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ABSTRACT 

The "inorganic physiology" of a cell – that is, the storage, uptake, efflux and regulation, 

of metal ions, is critical to understanding the role(s) that metal ions play in biology.  Two new 

methods for cellular elemental analysis are developed.  The first is the creation of an x-ray 

fluorescence flow cytometer that can determine the total elemental content of single cells.  This 

instrument can directly measure population heterogeneity for metals in the μM to mM 

concentration range with fL sample volumes, a measurement that is difficult using most 

analytical methods.  Bovine red blood cells (bRBCs) were found to have mean concentrations of 

~100 μM Zn and ~15 mM Fe; NIH3T3 and yeast contained ~50 μM Zn and ~130 μM Zn, 

respectively.  These data demonstrated that there is significant variability in the Zn and K content 

of NIH3T3 cells and in the Fe content of bRBCs.  Fe content for bRBCs showed a 1.9-fold 

difference between the lowest and highest quartiles, variability that is dominated by biological 

variability and not experimental uncertainty.  Likewise, NIH3T3 cells showed 2.3- and 2.8- fold 

differences between the 1st and 3rd quartiles for Zn and K, respectively. 

Second, fitting methods for x-ray fluorescence microprobe imaging were improved.  A 

major advancement was the development of a blank subtraction method to correct the 

background and calculate elemental concentrations; this gives a significant improvement in 

quantitation.   
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Comparison of the new method against the more commonly used baseline subtraction 

demonstrated not only better precision, but also improved instrument calibration.  Differences in 

quantitation are biologically relevant.  Additionally, blank subtraction allows superior sensitivity, 

best demonstrated with the detection of Cl.  This method was used to image and determine the 

elemental content in NIH3T3 cells in the presence and absence of Cd, confirming 3-fold 

decrease in Zn content following Cd exposure. 
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CHAPTER I: THE METALLOME, X_RAY FLUORESCENCE, IMAGING AND FLOW 

CYTOMETRY 

I.1  INTRODUCTION TO METAL HOMEOSTASIS 

Metals perform a multitude of functions inside cells. They are crucial components of 

redox reactions [1]; act as cofactors in the active sites of protein enzymes; bind to structural 

proteins to aid in stability; stabilize the backbone of nucleic acids (primarily      and   )  [2-

4]; provide tertiary structural stability for functional RNAs [4-9]; are required mediators in many 

functional RNA ligand binding recognition events via direct participation in the binding pocket 

[10-12], indirect participation in the binding pocket [13, 14], and as metal-ligand chelates [15-

18]; and participate in the regulation/expression of certain genes [19, 20].  This list is not 

exhaustive. 

Under some conditions, metal ions are capable of participating in numerous deleterious 

reactions.  Such reactions include the production of ROS (reactive oxygen species) which can 

damage DNA (via base oxidation or loss, strand breaks, and DNA-protein crosslinking) [21-23], 

lipids (via peroxidation)  [23, 24], and proteins (via oxidation) [24].  Depletion of nutrients can 

also occur via metal ion inhibition of cellular processes, such as that caused by  Ni
2+

 and Co
2+

 

inhibition of ascorbic acid uptake [25]. Metal ion associated inhibition of enzymes involved with 

DNA repair has been demonstrated [26, 27].  Irreversibly compromised protein function has also 

been shown, e.g., toxic levels of Co
2/3+

 have been shown to compromise the function of Fe-S 

cluster proteins, for Salmonella enterica, in a manner that is irreversible with Fe supplementation 
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[28].  As such, aberrant metal ion compartmentalization, localization, concentrations, and 

oxidation states are correlated with a multitude of diseases and disease states; and in some cases 

result in death.  As an example, uncontrolled ROS generation has been correlated with (or been 

shown to cause) disease states that include male infertility [29], prostate [30] and other cancers 

[24, 31-34], neurodegenerative disorders (Alzheimer's, Huntington's [35, 36], and Parkinson's 

disease) [27, 35-40], cardiovascular disease [41, 42], respiratory disease [43], and diabetes [21, 

44] as well as inflammation [27]. Additionally, faulty metal homeostasis leading to abnormally 

high Fe levels have been linked to type-2 diabetes [45], atherosclerosis [42], Parkinson's and 

Alzheimer's diseases [46, 47], and various cancers [48, 49] including prostate cancer [33]; in 

parallel, high levels of Cu have been correlated to Parkinson's and Alzheimer's diseases [47] and 

cancers [48, 49]. 

Additionally, the cellular uptake of toxic metals can result in deviations from cellular 

homeostasis.  For example, Zahler et al. combined XRF imaging with bulk sample analysis to 

demonstrate that cadmium toxicity is correlated to altered copper homeostasis via the 

redistribution of copper within the cell presumably due to the induction of genes involved in 

metal uptake.  Cadmium exposure also resulted in increased levels of zinc and iron and as such 

the combined disruption in homeostasis for all three transition metals may contribute to the toxic 

effects of cadmium [50].  In line with this, Cd has been found to be a biological mimic of Zn in 

terms of its ability to bind substrates [51].  In this manner, Cd has been shown to be able to exert 

transcriptional influence over the expression of Zn transporters [52].  Additionally, increases in 

intracellular Zn have been attributed in Saccharomyces cerevisiae to increased expression of 

Fet4, which transports Cu, Fe, and Zn [53, 54].  
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Dietary disruptions can also upset metal ion homeostasis.  For instance, disruption of Cu 

ion homeostasis has been demonstrated in cases of Zn supplementation as well as following 

gastric surgeries (reviewed in [55]) such as gastroectomy, and gastric bypass [56-59].  With 

gastric bypass, dishomeostasis of Cu ions results as the removed (or bypassed) organs contain 

most of the sites responsible for copper absorption in humans [56, 59].  Additionally, this 

surgically imposed malabsorption may have deleterious effects on the acquisition of trace metals 

as post-surgery patients have been found to be Fe deficient [55] and to have low blood Zn [57], 

both of which can lead to neurological findings and symptoms. 

Likewise, genetic disruption of metal ion homeostasis can result in many specific 

symptomatic disease states.  Among the best studied include copper and/or iron.  Both excess 

and deficiency of copper or iron result in central nervous system disorders and disease. The 

following examples of both Fe and Cu genetic disease states were reviewed very well by Madsen 

et al. [60]. In terms of Cu, inappropriate homeostasis has been linked to Menke's disease and 

Wilson’s disease; and faulty homeostasis of iron has been shown to cause aceruloplasminemia, 

neuroferritinopathy, Friedreich’s Ataxia, and brain neurodegeneration due to iron accumulation.  

Although much has been learned genetically about diseases such as Menkes and Wilson’s 

revealing much about the cell biology of metal metabolism (copper in the case of Menkes and 

Wilson’s), there is still information that has yet to be learned [60].  

The above facts outline the need for specific regulation of metal ion concentrations and 

activities both within and across cells; however, maintaining the appropriate levels of the 

functionally relevant/necessary metals is met with difficulty as environmental metal ion 

concentrations fluctuate constantly, making it necessary for cells to have evolved adaptive 

physiological responses to these fluctuations.  Accordingly, cells have evolved complex 
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regulatory mechanisms at transcriptional, post-transcriptional, and post-translational levels that 

are responsive not only to metal ion availability but also, among other things, oxygen levels (as 

in the case of S. cerevisiae transcriptional level regulation of Fe). A comprehensive review by 

Dlouhy and Outten [61] discusses all three levels of Fe homeostatic regulation for S. cerevisiae. 

These regulatory mechanisms ensure adequate, but not toxic, intracellular metal ion 

concentrations; and at the same time prevent the mis-metallation of proteins.  However, the 

understanding of these homeostatic mechanisms is still in its infancy; and the interplay between 

metal ions in living organisms continues to be an extensively studied and growing field. 

I.2 AN EXAMPLE OF METAL HOMEOSTASIS: THE ZAP1 REGULON OF YEAST 

As an example of cellular homeostasis involving the metallome, consider the homeostatic 

regulation (e.g., the uptake, utilization, storage, conservation, and export) of Zn by the Zap1 

regulon in S. cerevisiae.  Optimal growth for S. cerevisiae, in terms of Zn, occurs at a 

concentration of         Zn atoms per cell (the Zn quota)  [62].  Below this concentration, 

suboptimal growth occurs with the lower threshold being       Zn atoms per cell; below that, 

all cell growth halts.  During Zn replete conditions, vacuolar storage can account for up to 

      atoms of Zn atoms per cell [63]; this is enough Zn to allow for eight generations of 

progeny during conditions of Zn starvation. Conservation during Zn starvation includes cross 

talk with Fe homeostatic regulation leading to the down regulation of Zn-dependent enzymes 

accompanied by the up regulation of both their Fe-dependent counterparts as well as Fe 

importers [64].  Zn regulation at the transcriptional level includes Zap1, a transcription factor 

which directly senses Zn and resides only in the nucleus under all conditions [65].  Its expression 

under Zn limited conditions coincides with the up-regulation of >80 genes [64, 66-70] and the 

predicted down-regulation of >30 genes [44].  Homeostatic responses of Zap1 to Zn deficiency 
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are multifold and include, auto-regulation [71], Zn
2+

 sequestration [72-74], Zn
2+

 mobilization 

[64, 66, 67, 69, 75-78], Zn
2+

 conservation of via down-regulation of Zn-dependent enzymes [64, 

79] with the synchronous up-regulation of analogs dependent on either less Zn or another 

element entirely [80], remodeling of sulfate metabolism [81, 82], and remodeling of 

phospholipid metabolism [83, 84].  Collectively, these changes function to, among other things, 

avoid misfolded proteins from the endoplasmic reticulum [85, 86], safeguard against potential 

future Zn shock [76], and to conserve NADPH to combat increased formation of reactive oxygen 

species; all of which are coincident with Zn depleted cellular status. 

This example is specific to S. cerevisiae and Zn.  It serves to demonstrate the complexity 

associated with the methods employed by organisms to maintain metal homeostasis.  Since there 

are countless other essential biominerals (e.g., Cu, Fe, Mn, Co, and Ni), and since it is known 

that the homeostatic regulatory mechanisms that govern mobilization, utilization, and 

compartmentalization of these minerals are able to cross-talk, one quickly can see why the study 

of these mechanisms is quickly becoming a field of its own.           

I.3 IMPORTANCE OF SINGLE CELL ANALYSES 

I.3.1 HETEROGENEITY OF CELL POPULATIONS (SINGLE CELL ANALYSIS) 

Davey et al. have stated that because of the existence of thresholds, cases of unforeseen 

heterogeneity across populations of cells are to be expected in fluctuating systems, whose gene 

expression is controlled by a small number of repressor molecules or other elements [87].  The 

driving force behind the need for single-cell methods is the possibility of otherwise undetectable 

heterogeneity, which can arise from five key factors: genetic, biochemical, physiological, 

behavioral, and environmental.  Such heterogeneity is the foundation of biological stability and 

survival as it allows organisms to adapt and survive adverse conditions.  As such, microbial 
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populations exhibit multitudes of genetic and phenotypic differences among their constituent 

members.  Additionally, heterogeneities have been observed in cell populations that arise from a 

single parent cell [88].  Importantly, it has also been noted in some cases that subpopulations can 

direct the behavior of whole populations [89].  Therefore, the importance of single cell 

measurements finds its value in its ability to dissect the heterogeneity inherent in populations of 

cells [90].  Bulk-scale measurements, as opposed to individual cell-by-cell measurements, fail to 

capture these discrete properties, in turn, producing “average” answers; such average answers 

may be very misleading, especially in cases such as [89].  Properties such as cellular metal 

concentration, production of a specific gene product or protein concentration are specific to each 

individual cell.   

I.3.2 THE POTENTIAL EXISTENCE OF SUBPOPULATIONS AND SKEWS 

Although the                  in yeast can vary by 4 orders of magnitude [91], the  

                  only varies by ~2 orders of magnitude (e.g., yeast is ~140 [63, 92]).  Under 

environmental conditions of Zn starvation, this allows 8 generations before the 

               becomes nonviable. Because of this, one might expect the distribution of metal 

concentrations across a population of cells to be skewed rather than Gaussian.  A skewed 

distribution results from the presence of more cells at lower concentrations of total metal than at 

higher concentrations.  Such a distribution would coincide with the existence of upper and lower 

thresholds that control the activation and deactivation of genes involved in metal homeostasis.  

For example, assume that a cell is able to undergo N rounds of reproduction in the window 

between the upper and lower thresholds.  Starting at the highest possible concentration, the first 

division will lead to 2 daughter cells which will contain half the amount of metal as the original 

parent cell.  Upon each subsequent division, the total number of cells will double but the total 
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metal per cell will be half of the immediate parent cell.  This will happen until N rounds of 

replication cause the metal content of each cell to drop below the minimal threshold.  This will 

lead to the reactivation of cellular metal uptake, which will the cause the associated cells to 

replenish their stores of the metal (ideally) to the level of the upper threshold.  Following 

millions of rounds of replication, the population distribution arising from a single cell can be 

separated into N distinct populations depicted by a population constituency ratio of 
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respectively.  For 

instance, if N is 5, this leads to a population constituency ratio of 1:2:4:8:16 with relative 

concentration ratios of   
 

 
 
 

 
 
 

 
 

 

  
.  This would create a population distribution that is slanted 

(or “skewed”) towards lower concentrations as there will always be an exponential number of 

cells at the lower concentration.  As an example, Figure I.1 models a resultant skewed 

population following 35 replication events (starting from a single cell) as well as the distribution 

plot of the skews obtained from randomly generating pseudo-normal distributions of two 

different sample sizes.     

The above example outlines the formation of a skew and is but one explanation for the 

existence of small subpopulations for a particular trait/property (metal content in the example 

above) existing among a total population.  It is possible that, due to variable expression of entire 

genomes combined with the heterogeneity that is ever present in all environments, 

subpopulations may arise.  Importantly, without a technique capable of investigating a 

population of cells, individually, it is impossible to adequately detect the existence of 

subpopulations. 
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I.3.3 A STATISTICAL JUSTIFICATION FOR SINGLE CELL TECHNIQUES 

Even in the absence of a skewed distribution, the importance of heterogeneity can easily 

be understood via a quick statistical analysis.  Assuming a normal distribution for any particular 

trait, 95% of the population under investigation will be distributed within two standard 

deviations of the mean population value for that trait. As the number of traits considered 

increases, the likelihood that any cell will contain those traits within two standard deviations 

decreases according to      ; where N is the number of traits under inspection.  Likewise, as the 

number of cells increases, the chance that those cells will all have a given single trait within two 

standard deviations of the population mean, also decreases according to      ; where N is the 

number of cells under inspection.  Since cells have thousands of genes controlling things such as 

metal ion content, metabolite uptake, response to environmental variations (which are 

themselves heterogeneous), this means that heterogeneity is ever present in cell populations and 

understanding homeostatic mechanisms that govern, for instance, trace metal content, in cells 

can, therefore, not be understood by treating cultures as ensembles of identically constituent 

cells; for no two cells will ever be identical [88, 89, 93]. This highlights the huge advantage of 

(and the absolute need for) single-cell methods over bulk-scale methods, if one wants to directly 

measure the heterogeneity [90].  

In comparison to single cell measurements, bulk-scale measurements fail to capture 

discrete properties inherent in populations, and, in turn, produce only average answers. For 

example, entertain a hypothetical study in which the total metal of a cell population being 

monitored doubles.  This could result from all the cells doubling their metal concentrations or 

half the cells quadrupling their metal concentrations or any other combination that produces a 
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doubling in the average metal concentration.  Such average values provide no details of 

population distribution which is, in most cases, just as important as the mean value.   

To date, there have been very few studies that are capable of speaking to the interplay of 

these properties with single cell precision.  This makes a very strong case for the need of single-

cell methods capable of analyzing population size data sets in appreciable amounts of time and 

thereby providing direct measurement of the heterogeneity that bulk-scale measurements miss. 

Methods such as microfluidic cytometry and x-ray fluorescence microscopy (XRM) have 

permitted single cell interrogation, and have enabled a level of understanding far superior to that 

which is accessible via population-scale approaches [94]. 

Through the use of optical probes it is possible to simultaneously gain information 

pertaining to cell size, cell cycle, and gene expression levels; combined with metal detection 

techniques such as ICP-MS or X-ray fluorescence (among others) it becomes possible to 

correlate changes in concentrations to changes in expression, degradation, and localization of 

gene products.  Together, methods such as microfluidic cytometry and x-ray fluorescence 

microscopy are capable of analyzing cell specific properties enabling a level of understanding far 

superior to that which is accessible via population-scale approaches [94].   

I.3.4 REQUIRED SAMPLE FREQUENCY/TURNOVER 

Figure I.1A illustrates a skewed population based on > 50,000,000 cells arising after 35 

replication events.  This distribution has a skew of 1.7.  Figure I.1B demonstrates the accuracy 

with which skew can be determined for different numbers of observations, n (15 vs. 500).  This 

means that, realistically speaking, in order to adequately investigate a population of cells, the 

data set needs to include on the order of, at least, ~1,000 cells; ~10,000 cells would be ideal. 

Conventional XRF imaging techniques take, on average, ~1 hour/cell (if not more).  This would 
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require 10,000 hours to accrue such data (this is completely neglecting down time between 

samples, of course).  Since beam time at national synchrotrons is limited to a few days, this 

leaves the other 9,928 required hours of data collection unaccounted for.  In contrast, a better 

scan time, working backwards, would be 10,000 cells / 3 days. This works out to ~ 0.04 Hz or 1 

cell every 25 seconds.  Such sample frequency is entirely possible with cytometric techniques.  

Although such a sample frequency would be considered extremely slow by traditional flow 

cytometry standards - which are capable of sampling rates on the order of 2K cells / second - the 

required integration time of XRF flow cytometry (~0.25 seconds for the purposes entailed 

herein) coincides nicely with such a sample turnover rate. 

I.4 COMPARISON OF METHODS FOR METAL ANALYSIS 

The following section compares and contrasts the use of mass spectrometry, metal 

specific organic fluorophores, and intrinsic x-ray fluorescence as tools to explore the cellular 

metallome.  For a more thorough discussion of techniques, please see [95-98]. 

I.4.1 MASS SPECTROMETRY 

In mass spectrometry, a small portion of sample is isolated, ionized, and then separated 

and detected. Mass spec generally has a wide dynamic range (important for application to 

heterogeneous samples) and is known for its spectacular detection limits due to its ability to 

detect single ions [99].  This corresponds to concentrations as low as pg/g. Corresponding spatial 

resolution is dependent on the particular mass spec technique employed.  The spatial resolution 

associated with mass spectrometry techniques is on the order of a few to hundreds of microns 

[100-102] and can get as low as 50 nm [100, 101, 103, 104]; however, smaller spatial resolution 

comes at the sacrifice of sensitivity. 



 

11 

 

Unfortunately, mass spectrometry can suffer from strong "matrix" (environmental) 

effects, and for some techniques, the matrix in which the ion is contained has been shown to vary 

the secondary ion yield by orders of magnitude [101].  Additionally, for some techniques, such 

as inductively coupled plasma mass spectrometry (ICP-MS) ionization is both element 

dependent and (to a much smaller extent) matrix dependent. As such, quantitation requires 

suitable reference materials [105].  

I.4.2 MICROSCOPY COUPLED WITH METAL SPECIFIC FLUOROPHORES 

Ideally speaking, an effective fluorophore will be specific only for its target metal and 

will have a high quantum yield and high molar absorptivity coefficient.  As opposed to other 

methods herein, fluorescence microscopy has two key benefits. First, it can be used to study 

living organisms allowing time resolved in vivo investigations such as changes of metal 

concentrations as a function of time [91]. Second, confocal microscopy, due to the penetration 

depth of visible light, allows for 3-dimensional fluorescence measurements [106].  

Unfortunately, quantitation of fluorescence is rarely straightforward. Even if one knows 

the binding kinetics that govern fluorophore metal binding, alternative binding of the analyte 

metal to proteins, nucleic acids, and various other small intracellular molecules are all competing 

kinetics that must be taken into account to calculate total cellular metal content.  Because of this, 

the fluorophore-detected concentration represents the "free" or "loosely bound" cellular metal.  

Since free metal concentrations are known to be time dependent and variable [91], one must be 

sure that the fluorophore does not alter cellular homeostasis. As an example, a ten-fold change in 

fluorophore was shown to result in a two-fold increase in the calculated "free" metal 

concentration [107].   
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Fluorophores are not without complications.  Photobleaching reactions involving the 

excited state are known to occur and cause most to stop fluorescing after some time.  Even an 

ideal fluorophore, completely impervious to photobleaching, will still be constrained if it cannot 

be delivered to the appropriate cellular location.  Multiple methods have been developed to get 

the fluorophores into the cells [108-111]; however, these can be difficult and time consuming. 

I.4.3 X-RAY FLUORESCENCE 

X-ray fluorescence imaging currently ranks as one of the most sensitive techniques for 

detecting trace elements in biological samples [95, 112-115]. In X-ray fluorescence 

spectroscopy, a material is bombarded with X-rays causing atoms to ionize and eject an inner 

core electron when the energy of the incoming X-ray exceeds the ionization potential of the 

atom.  X-rays are used because they are sufficiently energetic to expel tightly held inner orbital 

electrons.  The core-shell hole in the excited atom is subsequently filled as an electron from an 

outer shell relaxes to fill the gap.  The falling electron emits a photon with energy equal to the 

energy difference between the two orbitals.  The emitted photon’s energy is characteristic of the 

atom and can be used to identify it.  Taken together, the representative emission lines from each 

atom represent distinct "finger prints".  Additionally, with appropriate calibration curves, the 

amount of metal can be calculated; this makes XRF both qualitative and quantitative. 

There are multiple ways to excite a sample to emit x-rays [95, 96]; the two most common 

are particle induced excitation of x-ray emission (PIXE) and synchrotron x-ray fluorescence.  

Since the core of this thesis focuses on cytometry performed on living cells, the requirement of 

vacuum conditions for PIXE disqualifies it as a possible technique. 

