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Abstract 

pH is a ubiquitous regulator of biological activity, with widespread impact ranging from its role 

in catalysis to carcinogenesis. Traditionally, a combination of biophysical and computational 

methods are used to measure pH-dependent activity profiles, and protonation equilibria (i.e. pKa 

values) of specific residues, and these data are used in conjunction with structural data to provide 

mechanistic understanding of pH-mediated biological function. More recent developments have 

also demonstrated the role of transient conformational states in a wide range of biological 

activities, which naturally leads to the question of how pH affects such transient states, and in 

turn, their resulting functional activity. In the study of biomolecular transient states, the detection 

limit is the key limitation of most experimental techniques. To bridge the gap in detection limit, 

we have developed an appropriate molecular dynamics based computational method, where 

protonation states are dynamically adjusted as a function of an external pH bath and the local 

environment surrounding the titrating site. Also known as the explicit solvent constant pH 

molecular dynamics (CPHMDMSλD) framework, we use CPHMDMSλD simulations and enhanced 

sampling methods to demonstrate the role of pH-regulated transient states in both nucleic acid 

and protein activity. First, we demonstrate the utility of CPHMDMSλD simulations in conjunction 

with NMR experiments to characterize transiently populated Hoogsteen GC+ base pairs in DNA 

duplexes. The role of pH-dependent transient states is then generalized to RNA activity, 

including that of the catalytic mechanism of the hairpin ribozyme, where the existence of pH-

dependent transient states can be used to reconcile a collection of seemingly inconsistent 

experimental observations in the literature. In addition, our CPHMDMSλD simulations of proteins 

have elucidated the role of pH-dependent transient states in residues that are buried or occluded 

from solvent, including that of the pH-dependent optical properties of a cyan fluorescent protein 

mutant, where the existence of pH-dependent transient states can be used to explain its non-

monotonic spectroscopic behavior. 

 



1 

 

 

Chapter 1: Introduction 

1.1 The role and importance of pH 

pH is one of the critical regulators of biological activity. Enzymatic activity is optimized 

within a narrow pH range,1 often requiring the participation or presence of ionizable residues 

such as aspartic acid, glutamic acid and/or histidine in the active site,2 and accurate measurement 

of their pKa values is crucial in understanding the catalytic mechanism.3-5 In recent years, the 

role of pH regulation in nucleic acid systems has been acknowledged,6,7 where parallels to 

proteins can be drawn, such as the catalytic activity of ribozymes (ribonucleic acid enzymes),8-13 

demonstrating the ubiquity of pH regulation in biological processes. Apart from its influence on 

catalytic activity, pH regulation has been observed in numerous other processes including protein 

folding,14-17 protein-protein interactions,18 protein-substrate binding,19,20 translational recoding,21 

and aberrant pH regulation has even been implicated in cancer-related physiology.22 As such, 

specific examples of pH-dependent properties encompass a wide variety of systems, such as the 

catalytic mechanism of dihydrofolate reductase,23 proton gradient driven ATP synthesis,24 and 

the influenza virus haemagglutinin.25  

Histidine, with a pKa of 6.5, is perhaps the most commonly implicated residue-of-interest 

in pH-dependent processes. While the pKa values of amino acid monomers have been known for 

decades, the microenvironment around the residue located in a protein environment may alter its 

pKa value, shifting them towards physiologically relevant pH conditions. Similarly, in nucleic 

acids, questions about the role of protonated nucleotides with shifted pKa values in modulating 
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the pH-dependent properties of nucleic acids have emerged.6,7 Protonated nucleotides are now 

known to serve as key catalytic residues in many ribozymes,8-13 and are implicated in the pH-

dependent biological activities of numerous RNA systems, such as the retrovirus pseudoknot,26 

peptidyl-transferance center of the ribosome,27-32 helix 69 of the 50S ribosomal subunit,33,34 and 

the U6 intramolecular stem-loop of the spliceosome complex.35 In DNA, the presence of 

protonated A+•C base pairs are known to cause mutagenic and carcinogenic effects.36,37 

Measuring the pH-dependent activity profile has allowed investigators to determine the 

overall, or macroscopic, pKa of the biological process, but limited information can be gleamed 

about the specific residues that control such pH-dependent activity. Thus, the ability to measure 

the site-specific pKa of a particular residue is invaluable in identifying key titrating residues and 

understanding the mechanism of these pH-dependent biological processes. To achieve this goal, 

biophysical experimental techniques used to study pH-dependent behavior in both proteins and 

nucleic acids have made significant progress over the last decade, notably in the use of NMR 

spectroscopy to measure site-specific pKa values.38,39 More recent approaches also include the use 

of nucleobase analogs that serve as pH-dependent fluorescent sensors,40-42 and the use of Raman 

spectroscopy on a crystallized enzyme.43,44 Despite the copious amounts of biochemical and 

structural data emerging from these studies, in some systems there still remains ambiguity as to 

the specific function of these protonated residues. 

1.2 Transiently Populated Conformational States in Structural Biology 

Until recently, the dominant approach to probe the mechanism of pH-dependent activity 

has focused on the analysis of static structures typically solved near physiological pH. Recent 

studies have demonstrated the increasingly important role of biomolecular transient 

conformational states, hereon referred to as “transient states”, in a wide range of biological 
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activity, from protein folding45 to ligand binding.46 Such transient states are typically minor 

populations that comprise between 0.1% to a few percent of the total population under 

physiological conditions,47 but are nevertheless critical in providing a more comprehensive 

understanding of the processes that they govern. 

In the context of our investigation, this naturally leads to the question of how pH affects 

such transient states, and in turn, their resulting activity. While the list of examples of pH-

dependent transient states is still growing, there is precedence of their importance, such as in 

membrane fusion involving the influenza hemagglutinin HA2 subunit as suggested by Bax and 

co-workers,48 although detailed experimental characterization of these pH-dependent transient 

states has yet to be reported owing to the fact that they border the detection limits of 

experimental methods. In addition, Al-Hashimi and co-workers have also recently discovered the 

existence of low population transient state conformations that are functionally important in both 

RNA and DNA systems, some of which are known to exhibit pH-dependent behavior,49,50 

demonstraing the ubiquity of transient states across different classes of biomolecules. 

Conventional experimental techniques such as NMR spectroscopy,38,39 pH-dependent fluorescent 

nucleobase analogs40-42 and Raman spectroscopy43,44 have not been able to directly characterize 

such pH-dependent transient states, although progress has been made through the development 

of novel relaxation dispersion NMR spectroscopy techniques,51,52 and room temperature X-ray 

crystallography.53 has made this endeavor more plausible. Probing pH-dependent transient states 

will undoubtedly prove to be more challenging, as not only are we dealing with low population 

states, but it is also necessary to deconvolute the pH effects. 
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1.3 Existing Computational Tools to Model pH Effects 

Using computational tools to augment and inform the experimental investigation of pH-

dependent processes, notably in dealing with systems that include transient states that are at the 

forefront of experimental detection limits can be advantageous. Traditionally, molecular 

dynamics (MD) simulations, which have the ability to provide detailed atomistic insight from 

first principles, can be used to model the effects of high and low pH on the resulting 

biomolecule, and in some cases have been used to shed light on existing ambiguities in pH-

mediated activity.54-58 However, conventional MD simulations are only capable of modeling 

fixed protonation states, and are limited by the fact that substantial prior knowledge about the 

identity of the key residues and their corresponding protonation states is required. As simulations 

would be most useful in situations where there is a lack of experimental data, it is evident that 

the impact of traditional MD simulations alone will be rather limited. 

The absence of experimental pKa values may be resolved by computing pKa values by 

using a better theoretical treatment of the electrostatics in proteins and nucleic acids. One of the 

more successful approaches is that based on the Poisson-Boltzmann (PB) equation methodology, 

which has achieved reasonable success in predicting protein pKa values.59 In terms of predicting 

the pKa values of nucleic acids, Honig, Pyle, and co-workers have also recently demonstrated its 

feasibility using the non-linear Poisson–Boltzmann (NLPB) equation.60 A key limitation of 

initial PB methods was the lack of conformational flexibility, although this has been partially 

addressed using approaches like tuning the effective protein dielectric constant61 and including 

representations of multiple conformations.62,63 The need for conformational flexibility led to the 

development of the other major physics-based approach in computational pKa predictions, which 

is based on traditional molecular dynamics (MD) simulation. Warshel and co-workers were the 
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first to demonstrate the use of free energy calculations to calculate the pKa values of protein 

residues.64-67 Subsequent developments in the MD community have sought to couple the 

protonation state of the titrating residue with the dynamics of the protein itself. Such pH-coupled 

simulations, which have been termed constant pH molecular dynamics (CPHMD), are uniquely 

suited to model realistic pH-dependent responses, even in systems where there is limited 

experimental data because no a priori information on the identity of key titrating residues and 

their protonation state is required, making them uniquely suited to investigate pH-dependent 

transient states and other systems where there is limited experimental data. In this formalism, the 

protonation states of titrating residues change dynamically throughout the simulation that is set 

according to the external pH bath, and further adjusted according to the changes in the 

electrostatic microenvironment around the titrating residue. Unlike the pKa values calculated 

from traditional computational methods like those based on the PB equation, the CPHMD 

framework has the added advantage of including dynamical information to its free energy 

calculations, making it more suitable for modeling pH-dependent properties that correlate to 

structural fluctuations or local conformation changes. 

The CPHMD methodology has been implemented using two distinct approaches, which 

vary in the manner in which the titration coordinates are treated – either discretely or 

continuously.68 In the discrete CPHMD variant, the MD sampling of atomic coordinates is 

combined with the Monte Carlo (MC) sampling of protonation states. At regular intervals during 

a typical MD simulation, a MC step is performed to determine the change of the protonation 

state. Discrete CPHMD was first reported by Bürgi et. al.,69 which was computationally 

expensive at that time and suffered from convergence issues, owing to the fact that it was 

performed in explicit solvent and used the more expensive thermodynamic integration approach 
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to calculate the energies used in the MC evaluation step. Baptista and co-workers reported a 

similar discrete CPHMD implementation but used the Poisson-Boltzmann finite-difference 

method to calculate the energies used in the MC evaluation step.70-72 With the advances in 

implicit solvation models around this time,73,74 and the initial convergence issues reported for 

explicit solvent CPHMD,69 subsequent developments in discrete CPHMD by Dlugosz and 

Antosiewicz,75,76 and Mongan et. al.,77 were implemented using a Generalized-Born (GB) 

implicit solvent model. More recent improvements in the discrete CPHMD community have 

been focused on achieving better sampling by enhanced sampling techniques, such as 

Accelerated Molecular Dynamics by Williams et. al.78 and replica exchange strategies by 

Roitberg and co-workers.79-81 Others in the field, namely Warshel and co-workers, have focused 

on developing a more physically realistic form of CPHMD, using time-dependent MC sampling 

of the proton transfer process,82 and the empirical valence bond (EVB) framework to simulate 

proton transfer between solute and solvent.83 

By contrast, in the continuous CPHMD variant, which was first reported by Baptista et. 

al.84 and Borjesson et. al.,85 titration coordinates can be treated as mixed states. In the continuous 

CPHMD variant developed by Brooks and co-workers, the titration coordinate represents an 

instantaneous microstate, and it is propagated continuously between the protonated and 

unprotonated states using the λ dynamics approach.86-88 Continuous CPHMD allows one to avoid 

sudden jumps in potential energy that occur after a successful MC move in the discrete CPHMD 

variant, and potentially avoids artifacts that may be caused by the MC moves in titration 

coordinates. Additionally, continuous CPHMD facilitates coupled proton moves, which would 

need to be engineered as specific move types in the MC-based variant. Continuous CPHMD was 

originally implemented in implicit solvent,89 improved to account for proton tautomerism,90 and 
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it provided the first demonstration of using enhanced sampling strategies to accelerate sampling 

and convergence in CPHMD simulations.91 The effectiveness of continuous CPHMD has been 

demonstrated on numerous pH-dependent systems, including of protein folding,92,93 aggregation 

of Alzheimer's beta-amyloid peptides,94 pH-triggered chaperon activity of HdeA dimers,95 

electrostatic effects on protein stability,96 self-assembly of spider silk proteins,97  and RNA 

silencing in the carnation italian ringspot virus.98 Other investigators in the field have also seen a 

number of successes using discrete CPHMD simulations.99-101 

1.4 Explicit Solvent Constant pH Molecular Dynamics 

While the move to implicit solvent CPHMD has obvious advantages in sampling and 

convergence, a number of unresolved issues have emerged over the years. It has been reported 

that the generalized Born implicit solvent model underestimates the desolvation of buried 

charge-charge interactions,91 causing a systematic overstabilization of the ionized form102 and 

consequently increasing the error of predicted pKa values. In addition, these models are known to 

cause structural compaction which may distort the overall structure,96,103 introducing another 

source of error in modeling pH-dependent dynamics. Furthermore, in systems such as ion 

channels104-106 and some transmembrane proteins,107 where the microscopic interactions of 

discrete ions and water with the protein are important, the use of an explicit solvent 

representation of the solvent environment is desirable. Furthermore, for nucleic acids, existing 

implicit solvent model have only reported success on the most basic A-form RNA or B-form 

DNA structure structures,108 and more esoteric structural features, which are typically present in 

most RNA structures that are implicated to pH-mediated activity may not be modeled correctly. 

Therefore, there is an impetus to re-introduce explicit solvent into the CPHMD 

framework. At the time when this dissertation first started in 2010, the only explicit solvent 
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CPHMD reported was by Grubmüller and co-workers that used the continuous CPHMD variant, 

but that work was limited to a proof of concept demonstration for model amino acid compounds, 

and no practical applications for larger full-sized proteins were reported.109 At about the same 

time, Wallace and Shen reported a hybrid solvent continuous CPHMD model, where the 

Cartesian coordinates of the protein was propagated in explicit solvent, and the titration 

coordinates were propagated using the GB implicit model, and it was shown to reduce the errors 

introduced by the implicit CPHMD framework.103 In a related work by Roitberg and co-workers 

in subsequent years, the hybrid CPHMD framework was also implemented using the discrete 

CPHMD variant, and it too has been demonstrated to reduce the errors associated with the 

implicit solvent model, notably for longer timescale CPHMD simulations.110 

1.5 Dissertation Outline 

In this dissertation, we report on the first viable explicit solvent CPHMD framework 

based on the newer multi-site λ-dynamics algorithm (MSλD) to model pH-dependent dynamics. 

Chapter 2 summarizes the theory and methodology behind the explicit CPHMDMSλD framework. 

Early CPHMDMSλD work (Chapter 3.1) was first tested on simple nucleotide compounds,111 

before proceeding to simulate full-sized RNA systems.112 Initial sampling challenges were 

identified, which were alleviated through the use of a pH-replica exchange (pH-REX) enhanced 

sampling method (Chapter 3.2).113 The explicit CPHMDMSλD framework, with pH-REX 

sampling improvements was later extended to model pH effects in proteins (Chapter 3.3),114 and 

adopted to the AMBER force field (Chapter 3.4) for use with RNA systems with more 

complicated topology.115,116 

In collaboration with NMR studies, CPHMDMSλD simulations were used to characterize 

transient Hoogsteen GC+ base pairs in DNA duplexes (Chapter 4.1).117 Subsequent work led to 
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the investigation of pH-mediated transient states and their effect RNA activity, notably on the 

hairpin ribozyme (Chapter 4.2),115,116 where a combination of CPHMDMSλD and WEXplore,118 a 

hierarchical weighted ensemble sampling technique, were used to identify pH-dependent 

transient states, which were critical in reconciling seemingly baffling and/or conflicting 

experimental observations. In the context of protein systems, the pH-dependent dynamics of 

buried ionizable groups in staphylococcal nuclease were simulated by CPHMDMSλD simulations, 

where the role of pH-dependent transient states was first elucidated (Chapter 5.1).119 Subsequent 

work led to the investigation of the unusual pH-dependent optical properties of a mutant of cyan 

fluorescent protein (CFP),120 where the identified pH-dependent transient states were pivotal in 

explaining its non-monotonic optical properties (Chapter 5.2).  
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Chapter 2: Explicit Solvent Constant pH Molecular 

Dynamics: Theory & Methods 

2.1 Theory 

Note: Chapter 2.1 was adapted from the following references.111-114 

2.1.1 Constant pH Molecular Dynamics Framework 

We briefly review the theory behind constant pH molecular dynamics (CPHMD). In 

CPHMD, the protonation state of the titrating residue is described by a continuous variable, λ. In 

the original implementation of continuous CPHMD, the dynamics of λ is described according to 

λ-dynamics, a formalism that couples the dynamics of λ to the dynamics of the protein system. 

The simulation is under the influence of a hybrid Hamiltonian and its potential energy is 

described by: 

𝑈𝑡𝑜𝑡(𝑋, {𝑥}, {𝜆}) = 𝑈𝑒𝑛𝑣(𝑋) + ∑ ∑ 𝜆𝛼,𝑖 (𝑈(𝑋, 𝑥𝛼,𝑖))2
𝑖=1

𝑁𝑠𝑖𝑡𝑒𝑠
𝛼=1      

+ ∑ ∑ ∑ ∑ 𝜆𝛼,𝑖𝜆𝑇,𝑗 (𝑈(𝑥𝛼,𝑖, 𝑥𝑇,𝑗))
𝑁𝑇
𝑗=1

𝑀𝑠𝑖𝑡𝑒𝑠
𝑇=𝛼+1

𝑁𝑆
𝑖=1

𝑀𝑠𝑖𝑡𝑒𝑠−1
𝛼=1  (2.1.1.1) 

where Nsites is the total number of titrating residues (α), which has i number of protonation states 

(typically 2). X represents the coordinates of the environment atoms (i.e., the parts of the protein, 

solvent, etc… that are not titrating). Both xα,1 and xα,2 represent the coordinates of atoms in 

residue α that are associated with the protonated and unprotonated states, respectively. The 

titrating proton and the other atoms whose charges vary according to the protonation state of the 

residue (usually atoms within 2-3 bonds from the titrating proton) are included in both xα,1 and 

xα,2 and are defined as a part of the “titrating fragment.”. λ serves as a scaling factor that is 
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associated with each titrating residue α and its value describes the physically relevant protonated 

(λα,1 = 1) and unprotonated (λα,2 = 1) states. The double summation signifies the interaction 

between the environment and all protonation states at each site, and the third term designates the 

interaction of the protonation states at one site with the protonation states at another site. 

Protonation states at each site are independent and do not interact with each other in the 

simulation. 

In the explicit solvent CPHMDMSλD simulation framework developed, we utilized the 

improved λNexp functional form of λ implemented under multi-site λ-dynamics (MSλD).121,122 

The scaling factor that is associated with the titrating residue α changes dynamically throughout 

the simulation and is described by a set of continuous coordinates that are governed by the 

following equations: 




 ,i

N exp 
e
c sin ,i

e
c sin , j

j1

N



         (2.1.1.2) 

When applied to the two-state system representing the protonated and unprotonated forms this 

functional form becomes: 
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
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ee
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
    (2.1.1.3) 

This new form implicitly satisfies the constraints as required by λ-dynamics: 



0  i 1 and      



i
i1

N

 1       (2.1.1.4) 

The use of the λNexp functional form also expands the future functionality of the explicit solvent 

CPHMDMSλD framework to titrate between more than two states, such as the tautomeric forms of 

titrating groups. 
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2.1.2. Calibrating CPHMD Simulations 

CPHMDMSλD simulations are calibrated on model compounds (i.e., amino acids or 

nucleosides) to reproduce the external pH environment. Modeling of the external pH bath is 

achieved by introducing a fixed biasing potential parameter (
fixed

α,2F ) to the unprotonated state, 

which results in the following biased potential energy function: 

𝑈𝑡𝑜𝑡(𝑋, {𝑥}, {𝜆}) = 𝑈𝑒𝑛𝑣(𝑋) + ∑ ∑ 𝜆𝛼,𝑖(𝑈(𝑋, 𝑥𝛼,𝑖) − 𝐹𝛼,𝑖
𝑓𝑖𝑥𝑒𝑑

)2
𝑖=1

𝑁𝑠𝑖𝑡𝑒𝑠
𝛼=1     

+ ∑ ∑ ∑ ∑ 𝜆𝛼,𝑖𝜆𝑇,𝑗 (𝑈(𝑥𝛼,𝑖, 𝑥𝑇,𝑗))
𝑁𝑇
𝑗=1

𝑀𝑠𝑖𝑡𝑒𝑠
𝑇=𝛼+1

𝑁𝑆
𝑖=1

𝑀𝑠𝑖𝑡𝑒𝑠−1
𝛼=1  (2.1.2.1) 

For the initial calibration, the free energy of deprotonation ( nprotonatioΔG ) of each isolated model 

compound calculated using traditional λ-dynamics. The free energy of protonation ( nprotonatioΔG ) 

is used to calibrate the biasing potential applied to the unprotonated state (
fixed

α,2F ) that simulates 

the effect of an external pH environment, and the other fixed biasing potential applied to the 

protonated state (
fixed

α,1F ) is kept at zero. By setting the value of 
fixed

α,2F
 

to nprotonatioΔG , 

approximately equal populations of protonated and unprotonated states are sampled in the 

simulation. Under this condition, the external pH environment is equal to the pKa value of the 

model compound. To change the pH of the simulation, 
fixed

α,2F
 
can be adjusted by the following 

equation: 

  ),pHpK(10lnΔG anprotonatio2,  TkF B

fixed

   (2.1.2.2) 

where pH is the external pH of the simulation and pKa is the experimental pKa of the model 

compound. The fixed biasing potential is pre-calculated and its value, corresponding to the 

specified external pH, is universally applied to all residues of the same type regardless of the 

local microenvironment it is in. 
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In explicit solvent CPHMDMSλD simulations, when the titration coordinates are allowed to 

propagate dynamically, the two end points that correspond to physical protonation states may not 

be sufficiently sampled to yield converged estimates of the pKa shifts. To ameliorate this issue, 

the inclusion of an extra variable biasing potential (Fvar) is introduced, which can be adjusted to 

tune the sampling efficiency of titration coordinates and the fraction of physical protonation 

states: 

 



 


otherwise

ifk
F iibias

i
;0

8.0;8.0
2

,var

,


    (2.1.2.3) 

Thus, in the CPHMD treatment, titratable groups in proteins may be viewed as model 

compounds that are perturbed by the introduction of the local environment. 

2.1.3. pH Replica Exchange Enhanced Sampling 

The potential for slow convergence of protonation state sampling in CPHMD simulations 

has been well documented, and is exacerbated for residues with conformationally-coupled pKa 

values, where they undergo a local conformation change that causes them to sample different 

electrostatic environments yielding distinct microscopic pKa values.78,112,123 Early work by 

Brooks and co-workers on protein CPHMD simulations has demonstrated that the introduction of 

a temperature replica exchange (T-REX) protocol can significantly accelerate sampling to 

address such issues.91 However, using T-REX in explicit solvent MD simulations typically incurs 

a large computational expense, for example, a moderate sized protein of ~100 residues (40k 

atoms when solvated) requires at least 20 replicas to achieve reasonable exchange rates between 

adjacent temperature replicas, and when simulating CPHMD across a reasonable pH range (e.g., 

pH 5 to 9), the total number of replicas required increases to ~100. Therefore, we used a pH 

replica exchange (pH-REX) sampling strategy instead, and the pH-REX sampling protocol 
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implemented in our work is based on the work of Wallace and Shen,103 where simulations 

performed at various pH conditions are exchanged based on the following Metropolis criterion: 










otherwiseΔ);exp(

0Δ if;1
P

     

     
















pH';'pH;

pH;'pH';
   where

pHpH

pHpH

ii

ii

UU

UU




   (2.1.3.1) 

where β is 1/kbT, the first two terms,   pH';pH

iU   and   pH;'pH

iU   are the pH-biasing potential 

energies for the two adjacent replicas after the exchange, and the next two terms,    pH;pH

iU   

and   pH';'pH

iU  are the corresponding energies for the respective replicas before the exchange. 
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2.2 Methods 

Note: Chapter 2.2 was adapted from the following references.111-114,116 

2.2.1. Simulation Methods: Structure Preparation 

Input structures of the model compounds (i.e. peptides, nucleosides) and test compounds 

(i.e. dipeptide, dinucleotide sequences) were generated from the CHARMM topology files using 

the IC facility in CHARMM while hydrogen atoms were added using the HBUILD facility.124 

Model and test compounds were solvated in a cubic box of explicit TIP3P water125 using the 

convpdb.pl tool from the MMTSB toolset.126 For each system, it was first neutralized, before an 

appropriate number of Na+ and Cl- counterions was added to match the experimental ionic 

strength. For the mononucleotides, two isomers in the form of 5’-phospate and 3’-phosphate 

were constructed using the patch keywords 5PHO and 3PHO respectively, in CHARMM. All 

other nucleic acid structures had hydroxyl groups patched to the terminal ends via patch 

keywords 5TER and 3TER. Peptides and protein structures were capped at the N-terminus and C-

terminus using CHARMM’s ACE and CT2 patches. 

Additional patches were constructed to represent the protonated forms of nucleic acids 

and amino acids. All of the associated bonds, angles and dihedrals were explicitly defined in the 

patch. The environment atoms were defined as all atoms that were not included in the titratable 

fragments. Each titratable residue was simulated as a multiple topology model that explicitly 

included atomic components of both the protonated and unprotonated forms. The CHARMM 

parameters for the partial charges of aspartic acid, glutamic acid and lysine used in this study 

were reported previously by Lee et. al.89 Partial charges for the three protonation states of 

histidine were obtained without modification from the HSP, HSE and HSD residues as reported 
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in the CHARM22 all-atom force field for proteins.127 Parameters for nucleic acid were derived as 

indicated in Chapter 3.1 and Chapter 3.4. 

 Input structures of full-sized biomolecules were prepared in a similar fashion as that used 

for the model and test compounds. The input structure for the protein hen egg-white lysozyme 

(HEWL), the 45-residue binding domain of 2-oxoglutarate dehydrogenase multienzyme complex 

(BBL) and the 56-residue N-terminal domain of ribosomal L9 protein (NTL9) were generated 

from the PDB file (accession codes: 2LZT, 1W4H, 1CQU respectively). The input structure for 

lead-dependent ribozyme was generated from the PDB file (Accession code: 1LDZ), using the 

lowest energy NMR structure reported.128 The excised GAAA tetraloop was constructed by 

extracting residues 12 to 21 from the lead-dependent ribozyme, and harmonic distance restraints 

were applied to enforce base pairing between residues A12 and U21. 

2.2.2. Simulation Details: Molecular Dynamics 

MD simulations were performed within the CHARMM macromolecular modeling 

program (version c36a6) using either (i) CHARMM36 all-atom force field for RNA129, (ii) 

modified AMBER force field for RNA, (iii) CHARMM22 all-atom force field for proteins127 or 

(iv) CHARMM36 all-atom force field for proteins130,131 and TIP3P water.125 The simulation set 

up for λ dynamics is similar to that reported by Knight and Brooks.121,122 The SHAKE 

algorithm132 was used to constrain the hydrogen-heavy atom bond lengths. The Leapfrog Verlet 

integrator was used with an integration time step of 2 fs. A non-bonded cutoff of 12 Å was used 

with an electrostatic force shifting function or force switching function (in latter studies) and a 

van der Waals switching function between 10 Å and 12 Å. The distance cutoff in generating the 

list of pairwise interactions was 15 Å. While group-based 8 Å cutoffs investigated in the 1990s 

were notoriously poor in reproducing accurate dynamics of biomolecules relative to the Ewald 
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summation technique,133,134 modern atom-based cutoff schemes with sufficiently long cutoff 

distances (12 Å),135 such as those employed in this study, have been shown to be comparable to 

the Ewald summation technique in modeling the dynamics of both proteins136 and nucleic 

acids.137 The threshold value for assigning λα,i =1 was λα,i ≥ 0.8. Variable biases (Fvar) were 

added to the hybrid potential energy function and the associated force constant (kbias) was 

optimized to enhance transition rates between the two protonation states. Since identical kbias 

values were applied to both protonated and unprotonated states, the PMF at the end-points were 

not altered and no reweighting scheme was required. 

CPHMD simulations utilize an extended Hamiltonian approach, where the protonation 

state of the residue is described by a continuous variable, λ, which is propagated simultaneously 

with the spatial coordinates at a specified external pH using multi-site λ-dynamics. The 

CPHMDMSλD simulations performed in the multi-site λ-dynamics framework (MSλD)121,122 

within the BLOCK facility, using the λNexp functional form for λ (FNEX) with a coefficient of 

5.5.121,122 The titratable fragment included the protonation site and adjacent atoms whose partial 

charge differed according to the protonation state. The environment atoms were defined as all 

atoms that were not included in the titratable fragments. Linear scaling by λ was applied to all 

energy terms except bond, angle and dihedral terms, which were treated at full strength 

regardless of λ value to retain physically reasonable geometries. Each θα was assigned a fictitious 

mass of 12 amu•Å2 and λ values were saved every 10 steps. The temperature was maintained at 

298K by coupling to a Langevin heatbath using a frictional coefficient of 10ps-1.  

After an initial minimization, most systems were heated for 100 ps and equilibrated for 

100ps to 400ps. This was followed by a production run of variable length, ranging from 3 ns to 

>50 ns per system or replica. For most systems, CPHMDMSλD simulations were performed across 
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the pH range, with integer value pH spacing, as indicated in the titration curves. Larger systems 

with more titratable groups used a smaller spacing of 0.5 pH intervals. In the pH-REX 

simulations, exchange attempts were made at every 1 to 2 ps. All CPHMDMSλD simulations were 

performed in triplicate. 

2.2.3. Calculating pKa values 

The populations of unprotonated (Nunprot) and protonated (Nprot) states are defined as the 

total number of times in the trajectory where conditions λα,1 > 0.8 and λα,2 > 0.8 are satisfied 

respectively. They are used in the calculation of the fraction of physical states, which is the ratio 

of Nunprot and Nprot states over all states (which include intermediate λ values). The unprotonated 

fraction (Sunprot) is calculated for each pH window: 

 
 
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protunprot

unprot
unprot

NN
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Sunprot values computed across the entire pH range, were then fitted to a generalized version of 

the Henderson-Hasselbalch (HH) formula138 to obtain a single pKa value: 

 
)(101

1
pH

pKapHn

unprotS


   (2.2.3.2) 

Unless specified otherwise, the reported pKa value and its uncertainty correspond to the mean 

and standard deviation calculated from 3 sets of independent runs. The pKa values and the Hill 

coefficients (n) were calculated using equation 2.2.3.2. In this formalism, n has a theoretical 

value of one and deviations from this value indicate the degree of cooperativity (n > 1) or anti-

cooperativity (n < 1) between strongly interacting titratable groups.138,139 In the calculation of 

transition rates, a transition is defined as a move in λ space between physical protonation states 

using the same definitions for calculating Nunprot and Nprot (i.e., moving between λα,1 > 0.8 and 
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λα,1 < 0.2 constitutes a valid transition). The transition rate statistics reported are calculated from 

the simulation where the pH value was closest to the pKa value of the residue in question. 

2.2.4. Treatment of Symmetrical Systems 

In some dipeptide test compounds, the symmetry of the system may render the 

environment around each titrating residue to be similar. In such a situation of coupled titrating 

residues, protonation state statistics for a specific residue may not be associated with the titrating 

residue. Therefore, the pKa calculation has to be performed using a modified version of equation 

2.2.3.2, where the combined Sunprot ratio for all i residues is fitted to the following equation: 
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Derivation of Equation 2.2.3.2 from Mean Field Approximation 

Here, we show how equation 2.2.3.2 can be derived from the mean field approximation (i.e. 

equation 1b) from Bashford and Karplus.140 
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where θ is the probability that the site is protonated: 
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Therefore equation 2.2.4.2 can be rewritten as: 
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which is the same form as equation 2.2.3.2 for n = 1: 
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Derivation of Equation 2.2.4.1 from Decoupled Site Representation 

Here, we show how equation 2.2.4.1 can be derived from the decoupled site representation 

(DSR) from Onufriev et. al.138 We start with the following expression: 
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Since xi represents the fraction of protonated states for each titrating residue i: 
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The DSR framework maps a set of i real sites to a set of j non-interacting quasi-sites. Assuming a 

one-to-one mapping of real to quasi sites (i = j), we obtain the following expression, which is the 

same expression as equation 2.2.4.1: 
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2.2.5. Reconstructing Apparent pKa from Microscopic pKa 

 As the timescales of molecular dynamics simulation and complementary experimental 

methods for measuring pKa values differ on the order of several magnitude, for systems with 

considerable conformational flexibility, which transition between different conformation where 

the local electrostatic environment around the titrating residue can be different, the calculated 

microscopic pKa from CPHMDMSλD simulations will not correspond to the experimentally 

measured macroscopic or apparent pKa value. In order to reconstruct the apparent pKa value 

from microscopic pKa values, the following relationship was derived. 

 Consider a system comprised of N conformational states, α = 1, N. Let those states have 

free energies Gα, yielding a distribution of population of each state ρα given by ρα α exp(-βGα). 

