring e to be order respecting

and l to be strictly increasing), the tree that is the set of elements of C ordered by

end-extension has the same rank as the tree corresponding to Cf . Since Cf is an

α-cloud, so is C.

Each Baire class one function from ωω to ω is ≤ one represented by an α-cloud

for some α < ω1. It can be shown that the hierarchy of functions represented by



90

clouds does not collapse, in the sense that for each α < ω1, there is some function

represented by an α-cloud that is not ≤ any function represented by a β-cloud for

β < α. We will not dwell on this hierarchy, but instead focus on the very bottom

level. The simplest (non-trivial) kind of cloud is a 1-cloud. We have an alternate

characterization of functions represented by 1-clouds in terms of the Exit function

of Definition I.28.

If T ⊆ <ωω is well-founded, then Exit(T ) is continuous. By Proposition IV.6,

for each continuous f : ωω → ω there is some well-founded T ⊆ <ωω satisfying

f ≤ Exit(T ). Dropping the requirement that T be well-founded we get precisely the

functions represented by 1-clouds:

Proposition V.6. Given a function f : ωω → ω, f = Rep(C) for some 1-cloud C

iff f = Exit(T ) for some tree T ⊆ <ωω.

Proof. If f is represented by a 1-cloud C, then the set

T := {t ∈ <ωω : (∀t′ ⊑ t) t′ ̸∈ C}

is a tree and f = Exit(T ).

On the other hand, if f = Exit(T ) for some tree T ⊆ <ωω, then the set

C := {c ∈ <ωω : c ̸∈ T ∧ (∀t ⊑ c) t ̸= c⇒ t ∈ T}

is a 1-cloud and it represents f .

Now, functions of the form Exit(T ) where T is a leafless tree with only one branch

are the simplest functions which are not continuous. Given a ∈ ωω, recall that

[[a]] ⊆ <ωω is the set of initial segments of a:

[[a]] := {a � l : l ∈ ω}.



91

Hence,

Exit([[a]])(x) =


0 if x = a,

min{l : x(l − 1) ̸= a(l − 1)} otherwise.

That is, Exit([[a]])(x) is the level at which x deviates from a. Informally, Exit([[a]])

is a discrete analogue of the function f : R → R defined as follows (for some r ∈ R):

f(x) =


0 if x = r,

1
x−r otherwise.

In the next section, we will see that all functions of this simple form cannot be

everywhere dominated by fewer than 2ω functions (of any complexity whatsoever).

This is because a dominator of such a function must inherently contain the informa-

tion of the single path.

5.2 Basic Construction (Vertical Coding)

We will now begin where the last section ended, and present the basic “vertical

style” coding argument in its simplest form:

Proposition V.7. Fix a ∈ ωω. If M is a transitive model of ZF such that some

g : (ωω)M → ω in M satisfies

(∀x ∈ (ωω)M) Exit([[a]])(x) ≤ g(x),

then a ∈M .

Proof. Let M be any transitive model of ZF such that a ̸∈ M . Consider any g :

(ωω)M → ω inM . Suppose, towards a contradiction, that (∀x ∈ (ωω)M) Exit([[a]])(x) ≤

g(x). Consider the following set:

B := {t ∈ <ωω : g(x) ≥ |t| for all x ⊒ t in M}.



92

Since B need not be a tree, let us define the tree T of those elements of B all of

whose initial segments are also in B. Since g ∈ M , also T ∈ M . There cannot be

any x ∈ [T ] in M , because if there was such an x, then we would have g(x) ≥ l for all

l ∈ ω, which contradicts the fact that g is well-defined. Hence, (T is well-founded)M .

Since being well-founded is absolute, T is well-founded.

On the other hand, (∀l ∈ ω) a � l ∈ B. Let us explain. Fix l ∈ ω. Any x ∈ (ωω)M

that extends a � l differs from a (because a ̸∈ M). Thus, x must first differ from a

at some level l′ ≥ l, so g(x) ≥ Exit([[a]])(x) = l′. Thus (∀l ∈ ω) a � l ∈ B, and we

have (∀l ∈ ω) a � l ∈ T . Therefore a ∈ [T ], so T is not well-founded.

The above proof is by contradiction, because Theorem VII.28 can only be rea-

sonably proved by contradiction, and we want to show the difference between the

arguments. This proposition implies that for each a ∈ ωω, if g : ωω → ω satisfies

(∀x ∈ (ωω)L[g]) Exit([[a]])(x) ≤ g(x), then a ∈ L[g]. Certainly we have the following

morphism (using notation which should be clear and which accompanies what we

explained in Section 1.2):

Exit([[a]]) ≤′

��

g
_

��
a
_

OO

∈ L[g],

(5.1)

where we temporarily define f ≤′
g by (∀x ∈ (ωω)L[g]) f(x) ≤ g(x).

A central aspect of the proposition above is that M need not include all of ωω.

This contrasts with Theorem VII.28, where we really do need all reals available. That

is, we expect it to be extremely difficult (if not impossible) to prove that for each

a ∈ ωω, there is some Borel f : ωω → ωω such that if M is a transitive model of ZF

containing some Borel g : (ωω)M → ωω satisfying (∀x ∈ (ωω)M) f(x) ≤∗ g(x), then

a ∈ M . Also, there is no burning need to generalize Theorem VII.28 in this way,



93

whereas this generality of the proposition above leads to the important application

to weak distributivity laws for complete Boolean algebras (Section 5.8).

Consider the bottom relation “a ∈ L[g]” of (5.1). If g is coded by some c ∈ ωω,

then a ∈ L[g] implies a ∈ L[c]. The relation “a ∈ L[c]” is called the constructibility

relation between reals. Constructibility is a convenient relation because models of

ZF have many closure properties and we may apply absoluteness arguments as done

in the proposition above. Indeed, the results in this thesis were all discovered by

treating constructibility as the essential relation, moving down to finer relations as

a separate step.

Moving down to finer relations is needed to complete the overall picture. A deeper

analysis of the proposition above allows us to strengthen the conclusion from simply

a ∈M to a being explicitly definable in M by a formula. If we proceed as before and

define T to be the set of elements of B all of whose initial segments are in B, then

we will encounter a problem. Instead, what is relevant is the poset of elements of

B ordered by extension. We dignify this generalization as a theorem, and it implies

Theorem I.22 from the introduction. It is essentially the strongest coding theorem

we can expect to prove where we encode real numbers into functions from ωω to ω:

Theorem V.8. Fix a ∈ ωω. If M is a transitive model of ZF such that some

g : (ωω)M → ω in M satisfies

(∀x ∈ (ωω)M) Exit([[a]])(x) ≤ g(x),

then a is ∆1
1 definable in M using g as a predicate.

Proof. Fix M and g satisfying the hypothesis of the theorem. Define B ⊆ <ωω in M

exactly as in the proposition above. Note that B is defined (in M) by a Π1
1 formula

that uses g as a predicate. That is, B is Π1
1 in g. We claim there is some l ∈ ω



94

satisfying (∀l′ ≥ l) a � l′ ̸∈ B. If not, the poset of elements of B ordered by extension

would be ill-founded, and therefore would be ill-founded in M , so there would exist

x ∈ (ωω)M satisfying (∃∞l′ ∈ ω) g(x) ≥ l′, which is impossible. Now, fix such an l.

We claim that for each l′ ≥ l, a(l′) is the unique n satisfying (a � l′)⌢n ̸∈ B.

Indeed, since Exit([[a]]) ≤ g, for each l′ ≥ l we have

(∀n ∈ ω) a(l′) ̸= n⇒ (a � l′)⌢n ∈ B.

The other direction is given by the property we arranged l to have. Thus, we have

the following definition (in M) for a:

a(l′) =


a(l′) if l′ < l,

n if l′ ≥ l and (∀n′ ̸= n)(∀x ⊒ (a � l′)⌢n′ in M) g(x) ≥ l′ + 1.

Since ⟨a(l′) : l′ < l⟩ can be coded by a single number, we have a Π1
1 definition (in

M) for a which uses g as a predicate. We also have a Σ1
1 variant:

a(l′) =


a(l′) if l′ < l,

n if l′ ≥ l and (∃x ⊒ (a � l′)⌢n in M) g(x) < l′ + 1.

Thus, a is ∆1
1 definable in M using g as a predicate.

Our picture is now complete, and we see four relations stacked on top of each

other:

Exit([[a]]) ≤

��

g
_

��
Exit([[a]])

_

OO

≤′

��

g
_

��
a
_

OO

≤∆1
1

��

g
_

��
a
_

OO

∈ L[g].

Now we may compute cfBα(ω,≤) for all α ≥ 1:



95

Corollary V.9. Fix α ≥ 1. We have

cfBα(ω,≤) = 2ω.

Proof. By what we have said, there is certainly a morphism from Bα(ω,≤) to ⟨ωω,≤∆1
1
⟩.

The cofinality of ⟨ωω,≤∆1
1
⟩ is 2ω, because each real has only countably many reals

∆1
1 reducible to it, and we are done.

It goes without saying that the arguments of this section carry over to functions

with domain ω2 instead of ωω. The encoding a 7→ Exit([[a]]) we informally call verti-

cal coding, because the information inherent within a is laid out vertically in the tree

<ωω. We will present a different encoding scheme in Section 5.4: horizontal coding.

As we will see, neither method is strictly better than the other, and some situations

require us to use one but not the other.

5.3 Blow-Up Trees

The purpose of this section is to analyze exactly how sloppy we can be with our

encoding scheme a 7→ f so that still a ∈ L[g] whenever f ≤ g. The reader may skip

to the next section with no loss of continuity. We saw that the scheme a 7→ Exit([[a]])

worked, but we used the conspicuously defined set

B = {t ∈ <ωω : g(x) ≥ |t| for all x ⊒ t}

in our argument. We shall see that indeed we can be quite sloppy, and our observa-

tions may be of use to an analyst.

To begin, let us temporarily think of elements of ωω as simply points in a space

rather than paths through a tree, and describe properties of functions from this

point of view. Recall the notation f“(U) := {f(x) : x ∈ U}. What we say applies



96

to functions from an arbitrary uncountable Polish space X to R, but let us stick to

functions from ωω to ω to keep our discussion focused.

Definition V.10. a ∈ ωω is a blow-up point of f : ωω → ω if f“(U) is unbounded

for each neighborhood U of a. We say that a is a pure blow-up point of f if for each

n ∈ ω, there is some neighborhood U of a such that for all x ∈ U − {a}, f(x) ≥ n.

That is, a is a blow-up point of f : ωω → ω iff lim supx→a f(x) = ω and a is a

pure blow-up point iff limx→a f(x) = ω. Recall that given t ∈ <ωω, [t] is the set of

elements of ωω which extend t. When we investigated continuous functions, blow-up

points did not appear:

Proposition V.11. f : ωω → ω is dominated by a continuous function iff f has no

blow-up points.

Proof. If f : ωω → ω is dominated by a continuous function g : ωω → ω, then given

any x ∈ ωω, there is some neighborhood U of x such that g is constant on U , so x

cannot be a blow-up point of f .

On the other hand, suppose f has no blow-up points. For each x ∈ ωω, there

is some shortest finite initial segment sx of x such that f“([sx]) is bounded. Let

g : ωω → ω be the function

g(x) := max f“([sx]).

Since (∀x ∈ ωω) f(x) ∈ f“([sx]), we have f ≤ g. Furthermore, one can check that

the sets [sx] form a partition of ωω, so g is continuous.

We first encounter blow-up points when looking at F1 functions represented by

1-clouds. Recall that by Proposition V.6, functions represented by 1-clouds are

precisely those functions of the form Exit(T ) for some tree T ⊆ <ωω.



97

Proposition V.12. f : ωω → ω is dominated by a function represented by a 1-cloud

iff f(x) = 0 for each blow-up point x of f .

Proof. Suppose f : ωω → ω is dominated by an F1 function g : ωω → ω represented

by a 1-cloud. By the definition of a 1-cloud, g(x) = 0 for each blow-up point x of

g. Since g dominates f , every blow-up point of f is a blow-up point of g. Hence,

f(x) = 0 for each blow-up point of f .

For the other direction, suppose f : ωω → ω is such that f(x) = 0 for each blow-

up point x of f . Let Cg := {t ∈ <ωω : f“([t]) is bounded but f“([t′]) is unbounded

for every proper initial segment t′ of t}. Notice that Cg is a 1-cloud. Let g̃ : Cg → ω

be defined by

g̃(t) := max f“([t]).

Let g : ωω → ω be the function specified by Cg and g̃ : Cg → ω as in Proposition V.3.

That is, g(x) = max{g̃(x � l) : x � l ∈ Cg}. By that proposition, g is F1, and by

applying Proposition V.5 to the 1-cloud Cg and function g̃, we get a 1-cloud C

satisfying g ≤ Rep(C).

Now that we have characterized which functions are everywhere dominated by

either continuous or Baire class one functions, let us return to our discussion of

encoding reals into functions. One might make the mistake of thinking the only

crucial part of Proposition V.7 was that the function Exit([[a]]) had a blow-up point

(the point a) not in the ground model. The following simple observation shows that

more is needed:

Counterexample V.13. Let M be a transitive model of ZF. There is a Borel

function f : ωω → ω such that f �M ∈M , and yet for each a ∈ ωω (including those

a not in M) and each neighborhood U of a, f“(U ∩M) is unbounded.



98

Proof. Let f : ωω → ω be defined by f(x) := 0 if (∃∞n) x(n) ̸= 0, and f(x) := n if

n is the first number such that x(m) = 0 for all m ≥ n. Certainly, f is Borel and

f �M ∈M . Let S be the set of all x ∈ ωω satisfying (∀∞n)x(n) = 0. We have that

S ⊆ M . Given any y ∈ ωω and any neighborhood U of y, f“(U ∩ S) is unbounded,

and so f“(U ∩M) is unbounded.

The fact that a is a pure blow-up point of Exit([[a]]) in Proposition V.7 is the

crucial point. To push the argument to work with a more general function f , we

need to replace the set B within the proof with the more technical poset ⟨W,≺⟩:

Proposition V.14. Let M be a transitive model of ZF. Let f : ωω → ω and a ∈ ωω

be such that for each n ∈ ω, there is some neighborhood U of a satisfying

(∀x ∈ U ∩M − {a})n ≤ f(x)

(which happens when a is a pure blow-up point of f). Let g : (ωω)M → ω in M

satisfy

(∀x ∈ (ωω)M) f(x) ≤ g(x).

Then a ∈M .

Proof. For each n ∈ ω, let

Sn := {t ∈ <ωω : g(x) ≥ n for all x ⊒ t in M}.

Notice that each <ωω − Sn is a tree. Let ⟨W,≺⟩ be the poset

W := {⟨t0, ..., tn⟩ : n ∈ ω ∧ t0 ∈ S0 ∧ ... ∧ tn ∈ Sn ∧ t0 ⊑ ... ⊑ tn},

where w2 ≺ w1 iff w1 is a proper initial segment of w2. First, note that W ∈ M .

This is because g ∈M , and therefore ⟨Sn : n ∈ ω⟩ ∈M . Next,

(⟨W,≺⟩ is well-founded)M .



99

This is because if there was some infinite decreasing sequence through W in M , then

there would exist x ∈ (ωω)M as well as ⟨tn ∈ Sn : n ∈ ω⟩ ∈ M satisfying tn ⊑ x for

all n ∈ ω. This would imply that g(x) ≥ n for all n ∈ ω, which is impossible.

Since ⟨W,≺⟩ is well-founded in M and being well-founded is absolute, W is indeed

well-founded. Now, assume towards a contradiction that a ̸∈ M . Suppose we are

given ⟨t0, ..., tn⟩ ∈ W satisfying t0 ⊑ ... ⊑ tn ⊑ a. By hypothesis and since a ̸∈

M , there is some neighborhood U of a such that (∀x ∈ U ∩ M)n ≤ f(x). Pick

tn+1 ⊑ a so that tn ⊑ tn+1 and [tn+1] ⊆ U . Now, for any x ∈ [tn+1] ∩ M , n ≤

f(x) ≤ g(x). Thus, tn+1 ∈ Sn+1. Hence, ⟨t0, ..., tn+1⟩ ∈ W and ⟨t0, ..., tn+1⟩ ≺

⟨t0, ..., tn⟩. By applying this construction inductively starting with ∅, we obtain an

infinite decreasing sequence through ⟨W,≺⟩. This contradicts ⟨W,≺⟩ being well-

founded, and the proof is complete.

The proof above illustrates a common idea used in descriptive set theory. Namely,

⟨W,≺⟩ is a tree of attempts to build something which does not exist. This tree was

hidden in our previous arguments because it was obscured by a more prominent tree:

<ωω. Now, ⟨W,≺⟩ has two essential properties. First, it cannot have any branches

(infinite decreasing sequences), because given a branch there must exist a point x

satisfying g(x) ≥ n for all n, which is impossible. Second, the way f is defined makes

it so if g dominates f , then ⟨W,≺⟩ contains many nodes. We might want to modify

the definition of ⟨W,≺⟩ to handle other functions f , but we need to make sure the

first property is still satisfied. The following definition accomplishes this:

Definition V.15. Let X be a set and g : X → ω be a function. A poset ⟨W,≺⟩ is

a blow-up tree for g if the following conditions are satisfied:

1) each element of W is a finite decreasing sequence ⟨C0, ..., Cn⟩ of subsets of X



100

where for each k satisfying 0 ≤ k ≤ n,

(∀x ∈ Ck) g(x) ≥ k;

2) W is closed under initial segments;

3) if w1, w2 ∈ W , then w2 ≺ w1 iff w1 is a proper initial segment of w2;

4) If ⟨C0⟩ ≻ ⟨C0, C1⟩ ≻ ... is an infinite decreasing sequence of elements of W , then∩
n∈ω Cn ̸= ∅.

By conditions 1) and 4), a blow-up tree is necessarily well-founded. For demon-

stration purposes, we will repeat the proof of the proposition above but for R instead

of ωω and with a slightly weaker hypothesis:

Proposition V.16. Let M be a transitive model of ZF. Let f : R → ω be a function

and let a ∈ R be a point such that for each n ∈ ω, there is some closed set C

containing a with a Borel code in M satisfying

(∀x ∈ C ∩M − {a})n ≤ f(x).

Suppose there is some g : RM → ω in M satisfying

(∀x ∈ RM) f(x) ≤ g(x).

Then a ∈M .

Proof. Assume, towards a contradiction, that there is such a g but a ̸∈ M . Within

M , we will define a blow-up tree ⟨W,≺⟩ for g. Let W be the set of all finite decreasing

sequences ⟨C0, ..., Cn⟩ of compact subsets of RM such that for each k ∈ [0, n] and

x ∈ Ck, g(x) ≥ k. Conditions 1) to 3) of Definition V.15 are satisfied automatically.

Since the intersection of an infinite decreasing sequence of compact sets is nonempty,

4) is satisfied, so ⟨W,≺⟩ is indeed a blow-up tree for g.



101

Since it is a blow-up tree, it is well-founded in M . Since being well-founded is

absolute, it is indeed well-founded. On the other hand, it is not difficult to argue

from the hypothesis of the theorem that (W,≺) must have an infinite decreasing

sequence, and so is not well-founded. This is a contradiction.

As a corollary, we have a result of potential interest to an analyst. Our choice of

(x− a)−1 as an example is arbitrary:

Corollary V.17. Fix a ∈ R. Let f : R → R be the function

f(x) :=


0 if x = a,

1

x− a
otherwise.

If g : R → R is a function which everywhere dominates f , then a ∈ L[g]. Hence, if

g is also Borel, then a ∈ L[c] where c is any Borel code for g.

Proof. If g is Borel and c is a code for g, then L[g] ⊆ L[c]. Thus, it suffices to prove

the first claim. Define the function f̃ : R → ω by

f̃(x) := ⌊f(x)⌋.

Let g : R → R be any function which everywhere dominates f̃ . Note that g ∩L[g] ∈

L[g]. Being a transitive model of ZF, L[g] contains all rational numbers, and therefore

contains all Borel codes for closed intervals with rational endpoints. Note that for

each n ∈ ω, there are rational numbers r1, r2 ∈ Q satisfying a ∈ [r1, r2] and

(∀x ∈ [r1, r2] − {a})n ≤ f̃(x).

We may now apply the proposition above with L[g], f̃ , and g∩L[g] to conclude that

a ∈ L[g].



102

Let us remark that there is a limitation to how sloppy we can be in creating a

function all of whose dominators construct a ∈ ωω. Specifically, suppose a ∈ ωω and

f : ωω → ω are such that for each n ∈ ω and each neighborhood U of a, there is

some open (and non-empty) Un ⊆ U satisfying (∀x ∈ Un) f(x) ≥ n. It does not

follow that if g : ωω → ω satisfies f ≤ g, then a is definable from g in any sense.

5.4 Modifying the Encoding (Horizontal Coding)

In Section 5.2, we saw how a real a ∈ ωω is encoded into the function Exit([[a]])

(in what may be described as a vertical way). For technical reasons, which will be

clear in Section 5.6, we need an alternate coding scheme. Let X be a set and A ⊆ X.

Let fA : ωX → ω be the function

fA(x) :=


0 if (∀l ∈ ω)x(l) ̸∈ A,

l + 1 if x(l) ∈ A and (∀l′ < l)x(l′) ̸∈ A.

Note that fA = Exit(T ) where T is the tree of all t ∈ <ωω satisfying

(∀l′ ∈ Dom(t)) t(l′) ̸∈ A.

For each t ∈ T ,

A = {z ∈ X : t⌢z ̸∈ T}.

This justifies calling the encoding scheme A 7→ fA horizontal coding, because the

information within A is laid out horizontally in the tree <ωX. Equivalently, fA =

Rep(C) where C is the cloud of all t ∈ <ωω satisfying t(|t| − 1) ∈ A but (∀l′ <

|t|− 1) t(l′) ̸∈ A. Thus, when X = ω, fA is represented by a 1-cloud, and is therefore

F1, and hence is Baire class one.



103

When X = ω, we have an analogue of Theorem V.8 but with a different proof.

However, when X = R, we get an encoding scheme for subsets of R rather than

elements of ωω, which is beyond the scope of vertical coding. The point is that while

there are only |X|ω paths through the tree <ωX, there are 2|X| subsets of X. Very

informally, we may say “there is more room to store information horizontally”.

Proposition V.18. Fix a set X. Fix A ⊆ X. Let fA : ωX → ω be defined as above.

Let M be a transitive model of ZF with X ∈M and containing some g : (ωX)M → ω

satisfying

(∀x ∈ (ωX)M) fA(x) ≤ g(x).

Then A ∈M . Moreover, there is some t ∈ <ωX satisfying

A = {z ∈ X : g(x) ≥ |t| + 1 for all x ⊒ t⌢z in M}.

Proof. It suffices to show the second claim. As in our previous arguments, define

B := {t ∈ <ωX : g(x) ≥ |t| for all x ⊒ t in M}.

We must find a t ∈ <ωX satisfying

A = {z ∈ X : t⌢z ∈ B},

and we will be done. By the hypothesis on g and the definition of fA, for each z ∈ X,

z ∈ A implies ⟨z⟩ ∈ B. If conversely for each z ∈ X, ⟨z⟩ ∈ B implies z ∈ A, then we

have

A = {z ∈ X : ⟨z⟩ ∈ B},

and we are done by defining t := ∅. If not, then fix some x0 ∈ X satisfying ⟨x0⟩ ∈ B

but x0 ̸∈ A.



104

Again by the hypothesis on g and the definition of fA, for each z ∈ X, z ∈ A

implies ⟨x0, z⟩ ∈ B. Here it is important that x0 ̸∈ A. Again, if the converse holds

that ⟨x0, z⟩ ∈ B implies z ∈ A, then

A = {z ∈ X : ⟨x0, z⟩ ∈ B},

and we are done by defining t := ⟨x0⟩. If not, we may fix x1 ∈ X satisfying ⟨x0, x1⟩ ∈

B but x1 ∈ A. We may continue like this, but we claim that the procedure terminates

in a finite number of steps.

Assume, towards a contradiction, that it does not terminate. The sequence

x := ⟨x0, x1, ...⟩

we have constructed has all its initial segments in B. However, x need not be in

M . We handle this situation as before: let T be the set of all elements of B all of

whose initial segments are also in B. The tree T is ill-founded because x is a path

through it. Since being ill-founded is absolute, T has some path x′ in M . We now

have (∀l ∈ ω) g(x′) ≥ l, which is impossible.

In some sense, the proof of Proposition V.18 is more aesthetically pleasing than

that of Theorem V.8; the definition of A within the transitive model M has a par-

ticularly simple form.

Corollary V.19. For each A ⊆ ωω, there is a function f : ωω → ω such that

whenever g : ωω → ω is any function which satisfies f ≤ g, then A is ∆1
1 in g.

Proof. Let X := ωω ⊔ ωω. Let A′ ⊆ X be such that its intersection with the first ωω

is A, and its intersection with the second ωω is ωω − A. Fix a (canonical) bijection

η between ωω and ωX. Define f : ωω → ω to be the function f(x) = fA′(η(x)). Now

suppose g satisfies f ≤ g. Let g′ : ωX → ω be the function g′(x) = g(η−1(x)). We



105

have fA′ ≤ g′. By the proposition above, we see that A′ is Π1
1 in g′ (we require the

boldface version of the pointclass because the t ∈ <ωX given by the proposition is

coded by a real). By our provision that A′ is the disjoint union of A and ωω−A, we

see that in fact A is ∆1
1 in g′. Since the bijection η is canonical, we have that A is

∆1
1 in g.

Of course, this corollary also holds for functions from any Polish space to ω. We

easily get the following:

Corollary V.20. For each A ⊆ ωω, there is a function f : ωω → ω such that

whenever g : ωω → ω is any function which satisfies f ≤ g, then A ∈ L(ωω,A).

Also from Corollary V.19 we get an alternate way to compute the cofinality of the

set of all functions from ωω to ω ordered pointwise:

Corollary V.21. cf All(ω,≤) = 22ω .

Finally, let us remark that the proof of Proposition V.18 has a simple visualiza-

tion when we think of elements of ωX as points in a space rather than paths through

a tree. That is, given A ⊆ X, we may think of ωX as being partitioned into |X|

blocks of the form [⟨z⟩] for z ∈ X. The function fA assigns 1 to each point in a block

corresponding to an element of A. Now suppose fA ≤ g. For each block which f as-

signs 1 to each point within, g must assign at least 1 to each point within. However,

assuming g exists in a model which does not contain A, the function g is going to

make a mistake and assign at least 1 to each point in a block [⟨x0⟩] which does not

correspond to an element of A. Indeed, g is overzealous. If we focus on that block,

we may repeat the argument. That is, that block is partitioned into |X| smaller

blocks of the form [⟨x0, z⟩] for z ∈ X. The function fA assigns 2 to each smaller

block corresponding to an element of A. Since fA ≤ g but “g does not know about



106

A”, g will be overzealous and assign at least 2 to each point in a block which does

not correspond to an element of A, etc.

5.5 Morphisms Involving Trees and Clouds

Well-founded trees were fundamental for computing cfB0(ω,≤) and clouds were

fundamental for computing cfBα(ω,≤) for α ≥ 1. In this section, we will complete

the picture by relating the inclusion ordering on well-founded trees to the inclusion

ordering on clouds. We hope to convince the reader that the combinatorics of well-

founded trees and clouds is the heart of the situation, and extra complexity arises

when relating these structures to functions from ωω to ω. Some of what we say

extends to subsets of <κκ, where we have already defined what it means to be a cloud

in this context, and the property that a tree is well-founded tree is replaced with the

property of not having any length κ branches. We have faith that the reader can

carry out such generalizations without trouble. However, there is subtlety because

both the property of S ⊆ <κκ not having any length κ branch and the property of

being a cloud are not in general absolute between models of set theory when κ > ω.

Recall that W is the set of well-founded subtrees of <ωω. For the sake of this

section, let us introduce a corresponding notation for clouds:

Definition V.22. C is the collection of subsets of <ωω which are clouds.

Given a cloud C ∈ C, recall that Rep(C) : ωω → ω is a Baire class one function.

Note that for C1, C2 ∈ C,

C1 ⊆ C2 ⇒ Rep(C1) ≤ Rep(C2).

Given a function from ωω to ω, there is a cloud we may extract from it. Namely, the

set B that we have been using in our arguments in this chapter:



107

Definition V.23. Given a function g : ωω → ω, Cloud(g) ∈ C is defined by

Cloud(g) := {t ∈ <ωω : g(x) ≥ |t| for all x ⊒ t}.

The inclusion ordering on clouds reduces to the everywhere domination ordering

of functions from ωω to ω. That is, we see that given C ∈ C and g : ωω → ω,

Rep(C) ≤ g ⇒ C ⊆ Cloud(g).

That shows that if Γ is any pointclass of functions from ωω to ω which includes

all Baire class one functions, there is a morphism from ⟨Γ,≤⟩ to ⟨C,⊆⟩. We get a

morphism in the other direction when we restrict to only Baire class one functions

from ωω to ω. Indeed, by Proposition V.5, each function in B1(ω,≤) is below one

represented by a cloud. Thus, if ϕ− : B1(ω) → C is a map which selects such a cloud

and ϕ+ = Rep, then ⟨ϕ−, ϕ+⟩ is a morphism from ⟨C,⊆⟩ to B1(ω,≤). Thus, there

are morphisms in both directions between ⟨C,⊆⟩ and B1(ω,≤).