With the intense x-rays available at modern synchrotron x-ray sources, XRF can be used 

to determine the metal composition of individual cells. Although there are other techniques (such 
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as those already mentioned) that can be used to determine metal composition, XRF is the only 

approach that can determine metal concentration independent of the chemical form of the metal 

and its surrounding environment.  This is because the atomic transitions which give rise to XRF 

(e.g., the 2p  1s transition in the case of Kα emission) are independent of local environment 

and oxidation state of the metal of interest.  This nature of XRF is what makes it an ideal tool for 

interrogating the cellular metalome. 

As such, XRF was chosen for this study because it benefits from three significant 

advantages compared to methods that use mass spectrometry and metals specific organic 

fluorophores: 1) XRF detects both bound and free metal ions in the cell whereas metal-specific 

fluorophores are only sensitive to the chelatable portion of metal ions in the cell; 2) is always 

detectable; and 3) equally detects both paramagnetic and diamagnetic trace elements.   Although 

concentration detection limits for XRF are less than ICP-MS, the minimum required sample 

volume for XRF is quite small (less than 1 pL).  This volume is much smaller than that typically 

required for ICP-MS (~1 mL); as such, XRF has very good mass detection limits.   

I.5 CURRENT USE OF XRF FOR SINGLE CELL IMAGING STUDIES 

XRF microscopy (XRM) is a well-defined technique that has been refined over more than 

half a century, since the pioneering days of Kirkpatrick and Baez [116, 117].  Spatial resolution 

on the order of microns is typical but can get as low as 30 nm depending on the optics.  XRF 

studies relevant to this thesis encompass the 2D microscopy of XRF imaging.  Classically, XRF 

imaging has used freeze dried cells.  The preparation of freeze dried samples used in imaging is 

as follows:  samples are put onto a silicon nitride window, allowed to settle for a short time 

period, and then blotted to remove the liquid.  The wafer is then plunged into an organic cryogen.  

The cells freeze rapidly which should (ideally) preserve the structure.  The frozen slide is then 
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placed in a lyophilizer at a temperature below the freezing point of water.  This removes residual 

water by sublimation and cell shrinkage.  Based on past applications of XRF, a single XRF 

image (or projection) requires a sampling time on the order of greater than 1 hour [118].   

Alternatively, imaging can be done using the Bionanoprobe (undulator beamline, Sector 

21, Advanced Photon Source, Argonne National Lab, Lemont, Illinois, USA) [119], an x-ray 

fluorescence nanoprobe with a cryogenic sample environment and cryo transfer capabilities 

specifically designed for studying frozen, hydrated, biological samples.  This probe affords the 

imaging of hydrated cells and therefore avoids structural deformation of cells due to collapse and 

cell shrinkage associated with freeze drying.  This preserves the ultrastructure of cellular 

organelles.   

I.6 FLOW CYTOMETRY 

I.6.1 OVERVIEW OF FLOW CYTOMETRY 

Like XRF, flow cytometry techniques are well established.  Moldovan first used 

photoelectronics to count cells flowing through a capillary mounted on a microscope in 1934 

[120].  Flow cytometry as a technique was significantly further advanced by Guker et al [121], 

whose device was used by the U.S. Army during WWII to detect airborne bacterial spores [93].  

The 1970s saw application of flow cytometry to the study of mammalian cells [122, 123] with 

applications in the late 70s to microrganisms (Escherichia coli, Rhizobium meliloti, and 

Rhizobium  japonicum) [124]. 

Generally, a solution containing cells is pumped through a tube and hydrodynamically 

focused by a faster moving sheath fluid.  Samples are usually ejected onto a circular coverslip 

and then interrogated as they pass a specified zone.  Detection usually uses light-scattering 
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events or fluorescence [93].  These techniques are usually capable of interrogating thousands of 

cells per second. 

Flow cytometry has also been paired with mass spectrometry [125].  For example, rare 

earth heavy metal isotope markers can be used to tag cells via antibodies.  The cells are 

individually ionized using inductively coupled plasma and then analyzed with time-of-flight 

mass spectrometry.  By combining different ratios of the isotopes, distinct tags can be used.  This 

allows for multiparametric analysis. 

I.6.2 THE XRF FLOW CYTOMETER 

By combining XRF with flow cytometry it should be possible to investigate, in vivo, trace 

metal concentrations of individual aquated, respiring cells.  Realization of an XRF flow 

cytometer for elemental analysis of single cells requires systematic, reproducible and reliable 

positioning of individual cells in an x-ray beam.  In imaging studies, this is not an issue because 

cells are fixed in 3D space; however, with cells in solution where they are free to float around, 

this posed the initial problem.  The second problem involves sample frequency.  

In contrast to all other forms of flow cytometry, the XRF flow cytometer developed in 

this thesis required a slow sampling frequency because of the relatively low sensitivity of XRF.  

In order to maximize the number of cells detected, despite the low flow rate, we used a 

concentration that led to unavoidable overlap for some cells.  Because of this, the XRF data 

absolutely must be paired with microscopy videos to track the cells and identify the location of 

the x-ray beam.  As such, XRF flow cytometry is a combination spectroscopic-microscopic 

technique. 
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I.6.3 BETTER STATISTICS 

The core goal of this thesis was to develop a technique capable of acquiring metal 

concentrations for a large sample size. An increased sample size provides for a better description 

of metal ion distribution (inside the cell in the case of imaging or among the population in the 

case of cytometry).  This provides for greater certainty in measurements in addition to providing 

a better foundation for statistical analysis, and would provide direct information on the detail of 

the distribution. 

Based on the work in this thesis, XRF studies may eventually no longer be limited to 

imaging.  The microfluidic XRF flow cytometer developed in this thesis has the potential to 

become an additional technique applicable for the XRF detection of metals in cells.  The flow 

cytometer provides in vivo single cell measurements with a frequency of ~1Hz.  Although the 

flow cytometer only yields total metal content (it does not provide localization information)  it is 

the only technique capable of using XRF to study the metallome in living actively respiring cells 

and has a sample turnover rate that makes possible the acquisition of population sized data sets 

(albeit, at a much slower rate than traditional flow cytometric techniques). 

I.7 GENERAL OVERVIEW OF ORGANIZATION 

This thesis focuses on the development of a novel analytical probe capable of performing 

X-ray flow cytometry experiments and the associated methodology and software required to 

analyze the associated data. Chapter II describes the first successful application of the new probe 

and Chapters III, IV, V & VI present the methodology of analysis, improvements to the probe, 

comparison of the fitting software to the dominant program currently used in the field, and the 

application of that fitting software to imaging data for freeze dried cells and hydrated, 

cryogenically frozen cells.  
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Chapter II discusses the development of an x-ray fluorescence flow cytometer that can 

determine the total metal concentration of single cells. The novel probe is capable of measuring 

population heterogeneity for metals in the µM to mM concentration range with fL cell volumes. 

The probe was used to determine the metal composition of over 800 individual bovine red blood 

cells and over 30 individual 3T3 mouse fibroblasts with an average measurement frequency of ~ 

4 cells/minute.  Details of the device design, data analysis, and options (both implemented and 

tentative) for further sensitivity improvement will be described.  Patrick Kureka helped with all 

phases of instrument design and cell loading methodologies as well as data collection at APS.  

Aniruddha Deb provided project guidance.  Jim Penner-Hahn provided project guidance and 

participated in data collection at APS.  The staff of the LSA Scientific Instruments Shop 

provided valuable collaboration on sample older design. 

Chapter III discusses the methodologies necessary to address four key research 

requirements for analyzing XRF flow cytometry data: instrument calibration, signal calibration, 

signal identification, and signal quantification.  Because the analysis of XRF flow cytometry data 

absolutely requires video data, the second portion of this chapter will discuss the additional 

treatment of the video data and the new methodologies developed to combine the two data sets 

from XRF and video.  Aniruddha Deb provided project guidance.  Jim Penner-Hahn provided 

invaluable collaboration towards the developed methodologies. 

Chapter IV discusses improvements made to the flow cytometer.  These improvements 

include the addition of a second horizontal microscope, an increase in the solid angle that is 

measured and a decrease in the background.  It addresses the effect of the horizontal beam 

profile on the observed population distributions of elemental masses obtained from biological 

samples using the cytometer. Additionally, the use of a He shroud to reduce scatter is discussed 
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and preliminary results are presented that indicate the potential of future improvements.  The 

staff of the LSA Scientific Instruments Shop provided valuable collaboration on the redesign of 

the sample older design.  Aniruddha Deb provided project guidance.  Jim Penner-Hahn provided 

invaluable collaboration towards the developed methodologies.  Tsz Kwan Yim and Claire 

Kozemchek both participated in capillary experiments and with data collection at APS. 

Chapter V extends M-BLANK, the software developed for the fitting of time-course x-

ray fluorescence flow cytometry data, to the fitting of imaging data.  The quality of these fits is 

compared with the quality obtained from MAPS, the dominant program currently used in the 

field of x-ray fluorescence microscopy. 

Chapter VI discusses the application of M-BLANK to the imaging of mouse fibroblasts 

(NIH3T3).  This chapter extends from previous XRF imaging studies on the effect of Cd on 

metal homeostasis in yeast.  Previous studies, from 2010, using this cell line showed significant 

Cu contamination and completely vacated nuclei.   In order to test these results, the studies 

presented in this chapter were undertaken on mouse fibroblasts cells, cryogenically encased in 

ice and analyzed at the bionanoprobe.  Lubomir Dostal is the lead of this project.  I was present 

at data collection and performed the fitting and analysis. 
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Figure I.1 Modeling Populations and Skews: (A) The modeled population distribution starting 

with a single cell and then allowing for 35 rounds of replication.  The modeled replication 

included gated transcriptional activation and deactivation of cellular metal ion uptake using 

upper and lower thresholds.  The x-axis is logarithmic. There were six allowed replication events 

between gated thresholds.  This corresponded to an upper threshold and lower threshold that 

differed by 2
6
, or 128-fold.  (B) The distribution of apparent skews based on randomly generated 

sample sizes of 15 and 500 data points taken randomly from a symmetric distribution.  After 

each sample was generated, the skew from that sample was calculated.  This was performed 

10,000 times and the resulting skews for the two sample sizes were plotted as histograms and the 

histograms were fit to the two Gaussian distributions depicted here.  For a sample size of 500, a 

calculated skew of ±0.5 would be significantly different from zero (p = 0.001); for a sample size 

of 15 a skew does not become statistically significant from zero (p = 0.001) until a value of ± 

1.5. 

A B 
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CHAPTER II: DEVELOPMENT OF A SINGLE-CELL X-RAY FLUORESCENCE 

FLOW CYTOMETER
1
  

II.1 INTRODUCTION 

In addition to their organic constituents, cells contain a variety of bulk, trace and ultra-

trace elements.  In most cases, cells appear to have homeostatic mechanisms that maintain 

elemental concentrations within narrow limits.  Knowledge of these cellular concentrations under 

different conditions is important for understanding homeostasis.  Relevant concentrations range 

from ~10 – 100 mM for bulk elements (P, K, Na, Fe, in red blood cells) to 0.1 – 3 mM for trace 

elements (Zn, Mg, Ca, Fe in other cell types) to 1 – 20 µM for ultratrace elements (Cu, Ni, Mn, 

Se) [1, 2].  These concentrations are perturbed under various conditions and disease states [3, 4], 

and these variations can be clinically diagnostic for disease states [4]. 

Cellular uptake of toxic metals can also result in disruption of metal concentrations.  For 

example, Zahler et al. combined x-ray fluorescence (XRF) imaging and bulk sample analysis to 

demonstrate that cadmium toxicity in Saccharomyces cerevisiae is correlated to altered copper 

homeostasis and increased levels of zinc and iron [5].  In line with this, cadmium has been found 
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to biologically mimic the substrate binding of zinc [6], and cadmium has been shown to exert 

transcriptional influence over the expression of Zn transporters [7].  Additionally, increases in 

intracellular Zn have been attributed in S. cerevisiae to increased expression of Fet4, which 

transports Cu, Fe, and Zn [8, 9]. Likewise, dietary or genetic disruption of metal ion homeostasis 

causes many disease states, particularly copper and iron  [10, 11].   

The dynamic regulatory processes involved in homeostasis can lead to significant 

heterogeneity in elemental concentrations [12-14]. Therefore, a complete characterization of 

homeostasis requires knowing not only the mean concentration of an element for a sample, but 

also the cell-to-cell variability in concentrations.  In comparison to single cell measurements, 

bulk-scale measurements fail to capture discrete properties of a population.  There have been 

very few single cell studies of elemental composition.  There are several methods that have 

sufficient sensitivity to give single cell elemental compositions.  These include mass 

spectrometry (MS),  metal specific organic fluorophores, and intrinsic (x-ray) fluorescence.  

Fluorescent probes have been used to report on subcellular transition metal cations such as zinc 

[15] or copper [16] and can have excellent sensitivity.  However, these are generally less useful 

for paramagnetic ions, and even for diamagnetic metals, fluorescent probes are limited to 

detecting only the chelatable metal in the cell. Mass spectrometric methods can have exquisite 

sensitivity and multielement detection capability.  However, MS methods can suffer from matrix 

effects and haven't been widely used for single cell studies. In contrast, XRF is always 

detectable, has minimal matrix effects, and detects both bound and free metal ions in the cell.   

In this paper, we describe the development and testing of an XRF-based flow cytometer 

that permits detection of total trace element levels in aquated living cells at high throughput. 
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II.2 EXPERIMENTAL 

II.2.1 SAMPLE PREPARATION, HANDLING AND ANALYSIS 

Samples were prepared/acquired ahead of our experimental time and then transported for 

analysis.  

II.2.2 SAMPLE PREPARATION AND HANDLING 

Red blood cell experiments were performed using trypsinized bovine red blood cells 

(bRBCs, 0.1 hematocrit, obtained from Lampire), diluted 1:30 using phosphate buffered saline 

(PBS – obtained from Fisher Scientific). When not used, the stock and the diluted aliquots were 

kept at 4˚C. NIH3T3 experiments were done using cells grown from cryopreserved aliquots in 

atmospheric O2 and 5% CO2 at 37°C. Cells were thawed and placed in 12 ml of complete 

medium (CM) [Dulbecco’s modified Eagle medium (DMEM), high glucose variant (4.5 mg ml–

1), supplemented with 10%donor bovine in 75 cm
2
 flasks at 5 x 10

5
 cells flask

–1
 (6.7 x 10

3
 cells 

cm
–2

).  The cells were fed on day 2 (75% replacement) and then subcultured on day 5 into six 75 

cm
2
 flasks at 5.5 x 10

5
 cells flask

–1
. After 2 days of further proliferation, the cells were 

subcultured into twelve 75 cm
2
 flasks at 5.5 x 10

5
 cells flask

–1
.  The next day CM medium in 

flasks was increased from 12 ml to 200 ml. This CM medium increase promotes cell survival 

outside incubator at room temperature and atmospheric CO2 levels for about a week. Cells were 

transported to APS and kept at room temperature and atmospheric CO2 for 3-5 days. Cells were 

then harvested and resuspended in phosphate buffered saline (PBS) solution for measurement of 

metal concentration. 
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II.2.3 SAMPLE ANALYSIS 

Samples were contained in acrylic (polymethylmethacrylate) capillaries (50 µm i.d., 100 

µm o.d.) and were loaded using capillary action.  The velocities of the cells were measured to be 

on the order of ~1 mm s
-1

 and a 20 cm capillary takes ~10 minutes to fill. Based on this, capillary 

action was used to load the sample capillary.  The addition of a curve at the top of the capillary 

higher than the terminal end allowed for an air pocket to be trapped when a droplet was placed 

over the terminal end of the capillary, sealing it. This caused a dramatic decrease of cellular 

velocity (from ~ 500 µm s
-1

 to ~ 5 µm s
-1

). As the droplet slowly evaporated, the air pocket was 

allowed to rise. This resulted in the cells climbing farther up the capillary as illustrated in Figure 

II.1.  Each position of the capillary was scanned for 10 minutes, while the full 2048 channel 

XRF signal was captured at 4 Hz.  A typical scan detected between 20 – 60 cells depending on 

the cell density.  After each scan, the capillary was translated by 100 µm vertically to avoid 

excessive radiation damage to the capillary.    

XRF spectra were collected using an energy resolving solid state detector (Vortex-ME4, 

SII NanoTechnology) and fluorescence counts were normalized to the incident intensity 

measured with a N2 filled ion chamber immediately upstream from the sample.  The distance 

between the detector elements and the center of the capillary was ~2.5 cm.  The x-ray beam was 

focused to 50 µm horizontal x 20 µm vertical using a pair of Kirkpatrick-Baez mirrors[17], with 

the precise beam profile determined by a knife edge scan.   

II.2.4 INSTRUMENT CALIBRATION 

The instrument was calibrated using standard solutions (~100, ~200, and ~500 µM 

Cr(NO3)3, Fe(NO3)3, Ni(NO3)2, and Zn(NO3)2 in water at low pH to ensure solubility).  Where 

most x-ray fluorescence analyses at synchrotron sources rely on single point calibrations, we 
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have used three different concentrations for each element.  These concentrations were confirmed 

by ICP-OES (Perkin-Elmer Optima 2000 DV with Winlab software) pre- and post-experiment.  

Although Zn was present in the standard solutions, there was no Zn ICP-EOS standard with 

which to perform mass quantitation of our XRF standards.  Therefore, we were unable to include 

Zn in Figure 2. Additionally, the amounts of Ni, Cr, and Fe in each sample were found to be 

considerably different. This is demonstrated most notably by the point for Ni at ~2,500 fg 

relative the amount of Fe and Cr in the highest concentrated sample where both were ~1,000 fg.   

Prior to collecting XRF data for each standard, a blank scan of each capillary was 

obtained.  The standard solutions were then loaded into capillaries via capillary action and the 

XRF spectra then obtained.  Each blank was then subtracted from its associated XRF spectra to 

yield the blank subtracted XRF data for each standard solution. This XRF data was then fitted 

with a series of Gaussians, one for each Kα and Kβ peak together with a third-order polynomial 

background; the summation of the area under the Kα and Kβ curves was taken as the 

fluorescence counts for each element. Instrument sensitivity (counts/fg metal/second) for each 

element was determined from the slope of the calibration curves (see Fig. 2), and as expected, 

increased with increasing atomic number.  The optimized parameters, energy calibration, 

Gaussian widths, and Kα:Kβ branching ratios from the standards were held constant in 

subsequent linear least-squares fits of the XRF data for the cytometer traces. 

In order to convert fluorescence counts from a cell to metal mass, it is necessary to know 

when the cell is in the beam.  A visible-light microscope (Mitutoyo, M Plan Apo 5x objective; 

Infinitube Standard with Iris diaphragm; Edmund Optics 5012C, Color GigE Camera) was used 

to image cells in the capillary.  Video data were analyzed by aligning each cell in each frame of 

the video with an ellipse, giving the time dependent position and velocity of each cell.  The time-
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base for the optical and XRF traces were aligned by fitting the measured XRF for the element of 

greatest fluorescent intensity (Fe for red blood cells and Zn for 3T3 cells) to the predicted XRF 

based on the video.  The latter was calculated using the measured time-dependent cell position 

and vertical beam profile.  The position and rotation of the capillary relative to the beam were 

refined as part of the fitting process.  The result of this analysis is a table giving the beam-

profile-weighted fraction of each cell that is illuminated at each time point.  This was used to fit, 

in a linear least-squares sense, the measured time-dependent Fe and Zn XRF signals to give the 

apparent mass of Fe and Zn per cell. 

In addition to fluorescence from the cell, the measured XRF includes x-ray scattering and 

impurity fluorescence from the capillary.  The first step in quantifying XRF fluorescence was to 

quantify this contribution, which we will call a blank, and remove it.  The blank was determined 

by first identifying those time points at which no cells were present in the beam. The XRF for 

these points was summed and normalized by I0, giving an experimentally determined blank 

which was subtracted from the remaining data. The blank subtracted XRF for each time point 

was then fit in a linear least squares sense using a series of Gaussians with the energy calibration, 

Gaussian widths, and Kα:Kβ ratios fixed at the experimentally determined values. 

II.3 RESULTS: 

II.3.1 BOVINE RED BLOOD CELLS 

A total of 805 bovine RBC cells were detected in 24 individual scans taken over a time 

period of ~5 hours. The linear velocity (3.2 µm/sec ± 2.5 µm/sec) resulted in cells being exposed 

to the beam for a mean of ~5 seconds.  The total fluorescence from all 805 cells is shown in 

Figure 3. Despite the fact that the capillary contained significant Fe and Zn impurities, it was 

nevertheless possible to detect a well-defined Fe peak and a very small Zn peak in the 
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background subtracted data. The higher noise level above ~10 keV is due to the much higher 

count rate at that energy due to the elastic and Compton scattering.  The experimental uncertainty 

is proportional to the total number of counts, resulting in greater uncertainty in the difference 

(cell minus background) at 10 keV. 

II.3.2 MOUSE FIBROBLASTS (NIH3T3) 

A total of 31 mouse fibroblasts (NIH3T3) cells were detected in 6 individual scans taken 

over a time period of ~4 hours. Due to incomplete residence times, 7 cells were rejected leaving 

24 cells for analysis.  The linear velocity (8.3 µm/sec ± 5.4 µm/sec) resulted in cells being 

exposed to the beam for a mean time of ~5.5 seconds. The data for 3T3 cells are qualitatively 

similar to those shown in Figure 3, with the exception that the capillary used for these scans 

contained negligible Fe impurity. 

The fluorescence signals for a single RBC and a single 3T3 cell are shown in Figure 4.  

For single RBC there is a detectable Fe peak but no Zn peak above the noise level.  For 3T3 cells 

the Zn and K fluorescence peaks are both above background noise; however, Fe is undetectable. 

The histograms summarizing the Fe in RBCs, the Zn and K in fibroblasts, and the correlation 

plot summarizing the relationship between Zn and K in fibroblasts are shown in Figure 5. 

II.4 DISCUSSION: 

II.4.1 TESTS FOR ACCURACY 

In order to test the accuracy of our data analysis, we examined the effect of cell density, 

background contamination and cell velocity on the apparent Fe concentrations.   
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II.4.1.1 CELL DENSITY 

For some scans, the cellular concentration was high enough that two or more cells were 

in the beam at the same time. In order to test whether we were able to reliably deconvolve these 

signals we compared the apparent distributions for overlapping vs. nonoverlapping cells. 