Now, assume that each of these states is subject to a pH-dependent equilibrium over a set of 

titratable sites i = 1, m with pKa values of pKa
i. The population of each state, α, will now depend 

on the external pH and the pKa values of each of the ionizable sites: 

𝜌𝛼 =
exp(−𝛽𝐺𝛼) [1 + ∑ exp (ln 10 (𝑝𝐾𝑎,𝛼

𝑖 − 𝑝𝐻))𝑚
𝑖=1 ]

∑ exp(−𝛽𝐺𝛾) [1 + ∑ exp (ln 10 (𝑝𝐾𝑎,𝛾
𝑗

− 𝑝𝐻))𝑚
𝑗=1 ]𝛾

 

𝜌𝛼 =
exp(−𝛽Δ𝐺0𝛼) [1 + ∑ exp (ln 10 (𝑝𝐾𝑎,𝛼

𝑖 − 𝑝𝐻))𝑚
𝑖=1 ]

∑ exp(−𝛽Δ𝐺0𝛾) [1 + ∑ exp (ln 10 (𝑝𝐾𝑎,𝛾
𝑗

− 𝑝𝐻))𝑚
𝑗=1 ]𝛾
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where exp (ln 10 (𝑝𝐾𝑎,𝛼
𝑖 − 𝑝𝐻)) represents the population of the unionized state at j in 

conformation γ at a given external pH. 

 To consider the fate of a single ionizable site, r, at a given external pH, we can derive the 

population of the unionized state as the summation of all conformational states in the unionized 

protonation state: 

𝜌𝑟(unionized) = ∑ 𝜌𝛼
𝑟 (unionized)

𝑁

𝛼=1

 

=
∑ exp(−𝛽Δ𝐺0𝛼) [exp (ln 10 (𝑝𝐾𝑎,𝛼

𝑟 − 𝑝𝐻))]𝑁
𝛼=1

∑ exp(−𝛽Δ𝐺0𝛾) [1 + ∑ exp (ln 10 (𝑝𝐾𝑎,𝛾
𝑗

− 𝑝𝐻))𝑚
𝑗=1 ]𝛾

 

and the population of the ionized states is given by: 

𝜌𝑟(ionized) = ∑ 𝜌𝛼
𝑟 (ionized)

𝑁

𝛼=1

 

=
∑ exp(−𝛽Δ𝐺0𝛼)𝑁

𝛼=1

∑ exp(−𝛽Δ𝐺0𝛾) [1 + ∑ exp (ln 10 (𝑝𝐾𝑎,𝛾
𝑗

− 𝑝𝐻))𝑚
𝑗=1 ]𝛾

 

 To determine the apparent Ka of a given site r, which is defined as [Mr][H+]/[MrH], where 

[Mr] and [MrH] are the total concentrations of ionized and unionized states and [H+] is the proton 

concentration. If [M] represents the total concentration of the system M, then: 

[𝑀𝑟] = [𝑀]𝜌𝑟(ionized)   𝑎𝑛𝑑   [𝑀𝑟𝐻] = [𝑀]𝜌𝑟(unionized) 

From the definition of pH we also know: 

𝑝𝐻 = − log10[𝐻+] 

[𝐻+] = 10−𝑝𝐻 = exp(−ln 10 𝑝𝐻) 
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Therefore, the apparent Ka is: 

𝐾𝑎
𝑟(apparent) =

[𝑀]𝜌𝑟(ionized)[𝐻+]

[𝑀]𝜌𝑟(unionized)
 

=
[𝑀] ∑ exp(−𝛽Δ𝐺0𝛼)𝑁

𝛼=1 [𝐻+]

[𝑀] ∑ exp(−𝛽Δ𝐺0𝛼) [exp (ln 10 (𝑝𝐾𝑎,𝛼
𝑟 − 𝑝𝐻))]𝑁

𝛼=1

 

=
[𝑀] ∑ exp(−𝛽Δ𝐺0𝛼)𝑁

𝛼=1 [𝐻+]

[𝑀] ∑ exp(−𝛽Δ𝐺0𝛼) exp(ln 10 𝑝𝐾𝑎,𝛼
𝑟 ) exp(−ln 10 𝑝𝐻)𝑁

𝛼=1

 

=
[𝑀] ∑ exp(−𝛽Δ𝐺0𝛼)𝑁

𝛼=1 [𝐻+]

[𝑀] ∑ exp(−𝛽Δ𝐺0𝛼) exp(ln 10 𝑝𝐾𝑎,𝛼
𝑟 ) [𝐻+]𝑁

𝛼=1

 

=
∑ exp(−𝛽Δ𝐺0𝛼)𝑁

𝛼=1

∑ exp(−𝛽Δ𝐺0𝛼) exp(ln 10 𝑝𝐾𝑎,𝛼
𝑟 )𝑁

𝛼=1

 

=
∑ ρ𝛼

𝑁
𝛼=1

∑ ρ𝛼 exp(ln 10 𝑝𝐾𝑎,𝛼
𝑟 )𝑁

𝛼=1

 

This expression in turn yields the result for apparent pKa expressed as equation 2.2.5.1: 

𝑝𝐾𝑎
𝑟(apparent) = −log10(𝐾𝑎

𝑟(apparent)) 

= −log10

∑ ρ𝛼
𝑁
𝛼=1

∑ ρ𝛼 exp(ln 10 𝑝𝐾𝑎,𝛼
𝑟 )𝑁

𝛼=1

 

= log10

∑ ρ𝛼 exp(ln 10 𝑝𝐾𝑎,𝛼
𝑟 )𝑁

𝛼=1

∑ ρ𝛼
𝑁
𝛼=1

 

= log10 ∑ x𝛼 exp(ln 10 𝑝𝐾𝑎,𝛼
𝑟 )𝑁

𝛼=1     (2.2.5.1) 

where xα is the fractional population of conformational state α and 𝑝𝐾𝑎,𝛼
𝑟  is the pKa for the rth 

ionizable site in state α.  
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Chapter 3: Developing the Explicit Solvent 

CPHMDMSλD Framework 

3.1 Explicit Solvent CPHMD of Nucleic Acids in CHARMM 

Note: Chapter 3.1 was adapted from the following references.111,112 

3.1.1 New CHARMM Parameters for Protonated Adenine and Cytosine 

Unlike pH-dependent protein activity, the role of pH regulation in nucleic acid systems 

has only been recently acknowledged.6,7 As a result, there has been a lack of historical emphasis 

on the role of nucleobases in their alternative protonation states, and the development of the 

corresponding parameters have not been reported in either CHARMM or AMBER force fields. 

To estimate the charge distribution of protonated nucleotides for use with the CHARMM force 

field, we calculated the partial charges for the adenine and cytosine nucleobases in their neutral 

(unprotonated) and charged (protonated) states using the MMFF94 force field.141 The difference 

in the partial charge was then added to the existing partial charge parameters for neutral adenine 

and cytosine in the CHARMM36 all-atom nucleic acid force field to assign the charge 

distribution for the protonated residues. A summary of the partial charge distribution and atom 

types for the protonated (calculated for this study) and unprotonated nucleic acids is reported in 

Table 3.1.1.1. Parameters for the bond, angle and dihedral energy terms for the protonated 

nucleic acid were adapted from existing nucleic acid parameters in CHARMM, and are reported 

in Tables 3.1.1.2 through 3.1.1.4. For the protonated adenine, the respective bonded parameters 

were obtained from guanine, specifically from the six-membered ring component that has atoms 
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analogous to that of adenine (N1, H1, C2 and C6). For the protonated cytosine, the respective 

bonded parameters were obtained from a tautomeric form of neutral cytosine (obtained from 

patch CYT1). 

Table 3.1.1.1: Charges and atom types assigned to the protonated and unprotonated states of 

titratable nucleic acids. 
 

Name Atom 
Unprotonated Protonated 

Atom Type Charge Atom Type Charge 

ADE 

H1 - - HN2 0.527 

N1 NN3A -0.74 NN2G -0.489 

C2 CN4 0.50 CN4 0.611 

C6 CN2 0.46 CN2 0.571 

CYT 

H3 - - HN2 0.52 

C5 CN3 -0.13 CN3 -0.174 

C2 CN1 0.52 CN1 0.75 

N3 NN3 -0.66 NN2C -0.874 

C4 CN2 0.65 CN2 0.962 

N4 NN1 -0.75 NN1 -0.654 

H41 HN1 0.37 HN1 0.42 

H42 HN1 0.33 HN1 0.38 

 

Table 3.1.1.2: Bond Parameters for Protonated Adenine and Cytosine. Parameters were adapted 

from comparable values from the tautomeric form of cytosine and guanine in CHARMM. 

 

Atom Types Kb bo 

CN1  NN2C 350.0 1.335 

CN2  NN2C 450.0 1.343 

HN2 NN2C 474.0 1.01 

 

Table 3.1.1.3: Angle Parameters for Protonated Adenine and Cytosine. Parameters were adapted 

from comparable values from the tautomeric form of cytosine and guanine in CHARMM. 

 

Atom Types Kθ θo 

CN4  NN2G CN2 70.0 131.1 

NN2G CN4  NN3A 70.0 122.2 

CN5  CN2  NN2G 70.0 107.8 

NN2  CN1  NN2C 50.0 116.8 

NN2C  CN1  ON1C 130.0 123.8 

CN1  NN2C  HN2 37.0 121.2 

CN1  NN2C  CN2 85.0 119.1 

CN2  NN2C  HN2 37.0 121.2 

CN3  CN2  NN2C 85.0 119.3 

NN2C  CN2  NN1 81.0 122.3 
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Table 3.1.1.4: Dihedral Parameters for Protonated Adenine and Cytosine. Parameters were 

adapted from comparable values from the tautomeric form of cytosine and guanine in 

CHARMM. 

 

Atom Types Kδ n δ 

CN2  NN2G CN4  NN3A 0.2 2 180.0 

HN2  NN2G CN4  NN3A 3.6 2 180.0 
CN2  NN2G CN4  HN3 4.0 2 180.0 
NN2C  CN2  NN1  HN1 1.0 2 180.0 
CN1  NN2C  CN2  CN3 6.0 2 180.0 
NN1  CN2  NN2C  CN1 2.0 2 180.0 
ON1C CN1  NN2C  CN2 1.6 2 180.0 
NN2  CN1  NN2C  CN2 0.6 2 180.0 
ON1C CN1  NN2C  HN2 3.0 2 180.0 
HN2  NN2C CN1  NN2 2.0 2 180.0 

CN3  CN2  NN2C  HN2 1.0 2 180.0 

HN2  NN2C CN2   NN1 2.0 2 180.0 

 

3.1.2 Optimization of Model Potential Parameters 

 The explicit solvent CPHMDMSλD framework was implemented using the recently 

developed λNexp functional form for λ in multi-site λ-dynamics (MSλD),120,121 which is described 

in Chapter 2. To calibrate the external pH bath in our CPHMDMSλD framework simulations, as 

with the previous implementation of CPHMD,89-91 we used the calculated free energy of 

deprotonation (ΔGprotonation) for each model compound, as the fixed biasing potential value in our 

simulation. In order to facilitate transitions between the two protonation states, we optimized the 

force constant (kbias) on the variable biasing potential that was applied for each model compound. 

It is interesting to note that without the application of the variable bias, no transitions 

between the protonated and unprotonated states were observed at conditions pH = pKa, where 

one should expect equal population of both states and the maximum transition rate between the 

two states (see Figure 3.1.2.1). At values of kbias < 20 kcal/mol, there were very few transitions 

in λ phase space between the two states for the entire duration of a 1 ns trajectory. At values kbias 

> 40 kcal/mol, transitions were rapid but the end states were not adequately sampled. The 



27 

optimal value of kbias for each nucleoside was selected by considering the competing needs for a 

high number of transitions and adequate sampling of the end-points (i.e., maintaining a high 

fraction of physical ligands (FPL) that were sampled). As illustrated in Figure 3.1.2.2, these two 

properties were observed to be anti-correlated to each other and there is a distinct range of kbias 

values (between 25 and 35 kcal/mol) that yielded good transition rates and where more than 80% 

of the simulation is spent at the physically-relevant end-points. The optimized parameters for the 

model potentials are reported in Table 3.1.2.1. 

Figure 3.1.2.1: Transitions between the two protonation states of adenosine in λ phase space at 

pH = pKa for a 1 ns trajectory with varying kbias values of (a) 20, (b) 30 and (c) 40. 

 

 

Figure 3.1.2.2: Effect of increasing kbias on the transition rate and fraction physical ligand (FPL) 

for (a) adenosine and (b) cytosine. Sampling characteristics were obtained from 5 independent 

MD runs of 1 ns each. 

 

Table 3.1.2.1: Parameters for the model potential.The reference pKa is the experimental pKa 

values for the model compounds.142 

 

Nucleotide ΔGprotonation (kcal/mol) kbias (kcal/mol) Reference pKa 

Adenine 19.39 29.75 3.50 

Cytosine 75.24 27.75 4.08 
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The variable bias with a relatively large force constant of 28 to 30 kcal/mol that is 

required to achieve a reasonable number of transitions in our simulation may be rationalized by 

noting that the appearance of a full charge unit when titrating between the two states is likely to 

significantly perturb the solvent environment around the nitrogen atom. We suggest that time is 

required for the solvent to reorganize and fully accommodate the new charge distribution as the 

system titrates from the unprotonated to the protonated state. Figure 3.1.2.3 provides a 

comparison of the radial distribution function (RDF) of water molecules surrounding the N1 

atom of adenosine in its protonated and unprotonated state and indicates that considerable 

rearrangement of the first solvent shell upon ionization of the residue does occur. For the RDF 

that describes the distances between N1 and the TIP3P oxygen atoms, we observed that the 

charged protonated state had a first solvation shell (2.7 Å) that is slightly closer than the 

uncharged unprotonated state (2.9 Å). A more significant change, however, was observed for the 

RDF that describes the distances between N1 and the TIP3P hydrogen atoms in which the 

protonated state first solvation shell was pushed back (3.4 Å) compared to that of the 

unprotonated state (2.0 Å). These observations are consistent with the expectation that water 

molecules would orient their hydrogen atoms towards the partial negative charge of the nitrogen 

atom in the unprotonated state and subsequently would flip their hydrogen atoms “outwards” and 

orient their oxygen atoms closer towards the partial positive charge of the protonated hydrogen 

that is present in the protonated state. Similar trends were observed for the RDF of water 

molecules that surround the N3 atom of cytidine (data not shown). An analogous change in the 

RDF of water molecules around the protonated N5 atom of the substrate of dihydrofolate 

reductase was also observed with MD simulations that sampled different protein conformation 

that altered the water accessibility of the ligand pocket.143 
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Figure 3.1.2.3: RDF of water molecules for (a) N1(ADE)-O(TIP3P) distances and (b) 

N1(ADE)-H(TIP3P) distances within a sphere of 10 Å from the N1 atom of adenosine in both 

protonated and unprotonated states. 

 

3.1.3 Sampling Efficiency of Explicit Solvent CPHMDMSλD simulations 

The sampling efficiency as measured by the transition rates between the two protonation 

states in the explicit solvent CPHMDMSλD framework is reasonably good with ~50 transitions per 

ns for our model compounds at pH = pKa. Given that the solvent reorganization upon the 

perturbation of a full charge unit was reported to be on a time scale of up to 3 ps in previous MD 

simulations70 and that the mean duration of the physically-relevant protonation states in our 

simulations is 20 ps, the sampling characteristics of our system are sufficient to allow solvent 

reorganization to occur. However, the transition rate is markedly lower than what has been 

observed in CPHMD simulations that are performed using implicit solvent models.89-91  It should 

be noted that our model potential parameters, specifically the kbias values as implemented in the 

explicit solvent CPHMDMSλD framework have been selected conservatively. For example, the 

transition rate can be doubled at the expense of reducing the FPL to 0.6 (Figure 3.1.2.2) which, 

provided that simulations are long enough to sufficiently enumerate the relative end-state 

populations, may be a better option for simulating larger-sized RNA systems where observing 

transitions between protonation states may be more challenging. 
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The more limited sampling efficiency of explicit solvent CPHMD simulations was also 

recently reported by Grubmüller and co-workers where the titration of an imidazole model 

compound achieved ~100 transitions in a 20 ns trajectory,109 which is a rate of ~5 transitions per 

ns. Considering the computational expense of performing explicit solvent simulations, our rate of 

~50 transitions per ns that is achieved with in our implementation of explicit solvent CPHMD is 

clearly advantageous. Finally, in Table 3.1.3.1, we present a comparison between the sampling 

characteristics of our simulation to that of previous work performed in the MSλD framework by 

Knight and Brooks for modeling series of inhibitors of HIV-1 reverse transcriptase.122 Using the 

same force constant for the variable bias (i.e., kbias = 7) as what was previously reported, we 

observed a significant drop in sampling performance with virtually no transitions observed 

between the two protonation states at pH = pKa. Our optimization of kbias assisted in improving 

the sampling characteristics, but the transition rate still remains about four fold less efficient than 

previous work. We note that earlier work performed by Knight and Brooks modeled hybrid 

ligands in which the substituents did not differ significantly in terms of their partial charge 

distributions. Thus, the introduction of a full charge unit when titrating between the two states in 

the explicit solvent CPHMDMSλD framework is likely to be the primary cause for the reduction 

sampling efficiency that we observe in the present simulations.  

Table 3.1.3.1: Sampling characteristics of simulations performed at pH = pKa. Sampling 

characteristics of a two-state hybrid ligand in explicit water investigated in previous work 

(obtained from Table 3, hybrid ligand F).122 

 

 Previous 

Worka 

Adenosine 

(Default)b 

Cytidine 

(Default)b 

Adenosine 

(Optimized)c 

Cytidine 

(Optimized)c 

kbias 7.00 7.00 7.00 29.75 27.75 

FPL 0.780 1.000 1.000 0.828 0.832 

Transitions (ps-1) 0.190 0.001 0.001 0.050 0.051 
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3.1.4 Convergence and Precision of Calculations 

 The challenges associated with sampling and convergence for CPHMD simulations has 

been reported on several occasions78,91 and these are expected to be an even greater concern in 

explicit solvent CPHMDMSλD where sampling efficiency is reduced. To validate the robustness of 

our explicit solvent CPHMDMSλD framework in its ability to achieve adequate convergence, we 

performed a series of simulations at pH = pKa for our model compounds. The degree of 

convergence in our simulations was determined by calculating the unsigned deviation between 

the free energy of protonation, estimated from subsets of shortened trajectories, and the free 

energy of protonation that was estimated from ten 1ns trajectories. Different combinations of 

trajectory length and number of independent runs were systematically examined to determine the 

most cost effective tradeoff between computational expense and precision of the calculations. 

The results are summarized in Figure 3.1.4.1 It was observed that individual trajectories required 

at least 100 ps to reliably observe any transitions between protonation states. In fact, we 

observed that a minimum simulation time of ~ 500 ps per trajectory was required to obtain a 

precision of ~0.20 kcal/mol in our calculations (Figure 3.1.4.1a) and running multiple shorter 

independent runs would not produce converged results unless the 500 ps threshold was crossed. 

Our results indicate that good precision can be achieved by using a total simulation time of 3 ns 

in the form of 3 independent runs of 1 ns each, where the unsigned deviations for the free energy 

of deprotonation was 0.05 kcal/mol for adenosine (Figure 3.1.4.1b). It should be noted that this 

level of precision was achieved in previous work three times more quickly for hybrid ligands 

whose charge distributions were similar.122 
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Figure 3.1.4.1: Unsigned deviation for the free energy of deprotonation of adenosine as a 

function of (a) total simulation time from all N trajectories and (b) individual simulation time of 

each of the N trajectories. 

 

3.1.5 Calibration Curve of Model Systems: Adenosine and Cytidine 

We calibrated our explicit solvent CPHMDMSλD framework at 298 K at zero salt 

concentration. The reference pKa that was used in the calibration was the experimental pKa that 

was measured under similar conditions (25°C at zero ionic strength).142 The titration curve of the 

model nucleoside compounds, adenosine and cytidine, are shown in Figure 3.1.5.1. The best-fit 

Henderson–Hasselbalch curve has a near ideal Hill coefficient for adenosine (n = 0.94) and 

cytidine (n = 0.93). The calculated pKa value of 3.50 for adenosine was in excellent agreement 

with experimental values and the pKa of 4.22 for cytidine is only slightly higher than the 

reference value by 0.14 pKa units. The accuracy of the calculated pKa values is determined 

primarily by the sampling efficiency at pH = pKa and the quality of the calibration of the 

ΔGprotonation values that are used to simulate distinct pH conditions. Our results demonstrate that a 

series of 3 x 1 ns simulations is sufficient to provide reasonably accurate results, which is 

significantly less than the 20 ns trajectory employed by Grubmüller and co-workers in their 

explicit solvent CPHMD implementation.109 
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Figure 3.1.5.1: Sample titration curves for model nucleoside compounds, (a) adenosine and (b) 

cytidine. 

 

Next, we tested our explicit solvent CPHMDMSλD framework on single nucleotide test 

compounds, adenine monophosphate (AMP) and cytosine monophosphate (CMP), at zero ionic 

strength and the results are summarized in Table 3.1.5.1. The calculated pKa values for AMP-5 

and β-AMP-3 were 4.08 and 4.20 respectively. Compared to adenosine, the pKa values of these 

nucleotide counterparts were slightly elevated by ~0.5 pKa units. Similarly, the nucleotide 

counterparts of cytidine with pKa values for CMP-5 and β-CMP-3 of 4.90 and 4.77, respectively, 

had slightly elevated pKa values by ~0.5 pKa units compared to cytidine. The calculated pKa 

values for both 5’-phosphate and 3’-phosphate isomers of adenosine and cytosine are not 

statistically different at the 95% confidence interval. The increase in the calculated pKa values 

from their nucleoside counterparts is expected, since the presence of the negative charge from 

the phosphate group may interact with the positively charged protonated base and weakly 

stabilize it, thus increasing the population of the protonated state and causing a corresponding 

increase in the calculated pKa value. 

In order to compare our calculated pKa values with experimental results, we performed 

simulations that mimicked the ionic strength of the environment (i.e., 100-150mM NaCl) in 

which the experiments were performed.144,145 By explicitly incorporating the salt environment, 
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the calculated pKa values are systematically lowered relative to those obtained from the zero 

ionic strength simulations. This shift in pKa values is to be expected since the presence of Na+ 

ions screens the electrostatic effects of the phosphate group. The results in Table 3.1.5.1 indicate 

that our pKa predictions had an average absolute error of 0.24 pKa units compared to experiment 

and we conclude that our explicit solvent CPHMD framework is capable of making accurate 

quantitative predictions of pKa values for simple nucleotides. These results also indicate that our 

model is capable of accounting for the differences between zero and non-zero ionic strength 

environments and highlights the importance of simulating the system at the appropriate ionic 

strength to mimic experimental conditions. 

Table 3.1.5.1: Calculated and experimental pKa values of test compounds. 

Compound [NaCl] (M) Calculated Experimental Abs. Error 

β-AMP-3 No salt 4.20 ± 0.06 - - 

β-AMP-3 0.15 3.79 ± 0.11 3.65 0.14 

AMP-5 No salt 4.08 ± 0.03 - - 

AMP-5 0.15M 3.89 ± 0.16 3.74 0.15 

β-CMP-3 No salt 4.77 ± 0.05 - - 

β-CMP-3 0.15M 4.56 ± 0.10 4.31 0.25 

CMP-5 No salt 4.90 ± 0.07 - - 

CMP-5 0.10M 4.67 ± 0.08 4.24 0.43 

 

3.1.6 Modeling Interactions between Adjacent Titrating Residues 

Finally, we tested our explicit solvent CPHMD framework on dinucleotide sequences 

ADE-ADE, CYT-CYT and CYT-ADE at zero ionic strength, where both nucleotides were 

titrated simultaneously in the same simulation. The pKa values were shifted upwards compared 

to the nucleoside model compounds for all sequences, ADE-ADE (4.08 ± 0.20 and 4.06 ± 0.16), 

CYT-CYT (4.93 ± 0.05 and 4.76 ± 0.09) and CYT-ADE (5.06 ± 0.07 and 3.85 ± 0.26), and were 

similar to the corresponding mononucleotide pKa values. For some of the sets of pKa calculations 

for the dinucleotide sequences, the Hill coefficient had more significant deviations from one 
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compared to the monomeric compounds. Specifically, the value was lowered (n < 0.8) for 5 of 

the 9 sets of pKa calculations. When the Hill coefficient deviates from one, it suggests that 

adjacent residues are interacting with each other in either a cooperative (n > 1) or anti-

cooperative (n < 1) fashion. Cross-correlation analysis of the protonation states (data not shown) 

however, indicates only weakly correlated behavior, which suggests that the interaction between 

adjacent residues is not strong. The second set of pKa calculations on CYT-ADE exhibited the 

lowest Hill coefficient (n = 0.60) indicating the strongest anti-cooperative behavior. Analysis of 

the individual titration curves as shown in Figure 3.1.6.1 indicate that the Sunprot ratio shows the 

greatest deviation between the second set and the other two sets at pH 3. We analyzed the mean 

distance between the nitrogen atom that is protonated in CPHMD (i.e., N3 CYT and N1 ADE) of 

adjacent residues at pH 3 and the results are shown in Figure 3.1.6.1. In one simulation of the 

second set, the mean distance sampled was about 4 to 6 Å, in comparison to the typical values of 

8 to 16 Å for all other simulations. We suggest that this simulation contributed significantly to 

the higher Sunprot ratio for the second set that in turn gave rise to the lower Hill coefficient. The 

lack of strong interactions between adjacent titrating residues in the other two sets of pKa 

calculations of CYT-ADE is apparently due to the result of the lack of sampling of configuration 

space in which these two residues are close enough to influence each other’s protonation state. 

We suggest that stronger cooperative or anti-cooperative effects are likely to be observed when 

modeling RNA structures with stable conformations in which the nucleobases are held in close 

proximity to one another. 

Addendum: Part of the analysis provided in this chapter was corrected in a later publication.  

See Chapter 3.3 for the proper mathematical treatment of systems where the identity of adjacent 

residue cannot be distinguished (i.e. ADE-ADE and CYT-CYT dinucleotide). 
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Figure 3.1.6.1: (a) Titration curves for CYT-ADE and (b) time series of distance between N3 

CYT and N1 ADE atoms at pH 3 for all 3 sets of pKa calculation. 

 

3.1.7 pKa calculations of a Model RNA using CPHMDMSλD simulations 

pH-dependent experimental observables, such as site-specific pKa values, may be used as 

an indicator of how accurately CPHMDMSλD simulations reproduce pH-dependent properties. 

Unlike protein systems, where the site-specific pKa value of multiple ionizable residues for many 

proteins are readily available,146 the literature of nucleic acid pKa research is much sparser with 

only a single pKa value measured for a handful of RNA systems. The lead-dependent ribozyme 

is, to the best of our knowledge, the most thoroughly-studied RNA system that has the largest 

number of experimentally-measured site-specific pKa values (Figure 3.1.7.1a).147 Consequently, 

we have used it as a model system for benchmarking the performance of CPHMDMSλD 

simulations in our work, and for understanding the potential challenges that one may encounter 

when modeling nucleic acid systems. The results from our calculations, as well as the 

appropriate comparisons with existing pKa values calculated using the NLPB equation60 are 

summarized in Figure 3.1.7.1.  
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One of the key advantages of the CPHMDMSλD framework is that no a priori information 

about the protonation states or the identity of the residues-of-interest of the system under 

investigation is required, as the local electrostatic microenvironment in conjunction with the 

external pH bath both serve to determine the protonation state at a given external pH. In our 

simulations, we simultaneously titrated all adenine and cytosine residues of the lead-dependent 

ribozyme. As summarized in Figure 3.1.7.1b and Table 3.1.7.1, we demonstrate good 

agreement with experimental pKa values. Relative to experiments, our calculated pKa values 

have an average unsigned error (AUE) of 1.3 pKa units. With the exception of residue A16, the 

rank ordering of our calculated pKa values also agree with experimentally measured values. The 

correlation coefficient between calculated and experimental pKa value was 0.76, which is 

statistically significant at the 95% level. The precision of our calculated pKa values, defined as 

the standard deviation of 3 independent sets of pKa calculations was 0.3 pKa units, which 

compares favorably to the average experimental uncertainty of 0.4 pKa units. Our precision of 

0.3 pKa units translates to 0.4 kcal/mol, which is comparable to the precision of previous 

calculations on hydration free energy of benzene derivatives performed using MSλD.122 The 

corresponding Hill coefficient of the calculated pKa values were also generally below 1 (Table 

3.1.7.1), suggesting that anti-cooperative interactions are the dominant mode in which titrating 

residues interact with one another. 
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Figure 3.1.7.1: Comparison of pKa values for lead-dependent ribozyme. (a) The lead-dependent 

ribozyme and the residues with experimentally measured pKa values. (b) Correlation plot of 

calculated pKa values from computational approaches (NLPB and CPHMDMSλD) and 

experimental pKa values. (c) Correlation plot of pKa values calculated from NLPB compared to 

CPHMDMSλD. The error bars denote the standard deviation of calculated pKa values. All NLPB 

calculations were obtained from Honig, Pyle and co-workers. 

 

Table 3.1.7.1: Comparison between experimental pKa values with the calculated pKa values 

obtained from CPHMDMSλD simulations. 

 

Residue Exp. pKa 
CPHMDMSλD Simulations 

n pKa Error 

A4 < 3.0 0.4 ± 0.1 0.6 ± 0.1 - 

A8 4.3 ± 0.3 0.7 ± 0.3 3.7 ± 0.3 -0.6 

A12 < 3.0 1.1 ± 0.3 0.7 ± 0.3 - 

A16 3.8 ± 0.4 0.7 ± 0.1 2.6 ± 0.1 -1.2 

A17 3.8 ± 0.4 0.4 ± 0.0 0.9 ± 0.5 -2.9 

A18 3.5 ± 0.6 0.6 ± 0.0 3.8 ± 0.1 0.3 

A25 6.5 ± 0.1 0.4 ± 0.1 4.8 ± 0.5 -1.7 

AUE    1.3 

Precision   ± 0.3  
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Next, we ask if the shift in calculated pKa values relative to the reference pKa of the free 

unbound nucleobase is reasonable based on the structural considerations. A number of residues 

have been determined by experimental studies to be involved in Watson-Crick base pairing 

(indicated as “wc” in the structure column in Table 3.1.7.2). When adenine or cytosine 

participates in canonical base pairing as illustrated in Figure 3.1.7.2, their pKa will be shifted 

lower relative to the reference value. This is because the nitrogen atoms (N1 for adenine, N3 for 

cytosine) that can be protonated serve as hydrogen bond acceptors, which make it energetically 

unfavorable for the base to be protonated. For all 9 residues in the lead-dependent ribozyme that 

are known to be base paired, CPHMDMSλD predicted a lower pKa relative to the reference 

compound. The exceptions are residues C2 and C30, which are located at the ends of the helix 

and are subject to fraying motions that weaken their base pairing interactions and increase their 

exposure to solvent. There is also a protonated A25+
C6 base pair in the lead-dependent 

ribozyme, which is a configuration that raises the pKa of the adenine base, as the protonated 

hydrogen on the N1 atom of adenine serves as a hydrogen bond donor to the N3 acceptor on 

cytosine (Figure 3.1.7.2). The calculated pKa value of residue A25 was 4.8, which is shifted 

upwards from the reference value of 3.5 (Table 3.1.7.2). The calculated pKa value of residue C6 

was 1.8, which is shifted downwards from the reference value of 4.1 (Table 3.1.7.2). Thus, the 

direction of pKa shifts of both residues in the A25+
C6 base pair was correctly predicted. Lastly, 

based on the NMR data from Legault and Pardi, they reported that no cytosine residue in the 

lead-dependent ribozyme had an abnormally high pKa value,147 and our CPHMDMSλD based 

calculations are consistent with their observations. 
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Figure 3.1.7.2: Illustration of adenine and cytosine and their hydrogen-bonding configuration in 

a canonical Watson-Crick base pair, and the protonated A+
C base pair. 

 

Table 3.1.7.2: Calculated pKa values of all adenine and cytosine residues in lead-dependent 

ribozyme obtained from NLPB calculations60 and CPHMDMSλD simulations indicate that both 

models produce consistent results and reasonable pKa shifts given structural considerations. 

 

Residue Structure 
NLPB CPHMDMSλD Abs Difference 

(NLPB vs CPHMDMSλD)  
pKa shift 

(wrt to ref pKa) pKa stdev pKa stdev 

C2 wc 2.1 ± 1.5 4.4 ± 0.2 2.3 + 

A4 wc < 3.0  0.6 ± 0.1  - 

C5 wc 3.0 ± 2.0 3.5 ± 0.4 0.5 - 

C6 A+C 2.8 ± 2.4 3.0 ± 0.3 0.2 - 

A8  4.9 ± 0.8 3.7 ± 0.3 1.2 0 

C10 wc 1.4 ± 1.5 1.1 ± 0.3 0.3 - 

C11 wc 3.7 ± 1.5 1.3 ± 0.9 2.4 - 

A12 wc < 3.0  0.7 ± 0.3  - 

C14 wc 4.6 ± 1.0 3.2 ± 0.3 1.4 - 

A16  3.4 ± 1.1 2.6 ± 0.1 0.8 - 

A17  2.4 ± 1.3 0.9 ± 0.5 1.5 - 

A18  3.6 ± 0.9 3.8 ± 0.1 0.2 0 

A25 A+C 7.3 ± 1.8 4.8 ± 0.5 2.5 + 

C28 wc 3.1 ± 0.7 3.7 ± 0.1 0.5 - 

C30 wc 5.0 ± 2.0 4.8 ± 0.3 0.2 + 

Average Unsigned Values 1.5  0.3 1.1  

 

3.1.8 Comparison to Implicit Solvent CPHMD Simulations 

The accuracy of our pKa calculations compares favorably with established work on 

CPHMD simulations of proteins, which has a reported RMSE of 1.0 pKa units for surface-
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exposed residues and 1.5 pKa units for buried residues.91 The similar level of accuracy relative to 

established work on protein CPHMD simulation is encouraging, considering that constant pH 

simulations of nucleic acid systems in explicit solvent are met with several unique challenges. In 

nucleic acids, almost 50% of the residues present are titrating in unison and base-base 

interactions are extremely common given that they are the fundamental interactions that give rise 

to secondary and tertiary structure in RNA, analogous to how interactions between the amide 

backbone of protein contribute to protein secondary structure. This means that the probability of 

having coupled titrating interactions (i.e., when the protonation state of a nucleotide affects an 

adjacent residue and vice-versa) is high, which would increase the requirements for convergence. 

