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Abstract 

 

Human performance of a primary continuous task (e.g., steering a vehicle) and a 

secondary discrete task (e.g., tuning radio stations) simultaneously is a common scenario in 

many domains. It is of great importance to have a good understanding of the mechanisms of 

human multitasking behavior in order to design the task environments and user interfaces (UIs) 

that facilitate human performance and minimize potential safety hazards. In this dissertation I 

investigated and modeled human multitask performance with a vehicle-steering task and several 

typical in-vehicle secondary tasks. Two experiments were conducted to investigate how various 

display designs and control modules affect the driver's eye glance behavior and performance. A 

computational model based on the cognitive architecture of Queuing Network-Model Human 

Processor (QN-MHP) was built to account for the experiment findings. In contrast to most 

existing studies that focus on visual search in single task situations, this dissertation employed 

experimental work that investigates visual search in multitask situations. A modeling mechanism 

for flexible task activation (rather than strict serial activations) was developed to allow the 

activation of a task component to be based on the completion status of other task components. A 

task switching scheme was built to model the time-sharing nature of multitasking. These 

extensions offer new theoretical insights into visual search in multitask situations and enable the 

model to simulate parallel processing both within one task and among multiple tasks. The 

validation results show that the model could account for the observed performance differences 

from the empirical data. Based on this model, a computer-aided engineering toolkit was 

developed that allows the UI designers to make quantitative prediction of the usability of design 

concepts and prototypes. Scientifically, the results of this dissertation research offer additional 

insights into the mechanisms of human multitask performance. From the engineering application 

and practical value perspective, the new modeling mechanism and the new toolkit have 

advantages over the traditional usability testing methods with human subjects by enabling the UI 

designers to explore a larger design space and address usability issues at the early design stages 

with lower cost both in time and manpower. 
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Chapter 1.  

Introduction 

1.1 Computational Human Performance Modeling 

Computational human performance modeling is a valuable asset for researchers to gain 

insights into the mechanisms of human cognition and performance and for human factors 

practitioners to develop and evaluate the usability of design prototypes and products. Following 

the pioneering work by Allen Newell on a unified theory of cognition (Newell, 1973, 1990), 

great efforts have been made in the past decades by researchers in the development of 

comprehensive human performance models based on a single cognitive architecture. From a 

scientific standpoint, a cognitive architecture combines numerous psychological and 

neuroscience findings and theories into one coherent framework. From an engineering standpoint, 

it provides a fixed structure with parameters for human cognition that could be used to model a 

wide range of tasks. It also allows modeling the interference of several tasks during multitasking.  

Among the most famous computational human performance models include the Model 

Human Processor (MHP, Card et al., 1983), the family of Goal, Operator, Method, and Selection 

rules models (GOMS, John and Kieras, 1996), Soar (Laird et al., 1987), Executive-Process 

Interactive Control (EPIC, Meyer and Kieras, 1997), Adaptive Control of Thought-Rational 

(ACT-R, Anderson et al., 2004), Connectionist Learning with Adaptive Rule Induction On-line 

(CLARION, Sun, 2003), and Queuing Network-Model Human Processor (QN-MHP, Liu et al., 

2006). These models have been successfully applied to model a large variety of tasks (Liu, 2009). 

Below is a brief description for each of the models, some of which have inspired or used in part 

for the modeling work in this dissertation.  

MHP (Card et al., 1983) was developed as an engineering model of human computer 

interaction (HCI) to predict how long it takes for a human to perform a task. The model draws 

analogy of human information processing from a computer system with processors and memory 

storages. The model is composed of three processors (perceptual, cognitive, and motor) and 
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some general-purpose memory storages (e.g., visual image storage, working memory, long term 

memory). Each of the processors is associated with a cycle time, and each of the memory 

storages is associated with a capacity and decay time, the values of which were derived from 

findings from numerous psychology studies. The time it takes to complete a task is calculated by 

breaking down the task into the steps in basic perceptual, cognitive, and motor levels.  

The GOMS family of models (John and Kieras, 1996) is closely related to the MHP 

model, which decompose a task into elementary actions. Several variations of GOMS model 

exist including the original GOMS model (Card et al., 1983), the Keystroke-Level Model (KLM, 

Card et al., 1983), the Natural-GOMS-Language (NGOMSL, Kieras, 1996), and the Cognitive 

Perceptual Motor GOMS (CPM-GOMS, John and Gray, 1995). A detailed analysis and 

comparison of these GOMS models can be found in John and Kieras (1996). Most of the GOMS 

models are serial stage models that do not support modeling parallel activities with the exception 

of CPM-GOMS. For a task analysis using CPM-GOMS, a task is breakdown to perceptual, 

cognitive, and motor level similar to MHP, and then the task elements are examined to see 

whether overlapping of task elements are allowed. This enables the modeling of parallel 

activities, but CPM-GOMS is in a form of schedule charts instead of an executable 

computational implementation, thus it may not be used to generate human actions and behaviors 

in a simulation. 