Although the apparent Fe concentration of RBCs is not affected by cell overlap, the apparent 

width of the distribution in metal concentration increases significantly if more than two cells are 

in the beam at the same time (See Figure 6). This is presumably due to the inability of our fitting 

algorithm to reliably assign fluoresce to individual cells if more than two cells are in the beam. 

Accordingly, all of the analysis excludes cases with more than two cells in the beam at one time. 

II.4.1.2 BACKGROUND Fe CONTAMINATION 

Each position of each capillary (i.e., each individual scan containing multiple cells) was 

analyzed separately because of spatial differences in background contaminants.  In order to test 

whether these variations in background interfered with cellular quantitation, we compared the 

apparent mean Fe content for each scan with the associated background level of Fe.  Figure 7 

shows the results of this comparison for the 24 bRBC scans, with each scan's mean Fe value 

representing data for ~ 20 to 60 cells.   

Despite a 50-fold variation in Fe background levels, the slope of the best fit line for 

signal vs. background (0.024 ± 0.050; 95% certainty interval; r
2
-value, 0.053) is not 

distinguishable from zero, indicating that the background had no effect on Fe quantitation.  Both 

the lowest and highest mean Fe concentrations are found for scans having among the lowest 

contamination.  The slope of the best fit line for population width vs. background (0.054 ± 0.050; 

95% certainty interval; r
2
-value, 0.22) is both positive and apparently different from zero.  This 
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might be a consequence of counting statistics, since cells with a larger background should be 

quantified less accurately. 

II.4.1.3 CELL VELOCITY AND MASS QUANTITATION 

Depending on the details of capillary conditions, there was a ~10-fold variation in cell 

velocity during measurement.  If not properly accounted for in our analysis, this could affect the 

apparent XRF-determined concentrations.  However (see Figure 8) there is no dependence of Fe 

concentration on cell velocity during measurement.  

II.4.2 DISTRIBUTION WIDTHS 

The experimentally determined mean Fe content of individuals RBCs (58 fg ± 27 fg) is in 

good agreement with previous findings [1, 2, 4].  One of the striking observations for the data is 

the surprisingly wide distribution in metal concentrations, with a 1.9-fold difference between the 

cutoff for the lowest quartile (39.9) and the highest quartile (76.7).  Given the noisy signal (i.e., 

Fig 4) one might assume that the width in the distributions in Fig 5 is the result of noisy data.  

However, an average RBC traveling at the average velocity, after blank subtraction, gives ~173 

fluorescent counts for Fe during its residence time in the beam. The statistical uncertainty in this 

measurement is governed by counting statistics (~ 
√   

   
  = 7.6 % or ~ 4.4 fg).  The observed 

standard deviation (27 fg) is more than 6 times larger, indicating that the distribution in Fig 5a is 

dominated by biological variability not experimental uncertainty.   

Similarly, the experimentally determined Zn and K content of individual NIH3T3 mouse 

fibroblasts, was 27 (± 16) fg and 789 (± 550) fg, respectively, in good agreement with known 

mammalian concentrations for Zn [18].  These showed a 2.3- and 2.8- fold differences between 

the 1
st
 (16.3, 421) and 3

rd
 (37.7, 1160) quartiles for Zn and K, respectively. Similar results are 
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found for NIH3T3 cells, with experimental uncertainties of ±3 and ±53 fg for Zn and K, vs 

measured distribution widths of 16 and 550 fg, respectively.  

Interestingly, the distribution is apparently asymmetric with an associated skew of 

0.3885.  

II.5 CONCLUSIONS: 

We have developed an XRF-coupled flow cytometer that permits measurement of trace 

element concentrations for single cells with a frequency of ~0.25 Hz.  Although the current data 

are quite noisy, it should be possible both to increase the solid angle from which signal is 

detected and to decrease the background signal.  Even with the current instrument, we have 

found the biological population distributions of Fe, Zn, and K are quite large.  This may reflect 

variation in sample condition (for example, no effort was made to synchronize cell ages or 

developmental stage) or may represent intrinsic variability due to mechanisms of homeostasis.  

Future work will be aimed at better understanding the factors behind these distributions.  

Nevertheless, it is clear that cell specific determination provides novel information not available 

from conventional bulk measurements. 
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Figure II.1 Schematic illustration of the apparatus: The initial flow rate, from capillary 

action, was reduced dramatically by placing a droplet of solution at the end of the capillary.  This 

traps an air pocket in the fold at the top of the capillary. As the droplet slowly evaporates, the air 

pocket is allowed to rise.  The velocities of the cells were measured to be on the order of ~0.5 

mm s
-1

 and a 20 cm capillary takes ~10 minutes to fill. Based on this, capillary action was used 

to load the sample capillary.  The addition of a curve at the top of the capillary above the 

terminal end, allows for an air pocket to be trapped when a droplet is placed at the terminal end. 

This causes a dramatic decrease of cellular velocity to ~ 5 µm s
-1

. As the droplet slowly 

evaporates, the air pocket is allowed to rise and with it the cells. 

 

  

Sample 

Container 

C
ap

il
la

ry
 



 

39 

 

 
Figure II.2 Calibration Graph: Instrument sensitivity (normalized counts/fg metal/second) was 

determined from the slope of the resulting calibration curves. The calibrated sensitivities in units 

of 
       

       
  for Cr, Fe, and Ni were          ,        , and          , respectively.  
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Figure II.3 Total XRF from all RBC Scans: A) Logarithmic and B) Linear scale plots of 

combined signal from all cells. Vertical dashed lines mark the energy of the Fe and Zn Kα and 

Kβ peaks 
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Figure II.4 Single Cell Spectra:  XRF spectra for a single bRBC (top) and 3T3 (bottom): Both 

spectra contain the total fluorescence, the background fluorescence and the cellular fluorescence 

(total – background). The units are counts per second normalized by the upstream ion chamber.  

For bRBC, the quantified masses for Fe (82 fg) and Zn (0.62 fg), correspond to ~15 mM and 

~100 µM, respectively [1, 3, 4].  For NIH3T3 cells, the masses for K (3480 fg) and Zn (16.1 fg) 

correspond to ~50 and ~140 µM, respectively.  The peak height of the RBC Fe is ~4.2 x 10
-4

 

with the peak height of the baseline being 1.3 x 10 
-4

 giving a S/N ratio of ~3.4.  Similarly, for 

the NIH3T3 cell the associated S/N is ~11 and ~2 for K and Zn, respectively. 
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Figure II.5 Distributions and Correlations:  (A) a cell-mass histogram for Fe in bovine RBCs; 

(B) a cell-mass histogram of Zn in NIH3T3 mouse fibroblasts; (C) a cell-mass histogram for K in 

NIH3T3 mouse fibroblasts; and (D) a correlation plot of K vs. Zn for NIH3T3 mouse fibroblasts. 
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Figure II.6 Overlapping residence versus the associated distribution width: Using a two 

tailed F-Test, with 80% certainty, we can state that the population distribution obtained from 

three cells sharing residence through the beam is statistically different from that obtained from 

two cells overlapping or that of lone cells. 
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Figure II.7 Mean Quantitation vs. Background Contamination: The effect of the background 

Fe contamination on the apparent RBC Fe concentration.  The mean (black) and std. deviation 

(red) of Fe concentration for each scan is plotted vs the background Fe contamination  
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Figure II.8 Velocity vs. bRBC Fe Content: Comparison of the mean cellular velocity of a 

particular cell during its residence time with its calculated Fe content. Expectedly, there is a 

slope of zero indicating no relation between the two variables. 
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CHAPTER III: DATA ANALYSIS AND PROCESSING
2
 

 

III.1 INTRODUCTION 

Although the fitting of x-ray fluorescence (XRF) data [1-5] and the tracking of cells [6] 

are not new concepts, both the measuring of time-course XRF data (as opposed to position-

course data of imaging) and the pairing of that data with cell "tracks" from video data to 

deconvolve the total integrated per cell signal from overlapping cells with variable x-, y-, and z-, 

coordinates and velocities has never been done before.  As such, the cytometry methodologies 

presented in this thesis required the development of software to address four key research 

requirements of data analysis: instrument calibration, signal calibration, signal identification, and 

signal quantification. The following chapter and its associated units outline the rationale for each 

piece of software and make reference to particular software code and comparisons when 

necessary.  

Due to the underlying physics, incorporation of video data was paramount to being able 

to extract quantified values of the various elements of each cell from the time dependent XRF 

traces.  Because of this, the second portion of this chapter will discuss the additional treatment of 

the video data. 

                                                 

2
 Aniruddha Deb provided project guidance.  Jim Penner-Hahn provided invaluable collaboration towards 

the developed methodologies. 
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III.2 INSTRUMENT CALIBRATION 

There are two variables from the beam line that must be calibrated: the x-ray beam 

profile (or shape) and the detector (the digital binning of energies and the associated energy 

dependent full width half max (FWHM) of its resolution).  The use of the beam profile is unlike 

XRF imaging where the profile is used to deconvolve the signals as a function of position; rather 

the calibrated beam profile is used in conjunction with video to build an array that is necessary to 

deconvolve the time-dependent signal of each cell.  Both the profile and array are necessary to 

align the different time frames of the video and XRF data sets (see section III.4.2.3).  As with 

imaging, calibration of the energy terms for detector binning and resolution are needed to 

convert the digital signal from the detector into fluorescence counts per element (see section 

III.2.3.3). 

III.2.1 BEAM PROFILE  

The profile of the incident x-ray beam was measured along the horizontal and vertical 

directions using a knife edge scan.  A sample of uniform thickness with a very straight and clean 

edge (analogous to a knife's edge) was moved across the beam with its edge perpendicular to the 

direction of travel.  As the sample moved through the beam, the fluorescence intensity was 

recorded.  The measured signal, S when the edge is at x=b is  ( )   ∫  ( )  
 

  
, where I is the 

intensity of the x-ray beam.  The beam profile was then calculated by taking the numerical first 

derivative of the knife edge scan and then normalizing it to a maximum value of 1. 

III.2.2 DETECTOR PARAMETERS 

The energy of each x-ray pulse is assigned to one of 2048 bins.  The two parameters 

governing the fitting of XRF data are 1) the energy calibration of the detector's energy binning, 

and 2) the energy dependence of peak resolution.  Bin number is fitted to energy using a second 



 

48 

 

order polynomial, and peak resolution (FWHM of the detected X-ray peaks) is modelled by the 

expected detector response function,             √ ; where E is the energy of the 

associated atomic transition,    is the contribution from limitations in electric pulse processing, 

and    includes combinations from Poisson statistics of the electron-hole pairs produced when 

each photon strikes the detector [7, 8].   

Although x-ray emission lines have an intrinsic Lorentzian shape with a FWHM of ~10 

eV [9], the experimental peak shape for most  XRF detectors is much broader, with an 

approximately Gaussian shape and a FWHM of ~120 eV.  Each XRF emission line was fit to the 

equation    (
   

 
)
 

; where A is the amplitude of the emission line at energy, Ē, and σ is the 

FWHM of the detectors response function at energy, Ē.  Since the FWHM of each line is 

governed by the detector response function, the Gaussian σ-values are energy dependent.   

III.2.2.1 ALL OTHER PARAMETERS 

All other fitting parameters are either referenced from known values or extracted directly 

from the sample scan itself.  These parameters include the branching ratios [10-13] of the various 

elemental emission lines (e.g., Kα and Kβ), the fluorescence yield ratios (e.g., the ratio of Zn-K 

to Zn-L lines)[10-13], an estimation of the background/blank/baseline and an estimation of the 

scatter, both Compton and Elastic.  Both the Compton and elastic scatter need to be accounted 

for during parameterization.  This is because the Zn K-Lines rest on the scattering shoulder when 

excitation is at 10 keV; and failure to account for the scattering interferes with Zn quantitation.  

In all cases it was possible to obtain or extract an actual blank from the scan.  In these cases, 

parameterization was significantly simplified as doing so, in many instances, removed the need 

to estimate any background or scatter.   
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III.2.2.2 PARAMETERIZATION OF ENERGY BINNING AND 4-ELEMENT 

DETECTOR ALIGNMENT 

Each detector element can have a slightly different calibration.  As such, each element 

was calibrated independently.  The resulting calibrations were then used to align the signals from 

all four elements for summation.  After summation, the existing set of calibration parameters was 

refined using the summation to create a single final set of calibrated parameters. 

III.2.3 DETECTOR CALIBRATION 

Depending on the specific experiment, detector calibration was achieved using either a 

standard or a sample.  The difference between the two, being that sample scans can be blank 

corrected (Section III.3.2) and standards have to be baseline corrected.  For sample scans, the 

ability to correct with a blank allows for the removal of all contributory background fluorescence 

leaving only the cellular emissions.  This makes the determination of the energy dependent 

variables associated with detector calibration very simple.  The inability to do this with standards 

makes detector calibration more difficult, as an accounting needs to be made of the contributing 

continuum of background signals (e.g., Compton scatter).  

III.2.3.1 DETECTOR CALIBRATION USING STANDARD SCANS 

For flow cytometry experiments, the standard solutions were not initially contained in the 

capillary that holds them and this allows for an in situ blank of the capillary to be taken prior to 

the loading of the standard solution. 

III.2.3.2 DETECTOR CALIBRATION USING SAMPLE SCANS 

Whenever possible, the determination of the detector's energy calibration and energy 

dependent parameters should be performed using sample scans even if standard scans are 
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available.  This is because it is not possible to treat the background properly for the standards 

because there isn't a blank region to subtract; even the blanks taken from the empty capillaries 

weren't perfect.  Essentially, increased scatter from the standard solution causes baseline 

elevation making it very difficult to use in situ blanks.  This is discussed further in Chapter 5. 

Importantly, with sample scans (both 1D time-course and 2D image data),  correction by 

a blank allows for an increased energy range for determining detector parameters as it provides 

an accounting of the background continuum of XRF without having to fit it.  This is new and 

completely different from the current approach of the field which calibrates using standards.  

Unfortunately, this development wasn't incorporated until late in software development and was 

not actually implemented for the flow cytometer data.  However, this approach was applied to 

the fitting of images discussed later in chapters 5 and 6. 

III.2.3.3 PARAMETRIC EQUATIONS AND PARAMETER FITTING 

The goal of detector calibration is to determine 5 key variables which govern 1) the 

FWHM as an energy dependent function of detector response, and 2) the energy binning 

associated with the detector channels.   

            √ ;  

Equation III-1 

                            ( )          (       )       (       )  

Equation III-2 

Where e0, e1, and e2 are the intercept, slope and quadratic of the energy calibration, 

respectively, and where s0 corresponds to limitations in electric pulse processing and s1 is a 

combination of factors related to the electron-hole pairs produced in the detector [7, 8] when a 

photon of energy, E, strikes it, the overall equation for the fitting of the data is as follows: 
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Equation III-3 

where the scan is over i elements with j series and k lines.  The elements chosen for detector 

calibration were based on visual inspection of the blank corrected signal.  The blank term at the 

beginning is extracted from the sample itself and can be considered a constant.  Nonlinear fitting 

was performed in Matlab® using the Levenberg-Marquadt algorithm.   

When a blank is not able to be extracted, the leading term CBlank is replaced by a term for 

a baseline supplied by a snipping function (see section III.3.2) plus a term for both Compton and 

elastic scatter.   
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Equation III-5 



 

52 

 

The elastic and Compton scattering are discussed in this section because accounting for 

them during calibration (especially in the absence of a blank) is necessary for accurate fitting.  

The elastic scatter is modelled as a Gaussian and the Compton scattering is modelled as Gaussian 

with a left-sided (lower energy) Lorentzian.  This approximation is imperfect but appears 

visually to be an adequate approximation of the scattering.  The FWHM of the elastic Gaussian 

and the right-side Gaussian half of the Compton are determined by the FWHM equation of the 

detector response function from Equation III-1.  For the Compton peak the amplitude of the left-

sided Lorentzian is set to be identical to the right-sided Gaussian and the Lorentzian width is set 

to twice that of its Gaussian counterpart. 

III.2.4 VECTORS AND MATRICES USED FOR DATA FITTING 

After the parameters have been extracted, the coefficients of the detector response 

function and the coefficients of the detector binning energy dependence are held constant.  These 

fixed parameters are then used to calculate vectors and arrays which are also held constant and 

used in linear least squares fitting of the XRF data.  The vectors and arrays generated are the 

normalized fluorescence vectors (the summation of all the contributing equations for a particular 

emission normalized to a maximum value of 1), the scatter arrays (Compton and elastic), and the 

background array (which is variable depending on whether it is a blank/baseline or a polynomial 

and whether it is held constant across all pixels or scaled by a coefficient).  These arrays are used 

to calculate the signal in linear least squares fitting.   

III.2.4.1 FLUORESCENCE, BACKGROUND AND SCATTER ARRAYS 

An array of intensity vs channel number was calculated for each fluorescence element 

using Equation III-3 and setting the blank contribution to zero.  The background term is an M x 1 
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vector representing the first term in Equation III-3.  The scatter is calculated using Equations 4 

and 5. 

1.1.1.1 FITTING OF XRF WITH EXTRACTED PARAMETERS 

The XRF data, F, was fit as a series of linear equations 

      

Equation III-6 

where A is the array from III.2.4.1 containing the fluorescence, background, and scatter 

functions, 
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Equation III-7 

and C is a vector containing the coefficients solved for using linear least squares.  

III.2.4.2 CALIBRATION OF STANDARD MASSES 

Solid standards have a uniform thickness, making it easy to determine metal 

concentrations in g/cm
2
, and giving the total illuminated mass when multiplied by the beam size.  

This is the dominant practice in the field.  However, for the flow cytometer we developed and 

used solution standards of dissolved metal ions as doing so more closely resembled the 

experimental set up.  For solutions, metal content (mg/L) was determined using ICP and the 

volume illuminated by the beam was calculated from the capillary inner diameter and the beam 

height.  These data allowed determination of counts per gram of metal illuminated. 



 

54 

 

III.2.4.3 SENSITIVITY CALIBRATION SLOPES 

For solution standards, multiple concentrations were measured.  Since the current 

approach is to use single point calibrations from highly concentrated standards, this is very 

different.  The sensitivity is the slope of the straight line fit of intensity vs mass.  In order to 

estimate the sensitivity for elements where we didn't have a calibration, we corrected the 

measured sensitivities for absorption (due to air [14], capillary [15], and solution), the 

fluorescence yields [16, 17] of the element, and the associated photoionization cross sections 

[18].  In principle, the corrected sensitivities should be the same for all elements.  Because our 

corrections aren't perfect, the corrected sensitivity was modelled as a linear function of Z, and 

this fit was used to estimate the sensitivity of the other elements.  These estimated values were 

then multiplied by their associated absorption (due to air, capillary, and solution), fluorescence 

yields, and photoionization cross sections (associated with the given excitation energy) to give 

expected sensitivity in 
      

       
.  Figure III.1 is a representative calibration curve. 

III.3 XRF DATA 

III.3.1 DIFFERENCES BETWEEN TIME-COURSE AND POSITIONAL XRF DATA 

Although XRF time-course data and XRF imaging data represent different things, they 

have the same functional form (detector output, ion chamber values, etc) and can be analyzed the 

same way.  For instance, although time-course measurements are recorded across time, not 

space, time-course measurements are functionally identical to an image of size M x 1, where M 

is the number of time points collected and the integration time (or live time) is the step size 

between the time points in temporal space.   
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III.3.2 BACKGROUNDS, BLANKS, AND SCATTER 

The concept of a background can be understood as the experimentally measured signal 

when no sample is present and baseline – an attempt to model the signal that should be observed 

if there were no fluorescence from the sample.  Depending on the method applied, a background 

can be fitted or measured.    

A fitted background, or baseline, can be derived in many different ways.  It can be 

assigned manually, calculated with a snipping function, or fitted, for example with a polynomial.  

In the two cases where it isn't assigned manually, the background can be calculated for the 

spectrum sum (the sum of each channel across all pixels of the dataset), or can be calculated 

separately for each individual pixel.  If the background is calculated for the spectrum sum, it can 

be held constant for all pixels or can be scaled in order to best model each individual pixel. 

The most common approach to determining a baseline background utilizes what is called 

a snipping function [9].  A snipping function compares each channel n, of a spectrum, to its two 

neighbouring channels, n ± 1; if the intensity at channel n is greater than the mean intensity of 

channels n ± 1 then the output intensity at channel n is set to the mean intensity value of its two 

neighbours.  This function is sensitive to local minima and performing it iteratively has the effect 

of peak stripping.   

In contrast to baseline modelling, it is sometimes possible to segregate the data into two 

distinct sets of signal (or cell) and non-signal (or blank).  This allows for the removal of all 

contributing fluorescence that does not arise from the cells.  This correction should give spectra 

which consist solely of signals from the cell.  This is what was done for detector calibration in 

section III.2.3.2.  After the background pixels have been identified, a blank can be calculated in 

two different ways: 1) by taking the mean spectra of all non-cell pixels, or 2) fitting of an 
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interpolative function to allow for fluctuating background ratios of elements across the image or 

time trace.  For the latter, (Figure III.2) an independent spline or polynomial interpolation is fit 

for each channel of the data set using the non-cell pixels' spectra as the seed values.   Spline 

interpolation is done by using the center of each group of non-cell pixels as the break points 

between each constituent third-order polynomials of the spline.  For polynomial interpolation, a 

tenth-order polynomial is used.  For 2D images, two separate interpolations are performed; one 

across the rows of the image, and another down the columns.  The mean of the two is taken as 

the value for the blank at that position. 