As a consequence of Theorem V.8, there is a morphism from B1(ω,≤) to ⟨P(ω),≤∆1
1
⟩.

The reason for ∆1
1 is because the definition of B within the proof of that theorem in-

volves a real quantifier. The quantification is absorbed into the definition of Cloud(g).

When we restrict attention to ⟨C,⊆⟩, we see a sharper form of reducibility (we use

Turing reducibility ≤T as an example):

Proposition V.24. For each A ⊆ ω, there is some CA ∈ C such that whenever

C ∈ C satisfies CA ⊆ C, there exists some t ∈ <ωω satisfying

A = {n ∈ ω : t⌢n ∈ C}.

Hence, there is a morphism from ⟨C,⊆⟩ to ⟨P(ω),≤T ⟩.

Proof. Let CA be the set of all t ∈ <ωω satisfying t(|t|−1) ∈ A but (∀l′ < |t|−1) t(l′) ̸∈

A. This is precisely the cloud we described at the beginning of Section 5.4 satisfying



108

fA = Rep(CA). Now let C be any cloud satisfying CA ⊆ C. First, note that for all

n ∈ ω, n ∈ A ⇒ ∅⌢n ∈ CA. If the converse holds for all n, then we are done by

defining t := ∅. Otherwise, we may fix x0 ∈ ω with x0 ̸∈ A but ⟨x0⟩ ∈ C. Now, for

all n ∈ ω, n ∈ A ⇒ ⟨x0⟩⌢n ∈ CA. Again, either the converse implication holds for

all n and we are done, or we may continue by fixing an x1 ∈ ω satisfying x1 ̸∈ A

but ⟨x0, x1⟩ ∈ C. The procedure must eventually terminate, because otherwise we

would have a path which hits C at infinitely many places, contradicting C being a

cloud.

To connect well-founded trees to clouds, we have the following:

Definition V.25. Given C ∈ C, the tree Tree(C) ∈ W is the set of elements of C

all of whose initial segments are also in C.

We now see a morphism from ⟨C,⊆⟩ to ⟨W ,⊆⟩:

C ⊆

��

C
Tree
��

W
Id

OO

⊆ W .

At this point, we have a detailed picture of how well-founded trees and clouds fit into

our investigation. Let Γ be any pointclass of functions from ωω to ω which includes

all Baire class one functions. In the following diagram, an arrow represents the

existence of a morphism, and a double arrow represents the existence of a morphism

in each direction:

⟨Γ,≤⟩

yysss
sss

sss
s

⟨P(ω),≤T ⟩ ⟨C,⊆⟩oo

��

// B1(ω,≤)oo // ⟨P(ω),≤∆1
1
⟩

⟨W ,⊆⟩ // B0(ω,≤)oo



109

The morphisms between the bottom two relations are given by Propositions IV.6

and IV.7. This diagram shows that there must exist a morphism from B1(ω,≤) to

B0(ω,≤), which we should not expect a priori. A similar surprise is a morphism from

⟨Γ,≤⟩ to B1(ω,≤).

Finally, although we have been discussing clouds which are subsets of <ωω, we

could just have well considered clouds which are subsets of <ω2. We leave it as an

exercise to the reader to show that there is a morphism in each direction between

these two collections of clouds ordered by inclusion.

5.6 Main Coding Theorems

We change gears slightly from descriptive set theory to combinatorial set theory,

although the core ideas are the same. The arguments we have given, using vertical

and horizontal coding, generalize easily (modulo a few fascinating technicalities) to

handle functions from κλ to κ for infinite κ and λ. We insist that the functions have

domain κλ instead of λκ, because the transitive model involved needs to understand

the structure of the domain of the functions. An arbitrary transitive model M which

contains the ordinal λκ need not think there is a bijection between that ordinal and

(κλ)M . We believe that considering functions from κλ to κ is the fundamental way to

understand the situation. These coding theorems will have significant applications

at the end of the chapter, where we will use them to get new implications between

distributivity laws for complete Boolean algebras.

Throughout this section, for each A ⊆ λ, let fA : κλ→ κ be the function

fA(x) :=


0 if (∀α < κ) x(α) ̸∈ A,

α + 1 if x(α) ∈ A and (∀β < α)x(β) ̸∈ A.



110

We may call fA the horrizontal encoding of A.

Proposition V.26. For each A ⊆ λ, whenever M is a transitive model of ZF with

κλ ∈M and some g : κλ→ κ in M satisfies fA ≤ g, then A ∈M .

Proof. Define the set

B := {t ∈ <κλ : g(x) ≥ Dom(t) for all x ⊒ t in M}.

We may argue, just as in Proposition V.18, that there is some t ∈ <κλ satisfying

A = {z ∈ X : t⌢z ∈ B}.

That is, we start defining a sequence x = ⟨x0, x1, ...⟩ such that each xα ̸∈ A and

x � (α + 1) ∈ B. At limit stages, we take the sequence to be the limit of what we

have constructed so far. If the procedure does not terminate at a stage before κ

(to produce the desired t), then we have an x ∈ κλ (which by hypothesis is in M)

satisfying (∀α < κ)x � α ∈ B. Hence, (∀α < κ) g(x) ≥ α, which is impossible.

For important reasons (the applications to weak distributivity laws for complete

Boolean algebras), we need to weaken the hypothesis that κλ ∈M . We have already

seen one way of doing this, whose statement we repeat now to compare with the

proposition above and those which will follow:

Proposition V.27. For each A ⊆ λ, whenever M is a transitive model of ZF with

λ ∈M and some g : ωλ→ ω in M satisfies

(∀x ∈ (ωλ)M) fA(x) ≤ g(x),

then A ∈M .

Proof. This is simply the proof of Proposition V.18 with X = λ.



111

Note that we can replace the hypothesis that λ ∈ M with the hypothesis that

λ = M ∩ Ord and the graph of g is adjoined to M as a predicate. Then if (∀x ∈

(ωλ)M) fA(x) ≤ g(x), then A is a definable class within M (using g as a predicate).

The way Proposition V.27 handles the technicality that ωλ need not be a subset

of M is by using the absoluteness of trees being well-founded. However, this only

applies to the case when κ = ω, because for κ > ω it is not absolute between models

of ZFC whether subtrees of <κλ have length κ branches. Indeed, if M is a model of

ZFC and T ∈M is such that (T is a Suslin tree)M , then if V is a forcing extension of

M by T , there will be a length ω1 branch through T in V (but of course not in M).

This proves that we need some additional assumption for getting the absoluteness

of the existence of a length ω1 branch through a subtree of <ω1λ. One may ask if

there is perhaps a completely different way to prove the analogue of Proposition V.27

where we replace ω with ω1. Again, Suslin trees tell us the answer is no:

Counterexample V.28. The following is not a theorem of ZFC (for any λ): for

each A ⊆ ω1, there is a function f : ω1λ → ω1 such that whenever M is a transitive

model of ZFC with λ ∈M and <ω1λ ⊆M , and some g : (ω1λ)M → ω1 in M satisfies

(∀x ∈ (ω1λ)M) f(x) ≤ g(x),

then A ∈M .

Proof. Let M be a transitive model of ZFC which contains a (pruned) Suslin tree

T ⊆ <ω12. Assume V is a forcing extension of M by T . Since M and V have the same

ordinals, λ ∈ M . It is well-known that Suslin trees are (ω,∞)-distributive, so all

countable sequences in V of elements from M are already in M . In particular, <ω1λ ⊆

M . Now (within M), the forcing is ω1-c.c. Hence (within M), by Corollary II.37 the

forcing is weakly (λω1 , ω1)-distributive. Thus, for each f : ω1λ → ω1 there is some



112

g : (ω1λ)M → ω1 in M satisfying f(x) ≤ g(x) for all x ∈ (ω1λ)M . On the other hand,

A ̸∈M where A codes the generic path through the tree T .

One way to get the desired absoluteness of the existence of length ω1 branches

through trees of height ω1 is to assume the tower number t is > ω1. Recall that t is

the smallest length of a sequence

⟨Aα ∈ [ω]ω : α < κ⟩

of infinite subsets of ω satisfying (∀α < β < κ)Aα ⊇∗ Aβ but there is no A ∈ [ω]ω

satisfying (∀α < κ)Aα ⊇∗ A (where A ⊆∗ B means A−B is finite). It is not hard to

see that ω1 ≤ t ≤ 2ω. See [2] for more on t and related cardinals. The absoluteness

trick in this next proposition is burrowed from Farah in [15], who got the idea from

Dordal in [10], who got the idea from Booth.

Proposition V.29. Assume ω1 < t. For each A ⊆ ω1, whenever M is a transitive

model of ZF with ω1 ∈M and P(ω) ⊆M and some g : (ω1ω1)
M → ω1 in M satisfies

(∀x ∈ (ω1ω1)
M) fA(x) ≤ g(x),

then A ∈M .

Proof. Note that P(ω) ⊆ M implies <ω1ω1 ⊆ M , but we will use the assumption

P(ω) ⊆M for an additional purpose. Define B ⊆ <ω1ω1 just as in Proposition V.26.

Assume, towards a contradiction, that A ̸∈ M . As we argued in Proposition V.26,

there is an x ∈ ω1ω1 (in V ) satisfying (∀α < ω1) x � α ∈ B. It is important that

<ω1ω1 ⊆ M , because otherwise we might get stuck at some stage strictly before ω1.

We claim that in fact x ∈M . Once we show this, we will have our contradiction.

To prove the claim, let F : <ω1ω1 → [ω]ω be a function in M such that for all

t1, t2 ∈ <ω1ω1, the following hold:



113

1) t2 ⊒ t1 ⇒ F (t2) ⊆∗ F (t1);

2) t1 ⊥ t2 ⇒ F (t1) ∩ F (t2) is finite.

Such functions are easy to construct by induction: at successor steps, take an element

of [ω]ω and form a size ω1 family of almost disjoint infinite subsets of it. At limit

steps, take pseudointersections. Since in V we have ω1 < t, there is some S ∈ [ω]ω

satisfying

(∀α < ω1)S ⊆∗ F (x � α).

Since P(ω) ⊆M , in particular S ∈M . Now x can be defined in M by

x =
∪

{t ∈ <ω1ω1 : S ⊆∗ F (t)}.

Thus, x ∈M , and we are done.

We could have proved this proposition using vertical instead of horizontal coding

to get the function f to have domain ω12. At this point, it appears that horizontal

coding is strictly better than vertical coding. This next proposition shows that

the methods are in fact incomparable, because the tree <κ2 is not wide enough for

horizontal coding to work. Recall that an infinite cardinal is weakly compact iff it

is strongly inaccessible and has the tree property. The function Exit([[a]]) has the

expected definition.

Proposition V.30. Fix a ∈ κ2. Fix M a transitive model of ZFC such that κ ∈M ,

<κ2 ⊆M , (κ is weakly compact)M , and some fixed g : (κ2)M → κ in M satisfies

(∀x ∈ (κ2)M) Exit([[a]])(x) ≤ g(x),

then a ∈M .



114

Proof. As usual define B ⊆ <κ2 by

B = {t ∈ <κ2 : g(x) ≥ Dom(t) for all x ⊒ t in M}.

Let T ⊆ B be the set of elements of B all of whose initial segments are also in B.

Assume towards a contradiction that a ̸∈ M . As usual, we can argue that T has a

length κ branch (in V ). Once we show T has a length κ branch in M , we will be

done.

Since (κ is strongly inaccessible)M , we have (each level of T has size < κ)M . Since

T has height κ in V , (T has height κ)M . Combining these last two facts with the

fact that (κ has the tree property)M , we get that T has a length κ branch in M .

We insisted thatM be a model of ZFC so that we could simply state the hypothesis

on κ in M . Since ω is weakly compact, this argument gives us an alternate way to

handle that absoluteness portion of the proof of Theorem V.8! Note that removing

the hypothesis <κ2 ⊆M in the proposition above would be a disaster: we are building

a path in V and we need to be sure that each proper initial segment of this path is

within M (because only then is hypothesis that a ̸∈M useful)! Finally, it would be

immoral to not mention the brute force way to get the absoluteness of the existence of

length κ paths through subtrees of <κλ: elementary substructures. This is different

from our previous propositions because the model in question need not be transitive

(and so it does not have an application to distributivity laws for complete Boolean

algebras).

Proposition V.31. For each A ⊆ λ, whenever ⟨M,∈⟩ ≺ V with {κ, λ} ∪ <κλ ⊆M

and some g : κλ→ κ in M satisfies

(∀x ∈ κλ) fA(x) ≤ g(x),

then A ∈M .



115

The reader may easily fill in the details. Notice the hypothesis that g every-

where dominates fA, instead of merely satisfying (∀x ∈ (κλ)M) fA(x) ≤ g(x). The

punch line of the proof is that elementarity allows us to conclude that from the exis-

tence of the length κ path we build in V , there must be a similar length κ path in M .

5.7 Definitions from Prewellorderings

In Section 5.6, we stated the coding results in terms of functions from κλ to κ.

When instead looking at functions from λκ to κ, we get analogous coding results at

the expense of throwing in an appropriate surjection. We will give a couple examples

in the case of encoding subsets of ω and encoding subsets of ωω.

Proposition V.32. Let λ be a cardinal and h : λ → ωω be a surjection. Then

there is a function F : P(ω) → λω definable from h such that for each A ⊆ ω and

g : λ→ ω,

F (A) ≤ g ⇒ A is definable from g and h.

Proof. For each A ⊆ ω, let fA : ωω → ω be the horizontal encoding function from

Section 5.6. Let F : P(ω) → λω be the function

F (A)(α) := fA(h(α)).

Now fix A ⊆ ω and g : λ → ω satisfying F (A) ≤ g. As usual, way may argue that

there is some t ∈ <ωω satisfying

A = {z ∈ ω : (∀α < λ)h(α) � (|t| + 1) = t⌢z ⇒ g(x) ≥ |t| + 1},

and we are done.

Since the constructible universe L satisfies CH and has a definable well-ordering

of ωω, we have the following:



116

Corollary V.33. (V = L) There is a definable function F : P(ω) → ω1ω such that

for each A ⊆ ω and g : ω1 → ω,

F (A) ≤ g ⇒ A is definable from g.

For the next higher type we have the following, whose proof we omit:

Proposition V.34. Let λ be a cardinal and h : λ→ ωω be a surjection. Then there

is a function F : P(ωω) → λω definable from h such that for each A ⊆ ωω and

g : λ→ ω,

F (A) ≤ g ⇒ A is definable from g, h, and a real.

5.8 Complete Boolean Algebras

We will now apply the coding results of Section 5.6 to obtain implications between

distributivity laws for complete Boolean algebras. Throughout this section, let B be

a complete Boolean algebra. We have the following:

Theorem V.35 (A). Let λ be an infinite cardinal. If

1) B is weakly (λω, ω)-distributive,

then B is (λ, 2)-distributive.

Theorem V.36 (B). Let κ be a weakly compact cardinal. If

1) B is weakly (2κ, κ)-distributive and

2) B is (α, 2)-distributive for each α < κ,

then B is (κ, 2)-distributive.



117

Theorem V.37 (C). If

1) B is weakly (2ω1 , ω1)-distributive,

2) B is (ω, 2)-distributive, and

3) 1 
B (ω1 < t),

then B is (ω1, 2)-distributive.

Theorem A follows from Proposition V.27, Theorem B follows from Proposi-

tion V.30, and Theorem C follows from Proposition V.29. We give the argument

for Theorem A, as the other two are quite similar. The point is the following easy in-

termediate lemma, whose order of quantifiers is not as powerful as Proposition V.27,

but the functions have the ordinal (λω)M instead of the set (ωλ)M as their domains:

Lemma V.38. LetM be a transitive model of ZF such that the ordinal λ is inM and

(ωλ)M can be well-ordered in M . Assume P(λ) −M ̸= ∅. Then there is a function

f : (λω)M → ω which cannot be everywhere dominated by any g : (λω)M → ω in M .

Proof. Use Proposition V.27 with any A ∈ P(λ)−M to get an f̃ : ωλ→ ω such that

there is no g̃ : (ωλ)M → ω in M satisfying

(∀x ∈ (ωλ)M) f̃(x) ≤ g̃(x).

Since (ωλ)M can be well-ordered in M , fix a bijection

η : (λω)M → (ωλ)M

in M . Define f : (λω)M → ω by

f(α) := f̃(η(α)).



118

That is, the following diagram commutes:

(ωλ)M
f̃ // ω

(λω)M .

η

OO

f

<<zzzzzzzzz

Let g : (λω)M → ω be an arbitrary function in M . Suppose, towards a contradiction,

that

(∀α < (λω)M) f(α) ≤ g(α).

This implies that if we define g̃ : (ωλ)M → ω by

g̃(x) := g(η−1(x)),

we have that g̃ ∈M , and

(∀x ∈ (ωλ)M) f̃(x) ≤ g̃(x).

This is a contradiction.

We now get Theorem A. Let us show the contrapositive. Let µ = λω. Suppose

B is not (λ, 2)-distributive. Force with B. The extension has a new subset of λ. By

the lemma above (using M for the ground model and V for the extension), there is

a function from µ to ω in the extension which cannot be everywhere dominated by

any function in the ground model. Hence, B is not weakly (µ, 2)-distributive.

With regard to Theorem C, we may ask if it is consistent with ZFC that every com-

plete Boolean algebra that is both (ω,∞)-distributive and weakly (λ, ω1)-distributive

for all λ must also be (ω1, 2)-distributive. We hope that this follows from MA or

a similar axiom. Indeed, a model where this fails would appear to be pathological

given the coding results we have seen. By Theorem C, we need only worry about

those B satisfying 1 
B (ω1 = t). The final result of this chapter will, together with

Theorem C, suggest that MA(ω1) does imply this.



119

The main idea of this next proposition is the following: if we have a size λ collec-

tion C of antichains in B each of size κ′, then if B is weakly (λ, κ′)-distributive, then

there is a maximal antichain A ⊆ B such that below each a ∈ A, each antichain in C

has < κ′ non-zero elements. Assuming also that B is (ω, |B|)-distributive, we can re-

peatedly apply this construction countably many times until we produce a maximal

antichain Bω such that below each b′ ∈ Bω, each antichain of B has only countably

many non-zero elements. That is, Bω will witness that B is “locally c.c.c.”. Then,

we will use a result of Baumgartner to conclude that since B is locally c.c.c. and

(ω, 2)-distributive, B is either (ω1, 2)-distributive or a Suslin tree can be embedded

into B. If we assume there are no Suslin trees (which follows from MA(ω1)), we

get that B must be (ω1, 2)-distributive. Given a complete Boolean algebra B and

a, b ∈ B, we say a is non-zero below b iff a ∧ b ̸= 0B.

Proposition V.39. Assume there are no Suslin trees. Let B be a complete Boolean

algebra and κ be a cardinal satisfying the following:

1) B is (ω,∞)-distributive;

2) B is κ-c.c.;

3) κ < ℵω1;

4) B is weakly (|B|κ′ , κ′)-distributive for each uncountable κ′ < κ.

Then B is (ω1, 2)-distributive.

Proof. We will construct a sequence of maximal antichains

⟨Bn ⊆ B : n ∈ ω⟩

such that B0 := {1B} and (∀n < m < ω)Bm refines Bn. Each Bn will have the

property that for any maximal antichain A below an element b ∈ Bn, for each



120

b′ ∈ Bn+1 extending b, A will have < |A| non-zero elements below b′. We will then

define the maximal antichain Bω to refine each Bn, and we will argue that below

each bω ∈ Bω, B is c.c.c.

Let κ < ℵω1 be the least cardinal such that B is κ-c.c. Define B0 := {1B}. We will

now define a maximal antichain B1 ⊆ B (which trivially refines B0). Every antichain

in B has size < κ. Consider an uncountable cardinal κ′ = ℵα < κ. Let λ := |B|κ′ .

Let ⟨Aβ : β < λ⟩ be an enumeration of the maximal antichains in B of size κ′. For

each β < λ, let ⟨aβ,γ : γ < κ′⟩ be an enumeration of the elements of Aβ. Let Ġ be

the canonical name for the generic filter. Fix a name ḟ such that 1 
 ḟ : λ̌→ κ̌′ and

1 
 (∀β < λ̌) ǎβ,ḟ(β) ∈ Ġ.

By hypothesis, B is weakly (λ, κ′)-distributive, so there is a maximal antichain C0,α ⊆

B (which trivially refines B0) and for each c ∈ C0,α a function gc : λ → κ′ such that

c 
 ḟ ≤ ǧc. Hence, for each c ∈ C0,α,

c 
 (∀β < λ̌)(∀γ < κ̌′) γ > ǧc(β) ⇒ ǎβ,γ ̸∈ Ġ.

This implies that for each Aβ, below each c ∈ C0,α there are < |Aβ| non-zero elements

of Aβ.

For each ℵα < κ, we have such a maximal antichain C0,α ⊆ B. Since κ < ℵω1 ,

the family ⟨C0,α ⊆ B : ℵα < κ⟩ is countable. Since B is (ω,∞)-distributive, we may

fix a single maximal antichain B1 ⊆ B which refines every C0,α. Note that B1 has

the property that for each maximal antichain A ⊆ B (below 1B) and b′ ∈ B1, A has

< |A| non-zero elements below b′.

We will now define B2. Consider an uncountable cardinal κ′ = ℵα < κ. Let

λ := |B|κ′ . Let ⟨Aβ : β < λ⟩ be an enumeration of all size κ′ antichains that are each a

partition of some element of B1. Since B is weakly (λ, κ′)-distributive, we may use an



121

argument similar to before to produce a maximal antichain C1,α which refines B1 such

that for each Aβ has < |Aβ| non-zero elements below each c ∈ C1,α. This completes

the construction of C1,α. Like before, we may use the (ω,∞)-distributivity of B to get

a common refinement B2 of every maximal antichain in the family ⟨C1,α : ℵα < κ⟩.

Note that B2 has the property that for each partition A of some element of B1 and

b′ ∈ B2, A has < |A| non-zero elements below b′.

We may continue this procedure to get a sequence ⟨Bn : n ∈ ω⟩ of maximal

antichains of B. The following diagram depicts the maximal antichains which we

have constructed, where an arrow represents refinement:

B0

�� ""E
EE

EE
EE

E

((RR
RRR

RRR
RRR

RRR
RRR

**VVVV
VVVV

VVVV
VVVV

VVVV
VVVV

VVV

C0,1

��

C0,2

||yy
yy
yy
yy

C0,3

vvlll
lll

lll
lll

lll
ll

...

tthhhhh
hhhh

hhhh
hhhh

hhhh
hhhh

hh

B1

�� ""E
EE

EE
EE

E

((RR
RRR

RRR
RRR

RRR
RRR

**VVVV
VVVV

VVVV
VVVV

VVVV
VVVV

VVV

C1,1

��

C1,2

{{vv
vv
vv
vv
v

C1,3

uukkkk
kkkk

kkkk
kkkk

kk ...

ssggggg
ggggg

ggggg
ggggg

ggggg
gg

...

Using the (ω,∞)-distributivity of B once more, we may get a single maximal an-

tichain Bω ⊆ B which refines each Bn. We will now argue that given any maximal

antichain A ⊆ B and bω ∈ Bω, A has only countably many non-zero elements below

b.

Fix an arbitrary maximal antichain A0 ⊆ B. Fix bω ∈ Bω. Let κ0 := |A0|. If

κ0 ≤ ω, we are done. If not, let b1 be the unique element of B1 above bω. By the

construction of B1, A0 has < κ0 non-zero elements below b1. Let κ1 < κ0 be the

number of such non-zero elements. That is, letting

A1 := {a ∧ b1 : a ∈ A0},



122

we have |A1| = κ1 < κ0. If κ1 ≤ ω, we are done because |{a∧ bω : a ∈ A0}| ≤ |A1| ≤

ω. Otherwise, let b2 be the unique element of B2 above bω. By the construction of

B2, A1 has < κ1 non-zero elements below b2. Let κ2 < κ1 be the number of such

non-zero elements. That is, letting

A2 := {a ∧ b2 : a ∈ A1},

we have |A2| = κ2 < κ1. If κ2 ≤ ω, we are done by similar reasons as before. If

not, then we may continue the procedure. However, the procedure will eventually

terminate. This is because if not, then we would have an infinite decreasing sequence

of cardinals

κ0 > κ1 > κ2 > ...,

which is impossible. Thus, A0 has only countably many non-zero elements below bω.

At this point, we have argued that below the maximal antichain Bω, B has the

c.c.c. Now, it must be that B is (ω1, 2)-distributive. Let us explain. It suffices to

show that B is (ω1, 2)-distributive below each element of Bω. Fix any bω ∈ Bω. Below

bω, B is c.c.c. and (ω, 2)-distributive. Suppose, towards a contradiction, that B is

not (ω1, 2)-distributive. Quoting a result of Baumgartner 1, there exists a Suslin tree

which, when turned upside down, can be embedded into B below bω. However, we

assumed there are no Suslin trees. This completes the proof.

1This was discovered independently by Andreas Blass who was told it was already proved by James Baumgartner.
However, neither the author nor Blass have been able to find a proof in the literature.



CHAPTER VI

Impossibility of Coding for Pointwise Eventual Domination

The purpose of this chapter is to discuss obstructions to computing the cofinality

of Bα(ωω,≤∗) for α ≥ 1. It will become clear that the methods of the previous

chapter do not suffice. Within the next chapter we will successfully perform the

computation by proving a strong infinite coding theorem.

In the first section, we observe that it is consistent with ZFC that cf All(ωω,≤∗) <

22ω . This tells us that a ZFC proof that cfBα(ωω,≤∗) = 2ω for α ≥ 1 must be

substantially different from our proof that cfBα(ω,≤) = 2ω, because the latter proof

generalized easily (Corollary V.21) to show that cf All(ω,≤) = 22ω . We have an

impossibility of coding result, in the sense that ZFC cannot prove the following: for

each A ⊆ ωω, Alice can produce a function f : ωω → ωω such that if g : ωω → ωω

pointwise eventually dominates f , then Bob can guess A from g using only continuum

many guesses.

In the second section, we show that the simplest (in some sense) encoding scheme

(which we call “Naive Vertical Coding”) to try to show cfBα(ωω,≤∗) = 2ω (for α ≥ 1)

is doomed to fail. Specifically, if for each A ⊆ ω we assign a function f : ωω → ωω

with the property that

(∀k ∈ ω)(∃a ∈ ωω) f(x)(k) = Exit([[a]])(x),

123



124

then A need not be constructible from any code for a Borel function g satisfying

f ≤∗ g. Hence, A need not be ∆1
2 in a Borel code for such a g. This is convincing

evidence that such an encoding scheme cannot work, because a countable set of

guesses for A from (a code c for) the Borel function g is likely to be a subset of

P(ω) ∩ L[c]. The reason for us considering “constructible from” is because we will

use forcing to get our counterexample: the generic real A will not be constructible

from any real in the ground model, and yet the function f associated to A will be

pointwise eventually dominated by a Borel function with a code in the ground model.

In the third section, we will show that an infinite coding theorem to prove

cfBα(ωω,≤∗) = 2ω (for α ≥ 1) must be specific to Borel functions, and cannot (in

ZFC) generalize to projective functions. This is because of the consistent existence

of a projective well-ordering of ωω together with ω2 ≤ b. In the final section, we show

what can go wrong when considering relations significantly weaker than pointwise

eventual domination.

6.1 Considering All Functions

The point of this section is to investigate the poset All(ωω,≤∗) of all functions

from ωω to ωω ordered by pointwise eventual domination. We will show that it is

qualitatively different than the poset All(ω,≤) of all functions from ωω to ω ordered

pointwise. The slogan is as follows: arbitrary subsets of ωω can be encoded into

elements of All(ω,≤), but cannot (in ZFC) be encoded into elements of All(ωω,≤∗).

For the rest of this section, we will use the symbol c to denote 2ω. Let ≤def(ωω)

be the binary relation defined by A ≤def(ωω) B iff A is definable in the language of

set theory by a formula using only B and real numbers as parameters. 1 Note that

1Technically, ≤def(ωω) is not definable by Tarski’s undefinability of truth, but by restricting quantifiers to a



125

for each B ⊆ ωω, the set {A ⊆ ωω : A ≤def(ωω) B} has size 2ω. By the results in

the previous chapter, there is a morphism from All(ω,≤) to ⟨P(ωω),≤def(ωω)⟩. This

implies

cf All(ω,≤) = 2c.

On the other hand, we will soon show that there can be no ZFC proof that there is a

morphism from All(ωω,≤∗) to ⟨P(ωω),≤def(ωω)⟩. We will prove this by constructing

a model of ZFC in which

cf All(ωω,≤∗) < 2c.

The idea is to build a model in which simultaneously there is a scale in ⟨ωω,≤∗⟩ of

length c and cf ⟨cc,≤∗⟩ < 2c.

Observation VI.1. Let ⟨ϕ−, ϕ+⟩ be a morphism from a poset P to a poset Q. Let λ

be an infinite cardinal. Let P′ be the poset of functions from λ to P ordered pointwise.

Let Q′ be defined similarly. Then there is a morphism ⟨ϕ′
−, ϕ

′
+⟩ from P′ to Q′.