The challenging nature of converging nucleic acid titrations is partially reflected in our 

longer 15 ns explicit solvent simulations, which is almost an order of magnitude longer than the 

shorter ~2ns simulations reported for protein CPHMD simulations.91 However, the longer 

simulation time should be considered in the context that previous pKa calculations on proteins 

which were performed in implicit solvent with temperature-replica exchange enhanced 

sampling,91 where it is expected that more rapid sampling in both conformation space and 

titration coordinates would result in faster convergence. By contrast, our simulations were 

performed in explicit solvent and sampling of titration coordinates is slower due to the fact that 

the solvent needs to reorganize whenever the protonation state changes.111 Despite the fact that 

implicit solvent models confer sampling advantages, there have been a number of unresolved 

issues based on earlier CPHMD work. For example, it has been reported that the Generalized-

Born (GB) implicit solvent model underestimates the desolvation and buried charge-charge 

interactions which increases the error of predicted pKa values of buried residues.91 In addition, 

the approximations made in modeling hydrophobic interactions are known to cause structural 
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compaction and possible distortion of the overall structure, which can be another source of error 

in pKa calculations.96,103 The above-mentioned sources of errors that are still unresolved in 

implicit solvent CPHMD are corrected with an explicit solvent representation of the protein’s 

conformational dynamics,103 highlighting the advantages of using an explicit solvent framework 

as we have done in our CPHMDMSλD simulations. In addition, some RNA systems like the HDV 

ribozyme rely on specific Mg2+ ions to tune the local electrostatic environment around certain 

residues and consequently their pKa values,148 and the use of an explicit solvent model is needed 

to model this effect. Finally, it is worthwhile to consider that existing GB models used in earlier 

CPHMD simulations have been parameterized primarily against proteins,73,74 and the naive 

application to nucleic acid systems is likely to introduce more errors if no re-paramaterization 

against nucleic acids is performed. Indeed, this expectation is consistent with earlier implicit 

solvent CPHMD simulations performed on the glmS ribozyme by Šponer, OtyepKa and co-

workers,149 which demonstrated that implicit solvent models were unable to generate stable 

trajectories, and the simple Debye-Hückel screening function that is used to simulate the salt 

concentration appeared to have contributed to the inaccurate pKa predictions.  

3.1.9. Using CPHMDMSλD Simulations to Investigate Localized pH-dependent Properties 

The conventional approach in CPHMD simulations to investigate pH-dependent 

properties is to titrate the entire system. While this represents the most rigorously accurate 

approach, if one is investigating pH-dependent properties at a local site and the identity of 

titrating residues-of-interest are known, an informed choice to restrict the titration to a specific 

set of residues may be prudent. Such an approach would be justified, especially if available 

experimental data indicates that there are no other titrating residues in the vicinity of the local 

site within the pH range of interest that is being simulated. As an illustration of such informed 
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CPHMDMSλD simulations, we performed a single-site titration of the lead-dependent ribozyme to 

investigate the A25+
C6 base pair. In this single-site titration simulation, residue A25 is allowed 

to change its protonation state, but all other residues were assigned a protonation state that is 

consistent with their reference pKa values (i.e., adenine and cytosine are unprotonated, guanine 

and uracil are protonated). From structural considerations, we know that the cytosine in the 

A25+
C6 base pair will have a pKa that is lower relative to its reference value. Thus, assigning it 

as a constitutively deprotonated residue (i.e., not titrating it in the CPHMDMSλD simulations) is a 

well-justified approximation. The resulting pKa value from single-site CPHMDMSλD simulations 

is 6.1, which is close to the experimental value of 6.5. Lastly, from NMR studies we know that 

the  pKa value of residue A25 decreases from 6.5 to 5.9 when the salt concentration is increased 

from 100mM and 500mM NaCl, due to the additional screening effect in a higher ionic strength 

environment.150 Using single-site CPHMDMSλD simulations, our calculated pKa values decreased 

from 6.1 to 5.0 when the simulated salt concentration was increased from 100mM to 500mM. 

The pKa calculations agree well with experiment, highlighting that CPHMDMSλD simulations can 

be used to model the effects that ionic strength has on the protonation state of residues in RNA 

structures. 

3.1.10 Conformational Dynamics and Coupled Titrating Interactions 

 The interplay between conformational dynamics and protonation states, the process of 

how local structural changes modify the electrostatic microenvironment around residues to cause 

a change in protonation state, is well documented in many RNA systems. Some examples 

include retrovirus pseudoknot structures,26 the intramolecular stem-loop of the spliceosome 

complex,35 the peptidyl-transferase center of the ribosome,27-32 and helix 69 of the 50S ribosomal 

subunit,33,34 where the pH-dependent dynamics of these RNA complexes are known to alter their 
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structure and function. Similar observations have also been reported in proteins as well.78,123,151 

Thus, the importance of conformational dynamics in RNA systems in influencing protonation 

states, together with the high possibility of coupled titrating interactions due to the ubiquitous 

nature of base-base interactions, is going to be of emerging interest in the field of CPHMD 

simulations of nucleic acids. 

The GAAA tetraloop of the lead-dependent ribozyme is a conformationally dynamic 

motif common to many RNA structures.152 It contains three titratable adenine residues. It serves 

as an excellent model for examining the interplay between conformational dynamics and coupled 

titrating interactions in our CPHMDMSλD simulations. The lowest energy conformation as 

determined by NMR spectroscopy is one where the three adenine residues (A16, A17, A18) 

adopt a triply stacked conformation as shown in Figure 3.1.10.1a. Considering the close 

proximity of these residues, it is likely that their protonation states are coupled. Examination of 

the distance between the N1 atoms at pH 2 indicates that A17 and A18 remain stacked on top of 

each other and they do not move more than 4 Å away for most of the simulation as indicated in 

Figure 3.1.10.1. This distance is much lower than the 6 Å distance that we previously reported in 

dinucleotides, which is the range where only weak interactions between adjacent nucleotides 

were observed.111 This suggests that there may be anti-cooperative interactions between the two 

residues, which was confirmed by the near perfect correlation between the unprotonated state of 

A17 and the protonated state of A18 when the N1-N1 interatomic distance is less than 4 Å 

(Figure 3.1.10.1). In one of the MD runs (highlighted in grey), this distance increased to 15 Å, 

which was concomitant with A17 transitioning to and maintaining a predominantly protonated 

state (λA17,unprotonated = 0). In this run, the lead-dependent ribozyme sampled and remained trapped 

in an alternative unstacked conformation as illustrated in Figure 3.1.10.1b, which altered the 
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electrostatic microenvironment around each residue and consequently their protonation states. At 

the same time, we observed a loss in correlation between the protonation states of A17 and A18 

whenever their distance exceeded 6 Å. The results presented here are the first example of a 

microscopic examination of the interplay between local conformational dynamics and coupled 

titrating interactions in nucleic acid literature. 

This physically realistic model of coupled titrating interactions that respond to 

conformational dynamics in our CPHMDMSλD simulations helps account for the calculated pKa 

value of 0.9 of residue A17. Since A17 and A18 remain stacked for most of the simulation, the 

positive electrostatic environment generated by A18 would artificially depress the tendency of 

A17 to achieve protonation. In addition, apart from the strong correlations between the 

protonation states of these 2 residues, the pKa value calculated from titrating residue A17 only, 

with A18 permanently assigned to its protonated state was less than 1, confirming that the 

coupled A17-A18 interactions are responsible for the shifted pKa value of residue A17. 

 

Figure 3.1.10.1: Concatenated trajectories from 9 independent 5 ns runs that describe (top) the 

distance between N1 atoms of A17/A18 at pH 2 and (bottom) the corresponding λunprot state of 

A17 and λprot state of A18. (a) A typical triply-stacked lowest energy conformation maintained 

throughout most of the simulations, (b) an alternative unstacked conformation that resulted in a 

decoupling of A17-A18 interactions. 
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 To reconcile the difference between calculated and experimental pKa values of A17, we 

suggest that the coupled titrating interactions observed in our simulations become decoupled on 

the longer NMR timescale, when the loop undergoes multiple excursions between various 

alternate conformations. This would be consistent with the work of Pardi and co-workers which 

indicated that the GAAA tetraloop of the lead-dependent ribozyme adopts at least one other low 

energy conformation.153,154 The existence of alternative conformations sampled by such GNRA 

tetraloops has been suggested by fluorescence spectroscopy experiments,155 and possible 

alternative conformations was suggested based upon temperature replica exchange MD 

simulations.156 A visual inspection of these alternate conformations indicate that more than half 

of them are different from the triply-stacked conformation, which suggests that the sampling 

limitations in straightforward MD simulations that prevents us from accessing the other 

alternative conformations sampled may be responsible for the reduced accuracy of residue A17’s 

pKa value. 

 

Fig. 3.1.10.2: Titration curves from reprocessed trajectory that maintained a (red) closed 

conformation and (blue) semi-open conformation resulted in distinct pKa values of 6.0 and 3.9 

respectively. (a) A sample snapshot of a semi-open conformation and (b) a typical closed 

conformation.  

 

The A25+
C6 base pair in the lead-dependent ribozyme is another interesting case where 

we can examine the effects of coupled titrating interactions in our CPHMDMSλD simulations. 

Examination of the hydrogen bonding distances indicates that the system oscillates between 
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closed (Figure 3.1.10.2b) and semi-open (Figure 3.1.10.2a) conformations. The closed 

conformation is consistent with the NMR structure of the A25+
C6 base pair, and it promotes the 

protonation of A25. The semi-open state on the other hand exposes A25 to the solvent and is 

therefore expected to have a protonation equilibrium that is similar to the reference adenosine 

compound. When we reprocessed the concatenated trajectory from all simulation runs and 

extracted the segments that maintained a proper A25+
C6 geometry, the resulting pKa was 6.0 as 

shown in Figure 3.1.10.2. Conversely, the pKa calculated from segments of the trajectory that 

did not maintain the base-paired geometry was 3.9, which is close to the reference pKa of 3.5 for 

a solvent-exposed adenosine. Thus, the excursions between these two conformations accounts 

for the calculated pKa value of 4.8 for residue A25, which is lower than the experimental pKa of 

6.5. The A25+
C6 base pair as we have seen, has similar conformational sampling challenges as 

the GAAA tetraloop. The larger underprediction of 1.7 pKa units that corresponds to a free 

energy difference of 2.3 kcal/mol, is thus consistent with observations in the literature for free 

energy calculations in systems with higher demands in terms of conformational sampling usually 

have a lower accuracy as compared to systems that exhibit lesser conformational dynamics.157,158 

3.1.11 Conclusion: The First Viable Explicit Solvent CPHMDMSλD Simulation Framework 

was Developed 

In this chapter, we reported the first implementation of an explicit solvent CPHMD 

framework for nucleic acids. By adopting the new functional form λNexp for λ that was recently 

developed for multi-site λ-Dynamics (MSλD), we demonstrated good sampling characteristics in 

which rapid and frequent transitions between the protonated and unprotonated states at pH = pKa 

are achieved, while sampling the physically-relevant protonation states for more than 80% of the 

trajectory. Compared to existing implementations of explicit solvent CPHMD, the sampling in 
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our method sees a 10-fold improvement, while maintaining sufficient residency time of the 

physical protonation states to ensure proper solvent reorganization. pKa values calculated for 

simple nucleotides are in a good agreement with experimentally measured values with a mean 

absolute error of 0.24 pKa units, affirming that our explicit solvent CPHMDMSλD framework has 

the ability to make accurate quantitative predictions for simple nucleotide systems. This work 

was followed by the first demonstration of an explicit solvent CPHMDMSλD simulation of a 

complex RNA structure, the lead-dependent ribozyme. Our initial pKa values calculated from 

CPHMDMSλD simulations agree well with experimental pKa values with an average unsigned 

error of 1.3 pKa units. The accuracy of our pKa calculations is comparable to established 

CPHMD work in proteins and the direction of the pKa shifts for all residues in the lead-

dependent ribozyme are also accurately predicted when compared to experimental data or 

structural considerations. Using the GAAA tetraloop and the A+
C base pair of the lead-

dependent ribozyme as model systems, we demonstrated that CPHMDMSλD simulations are able 

to model the effects that conformational dynamics and coupled titrating interactions have on the 

protonation equilibria of titrating residues. Therefore, this work paves the way for the utilization 

of CPHMDMSλD simulations as a tool to investigate pH-dependent biological properties of RNA 

macromolecules. 
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3.2 Sampling Challenges in Explicit Solvent CPHMD 

Note: Chapter 3.2 was adapted from the following references.113 

3.2.1 Sampling Improvements with pH-based Replica Exchange 

Our earlier work on the lead-dependent ribozyme in Chapter 3.1 has suggested that 

conformational sampling challenges may be responsible for some of the outliers in our 

CPHMDMSλD simulations. To address this concern, we implemented a replica exchange protocol 

in pH space, and tested its performance in terms of sampling efficiency of titration coordinates 

and general accuracy of predicted pKa values. The microscopic pKa values calculated from pH-

REX simulations, as summarized in Table 3.2.1.1, are consistent with previous work that 

utilized CPHMDMSλD with conventional MD simulations.112 As illustrated in Figure 3.2.1.1, up 

to an 8-fold improvement in the transition rates in λ-space is observed in our pH-REX 

simulations. The sampling improvement of titration coordinates results in faster convergence, 

which is demonstrated by fact that pH-REX sampling achieves the same level of accuracy using 

a total simulation time that is 5-fold shorter than conventional CPHMDMSλD simulations. In 

addition, we also observe that the improvement in λ-space sampling for the residues of the lead-

dependent ribozyme is higher than that of the 3-fold improvement in single nucleotide 

compounds. 

In complex RNA structures, where multiple residues are titrated simultaneously, the 

coupled interactions between these titrating groups lead to slower convergence, because the 

sampling of titration coordinates is hindered by the protonation states of adjacent interacting 

titrating groups.112 The variable biases applied in conventional CPHMDMSλD simulations only 

serve to flatten the potential energy surface of each λ variable, but the orthogonal barriers that 

arise from these coupled titrating interactions are not addressed. Unlike the recent 
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methodological advances in enhanced sampling strategies reported by Yang and co-

workers,151,159 pH-REX sampling does not directly address these orthogonal barriers per se. 

However, it does periodically shuffle conformations to a higher or lower pH where all residues 

adopt a uniform protonation state. We suggest that this process effectively decouples the 

protonation states of interacting residues, allowing one to ameliorate the sampling issues related 

to these orthogonal barriers. 

Table 3.2.1.1: Calculated pKa values from conventional and pH-REX CPHMDMSλD simulations 

of the lead-dependent ribozyme demonstrate a similar level of accuracy. 

 

Residue 
Exp 

pKa 

Conventional CPHMDMSλD 

(3x5ns) 

pH-REX CPHMDMSλD 

(3ns) 

n pKa Error n pKa Error 

A4 <3.1 0.4 ± 0.1 0.6 ± 0.1  1.3 ± 0.5 0.9 ± 0.4  

A8 4.3 ± 0.3 0.7 ± 0.3 3.7 ± 0.3 -0.6 0.9 ± 0.4 3.8 ± 0.6 -0.5 

A12 <3.1 1.1 ± 0.3 0.7 ± 0.3  1.0 ± 0.3 0.6 ± 0.2  

A16 3.8 ± 0.4 0.7 ± 0.1 2.6 ± 0.1 -1.2 0.7 ± 0.1 2.6 ± 0.0 -1.2 

A17 3.8 ± 0.4 0.4 ± 0.0 0.9 ± 0.5 -2.9 1.0 ± 0.6 1.1 ± 0.5 -2.7 

A18 3.5 ± 0.6 0.6 ± 0.0 3.8 ± 0.1 0.3 0.8 ± 0.1 3.6 ± 0.0 0.1 

A25 6.5 ± 0.1 0.4 ± 0.1 4.8 ± 0.5 -1.7 0.5 ± 0.1 4.5 ± 0.2 -2.0 

AUE    1.3   1.3 

 

 
Figure 3.2.1.1: pH-REX CPHMDMSλD simulations accelerates sampling of titration coordinates 

by up to 8-fold in the lead-dependent ribozyme.   
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Having demonstrated that pH-REX accelerates sampling of titration coordinates, we now 

explore the apparent underprediction of the pKa value of residue A17, which is situated in the 

GAAA tetraloop of the lead-dependent ribozyme. We performed an initial 15 ns simulation of 

the excised GAAA tetraloop for pH values between 1 to 4, and compared the results to 

conventional CPHMDMSλD simulations. As summarized in Table 3.2.1.2, the calculated pKa of 

residue A17 from the conventional simulations is 1.4, compared to the pKa of 2.3 obtained using 

pH-REX sampling. Extending our simulations for an additional 15 ns confirmed that the pKa 

value has converged. On the whole, pH-REX sampling yields systematic improvement of the 

predicted pKa values of the GAAA tetraloop, where the average unsigned error (AUE) was 

reduced to 0.7 pKa units, which is 50% lower than our previous work.112  

Table 3.2.1.2: pH-REX CPHMDMSλD simulations of the GAAA tetraloop of lead-dependent 

ribozyme improved the accuracy of calculated pKa values compared to straightforward MD 

simulations. 

 

Residue 

GAAA AAA 

Exp 

pKa 

Conventional 

CPHMDMSλD 

(0-15ns) 

pH-REX 

CPHMDMSλD 

(0-15ns) 

pH-REX 

CPHMDMSλD 

(16-30ns) 

pH-REX 

CPHMDMSλD 

(0-15ns) 

A16 3.8±0.4 3.2 ± 0.2 3.1 ± 0.1 3.3 ± 0.1 3.5 ± 0.1 

A17 3.8±0.4 1.4 ± 0.3 2.3 ± 0.6 2.6 ± 0.4 3.5 ± 0.1 

A18 3.5±0.6 3.9 ± 0.1 3.9 ± 0.1 4.0 ± 0.1 3.9 ± 0.1 

AUE  1.1 0.9 0.7  

 

The apparent underprediction of the pKa value of residue A17 originates from the anti-

cooperative interactions between residues A17 and A18, which artificially suppresses the ability 

of A17 to adopt the protonated state at low pH conditions.112 This arises from the triply stacked 

conformation of the GAAA tetraloop, which is characterized by short interatomic distances 

between the N1 atoms of the two residues. We analyzed this interatomic distance in our 

simulations of the GAAA tetraloop at pH 1, in the context of another reference simulation of the 

AAA trinucleotide sequence, which has no structural elements imposing conformational 
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restrictions on it. As shown in Figure 3.2.1.2, the N1-N1 distances sampled in our pH-REX 

simulations of the GAAA tetraloop ranged from 2 to 10 Å, which are intermediate between the 

conventional GAAA tetraloop simulations ( 2 to 6 Å ) and the AAA trinucleotide simulations ( 6 

to 18 Å ). The conformational space sampled using pH-REX is reasonable as it does not exhibit 

more dynamical behavior than the free AAA trinucleotide, but it also samples more 

conformations than conventional CPHMDMSλD simulations of the GAAA tetraloop. This trend of 

exploring progressively larger N1-N1 distances results in more weakly coupled interactions that 

is reflected in the pKa value of the central adenine residue, which increases from 1.4 to 2.3 to 3.5 

(Table 3.2.1.2). In addition, we also observed a slight difference in the distribution of the N1-N1 

distances between the first 15 ns and the subsequent 15 ns trajectory of the excised GAAA 

tetraloop. Specifically, the “close contact” region of 3 to 6 Å that denotes the initial stacked 

conformation was partially populated in the first 15 ns, which suggests that the system was still 

equilibrating for part of that trajectory. This suggests that sufficient equilibration on the order of 

a few ns may be required, and metrics such as RMSD relative to the initial structure may be used 

to determine when equilibration is complete, particularly if one is expecting a significant 

conformational change in an alternate pH environment. 

 
Figure 3.2.1.2: Distribution of the interatomic distance of the N1 atoms of residue A17 and A18 

of the GAAA tetraloop at pH 1 for a conventional 15ns MD simulation (red trace), the first 15 ns 

pH-REX simulation (blue trace) and the next 15 ns pH-REX simulation (green trace), compared 

to a 15 ns pH-REX simulation of the AAA trinucleotide (orange trace).  
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The experimentally measured pKa values are a superposition of the microscopic pKa 

values of the various conformations visited by the GAAA tetraloop on the timescale accessible to 

NMR measurements,112 and the various pH values at which such measurements were recorded. 

We clustered the conformations sampled by pH-REX simulations at pH 1 (low pH) and 4 (high 

pH), and the representative structures are illustrated in Figure 3.2.1.3 The initial triply-stacked 

conformation (Figure 3.2.1.3b), which is representative of the NMR structure solved at 

physiological pH is known to lower the pKa value of residue A17. While it may be the dominant 

conformation sampled at high pH, this conformation is populated only 20% of the time at low 

pH. We observe that the dominant conformation sampled at low pH is partially unstacked, where 

the N1-N1 distance is increased to 9.3 Å (Figure 3.2.1.3a), and a fully unstacked conformation 

is observed 10% of the time (Figure 3.2.1.3c). Interestingly, these unstacked conformations are 

populated 21% of the time at higher pH. The significant improvement in our pKa predictions for 

residues in the GAAA tetraloop correspond to the sampling of these alternative conformations, 

suggesting that sampling using pH-REX provides a more accurate model of the tetraloop’s pH-

dependent dynamics. Lastly, our results also indicate that pH-REX CPHMDMSλD simulations can 

be used to identify the dominant conformation of nucleic acid systems in different pH 

environments or low population conformations at physiological pH. With the discovery of pH-

dependent transient states in both RNA and DNA systems that have been suggested to be 

functionally important,49,50 we anticipate that pH-REX CPHMDMSλD simulations will provide 

further structural and mechanistic insight into the findings gleaned from experimental studies, 

especially in situations where direct experimental characterization of such transient states are 

challenging. 
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Figure 3.2.1.3: Representative conformations from a cluster analysis of the pH-REX trajectory 

of the GAAA tetraloop and their relative populations sampled at pH 1 (in red) and pH 4 (in 

blue). 

 

3.2.2. Scalability of Explicit solvent pH-based Replica Exchange CPHMDMSλD simulations 

Thus far, we have shown that pH-REX CPHMDMSλD simulations are effective in 

modeling accurate pH-dependent dynamics of small nucleic acid motifs like the GAAA 

tetraloop. We now extend this to demonstrate the scalability of pH-REX CPHMDMSλD 

simulations to larger systems. Our initial pKa calculations on the full-length ribozyme (Table 

3.2.1.1) yielded similar results to conventional CPHMDMSλD simulations, which suggest that the 

sampling efficiency is not as high as in our simulations of the excised GAAA tetraloop. Since 

conformational diffusion across pH space is responsible for enhancing sampling, increasing the 

total number of accepted Monte Carlo (MC) moves should improve the accuracy of calculated 

pKa values. In the full-length ribozyme, the majority (i.e., 10 out of 15) of the residues are base 

paired and have pKa values of less than 3. Thus, unlike high pH conditions where most of the 

titrating residues adopt a uniform protonation state, at low pH conditions the majority of residues 

would be titrating and a more pronounced potential energy difference between adjacent replicas, 

and consequently lower MC exchange rate is expected. The MC exchange rate of the excised 

tetraloop was at least 30% at low pH conditions, which is 3 times higher than that of the full-
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length ribozyme. This lower exchange rate in the full-length ribozyme is correlated with a 

reduction in the sampling of titration coordinates, particularly for residue A17 (Figure 3.2.2.1). 

As shown in Figure 3.2.2.1a, increasing the frequency of MC attempts from every 1.0 ps to 0.1 

ps increased λ-transitions to ~350-650 ns-1. While the significant improvement in the sampling of 

titration coordinates is encouraging, we note that the variation in transition rates between the 3 

independent runs is significant. This could reduce the reproducibility of computed results, 

especially if the conformation space sampled by different independent runs is not uniform due to 

the disparate sampling in titration coordinates. Furthermore, prior work by Baptista and co-

workers has shown that re-equilibration of the solvent induced by the introduction of a charged 

protonation state requires 1 to 3 ps,70 and we have also seen a similar solvent reorganization 

triggered by a protonation state change in explicit solvent CPHMDMSλD simulation.111 Using the 

mean solvent relaxation time of 2 ps, a conservative estimate for the maximum transition rate is 

~500 ns-1, and in some instances, such as residue A8, the transition rate was above this value. 

While we acknowledge that the pH-REX protocol maintains detailed balance and the results 

should in principle be unaffected by the MC exchange frequency, it is possible that too frequent 

successful exchanges between replicas may not allow for sufficient solvent relaxation to occur, 

and this could lead to non-ergodic behavior. 

 
Figure 3.2.2.1: Effects on titration coordinates sampling by (a) increasing the MC attempt 

frequency and (b) reducing pH window spacing from 1.0 to 0.5.  
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Table 3.2.2.1: pH-REX CPHMDMSλD simulations of the full-length lead-dependent ribozyme at 

0.5 pH window spacing demonstrate comparable results to the GAAA tetraloop within 13 ns. 

Residue 
Exp 

pKa 

pH-REX CPHMDMSλD 

 (0-3ns)  (3-8ns)  (8-13ns)  (13-18ns)  (18-23ns) 

A16 3.8±0.4 2.6 ± 0.1 2.7 ± 0.2 2.9 ± 0.2 2.9 ± 0.1 2.8 ± 0.1 

A17 3.8±0.4 1.4 ± 0.3 1.5 ± 0.6 1.8 ± 0.6 2.4 ± 0.1 2.4 ± 0.1 

A18 3.5±0.6 3.8 ± 0.1 3.8 ± 0.1 3.9 ± 0.1 3.8 ± 0.1 3.7 ± 0.0 

 

Our observations on increasing the MC exchange frequency differs with the findings 

reported by Roitberg and co-workers, where no performance degradation was observed at higher 

MC exchange frequencies.80 This difference is likely due to the fact that our model uses an 

explicit solvent representation where solvent reorganization needs to be accounted for, whereas 

the work of Roitberg and co-workers was performed in implicit solvent, which adiabatically 

adjusts to the protein conformation. Instead of attempting to increase the MC exchange 

frequency, one may also increase the probability of exchange by reducing the potential energy 

difference between adjacent windows (i.e. reduce the pH-spacing). In simulations using a smaller 

spacing of 0.5 pH units the exchange rate for the full-length ribozyme was increased to 40% 

(data not shown). As illustrated in Figure 3.2.2.1b, reducing the pH-spacing more than doubled 

the transition rate in λ-space. We observed the most significant improvement in the transition 

rate of residue A17, which increased from 23ns-1 to 113 ns-1. This is on par with the transition 

rate of 92 ns-1 observed in the GAAA tetraloop. The transition rate was also uniformly consistent 

across the 3 independent simulation runs, which ensures the robustness of the calculations. 

Qualitatively, the titration curves obtained across 3 independent runs also demonstrated better 

convergence for pH-REX simulations with smaller pH spacing. Finally, using this smaller pH 

spacing of 0.5, we reran pH-REX CPHMDMSλD simulations on the full-length ribozyme. After an 

initial ~10 ns of equilibration, the calculated pKa values started to converge and results 

comparable to the GAAA tetraloop were achieved within 13 ns (Table 3.2.2.1), demonstrating 
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that pH-REX CPHMDMSλD simulation scales well to simulate pH-dependent properties of full-

sized nucleic acid systems. 

3.2.3 Conclusion: pH-REX Improves Sampling & Convergence in Explicit Solvent 

CPHMDMSλD Simulations 

In this chapter, we identified sampling challenges associated with modeling pH-

dependent dynamics of RNA structures in explicit solvent. Consequently, we have enhanced the 

framework with pH-based replica exchange (pH-REX) sampling, which significantly improved 

sampling of titration and spatial coordinates, and the shuffling of conformations across pH space 

has the effect of decoupling interactions between titrating residues. This allows us to ameliorate 

some of the sampling issues related to orthogonal barriers that originate from coupled 

protonation equilibrium and conformational-dependent pKa behavior, as illustrated in our 

example of the GAAA tetraloop motif, and this has the overall effect of improving accuracy 

from our initial results. The scalability of pH-REX sampling was also demonstrated by showing 

that similarly accurate pKa values could be achieved when simulating full-sized nucleic acid 

systems, such as the lead-dependent ribozyme. Finally, we highlighted that pH-REX 

CPHMDMSλD simulations can be used to identify the dominant conformation of nucleic acid 

structures in alternate pH environments or to provide structural characterization of pH-dependent 

transient states, making it a useful tool to provide accurate first-principles prediction, in terms of 

the structural and mechanistic insight into the study of pH-dependent properties of nucleic acids. 
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3.3 Explicit Solvent CPHMD of Proteins in CHARMM 

Note: Chapter 3.3 was adapted from the following references.114 

3.3.1 Optimization of Model Potential Parameters for 2-State Titrations 

The existing generation of implicit solvent CPHMD in modeling the pH-dependent 

dynamics of proteins have met with considerable success. However, the generalized Born 

implicit solvent model is known to introduce systematic errors, such as underestimating 

desolvation energies of buried charge-charge interactions,91 and causing structural compaction 

which may distort the overall protein structure.96,103 In systems such as ion channels104-106 and 

some transmembrane proteins,107 microscopic interactions of discrete ions and water with the 

protein are important, the use of an explicit solvent representation of the solvent environment is 

desirable. Here, we extend the developed CPHMDMSλD framework to model proteins. As with 

the previous implementation of CPHMDMSλD for nucleic acids,111 we used the free energy of 

deprotonation as the fixed biasing potential (Ffixed) in our simulation. The free energy of 

deprotonation was calculated for each isolated model compound embedded in explicit solvent 

using traditional λ-dynamics at zero ionic strength. In order to facilitate transitions between the 

two protonation states, we optimized the force constant (kbias) on the variable biasing potential 

(Fvar) that was applied to each model compound, and targeted to achieve a maximal value of the 

transition rate in λ-space (i.e., titration coordinate sampling), while maintaining a high fraction of 

physical ligands. The optimized parameters for the model potentials are reported in Table 

3.3.1.1. Calculation of the sampling statistics (see Table 3.3.1.2) indicates that the fraction of 

physical states was maintained at ~70% and transitions in λ-space were ~50 transitions/ns. The 

sampling properties of our model amino acids are comparable to previous work performed on 

model nucleosides in explicit solvent.111 
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Next, we performed a 2-state titration simulation where only two titrating states 

(protonated and unprotonated) were simulated and tautomers for each protonation state were not 

explicitly modeled. The titration curves for our model compounds are illustrated in Figure 

3.3.1.1. The calculated pKa of aspartic and glutamic acid for a two-state titration (i.e., without 

proton tautomerism) were 4.1 and 4.3 pKa respectively, which is within ±0.1 pKa units from their 

experimental pKa values of 4.0 and 4.4 respectively.160 For the two-state titration of histidine, 

where either Nδ or Nε was titrated, the pKa values obtained were 6.7 and 7.0 respectively,161 

which is identical to their experimental pKa values. Finally, the calculated pKa of lysine was 

10.2, which is in close agreement with the experimental pKa value of 10.4.160 The excellent 

agreement between our model compounds calculated pKa values and their experimental values 

indicate that the sampling of titration coordinates in our CPHMDMSλD simulations was sufficient 

to yield accurate results. 

Table 3.3.1.1: Parameters for the Model Potential for 2-state Titrations 

 

Residue 
ΔGprotonation 

(kcal/mol) 

Fvar (kcal/mol) 
Ref pKa 

kbias 

Asp 43.71 34.00 4.00 

Glu 46.00 34.25 4.40 

His-δ -3.58 26.00 7.00 

His-ε -12.26 26.00 6.60 

Lys -23.02 29.50 10.40 

 

Table 3.3.1.2: Sampling characteristics of 2-state titration simulations performed at pH = pKa. 

 

Residue Fraction of Physical States Transition (ns-1) 

Asp 0.74 ± 0.04 35 ± 5 

Glu 0.75 ± 0.02 35 ± 5 

His-δ 0.72 ± 0.03 60 ± 10 

His-ε 0.71 ± 0.04 64 ± 14 

Lys 0.76 ± 0.03 50 ± 8 
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Figure 3.3.1.1: Titration curve of model compounds: (a) aspartic acid, (b) glutamic acid, (c) 

lysine, (d) (d) histidine-δ and (e) histidine-ε. Calculated pKa values of model compounds are in 

excellent agreement with experimental pKa values. Colors represent the results from the triplicate 

runs. 