III.3.3 FITTING XRF SAMPLE DATA 

The dominant approach when fitting XRF data is to employ positivity constraints when 

fitting the fluorescence lines, and when fitting baseline corrected data this does not decrease the 

accuracy of the answer.  However, nonlinear fitting is computationally taxing and decreases 

computational efficiency; and most importantly, isn't necessary as it has a negligible impact on 

the data (Table III.1B).  In contrast, blank corrected XRF data must be fit as true linear least 

squares without the imposition of non-negativity constraints.  Though it may seem intuitive to 

constrict the fitting of fluorescence to ≥ 0 as it is impossible to have negative fluorescence, doing 

so for blank corrected XRF data will artificially inflate the amount of fitted XRF in the presence 

of noise (see Table III.1A).  This happens because the percentage change in the mean counts of 

blank corrected cellular pixels increases when the fit is positively constrained.  Rather than being 

randomly distributed around zero, only non-negative values are possible.  The increase occurs 

more for background pixels than for cell pixels since, in principle, the cell pixels have values that 

are randomly distributed around a positive value, and are not affected by the non-negativity 

constraints.  This is demonstrated by the fifth column in Table III.1A, which shows that 
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additional correction of the inflated values by subtraction of the background mean 

overcompensates and causes the resultant values to be less than those fit without positivity 

constraints.   

An example of how noisy a single pixel can be is shown in Figure III.3.  In terms of 

noise, whenever a signal arises from a small difference between two large numbers, as is the case 

with blank subtracted XRF, random fluctuations around a mean of zero - with a standard 

deviation of the square root of the number of counts of the original (non-blank subtracted) signal 

- are to be expected.  Ignoring the negative contribution while fitting the positive fluorescence of 

that baseline will cause an artificial increase in reported background.  When the signal is close to 

the baseline, random fluctuations in the signal are even more important.  Solving for the positive 

fluorescence while artificially setting all the negative values to zero will always fail to 

compensate for this artificial increase and result in a reported amount of metal that is less than 

the true value following subtraction of the background mean.   

III.4 FLOW CYTOMETER SIGNAL IDENTIFICATION – VIDEO DATA 

Cells have variable sizes, metal content, velocities, and in some cases overlapping beam 

residence times, making single cell quantification of metal content impossible from XRF alone.  

In order to deconvolve the signal from overlapping cells one needs to know, at a minimum, when 

each cell enters and exits the beam.  Cellular paths in the beam are not uniform, therefore the 

position of each cell at every point in time when it's in the beam must be known.  Most 

importantly, without some manner of visualizing capillary flow, it is impossible to know whether 

a peak in the XRF corresponds to a single cell or multiple overlapping cells.  For these reasons, 

the capillaries, and the cells flowing through them, were imaged with video data collected 

synchronously with XRF, using a horizontal visible-light microscope, (Mitutoyo, M Plan Apo 5x 
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/ 10 x objective; Infinitube Standard with Iris diaphragm; Edmund Optics 5012C, Color GigE 

Camera). 

In order to align the video and XRF data, we first estimated the beam's location in the 

video.  As the beam irradiates the capillary it also slowly (5-10 minutes) discolors the capillary, 

providing a visual estimate of beam position. 

III.4.1 PROCESSING OF THE VIDEO DATA 

Post collection processing of the video data (to track the cells as they traversed the 

capillaries) required four separate operations:  

1. Each frame of the video was parsed into cell and non-cell.   

2. The cells of each frame were connected across frames to construct the path of each cell.  

3. The beam profile was interpolated from a profile with pixel increments equal to the step 

size of the native knife edge scan to increments equal to the pixel size of the video.  This 

was done so that the step size (the spacing in y) aligns with the pixel size of the recorded 

video.  This is necessary to align the video and XRF data sets.  Following this, an initial 

best guess of its vertical position in the video was assigned.   

4. The individual tracks of each cell were then convolved with the aligned beam profile to 

yield a pseudo-fluorescence trace, that is, the predicted fluorescence for the cell as a 

function of time (video frame number).  

III.4.1.1 SEPARATION OF CELL FROM NON-CELL IN THE VIDEO DATA 

First, the user selects specific frames as "seeds" for manual video parameter optimization.  

These "seeds" are then analyzed manually to identify cells.  This is done by first calculating a 

frame dependent blank that gets subtracted from each video frame.  Following the blank 

subtraction, the residuals (pixels) of the video frame are then processed with an intensity 
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threshold and then filtered to create a binary mask that represents cell (1) and non-cell (0).  

Following this, each independent grouping of 8-connected '1's can be directly fit with an ellipse, 

or a Circular Hough Algorithm can be performed on the total binary image to identify 

overlapping cells.  This binary mask is processed to extract the x, y, rminor, rmajor, angle of the 

associated ellipse, for each cell, in each frame. 

III.4.1.2 CONNECTING THE CENTROIDS TO CREATE TRACKS 

At this point, the actual path of each cell can be determined from the centroids.  This is 

done by connecting the centroids across frames to identify the exact path of each specific cell.  

The GUI that performs this process applies three user designated parameters to discriminate and 

determine the tracks: 1) the maximum displacement between connected points, 2) the minimum 

number of points to make a track eligible, and 3) the maximum number of frames that can 

separate two connected points of a track.  These parameters are chosen by the user and are 

primarily governed by how well "cell' was separated from "non-cell" during the video 

processing.  Manual intervention can be necessary when the video is blurry or when the cell 

concentration is sufficiently high enough to cause cells to overlap; for this reason, tracks were 

verified visually.     

III.4.2 CAIBT, XRF, AND ALIGNMENT 

Both the identification and tracking of objects in video data and the fitting of XRF data 

are well established techniques [19].  However, combining XRF fitted time traces of elements 

with cellular "tracks" to deconvolve single cell total integrated fluorescence counts is new.  

Furthermore, the development of the associated methodologies was integral to the analysis of 

XRF flow cytometry data and without them the data from the XRF flow cytometer are 

meaningless.   
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III.4.2.1 INITIAL VIDEO ROTATION AND PLACEMENT OF THE VERTICAL BEAM 

PROFILE 

The pixel size of the video was calculated from the pixel size of the CCD (2.2 µm, 

Edmund Optics 5012C, Color GigE Camera) and the magnification of the objective.  For a CCD 

with a pixel resolution of 2.2 µm, using a 5X objective, this gives a pixel spacing of 0.44 µm.  

The calculated beam profile was interpolated onto this grid.  There are two parameters with 

respect to the beam profile position on the grid: its vertical position and the angle of rotation 

between the apparent normal vector of the video grid and the true normal vector associated with 

the profile.  For ease of visualization, the GUI displays a semi-transparent beam profile on top of 

the video image.  This projection can be adjusted vertically to align it with the discolored portion 

of the capillary in order to set the initial guess.  Likewise, to address any difference in the angle 

between the projection and the discolored portion of the capillary, the rotation of the video data 

can be adjusted.  

III.4.2.2 CAIBT 

The track information was combined with the beam profile to give an output array 

containing the normalized convolution of each cell's vertical profile (the summation of its area 

along each row of pixels) with the vertical beam profile.  This is the "cell-area-in-beam-trace" or 

CAIBT.  The CAIBT is an M x N array where, M is the frame number of the video and N is cell 

number.  Later, after alignment of the video and XRF data, each column is interpolated from the 

time basis of the video into the time basis of the XRF data and M becomes the integration 

number of the XRF data.  The columns of this array are each normalized to a maximum of one.   

The CAIBT is the theoretical array of fluorescence counts for each cell that would be 

detected if all cells had the same amount of elemental mass, regardless of cell size, 
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homogenously distributed throughout the cell.  Summation along each row of the CAIBT would 

yield the theoretical fitted XRF signal for a given element.  Summation down each column of the 

CAIBT would yield the theoretical total integrated counts for each cell in units of counts x 

integrations x I0
-1

. Interpolation of the CAIBT's timeframe into the time frame of the XRF data 

allows for the deconvolution of the amplitudes for each column.  This allows for the total 

integrated counts of each cell to be calculated using the entirety of the dataset.  Interpolation and 

alignment of the CAIBT with the XRF data is discussed in Section III.4.2.3.  Deconvolution of 

the amplitude for each cell represented in the CAIBT is discussed in Section III.6 .  Calculation 

of the total integrated counts for each cell is discussed in Section III.6.  

The calculated CAIBT depends on the vertical positioning of the beam profile and the 

rotation of the video image, both of which may change from scan to scan.  These values were 

refined iteratively. 

Calculation of the CAIBT involves a separate calculation for each cell.  Each calculation 

starts with a 2D binary image (Figure III.4A) of the cell calculated from the fitted rminor, rmajor, 

and phi for a cell.  The binary image is summed along the horizontal axis to give a column vector 

which is the vertical profile of the ellipse (Figure III.4B).  The next array is referred to as a 

positioned ellipse profile array (Figure III.4C).  This is an M x N array where M is the total 

number of vertical pixels in a frame and N is the total number of video frames containing the 

cell.  Each (m, n) value is the amplitude of the cell's vertical profile at m, n.  Multiplication of the 

transpose of the positioned vertical ellipse profile array by the vertical beam profile (Figure 

III.4D) yields the convolution (Figure III.4E) of the ellipse profile with the vertical beam 

profile giving the theoretical integrated fluorescence counts of a cell as a function of time.  

               (                                     )  (            )    
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III.4.2.3 ALIGNING VIDEO DATA WITH XRF DATA 

The sampling rate of the detector was 4 Hz.  The frame rate of the video was much 

higher, typically 20 Hz.  Therefore, aligning the video data with the XRF data required the video 

frame rate to be down-sampled to 4Hz. 

In addition to video rotation and the vertical position of the beam profile, two more 

parameters were optimized: a slope for converting the video time frame to the XRF time frame, 

and a time offset between the video and XRF.  These are solved for by a grid search of possible 

rotation and beam position values (the initial beam position ± the distance of 10 video pixels and 

the initial video rotation ± 1˚ at steps of 0.2˚).  At each point on this grid, the time offset and the 

relative frame rate were optimized.  This optimization is represented in Figure III.5. Figure 

III.6 displays the energy well associated with refinement of profile shift and video rotation; 

Figure III.7 is a schematic of the program flow. 

To align the XRF with the CAIBT, an XRF channel (e.g., Fe) as a function of time is 

compared with the CAIBT and the offset and relative frame rate are optimized iteratively.  At 

this point a linear least squares fit is used to determine the elemental concentrations that give the 

best fit for this alignment.  This process is then repeated for the next point in the grid.    

III.5 DECONVOLUTION PROCESSES 

III.5.1 PRIOR TO DECONVOLUTION 

The two traces - the XRF element time trace and the aligned CAIBT - are 'cleaned'.  For 

the XRF trace this consists of setting to zero 1) all XRF time pixels that were not aligned with 

video, and 2) all XRF recorded when the shutter was closed.  For the CAIBT this consists of, 1) 
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removing all cells that have no overlap with the beam (either because they never crossed the 

beam region or the shutter was closed), 2) setting to zero all video frame indices corresponding 

to the absence of XRF data (i.e., they were collected outside the purview of the associated XRF 

data collection). 

Once this is done, the fitting can be performed either as a linear least squares which 

allows for negative concentrations, or as a constrained non-linear least squares with non-

negativity constraints.   

III.5.2 DECONVOLUTION OF THE XRF FROM EACH CELL 

For the data in this thesis, each cell's contribution to the total fitted XRF time trace of 

each element was solved using a positively constrained nonlinear least squares variant of 

Equation III-6.  Following this fit, any cells that were solved to have a zero trace (a trace that has 

zero amplitude) are thrown out.  Any cells that overlapped with the 'zero' cells were also thrown 

out.  After each cell's total time dependent fluorescence trace had been solved, the counts were 

integrated and converted to mass using Equation III-8. 

III.5.3 ACCOUNTING FOR CELL LEAKAGE 

At times it is necessary to allow for time dependent decreases in concentration that arise 

from prolonged exposure to the beam.  For most scans, time dependent decreases were 

negligible.  However, if a cell gets stuck in the beam it appears to slowly leak metal.  This can be 

modelled by a first order decay.  A graphical representation of a scan that suffers from a cell 

being stuck in the beam, along with the fits both accounting and not accounting for cell leakage 

are presented in Figure III.8.  As can be seen in Figure III.8A, inclusion of leakage improves 

the fit quality by nearly 40% (0.000730 vs. 0.00102).  There are noticeable time-dependent errors 

in the residual, Figure III.8C, if leakage is omitted.  The dashed red line and blue line in Figure 
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III.8C are the fits that neglect and account for cell leakage, respectively.  Notice the time 

dependent change in the difference between the two fits from left to right.  Figure III.8B, the fit 

to the data for all the cells accounting for the cell leakage, shows that this is caused by a single 

cell; the trace of that cell is the blue line in that figure.   Figure III.8D corresponds to snap shots 

of a cell at 0, 3, and 6 minutes (*1, *2, and *3 in Figure III.8B) after it has been stuck in the 

beam.  Like the capillary, the cell begins to char, and additionally it also appears to shrink.  

Importantly, the impact of the time dependent error, demonstrated in Figure III.8C, (that occur 

when a cell is stuck in the beam and leaking) is an increased distribution of masses which can be 

seen Figure III.9.   

III.6  METHODS OF INTEGRATION 

For each cell, the total fitted counts for each element depend on both the cell velocity and 

the beam height.  Assuming a constant Δy displacement from each integration to the next (i.e., 

assuming constant velocity), Equation III-8 below accounts for both cell velocity and beam 

height and is used to calculate the total mass of each element in each cell. 

          (  )
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Equation III-8 

The total integrated counts for each cell (XRF in Equation III-8) can be calculated via 

temporal integration or positional integration.   
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III.6.1 INTEGRATING WITH RESPECT TO TIME 

As the cell passes through the beam, its position (x, y) is determined as a function of time 

from the video.  The data analysis (above) allows pairing these with fluorescence as a function of 

time.  Taking the measured counts (counts/I0) as a function of the frame number and integrating 

with respect to frames, gives the total fluorescence counts of the fitted XRF data in units of 

(counts * frames)/I0. Since a frame is equal in length to the integration time of the XRF data, this 

unit is identical to units of (counts * integrations)/I0.   

When integrating with respect to time, the velocity was a 2-point average calculated by 

taking the difference of the vertical positions and the associated time between the first and last 

time point of fluorescence for the associated cell.  However, this neglects non-ideal paths 

through the beam.  Because the velocities of the cells had to be slow enough to allow for 

statistically meaningful fluorescence counts, the cells are able to rock back and forth and display 

fluctuating velocities while traveling through the interrogation zone of the beam.  These non-

ideal paths change the amount of fluorescence that is detected, and ultimately made integrating 

with respect to time an inadequate method for calculating total counts 

III.6.2 INTEGRATING WITH RESPECT TO POSITION 

Figure III.10 is a graphical representation of non-ideal behavior of the cell as it travels 

through the beam.  Note the deviation of the cell as it spends a far greater proportion of its time 

outside the bright spot of the beam.  This would cause the cell's calculated total counts to be less 

than what would be calculated if the cell had a uniform path through the beam.  Conversely, the 

second plot demonstrates a cell that gets stuck in the beam's hot spot for some time.  In this 

scenario, the cell's calculated total counts will be much greater than were the path ideal.  

Essentially, a cell can spend as much time going back and forth in the beam, so long as every 
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part of that cell equally samples the vertical profile of the beam.  If this is not the case, 

integrating with respect to time will either over-estimate or under-estimate the value. 

Alternatively, the convolution of the cell traces can be converted from the time domain to 

the space domain. At each centroid position (x, y) the cell will give a specific number of 

integrated counts.  The y-points are sorted in increasing order and the corresponding integrated 

photon counts are reorganized to match the resorting of the y-points.  These points are then used 

to interpolate integrated photon counts that would be associated with every cellular integer y-

position through the beam.  A trapezoidal approximation of the integral is used to calculate the 

total integrated counts corresponding to the convolution of the beam with a point separation 

equivalent to the pixel resolution of the camera (e.g., 2.2 microns/pixel) divided by the objective 

magnification (e.g., 5x).  This convolution is now equivalent to the convolution seen for a cell 

traveling at a velocity of one pixel (distance) per integration (time). This gives a pixel separation 

of 0.44 microns/pixel and hardsets the velocity (or the apparent velocity associated with the 

integration) to 1.76 μm/sec (for an integration time of 0.25 seconds with an objective 

magnification of 5X). 

       

            
   

              

         
   

         

     
    

 

 
                 

Equation III-9 

The above equation gives the velocity of the cell corresponding to the interpolated 

convolution.  This velocity is equivalent to the camera resolution (y-Microns/Pixel) divided by 

the integration time (n-Seconds/Integration). 

The resulting values for integrated counts and velocity are inserted into Equation III-8 

(page 64) to yield the total mass in fg for each element detected for each cell. 
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III.7 SUMMARY 

An overview of the processes involved in the fitting and analysis of the raw XRF flow 

cytometer data is presented in Figure III.11.  Part A encompasses discussions from section III.2 

and handles the calibration of the detector parameters (section III.2.3.2), beam calibration 

(section III.2.1), and sensitivity calibration (section III.2.4.3).  Part B deals with combining the 

XRF sample data (section III.3.3), the beam profile (section III.2.1), and the cell size and 

positions from the video data processing (section III.4.1) to deconvolute the total integrated 

counts  from each cell (section III.6) for each element.  Part C combines the output from the 

sensitivity calibrations (section III.2.4.3), the calibrated beam parameters, (section III.2.1), the 

total integrated counts (section III.6.2) and the cellular velocities (section III.6) to calculate the 

total mass of each element in each cell using Equation III-8. 
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Figure III.1 Accounting for the sensitivities of the other elements: (A) modelling of the 

corrected sensitivities as a linear function of Z.  (B) The line representing the estimated values 

obtained by taking the corrected sensitivities from the linear function of Z, for atomic numbers 9 

< Z < 31, and multiplying them by their associated absorption (due to air, capillary, and 

solution), fluorescence yields, and photoionization cross sections (associated with the given 

excitation energy) to give expected sensitivity in 
      

       
.    
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Table III.1 Use of Positivity Constraints:  Comparison of mean cellular counts per second 

normalized by the upstream ion chamber solved with and without positive constraints. (A) The 

first two columns of data from the left correspond to the mean cellular counts per second fit 

without positive constraints and with positive constraints, respectively.  The third column 

corresponds to the fitted data using positivity constraints and is reflective of the mean counts per 

second for cell pixels minus the mean counts per second for background pixels; since the data is 

already corrected for with a blank, this should not be necessary.  The fourth and fifth columns 

show the difference in quantitation between columns 2 and 1 and columns 3 and 1, 

respectively. (B) The same comparison as in A except the data was baseline corrected using a 

snipping function (Section III.3.2).  
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Figure III.2 Interpolation of 2D Blanks:  Interpolation is performed using each channel of the 

raw data (A) to create horizontal (B) and vertical (C) interpolations of the values for the 

associated channel across the image.  The value for each pixel of the blank (D) is calculated from 

the mean of the corresponding indices from the horizontal (B) and vertical (C) interpolations.  
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Figure III.3 Inherent Noise at the Individual Pixel Level:  Sample spectra from individual 

pixels from the first flow cytometer data set.  The dark blue lines with gaps are the normalized 

fluorescence counts; the gaps are caused by zero counts due to the log scale of the images.  The 

red line is the fit to the data.  The black line is the calculated blank.  The cyan is a baseline from 

a modified snipping function and the magenta is the residual.  The dark green and dark blue lines 

coming from the bottom of the images are the fitted peaks for K and Zn, respectively. 
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Figure III.4 Construction of an Ellipse Based CAIBT: (A) The binary mask of an ellipse. (B) 

The vertical profile of the ellipse obtained by summing horizontally across the mask of the 

ellipse. (C) Positioned ellipse profile array – this array has the profile placed along the path of 

the capillary.  The profile's placement is determined by the reported centroid of the associated 

cell for the associated frame.  The x axis corresponds to frame number and the y-axis 

corresponds to the vertical coordinates of the capillary. (D) The vertical beam profile. (E) The 

convolution obtained by multiplying the transpose of C [MxN] by D [Mx1].  
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Figure III.5 Refinement of frame rate and offset during alignment of the video data with 

the XRF:  The refinement of frame rate and offset done iteratively for each tested video rotation 

and beam profile shift when pairing the CAIBT with the XRF data.  The y-axis is the summed 

residual of each alignment, and the x-axis is the final number of video frames to which the 

original video data was contracted. 
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Figure III.6 Optimizing Beam Position and Video Rotation:  The four images above are 

representative alignment grids resulting from the refinement of the beam profile position and the 

video rotation obtained while aligning the video data with XRF. 
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Figure III.7 Iterative refinement of aligning the XRF and video data:  After the alignment 

grid of (A) is completed, the values for the rotation and shift are set to the grid values that 

correspond to the smallest residual.  These are then used to solve for each element of the cells 

from the flow cytometer data set. The Alignment grid is graphically represented in Figure III.6.  
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Figure III.8 Accounting for Cell Leakage:  (A) The sum of the least squares associated with 

the different values for cell leakage. (B) The resultant fit based on the minimum of A. (C) An 

overlay of the total fits to the raw XRF when leakage is and is not accounted for.  (D)  Snapshots 

of the cell in the beam at the time points corresponding to the asterisks in B.   
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Figure III.9 Histograms:  The histograms of solved RBC Fe masses (A) solving for Cell 

Leakage and (B) neglecting Cell Leakage.  These show the expected increase in the distribution 

width of the masses that occurs with the time dependent variations in the residuals (Figure III.8) 

when cell leakage is not accounted for.  
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Figure III.10 Schematic illustration of the effect of non-ideal cell travel through the beam:  

(Left) The beam profile is plotted with 3 representative cell paths through the beam.  The axes 

are the normalized beam profile (left-y), the vertical coordinates along the cells path through the 

beam (top/bottom-x), and the integration/time (right-y).  The black path corresponds to an ideal 

path in which the velocity of the cell remains constant.  The blue path corresponds to a path in 

which the cell speeds though the hotspot of the beam; the red trace corresponds to a path in 

which the cell slows down in the hotspot of the beam.  Plots A, B, and C are the corresponding 

traces obtained by convolving the cell profile with the beam profile.  Note that the total 

integrated counts (listed in the upper right corners of A, B, and C) vary between 65% and 145% 

the true value. 
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Figure III.11 The complete flow for processing and quantifying XRF flow cytometer data:  
Initial parameters are calibrated directly from a blank corrected sample scan.  This yields better 

results.    
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CHAPTER IV: X-RAY FLUORESCENCE FLOW CYTOMETER: REDESIGN 

AND IMPROVEMENTS
3
 

IV.1 INTRODUCTION 

Cells have complex homeostatic mechanisms that maintain elemental concentrations of 

bulk, trace and ultra-trace elements.  Certain elemental concentrations are perturbed under 

various conditions and disease states.  Since homeostatic deviations can be clinically diagnostic 
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for disease states, knowledge of cellular concentrations under different conditions is very 

important.  Furthermore, homeostatic mechanisms governing the metallome are interconnected 

and a change in one regulatory process can impact others [1-8].  As such, characterization of the 

"metallome" is very important.  However, due to the immense amount of heterogeneity across a 

population of cells [6, 9-13], to truly understand homeostatic responses of the metallome it must 

be characterized at the single cell level.  As such, there is a pressing need for a high through-put 

technique capable of elemental analysis of single cells as discussed in Chapter 1.   