Proof. Define ϕ′
− : λQ → λP and ϕ′

+ : λP → λQ as follows:

ϕ′
−(g) := x 7→ ϕ−(g(x))

ϕ′
+(f) := x 7→ ϕ+(f(x)).

The pair ⟨ϕ′
−, ϕ

′
+⟩ is as desired.

Combining this with Observations I.9 and I.10, we get the following corollaries.

Corollary VI.2. If there is an unbounded chain in ⟨ωω,≤∗⟩ of length a regular

cardinal κ, then in addition to κ ≤ d we have

cf ⟨cκ,≤⟩ ≤ cf All(ωω,≤∗).

sufficiently large initial segment of V we can avoid this problem.



126

Corollary VI.3. If there is a scale in ⟨ωω,≤∗⟩ of length κ (which must be a regular

cardinal), then in addition to κ = b = d we have

cf ⟨cκ,≤⟩ = cf All(ωω,≤∗).

Of course, there is an unbounded chain in ⟨ωω,≤∗⟩ of length b, so we have

(6.1) cf ⟨cb,≤⟩ ≤ cf All(ωω,≤∗).

Let κ be a regular cardinal. Proposition II.1 shows that cf ⟨cκ,≤⟩ ≥ c+. Hence, 2c =

c+ (and therefore GCH) implies cf ⟨cκ,≤⟩ = 2c. The following is a more interesting

implication:

Corollary VI.4. If 2b = c, then cf All(ωω,≤∗) = 2c.

Proof. Let λ = c and κ = b. We have λκ = (2ω)b = 2b = c = λ, so by Corollary II.27,

cf ⟨cb,≤⟩ = 2c. The result follows by the inequality (6.1).

Of course, 2b = c implies b < c. There are three cases:

1) 2b = c;

2) b = c;

3) b < c < 2b.

The corollary above handles the first case. The second case implies b = d = c, which

in turn implies there is a scale in ⟨ωω,≤∗⟩ of length c. This, by Corollary VI.3,

reduces the problem to studying the poset ⟨cc,≤⟩ (and in this case c is regular). In

particular,

(6.2) b = c and cf ⟨cc,≤⟩ < 2c ⇒ cf All(ωω,≤∗) < 2c.

We will now build a model of ZFC satisfying the left-hand side of (6.2).



127

Recall Theorem II.10 (due to Cummings and Shelah), which gives us that if λ is

a regular cardinal satisfying λ<λ = λ and Q is a poset in which every size λ subset

is bounded, then there is a λ-closed (meaning closed under sequences of length < λ)

and λ+-c.c. forcing D(λ,Q) such that 1 
 (cf ⟨λ̌λ̌,≤⟩ = δ̌) where δ = cfQ.

Suppose we start with a ground model satisfying b = c, c<c = c, and c+ < 2c.

Let λ := c and Q := ⟨λ+,≤⟩. When we force with D(λ,Q), in the extension we will

have cf ⟨cc,≤⟩ = λ+ < 2c. We will also have b = c, but this relies on the fact that

the forcing is λ-closed. Indeed, simply not adding reals and not collapsing cardinals

does not suffice to preserve b = c, as is shown in [36]. To get simultaneously c<c = c

and c+ < 2c, the tower number t is useful.

Recall that t is the minimum length of an unbounded chain in ⟨[ω]ω,⊇∗⟩. A useful

fact about t is 2<t = c (see [2] for a proof). This implies c<t = c. Also, t is regular

and t ≤ b. We will need the following simple observation (which can be made much

more general but there is no need here):

Observation VI.5. If P is a forcing that is c-closed and t = c, then 1 
 (t = c).

Proof. Let λ = c. Since P is c-closed, it does not add reals, so 1 
 ([ω]ω =
ˇ︷︸︸︷

[ω]ω ).

Additionally since P is c-closed, cardinals ≤ λ are preserved, so 1 
 (c = λ̌). Suppose,

towards a contradiction, that 1 ̸
 (t = c). There must be p ∈ P and a name τ̇

satisfying p 
 (τ̇ is an unbounded chain in ⟨[ω]ω,⊇∗⟩ of length < λ̌). This is a

contradiction, because P does not add sequences of length < c whose elements are in

the ground model.

We now have all the pieces for the promised consistency result. Recall from [33]

that Fn(I, J, λ) is the poset of partial functions from I to J of size < λ ordered by

extension. By Lemma 6.10 of [33], the forcing Fn(I, J, λ) has the (|J |<λ)+-c.c. When



128

J = 2 and |I| ≥ λ, Fn(I, J, λ) is the forcing to add |I| Cohen subsets of λ. In this

case, it is also called Add(λ, |I|).

Proposition VI.6. There is a forcing extension in which b = c and cf ⟨cc,≤⟩ < 2c,

so therefore

cf All(ωω,≤∗) < 2c.

Proof. By (6.1), it suffices to force both b = c and cf ⟨cc,≤⟩ < 2c. Without loss of

generality, assume t = c holds in M1 := V (we can always force Martin’s Axiom,

which implies this). Since t is regular, so is c. We will first construct a forcing

extension M2 of M1 which satisfies the following:

1) t = c;

2) c is regular;

3) c<c = c;

4) c+ < 2c.

Notice that 1) implies 2) and 3). Let M2 be a forcing extension of M1 obtained

by adding c++ Cohen subsets of c. That is, the forcing P which consists of partial

functions from c× c++ to {0, 1} of size < c (ordered by end-extension):

P = Fn(c× c++, 2, c).

Since this forcing is c-closed and t = c, by Observation VI.5 we have that M2 satisfies

1). Also, by the nature of this forcing, M2 satisfies 4). Hence, M2 satisfies 1) through

4). Since 2<c = c (because t = c), P has the c+-c.c., so cardinals > c as preserved.

Since P is c-closed, cardinals ≤ c are preserved as well.

Let λ := cM2 = c and δ := (λ+)M2 = λ+. By 1) through 4), we have (t = λ)M2 , (λ

is regular)M2 , (λ<λ = 2λ)M2 , and (λ+ < 2λ)M2 . Within M2 define Q := ⟨λ+,≤⟩. Of



129

course,

(b(Q) = cfQ = δ < 2λ)M2 .

Within M2 consider D(λ,Q). Let M3 be a forcing extension of M2 by D(λ,Q). Since

(D(λ,Q) is λ-closed)M2 , cM3 = λ. By 4) of Theorem II.10,

(cf ⟨λλ,≤⟩ = δ)M3 .

Since (D(λ,Q) is λ-closed and λ+-c.c.)M2 , we have (2λ)M2 = (2λ)M3 , which implies

(δ < 2λ)M3 .

Thus,

(cf ⟨cc,≤⟩ < 2c)M3 .

Since (D(λ,Q) is c-closed)M2 and (t = c)M2 , by Observation VI.5 we have (t =

c)M3 , and so

(b = c)M3 .

This completes the proof.

What remains at this point is to investigate the situation when b < c < 2b. We

will content ourselves by showing cf All(ωω,≤∗) = 2c in the natural model one would

construct in which b < c < 2b. The reader may skip the rest of this section with

no loss of continuity. The following lemma (which can be made much more general)

deals with the main technicality. The argument is essentially the same as the one

which shows that Fn(κ, ω, ω) forces d = κ.

Lemma VI.7. Let P := Fn(ω1 ×ω3, ω1, ω1). Assume P has the ω3-c.c. Let Ġ be the

canonical name for the generic, so 1 
 (Ġ : ω1 × ω3 → ω1). Let p ∈ P and τ̇ ∈ V P



130

satisfy p 
 (τ̇ : ω1 × ω2 → ω1). Then there is some γ < ω3 such that p 
 (no column

of τ̇ can everywhere dominate the γ̌-th column of Ġ). That is,

p 
 (∀β < ω2)(∃α < ω1) Ġ(α, γ̌) > τ̇(α, β).

Proof. First, note that P does not collapse any cardinals. Without loss of generality,

τ̇ is a nice name. That is,

τ̇ :=
∪

{{
ˇ︷ ︸︸ ︷

((α, β), v)} × Aα,β,v : α < ω1, β < ω2, v < ω1},

where each Aα,β,v is an antichain in P. Since P has the ω3-c.c., each Aα,β,v has size

≤ ω2. Thus, we may fix some γ < ω3 satisfying

(∀α < ω1)(∀β < ω2)(∀v < ω1)(∀f ∈ Aα,β,v) Dom(f) ⊆ ω1 × γ.

That is, all of the domains of the functions in all antichains involved with the nice

name τ̇ are to the left of the γ-th column of ω1 × ω3. Informally, this implies that

when we pass to a condition stronger than p to control the behavior of τ̇ in the

extension, we can do so without imposing any additional requirements on the γ-th

column of Ġ.

We claim that p 
 (no column of τ̇ can everywhere dominate the γ̌-th column

of Ġ). Suppose, towards a contradiction, that this is false. Let p1 ≤ p and β < ω2

satisfy p1 
 (the β̌-th column of τ̇ everywhere dominates the γ̌-th column of Ġ).

That is,

p1 
 (∀α < ω1) Ġ(α, γ̌) ≤ τ̇(α, β̌).

Fix α < ω1 such that (α, γ) ̸∈ Dom(p1). Now, strengthen p1 to a condition p2 so

that p2 decides τ̇(α̌, β̌) to be some fixed value v < ω1 and

Dom(p1) ∩ (ω1 × (ω3 − γ)) = Dom(p2) ∩ (ω1 × (ω3 − γ).



131

That is, every element of Dom(p2)−Dom(p1) is strictly to the left of the γ-th column

of ω1 × ω3.

Finally, let

p3 := p2 ∪ {((α, β), v + 1)}.

Hence, p3 ≤ p2 and p3 
 Ġ(α̌, β̌) = v̌ + 1. We now have a contradiction, because

p3 
 v̌ + 1 = Ġ(α̌, γ̌) ≤ τ̇(α̌, β̌) = v̌,

which is impossible.

We can now prove the following. The proof is routine, but we include all the

details to be careful.

Proposition VI.8. There is a forcing extension in which

b < c < 2b

and

cf All(ωω,≤∗) = 2c.

Proof. Let P := Fn(ω1 × ω3, ω1, ω1). Without loss of generality, assume GCH (we

can get this by forcing). Because of GCH, we have |P| = ω3, P has the ω3-c.c. and

ωω2
3 = ω3. Let M1 := V . Note that P does not add reals or collapse cardinals. Let

M2 be a forcing extension of M1 by P. By the nature of P,

(2ω1 = ω3)
M2 .

Also,

(2ω2 = ω3)
M2

(because there are (ωω2
3 )ω2 = ω3 P-nice names for subsets of ω2). Let Q ∈M2 be such

that (Q is the forcing to add ω2 Cohen reals)M2 . Let M3 be a forcing extension of M2



132

by Q. M3 will be our desired model. Note that (Q does not collapse cardinals)M2 .

Also, (|Q| = ω2 and Q has the ω1-c.c.)M2 , which implies (the number of Q-nice names

for subsets of ω1 is at most |ω1(ωω2)| = ω2
ω1 ≤ ωω2

2 = 2ω2 = ω3)
M3 , so

(2ω1 = ω3)
M3 .

By a similar argument,

(2ω2 = ω3)
M3 .

Since P does not add any reals, (b = ω1)
M2 . Since (Q is the forcing to add ω2

Cohen reals)M2 , also

(b = ω1)
M3

and

(c = ω2)
M3 .

Thus, we have

(ω1 = b < c < 2b)M3 .

By the above lemma applied in M1 to P, we have (cf ⟨ω1ω1,≤⟩ = ω3)
M2 . Hence,

(cf ⟨ω2ω1,≤⟩ = ω3)
M2 . Applying Corollary II.38 in M2 using λ = ω2 and κ = ω1, we

have

(cf ⟨ω2ω1,≤⟩ = ω3)
M3 .

Since (there is an unbounded chain in ⟨ωω,≤∗⟩ of length b = ω1)
M3 and (ω2 = c)M3 ,

we may apply Corollary VI.2 to get

(cf ⟨ω2ω1,≤⟩ ≤ cf All(ωω,≤∗))M3 .

Thus, we have shown

(ω3 = cf ⟨ω2ω1,≤⟩ ≤ cf All(ωω,≤∗) ≤ 2c = 2ω2 = ω3)
M3 ,



133

and so

(cf All(ωω,≤∗) = 2c)M3 ,

so we are done.

If we want to modify the above argument to get a model in which b < c < 2b and

yet cf All(ωω,≤∗) < 2c, we would need to gently add subsets of ω1. Adding Cohen

subsets of ω1 is somewhat violent. There seems to be no analogue of random reals for

subsets of ω1, and adding Sacks subsets of ω1 is not as gentle as one might expect.

The proofs in this section yield much more general results, which we will state

now without proof. In all these propositions, let P = ⟨P,≤P ⟩ be a poset, λ be an

infinite cardinal, κ ≤ λ be a regular cardinal, and P′ = ⟨λP,≤λP ⟩ be the poset of all

functions from λ to P ordered pointwise by ≤P . In this section, we investigated the

situation where ⟨P,≤P ⟩ = ⟨ωω,≤∗⟩ and λ = c.

Proposition VI.9. If there is an unbounded chain in ⟨P,≤P ⟩ of length κ, then in

addition to κ ≤ cf ⟨P,≤P ⟩ we have

cf ⟨λκ,≤⟩ ≤ cfP′.

Proposition VI.10. If there is a scale in ⟨P,≤P ⟩ of length κ, then in addition to

κ = b ⟨P,≤P ⟩ = cf ⟨P,≤P ⟩ we have

cf ⟨λκ,≤⟩ = cfP′.

Proposition VI.11. Let κ = b ⟨P,≤P ⟩ (so κ is regular). Assume |P | ≤ 2λ (so that

|λP | = 2λ). If λκ = λ, then cfP′ = 2λ.

Assume now that λ = c and that both P and ≤P are Borel (so we may talk about

⟨P,≤P ⟩M in any transitive model M of ZFC).



134

Proposition VI.12. If it is provable in ZFC that t ≤ b ⟨P,≤P ⟩ and cf ⟨P,≤P ⟩ ≤ c,

then there is a forcing extension in which t = c and cfP′ < 2c.

Proposition VI.8 is a bit too delicate to generalize in an easy to state way. Here is

the natural way to generalize the proof: first, start with a model in which b ⟨P,≤P ⟩

is equal to the cardinal κ. Next, add Cohen subsets of κ to make 2κ at least κ++.

Finally, add real numbers by a κ-c.c. forcing in a way to keep κ = b ⟨P,≤P ⟩ in the

extension while making c strictly between κ and 2κ.

6.2 Impossibility of Naive Vertical Coding

In this section we will use Sacks forcing, so the reader may want to quickly read

Section C for terminology and the basic lemmas. Let us quickly review some defini-

tions. Given a tree T ⊆ <ωω, Exit(T ) : ωω → ω is the function

Exit(T )(x) :=


0 if x ∈ [T ],

min{l : x � l ̸∈ T} otherwise.

Given x′ ∈ ωω, [[x′]] ⊆ <ωω is the set

[[x′]] := {x′ � l : l ∈ ω}.

Hence,

Exit([[x′]])(x) =


0 if x = x′,

min{l : x(l − 1) ̸= x′(l − 1)} otherwise.

That is, Exit([[x′]])(x) is the level at which x deviates from x′.

The prototypical result of the last chapter is that if M is a transitive model of

ZFC and x′ ∈ ωω −M , then there is no g : (ωω)M → ω in M satisfying

(∀x ∈ (ωω)M) Exit([[x′]])(x) ≤ g(x).



135

Recall that we dubbed this encoding x′ 7→ Exit([[x′]]) vertical coding. One might

hope this same trick can be recycled to handle functions from ωω to ωω. We will

explain.

Definition VI.13. Given a function f : ωω → ωω and n ∈ ω, the function

x 7→ f(x)(n)

from ωω to ω is the n-th slice of f .

Definition VI.14. Given a sequence X = ⟨xn ∈ ωω : n ∈ ω⟩, fX : ωω → ωω is the

function whose n-th slice is Exit([[xn]]). That is,

fX (x)(n) := Exit([[xn]])(x).

Suppose M is a transitive model of ZFC and X = ⟨xn ∈ ωω : n ∈ ω⟩ is a sequence

such that no xn is in M . Now, consider an arbitrary g : (ωω)M → ωω in M . Our

hope is that by a suitable choice of X , g cannot satisfy

(6.3) (∀x ∈ (ωω)M) fX (x) ≤∗ g(x).

For each n ∈ ω, since xn ̸∈M , the set

Xn := {x ∈ (ωω)M : g(x)(n) < fX (x)(n)}

is non-empty. We see that (6.3) is equivalent to

(∀x ∈ (ωω)M) {n ∈ ω : x ∈ Xn} is finite.

Thus, our hope is for infinitely many Xn to contain a common point. Unfortunately,

we cannot ensure this (in ZFC) no matter how cleverly we choose the sequence X .

Specifically, if V is a Sacks forcing extension of M , then for any sequence X , there



136

is a function g : (ωω)M → ωω in M which satisfies (6.3); this is why we call the

encoding scheme naive vertical coding. In fact, the function g can be chosen to be

Borel with a code in M , and letting g̃ : ωω → ωω be the function in V coded by the

same Borel code,

(∀x ∈ ωω) fX (x) ≤∗ g̃(x).

Establishing this fact is the point of this section. The proof is complicated, so we

will warm up with a sequence of easier results which systematically introduce the

relevant ideas.

For the rest of this section, let M denote a transitive model of ZFC. First, note

that if the sequence

X = ⟨xn ∈ ωω : n ∈ ω⟩

is in M , then fX � M ∈ M , and (6.3) holds when we set g := fX � M . Even if

(∀n ∈ ω) xn ∈M , it does not follow that X ∈M . Also, it might be the case that

{n ∈ ω : xn ∈M}

is not in M . Despite these last two facts, the situation the reader should imagine is

when (∀n ∈ ω) xn ̸∈ M (which of course implies X ̸∈ M). Later, we shall see that

the situation becomes further complicated when

{⟨n1, n2⟩ : xn1 = xn2}

is not in M .

Note that if all the xn’s are the same, then (6.3) is satisfied by the function

g(x) := (n 7→ n), because (∀x ∈ ωω) f(x) : ω → ω is a constant function. This

phenomenon can occur even if we require the xn to all be distinct from one another:



137

Proposition VI.15. Suppose V is ωω-bounding over M . Let X ′ be the set of limit

points of elements of the sequence X = ⟨xn : n ∈ ω⟩. If X ′ is countable, then there

is some y ∈ (ωω)M satisfying

(∀x ∈ ωω) fX (x) ≤∗ y.

Proof. Assuming X ′ is countable, there is some y′ ∈ ωω that eventually dominates

each element of

{fX (x) : x ∈ X ′}.

Since V is ωω-bounding over M , fix some y ∈ (ωω)M that eventually dominates both

y′ and the identity function n 7→ n.

Consider any x ∈ ωω. If x ̸∈ X ′, then there is some neighborhood of x containing

only finitely many elements of X , so fX (x) is bounded by the definition of fX , so of

course fX (x) ≤∗ y. On the other hand, if x ∈ X ′, then

fX (x) ≤∗ y′ ≤∗ y

by construction.

If the set X ′ in the proposition above is uncountable, then by applying the Cantor-

Bendixson Theorem to the closed set X ′, we see that |X ′| = 2ω. Indeed, without

loss of generality we may assume that the points in X are dense in ωω; it does not

hurt to add all rational numbers to the sequence X . When we make this assumption,

Im(fX ) is unbounded:

Proposition VI.16. Suppose the set X ′ of limit points of elements of the sequence

X = ⟨xn : n ∈ ω⟩ is dense in ωω. Then Im(fX ) is unbounded. That is, there is no

y ∈ ωω (let alone y ∈ (ωω)M) satisfying

(∀x ∈ ωω) fX (x) ≤∗ y.



138

Proof. Consider any y ∈ ωω. We will construct an x ∈ ωω satisfying fX (x) ̸≤∗ y.

That is, an x satisfying

(∃∞n ∈ ω) fX (x)(n) > y(n).

To build this x, first let n0 = 0. Let t0 ∈ <ωω be be a node that is not an initial

segment of xn0 , but t0 deviates from xn0 after level y(n0). Next, let n1 > n0 be such

that t0 is an initial segment of xn1 . Such an n1 exists because {xn : n ∈ ω} is dense

and [t0] is an open set. Let t1 ∈ <ωω be an extension of t0 that is not an initial

segment of xn1 , but which deviates from xn1 after level y(n1). Continuing like this,

we get a sequence

t0 ⊑ t1 ⊑ t2 ⊑ ....

Let x :=
∪
i∈ω ti. By construction, fX (x)(ni) > y(ni) for all i ∈ ω. Hence, fX (x)(n) >

y(n) for infinitely many n.

The fact that Im(fX ) can be unbounded makes it even more shocking that fX is

pointwise eventually dominated by some g ∈M when V is a Sacks forcing extension

of M .

The next proposition illustrates a key idea we will later enhance. For simplicity,

the reader may want to first consider the case that the xn’s are distinct.

Proposition VI.17. Let X = ⟨xn : n ∈ ω⟩. Suppose

T = ⟨Tn : n ∈ ω⟩ ∈M

is a sequence of subtrees of <ωω satisfying the following:

1) (∀n ∈ ω)xn ∈ [Tn].

2) (∀n1, n2 ∈ ω) one of the following holds:

a) xn1 = xn2;



139

b) [Tn1 ] ∩ [Tn2 ] = ∅.

Then there is a Borel function g : ωω → ωω that has a Borel code in M satisfying

(∀x ∈ ωω) fX (x) ≤∗ g(x).

Proof. Let g : ωω → ωω be defined by

g(x)(n) := max{Exit(Tn)(x), n}.

Certainly g is Borel, with a code in M (because T ∈M). The “Exit(Tn)(x)” part of

the definition is doing most of the work. Specifically, for any n ∈ ω and x ̸∈ [Tn],

fX (x)(n) = Exit([[xn]])(x) ≤ Exit(Tn)(x).

This is because since xn is a path through the tree Tn, x ̸∈ [Tn] implies the level

where x exits Tn is not before the level where x differs from xn. Thus, we have

(∀n ∈ ω)x ̸∈ [Tn] ⇒ fX (x)(n) ≤ g(x)(n).

Suppose, towards a contradiction, that there is some x ∈ ωω satisfying fX (x) ̸≤∗

g(x). Fix such an x. Let A be the infinite set

A := {n ∈ ω : fX (x)(n) > g(x)(n)}.

It must be that x ∈ [Tn] for each n ∈ A. By hypothesis, this implies xn1 = xn2

for all n1, n2 ∈ A. Thus, fX (x)(n) is the same constant for all n ∈ A. This is a

contradiction, because g(x)(n) ≥ n for all n.

In the proposition above, we may think that the sequence T witnesses that distinct

elements of X are indeed distinct. Said another way, T is a tool to separate the xn’s.

Unfortunately, if

{⟨n1, n2⟩ : xn1 = xn2} ̸∈M,



140

then there can be no such T ∈M . Hence, we must enhance the proposition to make

further progress.

The next definition is a more complicated analogue of the sequence T designed

to witness the separation of the elements of X from one another. When a separation

device D for X exists in a transitive model of ZFC, that model can produce a Borel

function g : ωω → ωω which pointwise eventually dominates fX . However, unlike the

case for sequences T satisfying the hypotheses of the proposition above, it is always

the case that M contains a separation device for X when V is a forcing extension

of M by the forcing to add a single Sacks real. This definition was extracted from

a longer forcing argument. We present the shorter proof that a separation device

exists in the ground model.

In this definition, we fix a canonical bijection η : ω → [ω]2 so that for each

ñ ∈ ω, we may talk about the ñ-th pair η(ñ) ∈ [ω]2. That idea is that for each

{n1, n2} = η(ñ) ∈ [ω]2, the functions Fñ,n1 and Fñ,n2 , together with the finite sets

I(n1) and I(n2), separate xn1 and xn2 as much as possible. For n ∈ η(ñ), the function

Fñ,n : ñ2 → P(<ωω) is shrink-wrapping 2ñ possibilities for the value of xn. We need

to make sure that what contains one possibility for xn1 is sufficiently disjoint from

what contains another possibility for xn2 , even if it is not possible that simultaneously

both xn1 and xn2 are in the respective containers.

Definition VI.18. A separation device D for X = ⟨xn : n ∈ ω⟩ is a pair ⟨F , I⟩ such

that I : ω → [ωω]<ω and F is a collection of functions Fñ,n for ñ ∈ ω and n ∈ η(ñ)

which satisfy the following conditions.

1) Fñ,n : ñ2 → P(<ωω) and each element of Im(Fñ,n) is a leafless subtree of <ωω.

2) (∃s ∈ ñ2)xn ∈ [Fñ,n(s)].



141

3) given {n1, n2} = η(ñ), (∀s1, s2 ∈ ñ2) one of the following relationships holds

between the sets C1 := [Fñ,n1(s1)] and C2 := [Fñ,n2(s2)]:

3a) C1 = C2 and if either xn1 ∈ C1 or xn2 ∈ C2, then xn1 = xn2 ;

3b) (∃x ∈ I(n1) ∩ I(n2))C1 = C2 = {x};

3c) C1 ∩ C2 = ∅, and moreover there is an l ∈ ω such that all elements of C1

deviate from all elements of C2 before level l.

We do not need all parts of the definition for the next proposition. Specifically,

we can replace 3a) with the weaker statement that if xn2 ∈ C2, then xn1 = xn2 . Also,

we do not need the function I and we can replace 3b) with the weaker statement

that (∃x ∈ ωω)C1 = C2 = {x}. Later, when we show there is always a separation

device in the ground model when we perform Sacks forcing, we can easily build the

device to satisfy the following additional property for all ñ ∈ ω and n ∈ η(ñ):

4) (∀s1, s2 ∈ ñ2) one of the following relationships holds between the sets C1 :=

[Fñ,n(s1)] and C2 := [Fñ,n(s2)]:

4a) (∃x ∈ I(n))C1 = C2 = {x};

4b) C1 ∩ C2 = ∅, and moreover there is an l ∈ ω such that all elements of C1

deviate from all elements of C2 before level l.

Note this is a requirement on the single function Fñ,n where n ∈ η(ñ), and not a

requirement on the pair of functions ⟨Fñ,n1 , Fñ,n2⟩ where {n1, n2} = η(ñ).

Proposition VI.19. Let X = ⟨xn : n ∈ ω⟩. Suppose

D = ⟨F , I⟩ ∈M

is a separation device for X . Then there is a Borel function g : ωω → ωω that has a



142

Borel code in M satisfying

(∀x ∈ ωω) fX (x) ≤∗ g(x).

Proof. For each n ∈ ω, let Tn ⊆ <ωω be the tree

Tn :=
∩

{
∪

Im(Fñ,n) : ñ ∈ ω ∧ n ∈ η(ñ)}.

That is, for each t ∈ <ωω, t ∈ Tn iff

(∀ñ ∈ ω)[n ∈ η(ñ) ⇒ t ∈
∪
s∈ñ2

Fñ,n(s)].

By part 2) of the definition of a separation device,

(∀n ∈ ω) xn ∈ [Tn].

Let e(n2) be the least level l such that if n1 < n2, ñ satisfies η(ñ) = {n1, n2}, and

s1, s2 ∈ ñ2 satisfy [Fñ,n1(s1)]∩ [Fñ,n2(s2)] = ∅, then all elements of [Fñ,n1(s1)] deviate

from all elements of [Fñ,n2(s2)] before level l.

Let g : ωω → ωω be defined by

g(x)(n) := max{Exit(Tn)(x), e(n), n}.

Certainly g is Borel, with a code in M (because D ∈ M). Just like in the previous

proposition, since xn ∈ [Tn], for all x ∈ ωω and n ∈ ω we have

x ̸∈ [Tn] ⇒ fX (x)(n) ≤ g(x)(n).

Suppose, towards a contradiction, that there is some x ∈ ωω satisfying fX (x) ̸≤∗ g(x).

Fix such an x. Let A be the infinite set

A := {n ∈ ω : fX (x)(n) > g(x)(n)}.

It must be that x ∈ [Tn] for each n ∈ A. Since A is infinite, we may fix n1, n2 ∈ A

satisfying the following:



143

i) n1 < n2;

ii) fX (x)(n1) ≤ n2.

Let ñ satisfy η(ñ) = {n1, n2}. Since x ∈ [Tn1 ], fix some s′1 ∈ ñ2 satisfying

x ∈ [Fñ,n1(s
′
1)] =: C1.

Also, since xn2 ∈ [Tn2 ], fix some s2 ∈ ñ2 satisfying

xn2 ∈ [Fñ,n2(s2)] =: C2.

By the definition of e(n2) and the fact that Exit([[xn2 ]])(x) > e(n2), it cannot be

that C1 ∩ C2 = ∅. Thus, by part 3) of the definition of a separation device, one of

the following holds:

a) xn1 = xn2 ;

b) C1 = C2 = {x}.

Now, b) cannot be the case because C2 = {x} implies xn2 = x, which implies

fX (x)(n2) = 0, which contradicts the fact that fX (x)(n2) > g(x)(n2). On the other

hand, a) cannot be the case because xn1 = xn2 implies fX (x)(n1) = fX (x)(n2), which

by ii) implies

fX (x)(n2) = fX (x)(n1) ≤ n2 ≤ g(x)(n2) < fX (x)(n2),

which is impossible.