 

3.3.2 Optimization of Model Potential Parameters for 3-State Titrations 

The original form of the Fvar potential assumed the existence of only two states. When 

accounting for proton tautomerism and thus three states, the original form was not suitable 

because it frequently sampled an intermediate state of the two tautomers. This intermediate state 

is typically characterized by λα,1 ≈ 0, λα,2 ≈ 0.5 and λα,3 ≈ 0.5, which corresponds to a half proton 

on both the Nδ and Nε protonation sites (using His as an example), and this represents an 

unphysical state whose sampling should be minimized. The existence of the intermediate state 

can be rationalized by considering that the free energy barrier for conversion between the two 

protonation states would be larger than the conversion between the two tautomers, as in the 

former process there is a change in the net charge of the system and a greater reorganization of 

the distribution of partial charges. The combined functional form of the original Fvar potential 

that uses the same 0.8 cutoff in the definition of physical protonation states as expressed in eqn. 

9, where λα,1, λα,2 and λα,3 denote the alchemical scaling factors associated with each of the 3 
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states for some residue α, does not account for the uneven barrier height of the different 

alchemical reactions. 

     23,1

2

2,1

2

1,1

var 8.08.08.0    kkkF    (3.3.2.1) 

To avoid the intermediate tautomeric states, we modified the existing Fvar potential by including 

additional cross terms (k2 expressions) to account for uneven barrier heights, and a final term (k3 

expressions) was added to ensure that the relative free energy of the end-states were not altered. 

The resulting functional form as outlined in equation 3.3.2.2 results in a more versatile biasing 

potential that is suited to address the asymmetry of the potential energy surface associated with 

changes in both protonation and tautomeric states. 
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An iterative grid search strategy was used in testing various combinations of the force constants 

(k1, k2, k3), and the optimal combination is reported in Table 3.3.2.1. As illustrated in Figure 

3.3.2.1, which shows the time-evolution of λ, all 3 end states for the model compounds were well 

sampled. Calculation of the sampling statistics as summarized in Table 3.3.2.2 indicates that the 

fraction of physical states was maintained above 70%, confirming that the modified Fvar potential 

does not trap λ in an unphysical intermediate state. The transitions in λ-space were ~50 

transitions/ns, which is comparable to the statistics obtained from 2-state titrations of the model 

compounds. 

Table 3.3.2.1: Parameters for the Model Potential for 3-state Titrations 

 

Residue 
ΔGprotonation 

(kcal/mol) 

Fvar (kcal/mol) 
Ref pKa 

k1 k2 k3 

Asp-T 43.30 -16.5 18.5 -18.5 4.00 

Glu-T 45.59 -16.0 18.5 -18.5 4.40 

His-T -3.58/-12.26 8.0 6.0 -6.0 6.45 
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Figure 3.3.2.1: Titration coordinate transitions of aspartic acid at pH 4 for (a) unprotonated state, 

(b) protonated tautomer #1 and (c) protonated tautomer #2 shows that the physical end states are 

well sampled. 

 

Table 3.3.2.2: Sampling characteristics of 3-state titration simulations performed at the pH 

closest to the model compound’s pKa value. Using pH-REX greatly accelerates sampling of 

titration coordinates with minimal loss in the fraction of physical states (FPS). 

 

Residue pH 
Normal MD pH-REX 

FPS Transition(ns-1) FPS Transition(ns-1) 

Asp-T 4 0.78 ± 0.01 50 ± 1 0.78 ± 0.01 294 ± 16 

Glu-T 4 0.76 ± 0.01 46 ± 7 0.75 ± 0.00 322 ± 21 

His-T 7 0.81 ± 0.02 60 ± 6 0.81 ± 0.01 298 ± 12 

 

While the sampling efficiency in λ-space of model compounds allows us to reproduce the 

pKa values of the model compounds, the transition rate is nevertheless limited to ~50 

transitions/ns. In our previous evaluation of explicit solvent CPHMDMSλD simulations of larger 

nucleic acid structures, slower pKa convergence was observed,112 and it is likely that protein 

systems will encounter similar issues as well.  The sampling of titration and spatial coordinates 

can be accelerated using a pH-REX sampling strategy.113 Therefore, we have applied pH-REX 

sampling, and as illustrated in Table 3.3.2.2, it resulted in a 6-fold improvement in λ-space 

sampling of model compounds with effectively no loss in the fraction of physical states. As pH-

REX sampling confers significant improvement over straightforward MD simulations and 
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requires negligible overhead in terms of computational cost, the results presented in the 

subsequent sections are obtained from pH-REX CPHMDMSλD simulations unless specified 

otherwise. 

We performed a 3-state titration on the model compounds, where alchemical 

transformations across different protonation states and across different tautomers of the same 

protonation state were explicitly modeled. The tautomeric titrations of aspartic and glutamic 

yielded a pKa of 4.4 and 4.8 respectively, which matches well with the macroscopic pKa of 4.35 

and 4.70 when the double degeneracy of the protonated states is taken into account.90 However, 

since the experimental pKa measured does not distinguish between the tautomeric forms, we 

recalibrated the fixed biasing potential in our CPHMDMSλD simulations to reproduce the 

experimentally measured macroscopic pKa values. This was achieved by reducing the biasing 

potential at pH=pKa by kbTln(2) = 0.41 kcal/mol, which accounts for the degeneracy of the 

tautomeric protonated states. Our approach is different from that of Khandogin and co-workers,90 

where a post-correction factor of 0.3 pKa units was applied to tautomeric residues. However, the 

net result in both approaches is the same, in the sense that the final pKa value calculated accounts 

for tautomer degeneracy. The titration curves for our model compounds with proton tautomerism 

are illustrated in Figure 3.3.2.2. The calculated pKa of aspartic and glutamic acid was 4.17 and 

4.37 respectively, which is good agreement with experimental pKa values. For histidine 

tautomeric titration, no re-calibration was performed because the pKa measured by experiments 

were microscopic pKa associated with the titration at the Nε and Nδ sites, and the fixed biasing 

potential applied to each tautomer was identical to those used in the 2-state titration setup. Our 

calculated pKa for the histidine tautomer was 6.45, which is identical to the expected 

macroscopic pKa value of 6.45.90 
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Figure 3.3.2.2: Titration curve of model compounds with proton tautomerism: (a) aspartic acid, 

(b) glutamic acid and (c) histidine. Calculated pKa values of model compounds show excellent 

agreement with experimental pKa values. Colors represent the results from the triplicate runs. 

 

3.3.3. Modeling Interactions between Adjacent Titrating Residues 

Further validation of the CPHMDMSλD framework was performed on model dipeptide 

sequences Asp-Asp, Glu-Glu and Lys-Lys at zero ionic strength, where both residues were 

titrated simultaneously. The calculated pKa values are summarized in Table 3.3.3.1. For the 

aspartic acid dipeptide, we observed that the pKa values were 3.1 and 4.6, with the N-terminus 

Asp having a consistently lower pKa in all 3 simulations runs, suggesting that the two Asp 

residues are in a different electrostatic environment. An analysis of the hydrogen bonding 

contacts that each Asp side chain forms with the backbone of the dipeptide (data not shown) 

indicated that the N-terminus Asp had 3 hydrogen bond donors within a ~5 Å radius, compared 

to the C-terminus Asp that had only 2 hydrogen bond donors. Thus, the increased presence of 

hydrogen bond donors around the N-terminus Asp facilitated the stabilization of its charged 

unprotonated state, explaining the decrease of its calculated pKa value. By contrast, the 

calculated pKa values for the glutamic acid dipeptide was 4.3 for both residues with no apparent 

pKa shift. Similarly, the pKa values for the lysine dipeptide was ~10.4 for both residues. The 

identical pKa for both N- and C-terminus residues of both Glu-Glu and Lys-Lys dipeptides 

suggest that the electrostatic environment around each residue is similar. This is supported by the 

observation that no hydrogen bonding capable backbone atom was present in a ~5 Å proximity 

from the titrating functional group, and so the backbone interactions that were responsible for 
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creating an asymmetric environment in Asp-Asp is significantly reduced in both Glu-Glu and 

Lys-Lys dipeptides.  

Table 3.3.3.1: Calculated pKa of various model dipeptide sequences. Values reported in the top 

table were calculated using equation 2.2.3.2 (identity of residue was pre-assigned), and those 

reported in the bottom table were calculated using equation 2.2.4.1 (identity of residue was not 

pre-assigned). 

 

Residue Identity Pre-Assigned 

Residue 
Ref pKa 

(of amino acid) 

Site1 Site2 

pKa n pKa n 

Asp-Asp 4.0 3.1 ± 0.2 0.7 ± 0.1 4.6 ± 0.1 0.7 ± 0.0 

Glu-Glu 4.4 4.3 ± 0.1 0.7 ± 0.0 4.3 ± 0.1 0.7 ± 0.0 

Lys-Lys 10.4 10.3 ± 0.0 0.7 ± 0.0 10.5 ± 0.1 0.7 ± 0.0 

Residue Identity Not Pre-Assigned 

Residue 
Ref pKa 

(of amino acid) 

Site1a Site2a 

pKa n pKa n 

Glu-Glu 4.4 3.6 ± 0.0 - 5.0 ± 0.0 - 

Lys-Lys 10.4 9.8 ± 0.1 - 11.0 ± 0.1 - 

 
a Site1 and Site2 pKa values are defined as the residue that produces the lower and higher 

“instantaneous” pKa value. When averaged across the entire trajectory, they would correspond to 

the two macroscopic pKa values recorded by experiments. 

 

The calculated Hill coefficients of 0.7 suggest that anti-cooperative coupling is the 

dominant mode of interaction between the two adjacent titrating residues of these dipeptide 

systems. Prior work by Bashford and Karplus has demonstrated that when two residues titrate in 

the same pH region and have the same intrinsic (microscopic) pKa, such as the Glu-Glu and Lys-

Lys dipeptides in this analysis, the magnitude of their coupled interaction can raise/lower the 

apparent (macroscopic) pKa of the system.140 The existing HH-equation (i.e. equation 2.2.3.2) 

which we fitted our data to calculate a pKa value is a rearranged form of the equation first 

proposed by Tanford and Roxby.162 When there is no coupling with other titrating residues (i.e. n 

= 1), equation 2.2.3.2 reduces to a form that can be derived from a mean-field approximation.140 

When there is coupling with other titrating residues (i.e. n ≠ 1), the convention is to add the Hill 

coefficients to describe the anti-cooperative proton binding behavior. However, prior work by 
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Onufriev et. al. in their derivation of the decoupled site representation (DSR) framework has 

shown that this approach may not give the best fit to experimental macroscopic pKa values.138 

Consequently, it is not unexpected that our analysis was unable to obtain the macroscopic pKa of 

the Glu-Glu and Lys-Lys dipeptides, where one would expect to see two distinct pKa values. If 

one wishes to elucidate the coupled pKa behavior for these two dipeptides, the pKa values can be 

recalculated by fitting it to a modified version of the HH-equation, which can be derived from 

the DSR approach.138 In this revised fitting method using equation 2.2.4.1, where we analyzed 

the net proton uptake without pre-assigning the identity of each residue, the apparent pKa values 

calculated cannot be assigned to a specific titrating site (i.e. the calculated pKa values are not the 

microscopic pKa of specific residues). Using this approach, two clear and distinct pKa values 

emerge for Glu-Glu (3.6, 5.0) and Lys-Lys (9.8, 11.0), which is consistent with the perturbation 

of one protonated residue on the other.  

3.3.4 pKa calculations of Model Proteins using CPHMDMSλD simulations 

The HEWL protein is a well-studied protein system that contains the 3 most common 

titrating residues (Asp, Glu, His) with site-specific pKa values for each residue that have been 

measured in a number of experimental studies.163-168 It is perhaps the closest thing to a “universal 

benchmark” system that has been evaluated by numerous CPHMD implementations over the 

years.72,77,78,80,91,103,169 To the best of our knowledge, all existing “pure” explicit solvent CPHMD 

simulations reported in the literature have only been demonstrated on small peptide 

compounds109 and simple organic molecules.170 We performed a 20 ns pH-REX CPHMDMSλD 

simulation of HEWL, which is the first example of explicit solvent CPHMD simulation on a full 

protein to be reported. 



67 

pKa calculations over 5 ns interval segments of our pH-REX CPHMDMSλD trajectory 

show that good convergence is achieved within 20 ns. The difference in pKa values across our 

triplicate runs is small, typically between 0.2 to 0.3 pKa units, demonstrating that our results are 

robust and reproducible. The accuracy of our calculated pKa values are then compared to 

experimental measurements from consensus NMR titrations.168 As summarized in Table 3.3.4.1, 

the calculated pKa values are in good agreement with experiment, with a root-mean-square-error 

(RMSE) of 0.85 pKa units and an average unsigned error (AUE) of 0.68 pKa units. Nielson and 

co-workers previously estimated that experimental pKa values reported in the literature on 

average may vary by 0.5 pKa units depending on the experimental method and/or protocol used 

to make the measurements.168 This suggests that the accuracy of our pH-REX CPHMDMSλD 

simulations are approaching the uncertainty of experimental pKa values.  

Table 3.3.4.1: pKa values of HEWL calculated using implicit and hybrid solvent pH-REX 

CPHMD simulations as reported by Wallace and Shen, compared to pKa values calculated using 

explicit solvent pH-REX CPHMDMSλD simulations in this work. Calculated pKa values with error 

greater than 1.0 pKa unit relative to experimental values based on consensus NMR titrations are 

identified in red. 

 

Residue Exp pKa 
Implicit CPHMD Hybrid CPHMD Explicit CPHMDMSλD 

pKa Error pKa Error pKa Error 

GLU-7 2.6 ± 0.2 2.6 ± 0.1 0.0 2.7 ± 0.0 0.1 2.7 ± 0.1 0.1 

HIS-15 5.5 ± 0.2 5.3 ± 0.5 -0.2 6.6 ± 0.1 1.1 6.0 ± 0.2 0.5 

ASP-18 2.8 ± 0.3 2.9 ± 0.0 0.1 3.1 ± 0.1 0.3 2.1 ± 0.2 -0.7 

GLU-35 6.1 ± 0.4 4.4 ± 0.2 -1.8 7.2 ± 0.2 1.1 7.0 ± 0.3 0.9 

ASP-48 1.4 ± 0.2 2.8 ± 0.2 1.4 1.6 ± 0.5 0.2 1.3 ± 0.0 -0.1 

ASP-52 3.6 ± 0.3 4.6 ± 0.0 1.0 2.9 ± 0.1 -0.7 4.5 ± 0.3 0.9 

ASP-66 1.2 ± 0.2 1.2 ± 0.4 -0.1 1.5 ± 0.6 0.3 1.5 ± 0.1 0.3 

ASP-87 2.2 ± 0.1 2.0 ± 0.1 -0.2 1.5 ± 0.4 -0.7 1.3 ± 0.0  -0.9 

ASP-101 4.5 ± 0.1 3.3 ± 0.3 -1.2 3.0 ± 0.1 -1.5 5.1 ± 0.5 0.6 

ASP-119 3.5 ± 0.3 2.5 ± 0.1 -1.1 2.9 ± 0.1 -0.7 1.6 ± 0.0 -1.9 

RMSE  0.94  0.80  0.84  

AUE  0.70  0.66  0.68  

 

Next, we identified the residues that had errors in their calculated pKa values, which we 

defined as having more than 1.0 pKa unit difference between calculated and experimental values. 
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Asp-119 was underpredicted by -1.9 pKa units, which suggests that the unprotonated state is 

overstabilized in our simulations. Analysis of its microenvironment indicates that persistent 

hydrogen bond interactions between the carboxylic oxygens of Asp-119 and the amide backbone 

hydrogen of Gln-121 and Ala-122 were present even in a low pH environment, which accounts 

for the extra stabilization of the unprotonated state of Asp-119. Similar underprediction of Asp 

pKa values has been documented in other CPHMD work, where salt bridge interactions were 

responsible.78 When non-salt-bridge configurations were sampled, it resulted in more accurate 

pKa results.78 This suggests that the apparent error in the Asp-119 pKa value could be a sampling 

issue, and more extensive sampling or more aggressive sampling methods may be required when 

dealing with residues that are “locked” to their initial conformation by strong interactions like 

hydrogen bonds or salt bridges. 

3.3.5 Comparison to Implicit Solvent CPHMD Simulations 

We compared the performance of explicit solvent pH-REX CPHMDMSλD simulations to 

CPHMD models implemented in other solvation models. A number of CPHMD variations have 

been implemented in AMBER77 and GROMACS.72 However, they will not be included our 

analysis as deconvoluting the effects originating from force field differences to those arising 

from solvation model differences is not straightforward. Instead, we will focus our analysis on 

CPHMD variations implemented in CHARMM. The original CPHMD in CHARMM was 

implemented with a GB implicit solvent model,89 and we have used the HEWL pKa values 

reported by Wallace and Shen for comparison.103 Since that work was reported using a pH-REX 

sampling strategy, we have also eliminated the effects of using different sampling strategies. At 

the time of writing, there is no “pure” explicit solvent CPHMD based on the CHARMM force 

field that has been tested on the HEWL protein. However, a close comparison can be made with 
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Shen’s hybrid solvent CPHMD model.103 The key methodological difference between explicit 

and hybrid solvent models is that the evaluation of free energies of deprotonation and the forces 

on the fictitious λ particles that govern the titration coordinates are calculated using a GB 

implicit solvent model in Shen’s hybrid solvent CPHMD model, whereas in our explicit solvent 

CPHMDMSλD model there is no use of the GB implicit solvent model in any part of the 

calculation. Unfortunately, the use of such hybrid sampling means there is no clear Hamiltonian 

for this system and correspondence to results from any specific statistical mechanical derivation 

cannot be demonstrated. Lastly, the sampling of titration coordinates in implicit solvent is 

typically ~2000 transitions/ns,80 which is an order of magnitude higher than those obtained in our 

explicit solvent simulations. Therefore, to compensate for the differential sampling speed 

associated with different solvent models, we compared the results of our 20 ns pH-REX 

CPHMDMSλD trajectories to the previously reported 2 ns pH-REX trajectories that uses the 

implicit and hybrid CPHMD model. 

As summarized in Table 3.3.4.1, in terms of overall pKa predictive performance, our 

explicit solvent CPHMDMSλD results had a RMSE error of 0.84 pKa units. This is an 

improvement from the results obtained using implicit solvent CPHMD (RMSE = 0.94), and our 

model performance is close to that of the hybrid solvent CPHMD (RMSE = 0.80). A similar 

trend was also noted using alternative error metrics, such as the average unsigned error (AUE). 

We then identified the number of residues that had errors of more than 1.0 pKa unit relative to 

experimental values. Our explicit solvent CPHMDMSλD model had only 1 such residue (i.e., Asp-

119) compared to the implicit and hybrid solvent CPHMD models which had 5 and 3 residues 

respectively. Notable improvements in moving from a hybrid solvent to a “pure” explicit solvent 

model can be observed in His-15, where the overestimation of its pKa value is reduced from 1.1 
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to 0.5 pKa units. Similarly, the hybrid solvent CPHMD model incorrectly predicted the direction 

of pKa shift for residue Asp-101, whereas the explicit solvent CPHMDMSλD model not only 

predicted the right direction of pKa shift, but the magnitude of error was also smaller (-1.5 vs 

+0.6). Our findings suggest that when corrected for differences in titrating coordinates sampling, 

the explicit solvent CPHMDMSλD model produces more accurate pKa predictions than the original 

implicit solvent CPHMD. 

3.3.6. Generalizability to Other Proteins 

Lastly, to demonstrate that the pKa calculations obtained from the CPHMDMSλD 

framework for proteins is not specific to HEWL protein, we performed pKa calculations on two 

additional proteins, the BBL and NTL9 protein. Given that we have only investigated a single 

His residue in a protein environment, for BBL we only titrated the two His residues. NTL9 has 

no His residues, and the Glu and Asp residues that have experimental pKa measurements were 

titrated. 

Table 3.3.6.1: pKa values of BBL and NTL9 calculated using explicit solvent pH-REX 

CPHMDMSλD simulations in this work. Calculated pKa values with error greater than 1.0 pKa unit 

relative to experimental values109,110 based are identified in red. 

 

Residue 
Explicit CPHMDMSλD 

Exp pKa pKa Error 

BBL 

HIS-142 6.5 6.6 ± 0.1 0.1 

HIS-166 5.4 4.8 ± 0.0 -0.6 

NTL9 

ASP-8 3.0 1.5 ± 0.1 -1.5 

GLU-17 3.6 4.0 ± 0.5 0.4 

ASP-23 3.1 3.7 ± 0.2 0.6 

GLU-38 4.0 3.9 ± 0.2 -0.1 

GLU-48 4.2 3.4 ± 0.3 -0.8 

GLU-54 4.2 3.6 ± 0.2 -0.6 

RMSE   0.72 

AUE   0.59 
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As summarized in Table 3.3.6.1 the calculated pKa values have are reasonably accurate 

(RMSE = 0.72, AUE = 0.59).171,172 From the experimental data, most of the residues titrate close 

to the pKa of their reference compounds, but two residues had more than a 1.0 pH unit shift. For 

His-166 of BBL, the residue is buried and its experimental pKa is 5.4. For Asp-8 of NTL9, its 

experimental pKa of 3.0 can be traced to the salt bridge interactions it forms with the amide 

backbone of adjacent residues. Our calculated pKa values demonstrate a similar downward shift, 

although in both cases the extent of the shift tends to be overestimated. We suggest that this 

overestimation may be due to the lack of sampling stemming from the shorter 3 to 5 ns 

simulations performed for these systems. In other proteins like staphylococcal nuclease, residues 

with shifted pKa values are known to undergo local conformational changes,173,174  and sampling 

these states will be required to improve the accuracy of pKa calculations. Together with our 

observations for Asp-119 in HEWL, our work suggests that while short pH-REX CPHMDMSλD 

simulations are capable of reproducing experimental pKa values of most protein residues, 

accurate reproduction of highly shifted pKa values (e.g., buried charged residues) or those 

involving salt-bridge or similarly strong interactions remains a challenge that may be better 

addressed with more aggressive conformational sampling techniques. 

3.3.7. Updated Model Potential for CHARMM36 

With the development of the CHARMM36 force field for proteins,130,131 which corrects 

the balance between α-helix and β-sheet structures, a substantial proportion of the dihedral 

parameters were modified from the previous CHARMM22 force field. In CPHMD, the 

calculated free energy of deprotonation not only comprises of the energy differences arising from 

the differences in the electrostatics and van der Waals terms, but those of the internal bonded 

terms as well. Therefore, we report the following updated model potentials for use with the 
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CHARMM36 force field for proteins (Table 3.3.7.1). In addition, model potential parameters 

were constructed for titrating Tyrosine, which in recent studies has also been implicated in pH-

dependent protein activity.175 

Table 3.3.7.1: CPHMD parameters for CHARMM36 compatible model compounds 

 ΔGprotonation (kcal/mol) 
Fvar (kcal/mol) 

Ref pKa 
k1 k2 k3 

Asp-T 51.28 -19.25 21.25 -21.25 4.00 

Glu-T 53.81 -19.25 21.50 -21.50 4.40 

His-T -2.62/-13.67 8.75 6.75 -6.75 6.45 

Tyr 102.57 35.00 - - 9.60 

Lys -30.63 35.00 - - 10.40 

 

3.3.8 Conclusion: Implemented an Explicit Solvent CPHMDMSλD Framework for Proteins 

In this chapter, we have extended the existing explicit solvent CPHMDMSλD framework to 

simulate the pH-dependent properties of proteins, by developing the appropriate model potential 

parameters for amino acids model compounds. In the CPHMDMSλD framework, we performed 

seamless alchemical transitions between protonation and tautomeric states using multi-site λ-

dynamics, and designed a novel biasing potential to ensure that only the physical end-states are 

predominantly sampled. We also determined the proper treatment for dealing with coupled 

titrating systems where the identity of various residues cannot be pre-determined, which 

underscores the distinction between microscopic vs macroscopic pKa measurements. In addition, 

we have demonstrated the first examples of a “pure” explicit solvent CPHMD simulations to 

simulate realistic pH-dependent properties of a number of model full-sized protein systems, 

including HEWL, BBL and NTL9. Our pKa calculations for HEWL protein are in excellent 

agreement with experimental values, with a RMSE of 0.84 pKa units, and this is close to the 

uncertainty of 0.50 pKa units associated with experimental measurements. With the development 

of explicit solvent CPHMDMSλD for proteins, it will finally allow us to address questions related 
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to pH-dependent properties of membrane proteins and ion channels, where discrete 

representation of ions and water is important. 
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3.4 Explicit Solvent CPHMD of Nucleic Acids in AMBER 

Note: Chapter 3.4 was adapted from the following references.115,116 Chapter 3.4.2 to 3.4.4 

contains considerable contributions from Kamali Sripathi, who was responsible for 

parameterizing the alternative protonation states in the AMBER force field. 

3.4.1. Performance of CHARMM 36 Nucleic Acid Force Field on RNA Structures 

Progressive work in using the explicit solvent CPHMD framework to model increasingly 

complex RNA systems led to the observation that the current CHARMM36 nucleic acid force 

field may not be sufficiently optimized for modeling all but ideal DNA/RNA helices. In the 

context of pH-dependent RNA activity, structural features of interest include bulges,35 

triplexes21,26,176-178 and pseudoknot structure21,26,176-178 that contains protonated residues, and 

using the CHARMM36 force field to model these type of structural motifs have not been 

extensively validated in the literature. Preliminary data suggests that over a longer timescale, 

typically on the order of >100 ns, the protonated form of these RNA structures deviate 

significantly from their native crystallographic or NMR structures. For example, protonated 

AC+ base pairs that are known to be stable lose their base-paired conformation within 100 ns 

(data not shown). Extensive validation efforts have also indicated that the partial charge 

parameterization scheme is not the main determining factor for the inability to maintain correct 

geometries of protonated base pairs, as the interaction energies of protonated AC+ base pairs, a 

proxy of how “strong” the base pairing interaction should be, did not have any discernable effect 

on the ability of the force field to maintain a correct protonated base-pair geometry (data not 

shown).  

MacKerell and co-workers have previously reported that sampling the 150° to 250° 

region of the 2’-hydroxyl dihedral phase space is correlated to RNA conformational 
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heterogeneity, specifically in promoting the formation of non-canonical conformations.179 The 

previous CHARMM27 nucleic force field was known to oversample this region of phase space, 

and it was the primary reason as to why simulated structures could not maintain their structural 

integrity. In the context of our studies, we observed that the loss of native structure correlates to 

the 2’-hydroxyl dihedral sampling in the 150° to 250° region, which led to the hypothesis that the 

dihedral parameters were the primary cause for the inability to maintain correct geometries of 

protonated RNA structures. Even though the CHARMM36 force field was developed to 

minimize this occurrence of non-canonical tertiary structure sampling, our data suggests that it 

may not be applicable to nucleic acid structures that possess more complex tertiary structure, 

beyond the typical A-form helix for RNA. In the development of the CHARMM36 force field, 

several candidates, CHARMM27a through CHARMM27e were reported and tested by 

MacKerell and co-workers.179 Ultimately, the CHARMM27d force field was selected as the 

CHARMM36 force field. However, we noted that both CHARMM27b and CHARMM27d force 

field demonstrated almost equivalent performance in the 3 benchmark studies performed – water 

probability overlap, J-coupling and free energy calculations. However, the CHARMM27b force 

field stabilizes the 50° to 100° region of the 2’-hydroxyl dihedral phase space more strongly than 

the CHARMM27d (CHARMM36) force field, which is the region that promotes canonical 

tertiary structure. Preliminary tests demonstrated that using the CHARMM27b force field did 

produce a notable improvement in the stability of protonated RNA structures in its ability to 

maintain protonated AC+ base pairs for a longer time (data not shown), which suggests that the 

2’-hydroxyl dihedral parameter will need to be further optimized to model protonated RNA 

structures accurately. As a temporary measure, we recommend that the CHARMM27b 
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parameters should be used instead of the official CHARMM36 parameters when simulating 

nucleic acid structures that have segments that are not A-form helical.  

As the focus of this dissertation is on the development and application of explicit solvent 

CPHMD, as opposed to nucleic acid force field development and validation, a decision was 

made to utilize the AMBER parmbsc0 nucleic acid force field with χOL3-correction,180 which has 

received more developmental effort, and has been successfully used to model a number of 

complex RNA structures.181,182 

3.4.2. New AMBER Parameters for Protonated Nucleic Acids 

Here, we summarize different parameterization schemes tested for the purpose of 

parameterizing alternative protonation states of nucleobases and related compounds for the 

AMBER nucleic acid force field. In the standard AMBER parameterization protocol, the partial 

charge distribution is obtained from the RESP charges from QM calculations using HF/6-

31G*.183 As protonated bases are more subject to polarizable effects than neutral bases, we 

investigated if using a higher level of theory, more comprehensive basis sets that add diffuse 

functions, and/or performing the QM calculations under different dielectric environments would 

affect the accuracy of simulations of protonated RNA structures. 

To validate simulation accuracy, we used the protonated A25C6+ base pair in the lead-

dependent ribozyme as a simple model system. As an initial screen, we first calculated the 

interaction energy of protonated A25C6+ base pair. The results as summarized in Table 3.4.2.1, 

indicate that the interaction energies across solvent environments, while controlling for the same 

level of theory and basis set, were consistent with one another, and varied by only 2-3 kcal/mol. 

In light of the insensitivity of interaction energies to the solvent environment at which the QM 

calculations were performed, we used the gas phase calculations for the next validation stage, as 
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this is most consistent with the standard AMBER parameterization protocol.183 Next, we tested 

the parameters obtained from 18 permutations of level of theory and basis sets in their ability to 

reproduce the experimental pKa of 6.5. All pKa values calculated were within a standard 

deviation of ±1 pKa unit of the mean value (Table 3.4.2.2). 

Table 3.4.2.1: Interaction energies of the A25C6+ base pair in lead-dependent ribozyme, using 

parameters from QM calculations of varying level of theory, basis set and solvent environment. 

 

Theory Basis Set Gas Ether Water 

HF 

6-31G* -39.8630 -41.9912 -43.2652 

6-31+G* -40.6766 -42.7231 -43.8629 

cc-pVDZ -38.9907 -41.6234 -43.3622 

aug-cc-pVDZ -40.4656 -41.9959 -43.2998 

cc-pVTZ -38.9157 -41.7731 -41.9168 

aug-cc-pVTZ -38.8047 -41.7977 -42.5464 

B3LYP 

6-31G* -38.4736 -40.7321 -41.8712 

6-31+G* -38.7940 -41.3145 -42.5700 

cc-pVDZ -38.1606 -39.7476 -40.8145 

aug-cc-pVDZ -38.2135 -40.4519 -42.1383 

cc-pVTZ -37.7925 -40.2338 -41.234 

aug-cc-pVTZ -37.7057 -40.4711 -42.0726 

MP2 

6-31G* -39.8630 -41.9912 -43.2652 

6-31+G* -40.6766 -42.7231 -43.8629 

cc-pVDZ -40.1295 -41.1844 -42.8962 

aug-cc-pVDZ -40.4656 -41.9959 -43.2998 

cc-pVTZ -38.9157 -41.7731 -41.9168 

aug-cc-pVTZ -38.8047 -41.7977 -42.5464 

 

Table 3.4.2.2: pKa calculations of the A25C6+ base pair in lead-dependent ribozyme, using 

parameters from QM calculations of varying level of theory and basis set. 

 

Theory Basis Set Calculated pKa 

HF 

6-31G* 6.7 

6-31+G* 6.9 

cc-pVDZ 7.5 

aug-cc-pVTZ 6.5 

cc-pVTZ 6.2 

aug-cc-pVTZ 6.4 

B3LYP 

6-31G* 6.8 

6-31+G* 7.0 

cc-pVDZ 6.1 

aug-cc-pVDZ 6.6 
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cc-pVTZ 6.7 

aug-cc-pVTZ 6.8 

MP2 

6-31G* 6.8 

6-31+G* 6.9 

cc-pVDZ 6.8 

aug-cc-pVDZ 7.2 

cc-pVTZ 6.6 

aug-cc-pVTZ 7.4 

 

Based on our results, it is apparent that changing the level of theory, basis sets and 

dielectric environment in the QM calculations used to derive the parameters for alternative 

protonation state residues does not have a discernable effect on the overall accuracy of 

reproducing experimental pH-dependent observables. To maintain consistency with the standard 

parameterization AMBER protocol, we utilized the parameters obtained at the Hartree-Fock 

(HF) level of theory and the 6-31G* basis set, calculated in gas phase. Specifically, to determine 

the partial charge parameters for alternative protonation states of nucleobases, we used 

methylated nucleobases as the model compound. The partial charges used directly corresponded 

to the RESP calculated charges without modification for all atoms, with the exception of atom 

N9 that collected the residual charge between the sum of RESP charges and the total expected 

charge of the base fragment, which is necessary to maintain an integer charge for the entire 

fragment. For parameterizing alternative protonation states of the 2’OH group of ribose sugars, 

we constrained the partial charges of the upper sugar fragment obtained from the AMBER force 

field in its standard protonation state, and rescaled the RESP charges of the lower sugar by 

normalizing it to the total expected charge of the fragment. For the model compound ribose sugar 

used calibrating our CPHMDMSλD simulations, we constrained the partial charges of the lower 

sugar and atom O4’ and rescaled the RESP charges of the upper sugar by normalizing it to the 

total expected charge of the fragment. The final set of partial charge parameters developed are 

summarized in Table 3.4.2.3. 
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Table 3.4.2.3: Partial charge distribution of AMBER-compatible parameters of alternative 

protonation states. 