Chapter 2 described the first generation of an XRF flow cytometer to address that need.  

Capillary action was used to load cells into an (100 µm o.d., 50 µm i.d.) acrylic capillary and a 

trapped air pocket is then used to control the transport of cells at a fixed vertical velocity past a 

focused (50 µm horizontal × 20 µm vertical) x-ray beam. X-ray fluorescence was used to 

determine the mass of metal in each cell, and single-cell measurements were used to directly 

measure population heterogeneity for metals in the µM to mM concentration range.  

While those results were promising, they did not have sufficient sensitivity for most 

elements.  This chapter describes a redesigned and improved instrument.  In this work, I have 

increased the solid angle of detection, decreased the background, changed the capillary to reduce 

scatter and contaminant levels, and addressed the effect of the horizontal beam profile on the 

observed population distribution of elemental masses.  Increasing the solid angle of detection 

increases the strength of the detected fluorescence signals, allowing for data collection at greater 

count rates, and thus permitting lower detection limits [14, 15].  Increasing the solid angle while 

decreasing the size of the capillary will increase the total collected counts while decreasing the 

portion of those counts from the background. 
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In the initial instrument, the beam was treated as horizontally homogenous.  In practice it 

is difficult to prepare a perfectly uniform beam due to the X-ray optical components 

(monochromator crystals, X-ray mirrors, absorbing filters).  Even if perfectly aligned, these will 

give some structure to the beam, and any misalignment can give significant  asymmetry [16].  In 

order to address non-uniformity in the horizontal profile, we added a second camera, allowing 

cells to be localized in two dimensions. 

IV.2 EXPERIMENTAL 

IV.2.1 SAMPLE PREPARATION AND HANDLING 

Red blood cell experiments were performed using trypsinized bovine red blood cells 

(bRBCs, 0.1 hematocrit, obtained from Lampire), diluted 1:20 using phosphate buffered saline 

(PBS – obtained from Fisher Scientific). When not used, the stock and the diluted aliquots were 

kept at 4˚C. Yeast experiments were performed using the Saccharomyces cerevisiae yeast strain 

BY4741, grown in YPD rich media at 30 C˚ overnight. Cells were transported to APS in YPD 

media, stored at 4 C˚ and washed with PBS prior to measurement. 

IV.2.2 IMPROVED INSTRUMENT DESIGN 

The improved instrument is illustrated in Figure IV.1.  A second camera and detector 

have been added to allow better determination of cell position.  Each detector has been equipped 

with a Mo collimator to decrease detected scatter from the hutch [17].  The distance between 

each detector is 2.8 cm with a clearance for the sample holder of 1.4 cm.  The detector to the 

capillary center-to-center distance was decreased from 25 mm to 14 mm giving ~2-fold increase 

in the solid angle.   
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If the only constraint was solid angle, the optimum sample-detector distance would be 7 

mm (4-element detector, Vortex® model 267-VTX-ME4) or zero (1-element detector), as shown 

in Figure IV.2A.  Given the constraints of the geometry along with the sterics of the instrument, 

we were unable to move each detector any closer than 14 mm if the detector remains 

perpendicular to the beam.  Moving it closer would have blocked the cameras and caused an 

unacceptable increase in Compton scatter.  Rotating the detector would allow the detector to be 

closer, but would significantly increase the scatter, which is proportional to φ where φ is the 

angle between the beam polarization and the detector.  Moreover, when perpendicular, the 

distance that gives the greatest solid angle also gives a signal almost entirely dominated by 

Compton scatter due to the deviation from the polarization direction (Figures 0B, C).   At 2.5 cm 

(the distance used for our first instrument) the range of cosφ is ~0.2-0.5; moving closer to a 

distance of 1.4 cm increases this to ~0.3-0.65 (Figure IV.2D) and increases solid angle ~ 2-fold 

(Figures 0A, C). 

Additionally, the sample holder has also been modified and encases the capillary in a He 

shroud.   

IV.2.3 CHANGES IN CAPILLARY SIZE AND MATERIAL 

The capillary material used previously contained contaminants of Fe, K, Zn, and Cu.  In 

an effort to decrease contamination, we explored a variety of capillary materials (see Figure 

IV.3).  Unfortunately the hydrophilic material (polycarbonate and polymethylmethacrylate) both 

had high levels of biologically relevant metals.  Fortunately, two hydrophobic polymers, 

Zeonor® and Zeonex®, had relatively low levels of contaminants.  Zeonor® was chosen as our 

new capillary material. 
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IV.2.4 SYPHON PUMPING 

Because of the switch to a hydrophobic capillary, we were no longer able to load the 

capillaries using capillary action.  Instead, we used a syringe to initially load the cells and 

establish a syphon pump for final control of cellular velocity.  To establish the syphon pump, 

pipette tips were filled with a PDMS mixture using a 10% crosslinking agent.  After curing, an 

18 gauge hypodermic needle was used to pierce the PDMS.  The capillary was inserted into the 

hypodermic needle and the PDMS carefully slid down to seal the two together.  The opposite end 

of the capillary was then placed into a cuvette holding our sample.  The hypodermic needle was 

then attached to a 10 mL syringe and negative pressure was used to pull the sample through the 

capillary until the entire length of the capillary was filled. Once the full length of the capillary 

was loaded, the end attached to the syringe was brought to a relative height lower than the 

sample cuvette at the loading end of the capillary.  The capillary was then cut using a fresh 0.09 

mm razor blade and inserted into a second sample holder for receiving.  This formed the syphon 

pump.  It is important to make sure the end of the capillary is always at a lower relative height 

than the loading end until the syphon has been established to make sure no air enters into the 

capillary. 

The syphon pump allows precise control of cell velocity as shown in Figure IV.4.  As 

expected, velocity increased with Δh, due to hydrostatic pressure.  Since capillary resistance 

scales as the inverse of the square of the radius, a capillary with 25 μm inner diameter shows 

approximately a 4-fold decrease in velocity compared to a 50 μm inner diameter.  

Data were measured using capillaries with i.d. 25 μm and o.d. 50 μm and capillaries with 

i.d. 15.5 μm and o.d. 31 μm. 
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IV.2.5 XRF DATA 

Though our design accommodates two detectors, only one detector was available.  As 

such, XRF spectra were collected using a single 4-element energy resolved solid state detector 

(Vortex-ME4, SII NanoTechnology).  Fluorescence counts were normalized to the intensity 

measured with a N2 filled ion chamber.  The x-ray beam was focused to 24.1 µm horizontal x 6 

µm vertical (FWHM) using a pair of Kirkpatrick-Baez (KB) mirrors [18], with the precise beam 

profile determined by a knife edge scan. 

Data were analyzed as described in Chapter 3. 

IV.2.6 POSITIONING CELLS ALONG HORIZONTAL PROFILE OF THE BEAM 

The influence of the horizontal profile of the beam on the observed distribution of Fe 

masses in RBCs was assessed by using the two cameras to determine the x-position of each cell.  

The two videos corresponding to each XRF data set were aligned separately with the XRF data.  

The masses of the associated elements were deconvolved yielding two mass answers for each 

element of each data set that were then averaged; the mean percent difference between the two 

values from each camera and the calculated mean masses was < 10%.  For each aligned video 

and XRF, the x-position for each cell through the beam was calculated as the mean x-position of 

that cell's path through the beam.  For 5 RBC scans, the two sets of x-positions were then used to 

calculate the x-coordinate of each cell (see Figures 1B, C).   

IV.2.7 Mo COLLIMATOR 

The Mo collimator presented a new problem that we were unable to address in this work.  

Due to it being a point source filter, precise positioning of both detectors is necessary.  This may 

seem obvious; however, the set up at the beamline did not allow for this and we were forced to 

position the detectors by hand and then fix them in place to the optical table with clamps.  This 
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was hardly precise or accurate given the fact that the device schematics call specifically for a 

center-to-center detector-sample distance of 14 mm with a 90-degree angle to the incident beam.    

IV.3 RESULTS 

IV.3.1 RBC SCANS   

In data set 1, twelve scans each of 10 minutes, were made on RBC samples with different 

cell densities.  A total of 131 RBCs were detected.  The measured masses for Fe, K, and Zn were 

49.8 ± 29.7 fg (in agreement with data from the first instrument, Chapter 2), 15.7 ± 14.7 fg, and 

0.37 ± 0.3 fg, respectively.  At the highest cell densities, we were able to interrogate 73 cells in a 

single 10 minute scan.  In that scan we were able to detect S with a mass of 22.5 ± 22.7 fg.  The 

masses for Fe, K, and Zn from that single 10 minute scan were 46 ± 33.1 fg, 10.6 ± 13.4 fg, and 

0.27 ± 0.27 fg, respectively.  Importantly, the increased concentration of the sample (and 

therefore, increased overlap) doesn't appear to have affected the population distributions. 

Figure IV.6 shows the blank corrected mean spectrum of all cell time points from the 

RBC scan analyzed in Figure IV.7.  It clearly demonstrates that we see S, K, Fe, and Zn in 

RBCs.  In Figure IV.7A, some of the peaks present across all four channels are boxed in red; the 

one containing the asterisk is represented by the blank subtracted XRF spectrum in Figure 

IV.7B.   

As a statistical justification for Figure IV.6 and Figure IV.7 A, B, and C, a two-tailed t-

test was performed.  The cell and background time points were separated according to the 

methodologies discussed in chapter 3.  The pixels of each group were then organized into a P x C 

array where P is pixel number and C is detector channel.  A two-tailed t-test was performed, 

comparing each of the 1…C columns of the cell and background arrays against one another.  A 

p-value of less than 0.001 was used as the statistical cut off with the additional constraint that 
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channels presenting statistically significant p-values also needed to be contiguous with at least 

one other channel presenting a statistically significant p-value.  The p-values were then 

subtracted from 1 and plotted as a function of energy (Figure IV.7D).  If a peak appears in this 

plot in an energy range corresponding to a p-value less than 0.001, it is likely that we are able to 

see a corresponding fluorescence peak over that same energy range in blank corrected XRF 

spectrum in Figure IV.7B. 

IV.3.2 YEAST SCANS  

Two scans each of 10 minutes were attempted on yeast samples with different cell 

densities allowing us to interrogate 18 cells.  These cells showed Zn, Fe, and K with mean 

content of 0.57 ± 0.61 fg, 0.62 ± 0.45 fg, and 37.1 ± 41.5 fg, respectively.    

Figure IV.8 shows the blank corrected mean spectrum of all cell time points from one of 

the yeast scans analyzed in Figure IV.9.  It clearly demonstrates that we see S, K, and Zn in 

yeast.  In Figure IV.9A, some of the peaks present in both the Fe and Zn channels are boxed in 

red; the one containing the asterisk is represented by the blank subtracted XRF spectrum in 

Figure IV.9B.  Similar to the RBC scans, the cell and background time points were separated, 

and a two-tailed t-test was performed comparing each of the 1…C columns using the same 

constraints and p-value cut off (Figure IV.9D). 

IV.3.3 EFFECT OF HORIZONTAL POSITION 

The Fe masses are plotted as a function of the x-coordinate of each cell in Figure IV.10, 

together with the experimentally determined horizontal beam profile.  This shows that our 

positioning, and our ability to maintain the position, of the capillary in the beam were imperfect 

since the cells cover an x-range of ~40 μm, while the capillary i.d. was nominally 25 μm.   
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IV.3.4 HELIUM SHROUD 

To test the He shroud we scanned an empty capillary both with and without the shroud in 

place.  The spectra, normalized to I0, are presented in Figure IV.11.  The total counts decreased 

by ~84% when using the He shroud, reflecting the decrease in the total scatter.  Particularly 

striking is the decrease in Ar fluorescence.   

IV.4 DISCUSSION 

On a single cell basis, the improved instrument gives a much better determination of the 

distribution of masses for each element.  Those distributions are presented in Figure IV.12 with 

the various combinatorial correlation plots presented in Figure IV.13.  Importantly, based solely 

on counting statistics, the mean absolute error for K, S, Zn, and Fe are 1.0 fg, 3.3 fg, 0.38 fg, and 

0.86 fg, respectfully; this gives percent errors of 6.3% 14%, 10%, and 1.7%, respectfully.  This 

shows almost a 4.5-fold improvement in signal quality over the first instrument (Chapter 2).  The 

Fe:Zn ratio matches literature values [19-21].  The apparent Fe:K ratio is 100-fold higher than 

the literature value [22]; this may reflect an underestimation of K caused by the need to 

extrapolate the calibration factor from the elements measured all the way down to K.  

Unfortunately, we had not expected to be able to detect K and it was therefore not included in 

our standards.   

With two cameras we were able to demonstrate that the apparent Fe concentration in 

bRBCs is not reliable.  The impact of horizontal deviation of the capillaries/cells from the center 

of the profile on quantitation is uncertain; however, any impact will almost certainly register a 

population mean less than the true mean and a population distribution greater than the true 

distribution.  This can be understood by analyzing cell 'a' in Figure IV.10.  Cell 'a' at ~22 fg is 

positioned right on the line for the beam profile.  What this means is that had cell 'a' been at an x-
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position of ~90 rather than ~66 it would have registered as having a mass closer to ~82 fg, the 

mass value of the left y-axis that corresponds to the beam profiles maximum value. 

In addition to the data collected for the RBCs, we've also been able to measure the 

elemental composition of yeast.  Although these data are less impressive, that's not surprising 

given the lower total content of metals in yeast.  Additionally, if there is a horizontal dependence 

to apparent quantitation, this might explain the increased difficulty associated with obtaining a 

yeast signal as deviations from the maximum intensity at the center of the beam could, in theory, 

cause the signal to drop below detection limits. 

Interestingly, comparison of data obtained from an empty capillary with and without the 

He shroud showed the disappearance of a very strong peak at Mn.  Importantly, Table IV.1 

shows the removal of almost all background Al, Si, Ar, Mn, Ni, Cr, S, Cl, P, and K signals.   

IV.5 Conclusions 

The smaller capillaries (25 μm id, 50 μm od) allowed us to detect more elements.  We 

have significantly improved the signal-to-noise ratio for Fe in bRBCs from 41 to 119 for a 

spectrum sum of all cells in a scan.  Additionally, we are now able to see S, K, and Zn in bRBCs 

with associated signal-to-noise ratios of 3, 2, and 6.5, respectively.  The agreement of both Fe 

and Zn with literature is very important as these elements were part of the calibration standards. 

Inclusion of K and S in future standards is paramount.  In terms of yeast, we have been able to 

attain multielement (albeit, only two – K, and Zn) detection capabilities.  Collectively, these 

results show promising potential for the future development of the cytometer to explore the 

cellular metallome.  

With the benefit of two cameras, we were able to characterize the position of the capillary 

in the beam. This demonstrates that at least a portion of the apparent variability in Fe mass is due 
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to variation in position.  Future developments should correct for variable positioning of the 

capillary relative to the horizontal profile or widen the beam and insure a uniform profile.  Future 

work should aim at encasing the entire instrument, including the detectors, inside a He chamber.  

Additionally, the Mo collimator should be defocused from a point source to a source slightly 

larger than the outer diameter of the capillary and each detector should be positioned using 

electronically controlled stages x-, y-, z-, and rotary stages.   
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Figure IV.1 Instrument Schematics:  (A) A close up of the center of the new instrument 

visualized in AutoCAD viewed from below.  1 & 2 are the detectors.  3 & 4 are Mo collimators 

attached at the end of each detector to restrict the amount of scattered photons that hit the 

detector element.  5 & 6 are either 5x or 10x Mitutoyo long working distance objectives.  7 & 8 

are the focusing mounts for the fiber optic light guides that provide the bright field imagery of 

the microscopes.  (B)  A view of the capillary from downstream of the beam.  The capillary is 

between the detectors and surrounded by the microscopes. (C) An eagle eye view of the 

instrument with the newly designed sample holder in place and He sheath attached.  The 

Kapton® screen of the He sheath has been removed from the drawing for visual purposes.  (D) A 

compact, 3D-printed point-focus spatial filter designed for use with the 4-element silicon-drift 

Vortex detector, similar in function to earlier prototypes as shown here.  It was developed, in 

collaboration with Michael Pape of ANL/XSD. 
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Figure IV.2 Scattering Considerations Pertaining to the Sample to Detector Center-to-

Center Distance: (A) The solid angle of the detector as a function of the center-to-center 

distance between the capillary and the detector.  (B) The spread in the solid angle between the 

beam and fluorescence from the capillary detected by the far edges of each detector element (φ2 

to φ1).  (C) The total percent change in solid angle between points 1 and 2 based on the 

representative angles φ1 to φ2.  (D) The spread in the cosine of angles from B since Compton 

scatter is a function of cosine. 

1 
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Figure IV.3 XRF Spectra of Capillary Materials:  An overlay of the XRF spectra, obtained 

for the different capillary materials, normalized to their associated baseline height between 

~5200 eV and ~5500 eV.  Legend definitions: PC – Polycabonate; PETG - Polyethylene 

Terephtalate Glycol-modified; PMMA – Polymethylmethacrylate; PP – Polypropylene; PS – 

Polystyrene; Zex – Zeonex; Znr – Zeonor; 
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Figure IV.4 Syphon Pump Tests:  The plots of cellular velocities of two hydrophilic capillaries 

and two hydrophobic capillaries as a function of the relative heights of the two sample holders of 

the syphon pump. PMMA, polymethylmethacrylate; C2F2, Teflon; Znr, Zeonor®; the trailing 

numbers refer to the inner and outer diameters of the capillary, respectively. 
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Figure IV.5 Combining Camera Images and Positioning Cells along the Horizontal Profile 

of the Beam: (A) The schematic illustration of the alignment of the two cameras.   Without two separate 

viewing angles, it is impossible to determine the position of the cell along the horizontal profile of the 

beam. (B) The geometry for converting the recorded cell positions from the cameras into the cell position 

in the capillary.  (C) The corresponding trigonometry for part B.  
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Figure IV.6 Mean bRBC XRF Spectrum:  The blank corrected mean XRF spectrum from all 

the cell time points for the scan discussed in Figure IV.7.  The associated signal-to-noise ratio for 

S, K, Fe, and Zn was 3, 6.5, 119, and 2. 
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Figure IV.7 bRBC Analysis:  Red blood cell data obtained from a ten minute scan using the 

flow cytometer.  (A) The normalized signals from the Fe, Zn, S, and K channels of the scan.  (B) 

The fitted XRF spectrum sum of the red boxed peak with the asterisk from A.  (C) The blank 

corrected signal from the fitted XRF (B) for a single bRBC peak.  (D) A statistical t-test across 

every channel comparing the means of the cell pixels with the mean of the background pixels 

using a significance cut-off of 0.001. 
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Figure IV.8 Mean Yeast XRF Spectrum: The mean blank subtracted cell spectrum from a scan 

of yeast taken using 25 μm i.d., 50 μm o.d. Zeonor® capillary.   S, K, and Zn are clearly visible 

with a signal-to-noise ratio of ~2, ~10, and ~3, respectively. 
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Figure IV.9 Yeast Analysis:  (A) the normalized signals from the Zn and K channels of the 

scan.  (B) The fitted XRF spectrum sum of the red boxed peak with the asterisk from A.  (C) The 

blank corrected signal from the fitted XRF (B) for a single yeast peak.  (D) A statistical t-test 

across every channel comparing the means of the cell pixels with the mean of the background 

pixels using a significance cut-off of 0.001. 
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Figure IV.10 Inspection of the Horizontal Beam Profile:  The Fe masses from 5 bRBC scans 

plotted as a function of their coaxial distribution with respect to the horizontal beam profile. The 

x axes on the bottom and top are the coordinates assigned by the camera (units of and the beam 

profile, respectively.  Mass is in fg. 
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Figure IV.11 The Helium Shroud:  Demonstration of the decrease in scatter and secondary Ar 

fluorescence whn using a He shroud.  The two spectra are the mean spectra obtained from empty 

15.5 id 31 od Zeonor ® capillaries, normalized to the upstream beam intensity as measured by an 

N2 filled ion chamber.    
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Figure IV.12 Distributions: Cell-mass histograms for bovine RBCs of S, K, Fe, and Zn, 

moving right then down, respectively.  The histogram for S was taken from the sub-population 

and contains a smaller n. 
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Figure IV.13 Correlations: Cell-mass correlation plots for bovine RBCs for the various 

combinations of S, K, Fe, and Zn. 
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Without With Change

Element (a) (b) [b-a]/a

Ar 1.9E+01 1.2E-02 -100%

Si 3.7E-02 5.2E-04 -99%

K 2.3E-01 4.1E-03 -98%

Cl 4.3E-01 7.9E-03 -98%

P 1.5E-01 5.3E-03 -96%

S 2.4E-01 1.4E-02 -94%

Mn 5.9E-02 4.0E-03 -93%

Cr 5.5E-03 3.0E-03 -44%

Ni 1.0E-03 6.2E-04 -38%

Ca 1.1E-02 9.5E-03 -10%

Ti 5.6E-02 6.1E-02 8%

Zn 1.8E-02 1.9E-02 10%

Fe 2.9E-02 3.3E-02 11%

Cu 5.1E-02 5.7E-02 13%

Total 2.0E+01 2.3E-01 -99%

Helium Shroud (CPS/I0)

 
Table IV.1 Effect of the Shroud:  Baseline correction and subsequent quantification of the 

various elements.  
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CHAPTER V: M-BLANK 

V.1 INTRODUCTION 

V.1.1 THE PROBLEM 

During the initial stages of developing the flow cytometer, it became apparent that the 

available tools were inadequate at addressing the fundamental requirements for processing and 

analyzing the raw data.  The tools developed to address that deficit have a much broader 

application than just the flow cytometer.  This chapter delves more deeply into the mechanics of 

data fitting. The tools developed to address the issues associated with the cytometer data are 

shown to be useful, not just for the flow cytometer but also for imaging data.  This corrects a 

flaw in XRF imaging analysis that may have important implications for elemental quantitation in 

cells.   