We will soon prove that there is always a separation device in M for a sequence

X when V is a Sacks forcing extension of M . First we present a forcing lemma that

is a basic building block for separating xn1 from xn2 . Combining this with a fusion

argument gives us the result.



144

Lemma VI.20. Let P be any forcing. Let p0, p1 ∈ P be conditions. Let τ̇0, τ̇1 be

names for elements of ωω. Suppose that there is no x ∈ ωω satisfying the following

two statements:

1) p0 
 τ̇0 = x̌;

2) p1 
 τ̇1 = x̌.

Then there exist p′0 ≤ p0; p
′
1 ≤ p1; and t0, t1 ∈ <ωω satisfying the following:

3) t0 ⊥ t1,

4) p′0 
 τ̇0 ⊒ ť0,

5) p′1 
 τ̇1 ⊒ ť1.

Proof. There are two cases to consider. The first is that there exists some x ∈ ωω

such that 1) is true. When this happens, 2) is false. Hence, there exist t1 ∈ <ωω

and p′1 ≤ p1 such that 5) is true and x ⊥ t1. Letting p′0 := p0 and t0 be some initial

segment of x incompatible with t1, we see that 3) and 4) are true.

The second case is that there is no x ∈ ωω satisfying 1). When this happens,

there exist conditions pa0, p
b
0 ≤ p0 and incompatible nodes sa, sb ∈ <ωω satisfying

both pa0 
 τ̇0 ⊒ ša and pb0 
 τ̇0 ⊒ šb. Now, it cannot be that both p1 
 τ̇1 ⊒ ša and

p1 
 τ̇1 ⊒ šb. Assume, without loss of generality, that p1 ̸
 τ̇1 ⊒ ša. This implies

that there exist p′1 ≤ p1 and t1 ∈ <ωω such that sa ⊥ t1 and p′1 
 τ̇1 ⊒ ť1. Letting

p′0 := pa0 and t0 := sa, we are done.

At this point, the reader may want to think about how to use this lemma to prove

that if V is a Sacks forcing extension of M and X = ⟨xn : n ∈ ω⟩ satisfies

(∀n ∈ ω) xn ̸∈M



145

and

{⟨n1, n2⟩ : xn1 = xn2} ∈M,

then there is a sequence T of subtrees of ωω satisfying the hypotheses of Proposi-

tion VI.17.

The next lemma explains the appearance of I in the definition of a separation

device. We are intending the name τ̇ to be such that τ̇(n) refers to the xn in the

sequence X = ⟨xn : n ∈ ω⟩.

Lemma VI.21. Consider Sacks forcing S. Let p ∈ S be a condition and τ̇ a name

satisfying p 
 τ̇ : ω → ωω. Then there exists a condition p′ ≤ p and there exists a

function I : ω → [ωω]<ω satisfying

p′ 
 (∀n ∈ ω) τ̇(n) ∈ V̌ → τ̇(n) ∈ Ǐ(n).

Proof. We may easily construct a function R : ω → S that satisfies the conditions

of Lemma C.4 such that R(∅) ≤ p and for each s ∈ n2, either R(s) 
 τ̇(n) ̸∈ V̌ or

(∃x ∈ ωω)R(s) 
 τ̇(n) = x̌. Define I as follows:

I(n) := {x ∈ ωω : (∃s ∈ n2)R(s) 
 τ̇(n) = x̌}.

Let p′ :=
∩
n

∪
{R(s) : s ∈ n2}. The condition p′ and the function I are as desired.

We are now ready for the main forcing argument of this section.

Proposition VI.22. Consider Sacks forcing S. Let p ∈ S be a condition and τ̇ be

a name satisfying p 
 τ̇ : ω → ωω. Then there exists a condition q ≤ p and there

exists a pair D = ⟨F , I⟩ satisfying

q 
 Ď is a separation device for ⟨τ̇(n) : n ∈ ω⟩.



146

Proof. First, let p′ ≤ p and I : ω → [ωω]<ω be given by the lemma above. That is,

for each n ∈ ω,

p′ 
 τ̇(ň) ∈ V̌ → τ̇(ň) ∈ Ǐ(ň).

We will define a function R : <ω2 → S with R(∅) ≤ p′ satisfying conditions 1) and

2) of Lemma C.4. At the same time, we will construct a family of functions

F = ⟨Fñ,n : ñ ∈ ω, n ∈ η(ñ)⟩.

Our q will be

q :=
∩
ñ

∪
s∈ñ2

R(s).

The function Fñ,n will return a leafless subtree of <ωω. We will have it so for all

n ∈ ω and all ñ satisfying n ∈ η(ñ),

(∀s ∈ ñ2)R(s) 
 τ̇(ň) ∈ [F̌ñ,n(š)].

Thus, q will easily force that D satisfies conditions 1) and 2) of the definition of a

separation device. To show that q forces condition 3) of that definition, it suffices

to show that for all {n1, n2} = η(ñ) and all s1, s2 ∈ ñ2, one of the following holds,

where T1 := Fñ,n1(s1) and T2 := Fñ,n2(s2):

3a′) T1 = T2 and (∀s ∈ ñ2),

R(s) 
 (τ̇(ň1) ∈ [Ť1] ∨ τ̇(ň2) ∈ [Ť2]) → τ̇(ň1) = τ̇(ň2);

3b′) (∃x ∈ I(n1) ∩ I(n2)) [T1] = [T2] = {x};

3c′) [T1] ∩ [T2] = ∅, and moreover Stem(T1) ⊥ Stem(T2).

We will define the functions Fñ,n and the conditions R(s) for s ∈ ñ2 by induction

on ñ. Beginning at ñ = 0, let {n1, n2} = η(0). We will define F0,n1 : 02 → S,



147

F0,n2 : 02 → S, and R(∅) ≤ p′. If p′ 
 τ̇(ň1) = τ̇(ň2), then let R(∅) := p′ and

define F0,n1(∅) = F0,n2(∅) = T where T ⊆ <ωω is any leafless tree satisfying p′ 


τ̇(ň1) ∈ [Ť ]. This causes 3a′) to be satisfied. If p′ ̸
 τ̇(ň1) = τ̇(ň2), then let

t1, t2 ∈ <ωω be incomparable nodes and let R(∅) ≤ p′ satisfy R(∅) 
 τ̇(ň1) ⊒ ť1 and

R(∅) 
 τ̇(ň2) ⊒ ť2. Then we may define F0,n1(∅) = T1 and F0,n2(∅) = T2 where T1

and T2 are leafless trees such that Stem(T1) ⊒ t1, Stem(T2) ⊒ t2, R(∅) 
 τ̇(ň1) ∈ [Ť1],

and R(∅) 
 τ̇(ň2) ∈ [Ť2]. This causes 3c′) to be satisfied.

We will now handle the successor step of the induction. Let {n1, n2} = η(ñ)

for some ñ > 0. We will define R(s) for each s ∈ ñ2, and we will define both

Fñ,n1 and Fñ,n2 assuming R(s′) has been defined for each s′ ∈ <ñ2. To keep the

construction readable, we will start with initial values for the R(s)’s and the Fñ,n’s,

and we will modify them as the construction progresses until we arrive at their final

values. That is, we will say “replace R(s) with a stronger condition...” and “shrink

the tree Fñ,n(s)...”. When we make these replacements, it is understood that still

R(s) 
 τ̇(ň) ∈ [F̌ñ,n(š)]. The construction consists of 5 steps.

Step 1: First, for each s ∈ (ñ−1)2, let R(s⌢0) and R(s⌢1) be arbitrary extensions

of R(s) such that Stem(R(s⌢0)) ⊥ Stem(R(s⌢1)). Also, for each n ∈ {n1, n2} and

s ∈ ñ2, let Fñ,n(s) be an arbitrary leafless subtree of <ωω such that R(s) 
 τ̇(ň) ∈

[F̌ñ,n(š)].

Step 2: For each s ∈ ñ2 and n ∈ {n1, n2}, strengthen R(s) so that either R(s) 


τ̇(ň) ̸∈ V̌ or (∃x ∈ I(n))R(s) 
 τ̇(ň) = x̌. If the latter case holds, shrink Fñ,n(s) so

that it has only one path.

Step 3: Fix n ∈ {n1, n2}. For each pair of distinct s1, s2 ∈ ñ2, strengthen each

R(s1) and R(s2) and shrink each Fñ,n(s1) and Fñ,n(s2) so that one of the following

holds:



148

i) (∃x ∈ I(n)) [Fñ,n(s1)] = [Fñ,n(s2)] = {x};

ii) Stem(Fñ,n(s1)) ⊥ Stem(Fñ,n(s2)).

That is, if i) cannot be satisfied, then we may use Lemma VI.20 to satisfy ii).

Step 4: For each pair of distinct s1, s2 ∈ ñ2 such that either R(s1) 
 τ̇(ň1) ̸∈ V̌

or R(s2) 
 τ̇(ň2) ̸∈ V̌ , use Lemma VI.20 to strengthen R(s1) and R(s2) and shrink

Fñ,n1(s1) and Fñ,n1(s1) so that

Stem(Fñ,n1(s1)) ⊥ Stem(Fñ,n2(s2)).

Step 5: For each s ∈ ñ2, do the following: If R(s) 
 τ̇(ň1) = τ̇(ň2), then replace

both Fñ,n1(s) and Fñ,n2(s) with Fñ,n1(s) ∩ Fñ,n2(s). Otherwise, strengthen R(s) and

shrink Fñ,n1(s) and Fñ,n2(s) so that

Stem(Fñ,n1(s)) ⊥ Stem(Fñ,n2(s)).

This completes the construction of {R(s) : s ∈ ñ2}, Fñ,n1 , and Fñ,n2 . We will now

prove that it works. Fix s1, s2 ∈ ñ2 and let T1 := Fñ,n1(s1) and T2 := Fñ,n2(s2). We

must show that one of 3a′), 3b′), or 3c′) holds. The cleanest way to do this is to

break into cases depending on whether s1 = s2 or not.

Case s1 ̸= s2: If either R(s1) 
 τ̇(ň1) ̸∈ V̌ or R(s2) 
 τ̇(ň2) ̸∈ V̌ , then by

Step 4, we see that 3c′) holds. Otherwise, by Step 2, (∃x ∈ I(n1)) [T1] = {x} and

(∃x ∈ I(n1)) [T2] = {x}. Hence, easily either 3b′) or 3c′) holds.

Case s1 = s2: If R(s1) ̸
 τ̇(ň1) = τ̇(ň2), then by Step 5, we see that 3c′) holds.

Otherwise, we are in the case that

R(s1) 
 τ̇(ň1) = τ̇(ň2).

By Step 5, T1 = T2. Now, if R(s1) 
 τ̇(ň1) ∈ V̌ , then of course also R(s1) 
 τ̇(ň2) ∈

V̌ , and by Step 2) we see that 3b′) holds. Otherwise, R(s1) 
 τ̇(ň1) ̸∈ V̌ . Hence,



149

[T1] is not a singleton. We will show that 3a′) holds. Consider any s ∈ ñ2. We must

show

R(s) 
 (τ̇(ň1) ∈ [Ť1] ∨ τ̇(ň2) ∈ [Ť1]) → τ̇(ň1) = τ̇(ň2).

If s = s1, we are done. Now suppose s ̸= s1. It suffices to show

R(s) 
 ¬(τ̇(ň1) ∈ [Ť1] ∨ τ̇(ň2) ∈ [Ť1]).

That is, it suffices to show R(s) 
 τ̇(ň1) ̸∈ [Ť1] and R(s) 
 τ̇(ň2) ̸∈ [Ť1]. Since s ̸= s1

and [T1] is not a singleton, by Step 3, Stem(Fñ,n(s)) ⊥ Stem(T1). Recall that

R(s) 
 τ̇(ň1) ∈ [F̌ñ,n(š)].

Hence, since [F̌ñ,n(š)] ∩ [T1] = ∅, R(s) 
 τ̇(ň1) ̸∈ [Ť1]. By a similar argument,

R(s) 
 τ̇(ň2) ̸∈ [Ť1]. This completes the proof.

We now have the desired result of this section:

Corollary VI.23. Let X = ⟨xn ∈ ωω : n ∈ ω⟩. Assume V is a forcing extension

of M by the forcing to add a single Sacks real. Then there is a Borel function

g : ωω → ωω that has a Borel code in M satisfying

(∀x ∈ ωω) fX (x) ≤∗ g(x).

Proof. Combine Proposition VI.19 and Proposition VI.22 together.

A natural question now is which forcings are such that each fX : ωω → ωω in the

extension is pointwise eventually dominated by some function in the ground model.

More combinatorially, we may ask about the property that every sequence of reals in

the extension has a separation device in the ground model. We have shown that Sacks

forcing has this property. It is not obvious whether all ωω-bounding forcings have

this property. It is also not obvious whether the Sacks property implies this property.



150

6.3 Long Projective Well-orderings

In the next chapter, we will prove Theorem VII.28. In the statement of that

theorem, it is natural to conjecture that we can remove the requirement that g be

Borel and replace it with the weaker requirement that g be projective. This would

yield a “Projective Dominator Coding Theorem”. Specifically, one could conjecture

the following:

Conjecture VI.24. For each projective function g : ωω → ωω there is a countable

set G(g) ⊆ P(ω) and for each A ⊆ ω there is a projective function fA : ωω → ωω

such that if g : ωω → ωω satisfies (∀x ∈ ωω) fA(x) ≤∗ g(x), then A ∈ G(g).

What we have in mind for G(g) is the set of elements of P(ω) that are definable

in the language of set theory using g as a parameter. This conjecture may follow

from projective determinacy or large cardinals, which would be very interesting, but

there is an obstruction to proving it in ZFC alone. Specifically, the conjecture is false

when we assume the following:

1) There is a projective well-ordering of ωω;

2) ω2 ≤ b;

3) The map (A, x) 7→ fA(x) is projective.

Let us explain. Statement 2) is equivalent to each subset of ωω of size ≤ ω1 being

bounded in the poset ⟨ωω,≤∗⟩. Statement 3) is satisfied by reasonable encoding

schemes (and it is satisfied in Theorem VII.28) There is a model of ZFC which

satisfies the first two statements: In [19], Harrington constructs a model in which

MA + ¬CH holds (and therefore b = 2ω) and there is a projective well-ordering of

the reals.



151

Assume 1), 2), and 3). Let ≺ be a projective well-ordering of the reals, and let

⟨Aα ∈ P(ω) : α < γ⟩

be the enumeration of P(ω) in the order given by ≺. Note that it might be the case

that γ > 2ω (but still |γ| = 2ω). Since ω2 ≤ b, for each x ∈ ωω the set

{fAα(x) ∈ ωω : α < ω1}

is bounded in the poset ⟨ωω,≤∗⟩. Consider the function g′ : ωω → ωω defined by

g′(x) := the ≺ -least y ∈ ωω such that (∀α < ω1) fAα(x) ≤∗ y.

Note that the ordering ≺ is used twice in the definition of g′. Since ≺ is a projective

well-ordering, g′ is a projective function. There cannot be a guessing scheme g 7→

G(g) which accompanies A 7→ fA to satisfy the conjecture, because (∀α < ω1)

(∀x ∈ ωω) fAα(x) ≤∗ g(x),

and it is impossible to guess all of the uncountably many sets Aα for α < ω1 from g

using only countably many guesses.

6.4 Beyond Pointwise Eventual Domination

The purpose of this section is to provide an upper bound for the type of result in

the spirit of Theorem 6.2, which we will prove in the next chapter. Specifically, one

might ask the following: for each A ⊆ ω, is there some Borel function f : ωω×ωω → ω

such that if g : ωω × ωω → ω is Borel and satisfies

(*) (∀r ∈ ωω)(∃c ∈ ωω) f(r, c) ≤ g(r, c),



152

then A is definable from any code for g? That is, the functions are from ωω × ωω

to ω, instead of ωω × ω to ω. We will now show that this is not a theorem of ZFC.

Specifically, we will show that it is false assuming ¬CH.

Temporarily let R denote the binary relation defined by fRg iff (*) holds. It

suffices to show that there is a size ω1 family G of Borel functions from ωω × ωω

to ω such that for each Borel f : ωω × ωω → ω, there is some g ∈ G satisfying

fRg. Combining this with ¬CH and assuming towards a contradiction that there

is such an encoding scheme A 7→ fA, by the pigeonhole principle there must be an

uncountable set A ⊆ P(ω) and a single g ∈ G satisfying

(∀A ∈ A) fARg.

This contradicts the hypothesis on the encoding scheme A 7→ fA because for each g,

there are only countably many A ∈ P(ω) that are definable (in the language of set

theory by a formula) using a fixed code for g as a parameter.

The trick is the following easy lemma which allows us to perform a diagonalization:

Lemma VI.25. For each α < ω, there is a function gα : ωω × ωω × ωω → ω whose

graph is Σ0
α+1 such that if f : ωω × ωω → ω is any function whose graph is Σ0

α, then

there is some a ∈ ωω satisfying

(∀r, c ∈ ωω) f(r, c) = gα(a, r, c).

Proof. Let Xα ⊆ ωω× ωω× ωω× ω be a universal Σ0
α set. That is, Xα is Σ0

α and for

each Σ0
α set S ⊆ ωω × ωω × ω, there is some a ∈ ωω satisfying

(∀r, c ∈ ωω)(∀n ∈ ω)[(a, r, c, n) ∈ Xα ⇔ (r, c, n) ∈ S].

We will define gα to be a function whose graph is Σ0
α+1, were the a-th section of its

graph is the same as the a-th section of Xα whenever the latter section is the graph



153

of a function. That is, for each a, r, c ∈ ωω, define gα(a, r, c) as follows:

gα(a, r, c) :=


n if (a, r, c, n) ∈ Xα ∧ (∃!m) (a, r, c,m) ∈ Xα,

0 if ¬(∃!m) (a, r, c,m) ∈ Xα.

This is indeed the graph of a function. Breaking the definition into cases, we see

that

gα(a, r, c) = n ⇔ [n = 0 ∧ (∀m ∈ ω) (a, r, c,m) ̸∈ Xα] ∨

[n = 0 ∧ (∃m1,m2 ∈ ω)m1 ̸= m2 ∧

(a, r, c,m1) ∈ Xα ∧ (a, r, c,m2) ∈ Xα] ∨

[(a, r, c, n) ∈ Xα ∧ (∀m ∈ ω)m ̸= n⇒

(a, r, c,m) ̸∈ Xα].

Since Xα is Σ0
α, the graph of gα is a boolean combination of Σ0

α sets, so it is Σ0
α+1.

Proposition VI.26. For each α < ω1, there is a function g : ωω × ωω → ω whose

graph is Σ0
α+1 such that if f : ωω × ωω → ω is a function whose graph is Σ0

α, then

(∃a ∈ ωω)(∀r ∈ ωω) f(r, a) = g(r, a),

so of course

(∀r ∈ ωω)(∃c ∈ ωω) f(r, c) ≤ g(r, c).

Proof. Fix α < ω1. Let gα be given by the lemma above. Define g : ωω× ωω → ω by

g(r, c) := gα(c, r, c).

Certainly the graph of g is Σ0
α+1. Now, let f : ωω× ωω → ω be an arbitrary function

whose graph is Σ0
α. By the hypothesis on gα, there is some a ∈ ωω satisfying

(∀r, c ∈ ωω) f(r, c) = gα(a, r, c).



154

Thus,

(∀r ∈ ωω) f(r, a) = gα(a, r, a) = g(r, a),

and we are done.

Hence, there is a size ω1 family G of Borel functions from ωω× ωω to ω such that

for each Borel f : ωω × ωω → ω, there is some g ∈ G satisfying (*).



CHAPTER VII

Pointwise Eventual Domination Coding Theorems

This chapter is the centerpiece of this thesis, and it contains the deepest results.

The encoding techniques we developed to handle functions from ωω to ω were a

warm-up to handle Borel functions from ωω to ωω. The guiding task will be to prove

that Bα(ωω,≤∗) = 2ω when α ≥ 1, but the proofs yield much more.

In the first section, we show how to overcome the problem that the naive vertical

encoding scheme had in Section 6.2. The solution to this problem actually gives us the

encoding scheme A 7→ fA for Theorem VII.28. However, proving that this encoding

scheme works is very complicated. We need to perform a forcing-like argument.

Section 7.2 is devoted to understanding the poset involved in the argument.

In Section 7.3, we study the situation where fA ≤∗ g and g is a Baire class one

function. This is the first non-trivial case of the more general problem where g is

Borel. We will construct a morphism from B1(
ωω,≤∗) to ⟨P(ω),≤∆1

1
⟩. In Section 7.4,

we will describe the problems we encounter when g is Baire class two. Getting past

this point is a major obstacle. Our approach is to take a step back and understand

the abstract purpose of the orderings ≤ and ≤⋆ introduced in Section 7.2. We will

see exactly how we are supposed to use the Prikry-like condition which this pair of

orderings satisfies. There is an additional complication which we must endure (the

155



156

Ψ function) to get the complexity class ∆1
2 instead of something larger. Although

this is an additional maneuver separate from the other ideas, it drastically affects

the structure of the proof.

In Section 7.6 we prove the main theorem: for each A ⊆ ω and each Borel

g : ωω → ωω which satisfies

(∀x ∈ ωω)(∃i ∈ ω) fA(x)(i) ≤ g(x)(i),

A is ∆1
2 in any code for g. In the final section, we will see that the proof of that

theorem yields a rather incredible result: if X and Y are Polish spaces with X

uncountable, then for each A ⊆ ω there is a Borel function f : X → Y such that

whenever g : X → Y is Borel, one of the following holds:

1) (∃x ∈ X) f(x) = g(x);

2) A is ∆1
2 in any code for g.

7.1 Less Naive Coding

In the last chapter, we discovered an obstacle for converting the proof that

cfBω1(ω,≤) = 2ω into a proof that cfBω1(
ωω,≤∗) = 2ω. Specifically, we showed

in Section 6.2 that ZFC cannot prove that given any a ∈ ωω, there exists a sequence

of reals X = ⟨xn ∈ ωω : n ∈ ω⟩ such that whenever g : ωω → ωω is a Borel function

with code c and satisfies fX ≤∗ g, then a ∈ L[c]. The problem is that it is consistent

(when V is a Sacks forcing extension of an inner model by adding a single real) that

every sequence X of reals can be sufficiently “shrink-wrapped” (using a separation

device) without full knowledge of X .



157

Although no such “naive vertical coding” a 7→ fX can work, only a slightly more

complicated encoding will work. That is, given a sequence of trees

T = ⟨Tn ⊆ <ωω : n ∈ ω⟩,

let fT : ωω → ωω be the function

fT (x)(n) := Exit(Tn)(x).

As a consequence of Theorem VII.28 which we will prove in a few sections, for each

real a ∈ ωω, there exists a sequence T of trees satisfying

T0 ⊆ T1 ⊆ T2 ⊆ ...

such that whenever g : ωω → ωω is a Borel function with code c which satisfies

fT ≤∗ g, then a ∈ L[c]. Let us explain the intuition very informally. The trees

should encode the information in a so that anybody who has a real x ∈ ωω but does

not know a will have difficulty upper bounding exactly when x exits the tree Tn (if

it does at all). It is helpful if we define the trees so that for each n ∈ ω, the shortest

node of x which is not in Tn is still in Tn+1. Moreover, the Tn’s should somehow

“look the same” in the sense that the nodes in Tn+1 − Tn can be mistaken as nodes

in Tn by somebody who does not know a. For example, we do not want all the nodes

in Tn+1 − Tn but none of the nodes in Tn to contain the number 5.

We can give a simple description of the sequence of trees T we will use in The-

orem VII.28. That is, first define from a ∈ ωω any set A ⊆ ω which codes a. In

the proof of that theorem we will build in the additional assumption that A is com-

putable from every infinite subset of itself, but this does not matter here. Then let

Tn be the set of all t ∈ <ωω satisfying

|{l ∈ Dom(t) : t(l) ∈ A}| ≤ n.



158

Hence, x exits Tn at the level when x enumerates an element of A for the (n+ 1)-th

time. The reader should be convinced that T satisfies the informal hypotheses we

described in the last paragraph.

This next proposition proves that indeed each a ∈ ωω can be encoded into a

sequence of trees T such that a ∈ L[c] whenever c is a code for a Borel function

g : ωω → ωω satisfying fT ≤∗ g and g is of the form

g(x) = max{Exit(Sn)(s), y(n)}

for some sequence of trees ⟨Sn ⊆ <ωω : n ∈ ω⟩ and some real y ∈ ωω. Hence, we may

overcome the obstruction we discovered in Section 6.2, because the Borel function g

we defined there from a separation device was of this form. The reader who trusts us

may skip this proof with no loss of continuity. The proof of this proposition uses a

different sequence of trees than the one described in the paragraph above to simplify

the argument. Also, the trees Tn are subtrees of <ω3 instead of <ωω, which makes the

statement slightly stronger. The idea of the proof is for the trees Tn to get bushier

and bushier in a homogeneous way.

Proposition VII.1. For each a ∈ ω2, there is a sequence of trees T = ⟨Tn ⊆ <ω3 :

n ∈ ω⟩ such that whenever y ∈ ωω and M is a transitive model of ZF which does not

contain the real a but does contain a sequence of trees ⟨Sn ⊆ <ω3 : n ∈ ω⟩ satisfying

(∀n ∈ ω)Tn ⊆ Sn, then there exists an x ∈ ω3 satisfying the following for all n ∈ ω:

1) x ∈ [Sn] − [Tn];

2) y(n) ≤ Exit(Tn)(x).

Proof. Let ⟨Bn ⊆ ω : n ∈ ω⟩ be a sequence satisfying

• B0 = ∅;



159

• B0 ⊆ B1 ⊆ B2 ⊆ ...;

• (∀n ∈ ω)Bn+1 −Bn is infinite.

Certainly, we may choose such a sequence so that it is in every transitive model of

ZF. For each n ∈ ω, Bn will be the set of levels of Tn that are bushy. That is, the

numbers in Bn will be the levels of Tn where nodes have exactly 3 children. The

other levels will be where nodes of Tn have exactly 2 children. Assume, without loss

of generality, that a is computable from each restriction a � (Bn+1 −Bn). Define Tn

to be the unique tree such that ∅ ∈ t and for each t ∈ Tn,

SuccTn(t) =


{a(|t|), 2} if |t| ̸∈ Bn,

{0, 1, 2} if |t| ∈ Bn.

Notice that

T0 ⊆ T1 ⊆ T2 ⊆ ....

Now fix a transitive model M of ZF which does not contain a ∈ ω2 but which does

contain some fixed sequence of trees ⟨Sn ⊆ <ω3 : n ∈ ω⟩ satisfying (∀n ∈ ω)Tn ⊆ Sn.

Also fix y ∈ ωω. We must build some x ∈ ω3 satisfying 1) and 2) for all n ∈ ω. Here

is the crucial step: by possibly shrinking each Sn, we may assume without loss of

generality that

S0 ⊆ S1 ⊆ S2 ⊆ ...,

and for all t ∈ Sn,

{2} ⊆ SuccSn(t) ⊆ {0, 1, 2}

and

|SuccSn(t)| ≥ 2.



160

For example, if there was a node t ∈ S0 satisfying |SuccS0(t)| ≤ 1, then M knows

that t ̸∈ T0, so M can remove t from S0 to get a smaller tree. Now to satisfy 1), we

need only have x ∈ S0 and (∀n ∈ ω) x ̸∈ [Tn].

We claim that for each n ∈ ω and t ∈ S0, there exists an extension t′ of t in S0

such that |t′| ∈ Bn+1 − Bn and 1 − a(|t′|) ∈ SuccS0(t
′). Moreover, t′ can be chosen

to be of the form t⌢2⌢...⌢2. Suppose, towards a contradiction, that this is not the

case. Fix n ∈ ω and t ∈ S0 such that there is no such extension t′ of t. Since every

element of S0 has at least two successors, it must be that for each extension t′ of t

of the form t⌢2⌢...⌢2 whose length is in the set Bn+1−Bn, SuccS0(t
′) = {a(|t′|), 2}.

Hence, for each i ∈ {0, 1} and each k ∈ Bn+1 −Bn greater than |t|,

a(k) = i⇔ [SuccS0(t
⌢

k−|t|︷ ︸︸ ︷
2⌢...⌢2) = {i, 2}].

Since we assumed a is computable from a � (Bn+1−Bn) and S0 ∈M , we have a ∈M ,

which is a contradiction. This establishes the claim.

We will now construct an x satisfying 1) and 2). We will inductively construct a

sequence ⟨tn ∈ <ωω : n ∈ ω⟩ so that

t0 ⊑ t1 ⊑ t2 ⊑ ...

and for all n > 0, tn ∈ S0 ∩ Tn − Tn−1 and tn � y(n− 1) ∈ Tn−1. Then x :=
∪
n∈ω tn

will be as desired.

Let t0 := ∅. We will now pick t1. Of course, t0 ∈ S0∩T0. By the claim we showed

earlier, there exists an extension t′ of t0 of the form t⌢0 2⌢...⌢2 of length at least y(0),

such that |t′| ∈ B1 − B0 and 1 − a(|t′|) ∈ SuccS0(t). Because t0 ∈ S0 ∩ T0 and each

node in both S0 and T0 has a child when concatenating 2, we have that t′ ∈ S0 ∩ T0.