 

Residue 
Atom 

Name 

Atom 

Type 
Charge Residue 

Atom 

Name 

Atom 

Type 
Charge 

Ade 

(RNA) 

N9 NS 0.0392 

Ade 

(DNA) 

N9 NS 0.0580 

C8 C2 0.1328 C8 C2 0.1328 

H8 H5 0.2014 H8 H5 0.2014 

N7 NB -0.5216 N7 NB -0.5216 

C5 CB 0.2367 C5 CB 0.2367 

C6 CA 0.2758 C6 CA 0.2758 

N6 N2 -0.7283 N6 N2 -0.7283 

H61 H 0.4298 H61 H 0.4298 

H62 H 0.4298 H62 H 0.4298 

N1 NC -0.2473 N1 NC -0.2473 

H1 H 0.3515 H1 H 0.3515 

C2 CQ 0.1901 C2 CQ 0.1901 

H2 H5 0.1921 H2 H5 0.1921 

N3 NC -0.4582 N3 NC -0.4582 

C4 CB 0.3521 C4 CB 0.3521 

Cyt 

(RNA) 

N1 NS 0.1418 

Cyt 

(DNA) 

N1 NS 0.1722 

C6 C1 -0.0374 C6 C1 -0.0374 

H6 H4 0.2414 H6 H4 0.2414 

C5 CM -0.3838 C5 CM -0.3838 

H5 HA 0.2190 H5 HA 0.2190 

C4 CA 0.6096 C4 CA 0.6096 

N4 N2 -0.9084 N4 N2 -0.9084 

H41 H 0.4753 H41 H 0.4753 

H42 H 0.4753 H42 H 0.4753 

N3 NC -0.3288 N3 NC -0.3288 

H3 H 0.3388 H3 H 0.3388 

C2 C 0.5419 C2 C 0.5419 

O2 O -0.4782 O2 O -0.4782 

Gua 

(RNA) 

N9 NS -0.0546 

Gua 

(DNA) 

N9 NS -0.0397 

C8 CK 0.0358 C8 CK 0.0358 

H8 H5 0.1301 H8 H5 0.1301 

N7 NB -0.5707 N7 NB -0.5707 

C5 CB 0.0197 C5 CB 0.0197 

C6 C 0.7437 C6 C 0.7437 

O6 O -0.6998 O6 O -0.6998 
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N1 NA -0.8598 N1 NA -0.8598 

C2 CA 0.8907 C2 CA 0.8907 

N2 N2 -0.9641 N2 N2 -0.9641 

H21 H 0.3611 H21 H 0.3611 

H22 H 0.3611 H22 H 0.3611 

N3 NC -0.8007 N3 NC -0.8007 

C4 CB 0.3038 C4 CB 0.3038 

Ura 

(RNA) 

N1 NS -0.1875 

Thy 

(DNA) 

N1 NS -0.1492 

C6 CM -0.1156 C6 CM -0.3202 

H6 H4 0.1593 H6 H4 0.1983 

C5 CM -0.5167 C5 CM -0.0638 

H5 HA 0.1528 C7 CT -0.2203 

C4 C 0.9652 H71 HC 0.0512 

O4 O -0.7610 H72 HC 0.0512 

N3 NC -0.9497 H73 HC 0.0512 

C2 C 0.8631 C4 C 0.8263 

O2 O -0.7437 O4 O -0.7225 

2'OH 

(RNA) 

C2' CT 0.3033 N3 NC -0.9187 

H2' H1 -0.1541 C2 C 0.8210 

O2' OX -1.1803 O2 O -0.7313 

Phos 

(Taut 

#1) 

P P 1.2181 
Phos 

(Taut 

#2) 

P P 1.2181 

O1P OH -0.5878 O1P O2 -0.5769 

O2P O2 -0.5769 O2P OH -0.5878 

H1P HO 0.5603 H2P HO 0.5603 
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3.4.3 An Expanded Repertoire of Titratable Groups for Nucleic Acids 

In the explicit solvent CPHMDMSλD framework of nucleic acids using the AMBER force 

field, we expanded the titratable groups to encompass all major titration sites. As illustrated in 

Figure 3.4.3.1, this includes titration of all 5 bases – Ade, Cyt, Gua, Ura, Thy at the N1/N3 

protonation site, backphone phosphate and its protonation site on the non-bridging oxygen and 

the 2’OH protonation site in ribose sugar. While Ade and Cyt are the most commonly observed 

protonation sites with shifted pKa, the expanded titrating functionality developed will allow us to 

address a larger range of systems, including systems where Gua titration may be 

important,40,42,184 as the well as the backbone phosphate and 2’OH group that are implicated in 

the catalytic mechanism of a number of ribozyme systems. 

Figure 3.4.3.1: List of titratable groups and residues in the expanded set of nucleic acid CPHMD 
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As with the methodology outlined in our previous work,111 we calculated the model 

potential parameters for each residue, which is summarized in Table 3.4.3.1. In addition, for the 

backbone phosphate group, because of the tautomeric states for the protonated non-bridging 

oxygen, a modified functional form of the fixed biasing potential was applied to allow 

tautomeric titrations (see Table 3.4.3.1), and this approach is adopted from our previous work of 

modeling tautomeric states in protein side chains.114  

Table 3.4.3.1: Parameters for the Model Potential for 2-state Titrations 

 

Residue ΔGprotonation (kcal/mol) 
Fvar (kcal/mol) 

Ref pKa 
k1 k2 k3 

Ade 73.1 24.00 - - 3.50 

Cyt 52.6 26.25 - - 4.08 

Gua 80.4 27.50 - - 9.25 

Ura 87.6 28.25 - - 9.38 

2’OH -102.5 54.50 - - 13.10 

Phos 19.6 -26.4 /  24.8 -24.8 1.30 

 

3.4.4 pKa calculations of Model RNA systems 

We further tested the applicability the newly developed parameters by reproducing a 

broad array of pKa values. While site-specific pKa measurements of protonated residues of 

nucleic acids are sparse in the literature, we managed to select a group of 5 RNA and DNA 

structures that have diverse local microenvironments around the protonated nucleotide (Figure 

3.4.4.1). The current data set includes protonated adenine: the lead-dependent ribozyme in a 

A+
C base pair, U6 internal stem loop (U6 ISL) in a A+

C base pair, and the hairpin ribozyme in 

a protonated adenine interacting with a phosphate group, and protonated cytosine: the Hoogsteen 

DNA duplex of a GC+ base pair, and a protonated C+GC base triplet in the beet western yellow 

virus (BWYV). 
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Table 3.4.4.1: Calculated pKa of various protonated nucleotides in reported RNA systems 

 

System Interaction Exp pKa Calc pKa 

Lead-dependent Ribozyme  A+
C 6.5 6.9 

U6 Internal Stem-loop  A+
C 6.5 8.1 

Hairpin Ribozyme  A+Phos 6.5 9.5 

Hoogsteen DNA duplex  GC+ 7.2 6.4 

Beet western yellow virus C+GC 8.2 >13 

 

 
Figure 3.4.4.1: Ground state structure as obtained by X-ray crystallography or NMR studies of 

the 5 nucleic acid systems tested  
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A summary of the computed pKa values from explicit solvent CPHMDMSλD simulations is 

reported in Table 3.4.4.1. For adenine, we observed that our calculations yielded values of 6.9, 

8.1, 9.5 for each RNA structure, relative to their experimental value of 6.5. Interestingly, we 

observed that there is an apparent deviation from experimental pKa for the U6 ISL and the 

hairpin ribozyme even though the A+
C base pair for the lead-dependent ribozyme is highly 

accurate. From available literature on the dynamics of the U6 ISL bulge, it is known that it 

experiences a pH-dependent conformational change where the U80 base adjacent to the 

A79+
C67 base pair  “flips out” when the pH is lowered to 5.7 (Figure 3.4.4.2b), while it 

remains stacked with A79 when the pH is raised to 7.4 (Figure 3.4.4.2a). Our prior work on 

nucleic acid CPHMDMSλD simulations have also demonstrated that conformational dynamics and 

consequently the local electrostatic environment around titrating residues affect the accuracy of 

computed pKa values, such as those in the GAAA tetraloop region.113 When we performed the 

our calculations on the other flipped out U6 ISL structure, we observed that the pKa is lowered to 

4.8, and the lower and upper bound pKa values of both structures encompass the experimental 

pKa of 6.5 It should be noted that the experimental pKa measured is a macroscopic or apparent 

pKa value, which is obtained from a superposition of both structures, and therefore should not be 

expected to be reproduced by our pKa calculations on a single conformation. Based on this 

precedence of how different conformations can contribute to and affect the macroscopic pKa 

measured, for the hairpin ribozyme with the elevated pKa of 9.5, it also suggests conformational 

dynamics may be at play as well. Alternatively, one may expect that the stronger interaction with 

a negatively charged phosphate group (as opposed to a neutral cytosine in the A+
C base pair) 

should stabilize the protonated state of adenine in the hairpin ribozyme, thus stabilizing the 

protonated form even further and elevating its pKa value beyond 6.5. For cytosine bases, we 
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observed that the pKa of the protonated Hoogsteen GC+ base pair is 6.4, which is close to the 

indirect/inferred pKa measurements obtained from NMR relaxation dispersion spectroscopy117 

that was performed on a methylated variant that traps the base pair in the Hoogsteen 

conformation. For the BWYV, we note that the pKa of Cyt is elevated above 13, which is much 

higher than the 8.2 value reported from experimental studies. An examination of the electrostatic 

environment between a GC+ base pair and a C+GC base triplet suggests that the protonated 

cytosine should be stabilized to a greater extent in the base triple environment of BWYV, and 

therefore an upward pKa shift is not unexpected. In addition, it has been postulated from 

experimental observations that a non-ground state structure may exist,185 which would be 

consistent with a number of studies that demonstrate the conformational flexibility of RNA 

structures involved in pH-mediated activity.21,35 Regardless of the deviation from experimental 

pKa values, we suggest that our pKa calculations are internally consistent based on the local 

electrostatic environment and its effect on stabilizing charged nucleobases, but paradoxically 

they do not correspond to the experimental measurements of apparent pKa values. This apparent 

inconsistency will be reconciled in Chapter 4.2. 

 
Figure 3.4.4.2: pH-dependent conformational change in the bulge region of U6 ISL adjusts the 

favorability of the A+C base pair interaction.  
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3.4.5. Conclusion: Expanded Explicit Solvent CPHMDMSλD Simulations to include all 

Titratable Groups using an AMBER-compatible Force Field 

In this chapter, we described the development of new parameters for nucleic acids in 

alternative protonation states for the AMBER force field. We tested a number of solvation 

models, basis sets and levels of theory for the QM calculations for deriving the RESP charges 

used to describe the partial charge distribution. We discovered that there is an apparent 

insensitivity of interaction energies and the resulting pKa calculations of protonated AC+ base 

pairs to the specifics of the QM calculations. With the development of AMBER-compatible 

parameters, we then extended the explicit CPHMDMSλD framework to titrate all the 5 major 

nucleobases present in both DNA and RNA, as well as additional functional groups, such as the 

backbone phosphate and 2’OH of the ribose sugar that have been implicated in pH-mediated 

RNA activity. Our pKa calculations of protonated nucleotides across 5 different RNA structures 

indicate that the relative pKa shifts are internally consistent based on the strength of the 

interactions that the protonated base has with its local microenvironment, but paradoxically is not 

always consistent with experimental pKa measurements. Using the U6 ISL as a precedent, we 

demonstrate how different pH-triggered conformational changes can alter the microscopic pKa of 

each conformation, and that the apparent pKa measured is likely to be a superposition of the 

calculated microscopic pKa values of these conformations. Based on the observation that the pKa 

values of the protonated residues in the hairpin ribozyme and BWYV are elevated, we 

hypothesize that there may be additional conformational states, possibly transiently populated, 

that are involved in their activity at physiological pH.  
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Chapter 4: Using CPHMDMSλD to Probe pH-mediated 

Transient States in Nucleic Acid Activity 

4.1 Elucidating Transiently Populated Protonated Hoogsteen 

CG+ Base Pairs in DNA Duplexes 

Note: Chapter 4.1 was adapted from the following references.117 The entire chapter 4.1. contains 

significant contributions from Evgenia Nikolova, who was responsible for performing and 

analyzing all NMR experimental data. The results and discussion have been included in this 

dissertation for continuity and completeness. 

4.1.1 Hoogsteen Base Pairs in DNA and Implications in Biological Systems 

 Recent NMR studies using relaxation dispersion techniques186,187 of AT and GC base 

pairs in duplex DNA indicate that they can transiently form Hoogsteen base pairs with 

populations in the range of 0.1–0.5% and lifetimes of 0.3–1.1 ms at pH ∼6.49,52 Transition from 

Watson–Crick (WC) to Hoogsteen (HG) base pairs requires a 180° rotation of the purine base 

about the glycosidic bond and, therefore, a change in the base orientation from anti to syn 

conformation.188 While AT HG base pairs retain two hydrogen bonds (H-bonds) upon this 

conformational change, GC HG base pairs retain only a single H-bond unless cytosine N3 

becomes protonated to form a second stabilizing H-bond (Figure 4.1.1.1a). 

 To date, N3-protonated cytosine in a GC+ HG base pair has only been directly observed 

by NMR for triplex DNA, where the protonation constant (or pKa) of cytosine N3 was shown to 

be elevated by more than 5 units for GC+ HG189 as compared to the value of ∼4.2 in free 

nucleotides.142 However, the protonation state of cytosine N3 in GC HG base pairs within 
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duplex DNA has not been determined. The pKa of free cytosine is far from neutrality (∼4.2),142 

and the cytosine imino H3 proton cannot be directly visualized in crystal structures or by NMR 

measurements owing to rapid exchange with solvent. Indeed, the initial proposal that replication 

by human DNA polymerase ι (hPolι) proceeds via HG rather than WC pairing190 was challenged 

on the grounds that at physiological pH, GC would not exist as a stable HG base pair due to 

lack of protonation.191 Although X-ray structures of duplex DNA bound to proteins, including 

hPolι (at pH ∼6.5)192 and TATA-binding protein (at pH ∼6),193 suggest that cytosine N3 and 

guanine N7 atoms are within H-bonding distance, protonation of cytosine N3 could not be 

unambiguously established. Determining the protonation state of cytosine N3 and its pKa value 

becomes significantly more challenging in naked duplex DNA, where the HG base pairs exist 

only transiently in solution. In this study, we contributed computational methods to support 

NMR experiments to directly examine the pKa of cytosine N3 in naked duplex DNA and relative 

stability of HG base pairs under physiological pH. 
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Figure 4.1.1.1: Schematic of the equilibrium between GC WC and HG base pairs. (a) 

Transition from a ground-state WC to a transient-state HG base pair, with relative populations 

measured by NMR relaxation dispersion, requires an anti-to-syn rotation around the glycosidic 

bond ( χ ) and creates a stabilizing H-bond upon C N3 protonation. (b) Methylation at G N1 

favors formation of a ground-state HG base pair at pH 5.2. 

 

4.1.2 NMR Relaxation Dispersion Measurements of GC HG Base Pairs 

We previously showed that G·C HG base pairs can be trapped inside naked duplex DNA 

by installing a methyl group at the G imino nitrogen N1 position.49 This N1-methylguanine 

(1mG) modification introduces a bulky substituent at the WC interface and precludes formation 

of the WC (G)N1H1···N3(C) H-bond, tipping the equilibrium toward the HG base pair at low 

pH (Figure 4.1.2.1b).49 Based on chemical shift analysis, we showed that trapped HG base pairs 

have similar characteristics to their transient unmodified counterparts. We confirmed formation 

of the 1mG15·C10 HG base pair in A6-DNA 1mG10 at pH 5.2 based on observation of nuclear 

Overhauser effect (NOE) connectivity and proton/carbon chemical shift signatures that indicate a 

syn conformation for the 1mG10 base (Figure 4.1.2.1a).49 

While the protonation state of cytosine could not be deduced directly in either transient or 

trapped HG base pairs, several indirect lines of evidence suggest that in both cases, the cytosine 

N3 is protonated to form a GC+ HG base pair. The 1mG10 modification resulted in significant 

chemical shift perturbations at the C15 base, which are consistent with N3 protonation. This 

includes an upfield shift of amino protons (∼2 ppm), which is a known characteristic of 

protonated GC+ HG base pairs in triplex DNA,189 and a large downfield shift (∼2.3 ppm) in 

C15 C6, which is also expected upon N3 protonation based on density functional theory 

calculations.49 Further evidence that these perturbations reflect cytosine N3 protonation comes 

from observation of only small chemical shift perturbations (<0.5 ppm) in the thymine residue 

when trapping an AT HG base pair through N1-methylation of the adenine.49 Finally, the 
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population of the transient HG base pairs measured by NMR relaxation dispersion decreases 

more strongly with increasing pH for GC versus AT base pairs, and falls outside the limits of 

detection by relaxation dispersion at higher than neutral pH, as might be expected based on 

destabilization of the G·C HG base pair due to cytosine N3 deprotonation.49 

 
Figure 4.1.2.1: Estimating the pK a for cytosine N3 inside a trapped 1mG · C HG base pair. (a) 

2D1H,1H NOESY spectra at pH 5.2 (red) and 9.2 (purple), suggesting a syn conformation at low 

pH versus an anti conformation at high pH for 1mG10 as well as enhanced conformational 

exchange and/or distortion for C15 and neighboring sites. (b) pH dependence of 2D1H,13C 
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HSQC spectra of unlabeled A 6 -DNA1mG10 showing large conformational changes at the 

1mG10 · C15 and its two neighboring base pairs. (c) Corresponding chemical shift perturbations 

as a function of pH, showing global fitting of the observed pKa ≈ 7.2 for the transition from a 

protonated G · C+ HG to a distorted WC * base pair 

To further characterize the protonation state of C15 N3 in a G·C HG base pair, we 

measured natural abundance NMR 1H,13C-HSQC spectra for base and sugar resonances for the  

unlabeled A6-DNA1mG10 sample as a function of pH and monitored the chemical shift 

perturbations (CSP) at the modified base pair and adjacent sites (Figure 4.1.2.1b). We worked 

within a pH range (5.2–9.2) that minimally affects the structural stability of B-DNA and that 

causes little NMR spectral change in an unmodified A6-DNA. If the chemical shift perturbations 

observed at C15 upon guanine methylation under acidic conditions arise due to protonation of 

cytosine N3, increasing the pH should undo these effects and result in C15 chemical shifts that 

are similar to those observed in WC base pairs. Increasing the pH from 5.2 to 9.2 resulted in 

expected upfield CSPs for cytosine C6 and C5 that are consistent with deprotonation at the N3 

position (Figure 4.1.2.1b). However, we also observed CSPs that are not expected based on N3 

deprotonation and that suggest a pH-dependent conformational change. In particular, both the 

sugar C1′ and base C8 resonances of 1mG experience an upfield shift with increasing pH, 

resulting in carbon chemical shifts that are strongly indicative of an anti rather than syn 

nucleobases orientation, as expected for a WC-like geometry. This was supported by large 

changes in the NOESY cross-peaks at pH 9.2, including a much weaker 1mG10 H8–H1′ cross-

peak and a stronger 1mG10 H8–H2′/2″ cross-peak than seen for the syn base at pH 5.2, but 

consistent with an anti base orientation (Figure 4.1.2.1a). We also observed a weak cross-peak 

between 1mG10 H8 and the 3′ neighboring T9 H1′, confirming that an anti/anti configuration in 

the sequentially stacked bases, with some structural distortion and/or enhanced dynamics at the 

1mG residue (Figure 4.1.2.1a). Increasing the pH resulted in an unusual downfield CSP for C15 
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C1′ that suggests a change in sugar pucker toward the C3′-endo conformation. A structural 

and/or dynamic perturbation at C15 could also be inferred from a weaker cross-peak between 

C15 H1′ and the 3′ adjacent A16 H8 at pH 9.2 than normally observed in B-DNA (Figure 

4.1.2.1a). These data suggest that, upon deprotonation of cytosine N3 at high pH, an HG base 

pair stabilized by a single H-bond is no longer energetically favorable as compared to a distorted 

WC-like geometry (WC*), which could be stabilized by at least one H-bond. Evidently, the 1mG 

modification does not fully trap the transient HG base pair at pH 5.2 but, rather, inverts the 

relative populations of the WC and HG species so that the WC* conformation now becomes the 

transient state. This is further supported by detectable line broadening at the 1mG10·C15 base 

pair observed at low pH. Such inversion of ground and excited states has previously been 

observed with targeted mutagenesis in proteins.194 

4.1.3 CPHMDMSλD Simulations of GC HG Base Pairs 

To obtain additional insights into the protonation equilibria, we performed constant pH 

molecular dynamics (CPHMDMSλD) simulations111,112 on the HG GC+ base pair and its 1mG 

analogue using the same NMR experimental conditions. As shown in Figure 4.1.3.1a, we 

calculated pKHG+ = 7.1 ± 0.1, where the major neutral HG conformation was stabilized by two 

weaker H-bonds (Figure 4.1.3.1b). Moreover, this pKa prediction was not significantly altered 

by guanine N1-methylation (Figure 4.1.3.1a). Analysis of the H-bond lengths at pH 7 confirmed 

that an HG-like conformation was maintained throughout the simulations (data not shown). 

These results represent an independent estimate of pKHG+, which is in line with the 

experimentally bounded pKHG+  value of at least 7.2 ± 0.1, and point to a nearly equal stability of 

the neutral and protonated species at physiological pH. As in the NMR experiments, the MD 

simulations may underestimate pKHG+  because polarization effects from the charged G·C+ base 
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pair, which could strengthen these interactions, were not accounted for in the simulation 

parameters. In contrast, control simulations for a canonical WC base pair , where the protonated 

species featured a cytosine base shifted toward the major groove to accommodate a wobble 

configuration with two H-bonds (Figure 4.1.4.1b), yielded a much lower pKa = 2.4 ± 0.1 that fits 

the large decrease expected for a helical WC base pair. Due to the lack of accurate structures for 

the protonated and neutral WC* states, identical simulations could not be carried out for the 

1mG-modified WC* base pair. 

 
Figure 4.1.3.1: Constant pH MD simulations of WC and HG base pair protonation. (a) Titration 

curves obtained from three independent runs of single-site CPHMDMSλD simulations of a G · C 

HG base pair, its 1mG analogue, and a G · C WC base pair. (b) Corresponding structures for the 

neutral and protonated WC and HG base pairs and predicted free energy differences at pH 7, 

depicted in the context of the proposed four-state equilibrium. 

 

To relate the above observations to transient HG base pairs, we measured relaxation 

dispersion data over the detectable pH range (4.3–6.8) to examine variations in the HG 
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population (pB). Assuming that the neutral GC HG base pair is significantly destabilized 

relative to its protonated counterpart, we would predict that, at pH > pKa of cytosine N3 (≥7.2), 

GC HG base pairs would fall outside the limit of detection by NMR dispersion. This would not 

be the case for AT HG base pairs, whose populations should remain independent of pH. Indeed, 

this is what is observed: transient GC+ HG base pairs are undetectable at pH 7.6, while AT 

retains a pB ≈ 0.4%. By extrapolating the pH dependence of pB, we estimate a pB ≈ 0.02 to 

0.002% for transient GC+ HG base pairs at physiological pH 7–8. This is at least ∼20-fold less 

abundant than for transient AT HG base pairs, and this difference in abundance increases with 

metal ion concentration (data not shown). A comprehensive survey of X-ray structures also 

reveals a greater abundance of AT as compared to GC HG base pairs in duplex DNA (data not 

shown). Interestingly, we also observed an increase in pB with decreasing pH below 6, which is 

much more pronounced for GC+ as compared to AT base pairs. Fitting of pB as a function of 

pH yielded pKa,obs = 3.2 and 2.7 for GC and AT base pairs, respectively (see Supporting 

Information). This increase in pB with acidic pH arises primarily from an increase in the forward 

rate constant and could reflect acid-induced destabilization195 of WC relative to HG states, 

possibly due to protonation of other groups. For GC base pairs, this increase in pB could still be 

explained by cytosine N3 protonation in the context of a four-state equilibrium. 

4.1.4 Conclusion: CPHMDMSλD Simulations were used to Characterize Transiently 

Populated Hoogsteen GC+ Base Pairs in DNA 

In this chapter, we have used both NMR and CPHMDMSλD simulation studies, which both 

indicate that the pKa of cytosine N3 is ∼7.2, which is comparable to the pKa of adenine N1 in 

A·C+ mismatches.39,196 Thus, transient G·C HG base pairs can significantly populate protonated 

over neutral species near biological pH, with potential implications in DNA recognition and 
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binding by cellular factors. Moreover, we show that, at physiological pH, G·C base pairs 

containing N1-methyl-G damage exist as a nearly equal mixture of protonated HG+ and distorted 

WC-like conformers that could be specifically recognized by DNA repair enzymes in search for 

damaged DNA.  
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4.2 The Role of Transient States in Hairpin Ribozyme Catalysis 

Note: Chapter 4.2 was adapted from the following references.116 The entire chapter 4.2 contains 

considerable contributions from Kamali Sripathi, who was involved in performing part of the 

simulations and data analysis. 

4.2.1 The Hairpin Ribozyme: Embroiled in Controversy 

Since the discovery of RNase P and the Tetrahymena group I intron, catalytic RNAs have 

been found to catalyze a variety of reactions and exist in a wide array of structural size and 

diversity.197,198 The catalytic power of large ribonucleoprotein complexes such as the ribosome 

and spliceosome have been proven to be due to their RNA components.197,198 The ribosome, one 

of the largest ribozymes, catalyzes a very specific reaction, the formation of peptide bonds, and it 

is distinct from the phosphoryl transfers of other ribozymes. The reactions catalyzed by both 

RNase P and the group I intron, the latter of which is considered a ribozyme of intermediate 

size,199 have been shown to be metal-dependent. Smallest of all, the autolytic ribozymes, which 

include the Hepatitis delta virus (HDV) ribozyme,11,200,201 the hairpin ribozyme,202,203 the 

hammerhead ribozyme,204 and the Varkud Satellite ribozyme,205 catalyze site-specific cleavage 

of their own phosphodiester backbones primarily through the use of nucleobases in their 

alternative protonation states.197-199 

In the context of the small autolytic ribozyme, the hairpin ribozyme is perhaps the best 

studied and characterized system. It facilitates site-specific autolytic cleavage into 2’3’ cyclic 

phosphate and 5’ hydroxyl termini, and adopts a variety of conformations with several discrete 

strategies to carry out site-specific cleavage. Extensive biochemical and structural data have 

indicated that the hairpin ribozyme employs general acid-base catalysis, which is believed to be 

facilitated by its own endogenous nucleobases. An alternative catalytic mechanism, via 
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electronic stabilization, has been proposed by Fedor and co-workers.12,40 However, more recent 

publications have demonstrated how existing data supporting the latter hypothesis can be re-

interpreted in the context of general acid-base catalysis, further solidifying this mechanism as the 

consensus within the community.206,207 

 
Figure 4.2.1.1: Proposed mechanism of the hairpin ribozyme A38-G8 general acid-base catalytic 

mechanism. Alternative candidates for the general acid and/or base, and supporting residues with 

residual effect have also been highlighted.12,41,44,208209,210 

 

As to the specific details of the catalytic residues, there are several candidates for general 

acids and bases in the hairpin ribozyme active site. A38 in its protonated form has been 

implicated as the general acid,12,41,44,208 as evidenced by its site-specific pKa value of 6.5, which 

suggests that it can be partially protonated near physiological pH. As for the general base, G8 in 

its deprotonated form is a possible candidate, although its high pKa of ~10.5 suggests that the 

population of G8- is going to be extremely low near physiological pH. The A38/G8 general 

acid/base catalytic model is further supported by mutational studies where the loss of A38 and 
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G8 leads to a 104 and 102 drop in catalytic activity respectively. In a seminal work by 

Bevilacqua, it was demonstrated how a general acid at pKa ~6.5 and general base at pKa ~10 can 

be used to reconstruct experimentally recorded pH rate profiles, and the A38/G8 general 

acid/base catalytic model is thus far the most consistent with the majority of experimental data. 

While the A38/G8 general acid/base catalytic model is the most widely accepted model 

for the hairpin ribozyme, it is not fully consistent with all experimental observations. Notably, in 

a recent study involving thiol substitution and A38 abasic mutation by Lilley and co-workers, a 

“residual” catalytic effect at low pH was observed that cannot be explained by the A38/G8 

model.209 Over the years, a number of alternative models for the identity of the general acid and 

general base has been explored by the community. Early mutational studies have implicated 

residues A9 and A10, although the 10-fold drop in activity (relative to the 102 to 104 fold drop 

observed for A38 and G8), and their increased distance away from the active site likely relegates 

their role to electronic stabilization rather than actual catalytic participation. Early studies have 

also demonstrated that the hairpin ribozyme utilized an ion-independent mechanism of 

catalysis.210,211 More recent studies using QM/MM methods from the groups of Gao, York and 

Otyepka have explored the possibility of non-bridging oxygens to act as proton shuttles,212,213 

although the pKa of these phosphate groups in the hairpin ribozyme environment have yet to be 

measured or calculated in the literature. 

In this chapter, we use pH-REX CPHMDMSλD to examine the protonation equilibria of all 

residues implicated in the catalytic mechanism of the hairpin ribozyme from first principles, 

which includes G8, A9, A10, A38, non-bridging oxygens on the scissile phosphate, and the 

2’OH group of the ribose sugar as illustrated in Figure 4.2.1.1. Based on our preliminary pKa 

calculations using the hairpin ribozyme crystallographic structure, and the conformational 
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flexibility we and others have observed in nucleic acids,21,35 we will map out various 

conformational states, including transiently populated states, in order to examine how the local 

environment around various titrating sites affect their protonation equilibrium, and how pH-

dependent transient states affect the overall catalytic mechanism of the hairpin ribozyme. 

4.2.2 Initial pKa calculations using CPHMDMSλD simulations 

Our earlier pKa calculations of several protonated adenine species in different RNA 

systems yielded the interesting observation that the microscopic pKa of A38 in the hairpin 

ribozyme is elevated to ~9.5, which is not consistent with the site-specific pKa of 6.5 as 

measured from Raman crystallography and pH-sensitive fluorescent nucleobases analogs 

experiments.41,44 We note that there is precedence of pKa variation of adenine residues even 

within similar A+C base pair environment, as reported by Bevilacqua and co-workers, where 

they showed how flanking bases can affect the pKa of A+C base pairs.214 In addition, extensive 

studies on the U6 ISL has confirmed that it undergoes a pH-dependent conformational change, 

which we have shown to exhibit distinct microscopic pKa. Furthermore, in dynamic systems 

such as the U6 ISL, caution must be exercised when interpreting structural data, as the initial 

structural studies performed at physiologically relevant pH conditions were incorrect because 

NMR signals from the two conformations at high and low pH were not deconvoluted 

properly.35,215,216 

To test the hypothesis that conformational changes may be influencing the measured pKa 

of A38, we mapped out possible conformations along the reaction pathway of A38, using the 

A38(N1)…G+1(P) distance as a proxy for the reaction coordinate, which represents the approach 

of a protonated A38 to the center of mass of the cleavage site (scissile phosphate). Using 

WExplore, a hierarchally balanced weighted ensemble sampling technique, we identified a major 

population centered at about ~ 5 Å, and this structure is similar to that observed in 
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crystallographic studies (Figure 4.2.2.1a). In addition, another minor population at a distance of 

~ 9 Å was also identified. In this minor population, which we will term the relaxed state, the 

increased distance between A38 and the negatively charged active site should decrease the 

electrostatic stabilization on a protonated A38, which will manifest as a lower pKa. When we 

incorporated both major and minor states into pH-REX CPHMDMSλD simulations, the pKa of 

A38 decreased from ~9 to ~7 (Figure 4.2.2.1b), bringing it closer to the experimentally recorded 

pKa of 6.5. These findings suggest that, on the timescale of experimental measurements, the 

hairpin ribozyme fluctuates between the ground state crystallographic structure and a transiently 

populated relaxed structure. Furthermore, it also implies that the measured pKa of A38 does not 

correspond to the crystallographic structure, as the crystal structure appears to have a much 

higher microscopic pKa than the apparent value, which would be obtained as a superposition of 

the microscopic pKa values of both the ground and relaxed structure. 

 
Figure 4.2.2.1: 1D WExplore sampling along the reaction coordinate identified a transiently 

populated relaxed conformation that when incorporated into CPHMD simulations better agreed 

with experimental data.  
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4.2.3 Identifying Transient Conformational States Involved in Catalysis 

 To fully elucidate the role of these transiently populated relaxed structures, and to clarify 

the nature of various residues and functional groups implicated in the catalytic mechanism of the 

hairpin ribozyme, we used an extensive set of WExplore simulations to exhaustively map out the 

conformations along two reaction coordinates: (i) the A38(N1)…G+1(P) distance, and (ii) the 

G8(N1)…G+1(P) distance. In addition, 8 permutations of protonation states of A38, G8 and the 

2’OH functional group were subjected to 2D WExplore sampling (Table 4.2.3.1). In the default 

WExplore simulation setup, the 2’OH retains its canonical protonated state. Low, medium, and 

high pH conditions were simulated by fixing the protonation states of A38 and G8 at their 

expected values as illustrated in Table 4.2.3.1. In addition, a transient state that corresponds to 

the A38H+ and G8- protonation states, which represent the active species in the reaction 

mechanism, was included even though the population of this state is likely going to be extremely 

low. Apart from the 4 default WExplore simulations, an additional 4 alternative WExplore 

simulations were performed, where the 2’OH was adjusted to its negatively charged 

deprotonated state, which better represents a later stage of the reaction pathway. 