It is important to first understand the problem that is being "solved" when one is fitting 

XRF data.  With XRF, the mass of a particular element, e.g., Fe, K, Zn, is not measured; rather, 

what is measured is an energy spectrum.  From the energy spectrum the area under the peaks that 

correspond to the various elements are "fit" using calibrated equations.  From these "fit" areas, 

the mass of each element is then calculated using a sensitivity calibration curve obtained from 

the fitting of standards.  The problem is that the area for each element also comes with a 

background that must be removed. 
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V.1.2 XRF CONTINUUM AND BACKGROUND ESTIMATION 

The two main contributors to the backgroun in x-ray fluorescence are the coherent and 

incoherent scattering of the incident beam by the sample and the signals from the sample.    

Furthermore, there is the possibility of escape peaks, pileup and summation peaks, K-LL Auger 

transitions, and incomplete charge collection in the detector caused by regions of low electric 

field or a dead layer in the detector all contribute to apparent intensities at lower energy being 

higher than expected [1].  Finally, the spectrum may be contaminated with emission lines arising 

from non-sample - e.g. hutch fluorescence excited by the scattered X-Ray beam [2-4].  Even if 

there were no background, XRF data cannot be quantified by simply summing a region of 

interest (ROI) [5-8].  Even the best energy dispersive detectors have finite resolution causing 

some emission lines, such as Cu Kβ and Zn Kα, to overlap [9, 10].  

Since scattering from the sample substrate is a majore contributor to the background, it is 

difficult to measure a blank.  Once the sample and sample holder are removed from the beam, 

the apparent background changes.  Many methods have been developed to deal with the issue of 

XRF background estimation in the absence of a blank [11-20]; all of these calculate a baseline 

(i.e., a smooth line that is intended to mimic the background) rather than a blank (i.e., an 

experimentally measured background).   

In both cases, blank and baseline, the goal is to model all fluorescence that arises from 

"non-sample" so that it can be removed leaving only the sample's fluorescence.  A baseline, in 

principle, should follow smoothly along the spectra connecting the two sides of the base of each 

spectral peak.  The most common approach to determining the baseline utilizes what is called a 

snipping function [1].  A snipping function compares each channel n, of a spectrum, to its two 

neighbouring channels, n ± 1; if the intensity at channel n is greater than the mean intensity of 
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channels n ± 1 then the output intensity at channel n is set to the mean intensity value of its two 

neighbours.  If performed iteratively this process creates a baseline that passes through local 

minima, and thus has the effect of peak-stripping as graphically represented in Figure V.1.   

An illustration of both a blank and a baseline applied to the spectrum sum of an entire 

image is presented in Figure V.2; visually, it can be seen that a blank includes many features 

that are not included in the baseline estimate of the background.  This problem is even more 

critical for single pixel analyses due to the low count rate.  Figure V.3 shows the XRF spectrum 

and the blank for a cell.  The black line is the mean of all the non-sample pixels and is identical 

to the blank that is calculated by M-BLANK.  The pink line is the mean spectrum calculated 

from all the cell pixels.  Each of these represents the average of hundreds of pixels.  The red 

dashed line across the image indicates the signal that would seen if there was an average of one 

count pixel
-1

 at every energy channel.  The yellow highlighted portions indicate spectral regions 

where both the mean background and mean signal are below the red dashed line.  For these 

energies, it is impossible to calculate a baseline, since for most pixels there are no counts.  In 

contrast, the blank can account for the background across the entire spectrum.  The affected 

region where most of the biologically relevant transition metals fluoresce [21].   

Although the baseline is a very poor model of the background in this region, it is at least 

uniform.  In contrast, due to the per-pixel noise the lowerenergy baseline calculated on a per 

pixel basis is not uniform.  This is graphically depicted in Figure V.4.  Panels A and B show the 

baseline calculated using 500 iterations of a snipping function at each of ~1000 pixels.  The 

calculated baselines for background pixels span two orders of magnitude, while the calculated 

baselines for cell pixels span another three orders of magnitude.  Panel C demonstrates the 
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consequences of the variability in A and B by overlaying the signal and the calculated baseline 

for one "cell" pixel and one "background" pixel.   

Panel D is the image of the baseline amplitudes for the Si region and E the image of the 

background amplitudes obtained for the Cr region.  If the baseline error were uniformly 

distributed across the associated background/cell pixels it might be possible to correct for this 

error; however, D demonstrates that uniformity is not the case and the error introduced by per 

pixel baselines is systematic.  This agrees with the apparent cell image from the Si baseline 

amplitudes.  Expectedly, for ~4,000 eV – 8,500 eV, there is no non-zero baseline and therefore a 

uniform treatment of the associated energy bins by a baseline across all pixels.  This baseline 

amplitude image for the Cr region (E) supports this as it shows a "zero" imaging of the cell by 

the baseline amplitudes. 

Because of this sensitivity to noise a blank is a far better approach than a baseline for 

calculating the background.  If a blank is not possible, then a baseline should be calculated from 

the mean of all the pixels.  Most importantly, a baseline should never be calculated on a per pixel 

basis.  Unfortunately, a per pixel baseline is the dominant approach currently adopted by the 

field (e.g., MAPS [22], PyMca [18], AXIL [13]). 

The attraction of per-pixel baseline fitting can be understood from the nature of many 

XRF samples.  If the sample is a one-of-a-kind mineral, there may not be a viable "blank".  In 

this case, a baseline may be the only practical way to estimate the concentration of element.  

However, for biological specimens deposited on Si3N4 wafers, there is always a region of Si3N4 

that is sample free and can be used to calculate a blank. 

To determine the practical differences between a blank and a baseline, this chapter 

compares two programs used for the fitting of XRF data sets: M-BLANK (the program used for 
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fitting of the XRF data in this thesis) – which uses a blank when possible but also has a modified 

snipping functionality (Figure V.1B) - and MAPS [22] (a widely used program created in 2003) - 

that calculates a per pixel baseline.  MAPS was chosen simply based on convenience of access 

and we expect the results from this comparison to be very similar to one between M-BLANK 

and other programs that implement per-pixel baselines (e.g., PyMca [18], AXIL [23]).  Both 

MAPS and M-BLANK produce maps (or images) of the various elemental contents of cells.  

However, the main difference between M-BLANK and MAPS is how each program accounts for 

the background contribution of fluorescence. 

M-BLANK's methodology of accounting for the blank should remove the need for a 

baseline, since in principle the blank should remove everything except the fluorescence 

contribution of the cells.   To test this hypothesis, we fit data obtained from sector 2-ID of the 

Advanced Photon Source, ANL and then compared our fits directly to those obtained from 

MAPS. 

V.2 EXPERIMENTAL 

V.2.1 FITTING AND PROCESING WITH M-BLANK 

Prior to fitting, each image that contained multiple cells was digitally separated into 

separate images so that each data set consisted of one image per cell.  This allowed for each cell 

to have its own unique background.   

Blanks were calculated from the background pixels of each image in an iterative process 

that began by using the potassium Kα emission line to generate a raw image of the cell. Since 

this was done prior to fitting, a region of interest (ROI) for the potassium Kα emission was 

defined as the channel of its centroid ± the FWHM of that emission.  The summation of this ROI 

was taken for each pixel.  Then all pixels w/ intensity greater than 50% the maximum potassium 



 

112 

 

Kα were defined as "cell" pixels.  All non-"cell" pixels were considered background.  These two 

groups, "cell" and everything else form the initial seed for the iterative process.  Then, each 

round of iteration begins by calculating the mean,  ̅, and standard deviation, σ, of the non-"cell" 

pixels.  A threshold,  , is calculated by adding 3σ to the mean,     ̅    .  Background pixels 

with a potassium Kα emission intensity greater than   are redefined as "cell" pixels, and this 

process continues until no new pixels are redefined. 

 After the identification of "cell", the blank was subtracted from each pixel and each pixel 

was fit using linear least squares.  Following fitting, each cell image was visually inspected to 

verify an appropriate cell ROI (region of interest) had been generated.  Since the data contained 

images with budding yeast cells, there were instances where a bud had such low concentration of 

K that the bud did not register as cell.  In situations such as these, the ROI was manually 

modified to include the bud (Figure V.5 is a prototypical example) and the data was once again 

fitted.  Of 228 cells, only one needed correcting. 

V.2.2 PROCCESSING OF THE MAPS FITTED DATA 

MAPS fits every single pixel with no a priori knowledge of whether a pixel is 

background or cell.  To account for a blank, the mean value of all the fitted background pixels 

for each element was subtracted from each pixel of that elements image.  The cell and 

background pixels for MAPS were defined to be the pixels used with M-BLANK.   

V.2.3 FITTING OF CALIBRATION STANDARDS 

The standards were processed using a modified snipping function (Figure V.1B) that acts 

on the mean spectrum of the standard.  The function is identical to the snipping function in 

Figure V.2A except that prior to processing, all channels with zero counts are excluded.  After 

processing, the values for the excluded channels are interpolated from the resulting peak-stripped 
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baseline, giving the mean baseline spectrum as its final output.  By performing the snipping 

function only on the nonzero channels we avoid a baseline of zero in any region that has a low 

count rate (e.g., from ~4000 eV to ~8500 eV).  This modified snipping function is compared 

with the regular snipping function in Figure V.2.  

Because we fit the samples with an extracted blank but fit the standards using a modified 

snipping function, it is possible, in principle, that the latter could cause a difference between 

MAPS and M-BLANK in calibration.  The difference between correcting with a blank vs. 

correcting with a baseline is graphically depicted in Figure V.6; 'a' measures the height 

difference between the blank and the signal and 'b' measures the difference between the baseline 

and the signal.  If      , then the difference in quantitation can be neglected.  Since the 

signal from the standard was 7 orders of magnitude larger than that from the samples, the 

background makes a negligible contribution to the standards, and    .   

V.3 RESULTS 

V.3.1 BASELINE CORRECTION (MAPS) VS. BLANK CORRECTION (M-BLANK) 

Use of a baseline instead of a blank can significantly affect data for the samples.  At low 

energies (<4000 eV) the baseline is non-zero.  As expected, at intermediate energy (4000 eV - 

8500 eV) the baseline is effectively zero due to the very low counts.  Finally, at higher energies 

the baseline is dominated by scatter. This can be seen in the MAPS fitted output in Figure V.7.  

For comparison, Figure V.8 is the same data fitted using M-BLANK. 

Referring back to Figure V.7, the drop off of the baseline at ~4000 eV causes incorrect 

quantitation of Ca and will almost definitely lead to an overestimation of its concentration as 

both the Kα and Kβ peak will be overestimated in order to correct for the underestimated 

baseline, and thus minimize the total residual. 
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One unexpected consequence of using a baseline is that the calibrated peak widths are 

wrong.  The peaks in region 1 are too wide and short and the peaks in regions 2 and 3 are too tall 

and too narrow.  This can be readily seen by comparing the peak shapes of K and Cu with their 

respective raw fluorescence.  Essentially, overcompensation of the peaks FWHM in region 1 

results in the under compensation of the FWHM in regions 2 and 3.  The equation that MAPS 

uses to fit its FWHM is the same one used by M-BLANK:               √ .   

Due to the baseline error, MAPS overestimate FWHM at low energy, which makes S1 too 

small.  A direct comparison of these two parameters shows this to be the case.  For MAPS, S0 

and S1 were 131 and 0.019, respectively.  For M-BLANK they were 71.3 and 0.124, 

respectively.  The apparent increase in FWHM at low energy results from an apparent 

broadening of the peaks in order to compensate for an underestimate of the baseline XRF 

continuum.   

V.3.2 COMPARISON OF RESIDUALS: BASELINE CORRECTION (M-BLANK) VS 

BLANK CORRECTION (M-BLANK) 

To see if we could explain the observed difference in FWHM as a consequence of the 

calculated baseline (the blank being referred to as a 'baseline' here), we compared the fitted data 

from M-BLANK using its snipping function to estimate the background with the fitted data from 

M-BLANK using the blank.  As an important note, the baseline corrected fits produced by M-

BLANK for this comparison (and only for this comparison) did not exclude channels with zero 

counts during baseline estimation.  This was done to make this comparison more representative 

to one with MAPS.  Figure V.9 shows the results obtained from that comparison.  The results of 

that comparison are different from those observed in MAPS.  For the fitted baseline corrected 

data relative to the fitted blank corrected data, we see an increased residual at the centroids for 



 

115 

 

the lower energies (e.g., Al) paired with decreased residuals immediately on either side of the 

centroid. This pattern corresponds to what one would expect to see if a peak is artificially lifted 

up to compensate for fluorescence on either side of the peak due to a negligent accounting of the 

background fluorescence.   

V.3.3 COMPARING QUANTITATION BETWEEN BOTH METHODS 

The normalized quantified masses determined by both programs are compared in Figure 

V.10.  For each element, the masses were normalized between negative one and one using the 

range spanned by output values from both programs and dividing each value by the maximum 

absolute value from that set.  Figure V.10 shows an expansion of these data with the mean M-

BLANK fitted values plotted to the x-axis and MAPS' to the y-axis.  The bold black line shows 

the expected 1:1 correlation.  Although the data fall on a straight line, the slope varies with 

atomic number.  There is a general systematic over-estimation by MAPS, relative to M-BLANK, 

at low energy and a systematic under-estimation at energies above ~Fe (6.4 keV). 

V.3.4 COMPARING BACKGROUND DISTRIBUTION WIDTHS 

To compare the relative precisions of the two programs, the histograms for each 

element's background pixels were fitted with Gaussian and normalized to a constant area.  These 

are shown in Figure V.11.  This shows that in addition to differences in quantitation, there are 

also differences in precision.  For all elements less than ~4,000 eV, the MAPS precision is much 

worse than the M-BLANK precision while at higher energy the MAPS precision is slightly 

better. 

Since these are background pixels, this speaks to the harmful nature of using the snip 

width.  This behaviour is consistent with what we would expect based on Figure V.4 A and B; 
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variability in the line shape of the snipping baseline causes a significant variation in the apparent 

peak area.   

To further investigate the relative associated precisions, in Figure V.12A the fitted 

standard deviations from MAPS were divided by those from M-BLANK.  The ratios of the fitted 

Gaussians standard deviations for cell pixels are also included.  This shows that the lack of 

precision displayed for background pixels is also present for the cell pixels and that the 

contribution of the baseline is once again not negligible.  The noise that arises from the baseline 

in sample pixels will broaden population distributions and may blur images. 

V.3.5 PER-PIXEL CORRELATIONS FOR ARGON AND SILICON 

Looking at Figure V.12 B and C, an interesting observation was made when comparing 

the mean cellular values for Ar and Si.  M-BLANK gave positive values whereas MAPS yielded 

negative values.  Therefore, even though these elements usually are not biologically interesting 

(apart from aquatic protists for Si, [24]), for the comparison of these two programs, both Ar and 

Si were found to be diagnostically relevant. 

V.3.5.1 COMPARISON OF FITTED BACKGROUND CORRECTED Ar MASSES 

When looking at fitted Ar fluorescence, there are four things to consider.  1) Ar is present 

in the atmosphere at ~1% concentration; 2) there is no biologically relevant Ar signal 3) 

increased scattering of the x-ray beam will cause increased secondary excitation of Ar 

fluorescence; and 4) the amount of beam scatter is proportional to the amount of material in the 

beam.  Taken together, this means that an increase in cellular content should cause a small 

increase in scatter and, in atmospheres that contain Ar, secondary excitation of Ar by that scatter 

should lead to a small increase in Ar fluorescence. The correlation plots for both cell and 

background pixels for Ar with elements below 4,000 eV are plotted in Figure V.13.  
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For the cell pixels, M-BLANK fitted data yield the expected positive correlation between 

Ar and the other elements for cell pixels.  For the MAPS fitted data, all of these correlations are 

negative (except for with Si) and the Ar background corrected cellular masses collect at a 

corrected mass value equal to the negative mean of the fitted background mass for Ar.   

V.3.5.2 COMPARISON OF FITTED BACKGROUND CORRECTED Si MASSES 

Things to consider when looking at correlations with Si are that the sample is resting on a 

Si4N3 wafer and that there is no biologically relevant Si signal.  Referring back to Figure V.12, 

note that similar to Ar, the mean of the fitted background corrected Si masses for cell pixels is 

also negative.  In principle, it is possible that cell blocks the fluorescence of the Si causing a 

decrease in the detected Si fluorescence by the detector; however, this is ruled out by a small but 

detectable increase in Si fluorescence when comparing the peaks of the mean cellular and 

background XRF calculated from the raw data (see Figure V.14).  Consistent with this M-

BLANK fitted data shows a ~ 24X increase in Si fluorescence for cell pixels over background 

pixels.  We attribute this to a slight increase in secondary Si excitation, arising either from scatter 

or, more likely, from K fluorescence. 

 In the same manner that was done with Ar, Figure V.15 shows the plotted correlations 

of Si with the elements in the non-zero baseline region for both M-BLANK and MAPS.  Just like 

Ar, the M-BLANK and MAPS fitted cell pixels yielded opposing results.   
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V.4 DISCUSSION 

V.4.1 SLIGHT OVERESTIMATION TO UNDERESTIMATION OF THE ELEMENTS 

FROM 4,000 EV TO 8,500 EV 

There is a transition from slight overestimation to slight underestimation of the elements 

in the region where the baseline falls to zero.  There are two contributing factors to this, both of 

which are caused by the zero baseline.  First, there will be over estimation of the peak amplitudes 

by the fitting program.  Second, the scatter fall off (which is not accounted for) will cause the 

elements at higher energy to be underestimated in proportion to the amount of unaccounted for 

scatter in that region.   

Since the fitted baseline has zero amplitude for this energy region (see Figure V.7), every 

time there is a random count due to instrumental noise, an emission line that overlaps with that 

count will register a nonzero fitted value for that pixel.  This will have the effect of artificially 

augmenting the apparent intensity of that element.  This will impact both cell and non-cell pixels. 

V.4.2 NON-UNIFORM QUANTITATION AND LACK OF PRECISION 

There is non-uniform quantitation in the region where the snipping function is able to 

provide a non-zero baseline.  Figure V.4 explains the increased distribution widths and lack of 

precision for MAPS relative to M-BLANK.  Importantly, Figure V.12 shows the presence of a 

exponential trend of increasing precision from low energy to high energy on the part of MAPS 

relative to M-BLANK.  The fluctuating non-zero baseline at energies below 4,000 eV is almost 

certainly a big contributory factor to the increased noise.  Additionally, the increased lack of 

precision at lower energy may be caused by the cumulative raising of the baseline (and with it, 

an increased distribution of noise around any answer) which occurs  due to incomplete charge 

collection of the detector [1].   
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V.4.3 BASELINE ELEVATION IS PROPORTIONAL TO AMOUNT OF CELLULAR 

MATERIAL IN THE BEAM. 

The trend from the correlations between MAPS and M-BLANK of over-estimation to 

under-estimation from low energy to high energy isn't perfect.  Si, Cl, Ca, and Ar do not obey 

this trend.  In order of increasing atomic number (neglecting Ar), the elements should be S, Cl, 

K, Ca; however, what we see is S, Ca, K, Cl. Though the trend itself could be explained by a 

calibration error, the switching of Ca and Cl cannot.  Figure V.17 combines the relevant 

observations from Figures 0, 0, and 1 to explain these deviations; it also explains the decreased 

quantitation for Zn (from MAPS relative to M-BLANK).  Figures 0C and 0C explain the inverse 

relationships (negative slopes) apparent for Ar and Si, respectively. 

The inverse relationships between the two programs for the fits of Ar and Si masses for 

cellular regions (seen in Figure V.10), from MAPS fitted data, is a result of an elevated baseline 

in those regions for cell pixels relative to background pixels.  This can be seen by looking at 

Figures 0C and 0C, respectively.  What these show is a non-negligible increase in the elevation 

of the baseline for cell pixels relative to background pixels.  This was demonstrated by Figure 

V.4 A and B.  This means that in addition to the considerably large amount of noise added by the 

fluctuations inherent in a per-pixel baseline, there is an increase in the baseline for cell pixels 

relative to background pixels which leads to decreased quantitation.  More importantly, this error 

is systematically linked to the amount of cellular content in the beam.  The impact of the baseline 

on Si is also supported by its positive correlation with Ar.  Although unrelated here, this impact 

of the elevated baseline due to increased stuff in the beam may have very important implications 

on other work where the impact of the Si peak is extremely important [25]. 
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The deviations of Cl and the decreased quantitation of Zn (by MAPS relative to M-

BLANK) can also be explained by the elevated baseline.  Figure V.17A shows an elevated 

cellular baseline for Cl.  he large K peak for cell pixels causes the snipping function to give a 

larger baseline in the cl region of cell pixels than in the Cl region of non-cell pixelsFrom the 

mean cellular and background raw fluorescence in Figure V.17C, (and remembering that the red 

line is the cut-off for a single count being detected by the detector) it can be seen that there is a 

potential non-zero baseline for cell pixels where there most likely won't be one for background 

pixels.  The increased quantitation of Ca is rooted differently.  The Kβ peak for Ca is at 4013 eV; 

this is in the region where the baseline falls to zero.  Figure V.17B shows that because of this, 

the Kβ peak of Ca is possibly elevated to compensate for the missed fluorescence by the 

baseline.  Note the baseline falls off right at the Kβ peak and that there is a significant gap 

between the raw fluorescence line (white) and the line of total fit (red).  For comparison, the Ca 

Kβ peak has been noted in the fit to the same in M-BLANK (see Figure V.18). 