Define t1 := t′⌢(1 − a(|t′|)). By construction t1 ∈ S0. The passage from t′ to t1

consists of exiting from Tn but staying within Tn+1. That is, since |t′| ̸∈ B0, we have



161

t1 ̸∈ T0. Since |t′| ∈ B1, we have t1 ∈ T1. Finally, t1 � y(0) ∈ T0, because |t′| ≥ y(0)

and t′ ∈ T0.

We may now pick t2 in a similar fashion. We have t1 ∈ S0 ∩ T1. By the claim we

showed earlier, there exists an extension t′ of t1 of the form t⌢1 2⌢...⌢2 of length at

least y(1), such that |t′| ∈ B2 −B1 and 1 − a(|t′|) is a successor of t′ in S0. Because

t1 ∈ S0 ∩ T1 and each node in both S0 and T1 has a child when concatenating 2, we

have that t′ ∈ S0 ∩ T1. Define t2 := t⌢(1− a(|t|)). Like before, t2 ∈ S0 ∩ T2 − T1 and

t1 � y(1) ∈ T1.

We may construct t3, t4, ... in the same way, and the proof is complete.

7.2 Reachability

Within this section, we will present some key concepts needed for Theorem VII.28.

We will also use them in Section 7.3 where we warm-up by considering only Baire

class one functions. The reader may wish to skip to Section 7.3, returning to this

section when needed.

Definition VII.2. Given a set A ⊆ ω and a pair of nodes t, t′ ∈ <ωω such that

t′ ⊒ t, we say that t′ does not hit A more than t if for all l ∈ Dom(t′) − Dom(t),

t′(l) ̸∈ A.

In this situation we write t′ ⊒⋆ t (and it should be clear from context what is the set

A to which this notation refers).

The intended use for this definition is to facilitate the construction of a real x ∈ ωω

as the union of a sequence of nodes t0 ⊑ t1 ⊑ .... If ti+k ⊒⋆ ti, then ti+k does not

decide more of the value f(x) than ti does. This idea will be clear later.



162

Definition VII.3. Given a node t ∈ <ωω and a function h : <ωω → ω, a node

t′ ∈ <ωω is said to be an extension of t to the right of h, written t′ ⊒h t, if t′ ⊒ t and

for all l ∈ Dom(t′) − Dom(t),

t′(l) ≥ h(t′ � l).

We make the similar definition of x ⊒h t where x ∈ ωω. If both t′ ⊒h t and t′ ⊒⋆ t

for some fixed set A ⊆ ω, then we write t′ ⊒⋆
h t.

Definition VII.4. Given h1, h2 : <ωω → ω, we write h1 ≤ h2 if

(∀t ∈ <ωω)h1(t) ≤ h2(t).

The following is crucial:

Definition VII.5. Given a set S ⊆ <ωω and a node t ∈ <ωω, we make the following

definitions:

• t is 0-S-reachable if t ∈ S;

• t is α-S-reachable for α satisfying 0 < α < ω1 if either t is β-S-reachable for

some β < α, or {n ∈ ω : t⌢n is β-S-reachable for some β < α} is infinite;

• t is S-reachable if t is α-S-reachable for some α < ω1. The smallest such α we

call RRank(t, S).

The restriction to countable ordinals is not a loss, because if we extend the defi-

nition to all ordinals we would see that each node that is already γ-S-reachable for

some ordinal γ is α-S-reachable for some α < ω1.

Proposition VII.6. If t ∈ <ωω is not S-reachable, then

(∃h : <ωω → ω)(∀t′ ⊒h t) t
′ ̸∈ S.



163

Proof. If a node is not S-reachable, then only finitely many of its children are S-

reachable. Hence, we can choose h : <ωω → ω such that (∀t′ ⊒h t) t′ is not S-

reachable. In particular, (∀t′ ⊒h t) t
′ ̸∈ S.

On the other hand, one can see that if t ∈ <ωω is S-reachable, then

(∀h : <ωω → ω)(∃t′ ⊒h t) t
′ ∈ S.

However, in a certain situation, an even stronger statement holds (Proposition VII.9).

Recall that ωCK1 (S) is the first admissible ordinal over S. That is, the smallest

α such that Lα[S] is a model of Kripke-Platek set theory. Equivalently, this is the

supremum of the ranks of all well-founded trees recursive in S.

Lemma VII.7. Given S ⊆ <ωω, the set of nodes that are S-reachable is Π1
1 in S.

Any node that is S-reachable is α-S-reachable for some α < ωCK1 (S). Furthermore,

given any α < ωCK1 (S), the set of all nodes that are β-S-reachable for some β < α

is ∆1
1 in S.

Proof. This is an immediate consequence of the theory of inductive and hyperele-

mentary relations as developed in [38]. See also [22] for the theory of inductive

definitions. Let A be the standard model of arithmetic, with the ability to code

elements of <ωω, adjoined with a unary predicate Ṡ for the set S. Let R be the set

of nodes that are S-reachable. In the language of [38], R is inductive on A. That is,

consider the following second-order formula that has a first-order free variable t (to

range over A’s version of <ωω) and a second-order unary free variable Y :

φ(t, Y ) := t ∈ Ṡ ∨ t ∈ Y ∨ (∃∞n′) t⌢n′ ∈ Y.

This is a so-called Y -positive formula because the unary predicate Y occurs positively.



164

It defines a monotone operator Γ : P(<ωω) → P(<ωω) by

Γ(Y ) := {t ∈ <ωω : φ(t, Y )}.

For each ordinal α, let

Rα := Γ(
∪
β<α

Rβ).

Note that for each α, Rα is the set of nodes that are α-S-reachable. Let ||φ|| be the

smallest ordinal such that Γ(R||φ||) = R||φ||. We have R = R||φ||.

R is the smallest fixed point of Γ, so it is inductive on A. Hence, R is Π1
1 on the

structure A, so it is Π1
1 in S. The closure ordinal κA of A is ωCK1 (S), so

||φ|| ≤ κA = ωCK1 (S).

No element first appears at the κA-th stage of an inductive definition, so for each

t ∈ R there is some α < ωCK1 (S) satisfying t ∈ Rα. For any α < κA,
∪
β<αRβ is

hyperelementary on A (both inductive and coinductive on A) and therefore ∆1
1 in

S.

It is not hard to find an example of a set S ⊆ <ωω such that the set of nodes

that are S-reachable is Π1
1(S)-complete. As a corollary of the lemma, we have that

“being S-reachable is absolute”:

Corollary VII.8. Let M be a transitive model of ZF. Let t ∈ <ωω and S ⊆ <ωω be

in M . Then (t is S-reachable)M iff t is S-reachable.

Proof. This immediately follows from the lemma above and Mostowski’s absoluteness

theorem.

This next proposition also uses the lemma above and will be crucial for Lemma VII.22.

Technically we can replace ∆1
1 by ∆1

2 and the proof of Theorem VII.28 would not be



165

affected (but the proof of Proposition VII.15 would be). However, later we want it

to be clear to the reader where ∆1
2 is coming from. We remind the reader that A is

implicit in ⊒⋆.

Proposition VII.9. Fix S ⊆ <ωω. If t ∈ <ωω is S-reachable and A ⊆ ω is a set

which is ∆1
1 in each infinite subset of itself but A is not ∆1

1 in S, then

(∀h : <ωω → ω)(∃t′ ⊒⋆
h t) t

′ ∈ S.

Proof. Let α0 := RRank(t, S). If α0 = 0, then we are done by defining t′ := t.

Otherwise, the set

B0 := {n : t⌢n is β-S-reachable for some β < α0}

is infinite. By the lemma above, it is ∆1
1 in S. The set B′

0 of all elements of B0 that

are ≥ h(t) is also infinite and ∆1
1 in S. It cannot be that B′

0 ⊆ A, because if so, then

A would be ∆1
1 in B′

0. By the transitivity of ≤∆1
1
, we would have that A is ∆1

1 in S,

a contradiction. Thus, fix some n0 ∈ B′
0 − A.

Next, let α1 := RRank(t⌢n0, S). If α1 = 0, then we are done by defining t′ :=

t⌢n0. Otherwise, the set

B1 := {n : t⌢n⌢0 n is β-S-reachable for some β < α1}

is infinite. By the lemma above, it is ∆1
1 in S. The set B′

1 of all elements of B1 that

are ≥ h(t⌢n0) is also infinite and ∆1
1 in S. As before, we may fix some n1 ∈ B′

1 −A.

We may continue like this. However, the procedure eventually terminates because

we are generating a decreasing sequence of ordinals

α0 > α1 > ....



166

Combining Proposition VII.6 and Proposition VII.9, we get the following crucial

fact. One can remember the following slogan: “If we can reach S, then we can star

reach S. If we cannot reach S, then we can add a constraint now to prevent us from

reaching S later even in a non-star way”.

Corollary VII.10 (Reachability Dichotomy). Fix t ∈ <ωω, A ⊆ ω, and S ⊆ <ωω.

If A ⊆ ω is ∆1
1 in each infinite subset of itself but A is not ∆1

1 in S, then exactly one

of the following holds:

1) t is S-reachable, in which case

(∀h : <ωω → ω)(∃t′ ⊒⋆
h t) t

′ ∈ S;

2) t is not S-reachable, in which case

(∃h : <ωω → ω)(∀t′ ⊒h t) t
′ ̸∈ S.

Frequently, we will have a pair (t, h) with t ∈ <ωω and h : <ωω → ω and we

will need to generate a new pair (t′, h′) satisfying t′ ⊒h t (and possibly t′ ⊒⋆
h t) and

h′ ≥ h. The following definition is intended to accommodate this. The reader should

think that the orderings are similar to Hechler forcing.

Definition VII.11. Define H to be the set of pairs (t, h) such that t ∈ <ωω and

h : <ωω → ω. We write

(t′, h′) ≤ (t, h)

if t′ ⊒h t and h′ ≥ h. We write

(t′, h′) ≤⋆ (t, h)

if t′ ⊒⋆
h t and h′ ≥ h.



167

Corollary VII.10 can now be turned into an abstract statement about the pair of

partial orderings ≤ and ≤⋆:

Observation VII.12. Fix A ⊆ ω. Let Γ be the set of subsets D of H of the form

D = {(t, h) : t ∈ S} for some S ⊆ <ωω such that A is not ∆1
1 in S. Then for each

D ∈ Γ and p ∈ H, there exists p′ ≤⋆ p such that either

p′ ∈ D or (∀p′′ ≤ p′) p′′ ̸∈ D.

Note that for an arbitrary poset P but with two orderings ≤ and ≤⋆, the state-

ment of the observation above but redefining Γ to be the set of all downward closed

subsets D of P is precisely the Prikry Condition ([18]).

7.3 Baire Class One Dominator Coding Theorem

In this section, we will prove that cfB1(
ωω,≤∗) = 2ω. We will do this by con-

structing a morphism from B1(
ωω,≤∗) to ⟨P(ω),≤∆1

1
⟩. Specifically, we will show that

for each A ⊆ ω, there is a Baire class one function fA : ωω → ωω such that whenever

g : ωω → ωω is Baire class one and satisfies fA ≤∗ g, then A ≤∆1
1
c where c is any

code for g. The function fA is the same as the one we will use in Theorem VII.28.

The function is similar to fT which we used in in Section 7.1. Let us formally define

fA now in terms of clouds, which will be useful:

Definition VII.13. Fix A ⊆ ω. Given i ∈ ω, let CA,i ⊆ <ωω be the cloud that is

the set of all t ∈ <ωω satisfying

t(|t| − 1) ∈ A and |{l < |t| − 1 : t(l) ∈ A}| = i.

Let fA : ωω → ωω be the function

fA(x)(i) := Rep(CA,i)(x).



168

That is, CA,i is the set of all nodes t that enumerate elements of A precisely i+ 1

times and the last value of t is in A. In Section 7.1, we saw how to overcome the

obstacle we discovered in Section 6.2. Indeed, the function fA overcomes this obstacle

(if the reader is not convinced from our comments in Section 7.1, this current section

should remove all doubt).

The mapping (A, x) 7→ fA(x) is projective. So, from what we said in Section 6.3,

there cannot be a proof in ZFC that when g : ωω → ωω is any function satisfying

fA ≤∗ g, then A is in some countable set associated with g. This is because con-

sistently we may have simultaneously ω2 ≤ b and a projective well-ordering of ωω.

Thus, in this section we must somehow use the hypothesis that g is Baire class one.

We will now explain how.

Suppose g is Baire class one. Each function x 7→ g(x)(i) is also Baire class one.

Hence, by Section 5.1 there exists a sequence of clouds ⟨Bi ⊆ <ωω : i ∈ ω⟩ such that

for each i ∈ ω,

(∀x ∈ ωω) g(x)(i) ≤ Rep(Bi)(x).

Such a sequence can be obtained in a canonical way from any code for g. Now

suppose A is not ∆1
1 in a fixed code for g. From the code, we may fix a sequence

⟨Bi : i ∈ ω⟩ described above such that A is not ∆1
1 in any Bi. We will use this

hypothesis many times to construct an x ∈ ωω satisfying (∀i ∈ ω) fA(x)(i) > g(x)(i).

Indeed, the hypothesis is used many times in Proposition VII.9, and we will use that

proposition many times.

We will construct a sequence of nodes

t0 ⊑ t1 ⊑ t2 ⊑ ...

and our final x will be
∪
i ti. We will have each ti ∈ CA,i. The basic idea is to extend



169

each ti−1 to ti by first hitting Bi as much as possible without hitting CA,i, and then

when we cannot hit Bi any more, we hit CA,i and this will give us our ti. Since Bi

is a cloud, we can only hit it finitely many times! Unfortunately, the constraint that

we must wait to hit CA,i prevents us from obtaining a node t all of whose extensions

are not in B. We must instead be content with the weaker condition that t has a

cofinite set of children that are not in Bi, and each of those children has a cofinite set

of children that are not in Bi, etc. This was the purpose of introducing the notion of

extensions to the right of a function (t′ ⊒h t) in Definition VII.3. Thus, the ability to

avoid hitting Bi for the remainder of the construction can be turned into the precise

statement that there exists an hi : <ωω → ω such that whenever we make extensions

to the right of hi, we will not hit Bi. Since given finitely many functions h0, ..., hi

we can take their maximum, we can simultaneously avoid hitting B0, ..., Bi for the

remainder of the construction. This next lemma encapsulates “hitting Bi as much

as possible until we cannot hit Bi any more”. It uses what we developed in the last

section:

Lemma VII.14. Let A ⊆ ω be ∆1
1 in each infinite subset of itself. Let B ⊆ <ωω be

a cloud such that A is not ∆1
1 in B. Then for each h : <ωω → ω and t ∈ <ωω, there

is some t′ ⊒⋆
h t and h

′ ≥ h satisfying

(∀t′′ ⊒h′ t
′) t′′ ̸∈ B.

Proof. Fix appropriate A,B, h, t. Let t0 := t. There are two cases: either t0 is

B-reachable or not. In each case, we apply the reachability dichotomy (Corol-

lary VII.10). If t0 is not B-reachable, then we may fix h′ ≥ h such that (∀t′′ ≥h′

t0) t
′′ ̸∈ B, and we are done. Otherwise, t0 is B-reachable, and we may pick t′0 ⊒⋆

h t0

such that t′0 ∈ B. Properly extend t′0 to some t1 ⊒⋆
h t

′
0 (so t1 ̸= t′0).



170

We may continue and again there are two cases: either t1 is B-reachable or not.

If t1 is not B-reachable, then we may fix h′ ≥ h such that (∀t′′ ≥h′ t1) t
′′ ̸∈ B, and we

are done. Otherwise, t1 is B-reachable, and we may pick t′1 ⊒⋆
h t1 such that t′1 ∈ B.

Properly extend t′1 to some t2 ⊒⋆
h t

′
1. Again, we may again break into cases.

We claim that this procedure eventually terminates. If not, then we have an

infinite sequence

t′0 ⊑ t′1 ⊑ t′2 ⊑ ...

of distinct nodes, all in B. This contradicts B being a cloud.

We may now present the main result of this section. It uses the function fA in

Definition VII.13.

Proposition VII.15. For each A ⊆ ω, whenever g : ωω → ωω is a Baire class one

function satisfying

(∀x ∈ ωω)(∃i ∈ ω) fA(x)(i) ≤ g(x)(i),

then A is ∆1
1 in any code for g.

Proof. Without loss of generality, assume that A is ∆1
1 in each infinite subset of

itself. Indeed, it is straightforward to show that each A is Turing equivalent to a

set B which is computable from every infinite subset of itself. Let g : ωω → ωω be

Baire class one. Assume that A is not ∆1
1 in g. There exists a sequence of clouds

⟨Bi ⊆ <ωω : i ∈ ω⟩ such that for each i ∈ ω,

(∀x ∈ ωω) g(x)(i) ≤ Rep(Bi)(x)

and A is not ∆1
1 in Bi. The fact that A is not ∆1

1 in Bi follows from that fact

that from any code for g, we may form the clouds Bi in a canonical and simple way

(by the theory developed in Section 5.1). We will now define a sequence of nodes



171

t0 ⊑ t1 ⊑ t2 ⊑ ... such that x :=
∪
i ti satisfies

(∀x ∈ ωω)(∀i ∈ ω) g(x)(i) < fA(x)(i).

First, use the lemma above with B := B0, h the zero function, and t := ∅ to

obtain t0 ⊒⋆
h ∅ and h0 satisfying (∀t′′ ⊒h0 t0) t

′′ ̸∈ B0. Extend t0 by one step t′0 ⊒h0 t0

so that t′0 ∈ CA,0. Of course, if x ∈ ωω and x ⊒ t′0, then fA(x)(0) = |t′0|. On the

other hand, if x ∈ ωω and x ⊒h0 t
′
0, then g(x)(0) < |t′0|. Thus, as long as we only

make extensions of t′0 to the right of h0, we will have that g(x)(0) < fA(x)(0).

Next, use the lemma above again with B := B1, h := h0, and t := t′0 to obtain

t1 ⊒⋆
h0
t′0 and h1 ≥ h0 satisfying (∀t′′ ⊒h1 t1) t

′′ ̸∈ B1. Extend t1 by one step t′1 ⊒h1 t1

so that t′1 ∈ CA,1. By similar reasons to those before, as long as we only make

extensions of t′1 to the right of h1, we will have that g(x)(1) < fA(x)(1). Continuing

like this, our x is as desired.

We now have the promised morphism:

B1(
ωω) ≤∗

��

B1(
ωω)

��
P(ω)

OO

≤∆1
1

P(ω).

Our next task is to find a morphism from B2(
ωω,≤∗) to a poset similar to ⟨P(ω),≤∆1

1
⟩.

It will become clear that ≤∆1
1

is too restrictive, and we will instead use ≤∆1
2
.

7.4 Working Towards Baire Class Two Dominators

There are several problems we encounter trying to push the argument from the

last section to Baire class two dominators g : ωω → ωω. The crucial problem is that

given a node t ∈ <ωω, there need not exist an extension t′ ⊒ t (let alone an extension



172

t′ ⊒⋆
h t for some h) and an h′ satisfying

(∃l ∈ ω)(∀x ⊒h′ t
′) g(x)(0) ≤ l.

This is true of the Baire class two function g : ωω → ωω defined by

g(x)(i) :=


max{x(l) : l < ω} if {x(l) : l < ω} is bounded,

0 otherwise.

Another problem is that Baire class two functions are not in general dominated by

functions represented by clouds. We need the appropriate analogue of Lemma VII.14.

In that lemma, we hit a cloud as much as possible by making ⊒⋆-extensions until we

could not do so anymore. This was done to stabilize the behavior of g. There is a

more complicated way to accomplish such stabilization, with the advantage that it

generalizes to all functions in the Baire hierarchy. Let us explain the technique now

for Baire class one functions, which by now we are quite familiar with.

To simplify the discussion, let g∅ : ωω → ω be Baire class one. Let ⟨g⟨n⟩ : n ∈ ω⟩

be a sequence of continuous functions from ωω to ω such that

(∀x ∈ ωω) g∅(x) = lim
n→∞

g⟨n⟩(x).(7.1)

For each n ∈ ω, let Sn ⊆ <ωω be a barrier (Definition IV.3) and g̃⟨n⟩ : Sn → ω be a

function specifying g⟨n⟩ as in Proposition IV.4. Fix l ∈ ω, h : <ωω → ω, and A ⊆ ω.

We need to make some assumption about the relationship between A and both the

sets Sn and the functions g̃⟨n⟩. The exact assumption is that A should not be ∆1
1 in

any of the sets S ′ we will define in the next couple paragraphs.

To stabilize g∅ by making ⊒⋆
h-extensions (to ensure that the final value g∅(x) is

either ≤ l or > l), we do the following. To begin, we start with t ∈ <ωω, and ⊒⋆
h-

extend it to some tn0 ∈ Sn0 where n0 = 0 (if t is already below an element of Sn0 ,



173

we do nothing for this first step and set tn0 := t). Without loss of generality, assume

g̃⟨n0⟩(tn0) ≤ l. There are two cases. Either tn0 is S ′-reachable or it is not, where

S ′ := {t ∈ <ωω : (∃n > n0) t ∈ Sn and g̃⟨n⟩(t) > l}.

If tn0 is not S ′-reachable, then we may use the assumption that A is not ∆1
1 in S ′ to

apply the reachability dichotomy (Corollary VII.10) to get h′ ≥ h satisfying

(∀t′ ⊒h′ tn0) t
′ ̸∈ S ′.

Hence,

(∀x ⊒h′ tn0)(∀n > n0) g⟨n⟩(x) ≤ l.

Since g∅ is the limit of the functions g⟨n⟩, we have

(∀x ⊒h′ t
′) g∅(x) ≤ l.

Thus, we have stabilized g∅(x) to be ≤ l and we are done. The other case is that tn0

is S ′-reachable. In this case, we may also apply the reachability dichotomy to get

tn1 ⊒⋆
h tn0 where n1 > n0 and g̃⟨n1⟩(tn1) > l.

There are again two cases: either tn1 is S ′-reachable or it is not, where we redefine

S ′ to be

S ′ := {t ∈ <ωω : (∃n > n1) t ∈ Sn and g̃⟨n⟩(t) ≤ l}.

If tn1 is not S ′-reachable, then like before we can get h′ ≥ h satisfying

(∀x ⊒h′ tn1) g∅(x) > l,

and we are done. Otherwise, we apply the reachability dichotomy to get tn2 ⊒⋆
h tn1

where n2 > n1 and g̃⟨n2⟩(tn2) ≤ l.

We claim that the procedure eventually terminates. If it does not, then we have

a sequence of nodes

tn0 ⊑ tn1 ⊑ tn2 ⊑ ...



174

where for each i ∈ ω, g̃⟨ni⟩(tni
) ≤ l if i is even, and g̃⟨ni⟩(tni

) > l if i is odd. Thus,

defining x :=
∪
i ti, we see that g⟨ni⟩(x) ≤ l if i is even, and g⟨ni⟩(x) > l if i is odd.

Hence, limn→∞ g⟨n⟩(x) does not exist, which is a contradiction.

Thus, to get an appropriate analogue of Lemma VII.14, we used (7.1) in place

of the hypothesis that clouds have no infinite descending sequences. This maneu-

ver is important for the proof of Theorem VII.28. To give a complete proof that

cfB2(
ωω,≤∗) = 2ω, we would need to develop much of the machinery of Theo-

rem VII.28. In the next section, we will discuss the abstract role of the order-

ings ≤ and ≤⋆. Knowing their roles, and making a few reasonable assumptions,

we will be able to reverse engineer exactly how they should be used. We feel

this is the best way to describe how to overcome the crucial problem described

at the beginning of this section (that there need not exist t′ ⊒ t and h′ satisfying

(∃l ∈ ω)(∀x ⊒h′ t
′) g(x)(0) ≤ l). We phrase the question as follows: how can we

ensure that g(x)(0) ≤ l for some l? In the next section, as much as possible we will

discuss ≤ and ≤⋆ without referring to their definitions (to understand their abstract

roles). This will allow us to reverse engineer the definition of ensure.

7.5 A High Level View of the Theorem

The purpose of Theorem VII.28 is to encode an arbitrary set A ⊆ ω into a function

f : ωω → ωω and then prove the following: if g : ωω → ωω is a Borel function such

that A is not ∆1
2 in some (any) code for g, then

(∃x ∈ ωω)(∀i ∈ ω) f(x)(i) > g(x)(i).

The theorem heavily uses the requirement that g be Borel. Building the x is the

fascinating part. The basic idea is to perform a forcing-like argument. That is, we



175

have conditions describing the building process so far; a condition consists of the

initial segment of x together with a promise for how to perform the remainder of

the construction. Specifically, a condition is a pair (t, h) ∈ H with t ∈ <ωω and

h : <ωω → ω. The final x will be the union of all t’s in the chain of conditions that

we construct.

There are two orderings on the set of conditions. One is the ordinary extension

ordering ≤. The other is the direct extension ordering ≤⋆. We will have

p1 ≤⋆ p2 ⇒ p1 ≤ p2.

Without knowledge of these orderings the reader might think, in analogy with Prikry

forcing, that direct extensions are those which keep t fixed and modify only h. This

is not the case! Instead, direct extensions are those extensions which do not decide

more of the value of f(x). For each condition (t, h) and each i, at most |t| of the values

f(x)(i) have been decided. If we do not mind making the entire proof slightly more

complicated, then we can arrange so that when we do decide the value of f(x)(i), we

can choose any value in ω we want. Indeed, this is precisely what is needed to prove

the more general Theorem VII.30. However we prefer simplicity, so we simply decide

the value of f(x)(i) to be |t|. That is, we decide f(x)(i) to be the value that is the

length we have traveled in our journey to build x. This simplicity is a feature we get

by considering the domination relation instead of something more complicated.

Now, suppose we are at some condition p = (t, h) in the construction and f(x)(i)

has been decided. If no matter how we perform the remainder of the construction

(following the promises we have made, which are built into the ≤ ordering of the

conditions) it will happen that f(x)(i) ≤ g(x)(i), then we have failed. Thus, when

we decide the value of f(x)(i), we must be absolutely sure we can ensure f(x)(i) >

g(x)(i). But what do we mean by ensure? Indeed, as is first evident when considering



176

Baire class two functions, “ensure” cannot have the naive meaning that we decide

g(x)(i) to be some value < f(x)(i). To be clear, we say q decides g(x)(i) = l iff for

every chain of conditions

(7.2) q = (t0, h0) ≥ (t1, h1) ≥ (t2, h2) ≥ ...

with limi→∞ |ti| = ∞, we have g(
∪
k tk)(i) = l. On the other hand, “q ensures

g(x)(i) = l” should mean that for every such chain which can result from per-

forming the remainder of the construction, g(
∪
k tk)(i) = l. This seems circular

because we have not yet fully described the construction. However, we break away

from circularity by viewing the remainder of the construction as a game where Player

II is trying to cause the final x to satisfy g(x)(i) = l, and Player I is actually the

totality of all other parts of the remainder of the construction.

Now, we have a double standard because we will decide the value f(x)(i) but we

will only ensure the value g(x)(i). We do this simply because the theorem does not

require us to take the more technical approach of only ensuring the value of f(x)(i).

By the recursive nature of the construction, the more technical approach would cause

complicated feedback. However, this point deserves careful thought.

Eventually, we will show that every condition directly extends to one which ensures

g(x)(i) = l for some l. Once we do this, the final proof will work as follows. Start

with the top condition of the poset. Directly extend it to ensure g(x)(0) = l0 for

some l0. Then, extend that condition to decide f(x)(0) to be some value > l0. Then,

directly extend that condition to ensure g(x)(1) = l1 for some l1. Then, extend that

condition to decide f(x)(1) to be some value > l1, etc. During this construction, we

will need to make interventions (stepping in and making direct extensions) to make

each “ensuring” into a reality. When we finish, we will have (∀i) f(x)(i) > g(x)(i).

For the rest of this section, fix i ∈ ω (to simplify notation).



177

Let us now try to reverse engineer exactly what must be meant by “ensure”,

taking on faith that such a notion exists. Let us assume that the condition q ensures

g(x)(i) = l. In order to make g(x)(i) = l true at the end of the construction, we

must almost certainly intervene infinitely often in the construction of the sequence of

conditions. These interventions should probably be direct extensions. This is because

making a non-direct extension would cause more f(x)(i) values to be decided, which

would further constrain our possible actions. Hence, we take a small leap of faith

and adopt the paradigm that we make only non-direct extensions when we are ready,

and not when we are required in order to fulfill a previously made promise that

f(x)(j) > g(x)(j) for some j < i.

With this concession, we have a reasonable guess for the definition of ensure.

Namely, the following: p ensures g(x)(i) = l iff Player II has a winning strategy in

the game where Player I makes extensions to the current condition (and the first

move extends p) and Player II makes direct extensions to the current condition,

where Player II wins iff the real x :=
∪
k tk resulting from the construction satisfies

g(x)(i) = l. Call this game G=(p, g, l). For a different function g′ : ωω → ωω, the

game G=(p, g′, l) has the analogous definition. Let us now fix the definition:

p ensures g(x)(i) = l iff II has a w.s. for G=(p, g, l).