Table 4.2.3.1: Permutation of fixed protonation states used in 2D WExplore sampling 

 

Permutation 2’OH A38 G8 

def_transient 2’OH A38H(+) G8(-) 

def_high 2’OH A38 G8(-) 

def_med 2’OH A38 G8H 

def_low 2’OH A38H(+) G8H 

alt_transient 2’O(-) A38H(+) G8(-) 

alt_high 2’O(-) A38 G8(-) 

alt_med 2’O(-) A38 G8H 

alt_low 2’O(-) A38H(+) G8H 

 

 From the collective results of the 8 WEXplore simulations, the identified conformations 

were clustered using the RMSD of all heavy atoms near the active site, which includes residues 
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G8, A38, and the two residues flanking the scissile phosphate (G1 and A-1). A total of 11 

clusters were identified, and their medoid structures were extracted. Clusters that had G8 or A38 

greater than 10 Å away from the center of the active site were excluded from further analysis, as 

in these structures partial unfolding of the active site was observed. The resulting 5 clusters 

contributed to 95.5% of all conformations sampled in the 8 WExplore simulations, which 

ensures that the loss of data from excluding the partially unfolded structures should have little 

effect on the overall analysis. Separate pH-REX CPHMDMSλD simulations were initiated from 

the medoid of each of the 5 clusters. The resulting pKa values, which should correspond to the 

microscopic pKa are summarized in Table 4.2.3.2. 

Table 4.2.3.2: Microscopic pKa calculated from pH-REX CPHMDMSλD simulations of the 5 

dominant clusters as identified from 2D WExplore sampling. 

 

Cluster G8 A9 A10 A38 Phos 2'OH Weight 

0 13.0 2.0 2.0 13.0 2.0 9.4 0.3642 

4 6.0 2.7 7.1 9.5 5.0 11.3 0.0953 

5 7.4 2.0 2.3 2.9 6.3 11.7 0.0938 

7 9.3 3.1 5.5 3.6 5.9 11.2 0.2204 

9 10.7 4.4 3.1 5.6 5.9 5.8 0.1817 

 

We observed that the microscopic pKa of A38 follows a bimodal distribution that 

encompasses the apparent pKa of 6.5 measured, with 3 clusters with a pKa of less than ~6.5 and 2 

clusters with a pKa higher than ~6.5. This observation is consistent with our earlier 1D WExplore 

sampling and reinforces our hypothesis that the hairpin ribozyme undergoes considerable 

conformational fluctuations between two distinct microenvironments around A38, which 

alternately favor and disfavor protonation. Similarly, the pKa of G8 shows a bimodal distribution 

about the apparent measured pKa of ~10.6, with 3 clusters possessing a lower pKa, and 2 clusters 

having a higher pKa. For the 2’OH group, the pKa was downshifted from its reference value of 

13.1 to about ~11 in most clusters, although it drops to as low as 5.8 in one simulation. This 



103 

downshift in pKa value is not unexpected since the proton of the 2’OH is removed during the 

first step of the reaction mechanism. As for residues A9 and A10, it was noted that the pKa of A9 

is near its reference pKa of 3.5 in all clusters, however for A10, the pKa is elevated to between 

~5.5 and ~7 in 2 clusters. Lastly, the non-bridging oxygens on the scissile phosphate are 

observed to have a pKa that is upshifted from 1.3 to ~5 to 6 in all but the first cluster. 

To reconcile our simulation results on the microscopic pKa of the 5 clusters with 

experimentally inferred apparent pKa values, we derived a relationship between microscopic 

pKa, macroscopic apparent pKa and the free energy difference (or weights) between the various 

conformations. From each permutation of 2D WExplore simulations, the weights of the 11 

clusters can be obtained. In order to consolidate information from all 8 permutations of 

protonation states (see Table 4.2.3.1), we averaged the weights across all 8 simulations, and used 

equation 2.2.5.1 to calculate the apparent pKa. The results as summarized in Table 4.2.3.3 

indicate that the calculated apparent pKa of G8 is within 0.5 pKa units from the experimentally 

suggested value of 10.6. Based on pKa considerations alone, the calculated apparent pKa of A10 

at 6.1 and the backbone phosphate at 5.9 would suggest that these residues may play a role in the 

catalytic mechanism as well. Interestingly, we observed that the apparent pKa of A38 is much 

higher than anticipated at 10.5. We attribute this discrepancy relative to our prior results by 

noting that cluster 0 had a pKa >13 for A38, which is anomalously high. To determine if the 

additional 6 excluded clusters would have any effect on the predicted apparent pKa, we 

recalculated the apparent pKa using all states, and as shown in Table 4.2.3.3, the values are 

extremely similar to those obtained using 5 clusters. 
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Table 4.2.3.3: Reconstructed apparent pKa using microscopic pKa from CPHMD simulations 

using average weights and modified weights targeted to experimental pKa of 6.5 and 10.6. 

 

Residue Exp pKa Apparent Calc pKa (11-states) Apparent Calc pKa (5-states) 

G8 10.6 10.3 10.8 

A9 - 3.9 4.2 

A10 - 5.6 6.1 

A38 6.5 10.1 10.5 

Phos - 5.8 5.9 

2’OH - 10.4 10.9 

 
Figure 4.2.3.1: Representative conformation of each cluster as identified from 2D Explore 

sampling. Relevant distances to the approach of the reaction coordinate, notably A38(N1)…O5’, 

A38(N1)…O2P, O2P…O2’ and G8(N1)…O2’ are illustrated in the figures. 

 

Next, we examined the structural features of each of the 5 clusters identified, notably the 

distance between A38(N1)…O5’, to describe the proton transfer between A38 and the active 

site, A38(N1)…O2P, to describe the proton transfer between A38 and the backbone phosphate, 
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O2P…O2’ to describe proton transfer between the backbone phosphate and the 2’OH group, and 

and G8(N1)…O2’ to describe the proton transfer between G8 and the active site. Cluster 0 

(Figure 4.2.3.1a) was populated 36.4% in all 8 2D WExplore simulations, and based on RMSD, 

it most resembles the ground state crystallographic structure. However, we note that in this 

medoid structure, A38 is positioned in-line (3.3 Å) for a proton transfer to the non-bridging 

oxygen on the scissile phosphate, which would be a catalytically incompetent structure. In 

addition, the high charge on the non-bridging oxygen would explain its elevated microscopic pKa 

of >13. Further analysis of the structures within cluster 0 indicates that it may not be 

representative of the local environment around A38, and it can be positioned next to O5’ or O2P, 

which suggests that this cluster would need to be further divided into sub-clusters to deconvolute 

mild structural differences that can have a substantially large effect on the microscopic pKa 

calculated. As for residue G8, it is positioned in-line for a proton transfer (2.9 Å) to the O2’ 

oxygen on the ribose sugar. Cluster 4 (Figure 4.2.3.1b) is populated 9.5% of the time, and may 

be viewed as a hybrid ground/transient conformation. Specifically, A38 is in the proper 

catalytically competent conformation, in-line (3 Å) for a proton transfer to the O5’ oxygen on the 

scissile phosphate. This conformation around A38 corresponds to the crystallographic structure, 

and its pKa is 9.5, which is consistent with our earlier calculations, and it also highlights the 

sensitivity of A38 with its interacting atom. In this cluster, the pKa of A10 is also upshifted to 

7.1, but it is not close enough to the active site to participate catalytically (>6 Å), and instead we 

suggest that it provides electronic stabilization of intermediate. G8 is positioned 8.2 Å away from 

the 2’OH group, and has a reduced pKa of 6.0, which is more representative of a transiently 

populated relaxed structure. Cluster 5 (Figure 4.2.3.1c) is populated 9.4% of the time, and may 

be viewed as a transient relaxed structure, where both A38 and G8 are positioned away from the 
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reaction site at 6.4 Å and 9.8 Å respectively. Not surprisingly, the microscopic pKa of both 

residues are lowered to 7.4 and 2.9 respectively. It is interesting that in this fully relaxed 

conformation, where both residues are away from the active site, the phosphate group pKa 

reaches 6.3, which is the highest observed amongst all the states we simulated. This suggests that 

the phosphate group may participate in the proton transfer, in situations where the general base 

and acid are absent from the active site, for example in an A38 abasic mutant. Cluster 7 (Figure 

4.2.3.1d), which is populated 22% of the time, has A38 in a relaxed conformation (8.1 Å), but 

G8 is positioned at a pre-catalytic position at 5.4 Å away from the O2’ atom. Here, G8 has a 

calculated pKa of 9.3 and the pKa of A10 is also elevated to 5.5. Lastly, cluster 9 (Figure 

4.2.3.1e), which is populated 18% of the time, represents a possible catalytically competent state 

for the non-bridging oxygens on the phosphate group. Here, the O2P non-bridging oxygen is 

positioned in-line (2.9 Å) for a proton transfer to the O2’ atom on the 2’OH group, and it has an 

elevated pKa of 5.9. Notably, A38 is relaxed from the active site (6.8 Å) with a lowered pKa of 

5.6, and G8 is pre-catalytic at 4.5 Å away with a pKa of 10.6. 

4.2.4 Proposed Dual-Pathway Catalytic Mechanism 

 With the microscopic pKa of all residues in the titrating site determined, and with the 

structural analysis of all major conformation states (including transiently populated states) in 

hand, we propose a dual-pathway catalytic mechanism to reconcile the disparate experimental 

observations made in the literature. Consistent with the consensus in the community that the 

hairpin ribozyme catalysis proceeds predominantly through a general acid/base catalytic 

mechanism involving A38 and G8 as illustrated in Figure 4.2.4.1. Our microscopic pKa 

calculations are able to reconstruct the experimental apparent pKa of A38 and G8 reasonably 

well, with the exception of A38, which we believe needs to be further deconvoluted particularly 

for cluster 0, although we note that the apparent pKa is reproduced using pH-REX CPHMDMSλD 
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in our earlier 1D WExplore studies. A key finding from our simulations is the elevated pKa of 

the non-bridging oxygens of the scissile phosphate, and the identification of a transient state 

where it is positioned for a proton transfer to the 2’OH group. Prior QM/MM studies have 

demonstrated the feasibility of the backbone phosphate role in catalysis, at least in terms of its 

energetics, given that the A38/G8 pathway compared to the Phos/Phos pathway have similar 

activation energies. However, the low population of a catalytically competent structure for the 

backbone phosphate and its lower pKa indicate that the population of competent structures will 

be lower than that of the A38/G8 pathway. This indicates that the backbone phosphate can 

participate in the catalytic mechanism, but perhaps as a shadow pathway that is not the dominant 

pathway, but nevertheless may contribute under specific circumstances (Figure 4.2.4.1). 

Figure 4.2.4.1: Proposed dual-pathway of the hairpin ribozyme catalysis. 

Invoking the shadow dual-channel pathway explanation helps rationalize the differential 

effect on activity for mutational studies of A38 compared to G8, where loss of G8 led to a 2-fold 
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smaller decrease in activity compared to A38. We can further rationalize this explanation by 

noting that the phosphate, when acting as a base, would have a pKa of 14 – 5.9 = 8.1, which 

suggests that the hairpin ribozyme can use the non-bridging oxygens as the general base to 

compensate for the loss of G8 in the active site. Another situation where the shadow pathway 

may play a larger role in catalysis is when A38 is removed and/or at low pH conditions. Based 

on apparent pKa values of A38 compared to the non-bridging oxygens on the scissile phosphate, 

the population of protonated species at physiological pH is expected to favor A38 by 10 to 100-

fold. In the abasic A38 mutants constructed by Lilley and co-workers, a residual catalytic effect 

was observed under pH 6, which would be the condition at which the population of protonated 

phosphate will become sufficient to participate in the catalytic mechanism. As the role of the 

backbone phosphate is critical in this proposed dual-pathway mechanism, further experimental 

studies centered about this functional group, for example, substituting phosphate to thiol-

phosphate, which has a different reference pKa value, could result in observable differences in 

both the wild-type and the abasic A38 mutant. Lastly, our simulations have suggested a 

protonated A10 can exist in some transient states, although it remains too far from the active site 

to participate in catalysis. However, in the A38 abasic mutant, which would create a cavity near 

the active site, it is plausible that the A10 residue can position itself and serve the role as the 

general acid. 
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4.2.5 Conclusion: pH-mediated Transient States Identified from CPHMDMSλD 

Simulations Propose a Dual-Pathway Mechanism of Hairpin Ribozyme Catalysis 

In this chapter, we have used a combination of CPHMDMSλD simulations augmented with 

WExplore enhanced sampling techniques to examine the catalytic mechanism of the hairpin 

ribozyme, by mapping out various conformational states visited by the hairpin ribozyme, and 

calculating the microscopic pKa of each state. Notably, the discovery of pH-mediated transient 

states, particularly one that has an upshifted pKa of the non-bridging oxygens of the scissile 

phosphate, led to the proposal of a dual pathway of the hairpin ribozyme catalysis: (i) a dominant 

catalytic pathway involving A38/G8 as the general acid-base, which is the consensus model in 

the field, and (ii) a shadow catalytic pathway involving the non-bridging oxygens on the 

backbone phosphate. This dual pathway mechanism was able to reconcile several puzzling 

observations, including the differential effects of mutational studies of A38 and G8 on the 

catalytic rate, and seemingly inconsistent experimental observations, including the residual 

catalytic effect observed in an abasic A38 mutant under low pH conditions. Furthermore, we 

have also identified that the ground state crystallographic structure, which best represents the 

catalytically active state of the hairpin ribozyme, has a pKa of A38 that does not correspond to 

the experimental apparent pKa. This is because the hairpin ribozyme fluctuates been the 

dominant crystallographic structure and several transiently populated relaxed state. In the context 

of the conformationally flexible RNA systems where pH-dependent transient states may exist, 

and owing to the challenge of deconvoluting and interpreting the pH effects from multiple 

transient states, our findings call for caution in using only ground state structures to interpret pH-

mediated mechanisms.  
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Chapter 5: Using CPHMDMSλD to Probe pH-mediated 

Transient States in Protein Activity 

5.1 The Role of Transient States in Buried Ionizable Groups of 

Staphylococcal Nuclease Mutants 

Note: Chapter 5.1 was adapted from the following references.119 

5.1.1 Buried Ionizable Groups and their Broader Applications 

 The distinctive feature of explicit solvent CPHMDMSλD compared to earlier generation 

implemented with implicit solvent models is the ability to model discrete ions and water, which 

would be applicable to systems that undergo partial desolvation such as in membrane proteins 

and ion channels. As a prelude to this goal, we investigated the performance of CPHMDMSλD 

simulations on a general class of buried ionizable groups, in a series of staphylococcal nuclease 

mutants. Due to the charged nature of ionizable groups, the majority of them are expressed near 

the protein surface, and the bulk of our prior work on proteins (Chapter 3.3) have indicated that 

the CPHMDMSλD framework is highly robust when dealing with such residues. However, the 

exception remains if dealing with conformationally “locked” residues such as those involved in 

salt bridges, or residues in systems such as membrane proteins where they can be located in more 

hydrophobic environments. 

We focus our investigation on modeling the pH-dependent dynamics of a series of 

engineered mutants of staphylococcal nuclease (SNase) with Lys residues buried in the 

hydrophobic core173 using the recently developed explicit solvent CPHMDMSλD framework for 

proteins114 While the effectiveness of CPHMD has been demonstrated on numerous 
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systems,94,95,97,98,217 almost all work reported to date was based on an implicit solvent 

model.70,79,89 Applications of explicit solvent CPHMD on biomolecules thus far only have a few 

reported successes.112-114,117,218 More importantly, none of the existing work has attempted a 

comprehensive investigation of buried ionizable residues, where, we hypothesize, the contrast in 

electrostatic environment between a hydrophobic pocket and a solvent-exposed environment will 

provide a key driving force for pH-mediated conformational fluctuations and, possibly, 

formation of transient states. 

5.1.2 pKa calculations using CPHMDMSλD simulations 

As shown in Figure 5.1.2.1a, the mutants for this study comprise a set of diverse 

mutation sites, with residues varying in the magnitude of pKa shifts. In addition, experiments 

have demonstrated that for the mutants that we selected the titration of the internal Lys is 

decoupled from the ionization of Asp and Glu residues.173 Therefore, to facilitate convergence 

within a reasonable time, we titrated only the buried Lys and performed an initial check of the 

accuracy of our simulations, by calculating its pKa value, using the crystallographic structures as 

the starting models. As summarized in Figure 5.1.2.1b, most of the buried residues have a 

predicted pKa < 1, which is shifted by nearly 10 pKa units from the reference value of 10.4. pKa 

calculations on the V66D and V66E mutants also produced a predicted pKa of more than 14, 

which is dramatically shifted from their reference value of 4.0 and 4.4, respectively. In both 

cases, the pKa shifted towards the direction stabilizing the neutral state of each titrating species 

(upward – for Asp/Glu, downward – for Lys). The dramatic pKa shifts observed in our 

simulations mirror the experimental spectrophotometric measurements of Brønsted acids and 

bases, where a similar pKa shift of 10-20 units was recorded when moving from an aqueous to an 

organic environment.219,220 For example, acetic acid, which shares the same functional group 
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with Asp and Glu, has its pKa value shifted from 4.8 to ~23 in water (ε=80)  vs. acetonitrile 

(ε=37).220 Even though the dielectric constant of a typical hydrophobic pocket in SNase, which 

ranges from 4 to 20,221,222 is lower than that of acetonitrile, such dramatic pKa shifts of more than 

10 units have never been observed in the protein. In fact, some of the largest pKa shifts for Asp, 

Glu and Lys reported in the literature are perturbed by a mere 5 units from their reference 

values.173,223 Thus, there is an inconsistency in the magnitude of experimental pKa shifts 

observed in SNase compared to historical experimental pKa shifts observed in organic solvents, 

even though both environments have a similar low dielectric value, which indicates that 

additional factors have to account for the apparent inconsistency.  

 
Figure 5.1.2.1: (a) Distribution of internal Lys residues of SNase mutants, color-coded 

depending on the pKa shift: not shifted (yellow), shifted by 1-2 units (orange), and shifted by >2 

units (red). Comparison between experimental and calculated pKa values from explicit solvent  

 

Strong coupling between pKa and conformational sampling has been previously 

reported,123,224-226 and, while the importance of conformational sampling have been observed in 

some SNase mutants, no connection to experimental pKa values has been reported.227 Based on 
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these observations, we performed an additional series of extended-run explicit solvent pH-REX 

CPHMDMSλD simulations on the structures pre-equilibrated for 50 ns at high and low pH.  

Table 5.1.2.1: Calculated pKa of SNase Lys mutants obtained from explicit solvent pH-

compared to experimental pKa values for all Lys mutants with highly shifted pKa values. 

 

Variant Exp pKa 
CHARMM27 

(Closed Only) 

CHARMM27 

(Closed & Open) 

CHARMM36 

(Closed & Open) 

I92K 5.3  < 1.0 7.1 3.8 

V66K 5.6 < 1.0 7.5 5.5 

L125K 6.2 2.5 7.7 5.5 

V99K 6.5  < 1.0 7.7 5 

N100K 8.6 < 1.0 6.6 5.7 

V39K 9.0 3.1 8.2 6.5 

Y91K 9.0 6.8 8.9 6.7 

A58K 10.4 5.0 8.7 9.9 

N118K 10.4 10.5 10.4 10.4 

A132K 10.4 10.3 11.3 11.2 

AUE  3.9 1.2 1.3 

R2  0.63 0.52 0.78 

Slope  1.46 0.52 1.09 

 

 
Figure 5.1.2.2: (a) Structures of the four most highly shifted Lys mutants at high pH “closed” 

conformation (in blue) and low pH “open” conformation (in red), with the backbone RMSD 

between both structures denoted in parentheses. Water molecules within 3 Å of the protonation 

site at low pH (in green) are included; no water molecules were observed at high pH. Using 

V66K, we show the conversion between the two states at external pH close to the calculated pKa 

in the time evolution of  (b) number of waters within 3 Å of the protonating site and (c) 

backbone RSMD relative to the X-ray structure.   
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The findings, summarized in Figure 5.1.2.1c and Table 5.1.2.1, demonstrate significantly 

improved results with the averaged unsigned error (AUE) reduced from 3.9 to 1.2 pKa units. We 

observed that the longer equilibration allowed the sampling of “open” solvated structures that 

were critical for reproducing the experimental pKa values reported for all Lys mutants with 

highly shifted pKa values. This is in contrast to the “closed” crystallographic-like structure where 

there is little to no water present within 3 Å of the protonation site (Figure 5.1.2.2a). Using the 

V66K mutant as an example, the we demonstrate that SNase conformations sampled in our 

simulations interconvert between closed and open states (Figure 5.1.2.2b,c) when the external 

pH is close to the calculated pKa value. While the coupling between pKa and conformational 

sampling has been reported for a few isolated examples,123,226 and the importance of sampling 

such alternative conformational states has been previously postulated by experiments,228 there 

has been no comprehensive proof for their role. Our work presents the first interpretation that 

pH-dependent transient states not only exist, but may be of general importance for proteins with 

buried ionizable groups. For all mutants with highly shifted pKa values, we observed that 

protonation of the internal Lys was concomitant with an increase in local solvation around the 

protonation site as illustrated in Figure 5.1.2.2a. The backbone RMSD of the entire structure 

between both closed and open states in these mutants is small, ranging from 1.2 to 1.9 Å, which 

suggests that the conformational relaxation to accommodate a buried charged residue does not 

require significant structural rearrangement. Our observations are consistent with experimental 

measurements that indicate buried ionizable residues in SNase are readily accommodated 

without any special structural adaptation or distortion to the overall protein conformation.173,223 
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5.1.3 Comparison to Implicit Solvent CPHMD Simulations 

Next, we investigate the various computational models, specifically previous CPHMD 

implementations, to ascertain the robustness of predictions obtained from simulations. One 

insightful observation is that our calculated pKa for the N100K mutant of SNase is 6.6, which is 

close to the calculated pKa of 7.0 reported by Shen and co-workers,123 despite the differences in 

the solvation model and the cutoff schemes utilized. This suggests that the CPHMD framework 

is not overly sensitive to specifics of the simulation setup. This is because CPHMD calculates the 

free energy of protonation relative to a reference compound, and, as long as the simulation of the 

protein and the reference are performed under identical conditions, the differences originating 

from the simulation setup approximately cancel out. To test this hypothesis, we compared our 

pKa predictions from explicit solvent pH-REX CPHMDMSλD simulations with those obtained 

from the GBSW89 implicit solvent pH-REX CPHMD framework, using the refined protocol 

presented in this paper. Our results (Fig. 5.1.3.1a,b and Table 5.1.3.1) show excellent correlation 

of R2 = 0.89 between the pKa predicted from both explicit and implicit models. However, unlike 

the explicit solvent CPHMDMSλD simulations, which resulted in a pKa shift of more than 10 units 

when only the closed state was used, the implicit solvent CPHMD simulations produced pKa 

shifts that were smaller in magnitude. The van der Waals surface representation used to define 

the solute-solvent dielectric boundary in GBSW is known to form small crevices of high 

dielectric region between atoms, which results in the underestimation of the Born radii and 

overestimation of the solvation free energy.91 Therefore, despite the actual hydrophobicity of the 

environment near the protonating site, the GBSW model may be too “wet”, causing a smaller 

pKa shift. Alternatively, the same effect can be achieved as a result of the faster conformational 

dynamics in the GBSW model, which may sample both open and closed states more frequently. 
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Figure 5.1.3.1: (a) Accuracy of calculated pKa from implicit solvent pH-REX CPHMD 

simulations are similar to explicit solvent results, and (b) both sets of calculated pKa values are 

highly correlated with each other. (c) Calculated pKa values from explicit solvent pH-REX 

CPHMDMSλD simulations using the CHARMM36 force field results in improved correlation with 

experimental pKa values. All simulations were initiated using both closed and open structures 

 

To distinguish between these two possibilities, additional simulations, with the structures 

of the V66K, V99K, L125K and I92K mutants rigidified by applying harmonic restraints to all 

heavy atoms, were performed, and the resulting pKa values were similar to those calculated 

without restraints (see Table 5.1.3.1). These results suggest that smaller pKa shift in the implicit 

solvent primarily stems from the “wetness” of the GBSW model, rather than its faster 

conformational dynamics. Lastly, we investigated the effect of using a recently released 

CHARMM36 all-atom force field for proteins on our pKa predictions, as it has been previously 

shown to yield superior reproduction of experimental dynamical data131 We recalculated the 

biasing potentials for the common titrating residues of proteins using CHARMM36 force field, 

and revised pKa values, as shown Figure 5.1.3.1c, indicate an improvement in the predictive 

performance over the older CHARMM22/CMAP force field, with R2 increasing from 0.52 to 

0.78 and the slope of the regression moving from 0.52 to 1.09, while maintaining the same level 

of accuracy with an average unsigned error of 1.3 pKa. 
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Table 5.1.3.1: Calculated pKa SNase Lys mutants obtained from GBSW implicit solvent pH-

REX CPHMD simulations 

 

Variant Exp pKa 

CHARMM22/CMAP 

(Closed Only & 

Rigid) 

CHARMM22/CMAP 

(Closed Only) 

CHARMM22/CMAP 

(Closed & Open) 

I92K 5.3 4.2 6.8 6.9 

V66K 5.6 6.4 6.4 7.0 

L125K 6.2 7.2 7.2 7.8 

V99K 6.5 4.0 7.0 7.4 

N100K 8.6 - 3.5 6.0 

V39K 9.0 - 6.9 7.3 

Y91K 9.0 - 7.5 8.5 

A58K 10.4 - 8.9 9.1 

N118K 10.4 - 5.8 9.4 

A132K 10.4 - 11.0 11.0 

AUE   1.8 1.3 

R2   0.13 0.45 

Slope   0.34 0.48 

 

5.1.4 Relevance of Transient States at Physiological pH 

Having established that buried ionizable residues can trigger pH-dependent structural 

fluctuations, we extend our analysis to determining the relevance of these alternative states at pH 

7. Using a two-state model that assumes a conversion between one dominant open and one 

dominant closed state, we can derive an equation describing the ratio of open to closed states 

(ROC). The equilibrium constant of the deprotonation reaction for the open (Kopen) and closed 

(Kopen) states are given as  

         (5.1.4.1) 

         (5.1.4.2) 

Each equation can be rearranged to the following forms: 

       (5.1.4.3) 
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       (5.1.4.4) 

Dividing equation 5.1.4.3 by 5.1.4.4 we obtained the following expression: 

     (5.1.4.5) 

Which can be rearranged to obtain the ratio of open to closed states (ROC), which is defined as 

the total concentration of open states relative to the total concentration of closed states: 
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Equation 5.1.4.6 can be rewritten as a function of the pKa of the open (pKopen) and closed 

(pKclosed) microscopic states.: 
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Note that the first term denotes the pH-dependent term of the equation (KpH term), and the 

second term is pH-independent (K0 term). It is also the ratio of the open to closed states where 

both states are in the protonated form. The K0 term can be related to the free energy difference 

between the two states as such: 
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Alternatively, it can also be expressed in terms of the various pKa values relevant to the system. 

From previous studies,123 the microscopic pKa of both closed and open states are related to the 

apparent pKa (pKapp) of the system: 

  (5.1.4.9) 

From equation 5.1.4.7, a series of rearrangement leads to the expression [OpenH]/[ClosedH]: 

   (5.1.4.10) 

    (5.1.4.11) 

    (5.1.4.12) 

Combining equations 5.1.4.7 and 5.1.4.12 we derive the following expression, which is the final 

form of the ROC: 
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This function will be continuous across the entire pH range, under the conditions that the 

pKapp lies between pKopen and pKclosed. In the limit of pKapp = pKopen = pKclosed the function is 

discontinuous, but a slight offset (i.e. -0.01 pKa units) can be used to model the effect of no or 

extreme pKa shift. This function can be decomposed into a pH-dependent (KpH) and pH-

independent (K0) terms. The KpH term depends on the microscopic pKa of each state (pKclosed, 

pKopen) and external pH. The K0 term can be physically related to the free energy difference of 

the open and closed states in their protonated form (see equation 5.1.4.8). However, as each 
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form favors opposing protonation states, this free energy is usually not measured by experiments. 

Therefore, it may be advantageous for K0 to be expressed as a function of the system’s 

macroscopic or apparent pKa (pKapp), which can be readily measured, and the microscopic pKa of 

each state (pKclosed, pKopen). Based on the ROC equation, one may also derive the fraction of the 

open state (Fopen), which is a more intuitive metric for open states at a specific pH. 

)1R(R = OCOCopen F  

Due to the rapid dynamics and/or low population of the minor state, it is often beyond the 

detection limits of experiments to establish the pKa values of each microscopic state.228 

However, because the open state is solvent exposed, pKopen may be approximated as the 

reference pKa of the free amino acid. Using the range of pKa shift of 10-20 units recorded from 

spectrophotometric measurements of organic acids and bases in a low dielectric solvent,219,220 we 

have conservatively assigned pKclosed to be shifted by 10. As shown in Figure 5.1.4.1, one can 

use the ROC equation to derive the pH-dependent fraction of the open state for a series of 

hypothetical pKapp for buried Lys or Glu. Our analysis indicates that pH-dependent transient 

open states may contribute as much as 2% of the total population at pH 7 when the apparent pKa 

of Lys is shifted by as much as 5 units, which appears to be the upper limit of pKa shift as 

recorded in current literature.173,223 For Asp and Glu, an apparent pKa shifted by 5 pKa units 

represents a 1% contribution of the transient state at pH 7. Thus, for the residues with highly 

shifted pKa values, the low population transient states are likely to contribute significantly to the 

apparent pKa, and, thus, need to be elucidated to correctly compute the apparent pKa. 

Although the existence of transient states involving buried ionizable groups does not 

necessarily imply a functional relevance, there is increasing precedence that the inclusion of 

transient states is needed to fully account for biological properties.45-47 In the context of our 
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work, we suggest that effect of such pH-dependent transient states will be pronounced when an 

ionizable group transitions between hydrophilic and hydrophobic environments, such as in 

membrane fusion processes, where activated/transient states have been postulated to play a 

crucial role.48 In addition, traditional studies of catalytic mechanisms have always assumed that 

crystallographic structures correlate with measured pKa, but, as we have shown, that may not be 

true for buried residues with highly shifted pKa values. Moreover, the coupled relationship of 

both open and close states and their role in recapitulating macroscopic experimental observables 

suggest that structural analysis of buried residues should be performed from the perspective of 

looking at structural pairs, as opposed to the conventional approach of a single static ground state 

conformation. For such analyses, the equations we have provided will prove useful for a quick 

“back of the envelope” estimation of the population of proposed transient states. For example, 

one could use the experimentally measured apparent pKapp value to select the appropriate curve 

in Figure 5.1.4.1, and use it to estimate the fraction of the open state at a given pH, as a means to 

evaluate the plausibility of experimental characterization within the detection limits of the 

methods employed. Alternatively, it can also be used to estimate the pH range where the 

population of proposed transient states will enter the detection range of experiments. 

 
Figure 5.1.4.1: pH-dependent distribution of the fraction of open states (Fopen) for a buried (a) 

Lys and (b) Glu residue. Several color-coded hypothetical apparent pKa (pKapp) values are 

illustrated, shifted by 1 to 5 pKa units. In the limits of extreme (i.e. 10) or null pKa shift, the 

expected population of 100% closed or open states is recovered. Here, pKopen is 10.4 and 4.4, and 

pKclosed is 0.4 and 14.4, for Lys and Glu, respectively.  
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5.1.5 Conclusion: CPHMDMSλD Simulations Identified pH-mediated Transient States in 

all Buried Ionizable Protein Residues 

In this chapter, we used CPHMDMSλD simulations to model the pH-dependent dynamics 

of a comprehensive set of SNase mutants with buried ionizable residues that have varying 

degrees of pKa shifts. Among our key findings is that a buried charged residue cannot be 

accommodated inside a purely hydrophobic pocket and that an open state structure for these 

“buried” residues, characterized by local solvation around the protonating site, was observed in 

all SNase mutants with highly shifted pKa. At physiological pH, buried ionizable groups with 

large pKa shifts have transiently populated open states, where they contribute a small but non-

zero population of 1-2% at pH 7. Nevertheless, sampling these open states is a necessary 

condition for accurately reproducing experimental pKa measurements, to which calculated pKa 

from our explicit solvent CPHMDMSλD simulations demonstrated good agreement, with a low 

average unsigned error of 1.3 pKa units and correlation coefficient of R2 0.78. The work we 

present here provides the first validation that buried ionizable residues can readily trigger pH-

mediated conformational fluctuations that may be observed as transient state structures at 

physiological pH. Lastly, the discovery of a coupled relationship of both open and closed states 

and their role in recapitulating macroscopic experimental observables suggests that structural 

analysis of buried residues may benefit from the perspective of looking at structural pairs, as 

opposed to the conventional approach of a single static ground state conformation.  
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5.2 The Role of Transient States in Tuning pH-Dependent Optical 

Properties of Cyan Fluorescent Protein 

Note: Chapter 5.2 was adapted from the following references.120 The entire chapter 5.2 contains 

significant contributions from Elena Laricheva, who was responsible for performing the majority 

of the simulations. The results and discussion have been included in this dissertation for 

continuity and completeness. 