V.4.4 INCORRECT TAIL FUNCTION ASSIGNMENT 

The increased baseline for cell pixels explains the presence of negative values for Ar; 

however, by itself it does not explain why so many values for fitted Ar fluorescence following 

ROI processing and post fitting blank correction are collected at – 2.7 cts/I0 (the negative of the 

background mean).  This means that those (those that are -2.7) values prior to the post processing 

blank correction performed by MAPS were set at a value of 0 cts/I0. 

The apparent decrease in Ar fluorescence below that value for cells indicates that its 

fluorescence is being accounted for elsewhere.  For example, it's possible that MAPS may be 

over-accounting for the tailing end (lower energy side) of K with its applied tail function.  This 

can best be seen in Figure V.7 by looking at the expanded portion of the image of the MAPS 
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fitted spectrum.  The tail function appears to be overcompensating for the tail of K causing the 

total fit to the data to be elevated above raw fluorescence.  This would result in a depression of 

Ar fluorescence to compensate for the over-accounting of the K tail.  This would happen most 

when there is an intense K peak such as when there is a cell in the beam.   When that happens, 

the fitted Ar fluorescence would be depressed.  Since the tail functions are linked by a quadratic 

polynomial, this suggests that the tail function used by MAPS to accommodate for tailing at the 

lower energy end of other peaks may be incorrect as well. 

If the fitted Ar fluorescence is decreased in cellular regions, we would expect to see a lot 

of values at or close to zero.  For the background corrected fluorescence of MAPS, the lower 

limit is the negative mean of the element's background pixels.  For Ar, that value is -2.7.  

Looking at the correlation plots for MAPS in Figure V.13B, this is exactly what we see for the 

background corrected cell pixels (noted by the blue line on the left of each individual plot). 

Overcompensation by the tail function can be seen by looking again at Figure V.7 and 

noting that the total fitted fluorescence directly above the Ar Kα peak is greater than the raw 

fluorescence.  This absolutely necessitates a point where the fitted Ar fluorescence became zero 

as the fitted K fluorescence continued to increase.  This point also agrees with all the values of -

2.7 for Ar that are present in the correlation plots in Figure V.13.  Additionally, since M-

BLANK shows a positive correlation of Ar that does not plateau for all other biologically 

relevant elements, and since that correlation from MAPS shows a negative correlation that 

plateaus, then if we divided the M-BLANK Ar image by the MAPS Ar image, we should see 

cells that have a negative ratio at the outer edge of the cell.  Moving in to the center of each cell, 

that negative value should initially remain more or less constant until the MAPS background 

corrected Ar value plateaus at -2.7 (the background mean).  Then the ratio of the two values 
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should steadily decrease in negativity as the M-BLANK values continues to steadily rise due to 

increased secondary excitation from increased cellular fluorescence; however, it won't ever 

actually become positive because the MAPS Ar image will be locked at -2.7.  This happens and 

can be seen in Figure V.16. 

V.5 BIOLOGICALLY RELEVANT DIFFERENCES: 

One of the biggest differences between the two programs is the ability to see Cl.  This can 

be understood by looking at Figure V.18.  At an intensity of 75% of the elastic scattering, the 

background signal from Cl is the third most intense background signal.  The Cl background is 

~14-fold more intense than the cellular Cl signal, making quantitation of Cl challenging when a 

stable blank is used, and problematic  when a per-pixel baseline is used due to much larger noise.  

This can be seen by comparing the correlation plots of Cl with K, P, and elastic scatter from both 

MAPS and M-BLANK (see Figure V.19).   

Not surprisingly, given the data in Figure V.10, the composition ratios that are calculated 

from the two different fits are different.  Table V.1 reports the ratios of the mean cellular 

concentrations for the scans of Saccharomyces cerevisiae Zrt1Δ (high affinity membrane 

importer of Zn) supplemented with and without 100 μM Zn.  Although the sample-dependent 

changes are directly identical (G and H), the apparent element:element ratios are quite different 

(C and F). 

Table V.2 lists the mean cellular concentrations for the scans of S. cerevisiae Zrt1Δ (high 

affinity membrane importer of Zn) with and without supplementation of 100 μM Zn.  As 

expected, the trend noted in Figure V.10 can be seen in columns C and F.  Importantly, column I 

shows potentially biologically relevant differences in the calculated changes between the two 

conditions by MAPS and M-BLANK for Zn, Mn, Ca, Cl, and S. 
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V.6 CONCLUSIONS 

Per-pixel baseline fitting makes the precision much worse and, for some elements, 

appears to also affect the accuracy.  Because the fluctuating pixel-to-pixel baseline affects low 

and high energies differently, system wide parameters, such as FWHM, are changed by the 

baseline errors.  Based on visual comparison alone of Figure V.7 and Figure V.8, M-BLANK 

provides a level of accuracy, precision and sensitivity that MAPS cannot match.  This is best 

demonstrated with the detection of Cl. 

In addition to giving more accurate results, the use of a blank allows for much faster 

fitting.   

  



 

124 

 

V.7 REFERENCES 

1. Van Grieken, R.E. and A.A. Markowicz, Handbook of X-Ray Spectrometry. 2 ed. Practical 
Spectroscopy. 2002: Marcel Dekker. 

2. Bos, A.J.J., R.D. Vis, and H. Verheul, Experimental Comparison of Synchrotron Radiation with 
Other Modes of  Excitation of Xrays for Trace Element Analysis. Nucl. Intruments Methods Phys. 
Res. Sect. B Beam Interact. with Mater. Atoms, 1984. 3(1-3): p. 232-240. 

3. Gordon, B.M., North-Holland Publishing Company Sensitivity Calculations for Multielemental 
Trace Analysis by Synchrotron Radiation Induced X-Ray Fluorescence. Nuclear Instruments and 
Methods 1982. 204 p. 223 223. 

4. Sherman, J., Simplification of a formula in the correlation of fluorescent X-ray intensities from 
mixtures. Spectrochimica Acta, 1959. 15: p. 465-470. 

5. West, M., et al., Atomic spectrometry update–X-ray fluorescence spectrometry. J. Anal. At. 
Spectrom., 2010. 25: p. 1503-1545. 

6. Knoechel, A., W. Peterson, and G. Tolkeihn, X-Ray Fluorescence Analysis with Synchrotron 
Radiation. Nuclear Instruments and Methods 1983. 208 p. 659-663. 

7. Sitko, R. and B. Zawisza, X-Ray Spectroscopy: Quantification in X-Ray Fluorescence Spectrometry. 
2012. 280. 

8. Scruggs, B., et al., XRF Mapping : New Tools for Distribution Analysis. Advances in X-ray Analysis, 
2000. 42: p. 19-25. 

9. Reid, A.F. and M. Zuiderwyk, Method and Apparatus for Material Analysis. 1984: United States. 
10. Krause, M.O. and J.H. Oliver, Natural Widths of Atomic K and L Levels, Kα X-Ray Lines and Several 

KLL Auger Lines. J. Phys. Chem. Ref. Data, 1979. 8(329). 
11. Brunetti, A., A fast fine-grained genetic algorithm for spectrum fitting: An application to X-ray 

spectra. Computer Physics Communications, 2013. 184(3): p. 573-578. 
12. Brunetti, A. and T.J. Steger, X-Ray spectra background fitting by projection onto convex sets. 

Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers 
Detectors and Associated Equipment, 2000. 441(3): p. 504-509. 

13. Janssens, K., et al., Accurate evaluation of μ-PIXE and μ-XRF spectral data through iterative least 
squares fitting. Nuclear Instruments and Methods in Physics Research Section B: Beam 
Interactions with Materials and Atoms, 1996. 109–110(0): p. 179-185. 

14. Kataoka, Y., K. Kasai, and H. Kohno, STUDY OF NET INTENSITY CALCULATION METHOD IN X-RAY 
FLUORESCENCE ANALYSIS. Analytical Sciences, 1991. 7: p. 513-516. 

15. Kneen, M.A. and H.J. Annegarn, Algorithm for fitting XRF, SEM and PIXE X-ray spectra 
backgrounds. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions 
with Materials and Atoms, 1996. 109: p. 209-213. 

16. McClanahan, T., J. Trombka, and M. Loew, Automated spectroscopy of X-ray and gamma-ray 
pulse height spectra using energy space subdivision. Nuclear Instruments & Methods in Physics 
Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, 2005. 
546(1-2): p. 176-179. 

17. Ren, L.Q., et al., Background estimation methods for quantitative X-ray fluorescence analysis of 
gold nanoparticles in biomedical applications. Biophotonics and Immune Responses Ix, 2014. 
8944. 

18. Solé, V.A., et al., A multiplatform code for the analysis of energy-dispersive X-ray fluorescence 
spectra. Spectrochimica Acta Part B: Atomic Spectroscopy, 2007. 62(1): p. 63-68. 

19. Vekemans, B., et al., COMPARISON OF SEVERAL BACKGROUND COMPENSATION METHODS 
USEFUL FOR EVALUATION OF ENERGY-DISPERSIVE X-RAY-FLUORESCENCE SPECTRA. 
Spectrochimica Acta Part B-Atomic Spectroscopy, 1995. 50(2): p. 149-169. 



 

125 

 

20. Yi, L.T., et al., A new background subtraction method for energy dispersive X-ray fluorescence 
spectra using a cubic spline interpolation. Nuclear Instruments & Methods in Physics Research 
Section a-Accelerators Spectrometers Detectors and Associated Equipment, 2015. 775: p. 12-14. 

21. Thompson, A., et al., Center for X-Ray Optics and Advanced Light Source: X-Ray Data Booklet. 3 
ed. 2009. 

22. Vogt, S., MAPS: A set of software tools for analysis and viualization of 3D X-ray fluorescence data 
sets. J. Phys. IV France, 2003. 104: p. 635-638. 

23. Alfeld, M. and K. Janssens, Strategies for processing mega-pixel X-ray fluorescence hyperspectral 
data: a case study on a version of Caravaggio's painting Supper at Emmaus. Journal of Analytical 
Atomic Spectrometry, 2015. 30(3): p. 777-789. 

24. Twining, B.S., et al., Quantifying Trace Elements in Individual Aquatic Protist Cells with a 
Synchrotron X-ray Fluorescence Microprobe. Anal Chem, 2003. 75(15): p. 3806-3816. 

25. Baur, K., et al., Laboratory and Synchrotron Radiation total – reflection X-ray fluorescence: New 
Perspectives in  Detection Limits and Data Analysis. Spectrochim. Acta - Part B At. Spectrosc., 
2001. 56(11): p. 2049-2056. 

26. Sherman, J., The theoretical derivation of fluorescent X-ray intensities from mixtures. 
Spectrochimica Acta, 1955. 7: p. 283-306. 

27. Rousseau, R., Fundamental Algorithm Between Concentration and Intensity in XRF Analysis. X-
Ray Spectrometry, 1984. 13(3): p. 115-120. 

28. Mantler, M. and H. Ebel, X-Ray Fluorescence Analysis Without Standards. X-Ray Spectrometry, 
1980. 9(3): p. 146-149. 

  



 

126 

 

 
Figure V.1 Snipping Functions:  A) Channels with zero counts were included in processing.  

B) Channels with zero counts were excluded from processing and later interpolated.  For both 

panels, the smooth (colored) lines are the calculated baselines after the indicated number of 

different iterations. 
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Figure V.2 An Example of Blank and Baseline:  Above models the use of a baseline (red) and 

a blank (green) overlaid on raw XRF (blue). 
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Figure V.3 XRF spectrum of a single pixel:  The above spectrum is a single integrated time 

point from an image taken at Sector 2 ID-E at APS with an integration time of 1.5 seconds.  The 

blue lines crowning the black peaks are actual counts for a single pixel.  The black line is the 

mean spectrum of all non-cell pixels (and is functionally identical to the blank used in M-

BLANK).  The pink line is the mean spectrum of all the cell pixels.  The dashed red line is at 7/8 

of one count and marks just below what the detectors sees as one count for the average pixel. 
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Figure V.4 Per-Pixel Baselines and Baseline Images:  All the per-pixel baselines were 

calculated in M-BLANK for a single image using 500 iterations of a snipping function.  (A) and 

(B) show all the baselines that were calculated for cell pixels and background pixels, 

respectively.  The multiple lines in both A and B represent baselines for different pixels and 

should not be confused with the multiple lines from Figure V.1 which indicate baselines 

calculated for the same pixel using different iteration number.  (C) shows an overlay of raw data 

from a cell pixel and a background pixel with the associated calculated baseline backgrounds for 

both.  It is not a stacked area plot; rather, the area under each curve was colored to show contrast.  

(D) is the image generated by summing the baselines contained in box (d) for each pixel.  It 

shows that the four orders of magnitude spanned by the baselines for cell pixels is systematic 

distributed across the image.  Likewise, (E) is the image generated by summing the baselines 

contained in box (e).  Note the uniform nature of the image and the lack of the systematic 

introduction of noise.   
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Figure V.5 Correcting ROI Assignment:  A) and B) serve as a prototypical demonstration of 

(A) incorrect cell ROI assignment and (B) the product of manual correction 
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Figure V.6 Comparison of blank corrected data with baseline corrected data:  (A) Raw 

XRF overlaid with the blank and a baseline. (B) The result of correcting the raw XRF in A by the 

baseline and the blank.  (C) The potential error that could arise in calibration between MAPS and 

M-BLANK if there is a non-negligible blank contribution to the standards. 
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1. Fit to data; 2. Raw data; 3. K step function; 4. Ar Kα; 5. K Peak; 6. Cu Peak 

Figure V.7 Prototypical MAPS Fitted Data: The magnified region containing 1-4 shows that 

the (3) tail function that MAPS uses to account for the low energy end tailing of peaks (most 

likely due to ramen scatter [26-28] and detector dead space) is overcompensating for the tailing 

end of K.  This can be seen as the function rests right on the (2) raw fluorescence line forcing the 

(1) fit to data up which causes the (4) Ar Kα to be depressed.  Also, note the drop off of the 

baseline at ~4000 eV affecting the Ca Kβ quantitation.  (5) and (6) show the incorrect 

parameterization of the energy dependence of the FWHM of detector resolution.  notice the 

peaks are too short and wide in (5) and too tall and narrow in (6).   
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Figure V.8 Representative M-BLANK Fit:  For visual comparison to the MAPS fitted data 

presented in Figure V.7, the same data is presented here fitted by M-BLANK. (A) Overlay of the 

raw XRF with the calculated blank for the integrated spectrum of an image.  (B) The blank 

corrected raw XRF plotted with the fitted XRF for each element, scatter, and the total summed 

fit.  
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Figure V.9 Residual of Residuals:  The total residual spectrum obtained from the fitting of 

blank corrected data was subtracted from the total residual spectrum obtained from the fitting of 

that same data corrected with a baseline to give the residual residuals from the two methods.  

This is plotted above.  Both data sets were fit in M-BLANK. 
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Figure V.10 MAPS Fitted XRF vs M-BLANK Fitted XRF:  The values of each element were 

collectively normalized between -1 and 1 according to the range of values spanned by the 

combination of both fitted data sets by dividing each by the maximum absolute value from that 

set.  All elements have positive slopes except for Si and Ar.  The bold black line marks a 1:1 

ratio between the two programs.  Any points falling on this line show agreement for that point 

between the two programs.  Points above this line show overestimation by MAPS relative to M-

BLANK; points below it show a relative underestimation.    
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Figure V.11 Fitted Gaussian Distributions for Blank Corrected Background Pixels: The 

fitted Gaussian  distributions for MAPS background pixels were calculated following subtraction 

of all the pixels for the elemental map by the associated mean for that element.  The fitted 

Gaussian distributions for M-Blank were calculated directly from the fitted background pixels.  

Both distributions were then normalized to a constant area.  The numbers underneath the fitted 

distribution plots for each element are the fitted distribution means followed by the fitted 

distribution standard deviations for both MAPS and M-BLANK. 
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Figure V.12 Distribution Width Ratios and Fitted Gaussian Distributions for Cellular 

Pixels:  A) The ratios of the fitted Gaussian distribution widths (standard deviations) for MAPS 

are divided by the values from M-BLANK and are plotted vs energy.  From left to right, the 

points correspond to Si, P, S, Cl, Ar, K, Ca, Mn, Fe, Co, Cu, and Zn.  Any points falling on the 

line y = 1 shows agreement between the two programs for that elements fitted Gaussian 

distribution.  Points above this line indicate a lack of precision for MAPS relative to M-BLANK 

for the associated element; points below the line indicate a relative increase.  B) and C) The 

fitted Gaussian distributions for cellular pixels for Ar and Si respectively.  The numbers 

underneath the fitted distribution plots for each element are the fitted distribution means 

followed by the fitted distribution standard deviations for both MAPS and M-BLANK.  

Importantly, note that the mean value for both are negative for MAPS while they are positive for 

M-BLANK. 
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Figure V.13 Per-Pixel Correlation Plots of Ar:   The per-pixel correlation plots for Ar with 

elements <4000 eV are plotted for both M-BLANK (A) and MAPS (B).  Ar is plotted to the x-

axis of each plot.  The blue lines in (B) mark the fitted value of -2.7 for Ar.  This value is the 

mean of the background pixels for Ar.  C) Borrowed and cropped from Figure V.4C, this 

illustrates That there is a non-zero baseline for cell pixels in the Ar region, where a zero baseline 

exists for the background pixels.  
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Figure V.14 Raw Cell and Background XRF in the Si Region:  The mean raw cellular and 

background fluorescence are plotted in blue and green, respectively.  Importantly, note the 

positive difference in the Si peak at 1740 eV.  It's very small relative to the size of the 

background signal, however, the background signal is caused by the fact that the sample is sitting 

on a Si wafer. 
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Figure V.15 Per-Pixel Correlation Plots of Si:   The per-pixel correlation plots for Si with 

elements <4000 eV are plotted for both M-BLANK (A) and MAPS (B).  Si is plotted to the x-

axis of each plot.  C) Borrowed and cropped from Figure V.4C, this illustrates the increased 

baseline for cell pixels in the Si region relative to the background pixels.  

  



 

141 

 

 
Figure V.16 Imaged Ar Ratios:  (A) The image created by taking the per pixel ratio of 

MAPS:M-BLANK in terms of quantified Ar fluorescence.  The bulk green space does not 

correspond to fitted data; the image was created by stitching together separate fluorescence 

images to create the slide of samples used at the beam line.  Additionally, the range of ratios is 

much greater than presented.  In order to visualize the range of ratios inside the cell, all values 

greater than 2 or less -2 were set to 2 and -2, respectively.  The bottom two images are the 

Gaussian fitted histograms of fitted Ar fluorescence for the (B) background and (C) cell pixels.  
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Figure V.17 Trend Non-uniformity:  Not all the elements in Figure V.10 follow the trend of 

over-estimation to under-estimation by MAPS relative to M-BLANK.  A)  An increase in the 

baseline for cellular pixels relative to background pixels could cause a decrease in the 

quantitation of Cl.  B) The fall-off of the baseline at 4000 eV causes an apparent increase in 

cellular Ca.  C) The mean cellular XRF for Zn is above the threshold of probability for being 

seen by the average cell pixel whereas the mean for the background is much below that 

probability.  This potentially leads to a non-zero baseline for  cell pixels while there is most 

likely a zero baseline for background pixels. 
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Figure V.18 Chlorine Region from Figure V.8:  In addition to raw and overall fitted data, the 

Kα and Kβ peaks that are fitted for each element are shown.  It highlights the detectable Cl peak 

by M-Blank and demonstrates how that signal arises from a very small difference between two 

very large numbers.  The Ca Kβ has been noted for comparison with Figure V.17B, the MAPS 

fit for the same region.  
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Figure V.19 Cl Correlation Plots:  The quantitation of Cl as a function of P, K, and elastic 

scatter has been plotted for both MAPS and M-BLANK above. 
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Table V.1Comparison of Elemental Ratios: The numbers in the red boxes highlight significant 

changes between the two fitting programs that could lead to biologically different conclusions.  

The ratios of the mean cellular concentrations for the scans of Saccharomyces cerevisiae Zrt1Δ 

(high affinity membrane importer of Zn) supplemented with 100 μM Zn are represented for 

MAPS (A) and M-BLANK (B).  (C) The ratios MAPS (A)/M-BLANK(B).  Likewise, (D), (E), 

and (F) are the same analyses for S. cerevisiae Zrt1Δ without Zn supplementation. (G and H) are 

the percentage differences for the two conditions as seen by MAPS and M-BLANK, 

respectively.  The differences of those differences between the two fitting programs are reported 

in (I). 
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Table V.2 Differences in Calculated Mean Concentrations: The mean cellular concentrations 

for the scans of Saccharomyces cerevisiae Zrt1Δ (high affinity membrane importer of Zn) with 

and without supplementation of 100 μM Zn are represented for MAPS (A and D) and M-

BLANK (B and E). (C and F) are the percent differences relative to M-BLANK between the two 

programs.  (G) and (H) report the percentage change between the two conditions observed by 

MAPS and M-BLANK, respectively.  (I) is the difference reported for those changes between 

MAPS and M-BLANK. 

  

Element MAPS M-BLANK % Difference MAPS M-BLANK % Difference MAPS M-BLANK % Difference

P 3.7E-01 1.8E-02 2020% 3.4E-01 1.6E-02 2016% -8% -8% 0%

S 5.7E-02 5.6E-03 918% 7.6E-02 6.6E-03 1062% 33% 17% 16%

Cl 1.8E-02 4.3E-03 329% 1.8E-02 3.9E-03 368% -1% -9% 8%

K 1.8E+00 2.5E-01 619% 1.2E+00 1.7E-01 637% -30% -32% 2%

Ca 5.5E-02 7.6E-03 629% 6.3E-02 8.0E-03 690% 14% 5% 9%

Mn 2.1E-03 1.1E-03 87% 2.4E-03 1.2E-03 98% 16% 9% 7%

Fe 4.2E-03 3.5E-03 22% 2.7E-03 2.1E-03 30% -37% -41% 4%

Cu 3.7E-03 3.7E-03 -1% 5.5E-03 5.5E-03 -1% 48% 48% 0%

Zn 4.4E-02 7.2E-02 -39% 8.9E-02 1.4E-01 -35% 103% 89% 14%

A B C = [A-B]/B D E F = [D-E]/E G H I = G-H

Zrt1 ZLM (+ 100 μM Zn) Change

Differences in Quantitation

Zrt1 ZLM
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CHAPTER VI: BIONANOPROBE, FIBROBLASTS, AND SPECTRAL 

FILTERING
4
 

VI.1 INTRODUCTION 

Previous studies using XRF imaging have examined the effect of Cd on metal 

homeostasis in yeast.  In an attempt to expand this work to other species, freeze dried mouse 

fibroblasts (NIH3T3) cells were studied in 2010.  Surprisingly, the cells showed significant Cu 

contamination and, for most of the cells, a nucleus that appeared to contain almost no metal.   In 

order to test these results, new studies were undertaken on mouse fibroblasts (NIH3T3) cells, but 

not dried cells.  In contrast with earlier work, on freeze dried cells, these measurements were 

done at low temperature on plunge frozen cells, which retain the original cell structure. 