The fact that conditions need to be directly extended infinitely often is why we

label this proof a forcing-like argument, instead of a literal forcing argument. That

is, we see no way to incorporate Player II having a winning strategy for the game

into the poset of conditions itself. However, the application of Player II’s winning

strategy for the game G=(p, g, l) would be handled by a Rasiowa-Sikorski argument

that uses only direct extensions.

Now that we have a reasonable definition for “ensure”, we must ask the following:



178

does every condition directly extend to one which ensures g(x)(i) = l for some l? We

say “directly extend” instead of just “extend” because, again, non-direct extensions

will cause additional requirements that we do not want to be bothered with. The

answer to this question is yes, but the proof is complicated. Since g is Borel, g is

either continuous or the pointwise limit of a sequence of Borel functions with strictly

smaller rank in the Baire hierarchy. If g is continuous, then it is easy to see that any

condition p can be directly extended to some p′ which decides g(x)(i), and therefore

p′ ensures g(x)(i) = l for some l. On the other hand, if g is the pointwise limit of

a sequence ⟨gn : n ∈ ω⟩ of Borel functions with strictly smaller rank, then we may

assume, as an inductive hypothesis, that

(7.3) (∀n, p′)(∃p′′ ≤⋆ p′)(∃l) II has a w.s. for G=(p′′, gn, l).

Now fix p. We will argue how to directly extend p to ensure g(x)(i) = l for some l

(using an important hypothesis on the pair ≤,≤⋆). First, extend p to some p0 ≤⋆ p

and fix l0 such that II has a w.s. for G=(p0, g0, l0). Fix such a winning strategy. As

we perform the remainder of the construction, apply the winning strategy for this

game infinitely often. There are now two cases: either there exists n1 > 0, p1 ≤⋆ p0,

and l1 ̸= l0 such that II has a w.s. for G=(p1, gn1 , l1), or there does not. If there

does, then fix such n1, p1, l1, as well as a winning strategy for the game. Apply this

winning strategy for the remainder of the construction. We may continue and again

there are two cases: either there exists n2 > n1, p2 ≤⋆ p1, and l2 ̸= l1 such that II

has a w.s. for G=(p2, gn2 , l2), or there does not. If there does, then we may continue

as before. However, we claim that eventually the other case holds. This is because

if not, then since (∀k ∈ ω) we have ensured gnk
(x)(i) = lk, we get that the limit

lim
k→∞

gnk
(x)(i)



179

does not exist, which contradicts that the limit exists and equals g(x)(i). Thus, at

some point in the construction, we must have nk ∈ ω, pk ≤⋆ p, and lk such that

there does not exist nk+1 > nk, pk+1 ≤⋆ pk, and lk+1 ̸= lk such that II has a w.s. for

G=(pk+1, gnk+1
, lk+1). Fix these values nk, pk, lk; we will be here a while.

Thus, by (7.3), for each n > nk and p′ ≤⋆ pk, there do exist p′′ ≤⋆ p′ and l such

that II has a w.s. for G=(p′′, gn, l), and when this happens l must equal lk. Informally,

this can be remembered as “we can ensure gn(x)(i) for any particular n > nk, and

when we do we have no choice but to ensure it to equal lk”. Now, we have a good idea

for how to ensure that g(x)(i) = l: Player II should use the strategy for G=(pk, g, lk)

where each move consists of the following:

1) First, directly extend the current condition to some p′ so that II has a w.s. for

G=(p′, gn, lk), where n > nk is the smallest n for which this has not yet been

done. Fix such a winning strategy.

2) Apply one move of the strategy from part 1). Also, apply one move of each

strategy that has resulted from applying part 1) in some previous move.

This looks like it works, but actually there is a subtle problem. That is, in order for

this strategy to work, we actually need the following strong statement to hold: for

every n > nk and p′ ≤ pk, there does exist p′′ ≤⋆ p′ and l such that II has a w.s.

for G=(p′′, gn, l), and when this happens l must equal lk. The difference between this

statement and the one we made before is that p′ ≤ pk instead of just p′ ≤⋆ pk. The

danger is that there could be p′ ≤ pk such that when we directly extend p′ to ensure

gn(x)(i) = l for some l, we actually have l ̸= lk. Our informal way of remembering

the weaker statement now sounds dishonest. Let us fix the problem.

Consider the set Sk of conditions p′ which extend pk such that there exists n > nk



180

and l ̸= lk such that II does have a w.s. for G=(gn, p
′, l). We have that no direct

extension of pk is in Sk, and we want some direct extension of pk such that no

extension of that condition is in Sk. We have not yet used anything specific about

the definition of ≤ or ≤⋆, nor have we used the hypothesis that A is not ∆1
2 in g.

Here is where we use them. The set Sk is not arbitrary, but occurs in some specific

complexity class Γ. Indeed, the definition of Sk only involves a small number of real

quantifiers and uses the sequence ⟨gn : n ∈ ω⟩. The following axiomatic relationship

between ≤, ≤⋆, and Γ is what we want: whenever p is a condition and S ∈ Γ is a set

of conditions, then either there is some direct extension of p in S, or there is some

direct extension of p all of whose extensions are not in S. We have already observed

(Observation VII.12) that our specific definitions of ≤ and ≤⋆ cause this relationship

to hold. By what we have argued in this section, we see that such a relationship is

necessary.

At this point, we have described a very general method which only uses a simple

axiomatic requirement on ≤, ≤⋆, and some class Γ. We hope that this underlying

method will have applications beyond “encoding information into challenges”.

Everything we said so far is true, but the set Sk we have defined two paragraphs

ago is, in general, more complicated than ∆1
2. Part of the complexity comes from the

poset H of conditions itself. If the reader does not mind a sloppy result, then what

we have said so far in this section, together with the specific definitions of ≤ and ≤⋆,

can be put together into a proof. Instead of ∆1
2, we have a larger complexity class.

To get the sharper result of ∆1
2, we need to perform a miraculous technical maneuver.

On the one hand, the reader should think of this as an extra technicality that sits on

top of the core argument we have given. On the other hand, the maneuver affects

the structure of the entire argument.



181

Fix a well-founded tree U ⊆ <ωω and for each u ∈ U fix a Borel function gu

such that gu is continuous when u is a leaf node of U , and gu is the pointwise limit

of the functions assigned to the children of u when u is a non-leaf node. We will

introduce a recursively defined partial function Ψ taking the arguments u, t, l. The

recursiveness of the definition is so that the graph of Ψ is ∆1
2. However, proving the

function is well-defined will be done by induction (on u), and this step cannot be

isolated from other statements also being proved by induction (on u). The reader

should have the intuition that Ψ(t, u, l) = 1 implies that (∃h : <ωω → ω) II has a

w.s. for G≤((t, h), gu, l) and Ψ(t, u, l) = 0 implies that (∃h : <ωω → ω) II has a w.s.

for G>((t, h), gu, l) (where G≤ and G> are like G= but with their winning conditions

modified to use ≤ and > instead of =). However, this fact also will be proved by

induction (on u), and this cannot be isolated from other statements being proved by

induction. To make the induction work, there is a third statement which we need

to prove by induction (on u), which again is done simultaneously with the other

statements. The statement is that any condition (p, h) can be directly extended to

some (p′, h′) such that Ψ(t′, u, l) is defined. Once all these statements have been

proved, the proof is completed using the approach described in this section.

The function Ψ is rather disconcerting. It is difficult to say precisely what it

means. It is defined recursively, and it only means what it means. On the other

hand, when it is defined to be a certain value, this implies a coherent statement

involving the existence of winning strategies for the Player II’s of the games we

described.

When we define the Ψ function in the next section, it will take a node t instead of

a pair (t, h) ∈ H as an argument. We thought this would simplify the presentation,

although the argument works equally well the other way, making the appropriate



182

modifications. We have also taken the approach of keeping the induction on the

well-founded tree U as simple as possible (by using the games G≤ and G> instead

of G=). As a side effect we must perform cleanup work afterwards, but the reader

should view this as straightforward.

7.6 Borel Dominator ∆1
2 Coding Theorem

7.6.1 Fixing A, fA, g, and U

For the remainder of this section until the statement of the theorem, fix a set

A ⊆ ω which is ∆1
1 in any infinite subset of itself and fix a Borel function g : ωω → ωω

such that A is not ∆1
2 in a fixed code for g. We will speak of the code for g. Such

sets A are easy to construct, and every set A′ is Turing equivalent to one which is

computable from any infinite subset of itself. The proof would still work even if we

only required A to be ∆1
2 in any infinite subset of itself, but this is not important.

We will use the (horizontal) encoding function fA (Definition VII.13).

Since g occurs somewhere in the Baire hierarchy, using the code for g we may fix

a well-founded tree U ⊆ <ωω as well as a function gu : ωω → ωω for each u ∈ U

satisfying the following:

1) If u ∈ U is a leaf node of U , then gu is continuous;

2) If u ∈ U is not a leaf node of U , then

i) (∀n ∈ ω)u⌢n ∈ U ;

ii) (∀i ∈ ω)(∀x ∈ ωω) gu(x)(i) = limn→∞ gu⌢n(x)(i);

3) g = g∅.



183

7.6.2 The function Ψ

We will recursively define a partial function Ψ. Let t ∈ <ωω, u ∈ U , and l, i ∈ ω.

The reader may want to think that l and i are fixed. We break the definition into

cases, depending on whether u ∈ U is or is not a leaf node of U . If u is a leaf node

of U , t ∈ <ωω, and l, i ∈ ω, then define

Ψ(t, u, l, i) :=



1 if (∀x ⊒ t) gu(x)(i) ≤ l,

0 if (∀x ⊒ t) gu(x)(i) > l,

↑ otherwise.

If u is a non-leaf node of U , l, i, n ∈ ω, and c ∈ {0, 1}, then define

S(u, n, c, l, i) := {t′ ∈ <ωω : (∃n′ ≥ n) Ψ(t′, u⌢n′, l, i) = c}.

If u is a non-leaf node of U , t ∈ <ωω, and l, i ∈ ω, then define

Ψ(t, u, l, i) :=



1 if (∃n ∈ ω) t is not S(u, n, 0, l, i)-reachable,

0 if (∃n ∈ ω) t is not S(u, n, 1, l, i)-reachable,

↑ otherwise.

Given c ∈ {0, 1}, the statement ¬Ψ(t, u, l, i) = c is equivalent to

Ψ(t, u, l, i) ↓ ⇒ Ψ(t, u, l, i) = 1 − c,

so we may write the non-leaf node case of the definition of Ψ as follows:

Ψ(t, u, l, i) :=



1 if (∃n ∈ ω)(∃h)(∀t′ ⊒h t)(∀n′ ≥ n)

Ψ(t′, u⌢n′, l, i) ↓⇒ Ψ(t′, u⌢n′, l, i) = 1,

0 if (∃n ∈ ω)(∃h)(∀t′ ⊒h t)(∀n′ ≥ n)

Ψ(t′, u⌢n′, l, i) ↓⇒ Ψ(t′, u⌢n′, l, i) = 0,

↑ otherwise.



184

Temporarily fix a non-leaf node u of U . From the definition, it is not clear

whether Ψ(t, u, l, i) is well-defined, because perhaps there is some n and h satisfying

(∀t′ ⊒h t)(∀n′ ≥ n) Ψ(t′, u⌢n′, l, i) ↑. This is impossible because

(∀n′ ∈ ω)(∀h)(∃t′ ⊒h t) Ψ(t′, u⌢n′, l, i) ↓ .

This will be shown by proving the stronger statement

(∀n′ ∈ ω)(∀h)(∃t′ ⊒⋆
h t) Ψ(t′, u⌢n′, l, i) ↓ .

That is, we will show

(∀n′ ∈ ω) Φ(u⌢n′, l, i),

where Φ will be defined later. Thus, the fact that Ψ is indeed well-defined will be

one of the facts we prove inductively (and simultaneously) using the well-founded

tree U . These details have been included for completeness, but the reader should not

get bogged down by them. To keep the situation straight, the reader may remember

the following:

[(∀n′ ∈ ω) Φ(u⌢n′, l, i)] ⇒ [(∀t) Ψ(t, u, l, i) is well-defined].

The reader should have the following intuition about Ψ: in the proof of the

theorem, we will construct a sequence of nodes t0 ⊑ t1 ⊑ ... in order to construct

x :=
∪
k tk. If Ψ(tk, u, l, i) = 1 for some k ∈ ω, then by the way that we will construct

the sequence of nodes, gu(x)(i) ≤ l. On the other hand, if Ψ(tk, u, l, i) = 0 for some

k ∈ ω, then similarly gu(x)(i) > l.

The following is our method for upper bounding the complexity of the graph of

Ψ. The reader who trusts us may skip to Corollary VII.17, whose statement will be

important later.



185

Proposition VII.16. Assuming that Ψ is well-defined, the graph of Ψ is ∆1
2 in the

code for g.

Proof. The idea is for trees to witness that the value of Ψ(t, u, l, i) is what it is.

These trees must satisfy a Π1
1 condition which we will describe shortly, and must

be well-founded which is another Π1
1 condition. For notational simplicity, instead of

putting all “scratch-work” into the tree itself, we will attach this information to the

tree using a function. We will use the following symbols: ‘0’, ‘1’, and ‘↑’.

Fix l, i. Here is the definition: call a pair (T, F ) good if two conditions are

satisfied. First, T is a tree (a set of elements ordered by a relation <T closed under

initial segments), F is a function with domain T , and for each t, u, l, i there is an

element of T of the form (c, t, u, l, i) for some c ∈ {‘1’,‘0’,‘↑’}. Second, the following

are satisfied for each s = (c, t, u, l, i) ∈ T :

(1) One of the following holds:

(a) c =‘1’ and Ψ(t, u, l, i) = 1;

(b) c =‘0’ and Ψ(t, u, l, i) = 0;

(c) c =‘↑’ and Ψ(t, u, l, i) ↑;

(2) If s is a leaf node of T , then u is a leaf-node of U , F (s) = ∅, and one of the

following holds:

(a) c =‘1’ and (∀x ⊒ t) gu(x)(i) ≤ l;

(b) c =‘0’ and (∀x ⊒ t) gu(x)(i) > l;

(c) c =‘↑’ and (∃x ⊒ t) gu(x)(i) ≤ l and (∃x ⊒ t) gu(x)(i) > l;

(3) If s is a non-leaf node of T , then one of the following holds:



186

(a) c =‘1’ and F (s) is of the form F (s) = {h, n} and for all t′ ⊒h t and n′ ≥ n,

there is an immediate successor s′ of s in T of the form s′ = (c′, t′, u⌢n′, l, i)

for some c′ ∈ {‘1’,‘↑’};

(b) c =‘0’ and F (s) is of the form F (s) = {h, n} and for all t′ ⊒h t and n′ ≥ n,

there is an immediate successor s′ of s in T of the form s′ = (c′, t′, u⌢n′, l, i)

for some c′ ∈ {‘0’,‘↑’};

(c) c =‘↑’, F (s) = ∅, and for all h : <ωω → ω, n ∈ ω, and c′ ∈ {‘0’,‘1’} there

exists t′ ⊒h t and n′ ≥ n and an immediate successor s′ of s in T of the

form s′ = (c′, t′, u⌢n′, l, i).

The real quantifiers in case (2) of the definition are superficial because the function

gu is continuous when u is a leaf-node of U . Note that this is where the code for

g is used. However, case (3)(c) of the definition involves a universal real quantifier

(which we have written in bold) and this is essential. Thus, the property of a pair

(T, F ) being good is Π1
1 in the code for g. Since being well-founded is a Π1

1 property,

the property of (T, F ) being good and T being well-founded is Π1
1 in the code for g.

There are two important facts about good pairs which follow from the fact that Ψ

is well-defined. First, for any t, u, l, i, there exists a good pair which witnesses that

Ψ(t, u, l, i) is the value that it is, in the sense of case (1) of the definition. Second,

any two good pairs will agree on the value of Ψ(t, u, l, i). This allows us to conclude

that the graph of Ψ is ∆1
2 in the code for g.

For example, consider c = 1. The statement Ψ(t, u, l, i) = 1 is equivalent to

saying there exists a good pair (T, F ) such that T is well-founded and (‘1’, t, u, l, i) ∈

T , which is a Σ1
2 statement in the code for g. On the other hand, the statement

Ψ(t, u, l, i) = 1 is also equivalent to saying that for all good pairs (T, F ) with T

well-founded, (‘1’, t, u, l, i) ∈ T , which is a Π1
2 statement in the code for g.



187

It is clear that the proposition above can be applied even when we have only

shown that Ψ is well-defined for nodes u up to a certain rank in U . That is, for a

fixed u ∈ U , if we know that Ψ(t, u′, l, i) is well-defined for all t, l, i and all u′ ∈ U

extending u, then the proof of the above proposition tells us that

{(t, u′, l, i, c) : u′ ⊒ u ∧ Ψ(t, u, l, i) = c}

is ∆1
2 in the code for g. We record this fact in the next corollary, which will be the

only result on the complexity of Ψ we need for the remainder of the proof.

Corollary VII.17. Fix u ∈ U , n ∈ ω, c ∈ {0, 1}, and l, i ∈ ω. Assume Ψ(t, u′, l, i)

is well-defined for all t and all u′ ∈ U extending u. Then the set S(u, n, c, l, i) is ∆1
2

in the code for g.

Proof. Membership in S(u, n, c, l, i) is arithmetical in the graph of Ψ.

We are now finished with defining Ψ and analyzing its complexity.

7.6.3 The games G≤, G>, and G=

The function Ψ has an auxiliary role to the games we will now define. That is,

what we really care about is Player II having a winning strategy for either G≤ or

G>. However, we need the more technical Ψ function in order to define a statement

which will “induct”. We will explain this later.

Definition VII.18. Given t ∈ <ωω, h : <ωω → ω, u ∈ U , and l, i ∈ ω, let

G≤(t, h, u, l, i) be the following infinite two player game: Player I first plays a pair

(t0, h0) ≤ (t, h), then Player II plays a pair (t1, h1) ≤⋆ (t0, h0), then Player I plays a

pair (t2, h2) ≤ (t1, h1), etc. That is, Player I plays a pair ≤ the current one in the

ordering, and Player II plays a pair ≤⋆ the current one. The first player who breaks



188

one of these rules automatically loses. Let x :=
∪
k tk. To avoid trivialities, if x is

finite, then Player I wins. If x is infinite, then Player II wins if gu(x)(i) ≤ l.

Notice how there is asymmetry in the game G≤(t, h, u, l, i) because Player II must

play nodes which are ≤⋆ extensions of previous conditions. We have an analogous

game but with > instead of ≤. We also have a game for =, which will not be needed

for the proof of the main theorem but will be used for the generalization in the next

section:

Definition VII.19. Given t ∈ <ωω, h : <ωω → ω, u ∈ U , and l, i ∈ ω, let

G>(t, h, u, l, i) be the game with the same rules as G≤(t, h, u, l, i), but with the mod-

ified winning conditions: if x :=
∪
k tk is infinite, then Player II wins if gu(x)(i) > l.

Similarly, G=(t, h, u, l, i) is the game with the same rules but if x is infinite, then

Player II wins if gu(x)(i) = l.

A strategy for Player II for any of these games is a function taking a sequence

⟨(t0, h0), ..., (tk, hk)⟩. Given such a strategy η, we will abuse terminology by saying

“apply η to (tk, hk)” instead of “apply η to ⟨(t0, h0), ..., (tk, hk)⟩”. Really, we need to

keep track of the previous moves in the game and give this to Player II. We suppress

these bookkeeping details to keep the proof readable. The reader should remember

the following: when we ask the Player II of a game to make a move, we tell him

which move it is, we tell him all his previous moves, and we tell him that the previ-

ous moves of “Player I” are the concatenation of all the construction that occurred

between his moves. We are lying to Player II, because there is no real Player I : there

are only Player II’s for other games (that are also being lied to) and an additional

special Player I (who will only show up in the body of the proof of the main theorem)

and we concatenate their moves together to create a phantom Player I move.



189

7.6.4 The statement Φ

Because the theorem is proved using a complicated induction, we introduce formal

statements to stand for the inductive hypotheses. This will also make the structure

of the argument more visible. Given u ∈ U and l, i ∈ ω, let Φ(u, l, i) be the statement

Φ(u, l, i) :⇔ (∀t ∈ <ωω)(∀h)

(∃t′ ⊒⋆
h t)

Ψ(t′, u, l, i) ↓ .

Assume u is a non-leaf node of U . Unraveling the definitions, if we assume

(∀n′ ∈ ω) Φ(u⌢n′, l, i),

then Φ(u, l, i) is equivalent to the statement that for all (t, h) ∈ H, there exists

t′ ⊒⋆
h t, n ∈ ω, and c ∈ {0, 1} such that

t′ is not S(u, n, c, l, i)-reachable.

Let us quickly explain why: The assumption (∀n′ ∈ ω) Φ(u⌢n′, l, i) implies that

Ψ(t′, u, l, i) is well-defined. Then, Ψ(t′, u, l, i) ↓ iff (∃c ∈ {0, 1}) t′ is not S(u, n, c, l, i)-

reachable.

7.6.5 The statements Ξ≤ and Ξ> connecting Ψ to G≤ and G>

We now must connect Ψ to the games. We do this by introducing a formal

statement, which also must be proved simultaneously by induction (on u). Let

Ξ≤(u, l, i) be the statement

Ξ≤(u, l, i) :⇔ (∀t ∈ <ωω)[Ψ(t, u, l, i) = 1

⇒ (∃h) II has a w.s. for G≤(t, h, u, l, i)].



190

Let Ξ>(u, l, i) be the statement

Ξ>(u, l, i) :⇔ (∀t ∈ <ωω)[Ψ(t, u, l, i) = 0

⇒ (∃h) II has a w.s. for G>(t, h, u, l, i)].

For fixed l, i ∈ ω, we will show by induction on the rank of u in U that Φ(u, l, i),

Ξ≤(u, l, i), and Ξ>(u, l, i) hold. This will take a fair amount of work. Note that for

all u, l, i,

Φ(u, l, i) ∧ Ξ≤(u, l, i) ∧ Ξ>(u, l, i) ⇒ (∀(t, h) ∈ H )

(∃(t′, h′) ≤⋆ (t, h) )[

II has a w.s. for G≤(t′, h′, u, l, i) ∨

II has a w.s. for G>(t′, h′, u, l, i)].

For fixed l, i ∈ ω, one might hope that one can simply show the right hand side of the

above implication by induction on u. Indeed, this would be a great simplification,

because we would not need to deal with the recursively defined function Ψ. However,

such a proof does not work. It appears as if the best way to show that the right

hand side holds for all u is to inductively show that the left hand side holds for all u.

Isolating the left hand side as the appropriate statement which would “induct” was

the main challenge to proving the theorem. Also note that because of the asymmetry

in the games G≤ and G>, it does not follow that if Player II does not have a winning

strategy for G≤, then Player II does have a winning strategy for G> (and vice versa).

This means that we cannot simply invoke Borel determinacy to conclude that either

Player II has a winning strategy for G≤ or Player II has a winning strategy for G>.



191

7.6.6 The main induction

We now begin the inductive proof, starting at the leaf nodes of U .

Lemma VII.20. Fix l, i ∈ ω. Fix u ∈ U , a leaf node of U . Then Φ(u, l, i).

Proof. Fix arbitrary t ∈ <ωω and h : <ωω → ω. We will show

(∃t′ ⊒⋆
h t) Ψ(t′, u, l, i) ↓,

and the proof will be complete. By the definition of Ψ, it suffices to show

(∃t′ ⊒⋆
h t)(∃v ∈ ω)(∀x ⊒ t′) gu(x)(i) = v.

Let y ∈ ωω be such that y ⊒⋆
h t. Since gu is continuous, there is some t′ ∈ <ωω and

v ∈ ω such that y ⊒ t′ ⊒ t and (∀x ⊒ t′) gu(x)(i) = v. The t′ ⊒⋆
h t and v are as

desired.

Lemma VII.21. Fix l, i ∈ ω. Fix u ∈ U , a leaf node of U . Then Ξ≤(u, l, i) and

Ξ>(u, l, i).

Proof. We will just show Ξ≤(u, l, i), as the proof for Ξ>(u, l, i) is similar. Fix an

arbitrary t ∈ <ωω such that Ψ(t, u, l, i) = 1. Once we show that for some h Player

II has a winning strategy for G≤(t, h, u, l, i), we will be done. However, by the

definition of Ψ for leaf nodes and the definition of G≤(t, h, u, l, i), we see that for any

h, any strategy for Player II (where he ensures that the sequence being constructed

is infinite) is a winning strategy!

We are now ready to handle the non-leaf node case of the inductive proof. We

will use three lemmas to show Φ(u, l, i),Ξ≤(u, l, i), and Ξ>(u, l, i) respectively.

The next lemma is the heart of the theorem, and it is where we use the facts

about reachability and the complexity of Ψ. In fact, it is the only place where we

need these results. This makes it a natural bottleneck for the theorem.



192

Lemma VII.22. Fix l, i ∈ ω. Fix u ∈ U , a non-leaf node of U . Assume

(∀n ∈ ω)[Ξ≤(u⌢n, l, i) ∧ Ξ>(u⌢n, l, i)].

Also assume that Ψ(t, u′, l, i) is well-defined for all t and all u′ ∈ U extending u

(including u itself). Then Φ(u, l, i).

Proof. We will show Φ(u, l, i). Fix arbitrary t ∈ <ωω and h : <ωω → ω. We will show

(∃t′ ⊒⋆
h t) Ψ(t′, u, l, i) ↓,

and the proof will be complete. Since Ψ(t′, u, l, i) is well-defined for all t′, it suffices

to construct t′ ⊒⋆
h t, n ∈ ω, and c ∈ {0, 1} such that

t′ is not S(u, n, c, l, i)-reachable.

Our method of proof is to describe a procedure that we want to terminate in

finitely many steps. Assuming the procedure does not terminate, we will reach a

contradiction. The reader should use the following diagram to visualize the proce-



193

dure:

t
⋆

��?
??

??
??

?

t0
⋆

��?
??

??
??

? S0

t̃0
⋆

��@
@@

@@
@@

@

t1
⋆

��@
@@

@@
@@

@ S1

t̃1
⋆

!!C
CC

CC
CC

CC

...

h h0 h̃0 h1 h̃1 ...

�� ���� ��
�� ���� ��

Let S0 := S(u, 0, 0, l, i). There are two cases. Either t is S0-reachable or not.

If it is not, then we are done by defining t′ := t, and in this case Ψ(t′, u, l, i) = 1.

Otherwise, t is S0-reachable, so we proceed as follows:

By Corollary VII.17, the set S0 is ∆1
2 in the code for g. Since A is not ∆1

2 in the

code for g and ≤∆1
2

is transitive, we have that A is not ∆1
2 in S0. This implies that A

is not ∆1
1 in S0. We may now use Proposition VII.9 to get t0 ⊒⋆

h t such that t0 ∈ S0.

Since t0 ∈ S0, fix n0 ≥ 0 satisfying

Ψ(t0, u
⌢n0, l, i) = 0.

Since we have assumed Ξ>(u⌢n0, l, i), fix an h0 ≥ h such that Player II has a

winning strategy for G>(t0, h0, u
⌢n0, l, i). Let η0 be such a strategy. Note that

(t0, h0) ≤⋆ (t, h). Apply η0 to the pair (t0, h0) to get the pair (t̃0, h̃0) ≤⋆ (t0, h0).

Let S1 := S(u, n0, 1, l, i). There are two cases. Either t̃0 is S1-reachable or not.



194

If it is not, then we are done by defining t′ := t̃0, and in this case Ψ(t′, u, l, i) = 0,

Otherwise, t̃0 is S1-reachable, so we proceed as follows:

As before, A is not ∆1
2 in S1, so we may use Proposition VII.9 to get t1 ⊒⋆

h̃0
t̃0

such that t1 ∈ S1. Since t1 ∈ S1, fix n1 > n0 satisfying

Ψ(t1, u
⌢n1, l, i) = 1.

Since we have assumed Ξ≤(u⌢n1, l, i), fix an h1 ≥ h̃0 such that Player II has a winning

strategy for G≤(t1, h1, u, l, i). Let η1 be such a strategy. Note that (t1, h1) ≤⋆ (t̃0, h̃0).

Successively apply both η0 and η1 (the order does not matter) to the pair (t1, h1) to

get the pair (t̃1, h̃1) ≤⋆ (t1, h1).

We may continue by defining S2 := S(u, n1, 0, l, i) and breaking into cases as

before. To finish the proof, we will show that this procedure will eventually terminate.

Suppose, toward a contradiction, that the procedure goes on forever. This means

that we have constructed a sequence of elements of H

(t, h) ≥⋆ (t0, h0) ≥⋆ (t̃0, h̃0) ≥⋆ (t1, h1) ≥⋆ (t̃1, h̃1) ≥⋆ ...,

a sequence of numbers

n0 < n1 < ...,

and a sequence of strategies

η0, η1, ...

such that for each k, ηk is a winning strategy for G>(tk, hk, u
⌢nk, l, i) if k is even,

and ηk is a winning strategy for G≤(tk, hk, u
⌢nk, l, i) if k is odd. Let

x :=
∪
k

tk.