5.2.1 WasCFP: A Fluorescent Protein with an unusual pH-dependent Spectrum 

Expanding the palette of genetically encodable fluorescent proteins (FPs) with spectral 

properties that can be modulated by pH is a well-appreciated challenge due to their wide 

applicability as non-invasive pH sensors1–5 and optical highlighters for super-resolution imaging 

of living cells.6–9 The majority of such proteins developed to date belong to the green fluorescent 

protein (GFP) family and owe their pH-sensitive optical behavior to a tyrosine-based 

chromophore that can interconvert between the neutral (protonated) and deprotonated (charged) 

states depending on the hydrogen-bonding environment surrounding its phenolic group.7 

Rational design of new pH-sensitive variants requires both (i) a fundamental understanding of 

how the proteins with tyrosine-based chromophores function at the atomic level, as well as (ii) 

going beyond and looking at the FPs with chromophores other than tyrosine as potential 

candidates (e.g. tryptophan or phenylalanine/histidine-based chromophores, as in the case of 

cyan and blue fluorescent proteins). While a second approach has long been overlooked, the first 

one has been quite successful resulting in a number of useful pH sensors (e.g. pHluorins,3,5 

phRed2) and optical highlighters (e.g. Kaede8,9). The efforts in this direction, however, have 

mostly been focused on targeting the residues in the vicinity of the chromophore that affect its 

spectral characteristics through electronic effects, and largely neglected the importance of 

characterizing the conformational ensemble of the protein.7 
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In recent years, a large body of evidence has emerged suggesting that understanding the 

mechanisms underlying protein functions depends on our ability to characterize its dynamic 

ensemble.10–12 Due to the nature of conventional biophysical techniques that primarily probe the 

most stable protein conformers, our understanding has long been limited to the information 

regarding highly populated ground conformational states. However, such states often represent 

only one of the functional forms, and higher-energy physiologically-relevant conformers can be 

transiently populated (~10% or less) when initiated by external stimuli, such as substrate 

binding, pH changes, or thermal fluctuations.12,13 While low-energy ground-state conformers 

residing at the bottom of the conformational energy landscape are normally separated by very 

small kinetic barriers and interconvert between one another within pico- to nanoseconds, the 

barriers between them and higher energy structures are larger and associated with micro- to 

millisecond timescale or longer. Recent advances in relaxation dispersion NMR spectroscopy11,14 

and room temperature X-ray crystallography15 have made the detection of such transient 

conformational states possible, demonstrating their ubiquitous role in enzyme catalysis,10 protein 

folding,13,14 and ligand binding.16 Transiently populated conformational states triggered by pH 

are of particular importance since pH regulates the biological activity of many proteins, and the 

role of pH-dependent transient states is an emerging discovery that has been recently reported to 

influence membrane fusion,17 folding pathways,18 and, more generally, the dynamics of buried 

ionizable groups.19 

In this chapter, we demonstrate that pH-dependent transient conformational states can 

tune the absorption profile of cyan fluorescent protein (CFP)20 – a blue-shifted variant of the 

green fluorescent protein (GFP) family used for multicolor labeling and fluorescence resonance 

energy transfer (FRET) applications – which to our knowledge is the first precedent of such a 
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mechanism. In particular, we provide a theoretical explanation for the non-monotonic pH-

dependent absorption of a recently engineered CFP mutant (WasCFP; see Figure 5.2.1.1a). 

While the vast majority of the pH-sensitive fluorescent proteins reported to date2,3,5 exhibit 

monotonic changes in optical signals (e.g. absorption, emission, excitation), the WasCFP mutant 

does not conform to such a monotonic behavior. It reversibly interconverts between cyan-

emitting and green-emitting forms, with the latter form dominant at pH 8.1 (and 25°C), above 

which the green signal drops.21 Part of this behavior has been attributed to the deprotonation of 

the tryptophan-based chromophore (Figure 5.2.1.1b) at mildly basic pH, which is accompanied 

by a 60 nm bathochromic shift in absorption.  

 

Figure 5.2.1.1: A: Structure of WasCFP showing Cα positions of mutated residues (V61K, 

D148G, Y151N, L207Q). B: Structure of Trp66-based WasCFP chromophore covalently bound 

to β-barrel at positions showed with dashed lines (Leu64 and Val68). C: Deprotonation of CRF. 

CRF-H and CRF– are neutral (protonated) and charged (deprotonated) forms of the synthetic 

chromophore, respectively. 
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Even though the observed effect is a highly unusual scenario as the pKa of an analogous 

indole is high (16.2 in H2O; 21.0 in DMSO), Sarkisyan et al.21 have shown that a synthetic CFP 

chromophore (hereon referred to as CRF), which is a truncated version of that in the protein, 

undergoes a similar pH-dependent absorption red-shift in both protic and aprotic solvents, and its 

pKa is depressed to 12.4 due to the more efficient delocalization of the negative charge over the 

extended π-system (Figure 5.2.1.1c). The same shift has been observed in a wild-type CFP 

variant mCerulean denatured in 5M NaOH. In addition, analogous pH-dependent bathochromic 

shifts, attributed to the deprotonation at phenolic oxygen, have been previously detected in 

various members of the GFP family with tyrosine-based chromophores (e.g. yellow, red and 

green fluorescent proteins).22 In WasCFP, a key V61K substitution positions a Lys residue in 

close proximity to the indole nitrogen of the chromophore (Figure 5.2.1.1b), and this was 

proposed to stabilize its deprotonated state. The pKa of the WasCFP chromophore, however, 

could not be directly measured and the atomic level details of its pH-dependent absorption 

remained unknown. Moreover, no explanation for the non-monotonic optical properties of 

WasCFP, specifically the signal drop in the green fluorescent form above pH 8.1 has been 

proposed. 

5.2.2 Mapping out the Conformational States of WasCFP 

First, we constructed a model compound (RES; denoting the model compound 

“residue”), which is an extended CFP chromophore consisting of the CRF moiety covalently 

bound to Leu64 and Val68 (see Figure 5.2.1.1b and Figure 5.2.2.1) to serve as a reference for 

our explicit solvent CPHMDMSλD simulations.25 Using a model pKa of 12.7 (calculated using 

thermodynamic integration based on the CRF), we initially computed the pKa values of the 

model wild type and mutant peptides (WTP and V61KP, respectively) that consist of 10 residues 
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including а key position 61, before proceeding to the wild type and mutant proteins (WT and 

WAS, respectively) – all using a thermodynamic cycle depicted in Figure 5.2.2.1.  

As shown in Figure 5.2.2.1, while an alchemical transformation of CRF to RES barely 

alters the pKa of the titrating moiety, perturbation by the peptide and protein environment (WTP 

and WT) shifts its pKa by 1.1 and 39.4 units, respectively. 

 
 

Figure 5.2.2.1. Thermodynamic cycle that shows alchemical transformations considered in this 

study. Cyan and yellow-colored side chains correspond to V61 and K61 in WTP and V61KP 

peptides, respectively. pKa values computed from CPHMDMSλD simulations are highly elevated 

in both WT and WAS and, thus, are not responsible the observed pH-dependent absorption of 

WasCFP. 
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Such large pKa shifts have been reported when ionizable groups are transferred into a 

hydrophobic environment,32 and demonstrates the sensitivity of the chromophore pKa to the 

extent of local solvation at the protonation site. In our case, the solvation is high in the peptide 

and low inside the hydrophobic β-barrel of WAS, which is not surprising considering that nature 

selected the cylindrical β-barrel for fluorescent proteins in order to prevent the fluorescence 

quenching by either water or oxygen.7 Using the thermodynamic cycle in Figure 5.2.2.1 and the 

pKa values computed using the CPHMDMSλD method, we calculated that the positive charge of 

Lys61 introduced in a close proximity to the indole group of RES stabilizes V61KP by 5.4 

kcal/mol with respect to WTP, and WAS – by 27.9 kcal/mol relative to WT. This cost is also 

solvation-dependent and leads to the downshift of the RES pKa in a peptide by 4 units, while 

depressing the pKa in the protein by 20.4. Even though our simulations clearly show that positive 

charge in the vicinity of the protonation site stabilizes the anionic form of RES, both neutral WT 

and charged WAS species are extremely stable, with pKas of 52.1 and 31.7 that are comparable 

to those of the so-called “super-bases” in a low dielectric environment.33 Therefore, the 

deprotonation at the indole nitrogen does not happen in such “closed” state conformations in the 

experimental pH range of 6–10, and the computed pKa values do not account for the observed 

pH-dependent absorption properties of WAS.  

Numerous studies of conformational plasticity of proteins, however, have demonstrated 

the importance of characterizing the dynamic ensemble of their states, including those that are 

only transiently populated.10–13,16 Moreover, partially open, solvated pH-dependent transient 

states have been hypothesized to be of general importance in systems with buried ionizable 

groups.19 However, capturing the transition between ground and transient conformational states 

often requires simulation timescales currently not accessible to the version of the CPHMD used 
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in our work. Therefore, guided by the observation of a significantly diminished pKa in a well-

solvated peptide vs. “dry” high-pKa closed conformation of the protein, we chose a hydration of 

the chromophore as our reaction coordinate and performed a search for an alternative WAS 

conformation using the weighted-ensemble sampling method23 that allows the escape from deep 

local minima (high probability regions) and provides enhanced sampling of low probability, 

transient states. Figure 5.2.2.2 shows a sampling of WAS configuration space along a hydration 

parameter (φ), which posits the existence of transiently populated states, characterized by the 

partially open β-barrel and local solvation at the protonation site. The pKa values of the RES 

chromophore were subsequently computed for four representative WAS structures, extracted 

from the four regions in the histogram (φ=1.5-2.5; 5.5-8.0; 12.0-13.0 and 14.5-15.0), and 

structural changes influencing its pKa were analyzed. 
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Figure 5.2.2.2: A. Probability distribution of the hydration parameter of RES in the WAS protein 

shows transiently populated states with large hydration parameters. B: Snapshots of the 

chromophore environment in four different conformations of WAS corresponding to hydration 

parameters φ=2, 7, 12, and 15. Number of water molecules within 7Å of nitrogen of the 

chromophore (3, 8, 15, and 17, respectively) and the corresponding pKa values computed using 

CPHMDMSλD simulations are shown for each conformation. 
 

 
Figure 5.2.2.3. Distances between Cα-Cα atoms of residues in β7 and β10 strands in the open 

state (dominant at pH=8.1) vs. the closed state (dominant at pH=6.1). 

 

We discovered that opening of the β7-β10 channel (up to 1.58Å backbone RMSD with 

respect to the crystal structure of WT; see Figure 5.2.2.3), which has been previously shown to 

be rather flexible in both wild type CFP34 and in the study of the oxygen diffusion pathway in red 

fluorescent protein, mCherry,35 facilitates local solvation (i.e. an increase in the number of water 

molecules within a 7 Å radius) at the indole nitrogen. Our calculations suggest that the pKa of the 

chromophore can be as low as 6.8 for a structure with a high hydration parameter φ =15 that 

corresponds to as many as 17 water molecules within 7Å of the indole nitrogen of the 

chromophore (see Figure 5.2.2.2). Based on the structural data provided from our simulations, 

the residues on strands β7 and β10 undergo local unfolding into an unstructured loop. Notably, as 

illustrated in Figure 5.2.2.3, residues 145–149 of β7 and 204-206 of β10 lose their secondary 
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structure. We note that these structural changes can be monitored by examining the carbon (Cα) 

chemical shifts in these regions as one titrates WasCFP from pH 8 to pH 6.  We predict that these 

shifts would report a change from a mixed fraction of open and closed conformational states at 

pH 8 to a predominantly closed conformational state at pH 6. It is also worth noting that the 

chromophore in the open state is still significantly more rigid than it is in solution. 

As WasCFP itself is a relatively recent construct, there is a lack of experimental data that 

measures its fluorescent properties as a function of its dynamics. However, parallels can be 

drawn between CFP and the related GFP, which, despite their differences in the chromophore, do 

share significant sequence similarity and may have similar conformational properties. 

Interestingly, prior studies of the unfolding of green fluorescent protein GFP have revealed a 

stable fluorescent intermediate that retained considerable secondary and tertiary geometry with 

displaced β7 and β10 strands and access of the water molecules to the chromophore,36 It has also 

been noted that chromophore formation in fluorescent proteins occurs in a partially structured 

intermediate state, although this structure had reduced fluorescence. These experimental 

observations for GFP suggest that partially open conformations of the protein, similar to the 

transient state we observed in our simulations, can exist. In addition, in two companion papers, 

where the effect of pressure on the quenching of fluorescence was examined, Weber and co-

workers37 and Krylov and co-workers38 reported that mCherry and mStrawberry are both highly 

fluorescent at standard pressure (0.1MPa) even though their chromophore are partially solvated. 

In fact, the extent of local solvation in our open state is similar to what the authors’ computations 

predict for ambient conditions. In the context of our findings, it raises the possibility that non-

ground state protein conformations may play a role in modulating spectral properties of 

fluorescent proteins. 
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5.2.3 The Role of Transient States in Modulating WasCFP pH-dependent Behavior 

Lastly, to explain the unusual pH-dependent absorption behavior of WAS, we 

constructed a model based on the assumption that WAS interconverts between the hydrated 

transient (open) state that we identified and its original closed configuration. Previously, we 

developed a two-state model to explain the protonation equilibrium of SNase mutants with 

buried ionizable groups,19 which allows one to compute the fraction of open state (Fopen) as a 

function of pH based on the ratio of the open and closed state populations (Roc) deduced from the 

simulations.  
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This ratio is calculated using the computed microscopic pKa values of both forms (pKopen=6.8 

and pKclosed=31.7) and the apparent pKa value estimated based on available experimental data 

(pKapp=7.8) 

To test the validity of the model, we compared the computed Fopen values with those that 

can be found directly from experiment. As a basis for our analysis, we used the pH-dependent 

absorption data for WasCFP recorded by Sarkisyan et al.21 at 25°C (see Figures S2a and S2b of 

the Supplemental material in the original reference). The spectrum presented in their work differs 

from a typical pH-dependent absorption profile where one would expect for a mixture of 

conjugated acid and base, where one form is largely dominant at low pH, while the other one 

dominates under high pH conditions. In the case of WasCFP, the signal at 494 nm, 
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corresponding to the charged (deprotonated) chromophore, grows with pH up to pH=8.1, but 

then its intensity decreases – due to titration of a nearby Lys61, as suggested by the authors of 

the paper.  In addition, the signal of the protonated form consists of two peaks – a bonafide 

spectral feature of all cyan fluorescent proteins, the origin of which is still a subject of a great 

controversy.20,29 While the authors do not mention any open states or fraction of the open states 

in their work and discuss the signals at 436 and 494 nm as arising from the protonated and 

deprotonated forms of the chromophore in the same protein conformation, our simulations 

suggest that chromophore can only exist in its deprotonated form when protein conformation is 

partially open allowing a few water molecules access to the deprotonation site. Therefore, for the 

remainder of this study, we will use the terms deprotonated and open states interchangeably and 

express the fraction of open state, Fopen, using the following information only: (1) extinction 

coefficients at 436 and 494 nm (ε436, HA and ε494, A-); (2) absorbance of the protonated (closed) 

form at the lowest pH, Abs436, low pH (neglecting a small absorption signal at 494 nm); and (3) 

absorbance of the deprotonated (open) form, Abs494 – which is the only variable in our final 

equation for Fopen, presented below, that changes with pH.  

Derivation of expression for Fopen from experiment: 

The concentrations of protonated (HA) and deprotonated (A–) forms can be written in 

terms of the absorbances of the protein chromophore at the appropriate wavelengths (436 and 

494 nm, respectively) using the Beer’s-Lambert law: 

HACbAbs  HA ,436436          (5.2.3.1) 

–– ,494494 AA
CbAbs           (5.2.3.2) 

The sum of those concentrations represents the total concentration of all species, which remains 

constant at any pH: 
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TAHA CCC  –          (5.2.3.3) 

At low pH, the protonated form dominates, so that CHA = CT. Similarly, at high pH there is 

predominantly deprotonated form, and CA
–= CT. Knowing that, we can express the absorbances 

at low pH and high pH as follows: 

 HA ,436pH low ,436 TCbAbs          (5.2.3.4) 

 –A ,494pHhigh  ,494 TCbAbs          (5.2.3.5) 

From equation 5.2.3.4 we obtain CT and by substitution of equation 5.2.3.3 into equation 

5.2.3.5, the absorbance at high pH can be expressed in the following way: 

pH low ,436

HA ,436

A ,494

pHhigh  ,494

–

AbsAbs 



      (5.2.3.6) 

By dividing equation 5.2.3.2 by equation 5.2.3.5, we obtain the fraction of the deprotonated 

state, which varies with pH: 
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open      (5.2.3.7) 

Both extinction coefficients are available from experiment: 

e436, HA = 28000 M -1cm-1  and e
494, A– = 51000 M -1cm-1

 

The value of absorbance of pure HA at low pH, Abs436, low pH, remains the same across the entire 

pH range, and the only parameter that varies is the absorbance of the A– form at 494 nm (Abs494), 

which can be calculated directly from the intensity of the peak. Table 5.2.3.1 provides all the 

information necessary to estimate Fopen at different pH using the information from the pH-

dependent absorption spectrum at 25°C recorded by Sarkisyan et al.  
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Table 5.2.3.1. Fopen derived from experimental data 
 

 pH Abs494 Fopen 

 
e436, HA = 28000 M -1cm-1

 
e

494, A– = 51000 M -1cm-1

 
Abs436, low pH =1.00 

 

6.1 

6.5 

7.0 

8.1 

8.5 

9.5 

9.9 

0.16 

0.28 

0.54 

1.00 

0.91 

0.75 

0.45 

0.09 

0.15 

0.30 

0.55 

0.50 

0.41 

0.25 

 

 
Figure 5.2.3.1. pH-dependent Fopen computed using two (A) and three (C) state model. 

Correlation with Fopen estimated from the pH-dependent absorption data is in (B) and (D), 

respectively.  
 

As shown in Figure 5.2.3.1b, our two-state model provides a moderate correlation with 

experimental Fopen values up to pH 8.1. However, it does not fully describe the system at higher 

pH (see Figure 5.2.3.1a), where Lys61 presumably deprotonates, as mentioned above. 
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Therefore, we introduced a third state that accounts for a neutral Lys61 and partially re-

protonated chromophore at high pH, whose pKa is approximated by that in the V61KP peptide 

found from our simulations (which is also in agreement with the experimentally suggested value 

of 9.8).  

 
Figure 5.2.3.2. Schematic illustration of the three-state model. Kprot and Kdeprot are equilibrium 

constants corresponding to the pH-independent conformational transitions between open and 

closed states. 

 

The states in our three-state model are defined as follows: (i) [RES-H/Lys+]closed – a 

closed state with neutral RES chromophore and protonated Lys61 (pKclosed=31.7); (ii) 

[RES/Lys+]open – an open state with deprotonated chromophore and protonated Lys61  

(pKopen=6.8); and (iii) [RES-H/Lys]open – an open state with re-protonated chromophore 

(pKRES=9.8), and deprotonated Lys, whose pKa (pKLys) was calculated from additional 

CPHMDMSλD simulations where both the chromophore and Lys61 were simultaneously titrating. 

Due to the complexity of thermodynamic treatment of three different conformations, two of 

which have residues with strongly coupled protonation states (that of the chromophore and that 

of the nearby Lys61), we simplified the treatment of the three-state system into an effective two-

state system. In our analysis, this effective two-state system corresponds to the bottom two arms 

[RES-H/Lys+]open

[RES-H/Lys+]closed [RES/Lys+]closed

[RES/Lys+]open

Kprot

pKclosed

pKopen

Kdeprot

[RES-H/Lys]open [RES/Lys]open
pKRES

pKLys
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of the thermodynamic cycle depicted in Figure 5.2.3.2, where the open state conformations are 

collectively represented by states (ii) and (iii) and where the protonation states of the 

chromophore and Lys61 are tightly coupled. 

Using the microscopic pKa calculated for states (i) and (ii), as well as the experimental 

apparent pKapp (7.8), we calculated that if the pKa of the second state was shifted to 9.8 (which is 

the value representing state (iii) in the three-state model), it would result in a shift of pKapp to 

10.8. Thus, the pKapp changes from 7.8 to 10.8 depending on the identity of the second state, 

which is primarily determined by the protonation state of Lys61. In other words, we assumed 

that the protonation state of Lys61 is coupled to the protonation state of the chromophore, which 

is justified because that is the only titrating residue in its vicinity. Hence, we interpolated the 

shift in the pKapp and pKopen by accounting for the fraction of the unprotonated Lys61. Thus, the 

corresponding pKapp and pKopen are expected to vary as a function of pH and we can substitute 

these pH-dependent terms to derive a ratio of the open to closed states for the three-state model. 

This ratio is then approximated using the modified Roc equation:  

)
)1010)(1010(

)1010)(1010(
pH
app

pH
openclosed

pH
appclosed
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open
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ocR
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     (5.2.3.8)

 
Where both pKpH

open and pKpH
closed are pH-dependent and differ from their corresponding values 

in the two-state model (pKopen=6.8 and pKclosed=31.7) by the delta term, used to interpolate the 

pKa of the open conformation from state (ii) to state (iii) by accounting for the coupling between 

protonation states of the chromophore and Lys61. 

 open

pH

open pKpK          (5.2.3.9) 

   app

pH

app pKpK          (5.2.3.10)
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As shown in Figure 5.2.3.1d, our three-state model not only improves the correlation 

with experimental observables (with R2=0.86), but also captures, both qualitatively and 

quantitatively, the unusual bell-shaped pH-dependent absorption profile of WAS (see Figure 

5.2.3.1c). Thus, our results show that the open state, collectively represented by the two locally 

solvated configurations and a partially open β-barrel, is transiently populated and contributes a 

small fraction at low pH (up to 12% at pH 6.1). This state becomes dominant (as much as 53%) 

at mildly basic conditions (pH=8.1), and gives rise to a strong absorption at 494 nm (and, thus, 

green fluorescence), which then titrates with a pKa of 9.8 at higher pH values. 

Lastly, our three-state model provides some useful insights into engineering pH-sensitive 

cyan fluorescent protein based on WasCFP. For example, to engineer a mutant that does not 

possess the residual cyan fluorescence at high pH, one may target the electrostatic environment 

in the vicinity of Lys61 in a manner to prevent its re-protonation at mildly basic conditions. Such 

a design would suppress the population of the third state in our three-state model by reducing the 

mechanism of the engineered mutant to two interconverting states, and this will increase the 

fraction of the open state with pKopen=6.8 (that only reaches a maximum of 53% at pH=8.1 in the 

current WasCFP design).  

5.2.4 Conclusion: pH-mediated Transient States Identified from CPHMDMSλD 

Simulations Account for the Non-Monotonic Optical Properties in WasCFP 

In this chapter,, we have applied a combination of the weighted-ensemble sampling 

method23 with a novel hydration parameter and explicit solvent CPHMDMSλD simulations25 to 

elucidate the origin of the unusual non-monotonic pH-dependent absorption behavior of a 

recently engineered CFP mutant that features a pH-dependent shift between cyan and green 
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fluorescent forms. In earlier experimental observations, this optical property was proposed to be 

controlled by the charged anionic state of its tryptophan-containing chromophore.21 Our 

calculations demonstrate that even in the presence of the stabilizing V61K mutation, the free 

energy cost of deprotonating the chromophore is still high and does not allow for the existence of 

the charged state of WasCFP even at basic pH. Instead, we propose the following explanation: 

The distribution between two transiently populated conformational states characterized by a 

partially open β-barrel with local solvation around the chromophore (that have pKa values of 6.8 

and 9.8), relative to the ground state crystallographic structure (that has pKa of 31.7), is able to 

fully recapitulate both qualitatively and quantitatively the unusual non-monotonic pH-dependent 

properties of WasCFP. In this model, the open state is transiently populated at low pH, but 

reaches a population of 53% under mildly basic conditions, before losing its dominance and 

reverting to a transient state under highly basic conditions, and such mechanistic understanding 

may be used to further engineer the pH-sensitive fluorescent properties of WasCFP. Therefore, 

our work not only validates that tryptophan can be deprotonated in a biological system at mildly 

basic pH, but, more importantly, shows that pH-dependent transient conformational states are 

functionally relevant, and that they can tune the optical properties of fluorescent proteins. Such 

an outlook will have implications in the rational design of fluorescent proteins with pH-

dependent optical properties.  
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Chapter 6: Considerations in a High Dielectric 

Environment 

6.1 Parameter Validation 

Note: Chapter 6.1 was adapted from the following references.229 

6.1.1 Sodium Dodecyl Sulfate: A Model System for Charged Amphiphiles 

As demonstrated in Chapter 3.4, developing accurate parameters for polyionic systems 

such as nucleic acids can be challenging, due to the possible limitations of using a classical force 

field to describe the electrostatics of such high charge density environments. This challenge may 

also be encountered in similar systems, such as structures based off charged amphiphiles that 

include membrane/lipids and other chemically similar surfactant compounds. A substantial effort 

by Shen and co-workers have extended the existing CPHMD framework to model the pH-

dependent structural changes of surfactant-type systems (e.g. fatty acids). Such systems are 

increasingly used in the emerging field of nanomedicine in the development of nanocarrier 

devices to deliver drugs, genes, or other chemicals of interest, to specific malignant cells. 

Notably in cancer treatment, one can take advantage of the distinct pH profile of tumors to 

develop pH-sensitive nanocarrier devices that can release encapsulated drugs or other therapeutic 

agents by undergoing pH-dependent destabilization of the liposomal membrane. 

Sodium dodecyl sulfate (SDS) is perhaps the most widely studied anionic surfactant, and 

it undergoes a number of structural changes as a function of its environmental factors, such as 

concentration and pH. For example, the structure of SDS-based solutions is dependent on its 
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concentration. At the first critical micelle concentration (CMC) at 0.008M, it forms 

spherical/ellipsoidal micellar structures, which aggregate into larger rod-like micelles at its 

second CMC (~0.069M).230-232 Eventually, at concentrations above 1.25M, higher-order 

structures such as lamellar phases start to form. The rheology and structure of SDS-based 

micelles are sensitive to temperature, cosurfactants, counterions, and even pH.230-232 Thus, the 

inclusion of different species of cosurfactants and counterions at varying concentration, 

temperature and/or pH presents an opportunity to modulate the underlying physical properties of 

SDS-based solutions. 

In this chapter, we examine various ion models developed for non-polarizable force 

fields, with the goal of identifying best practices in parameter validation and selection to ensure 

the accuracy of MD simulations of ionic surfactants. Notably, recent studies by Tang et. al.233 

have demonstrated the validating the accuracy of parameters can be size dependent. For 

example, in the larger aggregates of ~400 SDS molecules, different force fields produced 

different SDS morphology, but such a phenomenon was not detectable in simulations of smaller 

SDS micelles of 60 to 100 molecules.233 One of the key diagnostics that Tang identified was the 

importance of intermolecular interactions between ionic species and the solvent, where selecting 

an appropriate set of parameters could reproduce experimentally observed SDS micelle 

morphology.233 However, such a process requires prior knowledge about the corresponding 

micelle structure, which may not be an optimal solution if one is using MD simulations to make 

predictions in the absence of experimental data. The sensitivity towards intermolecular 

parameters, specifically in the anomalous “crystalline patches” that were formed in larger SDS 

micelles are reminiscent of excessive ion pairing which is a known issue with existing force 
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fields.234,235 Therefore, we hypothesize that the observed artifacts are a consequence of poor 

and/or inaccurate modeling of ionic species at high concentrations. 

Traditional ion models that are used in all previous simulations of SDS,233,236-239 hereon 

referred to as 1st-gen models, were parameterized against experimental data representative of 

infinite-dilution conditions.240-243 These parameters are known to cause excessive ion pairing at 

high concentration.234,235 More recent developments have focused on using experimental 

measurements that are more representative of finite concentration environments, using 

Kirkwood-Buff Integrals (KBI)244-246 or osmotic pressure.247-249 In the Kirkwood-Buff inspired 

reparameterization of 1st-gen ion models, hereon referred to as GROMOSKBFF, an additional 

scaling factor had to be introduced to modulate the interactions between Na+ and SPC/E water in 

order to reproduce the experimental KBI at high concentration (see Table 6.1.1.1).244-246 

Similarly, in the osmotic pressure reparameterization process, an additional pairwise interaction 

potential, also termed NBFIX (non-bonded fixes) in the CHARMM program124 had to be 

introduced between specific ion pairs (see Table 6.1.1.1). In both the KBFF and NBFIX 

approaches, hereon referred to as 2nd-gen ion models, they share the similarity of introducing 

these “additive hacks” that effectively break the conventional combination rules used by the 

force field. 

Table 6.1.1.1: Parameters used in GROMOSKBFF244,245 and NBFIX corrections to the 

CHARMM force field.247,249 For GROMOSKBFF, the following combination rules were used: 

σij = √σiix σij , εij = √s(εiix εij)   where s is the scaling factor for interactions between cations 

and water (s = 0.75 for Na, s = 0.80 for K). For CHARMM force fields, the following 

combination rules were used: Rij = (ri +  rj)/2  , εij = √εi εj. For NBFIX corrections applied, 

the Rij values of specific atom pairs (listed above) are overridden by specially parameterized Rij 

values. 

 

Model Atom  σii (nm) εii (kJ/mol) εiO (kJ/mol) q (e) 

GROMOSKBFF 
Na 0.1820 0.3200 0.3420 +1.0 

K 0.2450 0.1300 0.2327 +1.0 

Model Atom Pair Rij (Å) Eij (kcal/mol)  q (e) 
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NBFIX 
Na-Cl 3.731 −0.08388  +1.0 

Na-O2L 3.160 −0.07502  +1.0 

 

6.1.2 On the Importance of Local Concentration and Finite Concentration Target Data 

While the issues of modeling ionic species at higher concentration is known,234,235 even in 

the largest SDS construct tested, the bulk concentration of SDS is comparatively low at 

0.26M.233 We suggest that a shift from analyzing the global concentration of the system to the 

local concentration of ionic species at the interface between the surfactant and the solvent needs 

to be realized. To demonstrate this conceptually, we examine a bilayer and spherical micelle 

structure, which are representative of high and low SDS concentrations respectively. Using a 

hypothetical bilayer segment of surface area 30 Å x 30 Å, and considering the region of ±6 Å at 

its boundary, we calculated that the local volume around the surfactant-solvent interface is 

10,800 Å3. Using the van der Waals volume of a SDS head group (25 Å3) as the upper limit of 

surfactant packing, and a more realistic surface area of 40 Å3, the estimated local concentration 

ranges from 3.4M to 5.5M. For a spherical SDS micelle of aggregation number 60, the typical 

radius is 15 Å, and using a similar means of evaluating its local volume (36,000 Å3), the 

estimated local concentration is 2.7M. Therefore, across the concentration range of SDS and the 

corresponding structures that are formed, the local concentration of SDS falls between 2M to 

4M, which is much higher than the sub 1M environment in which most parameters have been 

validated. 

Next, we investigate the behavior of sodium chloride, which is perhaps the most basic 

model that has been parameterized extensively in all major force fields. KBI values and osmotic 

pressure at varying concentrations were calculated for the following force fields: CHARMM36, 

CHARMM36 with NBFIX, GROMOS45A3, GROMOS53A6 and GROMOSKBFF. As shown 

in Figure 6.1.2.1a-b, the accuracy of 1st-generation ion parameters in reproducing KBI values of 
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NaCl start to degrade at concentrations over 1M. In contrast, both 2nd-generation ion parameters, 

CHARMM36 with NBFIX and GROMOSKBFF, produce KBI values that are in much better 

quantitative agreement to experiments. For the osmotic pressure calculations, the results from 

CHARMM36 with NBFIX is similar to that reported by Luo and Roux,247 reaching a projected 

value of ~300 bar at 5M. A comparison of concentration-dependent osmotic pressure across the 

various force fields, as illustrated in Figure 6.1.2.1c, yielded a similar observation to that of the 

KBI results. It should also be noted that GROMOSKBFF was parameterized against a single data 

point (KBI at 4.0M), and CHARMM36 with NBFIX was parameterized against osmotic pressure 

measured at multiple concentration values. Thus, a substantial portion of the simulations we have 

performed are not part of the target data in the parameterization process of these 2nd-gen ion 

models. To determine the structural reasons behind the ability of various force fields to 

reproduce KBI values and osmotic pressure, we analyzed the RDF of NaCl. In the 1st-gen ion 

models, excessive ion pairing was observed (Figure 6.1.2.1d), as evident from the strong first 

peak and/or multiple secondary peaks that suggest long-range ordering of Na+ and Cl- ions. In 

comparison, both 2nd-gen ion models had RDF peaks with significantly reduced heights.  
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Figure 6.1.2.1: Concentration dependent Kirkwood-buff integrals (KBI) of NaCl for the (a) 

solute-solute, Gcc and (b) solute-solvent, Gcw terms, and (c) concentration dependent osmotic 

pressure of NaCl. Fitted lines were added to improve visualization, and error bars denote the 

standard deviation across 3 independent runs. All 1st-gen ion parameters (C36, 45A3, 53A6) 

failed to reproduce experimental KBI values, and 2nd-gen ion parameters (C36nbfix, KBFF) 

demonstrated a significant improvement in accuracy. (d) RDF describing the ion distribution of 

4.50M NaCl indicates excessive ion-pairing in 1st-gen ion parameters. 