                                                 

4
 Lubomir Dostal was lead on this project.  I was present at data collection and performed 

the fitting and analysis.  Jim Penner-Hahn provided guidance during analysis.  This research used 

resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of 

Science User Facility operated for the DOE Office of Science by Argonne National Laboratory 

under Contract No. DE-AC02-06CH11357. "This project was supported by grant 9 P41 

GM103622 from the National Institute of General Medical Sciences of the National Institutes of 

Health." The content is solely the responsibility of the authors and does not necessarily reflect 

the official views of the National Institute of General Medical Sciences or the National Institutes 

of Health. 
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Imaging experiments at such low temperatures are made possible by the Bionanoprobe 

(undulator beamline, Sector 21, Advanced Photon Source, Argonne National Lab, Lemont, 

Illinois, USA) [1].  This instrument is an x-ray fluorescence nanoprobe with a cryogenic sample 

environment and cryo transfer capabilities specifically designed for studying frozen, hydrated, 

biological samples.  This probe permits imaging of hydrated cells and therefore avoids structural 

deformation of cells due to collapse and cell shrinkage associated with freeze drying.  This 

preserves the ultrastructure of cellular organelles. 

There have been many advances over the years in the analytical approaches and 

methodologies used to fit x-ray fluorescence data sets.  Chapter 5's M-BLANK comparison 

touched on some of those advances, particularly those having to do with background estimation 

and data fitting.  The fitting of mouse fibroblasts in this study presented an additional 

opportunity.  In the course of applying M-BLANK to imaging studies of NIH3T3 cells, I believe 

I have been able to identify an issue related spectral filtering of raw XFR data sets using single 

value decomposition (SVD) [2]  to reduce noise.   

The application of SVD filtering of raw XRF data sets to reduce noise is based on the fact 

that correlations between the different elements from pixel-to-pixel should exist; whereas noise 

should not be correlated.  Therefore, performing SVD and then selecting the optimum number of 

eigenvectors and reconstructing the spectra based on those values, should, in principle, retain all 

of the actual elemental signals while filtering out noise. 

VI.2 EXPERIMENTAL 

VI.2.1 SAMPLE PREPARATION 

NIH3T3 cells were grown in complete medium (CM) containing DMEM (Invitrogen) 

and 10% calf serum (Gibco) at 37 C˚ and 5% CO2 until confluency.  Cells were then detached 
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using 0.05% trypsin, EDTA solution (Invitrogen). Then 100,000 cells per well were plated in 

CM containing 2 to 3 Si3N4 slides.  After 24 hours cells were washed with PBS and DMEM 

containing 2% bovine serum albumin (BSA) was added for 24 hours. Then BSA containing 

medium was removed and cells were exposed to 2 or 0 μM CdCl2 in DMEM for 6 hours. Finally 

cells were exposed to 1 μg/ml Hoechst 33324 for 25 minutes followed by plunge freezing. 

Plunge freezing was performed using FEI Vitrobot in liquid ethane and cells were kept in liquid 

nitrogen until BNP measurement. 

VI.2.2 PARAMETER DETERMINATION AND FITTING 

Fitting parameters were determined using a sample scan by fitting the MCA for the 

cellular region of a scan using the methodologies discussed in Chapter 3. As discussed in 

Chapter 5, a blank was subtracted rather than a baseline.  Following this, both the samples and 

the standards were fit using those parameters as discussed in Chapter 3. 

VI.2.3 DETECTOR ELEMENTS 1 AND 2 

The scans taken at the Bionanoprobe (BNP) utilized a four element detector.  In the 

course of our analysis, it was discovered that elements 1 and 2 were sporadic and unreliable.  For 

instance, across all scans and all pixels, detector elements 1 and 2 gave mean count rates with 

associated standard deviations that were, on average, 300% of the count rate.  In contrast, 

detector elements 3 and 4 gave highly reproducible count rates with relative standard deviations 

on the order of 15%.  As such, all data from detector elements 1 and 2 were discarded from all 

analyses.  
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VI.2.4 IMAGE FILE MANIPULATION 

The data sets contained 2048 channels of fluorescence, with the first ~800 channels 

reflecting energies below ~10 keV.  To reduce memory requirements, files were reduced by 

cropping the extra channels.  Some large cells were imaged in parts across multiple scans at the 

beamline.  In these cases, small overlapping regions of each scan were used to stitch the fitted 

data from the separate scans into a single image for subsequent analyses.   

The x-, y-coordinates of all the images corresponding to each slide were used to stitch the 

individual cell images into a single image using the K channel, and these were matched to the 

bright field images of the slides taken at APS. 

VI.2.5 MxM DIGITAL BINNING OF DATA SETS 

Digital binning of the data was performed to increase the signal-to-noise ratio and 

decrease the memory requirements of the associated computations.  This was done by taking all 

the pixels in an MxM neighborhood and summing the counts for each of the channels into a 

single value.  For the data analyzed in this chapter, digital binning was performed for 5x5, 

10x10, 15x15, and 20x20 neighborhoods corresponding to effective pixel sizes of 2.5, 10, 22.5, 

and 40.0 μm
2
.  This increased the signal-to-noise ratio, and gave faster processing as a result of 

the reduced size of the data set, thus allowing for the analysis of the different modes of 

blank/background calculations discussed in section VI.2.6.  Quantitation of each element fitted 

from the binned data sets was identical to that found with the unbinned data. 

VI.2.6 BLANK CALCULATION 

Blanks were calculated from the background pixels of each image using the K-Kα 

emission line to generate a raw image of the cell using an ROI centered on the K Kα line.  This 

was then used to identify the background pixels as those with low K; these pixels were used to 
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calculate the blank.  For two of the five scans, there were small groups of pixels that contained 

large amounts of contaminant Fe, Cr, Cu, Mn, and/or Ni, with amplitudes ~10,000X greater than 

other pixels (see Figure VI.1).  Those pixels were removed from the data set prior to fitting and 

analysis. 

Initially, we assumed that the background had a constant shape but might be adjusted by 

a scale factor.  However, allowing for a scale factor caused an apparent gradient in concentration 

of all of the elements (see Fe-1 in Figure VI.1), presumably due to variability in the true Si 

signal causing variability in the background.  A uniform blank gave the images Fe-2 and Si-2.  

Note the loss of the gradient in Fe-2 and the increase of the gradient for Si-2.  Importantly, the 

size of the gradient in the Fe signal is sufficiently large that it overwhelms the true Fe signal.  

Only when a fixed, uniform background is used are we able to see the expected presence of Fe in 

the cytosol (compare Fe-1 and Fe-2 in Figure VI.1).  

The effect of the background on the total I0 normalized cellular counts per second is 

shown in Table VI.1.  For intense signals, e.g., K, P, Zn, and S, there is < 1% change.  In 

contrast, for Cl, Mn, Fe, and Cu, the differences were 2.8%, 9.2%, 16%, and 2,500%, 

respectively.  In all cases, there is an increase in the amount of metal that appears to be contained 

within the cell boundaries.  The underestimation that is seen when a variable background scale 

factor is used is a consequence of the small amount of each element that is present.  Our 

unconstrained fits allow both position and negative values fr each element.  For Cu, the gradient 

(negative to the left, positive to the right) completely overwhelms the true Cu signal, making it 

appear that no Cu is present.  While the details of this error will vary, depending on the nature of 

the Si gradient, the effect will always be to significantly perturb the quantitation. 
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VI.3 RESULTS 

VI.3.1 CELLULAR ELEMENTAL CONTENT OF Cd(-) CELLS 

The approximately circular region in the cell with the highest K was assigned to be the 

nucleus.  Although it is difficult to see Cu in the cell in the unbinned data, 20x20 binning shows 

a slight Cu signal from the cell.  A two-tailed t-test comparing the means of the cell pixels to the 

background pixels yielded p-values of <0.001 for Cu suggesting that cellular Cu concentration is, 

as expected, above background level.   

Visual analysis of the Cd(-) cells (the top set of images in Figure VI.3) shows that most 

of the Fe and Mn are outside the nucleus with Mn being localized to the periphery of the nucleus 

and Fe being distributed uniformly.  The localization of Mn appears to be in the shape of what 

one might expect of a mitochondrion.  Such localization would be consistent with a study of 

human fibroblasts by Crosti et al [3] which showed a >7:1 ratio of MnSOD in the mitochondria 

relative to the nucleus.  Cl shows a distribution that is similar to that of Fe, with higher 

concentration in the cytoplasm and lower concentration in the nucleus.  K and Zn reside in the 

nucleus with P residing primarily in the nucleus but with a greater degree of distribution 

throughout the rest of the cell than either K or Zn.  S appears to have the most uniform 

distribution throughout the cell.    

VI.3.2 EFFECT OF CD TREATMENT 

Visual comparison of Cd(+) cells to the Cd(-) cells shows changes for Cl, Mn, and P.  Cl 

and P appear to increase in concentration in the nucleus while Mn appears to decrease in 

concentration at the external periphery of the nucleus.  To quantify these observations, we 

normalized the metal composition to cellular content, using K as a surrogate for total cellular 

material.  While K is not equivalent to cellular content, this should still normalize for many of 
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the factors that come into play when comparing two cells (e.g., the size of the cell, the area, the 

mass cancel out).  Table VI.2 shows statistically significant changes for many of the elements.  

Specifically, Cd(+) cells, when compared with Cd(-) cells, show increased cellular 

concentrations for S and Cl (both with P-values < 0.05) and decreased cellular concentrations for 

Zn (P-value < 0.01); see Table VI.2A.  Since S and Cl increase while Zn decreases, these 

changes cannot arise solely from changes in cellular K.  Looking at the nucleus and cytosol 

separately (Table VI.2B and Table VI.2C), it seems possible that these changes are not uniform 

across the cell.  The Cd treated cells appear to be somewhat smaller, consistent with growth 

inhibition by Cd. 

VI.3.3 SPECTRAL FILTERING 

It has been suggested [2] that principal-component filtering can be used to improve the 

accuracy of pixel-by-pixel fitting.  In this approach, PCA is used to identify the dominant 

eigenvectors for fluorescence, and these alone are used in subsequent analyses.  While it is true 

that PCA does remove high-frequency noise, we find that it can severely distort the resulting 

quantitation.  This can be seen in the comparison of PCA-filtered per-pixel fits for 3T3 cells 

(Figure VI.4, left elemental images) and the results from per-pixel M-BLANK fits for the same 

data (Figure VI.4, right elemental images).  While the qualitative appearance for K is 

independent of fitting method, the other elements (e.g., Mn, Fe, P, Cl, S) are significantly 

perturbed.  With PCA-filtering, the Mn appears to be distributed throughout the nucleus, while 

for M-BLANK fits, the Mn is localized, as expected, to a region outside of the nucleus that 

resembles the appearance of the mitochondria.  This may explain published reports [4] showing 

Mn to be distributed throughout the nucleus in NIH3T3 cells.  Importantly, the total amount of 

Mn both slightly increases and becomes very localized to the periphery of the nucleus.  Although 
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the effect is most dramatic for Mn, every element showed artificially increased localization to the 

nucleus in the PCA filtered images relative to unfiltered images.   

Figure VI.5 would suggest that a large number of components are needed to define the 

data set.  Greater than 100 eigenvectors are required to account for differences in the data.  

Furthermore, given the continual fall off of the residuals, it doesn't seem as if there is a clear 

distinct cut off between signal and noise. 

VI.3.4 DISCUSSION AND CONCLUSION 

Prior work with NIH3T3 cells under similar conditions using ICP to perform bulk 

measurements showed decreased concentrations of both Zn and Mn when cells were exposed to 

Cd [5].  The present work extends those observations to the single cell level.  Our observations 

are broadly consistent with bulk measurements.  We see a 36% mean decrease in cellular Zn for 

Cd doped cells, identical to that seen in ICP studies.  Comparison of our mean values for Fe, Cu, 

and Mn to those reported in [5], show ratios of 0.1, 0.5, and 0.2 for Fe, Cu, and Mn, respectively.  

This decrease in absolute quantitation may reflect cell-to-cell variability (we studied only 3 cells) 

or may reflect a systematic calibration error.  However, this will not affect the Cd dependent 

relative changes in composition. 

This study demonstrated the potential dangers of using PCA filtering for raw data noise 

removal.  Doing so was shown to drastically change the apparent localization of all elements 

except for K, with a spurious increase in the apparent concentration of each element in the 

nucleus.  For Mn and Fe, this gave completely wrong results as both tend to be dominantly 

outside of the nucleus. 

We appear to have been able to detect Mn in the mitochondria.  This would be consistent 

with literature [3, 6-9], and the ROIs containing Mn in this study look very similar to the 
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localization of mitochondria and the Golgi apparatus in fibroblasts seen previously [4, 10].  In 

order to test this hypothesis, these measurements should be repeated using fluorescent labels to 

identify the mitochondria. 

All five cells look roughly the same, and the Cd (+) cells have lower Zn/K.  This is 

consistent with ICP confirms (albeit with low N) the results found in bulk measurements.  This 

rules out, the alternative explanation of the bulk data, which would have been that some cells lost 

all Zn (i.e., were "ghosts") while other cells were unaffected.  There are hints that Cd treatment 

also causes increase in cellular S/K and Cl/K, increased areal concentrations of S and P in the 

nucleus, and increased areal concentrations of K, P, S, and Cl in the cytosol.  Future studies 

should attempt to confirm these with more cells.   

Finally, in addition to the follow studies from Chapter 5 to verify the differences between M-

BLANK and MAPS, the differences noted in this chapter pertaining the use of PCA filtering 

necessitate follow up as well. 
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Figure VI.1 Comparison of Potential Backgrounds:  (A) demonstrates the intensity of the K 

channel used to differentiate and segregate cell from background. (B) demonstrates the presence 

of a contaminant Fe particle.  (C) demonstrates how the size of that contaminant particle, hidden 

in the auto scaling of the image, completely hides the detail of the Fe signal from the cell.  The 

color bar to the right of C applies to B as well.  The black and red lines in C mark the boundaries 

of the cell and cropped out pixels respectively.  For the second and third rows, the contaminant 

from the Fe particle has been removed; both the removed contaminant dust and the cell have 

been outlined.  (Fe-1 and Si-1) show the application of a blank where the amplitude was allowed 

to fluctuate.   (Fe-2 and Si-2) show the application of a uniform blank. 
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Figure VI.2 Raising and Lowering of the Blank at the Level of a Single Pixel when 

Allowing for a Variable Scaling Factor:  (A) The spectrum of a single pixel showing the 

raising of the blank across the entire spectrum leading to a linear least squares solution where the 

fitted fluorescence for all other emissions would be negative. (B) The spectrum of a single pixel 

showing the lowering of the blank across the entire spectrum leading to a linear least squares 

solution where the fitted fluorescence for all other emissions would be greater than their true 

value.  
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Figure VI.3 Visual Comparison of NIH3T3 cells under Cd(-) (A) and Cd(+) (B) conditions: 
A border was drawn around the nucleus using the K image intensity to draw the ROI.  An ROI 

was also drawn around  the area encasing the Mn. 
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Figure VI.4 Comparison with PCA:  The left image for each element pair corresponds to the 

image that was fit following PCA spectral filtering of noise.  The right image of each pair 

corresponds to the image from the fitted set used in this study of NIH3T3 cells. 
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Figure VI.5 First 500 Eigen Vectors:  Plot of the mean squared deviation between the 

reconstructed filtered data and the original data based on reconstruction using the first 500 

eigenvectors. 
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Integrated Cellular Counts per Second 

  

Variable 

Background Scale 

Factor 

Uniform 

Background 

% 

Change 

S 13.11 13.15 0% 

Mn 0.26 0.28 9% 

Fe 0.82 0.95 16% 

Cu 0.01 0.36 2457% 

Zn 13.32 13.42 1% 

K 193.04 193.01 0% 

P 10.95 11.03 1% 

Cl 14.88 15.29 3% 

 

Table VI.1 The change in the integrated counts per second normalized by the upstream 

diamond diode for cell pixels 
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Table VI.2 K-Normalized Elemental Content:  P-values < 0.05, 0.02, and 0.01 have been 

noted by *, **, and *** respectively.  The N for Cd(-) and Cd(+) were 2 and 3, respectively.   

  

Mean % StDev Mean % StDev Difference df t-stat P

P/K 0.035 18% 0.050 3% 43% 1 3.3

Zn/K 0.388 3% 0.250 5% -36% 2 11.2 ***

S/K 0.044 6% 0.056 4% 25% 2 5.0 *

Cl/K 0.057 2% 0.071 7% 25% 2 4.7 *

Fe/K 0.014 9% 0.011 30% -17% 3 1.1

Mn/K 2.9E-03 41% 2.0E-03 28% -31% 1 1.0

Mean % StDev Mean % StDev Difference df t-stat P

P/K 0.032 19% 0.046 6% 41% 1 2.9

Zn/K 0.434 7% 0.291 8% -33% 2 5.8 *

S/K 0.039 14% 0.045 5% 17% 1 1.6

Cl/K 0.049 9% 0.056 8% 14% 2 1.7

Fe/K 0.009 12% 0.005 18% -47% 2 4.7 *

Mn/K 2.4E-03 29% 1.0E-03 52% -58% 2 2.5

Mean % StDev Mean % StDev Difference df t-stat P

P/K 0.037 19% 0.053 3% 42% 1 3.0

Zn/K 0.347 4% 0.221 3% -36% 1 11.5

S/K 0.049 4% 0.063 6% 27% 3 5.3 **

Cl/K 0.063 5% 0.081 9% 28% 3 3.9 *

Fe/K 0.018 10% 0.016 30% -13% 3 0.8

Mn/K 3.2E-03 45% 2.6E-03 33% -20% 1 0.6

C
yt

o
so

l
N

u
cl

eu
s

C
el

l

C
T - Statistic

Cd(-) Cd(+)

Cd(-) Cd(+)

A

B

T - Statistic

T - Statistic

Cd(-) Cd(+)



 

165 

 

CHAPTER VII: CONCLUSIONS AND FUTURE WORK 

VII.1 CONCLUSION 

This thesis has focused on the development of a novel probe for the investigation of 

single cell elemental content with an enhanced rate of sampling frequency.  In the course of 

developing the  instrument, the software that was written to analyze the data was adapted to the 

fitting of XRF imaging data.  In doing so, the software was shown to give superior fits and 

identified some significant problems with spectral filtering using PCA [1] and with using a 

baseline to correct for a background.  The implications of these problems should be thoroughly 

explored.  We have already identified one study [2] that we believe gives misleading results due 

to PCA filtering of raw data.  Further studies that have used PCA filtering need to be identified 

and the data should be refit without spectral filtering and those results compared with the 

previous results.  The use of PCA to filter out noise associated with raw XRF data (e.g., [1]) 

appears to afford a non-zero baseline across the dataset.  This raises concerns about loss of 

precision from per-pixel baseline correction. 

In terms of per-pixel baselines, a study should be done using tissues with sample free 

borders to identify an appropriate method for background correction when "non-sample" spectra 

are not available.  This is potentially very important for "one-of-a-kind" samples where there is 

no possible blank, and the error associated with the baseline could introduce inaccuracies similar 

to those demonstrated in Chapter 5.   
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VII.2 FUTURE WORK 

Future work from this thesis should focus on two things: 1) continued development of the 

cytometer and 2) M-BLANK program upgrades and enhancements. 

There is still a lot left to improve with the cytometer.  Since the He shroud showed 

significant signal improvement and background removal, future work should encase the entire 

instrument in the shroud.  The detectors should be tied to x-, y-, z-, and rotation stages to 

optimize detector placement and guarantee that the Mo collimator is aligned properly. 

Additionally, the detected count rate can be further enhanced by including a Maia 

detector [3] upstream from the sample to detect backscattering.  Depending on the efficiency and 

sensitivity afforded by the Maia detector, removal of the 4-element detectors may be possible to 

make room for some other advancement not yet conceived. 

Currently, M-BLANK does not account for the tailing of energies at the low energy side 

of peaks, nor does it account for the scattering continuum at low energies.  The former can be 

seen in Figure 8 of Chapter 5.  Additionally, M-BLANK does not account for pile up peaks or 

escape peaks.  Referring again back to Figure 8 of Chapter 5, there exist peaks that we were not 

able to explain with single emission lines (e.g., the peak to the right of Fe at ~6,650 eV).   

The tailing function is important to studies herein as the Cd L-lines are slightly wider and 

directly underneath the K K-lines. The increased width of the group of Cd L-lines causes the 

series to be elevated (similar to the artifact identified with Ca quantitation from MAPS in chapter 

5) to minimize the residual associated with the lower energy end of K.  Because of this, the 

apparent Cd concentrations in Cd treated and untreated cells were identical. 

Ultimately, M-BLANK has superior accuracy and precision.  It is also much faster and 

allows for users to select for different combinations of elemental K, L, and M series emissions 
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(see chapter 3) with almost an instantaneous feedback on the visual fit quality.  Additionally, the 

raw data can be searched to identify the best combinations of emissions for the fitting of specific 

regions of the data; also, with almost instantaneous feedback.   

Further studies should be performed with a data set fitted by the most current version of 

MAPS to verify these results.  Ideally, that study would also involve comparisons with the fits 

obtained from other programs such as PyMca, AXIL, Datamuncher, and GeoPIXE [4]. 
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