For each k ∈ ω, since ηk has been applied infinitely many times in the construction

of the sequence of elements of H and by the rules for the game corresponding to ηk,



195

we see that

(∀k ∈ ω)


gu⌢nk

(x)(i) > l if k is even,

gu⌢nk
(x)(i) ≤ l if k is odd.

This, however, contradicts the fact that limn→∞ gu⌢n(x)(i) exists.

The next lemma is much simpler than the previous one. The idea is that to get a

winning strategy for Player II of the G≤ game associated to an internal node u ∈ U ,

we combine together winning strategies for the Player II’s of the G≤ games associated

to the child nodes of u. However, the assumption that Ψ(t, u, l, i) = 1 is important.

Lemma VII.23. Fix u ∈ U , a non-leaf node of U . Fix l, i ∈ ω. Assume

(∀n ∈ ω)[Φ(u⌢n, l, i) ∧ Ξ≤(u⌢n, l, i)].

Then Ξ≤(u, l, i).

Proof. Fix arbitrary t ∈ <ωω. Assume Ψ(t, u, l, i) = 1. Since we are assuming this,

fix p ∈ ω and h satisfying

(∀t′ ⊒h t)(∀n′ ≥ p)[Ψ(t′, u⌢n′, l, i) ↓⇒ Ψ(t′, u⌢n′, l, i) = 1].

We will now describe a winning strategy for Player II for the game G≤(t, h, u, l, i),

and the proof will be complete.

Let (t0, h0) be the first move of Player I. We will describe the first move (t1, h1)

of Player II. Since Φ(u⌢(p+ 0), l, i), let t′0 ⊒⋆
h0
t0 satisfy

Ψ(t′0, u
⌢(p+ 0), l, i) ↓ .

Since (p+ 0) ≥ p, we have

Ψ(t′0, u
⌢(p+ 0), l, i) = 1.



196

Since we assumed Ξ≤(u⌢(p + 0), l, i), fix h′0 ≥ h0 and a winning strategy ηp+0 for

Player II for the game

G≤(t′0, h
′
0, u

⌢(p+ 0), l, i).

Note that (t′0, h
′
0) ≤⋆ (t0, h0). Apply η0 to the pair (t′0, h

′
0) to get the pair (t1, h1) ≤⋆

(t′0, h
′
0). This concludes Player II’s first move.

Now let (t2, h2) be the second move of Player I. We will describe the second move

(t3, h3) of Player II. Since Φ(u⌢(p+ 1), l, i), let t′2 ⊒⋆
h2
t2 be such that

Ψ(t′2, u
⌢(p+ 1), l, i) ↓ .

Since (p+ 1) ≥ p, we have

Ψ(t′2, u
⌢(p+ 1), l, i) = 1.

Since we assumed Ξ≤(u⌢(p + 1), l, i), fix h′2 ≥ h2 and a winning strategy ηp+1 for

Player II for the game

G≤(t′2, h
′
2, u

⌢(p+ 1), l, i).

Note that (t′2, h
′
2) ≤⋆ (t2, h2). Successively apply both ηp+0 and ηp+1 (the order does

not matter) to the pair (t′2, h
′
2) to get the pair (t3, h3) ≤⋆ (t′2, h

′
2). This concludes

Player II’s second move.

The pattern continues like this. We claim that no matter what moves Player I

makes, Player II will win the game G≤(t, h, u, l, i) by playing this way. The following

diagram helps to visualize the play of the game. The circled entries show which parts



197

of the construction were done by Player II.

t

$$JJ
JJJ

JJ

t0
⋆

$$H
HH

HH
HH 76540123t′0

⋆

##H
HH

HH
HH 76540123t1

$$II
III

II

t2
⋆

$$H
HH

HH
HH 76540123t′2

⋆

##H
HH

HH
HH 76540123t3

%%LL
LLL

LL

...

h h0 ?>=<89:;h′0
?>=<89:;h1 h2 ?>=<89:;h′2

?>=<89:;h3 ...

Here is why Player II wins: when the game finishes, what has been constructed

is a sequence of elements of H

(t, h) ≥ (t0, h0) ≥⋆ (t′0, h
′
0) ≥⋆ (t1, h1) ≥ (t2, h2) ≥⋆ (t′2, h

′
2) ≥⋆ (t3, h3) ≥ ...

and a sequence of strategies

ηp+0, ηp+1, ...

such that for each n ∈ ω, ηp+n is a winning strategy for Player II for the game

G≤(t′2n, h
′
2n, u

⌢(p+ n), l, i).

Let

x :=
∪
n

tn.

Consider any n ∈ ω. The strategy ηp+n was used infinitely many times for the

construction of the sequence of elements of H. All that was done for the construction



198

of that sequence that did not come from the function ηp+n can be viewed as the moves

of Player I in the game associated to ηp+n. Because ηp+n is a winning strategy for

that game, Player II has won that game, so

gu⌢(p+n)(x)(i) ≤ l.

Thus, we have shown

(∀n ∈ ω) gu⌢(p+n)(x)(i) ≤ l.

Since

gu(x)(i) = lim
n→∞

gu⌢n(x)(i),

we have

gu(x)(i) ≤ l.

That is, Player II has won the game G≤(t, h, u, l, i).

We have an analogous lemma:

Lemma VII.24. Fix u ∈ U , a non-leaf node of U . Fix l, i ∈ ω. Assume

(∀n ∈ ω)[Φ(u⌢n, l, i) ∧ Ξ>(u⌢n, l, i)].

Then Ξ>(u, l, i).

Proof. The proof is very similar to that of the last lemma, so we will not repeat

it.

Combining the last five lemmas, we immediately have the following:

Corollary VII.25. For all u ∈ U and l, i ∈ ω,

Φ(u, l, i) ∧ Ξ≤(u, l, i) ∧ Ξ>(u, l, i).



199

Proof. This is an easy proof by induction on the nodes of the well-founded tree U .

Fix l, i ∈ ω.

Suppose u ∈ U is a leaf node of U . By Lemma VII.20, Φ(u, l, i) holds. Hence, for

each t, Ψ(t, u, l, i) is well-defined. By Lemma VII.21, both Ξ≤(u, l, i) and Ξ>(u, l, i)

hold.

Suppose u ∈ U is a non-leaf node of U . Assume that for all n ∈ ω, Φ(u⌢n, l, i),

Ξ≤(u⌢n, l, i), and Ξ>(u⌢n, l, i) hold. Also assume that for all t and u′ ∈ U properly

extending u, Ψ(t, u′, l, i) is well-defined. Since (∀n ∈ ω) Φ(u⌢n, l, i), for all t we have

Ψ(t, u, l, i) is well-defined. By Lemma VII.22, Φ(u, l, i) holds. By Lemma VII.23,

Ξ≤(u, l, i) holds. By Lemma VII.24, Ξ>(u, l, i) holds. This completes the proof.

7.6.7 Minor cleanup work

At this point, we are essentially done. The hard work was done in Lemma VII.22,

and the corollary above can be used like a black box. However, as a side effect of

keeping the hardest part of the proof (the induction on U) simple, we are left with

some minor cleanup work. The next two lemmas as well as the theorem in this

section and the next should be viewed as easy consequences of the corollary above.

The reader may skip this section, trusting us that the lemmas are true when we use

them in the theorem.

The next lemma could be proved for arbitrary u ∈ U instead of just ∅ ∈ U , but

we do not need such generality.

Lemma VII.26. Fix i ∈ ω. Assume

(∀l ∈ ω)[Φ(∅, l, i) ∧ Ξ>(∅, l, i)].



200

Then

(∀t ∈ <ωω)(∀h)

(∃t′ ⊒⋆
h t)(∃l ∈ ω)

Ψ(t′, ∅, l, i) = 1.

Proof. Fix arbitrary t ∈ <ωω and h : <ωω → ω. We will show

(∃t′ ⊒⋆
h t)(∃l ∈ ω) Ψ(t′, ∅, l, i) = 1,

and the proof will be complete. This is another proof where we describe a procedure

we want to terminate in finitely many steps. If the procedure goes on forever, then

we reach a contradiction. Here is the relevant diagram to guide the reader:

t
⋆

$$JJ
JJJ

JJ

t0
⋆

$$II
III

II

t̃0
⋆

$$II
III

II

t1
⋆

$$II
III

II

t̃1
⋆

%%LL
LLL

LL

...

h h0 h̃0 h1 h̃1 ...

Since Φ(∅, 0, i) holds, there is some t0 ⊒⋆
h t satisfying

Ψ(t0, ∅, 0, i) ↓ .

If Ψ(t0, ∅, 0, i) = 1, then we are done by defining t′ := t0 and l := 0. If not, then

Ψ(t0, ∅, 0, i) = 0.

Since we have assumed Ξ>(∅, 0, i), fix a function h0 ≥ h and fix a winning strategy

η0 for Player II for the game

G>(t0, h0, ∅, 0, i).



201

Note that (t0, h0) ≤⋆ (t, h). Apply η0 to the pair (t0, h0) to get the pair (t̃0, h̃0). Note

that (t̃0, h̃0) ≤⋆ (t0, h0).

Since Φ(∅, 1, i) holds, there is some t1 ⊒⋆
h̃0
t̃0 satisfying

Ψ(t1, ∅, 1, i) ↓ .

If Ψ(t1, ∅, 1, i) = 1, then we are done by defining t′ := t1 and l := 1. If not, then

Ψ(t1, ∅, 1, i) = 0.

Since we have assumed Ξ>(∅, 1, i), fix a function h1 ≥ h̃0 and fix a winning strategy

η1 for Player II for the game

G>(t1, h1, ∅, 1, i).

Note that (t1, h1) ≤⋆ (t̃0, h̃0). Successively apply both η0 and η1 (the order does not

matter) to the pair (t1, h1) to get the pair (t̃1, h̃1). Note that (t̃1, h̃1) ≤⋆ (t1, h1).

The pattern continues like this. We claim that the procedure eventually stops.

Suppose, towards a contradiction, that it goes on forever. This means that we have

constructed a sequence of elements of H

(t, h) ≥⋆ (t0, h0) ≥⋆ (t̃0, h̃0) ≥⋆ (t1, h1) ≥⋆ (t̃1, h̃1) ≥⋆ ...

and a sequence of strategies

η0, η1, ...

such that for each l ∈ ω, ηl is a winning strategy for Player II for the game

G>(tl, hl, ∅, l, i).

Let

x :=
∪
l

tl.



202

Consider any l ∈ ω. The strategy ηl was used infinitely many times in the con-

struction of the sequence of nodes. All that was done for the construction of the

sequence of nodes that did not come from the function ηl can be viewed as the moves

of Player I in the game associated with ηl. Because ηl is a winning strategy for that

game, Player II has won that game, so

g∅(x)(i) > l.

Thus, we have shown

(∀l ∈ ω) g∅(x)(i) > l.

This is a contradiction.

This next lemma is not needed for the proof of the main theorem, but it will be

used for the generalization in the next section.

Lemma VII.27. Fix i ∈ ω. Assume

(∀l ∈ ω)[Φ(∅, l, i) ∧ Ξ≤(∅, l, i) ∧ Ξ>(∅, l, i)].

Then

( ∀(t, h) ∈ H )

( ∃(t′, h′) ≤⋆ (t, h) )(∃l ∈ ω)

Player II has a w.s. for G=(t′, h′, ∅, l, i).

Proof. First, use Lemma VII.26 and the fact that Ξ≤(∅, l, i) holds to get (t0, h0) ≤⋆

(t, h) and l0 ∈ ω such that Player II has a winning strategy η0 for G≤(t0, h0, ∅, l0, i).

If l0 = 0, we are done by setting t′ := t0, h
′ := h0, and l := l0.

If not, then let l1 := l0 − 1. Applying Φ(∅, l1, i) followed be either Ξ≤(∅, l1, i)

or Ξ>(∅, l1, i), we get (t1, h1) ≤⋆ (t0, h0) such that Player II has a winning strategy



203

η1 for either G≤(t1, h1, ∅, l1, i) or G>(t1, h1, ∅, l1, i). If η1 is a winning strategy for

G>(t1, h1, ∅, l1, i), then by combining the strategies η0 and η1 into one, we have a

winning strategy for G=(t0, h0, ∅, l0, i). We are done by setting t′ := t1, h
′ := h1, and

l := l0.

Otherwise, η1 is a winning strategy for G≤(t1, h1, ∅, l1, i). We may inductively

continue the process now starting at l1 until it eventually stops (in a finite number

of steps).

An alternative induction for proving the main lemmas would have involved prov-

ing the generalization of the last lemma to an arbitrary u ∈ U , but we believe the

current proof is simpler. That is, we chose to keep the induction on U simple.

7.6.8 Proof of theorem from lemmas

Recall the function fA from Definition VII.13:

(∀x ∈ ωω)(∀i ∈ ω) fA(x)(i) = Rep(CA,i)(x).

Theorem VII.28 (Borel Dominator ∆1
2 Coding Theorem). For each A ⊆ ω, when-

ever g : ωω → ωω is a Borel function satisfying

(∀x ∈ ωω)(∃c ∈ ω) fA(x)(c) ≤ g(x)(c),

then A is ∆1
2 in any code for g.

Proof. Fix A ⊆ ω, but assume without loss of generality that it is infinite and ∆1
1 in

every infinite subset of itself. Fix a Borel function g : ωω → ωω such that A is not

∆1
2 in a fixed code for g. Also fix a well-founded tree U ⊆ <ωω and for each u ∈ U

a Borel function gu : ωω → ωω as was done at the beginning of this section. At this



204

point, we may freely use the notation and lemmas used so far within this section.

We will construct an x ∈ ωω satisfying

(∀i ∈ ω) g(x)(i) < f(x)(i),

and the proof will be complete. Recall that g = g∅. As a result of Corollary VII.25,

(∀i, l ∈ ω)[Φ(∅, l, i) ∧ Ξ≤(∅, l, i) ∧ Ξ>(∅, l, i)].

We are also free to apply Lemma VII.26. We will construct a sequence of nodes

t0 ⊑ t1 ⊑ t2 ⊑ ...,

and our x will be
∪
i ti.

The following diagram will guild the reader through this construction:

∅
⋆

$$HH
HHH

HH

t0

$$HH
HHH

HH

t′0
⋆

##G
GG

GG
GG

CA,0

t̃0
⋆

%%KK
KKK

KKK

t1

%%KK
KKK

KKK

t′1
⋆

##G
GG

GG
GG

CA,1

t̃1
⋆

''NN
NNN

NNN

...

h0 h̃0 h1 h̃1 ...

�� ���� ��
�� ���� ��

First, apply Lemma VII.26 and the fact that (∀l ∈ ω) Ξ≤(∅, l, 0) holds to get

t0 ⊒⋆ ∅, h0 : <ωω → ω, l0 ∈ ω, and η0 such that η0 is a winning strategy for Player

II for the game

G≤(t0, h0, ∅, l0, 0).



205

At this point, we have ensured that g(x)(0) ≤ l0 (because we will apply the strategy

η0 infinitely many times during the construction of x, and all else that is done in

the construction of the sequence x can be viewed as the moves of Player I in the

game G≤(t0, h0, ∅, l0, 0)). Now, extend t0 to a node t′0 ⊒h0 t0 such that |t′0| > l0

and t′0 ∈ CA,0. This is possible because since t0 ⊒⋆ ∅, t0 does not “hit” A. That

is, (∀l < |t0|) t0(l) ̸∈ A. We have now decided that f(x)(0) > l0. Next, apply the

strategy η0 to the pair (t′0, h0) to get the pair (t̃0, h̃0). Note that

(t̃0, h̃0) ≤⋆ (t′0, h0) ≤ (t0, h0) ≤⋆ (∅, h0).

Next, apply Lemma VII.26 and the fact that (∀l ∈ ω) Ξ≤(∅, l, 1) holds to get

(t1, h1) ≤⋆ (t̃0, h̃0), l1 ∈ ω, and η1 such that η1 is a winning strategy for Player II for

the game

G≤(t1, h1, ∅, l1, 1).

At this point, we have ensured that g(x)(1) ≤ l1 by the way we will construct the

rest of x. Now, extend t1 to a node t′1 ⊒h1 t1 such that |t′1| > l1 and t′1 ∈ CA,1.

This is possible because since t1 ⊒⋆ t′0, t1 does not hit A more than t′0 does. That

is {l < |t′0| : t′0(l) ∈ A} and {l < |t1| : t1(l) ∈ A} both have size 1. We have now

decided that f(x)(1) > l1. Next, successively apply both η0 and η1 (the order does

not matter) to the pair (t′1, h1) to get the pair (t̃1, h̃1). Note that

(t̃1, h̃1) ≤⋆ (t′1, h1) ≤ (t1, h1) ≤⋆ (t̃0, h̃0).

Continue this procedure forever. We have constructed a sequence of elements of

H

(t0, h0) ≥ (t′0, h0) ≥⋆ (t̃0, h̃0) ≥⋆ (t1, h1) ≥ (t′1, h1) ≥⋆ (t̃1, h̃1) ≥⋆ ...

such that

(∀i ∈ ω) t′i ∈ CA,i,



206

a sequence of numbers

l0, l1, ...

such that

(∀i ∈ ω) |t′i| > li,

and a sequence of strategies

η0, η1, ...

such that for each i ∈ ω, ηi is a winning strategy for Player II for the game

G≤(ti, hi, ∅, li, i).

Let

x :=
∪
i

ti.

By the way the strategies ηi were applied, we have

(∀i ∈ ω) g(x)(i) ≤ li.

At the same time since for each i ∈ ω we have |t′i| > li, t
′
i ∈ CA,i, and x ⊒ t′i, we have

(∀i ∈ ω) li < f(x)(i).

Thus,

(∀i ∈ ω) g(x)(i) < f(x)(i),

and the proof is complete.



207

7.7 Borel Challenge-Response ∆1
2 Coding Theorem

The lemmas developed in the previous section allow us to prove a more general

result. That is, we may replace the challenge-response relation ⟨ωω, ωω, ̸>⟩ with any

relation which satisfies the following property:

Definition VII.29. A challenge-response relation ⟨ωω, ωω,R⟩ has property X if

there is a continuous function c : ωω → ωω satisfying

(∀y ∈ ωω)¬c(y)Ry.

One can verify that essentially all of the challenge-response relations associated

with cardinal characteristics of the continuum (are equivalent to ones which) have

property X . For example, fixing a standard bijection η from ωω to [ω]ω, we see that

the relation ⟨ωω, ωω, S⟩ defined by

x1Sx2 iff η(x1) is split by η(x2)

has property X . As another example, after fixing a standard way to code subtrees

of <ωω by elements of ωω, the relation ⟨ωω, ωω,W ⟩ has property X where x1Wx2 iff

either x1 codes an ill-founded tree T2 ⊆ <ωω, or x1 and x2 code well-founded trees

T1 ⊆ <ωω and T2 ⊆ <ωω respectively and the rank of T1 is less than or equal to the

rank of T2.

Out of all relations R ⊆ ωω × ωω which satisfy property X , the weakest is non-

equality of reals. Specifically, the reader can verify that R has property X iff there

exists a morphism ⟨ϕ−, ϕ+⟩ from ⟨ωω, ωω,R⟩ to ⟨ωω, ωω, ̸=⟩ such that ϕ− is continuous

and ϕ+ is the identity function. We will use this to state a remarkably strong

corollary.

The proof of this next theorem is similar to that of Theorem VII.28, except we

use G= instead of G≤ to get finer control over the behavior of g(x). We will still use



208

the sets CA,i, but we will have to use a different function f : ωω → ωω. Each node t′i

hits CA,i not at a level which is important, but such that the last value t′i(|t′i|−1) ∈ A

of t′i is important.

Theorem VII.30 (Borel Challenge-Response ∆1
2 Coding Theorem). Let ⟨ωω, ωω,R⟩

be a challenge-response relation and fix a continuous function c : ωω → ωω satisfying

(∀y ∈ ωω)¬c(y)Ry.

For each A ⊆ ω, there is a Baire class one function f : ωω → ωω such that whenever

g : ωω → ωω is a Borel function satisfying

(∀x ∈ ωω) f(x)Rg(x),

then A is ∆1
2 in any code for g.

Proof. Fix A ⊆ ω, but assume without loss of generality that it is ∆1
1 in every infinite

subset of itself. Fix a surjection s : A → <ωω such that for each t ∈ <ωω, s−1(t) is

infinite. For each i ∈ ω, let CA,i ⊆ <ωω be the cloud defined in Definition VII.13.

In the proof of Theorem VII.28, we defined f(x)(i) to be the level where x “hits”

CA,i. Here, we will define f(x) to be the concatenation of finite sequences, where the

(i+1)-th finite sequence gets concatenated when x hits CA,i, and that finite sequence

is determined by the value of x at the level where x hits CA,i. That is, we will define

a function

f̃ : ωω → ω(<ωω),

and then define f : ωω → ωω by

f(x) := f̃(x)(0)⌢f̃(x)(1)⌢...

(and f(x) is some arbitrary value if all but finitely many of the sequences f̃(x)(0),

f̃(x)(1), ... are empty). Recall that given x ∈ ωω and i, l ∈ ω, x � l ∈ CA,i implies



209

x(l − 1) ∈ A. Define f̃ as follows:

f̃(x)(i) :=


s(x(l − 1)) if x � l ∈ CA,i,

∅ otherwise.

Said another way, f̃(x)(i) is the s(x(l−1)) such that x(l−1) is the (i+1)-th element

of A in the sequence

x = ⟨x(0), x(1), ...⟩

(and is ∅ if the sequence does not have at least (i+ 1) elements of A).

Fix a Borel function g : ωω → ωω such that A is not ∆1
2 in a fixed code for g. We

will construct an x ∈ ωω satisfying

¬f(x)Rg(x),

and the proof will be complete. At this point, we may freely use the notation and

lemmas within the last section (because g is Borel, A is ∆1
1 in any infinite subset

of itself, and A is not ∆1
2 in the code for g). Recall that g = g∅. As a result of

Corollary VII.25,

(∀i, l ∈ ω)[Φ(∅, l, i) ∧ Ξ≤(∅, l, i) ∧ Ξ>(∅, l, i)].

This allows us to apply Lemma VII.27, which is actually the only lemma we need.

We will construct a sequence of nodes t0 ⊑ t1 ⊑ ..., and our x will be
∪
i ti. The

reader can use the same diagram which appears in the proof of Theorem VII.28 as a

guide for this construction.

First, apply Lemma VII.27 to get (t0, h0) ∈ H, l0 ∈ ω, and η0 such that η0 is a

winning strategy for Player II for the game

G=(t0, h0, ∅, l0, 0).



210

At this point, we have ensured that g(x)(0) = l0 (because we will apply the strategy

η0 infinitely many times during the construction of x, and all else that is done in the

construction of the sequence x can be viewed as the moves of Player I in the game

G=(t0, h0, ∅, l0, 0)).

We will now make use of the continuous function c. Let v0 ∈ <ωω be the longest

finite sequence such that for each y ∈ ωω extending ⟨l0⟩, c(y) extends v0. By hypoth-

esis on the function s, s−1(v0) ⊆ A is infinite. Also, (∀l < |t0|) t0(l) ̸∈ A, so we may

extend t0 to a node t′0 ⊒h0 t0 such that t′0 ∈ CA,0 and s applied to the last element

of the finite sequence t′0 is v0. We have now decided that

f̃(x)(0) = v0,

and hence f(x) will extend v0. Next, apply the strategy η0 to the pair (t′0, h0) to get

the pair (t̃0, h̃0). Note that

(t̃0, h̃0) ≤⋆ (t′0, h0) ≤ (t0, h0) ≤⋆ (∅, h0).

Next, apply Lemma VII.27 to get (t1, h1) ≤⋆ (t̃0, h̃0), l1 ∈ ω, and η1 such that η1

is a winning strategy for Player II for the game

G=(t1, h1, ∅, l1, 1).

At this point, we have ensured that g(x)(1) = l1 by the way we will construct the

rest of x. We will again make use of the continuous function c. Let v1 ∈ <ωω be such

that v⌢0 v1 is the longest finite sequence such that for all y ∈ ωω extending ⟨l0, l1⟩,

c(y) extends v⌢0 v1. By the hypothesis on the function s, s−1(v1) ⊆ A is infinite.

Also, since t1 ⊒⋆ t′0, t1 does not hit A more than t′0 does. Hence, {l < |t1| : t1(l) ∈ A}

has size 1. We can now easily extend t1 to a node t′1 ⊒h1 t1 such that t′1 ∈ CA,0 and s

applied to the last element of the finite sequence t′1 is v1. We have now decided that

f̃(x)(1) = v1,



211

and hence f(x) will extend v⌢0 v1. Next, successively apply both η0 and η1 (the order

does not matter) to the pair (t1, h1) to get the pair (t̃1, h̃1). Note that

(t̃1, h̃1) ≤⋆ (t′1, h1) ≤ (t1, h1) ≤⋆ (t̃0, h̃0).

Continue this procedure forever. We have constructed a sequence of nodes

v0, v1, ... ∈ <ωω,

a sequence of elements of H

(t0, h0) ≥ (t′0, h0) ≥⋆ (t̃0, h̃0) ≥⋆ (t1, h1) ≥ (t′1, h1) ≥⋆ (t̃1, h̃1) ≥⋆ ...

such that for each i ∈ ω

t′i ∈ CA,i

and

s(t′i(|t′i| − 1)) = vi,

a sequence of numbers

l0, l1, ...,

and a sequence of strategies

η0, η1, ...

such that for each i ∈ ω, ηi is a winning strategy for Player II for the game

G=(ti, hi, ∅, li, i).

Let

x :=
∪
i

ti.

By the way the strategies ηi were applied, we have

(∀i ∈ ω) g(x)(i) = li.



212

Define y ∈ ωω to be

y := g(x) = ⟨l0, l1, ...⟩.

Now, y extends ⟨l0⟩, so by the definition of v0, c(y) extends v0. Similarly, since

y extends ⟨l0, l1⟩, c(y) extends v⌢0 v1. Continuing this argument we see that c(y)

extends v⌢0 v
⌢
1 .... Since c is continuous, in fact v⌢0 v

⌢
1 ... is an infinite sequence, so

c(y) = v⌢0 v
⌢
1 ....

At the same time, by the definition of f̃ ,

(∀i ∈ ω) f̃(x)(i) = vi,

hence

f(x) = v⌢0 v
⌢
1 ....

Thus, we have shown

f(x) = c(g(x)).

By the hypothesis on c, we have

¬f(x)Rg(x).

This completes the proof.

We now have a very strong corollary. The only work comes from considering

arbitrary Polish spaces instead of ωω, which is generality we have suppressed up

until this point.

Corollary VII.31. Let X and Y be Polish spaces with X uncountable. For each

A ⊆ ω, there is a Borel f : X → Y such that whenever g : X → Y is Borel, then at

least one of the following holds:



213

1) (∃x ∈ X) f(x) = g(x);

2) A is ∆1
2 in any code for g.

Proof. Fix A ⊆ ω. First, we claim that our choice of an arbitrary polish space Y as

opposed to ωω does not matter. That is, let r : ωω → Y be a continuous surjection.

Given a Borel g : X → Y , there is a Borel function g̃ : X → ωω which makes the

following diagram commute:

ωω

r
��

X g
//

g̃
==|

|
|

|
Y

Furthermore, if A is ∆1
2 in any code for g̃, then A is ∆1

2 in any code for g. Suppose

that we have proved that for some fixed Borel f ′ : X → ωω, whenever g′ : X → ωω

is Borel and satisfies (∀x ∈ X) f ′(x) ̸= g′(x), then A is ∆1
2 in any code for g′. Define

f to make the following diagram commute:

ωω

r
��

X
f

//___

f ′
==||||||||
Y

Now suppose g : X → Y satisfies (∀x ∈ X) f(x) ̸= g(x). We now have (∀x ∈

X) f ′(x) ̸= g̃(x). This implies A is ∆1
2 in any code for g̃. This in turn implies that

A is ∆1
2 in any code for g. Thus, for the remainder of the proof, we may assume

Y = ωω.

Next, we claim that the domain ωω of the functions in the theorem above can be

replaced with ω2 at the cost of slightly increasing the complexity of f . The point is

that every subset of <ωω which is a cloud corresponds to a subset of <ω2 which is

also a cloud. We leave this as an exercise to the reader, as the idea is simple but the

details are messy.



214

The final piece of the puzzle is a standard fact: since X is an uncountable Polish

space, there exists a Borel embedding η : ω2 → X such that whenever f : ω2 → ωω

is Borel, there is a Borel function f̄ : X → ωω causing the following diagram to

commute:

ω2
f //

η
��

ωω

X
f̄

=={
{

{
{

Furthermore, given Borel f and f̄ causing this diagram to commute, if A is ∆1
2 in

any code for f , then A is ∆1
2 in any code for f̄ .

We are now almost done. Let f : ω2 → ωω be Borel and such that whenever

g : ω2 → ωω is Borel and satisfies (∀x ∈ ω2) f(x) ̸= g(x), then A is ∆1
2 in any code

for g. Let f̄ be the function given by the paragraph above (from f). Now suppose

ĝ : X → ωω is Borel and satisfies (∀x ∈ X) f̄(x) ̸= ĝ(x). Let g : ω2 → ωω be the

Borel function ĝ ◦ η. We have (∀x ∈ ω2) f(x) ̸= g(x), so A is ∆1
2 in any code for g.