 

 
Figure 6.1.2.2: Concentration dependent (a) KBI values and (b) osmotic pressure of NaCl using 

different cutoff schemes, with error bars denoting the standard deviation across 3 independent 

runs.  

 

Next, we investigated the effect of cutoff schemes on the calculated KBI and osmotic 

pressure. Traditionally, simulations performed in GROMACS using the GROMOS force field 

(including the development of GROMOSKBFF) use a shorter real space cutoff with Ewald sum 

and applies a simple truncation of VDW interactions. In comparison, CHARMM simulations 

(including the development of CHARMM36 with NBFIX) uses a switching function from 10-12 

Å for VDW interactions, and Ewald sum for the treatment of long-range electrostatics. Our 

simulations have been performed using the former settings, and therefore our simulations using 

the CHARMM force fields may be performed under “incompatible” settings. Therefore, we 

recomputed the KBI values and osmotic pressure of NaCl using the CHARMM36 with NBFIX 

force field to determine if differences in the cutoff schemes used produce any discernable effect 

on the results. As shown in Figure 6.1.2.2, to within the precision of our simulation (across 3 

independent runs), the results are identical, and this demonstrates that the ion parameters are not 

overly sensitive to the cutoff scheme differences employed in typical GROMACS and 

CHARMM simulations. Nevertheless, we caution that this insensitivity is only observed for the 
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set of cutoffs that we have tested, and more drastic changes to the treatment of non-bonded 

interactions, such as changing from Ewald to Reaction Field for the treatment of long-range 

electrostatics, or changing from a Lennard-Jones 6-12 potential to a Buckingham potential for 

the VDW interactions could have more dramatic effects. 

6.1.3 Parameter Validation in a Size Independent Manner 

Methyl sulfate, which has an analogous functional group to the head group of SDS, 

serves as a model compound for SDS, and using truncated head groups as a model compound for 

parameter development has been reported previously.250 To date, there has been no explicit effort 

to parameterize sulfate groups against experimental osmotic pressure or KBI. However, in the 

CHARMM36 force field, the ionic oxygens on sulfate groups share the same atom type as the 

ionic oxygens on phosphate groups, for which Pastor, Roux and co-workers have recently 

implemented NBFIX parameters for interactions between the phosphate ionic oxygens and Na+ 

ions.249 Thus, we used these NBFIX parameters for sodium methyl sulfate, and compared our 

computed osmotic pressure to experimental data.251 

 

Figure 6.1.3.1: Concentration dependent osmotic pressure of sodium methyl sulfate using (a) 1st-

generation and (b) adapted 2nd-generation ion parameters. All parameters with the exception of 

GROMOS45A3 demonstrated reasonable agreement with experiments. (c) Concentration-

dependent osmotic pressure of potassium methyl sulfate. 

 

As shown in Figure 6.1.3.1a-b, the default parameters from CHARMM36 are capable of 

reproducing experimental osmotic pressure reasonably well up to ~2M. This perhaps explains 
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why the CHARMM36 SDS micelle simulations by Tang et. al. yielded reasonable agreement 

with experimental observation.233 With the inclusion of the NBFIX parameters, it improved the 

agreement up to the simulated concentration of ~4M, reinforcing our earlier observations in 

NaCl simulations that NBFIX corrections are necessary to ensure accurate reproduction of 

osmotic pressure at higher concentration. For the GROMOS force field series, it was previously 

demonstrated that micelle structure was most significantly influenced by intermolecular 

parameters (van der Waals and partial charge parameters).233 Therefore, for this study we created 

a modified GROMOS53A6 parameter set that uses the intermolecular parameters from 

GROMOS53A6 but retains the intramolecular parameters of GROMOS45A3. The results, as 

shown in Figure 6.1.3.1a, indicate that GROMOS45A3 significantly underpredicts the osmotic 

pressure of sodium methyl sulfate at concentrations above ~1M. In contrast, the osmotic pressure 

calculated from GROMOS53A6 is in much better agreement with experimental values. To 

determine if the existing SDS parameters in the GROMOS force field series can be improved, we 

combined the methyl sulfate parameters for both GROMOS45A3 and GROMOS53A6 with the 

ion parameters of the GROMOSKBFF force field, which we denote as GROMOS45A3KBFF 

and GROMOS53A6KBFF respectively. As shown in Figure 6.1.3.1b, the inclusion of KBFF 

modifications without any further adjustments significantly improved the agreement with 

experimental osmotic pressure, to the extent that our results suggest that a KBFF correction to 

the “inaccurate” GROMOS45A3 force field should yield similar performance to the force fields 

that produced the correct SDS morphology. 

In order to attain a better understanding of the underlying reasons for the ability (or 

inability) of the various force fields to reproduce experimental osmotic pressure, we analyzed 

various RDFs that describe the solvent structure around sodium methyl sulfate (MESU). In the 
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Na+-MESU(O) RDF, a strong first peak was observed in GROMOS45A3, which is indicative of 

excessive ion pairing, and this property is conspicuously absent in all other force fields tested. 

This observation correlates with the artifacts observed by Tang et. al., where only the 

GROMOS45A3 simulations formed crystalline lattice patches of SDS head groups and Na+ 

ions.233 When we examined the Na+-SPC/E and MESU(O)-SPC/E RDFs, we observed that the 

strength of the hydration shell is unusually low for GROMOS45A3, and the 2nd-gen ion 

parameters had the strongest hydration shell behavior. This trend is similar to the analysis 

reported by Tang et. al. who tested various combinations of ion and water models and concluded 

that the models with a stronger first solvation shell would produce correct SDS micelle 

morphology.233 However, unlike the prior work where the choice of ion and water models was 

systematically explored to find the best combination, our approach suggests that a model which 

produces good agreement with experimental osmotic pressure is likely to produce accurate SDS 

micelle structures, thus providing a physical principle and proper justification for the 

development and selection of parameters for simulating charged surfactant systems.  

While we have demonstrated that 2nd-gen ion parameters are capable of reproducing the 

experimental properties of sodium methyl sulfate, it is also desirable to have a model that can 

accurately distinguish interactions between different cations. One example is the Hofmeister 

series, which is a classification of an ion’s ability to affect the solubility of proteins, presumably 

through their interactions with the side chain functional groups of the protein. Recent 

developments in KBFF-based force field reported by van der Vegt and co-workers has 

demonstrated that 2nd-gen ion parameters are able reproduce the Hofmeister series in the context 

of cation specific binding with protein surface charges.246 In the context of our work, we 

simulated potassium methyl sulfate, which is a particularly challenging system as it exhibits an 
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inverse behavior compared to sodium methyl sulfate, where potassium methyl sulfate has a 

higher tendency to form ion-pairs than sodium methyl sulfate, and consequently has a lower 

osmotic pressure than the ideal value at higher concentrations.251 This is reflected by the fact that 

the experimental osmotic pressure of potassium methyl sulfate is lower than its ideal value at 

higher concentration, whereas that of sodium methyl sulfate is higher than its ideal osmotic 

pressure. Figure 6.1.3.1c illustrates the ability of various GROMOS force fields to reproduce the 

experimental osmotic pressure of potassium methyl sulfate. As before, the inclusion of the KBFF 

corrections improve the results, and reasonably good agreement with experimental osmotic 

pressure is achieved up to a concentration of ~3M. Our results on methyl sulfate suggest that the 

use of 2nd-gen ion parameters is not only accurate enough to model SDS surfactants in the 

presence of counter ions, it may also be sufficiently accurate to distinguish interactions based on 

the identity of the interacting monovalent ion.  

 
Figure 6.1.3.2: Representative snapshots of a SDS micelle with an aggregation number of 100 

for (a) CHARMM36, (b) CHARMM36 with NBFIX, (c) GROMOS45A3, (d) 

GROMOS45A3KBFF, (e) GROMOS53A6 and (f) GROMOS53A6KBFF force field. With 

KBFF corrections applied to GROMOS45A3, the anomalous crystalline lattice patch formation 

was not observed.   
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Figure 6.1.3.3: RDF of (a) Na+ to SDS(O) and (b) Na+ to Cl- indicates that 1st gen ion models 

have a much higher propensity to form ion pairs than 2nd-gen ion models. RDF of (c) Na+ to 

SPC/E, (d) SDS(O) to SPC/E and (e) Cl- to SPC/E indicates a more subtle change in the 

solvation patterns 

 

Having demonstrated that most of the force fields we tested, with the exception of 

GROMOS45A3, are able to reproduce the experimental osmotic pressure of sodium methyl 

sulfate reasonably well up to moderate concentrations of ~2M, we now focus our analysis on 

SDS micelles to determine the transferability of results between the model compound and the 

actual SDS surfactant. We simulated a preassembled SDS micelle with an aggregation number of 
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100 in 0.8 NaCl, which are conditions where Tang et. al. first observed artifacts.233 As illustrated 

in Figure 6.1.3.2, crystalline patches were only observed in GROMOS45A3, and the corrected 

GROMOS45A3KBFF produced no discernable patches. Further RDF analysis demonstrates 

many similarities between the solvent structure of sodium methyl sulfate and SDS micelles. 

Specifically, the strong peak in the Na+-SDS(O) RDF (Figure 6.1.3.3a) was again observed only 

for the GROMOS45A3 force field, which corresponds to previous observations in the Na+-

MESU(O) RDF. Similarly, there is a minor reduction in the first solvation shell across all ionic 

species (Figure 6.1.3.3c-e), although the effect is not as pronounced as in sodium methyl sulfate. 

Interestingly, the Na+-Cl- RDF peak (Figure 6.1.3.3b) for both GROMOS45A3 and 

GROMOS53A6 is high, indicative of excessive ion pairing between Na+ and Cl-, but this 

property had no discernable effect on the SDS micelle. We suggest that this may be because the 

SDS micelles were simulated with a low concentration of 0.8M NaCl. 

The simulation of SDS in a salt environment also provides an opportunity to examine the 

3-way interactions between SDS, Na+ and Cl-, in terms of comparing the different 

implementations of 2nd-gen ion models. In the KBFF algorithm, interactions between cations and 

water are scaled, and only the Na+-SPC/E scaling term was applied in our SDS simulations.244,245 

It is interesting that with only the Na+-SPC/E scaling term, the interaction between Na+-SDS(O) 

(see Figure 3.2.3.4 for details) was indirectly modified as well, indicating that scaling the Na+ to 

water interaction has some second order effect on the interactions between Na+ and other anionic 

species. In contrast, the NBFIX algorithm provides additional interaction terms between specific 

ion pairs that scales them accordingly,247,249 and in the context of our SDS simulations NBFIX 

terms for Na+-Cl- and Na+-SDS(O) interactions were applied. In the context of osmotic pressure 

measurements, deviations from ideal behavior can be manifested when there is a differential 
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preference for ions to interact with each other (i.e. contact ion pair) as opposed to interacting 

with solvent (i.e. solvent-mediated ion pair). Modulating such an effect can be achieved by either 

scaling attractive forces between ions which indirectly modulates the solvation shell around ions 

(NBFIX) or adjusting the strength of water-cation interactions, which indirectly changes the 

strength of other ion-ion interactions. In that sense, modifying one interaction should always 

have a secondary effect on the other ion pair interactions. Based on our analysis, it appears that 

changes in the water-cation affinity has magnified consequences compared to changes in the ion-

ion affinity.  

 
Figure 6.1.3.4: RDF of (a) Na+ to Cl- and (b) Na+ to SDS(O) indicates that NBFIX scaling 

parameters do not have second order effects on the interactions of other ion pairs. 

 

Lastly, to determine the effect of the force field on larger SDS constructs representative 

of industrially-relevant concentrations, we simulated SDS micelles with aggregation number of 

400 in 0.26M NaCl. Here, we limit our analysis to GROMOS45A3 which has been previously 

reported to produce an incorrect morphology,233 and GROMOS45A3KBFF, which according to 

the Na+-SDS(O) and Na+-Cl- RDF (see Figure 6.1.3.3a, b) obtained from the 100 SDS aggregate 

simulation, has an equivalent behavior to the other force fields that has produced reasonable 

geometries.233 As shown in Figure 6.1.3.5, regardless of the initial configuration, the 

GROMOS45A3 simulation formed a bicelle within 10 ns, with significant Na+ condensation   
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Figure 6.1.3.5: (a) Time evolution of the geometry of a SDS micelle of aggregation number 400 

starting from (a) cylinder and (b) bilayer configuration. The GROMOS45A3 simulations 

produced incorrect bicelle structures within 10 ns, and the GROMOS45A3KBFF simulations 

produced correct rod-like micelles. 

 

around the SDS head group. This structure is inconsistent with experimental data that suggests 

that rod-like micelles are the dominant structure in the regime between the first and second 

CMC.230-232 In contrast, in the GROMOS45A3KBFF simulation, the structure formed a rod-like 
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micelle or a toroidal micelle (a rod-like micelle looped back onto itself) within 10 ns. Thus, our 

results indicate that using osmotic pressure data of model compounds provide a robust method 

for parameter development, as it is transferrable to the simulation results of the corresponding 

surfactant at high aggregation number. 

6.1.4 Modeling Temperature & Ionic Strength Structural Dependence 

 
Figure 6.1.4.1: Calculated deuterium order parameter (SCD) as a function of temperature and 

ionic strength for the 6 force fields tested. Transition temperature (Tr) from a more ordered 

bicelle structure (SCD > 0.35) to a more disordered micelle structure (SCD ≈ 0) is indicated for 

each ionic strength.  
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Lastly, we analyze the effects of temperature and ionic strength on the structure of SDS 

micelles, and examine the effect of counterion condensation on phase transition behavior. Using 

a preassembled bilayer of 100 SDS molecules, we varied the temperature between 248K and 

298K, and ionic strength from 0M to 3.2M. From experimental studies on anionic surfactants, it 

is known that increased ionic strength leads to an increase in the phase transition temperature 

(Ttr) from an ordered to disordered phase252. We calculated the deuterium order parameter (SCD) 

of the hydrocarbon tails of the SDS molecules, where it is expected that a more ordered bicelle 

structure will have a higher SCD value than a micelle structure, and the Ttr in our simulations can 

be approximated as the inflexion point for this change in SCD value. As illustrated in Figure 

6.1.4.1, the trend of ionic strength and Ttr is reflected across all force fields tested, although the 

absolute Ttr values and the shift in Ttr values between zero and high ionic strength environments 

do vary. 

To determine the details of counterion condensation on phase transition we further 

analyzed the distribution of ions around the SDS head group by computing the weighted number 

of ions present in the first two solvation shells. Based on the RDFs calculated (data not shown), 

the 1st and 2nd solvation shell peak at ~0.35nm and ~0.55nm respectively, and this solvation 

pattern is consistent across all force fields tested. We calculated the weighted count of ions 

present in each shell, where ion count in the 2nd shell was scaled by a factor of 0.4 to reflect the 

1/r2 falloff of the electrostatic contributions of the ions in the 2nd shell relative to the 1st shell, 

where r is the distance of the solvation shell as observed in the RDFs. Therefore, when counting 

the number of ions in the second shell, we scaled it by a factor of  
(1

0.55⁄ )
2

(1
0.35⁄ )

2 = 0.4, in order to 

adjust its weight relative to the first shell. The number of ions in the first shell was not weighted, 
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as it served as the reference point for the weighting procedure. The sum of these two counts 

would then give the weighted count of ions used in our analysis. 

 
Figure 6.1.4.2: (a) The high correlation between the total ion count (Nt) and predicted transition 

temperature (Ttr), suggest that ion condensation is a primary determinant for predicting Ttr value. 

(b) Moderate correlation was observed between the difference in total ion count (ΔNt) and the 

difference in phase transition temperature (ΔTtr) when moving from a zero to high ionic strength 

environment.  

 

 
Figure 6.1.4.3: Breakdown of the weighted number of ions present in the 1st and 2nd solvation 

shell for all 6 force fields tested. While there are no distinct trends across 1st gen ion parameters, 

all 2nd gen ion parameters predict that the contribution of ions in the 2nd solvation shell outweigh 

those from the 1st solvation shell by a factor of 2 to 2.5. 

 

As shown in Figure 6.1.4.2a, the total ion count across both shells was well correlated to 

the predicted Ttr with R2 = 0.77, indicating that counterion condensation around the SDS head 
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group is the main determinant of the shift in Ttr. By breaking down the contribution of 

counterions as a function of their solvation shells (Figure 6.1.4.3), there is apparently no 

consistency across all 1st gen ion models. Specifically, contributions from both the 1st and 2nd 

shell are equivalent across all ionic strength environments tested for the CHARMM36 force 

field, whereas the GROMOS45A3 force field predicts that 1st shell ion effects are dominant. For 

GROMOS53A6, there are effectively zero ions in the 1st shell, which suggests that the force field 

predicts that Na+ interacts with the anionic head group of SDS exclusively via water-mediated 

interactions. On the other hand, all 2nd-gen ion models are qualitatively identical and predict that 

contributions of the 2nd shell outweigh those of the 1st shell across all ionic environments by a 

factor of ~2 to ~2.5. Interestingly, up to this point, both GROMOS53A6 and 

GROMOS53A6KBFF force fields are effectively indistinguishable based on macroscopic 

results, such as SDS micelle structure (formation of crystalline patches), phase transition 

temperature and its dependence on ionic strength. However, the two force fields are distinctly 

different in the ionic “microstructure” near the SDS head group. This suggests that experimental 

data that measures the number of ions in the 1st and 2nd solvation shell can be used as a further 

means of tuning and validating the finer considerations of the force field. An alternative 

interpretation of these results is that obtaining the correct details of the microstructure around 

ionic groups may not be necessary for reproducing the desired properties on the macroscopic 

scale. 

It is also interesting to note that the width of the change in phase transition temperature 

(ΔTtr) upon changing the ionic strength is also dependent on the force field. Specifically, 

CHARMM-based force fields have a ΔTtr of ~20K, whereas GROMOS-based force fields have a 

ΔTtr of ~10K. As shown in Figure 6.1.4.2b, we find that there is fair correlation (R2 = 0.62) 
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between the difference in ion count (ΔNt) and the difference in phase transition temperature 

(ΔTtr). While our results suggests that the differential ion condensation is contributing to the 

predicted ΔTtr, the effects of van der Waals interactions, which should not be expected to the 

same across different force field families may also play a role in determining the width of the 

ΔTtr values as a function of ionic strength. 

6.1.5 Application of Parameter Validation in Other Contexts 

As future applications will advance into modeling complex and concentrated ionic 

environments, where 3 or more ionic species are present at high concentrations, it may be 

constructive to contrast the different approaches used by 2nd-gen ion models. At a first glance, 

the parameterization strategy based on the KBFF approach may be more tractable, as only 

cation-water interaction terms needs to be parameterized, and so the number of additional 

parameters needed would scale as a factor of ~N, where N is the total number of ionic species 

present. While this approach has been successful in modeling SDS surfactants, it remains to be 

determined if a non-specific cation-water scaling term will be able to correctly modulate the 

subtle interactions in more complex formulations, where additional ionic species, including 

organic ions and multivalent ions may be present. In contrast, the NBFIX approach allows for a 

more precise modulation of interactions between ionic species, since there is no second order 

effect on related interactions. However, parameterizing NBFIX terms could scale as an order of 

N2, since a pairwise potential may be needed for every permutation of ion-ion interaction. In 

such a situation, it may be advantageous to reduce complexity by employing a “tiered” scaling 

strategy, where interactions are scaled based on the interacting atom types, which is similar to 

the approach adopted by the GROMOS53A6 force field.253 
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Lastly, while we have shown that the importance of validating parameters against 

osmotic pressure and other thermodynamic measurements at finite concentration is of particular 

importance to SDS, and by extension to other ionic surfactants in general,254 the basic principles 

behind the emphasis of local concentration of ionic species at the solute-solvent boundary may 

be applicable in other contexts. In simulations of biomolecular crowding255-257 or hotspot 

mapping,258-261 there can be a large quantity of cosolvents present, which may increase the 

effective local concentration between cosolvents and the protein. In recent advances of long 

timescale protein folding simulations, different force fields produce subtle differences in the 

folding mechanism.262 Protein force fields have been constructed in an additive fashion using 

small molecule fragments (typically parameterized against dilute experimental data) for 

parameterizing side chains,127 and this process may pre-bias the current generation of force fields 

towards dilute environments. Therefore, in protein folding simulations, where the balance 

between dilute (i.e. solvent exposed) and concentrated (i.e. solvent excluded) environments is 

key, a lack of balance between the two components may result in the current issues noted, and 

ongoing efforts in developing a Kirkwood-Buff inspired protein force field may resolve some 

issues.263 Finally, in modeling pH effects, such as in constant pH molecular dynamics simulation, 

the ionic environment around titrating residues can alter the protonation state and the associated 

pH-dependent dynamical response. In systems with high local concentration of ionic species, 

such as nucleic acids,111-113 ionic surfactants,264,265 and charged lipids, the use of properly 

validated parameters for counterions may be important for reducing the occurrence of anomalous 

ion condensation around the titrating group. 
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6.1.6 Conclusion: Parameter Validation using Finite Concentration Experimental Data is 

Critical to Accurately Model High Concentration Environments 

 In this chapter, we identified that the cause of artifacts or anomalous observations 

reported in MD simulations of larger SDS constructs is a direct consequence of using poor 

parameters for modeling ionic interactions in a high concentration environment. While the global 

concentration of the system may be low, we discovered that the local concentration at the 

surfactant-solvent boundary of various SDS constructs ranges from 2 to 4 M, and this is a key 

consideration that needs to be realized. The most cost effective means to validate existing force 

fields for simulating such high concentration environments, is the use of osmotic pressure and/or 

other thermodynamic properties measured at finite concentration as target data for the 

parameterization process. By using only the properties of model compounds, specifically the 

ionic head groups of surfactants, we demonstrated that accurate reproduction of osmotic pressure 

for these model compounds translated to the correct morphology of larger SDS micelles (~400 

molecules). Our investigation into the phase transition behavior of surfactants demonstrates that 

the total ionic strength of the simulated environment produces the expected shift in transition 

temperature. Furthermore, these results also suggests that macroscopic properties of SDS 

micelles can be insensitive to the microstructure around ionic atoms, which suggests that 

experimental data to distinguish between 1st and 2nd shell counterions might be useful to further 

validate existing parameters. Alternatively it may be interpreted that the finer details of the 

microstructure around ionic groups may not be necessary for accurately reproducing properties 

on the macroscale. Lastly, our findings on the importance of optimizing parameters for 

simulations in a high concentration environment may be applicable in other contexts, such as 

molecular crowding, hotspot mapping, protein folding, and modeling pH effects.  
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Chapter 7: Conclusion 

7.1 Methodological Advances in Constant pH MD Simulations 

 In conclusion, we have developed an improved explicit solvent CPHMD framework based 

on the newer multi-site λ-Dynamics (MSλD) algorithm for propagating protonation states. Also 

known as CPHMDMSλD, it is the first viable explicit solvent CPHMD to be reported, which 

compared to existing implementations of explicit solvent CPHMD, the sampling in our 

CPHMDMSλD framework sees a 10-fold improvement, while maintaining sufficient residency 

time of the physical protonation states to ensure proper solvent reorganization. In the 

CPHMDMSλD framework, we performed seamless alchemical transitions between protonation and 

tautomeric states using MSλD, and designed a novel biasing potential to ensure that only the 

physical end-states are predominantly sampled. Apart from protein residues, we also developed 

model potentials for major nucleobases observed in both DNA and RNA, as well as additional 

functional groups, such as backbone phosphate and 2’OH implicated in RNA activity. In 

addition, we determined the proper treatment for dealing with coupled titrating systems where 

the identity of various residues cannot be pre-determined, which underscores the distinction 

between microscopic vs macroscopic (apparent) pKa measurements. 

Subsequent studies on larger full-sized proteins and nucleic acids, demonstrate the ability 

of CPHMDMSλD simulations to simulate realistic pH-dependent properties of a number of model 

full-sized biomolecules, including HEWL, BBL and NTL9, and the lead-dependent ribozyme. 

Our pKa calculations for HEWL protein are in excellent agreement with experimental values, 
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with a RMSE of 0.84 pKa units, and this is close to the uncertainty of 0.50 pKa units associated 

with experimental measurements. Our pKa calculations on the other model protein systems, BBL 

and NTL9 also provide similarly good agreement with experiments. For RNA pKa calculations, 

our initial values calculated from CPHMDMSλD simulations agree well with experimental pKa 

values with an average unsigned error of 1.3 pKa units, and the direction of the pKa shifts for all 

residues in the lead-dependent ribozyme are also correctly predicted when compared to 

experimental data or structural considerations. Using the GAAA tetraloop and the A+
C base 

pair of the lead-dependent ribozyme as examples, we demonstrated that CPHMDMSλD 

simulations are able to model the effects that conformational dynamics and coupled titrating 

interactions have on the protonation equilibria of titrating residues. 

Furthermore, we have also identified sampling challenges when modeling pH-dependent 

behavior of RNA structures. Consequently, we have enhanced the framework with pH-based 

replica exchange (pH-REX) sampling, which significantly improved sampling of titration and 

spatial coordinates, and the shuffling of conformations across pH space has the effect of 

decoupling interactions between titrating residues. This allows us to ameliorate some of the 

sampling issues related to orthogonal barriers that originate from coupled protonation 

equilibrium and conformational-dependent pKa behavior, and this has the overall effect of 

improving accuracy from our initial results. The scalability of pH-REX sampling was also 

demonstrated by showing that similarly accurate pKa values could be achieved when simulating 

full-sized nucleic acid systems. Finally, we highlighted that pH-REX CPHMDMSλD simulations 

can be used to identify the dominant conformation of nucleic acid structures in alternate pH 

environments or to provide structural characterization of pH-dependent transient states, making it 
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a useful tool to provide structural and mechanistic insight in the study of pH-dependent 

properties of nucleic acids. 

In developing the CPHMDMSλD framework for nucleic acids, a number of alternative 

protonation states had to parameterized. For the CHARMM force field, it was determined that 

the current CHARMM36 force field destabilizes RNA structures that have more complex 

structural topology beyond an A-form helix on the longer (>100 ns) timescale, and this 

observation is independent of the optimization of the partial charge distribution and the strength 

of the protonated base pairs. Our findings indicate that this was correlated to sampling the 150° 

to 250° region of the 2’hydroxyl dihedral phase space, which promoted the sampling of non-

canonical structures. For the AMBER force field, we tested a number of solvation models, basis 

set and level of theories for the QM calculations used to derive the RESP charges used to 

describe the partial charge distribution. We discovered that there is an apparent insensitivity of 

interaction energies and the resulting pKa calculations of protonated AC+ base pairs to the 

specifics of the QM calculations. Therefore, to maintain consistency with the standard AMBER 

parameterization protocol, we decided to maintain the standard gas-phase HF/6-31G* QM 

calculation for calculating the partial charges of alternative protonation states of nucleic acids. 

Lastly, our investigation into parameter validation indicates that the incorporating target data that 

includes finite concentration experimental data such as osmotic pressure, may be applied to 

further improve the accuracy of non-bonded interactions .particularly for high charge density 

environments, such as ionic surfactants and possibly modeling specific ion effects and nucleic 

acids as well. 
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7.2 Using CPHMD Simulations to Elucidate the Role of pH-dependent 

Transient States in Nucleic Acids and Proteins 

Our first application of CPHMDMSλD simulations, used in conjunction with NMR studies 

examined the structural characteristics of protonated Hoogsteen GC+ base pairs in DNA. Our pKa 

calculations indicate that the cytosine in a Hoogsteen GC+ base pair is elevated to 7.1, which is 

in good agreement with the inferred pKa value obtained from a N1-methyl-G variant that traps 

the base pair in the Hoogsteen conformation. Using both NMR data, CPHMDMSλD, we 

determined that transient Hoogsteen GC+ base pairs are present even at physiological pH, albeit 

at a low population ranging from 0.1 to 0.01%, and this finding has potential implications in 

DNA recognition and binding by cellular factors. Moreover, we demonstrate that, at 

physiological pH, GC base pairs containing N1-methyl-G damage exist as a nearly equal mixture 

of protonated HG GC+ base pairs and distorted WC-like conformers that could be specifically 

recognized by DNA repair enzymes in search for damaged DNA. 

The role of pH-dependent transient states was later expanded to include a number of 

RNA systems implicated in pH-mediated RNA activity. In our analysis of protonated nucleotides 

across 5 different RNA the relative pKa shifts calculated was internally consistent based on the 

strength of the interactions that the protonated base form with its local microenvironment, but 

paradoxically is not always consistent with experimental pKa measurements. Using the U6 ISL 

as a precedence, we demonstrate how different pH-triggered conformational changes can alter 

the microscopic pKa of each conformation, and that the apparent pKa measured is likely to be a 

superposition of the pKa values of these conformations. Based on this observation, we 

hypothesized that based on the elevated pKa values of the protonated residues in the hairpin 
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ribozyme and BWYV, there may be additional conformational states, possibly transiently 

populated, that are involved in its activity at physiological pH. 

Using the hairpin ribozyme as an illustrative example, we used a combination of 

CPHMDMSλD simulations augmented with enhanced sampling techniques to examine the details 

of its catalytic mechanism. Notably, the discovery of pH-mediated transient states that involve an 

upshifted pKa of the backbone phosphate, led to a proposed dual pathway of the hairpin 

ribozyme catalysis: (i) a dominant catalytic pathway involving A38/G8 as the general acid-base, 

which is the consensus model in the field, and (ii) a shadow catalytic pathway involving the non-

bridging oxygens of the backbone phosphate. This dual pathway mechanism proposed was able 

to reconciled several puzzling observations, including the differential effects of mutational 

studies of A38 and G8 on the catalytic rate, and seemingly contradictory experimental 

observations, including the residual catalytic effect in an abasic A38 mutant under low pH 

conditions. Furthermore, we have also identified that the ground state crystallographic structure, 

which is best represents the catalytically active state of the hairpin ribozyme has a pKa of A38 

that is does not correspond to the experimental pKa measured. This is because the hairpin 

ribozyme fluctuates been a dominant active state and a relaxed inactive state that is transiently 

populated, and this finding highlights the challenge of deconvoluting and interpreting pH-

mediated mechanism particularly when dealing with conformationally flexible systems such as 

nucleic acids, each with their own distinct local electrostatic environment. 

In the application of proteins, we utilized CPHMDMSλD simulations to simulate the pH-

dependent dynamics of a comprehensive set of SNase mutants with buried ionizable residues that 

have varying degrees of pKa shifts. Among our key findings is that a buried charged residue 

cannot be accommodated inside a purely hydrophobic pocket and that an open state structure for 
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these “buried” residues, characterized by local solvation around the protonating site, was 

observed in all SNase mutants with highly shifted pKa. At physiological pH, buried ionizable 

groups with large pKa shifts have transiently populated open states, where they contribute a small 

but non-zero population of 1-2% at pH 7. Nevertheless, sampling these open states is a necessary 

condition for accurately reproducing experimental pKa measurements, to which calculated pKa 

from our explicit solvent CPHMDMSλD simulations demonstrated good agreement, with a low 

average unsigned error of 1.3 pKa units and correlation coefficient of R2 0.78. The work we 

present here provides the first validation that buried ionizable residues can readily trigger pH-

mediated conformational fluctuations that may be observed as transient state structures at 

physiological pH. Lastly, the discovery of a coupled relationship of both open and closed states 

and their role in recapitulating macroscopic experimental observables suggests that structural 

analysis of buried residues may benefit from the perspective of looking at structural pairs, as 

opposed to the conventional approach of a single static ground state conformation.  

Using a combination of the weighted-ensemble sampling using with a novel hydration 

parameter and CPHMDMSλD simulations, we further explored the role of pH-dependent transient 

states in elucidating the origin of an unusual non-monotonic pH-dependent absorption behavior 

of a recently engineered CFP mutant that features a pH-dependent shift between cyan and green 

fluorescent forms. In earlier experimental observations, this optical property was proposed to be 

controlled by the charged anionic state of its tryptophan-containing chromophore. Our 

calculations demonstrate that even in the presence of the stabilizing V61K mutation, the free 

energy cost of deprotonating the chromophore is still high and does not allow for the existence of 

the charged state of WasCFP even at basic pH. Instead, we propose the following explanation: 

The distribution between two transiently populated conformational states characterized by a 
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partially open β-barrel with local solvation around the chromophore (that have pKa values of 6.8 

and 9.8), relative to the ground state crystallographic structure (that has pKa of 31.7), is able to 

fully recapitulate both qualitatively and quantitatively the unusual non-monotonic pH-dependent 

properties of WasCFP. In this model, the open state is transiently populated at low pH, but 

reaches a population of 53% under mildly basic conditions, before losing its dominance and 

reverting to a transient state under highly basic conditions, and such mechanistic understanding 

may be used to further engineer the pH-sensitive fluorescent properties of WasCFP. Therefore, 

our work not only validates that tryptophan can be deprotonated in a biological system at mildly 

basic pH, but, more importantly, shows that pH-dependent transient conformational states are 

functionally relevant in proteins, and that they can tune the optical properties of fluorescent 

proteins. Such an outlook will have implications in the rational design of fluorescent proteins 

with pH-dependent optical properties.  
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