By our comments at the end of the last paragraph, we have that A is ∆1
2 in any code

for ĝ.

Note that in the theorem, instead of considering the set F of functions f̃ whose

corresponding f is Borel, we could have considered the set F ′ of Borel functions from

ωω to Ord where Ord is given the discrete topology. Our proof of the theorem pushes

through to give us functions ϕ− : P(ω) → F ′ and ϕ+ : F ′ → P(ω) with the same

properties as above. This ordering is closer to what is studied in [11].

One might further hope that there is an application to the Steel Hierarchy of

Norms (also called the FPT Hierarchy for “First Periodicity Theorem”) [35]. That

is, giving the ordinals the discrete topology, one might hope to show that for each

A ⊆ ω and each countable limit ordinal α that is the image of a Borel function,

there exists a Borel φ : ωω → α such that if ψ : ωω → α is Borel and there exists a



215

continuous i : ωω → ωω satisfying

(∀x ∈ ωω)φ(x) ≤ ψ(i(x)),

then A is constructible from a “Borel code” for ψ. Currently, our arguments only

show we can ensure that A is constructible from the pair consisting of a “Borel code”

for ψ and a Borel code for i. Moreover, it can be checked that our particular encoding

scheme cannot accomplish this stronger goal. The existential quantification of the

continuous function i seems to drastically change the situation.



CHAPTER VIII

Conclusion

Let us end by asking some questions.

8.1 Some Questions

We have seen various encoding schemes for functions from a set X to κ where κ

is an infinite cardinal and |X| ≥ 2κ. We ask the general question of whether similar

encodings can exist but assuming |X| < 2κ. For example, assuming ¬CH, what is

the collection C ⊆ P(ω) of sets A ⊆ ω for which there exists an f : ω1 → ω such

that if g : ω1 → ω satisfies f ≤ g, then A ∈ L[g]? By Section 2.8, C contains all

∆1
1 subsets of ω (because those sets can be encoded into functions from ω to ω, let

alone functions from ω1 to ω). Can C ever be strictly larger than ∆1
1? Is it always

strictly larger? The following is related, because Sacks forcing (to add a single real)

is in some sense the gentlest way to add a real. Note that by Theorem V.35, a model

which affirmatively answers the following question must satisfy ¬CH.

Question VIII.1. Is it consistent that Sacks forcing is weakly (ω1, ω)-distributive?

Taking a step back, we ask what morphisms exist from combinatorial challenge-

response relations to various recursion-theoretic orderings on P(ω) and larger struc-

216



217

tures such as P(R). The purpose of such questions is to lower bound the inherent

complexity within challenge-response relations that arise in practice (such as the

poset used in the definition of Borel boundedness, which is what we did).

Here is the most interesting question: can Theorem VII.30 be generalized beyond

Borel functions? The following definition seems appropriate. We use ≤∗ as the

relation because it is concrete but simultaneously captures the main idea for all

reasonable relations (our evidence being that the proof of Theorem VII.30 is only a

slight generalization of the proof of Theorem VII.28). Let us say that a pointclass Γ

of functions from ωω to ωω has the encoding property if for each A ⊆ ω, there exists

a Borel function f : ωω → ωω such that whenever g : ωω → ωω is in Γ and

(∀x ∈ ωω) f(x) ≤∗ g(x),

then A is in some countable set associated to g. By “some countable set associated

to g”, we have in mind “A ∈ HOD(c) where c is any code for g” (assuming both

AD and that there is a canonical way to code elements of Γ by reals). We require

f to be Borel simply because we believe that using more complicated functions to

encode reals is unnecessary. Indeed, we believe the encoding A 7→ fA given by

Definition VII.13 suffices. When we made the generalization from Baire class one

dominators to Borel dominators, the same encoding sufficed. We naturally expect

this pattern to continue.

The problem becomes to prove from additional set theoretic axioms (determinacy

or large cardinals) that larger and larger pointclasses have the encoding property.

Just as Lebesgue measurability and the property of Baire are regularity properties, so

too should be the encoding property. What is the relationship between the encoding

property and other regularity properties? Since essentially all known regularity prop-

erties follow from determinacy, we should expect the same for the encoding property.



218

It would be interesting if the encoding property coexists with determinacy, without

there being a short proof that ∆1
1 has the encoding property from Borel determi-

nacy. It is possible that even with large cardinals, ∆1
1 is the largest class which can

be proven to have the encoding property. This would explain the apparent difficulty

in reworking the proof that ∆1
1 has the encoding property to use Borel determinacy.

We suspect that the encoding property has more in common with the Ramsey prop-

erty than with the perfect set property, the Lebesgue measurability property, or the

Baire property.

Finally, let us take a leap out of the area of this thesis and conjecture that the

axiom of determinacy implies many more encoding theorems exist. If we have func-

tions f, g : ωω → ωω and a relation R ⊆ ωω × ωω that is a prewellordering of ωω of

order type α such that

(∀x ∈ ωω) f(x)Rg(x),

then this is similar to having functions f̃ , g̃ : ωω → α satisfying

(∀x ∈ ωω) f̃(x) ≤ g̃(x).

Question VIII.2. Assume AD. For each limit ordinal α < Θ and for each A ⊆ ωω,

is there is a function f : ωω → α such that whenever g : ωω → α satisfies f ≤ g,

then A ∈ L(ωω, g)?

This is a question about subsets of ωω rather than subsets of ω, but we cross our

fingers and conjecture that it is true.



APPENDICES

219



220

APPENDIX A

Absoluteness of Domination for Nice Functions

The following observations are natural for investigating the domination ordering

of Borel functions.

Definition A.1. Given a transitive modelM of ZF+DC and a Borel code c ∈ (ωω)M ,

let cM refer to the object in M coded by c. We use Borel codes interchangeably for

subsets of a Polish space or for functions from one Polish space to another.

Given a real c, it is a Π1
1 property whether or not c is a Borel code [26]. That is,

the set BC ⊆ ωω of Borel codes is Π1
1. The following illustrates the absoluteness of

membership in a Borel set:

Fact A.2. Let X be a Polish space. There is a Σ1
1 set P ⊆ X × ωω and a Π1

1 set

Q ⊆ X × ωω such that if c ∈ ωω is a Borel code, then

x ∈ cV ⇔ (x, c) ∈ P ⇔ (x, c) ∈ Q

for all x ∈ X.

For the remainder of this section, let M be a transitive model of ZF + DC. Let

X and Y be Polish spaces. Combining the fact above with Π1
1 absoluteness, we

immediately have the following:

Corollary A.3. Let a, b, c be Borel codes in M . The following hold:



221

1) aM ⊆ bM iff aV ⊆ bV ;

2) aM = bM iff aV = bV ;

3) aM = bM ∪ cM iff aV = bV ∪ cV ;

4) aM = bM ∩ cM iff aV = bV ∩ cV ;

5) aM = ∅ iff aV = ∅.

Another useful consequence of Π1
1 absoluteness is this:

Corollary A.4. If c is a Borel code in M for a subset of X, then cM = cV ∩M .

A consequence of Π1
2 absoluteness is this:

Corollary A.5. Suppose ω1 ⊆ M (so Π1
2 formulas are absolute between M and

V ). If c is a Borel code in M for a subset of X × Y , then (cM is a function)M iff

cV is a function. Furthermore, if (cM is a function)M , then cM = cV �M .

The following is relevant to our investigation:

Proposition A.6. If a and b are Borel codes in M for functions from X to ω, then

(aM ≤ bM)M iff aV ≤ bV .

Proof. Fix such a and b. By Π1
1 absoluteness,

M |= (∀x ∈ N )(∀n,m ∈ ω)[(x, n) ∈ aM ∧ (x,m) ∈ bM → n ≤ m]

iff V |= (∀x ∈ N )(∀n,m ∈ ω)[(x, n) ∈ aV ∧ (x,m) ∈ bV → n ≤ m],

which is what we want.

For eventual domination, we have an analogous result:

Proposition A.7. If a and b are Borel codes in M for functions from ωω to ωω,

then (aM ≤∗ bM)M iff aV ≤∗ bV .



222

APPENDIX B

Tameness of Cardinal Characteristics

Zapletal has defined a notion of a cardinal characteristic being tame. Tame char-

acteristics have some desirable properties, and both cfBα(ω,≤) and cfBα(ωω,≤∗) for

α ≤ ω1 are tame. The following is from [46]:

Definition B.1. A cardinal characteristic is tame if it is defined as

min{|A| : A ⊆ ωω ∧ ϕ(A) ∧ (∀x ∈ ωω)(∃y ∈ A) xRy}

where R ⊆ ωω× ωω is projective and the quantifiers of ϕ(A) are restricted to the set

A or to the set of natural numbers.

For our purposes, this is the crucial property of tame characteristics:

Theorem B.2. Suppose that there is a proper class of measurable Woodin cardinals.

If r is a tame cardinal invariant such that r < 2ω holds in some set forcing extension,

then r < 2ω holds in the iterated Sacks extension.

Proof. See [46].

Thus, when we investigate a tame cardinal characteristic which we do not yet

know is provably (in ZFC) equal to 2ω, analyzing the effect of iterated Sacks forcing

is extremely useful. Indeed, we can learn much by adding a single Sacks real.



223

We will explain why cfBω1(
ωω,≤∗) is tame (a similar reason applies to both

cfBα(ω,≤) and cfBα(ωω,≤∗) for each α ≤ ω1). Let BC ⊆ ωω be the set of codes

for Borel functions from ωω to ωω. Certainly, BC is projective. Let R ⊆ ωω × ωω

be such that xRy iff either x ̸∈ BC, or simultaneously x ∈ BC, y ∈ BC, and the

function coded by y pointwise eventually dominates the function coded by x. The

relation R is projective. Finally, letting ϕ(A) be identically true, we have

cfBω1(
ωω,≤∗) = min{|A| : A ⊆ ωω ∧ ϕ(A) ∧ (∀x ∈ ωω)(∃y ∈ A) xRy},

so cfBω1(
ωω,≤∗) is tame.



224

APPENDIX C

Sacks Forcing and Fusion

Within this short section, we will define Sacks forcing and provide a lemma that

will help to perform fusion. We use this in Section 6.2.

Definition C.1. A tree p ⊆ <ω2 is perfect if it is nonempty and for each t ∈ p, there

are incomparable t1, t2 ∈ p extending t. Sacks forcing S is the poset of all perfect

trees p ⊆ <ω2 where p1 ≤ p2 iff p1 ⊆ p2.

Given p1, p2 ∈ S, p1 ⊥ p2 means that p1 and p2 are incompatible.

Definition C.2. Let p ⊆ <ω2 be a perfect tree. A node t ∈ p is called a branching

node if t⌢0, t⌢1 ∈ p. Stem(p) is the unique branching node t of p such that all

elements of p are comparable to t. A node t ∈ p is said to be an n-th branching node

if it is a branching node and there are exactly n branching nodes that are proper

initial segments of it. In particular, Stem(p) is the unique 0-th branching node of p.

Given Sacks conditions p, q, we write q ≤n p if q ≤ p and all of the k-th branching

nodes, for k ≤ n, of p are in q and are branching nodes.

Lemma C.3 (Fusion Lemma). Let ⟨pn : n ∈ ω⟩ be a sequence of Sacks conditions

such that

p0 ≥0 p1 ≥1 p2 ≥2 ....

Then pω :=
∩
n∈ω pn is a Sacks condition below each pn.



225

Proof. This is standard and can be found in introductory presentations of Sacks

forcing. See, for example, [24].

The sequence ⟨pn : n ∈ ω⟩ in the above lemma is known as a fusion sequence. The

following will help in the construction of fusion sequences.

Lemma C.4 (Fusion Helper Lemma). Let S be Sacks forcing. Let R : <ω2 → S be a

function with the following properties:

1) (∀s1, s2 ∈ <ω2) s2 ⊒ s1 implies R(s2) ≤ R(s1);

2) (∀s ∈ <ω2) Stem(R(s⌢0)) ⊥ Stem(R(s⌢1)).

For each n ∈ ω, let pn be the Sacks condition

pn :=
∪

{R(s) : s ∈ n2}.

Then

R(∅) = p0 ≥ p1 ≥0 p2 ≥1 p3 ≥2 ...

is a fusion sequence.

Proof. Consider any n ≥ 1. Certainly pn ⊇ pn+1, because for each s ∈ n2, R(s) ⊇

R(s⌢0) ∪ R(s⌢1). To show that pn ≥n−1 pn+1, consider a k-th branching node t of

pn for some k ≤ n − 1. One can check that there is some s ∈ k2 such that t is the

largest common initial segment of Stem(R(s⌢0)) and Stem(R(s⌢1)). Since

Stem(R(s⌢0)) ∪ Stem(R(s⌢1)) ⊆ R(s⌢0) ∪R(s⌢1) ⊆ pn+1,

we have that t is a branching node of pn+1. Thus, we have shown that for each

k ≤ n − 1, each k-th branching node of pn is a branching node of pn+1. Hence,

pn ≥n−1 pn+1.



226

In the proposition above, if we define

q :=
∩
n

pn,

then we have the representation

q = {t ∈ <ω2 : t ⊑ Stem(R(s)) for some s ∈ <ω2)},

and every x ∈ [q] is uniquely determined by the set of s ∈ <ω2 for which Stem(R(s)) ⊑

x.



227

APPENDIX D

Sacks Forcing and Continuous Reading of Names

This section may be useful to anyone who works with Sacks forcing (especially the

final proposition). The following is commonly called “continuous readings of names”:

Proposition D.1. Let p be a Sacks condition. Let τ̇ be such that p 
 (τ̇ ∈ ωω).

Then there is some q ≤ p and a name ġ for a continuous function from [q] to ωω,

which is coded by a Borel code in V , satisfying

q 
 (ġ(σ̇) = τ̇)

where σ̇ is the canonical name for the generic real.

Proof. We will define a function R : <ω2 → S satisfying conditions 1 and 2 of

Lemma C.4. At the same time, we will also define a function N : <ω2 → <ωω. We will

define these by induction on the length of their input. Let R(∅) = p and N(∅) = ∅.

Now, suppose that s ∈ n2 and we have defined R(s) and N(s). Let R(s⌢0), R(s⌢1),

N(s⌢0), and N(s⌢1) be defined in any way such that the following are satisfied:

1) R(s⌢0), R(s⌢1) ≤ R(s);

2) Stem(R(s⌢0)) ⊥ Stem(R(s⌢1));

3) |N(s⌢0)|, |N(s⌢1)| ≥ n+ 1;



228

4) R(s⌢i) 

ˇ︷ ︸︸ ︷

N(s⌢i) ⊑ τ̇ for i = 0, 1.

It is clear that such values exist. That is, we may initially pick R(s⌢0) and R(s⌢1)

to be strengthenings of R(s) with incompatible stems, and then strengthen them

more to decide the first n+ 1 values of τ̇ . This completes the definition of R and N .

By 1 and 2 above, the function R satisfies the conditions of Lemma C.4. Let q be

the intersection of the fusion sequence given by that lemma. Let g be the continuous

function in V satisfying

(∀x ∈ [q])(∀s ∈ <ω2)[Stem(R(s)) ⊑ x→ N(s) ⊑ g(x)].

Let ġ be a name for the unique continuous function in the forcing extension which

extends g. Note that the continuous function in the forcing extension is coded by a

Borel code in V (which is in fact the Borel code for g in V ). We have

1 
 (∀x ∈ [q̌])(∀s ∈ <ω2)[Stem(Ř(s)) ⊑ x→ Ň(s) ⊑ ġ(x)].

Since q 
 σ̇ ∈ [q̌], we have

q 
 (∀s ∈ <ω2)[Stem(Ř(s)) ⊑ σ̇ → Ň(s) ⊑ ġ(σ̇)].

Consider any n ∈ ω and s ∈ n2. By the definition of σ̇,

R(s) 
 Stem(Ř(š)) ⊑ σ̇.

This means

q ∩R(s) 
 Ň(š) ⊑ ġ(σ̇).

On the other hand, |N(s)| ≥ n and R(s) 
 Ň(š) ⊑ τ̇ , so

q ∩R(s) 
 ġ(σ̇) � ň = τ̇ � ň.



229

Let pn :=
∪
{R(s) : s ∈ n2}. Since any extension of q ∩ pn can be strengthened to

an extension of q ∩R(s) for some s ∈ n2, by density we have

q ∩ pn 
 ġ(σ̇) � ň = τ̇ � ň.

Since q ≤ q ∩ pn for all n,

q 
 (∀n ∈ ω) ġ(σ̇) � n = τ̇ � n.

Hence,

q 
 ġ(τ̇) = τ̇ ,

and we are done.

Something special about Sacks forcing is that we can get the function ġ to be

one-to-one as long as p 
 (σ̇ ̸∈ V̌ ):

Proposition D.2. Let p be a Sacks condition. Let τ̇ be such that p 
 (τ̇ ∈ ωω)

and p 
 (τ̇ ̸∈ V̌ ). Then there is some q ≤ p and a name ġ for a continuous and

one-to-one function from [q] to ωω, where the function is coded by a Borel code in V ,

satisfying

q 
 (ġ(σ̇) = τ̇)

where σ̇ is the canonical name for the generic real.

Proof. We may perform the same construction in the above proof but also with the

requirement that

(∀s ∈ <ω2)N(s⌢0) ⊥ N(s⌢1).

We will show that the resulting function ġ is injective. Suppose ȧ and ḃ are names

satisfying 1 
 ȧ ∈ [q̌], 1 
 ḃ ∈ [q̌], and 1 
 ȧ ̸= ḃ. We will show that

{r ∈ S : r 
 ġ(ȧ) ̸= ġ(ḃ)}



230

is dense in S, which will establish that 1 
 ġ(ȧ) ̸= ġ(ḃ).

Pick any r ∈ S. There exists some r′ ≤ r and s ∈ <ω2 satisfying r′ 
 R(s⌢0) ⊑ ȧ

and r′ 
 R(s⌢1) ⊑ ḃ. Using the definition of ġ gives us r′ 
 N(s⌢0) ⊑ ġ(ȧ) and

r′ 
 N(s⌢1) ⊑ ġ(ḃ). Since N(s⌢0) ⊥ N(s⌢1), we have r′ 
 ġ(ȧ) ̸= ġ(ḃ). This

completes the proof.

We can generalize this proposition to handle countably many reals simultaneously.

This requires us to enhance the argument and there is no clear way to deduce it from

the proposition above (such as using a scheme to code countably many reals into a

single real)

Proposition D.3. Let p be a Sacks condition. Let τ̇ be a name satisfying p 
 (τ̇ :

ω × ω → ω). For each n ∈ ω, let τ̇n be a name for the function i 7→ τ̇(n, i) in the

extension. Suppose that for each n ∈ ω, p 
 (τ̇n ̸∈ V̌ ). Then there is some q ≤ p

and a name ġ for a function from ω × [q] to ωω, which is coded by a Borel code in

V , satisfying

q 
 (∀n ∈ ω)[(x 7→ ġ(n, x)) is continuous and one-to-one]

and

q 
 (∀n ∈ ω) ġ(n, σ̇) = τ̇n

where σ is the canonical name for the generic real.

Proof. We will define a function R : <ω2 → S satisfying conditions 1 and 2 of

Lemma C.4. Using the proposition above with condition p and name τ̇0, let R(∅) be

p and let ġ0 be the name for the function given by that proposition. That is, ġ0 is a

name for a continuous and one-to-one function from [R(∅)] to ωω for which

R(∅) 
 ġ0(σ̇) = τ̇0.



231

Next, let r0 and r1 be two extensions of R(∅) with incompatible stems. We may

apply the proposition above to strengthen r0 to some condition r′0 and get a name

ḣ0 for a continuous and one-to-one function from [r′0] to ωω for which r′0 
 ḣ0(σ̇) =

τ̇1. Similarly, we may strengthen r1 to some condition r′1 and get a name ḣ1 for a

continuous and one-to-one function from [r′1] to ωω for which r′1 
 ḣ1(σ̇) = τ̇1. For

ease of notation, let h0 and h1 be the functions ḣ0 and ḣ1 respectively restricted to

V . Now, since [r′0] and [r′1] are disjoint closed sets and h0 and h1 are continuous, the

function h : [r′0] ∪ [r′1] → ωω defined by

h(x) :=


h0(x) if x ∈ [r′0],

h1(x) if x ∈ [r′1]

is continuous. However, h need not be one-to-one. Here is how we can fix this: pick

any y0 ∈ Im(h0) and y1 ∈ Im(h1) such that y0 ̸= y1 (y0 can be picked arbitrarily,

and a y1 must exist because [r1] has more than one element and h1 is one-to-one).

Let U0 ∋ y0 and U1 ∋ y1 be disjoint open subsets of ωω. Since h0 is continuous, we

may strengthen r′0 to some r′′0 so that h0“([r′′0 ]) ⊆ U0. Similarly, we many strengthen

r′1 to some r′′1 so that h1“([r′′1 ]) ⊆ U1. Define R(⟨0⟩) := r′′0 and R(⟨1⟩) := r′′1 . Let

g1 : [R(⟨0⟩)] ∪ [R(⟨1⟩)] → ωω be the continuous function h � [R(⟨0⟩)] ∪ [R(⟨1⟩)]. By

construction, g1 is continuous and one-to-one. If ġ1 is the name for the continuous

function with the same Borel code, then

R(⟨0⟩) 
 ġ1(σ̇) = τ̇1

and

R(⟨1⟩) 
 ġ1(σ̇) = τ̇1,

so

R(⟨0⟩) ∪R(⟨1⟩) 
 ġ1(σ̇) = τ̇1.



232

We may continue like this to define R : <ω2 → S along with, for each n ∈ ω, a

name ġn for a continuous and one-to-one function from
∪
{R(s) : s ∈ n2} to ωω so

that ∪
{R(s) : s ∈ n2} 
 ġn(σ̇) = τ̇n.

We may now take the intersection of the fusion sequence:

q :=
∩
n

∪
{R(s) : s ∈ n2}.

For each n ∈ ω, we have

q 
 ġn(σ̇) = τ̇n.

Let ġ be the canonical name for the function from ω × [q] to ωω so that

1 
 (∀n ∈ ω)ġ(n, x) = ġn(x).

For each n ∈ ω,

1 
 the function x 7→ ġ(n, x) is continuous and one-to-one

because

1 
 [q] ⊆ Dom(ġn)

and

1 
 ġn is continuous and one-to-one.

Hence,

q 
 (∀n ∈ ω) the function x 7→ ġ(n, x) is continuous and one-to-one.

Furthermore, it can be checked that there is a Borel code in V that codes the function

ġ in the extension. This completes the proof.



BIBLIOGRAPHY

233



234

BIBLIOGRAPHY

[1] A. Blass. Needed reals and recursion in generic reals. Ann. Pure Appl. Logic, 109:77–88, 2001.

[2] A. Blass. Combinatorial cardinal characteristics of the continuum. In Matthew Foreman and
Akihiro Kanamori, editors, Handbook of Set Theory, pages 395–489. Springer, New York, NY,
2010.

[3] C. Boykin and S. Jackson. Borel boundedness and the lattice rounding property. In Advances
in Logic, volume 425, pages 113–126. Amer. Math. Soc., Providence, RI, 2007.

[4] M. Burke and M. Magidor. Shelah’s pcf theory and its applications. Ann. Pure Appl. Logic,
50:207–254, 1990.

[5] W. Comfort and S. Negrepontis. The Theory of Ultrafilters. Springer-Verlag, New York -
Heidelberg, 1974.

[6] J. Cummings. Compactness and incompactness phenomena in set theory. In Logic Colloquium
2001, volume 20, pages 139–150. Assoc. Symbol. Logic, Urbana, IL, 2005.

[7] J. Cummings and S. Shelah. Cardinal invariants above the continuum. Ann. Pure Appl. Logic,
75:251–268, 1995.

[8] M. Daguenet. Emploi des filtres sur N dans l’étude descriptive des fonctions. Fund. Math.,
95:11–33, 1977.

[9] N. Dobrinen. Generalized Weak Distributive Laws in Boolean Algebras and Issues Related to a
Problem of non Neumann Regarding Measurable Algebras. PhD thesis, University of Minnesota,
2001.

[10] P. Dordal. Towers in [ω]ω and ωω. Ann. Pure Appl. Logic, 45:247–276, 1989.

[11] J. Duparc. The Steel hierarchy of ordinal valued Borel mappings. J. Symbolic Logic, 68:187–
234, 2003.

[12] M. Elekes and K. Kunen. Transfinite sequences of continuous and Baire class 1 functions.
Proc. Amer. Math. Soc., 131:2453–2457, 2003.

[13] M. Elekes and Z. Vidnyánszky. Characterization of order types of pointwise linearly ordered
families of Baire class 1 functions. 2014.

[14] R. Engelking and M. Karlowicz. Some theorems of set theory and their topological conse-
quences. Fund. Math., 57:275–285, 1965.

[15] I. Farah. OCA and towers in P(N)/fin. Comment. Math. Univ. Carolin., 37:861–866, 1996.

[16] G. Fichtenholz and L. Kantorovitch. Sur les opérations lineaires dans l’espace des fonctions
bornées. Studia Math., 5:69–98, 1934.



235

[17] D. Fremlin. Real-valued measurable cardinals. In Haim Judah, editor, Israel Mathematical
Conference Proceedings: Set Theory of the Reals, volume 6, pages 151–304. Americal Mathe-
matical Society, 1993.

[18] M. Gitik. Prikry-type forcings. In Matthew Foreman and Akihiro Kanamori, editors, Handbook
of Set Theory, pages 1351–1447. Springer, New York, NY, 2010.

[19] L. Harrington. Long projective wellorderings. Ann. Math. Logic, 12:1–24, 1977.

[20] F. Hausdorff. Über zwei Sätze von G. Fichtenholz und L. Kantorovitch. Studia Math., 6:18–19,
1936.

[21] S. Hechler. On the existence of certain cofinal subsets of ωω. Proc. Symp. Pure Math., 13:155–
173, 1974.

[22] P. Hinman. Recursion-Theoretic Hierarchies. Springer-Verlag, New York, NY, 1978.

[23] M. Holz, K. Steffens, and E. Weitz. Introduction to Cardinal Arithmetic. Birkhäuser-Verlag,
Basel, 1999.

[24] T. Jech. Multiple forcing. Cambridge University Press, Cambridge, 1986.

[25] T. Jech. Distributive laws. In R. Bonnet and J.D. Monk, editors, Handbook of Boolean Algebra.
North-Holland Publishing Co., Amsterdam, 1989.

[26] T. Jech. Set Theory, the Third Millennium Edition. Springer-Verlag, Berlin, 2002.

[27] T. Jech and K. Prikry. Cofinality of the partial ordering of functions from ω1 to ω under
eventual domination. Math. Proc. Cambridge Philos. Soc., 95:25–32, 1984.

[28] C. Jockusch. Uniformly introreducible sets. J. Symbolic Logic, 33:521–536, 1968.

[29] A. Kamburelis. On the weak distributivity game. Ann. Pure Appl. Logic, 66:19–26, 1994.

[30] A. Kechris. Classical Descriptive Set Theory. Graduate Texts in Mathematics 156. Springer-
Verlag, New York, NY, 1995.

[31] P. Komjáth. Ordered families of Baire-2-functions. Real Analysis Exchange, 15:442–444, 1989-
1990.

[32] K. Kunen. Inaccessibility properties of cardinals. PhD thesis, Stanford, 1968.

[33] K. Kunen. Set Theory: an Introduction to Independence Proofs. Elsevier, New York, NY,
1983.

[34] K. Kuratowski. Topology, Vol. 1. Academic Press, New York - London, 1966.

[35] B. Löwe. The length of the full hierarchy of norms. Rend. Sem. Mat. Univ. Politec. Torino,
63:161–168, 2005.

[36] H. Mildenberger. Changing cardinal invariants of the reals without changing cardinals or the
reals. Journal of Symbolic Logic, 63:593–599, 1998.

[37] D. Monk. On general boundedness and dominating cardinals. Notre Dame J. Formal Logic,
45:129–146, 2004.

[38] Y. Moschovakis. Elementary Induction on Abstract Structures. North Holland Publishing
Company, Amsterdam, 1974.

[39] Y. Moschovakis. Descriptive Set Theory. American Mathematical Society, 2009.

[40] K. Prikry. Ideals and powers of cardinals. Bull. Amer. Math. Soc., 81:907–909, 1975.



236

[41] S. Shelah. Cardinal Arithmetic. Oxford Logic Guides 29. Oxford University Press, New York,
1994.

[42] R. Solovay. Hyperarithmetically encodable sets. Trans. Amer. Math. Soc., 239:99–122, 1978.

[43] A. Szymański. Some remarks on real-valued measurable cardinals. Proc. Amer. Math. Soc.,
104:596–602, 1988.

[44] A. Tarski. Ideale in vollständigen Mengerkörpern I. Fund. Math., 33:51–65, 1945.

[45] S. Thomas. Martin’s conjecture and strong ergodicity. Arch. Math. Logic, 48:749–759, 2009.

[46] J. Zapletal. Isolating cardinal invariants. Journal of Mathematical Logic, 3:143–162, 2003.


	thesis-2
	dan pic
	thesis-2