ACT-R (Anderson et al., 2004) is a cognitive architecture with a computational 

implementation as a production rule system. It distinguishes between declarative knowledge as 

chunks and procedural knowledge as production rules. ACT-R has a module structure including 

visual, aural, manual, vocal, procedural, goal, imaginal, and declarative modules. Each module 

has a buffer that can hold at most one chunk at a time. As a production system, an ACT-R 

simulation runs by firing production roles until a pre-defined goal state is reached.  

EPIC (Meyer and Kieras, 1997) is cognitive architecture in spirit to the MHP but with 

more details processors and with an implementation of a production rule system similar to ACT-

R. One difference between the EPIC and ACT-R is that ACT-R is essentially a serial system, 

which only allows one production rule to be fired at any given time, while EPIC allows parallel 

processing at the cognitive level. While human may be able to perform two simple cognitive 

tasks at once, studies (e.g., Byrne and Anderson, 1998) have shown that human may not be able 
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to perform two complex cognitive tasks in a true parallel manner, which conflict with EPIC’s 

configuration.  

Soar (Laird et al., 1987) is a production rule based cognitive architecture designed as an 

artificial intelligence system that can be used to model human cognitive behaviors. Compared 

with other cognitive architectures that primarily aim at modeling human performance, SOAR is 

less constrained by the human cognition. It has a mechanism for searching through a problem 

space and moving the system state gradually to the goal state, which gives it strength in 

modeling complex cognitive behavior such as problem solving and reasoning.  

CLARION (Sun, 2003) is a cognitive architecture that has been used to model cognitive 

psychology tasks among others. It distinguishes between implicit and explicit processes and 

focus on capturing the interaction between these two types of processes. It is composed of a 

number of subsystems including action-centered subsystem (loosely the counterpart for the 

procedural memory in ACT-R), non-action-centered subsystem (loosely the counterpart for the 

declarative memory in ACT-R), motivational subsystem, mega-cognitive subsystem. CLARION 

has its strength in modeling complex cognitive behaviors such as bottom-up learning and 

reasoning. 

QN-MHP (Liu et al., 2006) is a cognitive architecture that integrates the mathematical 

structure of queuing network with the Model Human Processor. The procedural knowledge of 

how to perform a task is stored in the long-term procedural server, and the information entities 

traverse in the queuing network based on the server/routing settings of QN-MHP. QN-MHP can 

generate detailed task actions and behaviors like EPIC and ACT-R. And unlike EPIC and ACT-

R, it supports instantaneous visualization of the human information processing during the 

simulation. More details on QN-MHP are described in the next section.  

1.2 Queuing Network-Model Human Processor 

1.2.1 Queuing Network 

Queuing theory is the mathematical study of customers (or entities) waiting in queues 

before getting services or being processed at servers (or nodes). Once a customer arrives at a 

server, it would either get service right away, or wait in a queue if the server is at capacity. In 

queuing theory mathematical models are built to predict queue length, waiting time, server 
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utilization, etc. Queueing network (QN) is a network of servers that are connected by routes. In a 

QN customers traverse the network from one server to another based on the routing rules until 

they exit the system. Since the invention of the queuing theory by Agner Krarup Erlang in the 

1910s when studying the telephone exchange, QN has become a well-established mathematical 

discipline and has been widely used in the field of operation research, service science, 

manufacturing engineering, computing, traffic engineering, telecommunication, etc. Meanwhile, 

there is less work in using queuing network methods to study the human cognition and 

performance. There are studies showing evidences of the existence of queuing mechanisms in the 

brain. For example, Roland, et al., (1980) suggested a queue of time-ordered motor commands at 

the supplementary motor areas before those motor commands are executed by the primary motor 

area. Queuing theories were used to model spiking neurons and dynamical synapses (Annunziato 

and Fusi, 1998, Mattia and Del Guidice, 2000). Liu (1996a) presented a class of QN models of 

elementary mental processes by using reaction time to infer the plausible configuration of the 

human mental system. Liu (1997) used queuing networks to model human multitask 

performance and treated single channel theories and multiple resources theories of attention as 

special cases of the queueing network modeling method. 

1.2.2 Queuing Network - Model Human Processor 

Queuing Network - Model Human Processor (QN-MHP) is a cognitive architecture that 

integrates the mathematical structure of queuing network with the cognitive modeling method of 

Model Human Processor (MHP). It decomposes the MHP’s three discrete serial stages of 

perceptual, cognitive, and motor processor into three subnetwork of servers (see Figure 1). Each 

subnetwork is composed of servers that perform distinct functions. The selection of the servers 

and the connection between the serves are developed on the basis of existing findings in the 

neuroscience and psychology. Figure 2 shows the approximate mapping of the QN-MHP servers 

onto the human brain areas. Natural Goal, Operators, Methods, and Selection rules Language 

(NGOMSL) developed by Kieras (1996) is used as the task analysis method. The detailed 

specification of the QN-MHP including server configurations, entity arrivals, and routing 

mechanism could be found in Feyen (2002), Liu, et al., (2006), and Wu (2007).  
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Figure 1. General structure of the QN-MHP cognitive architecture (from Wu and Liu, 2007a) 

 

Figure 2. Approximate mapping of the QN-MHP servers onto the corresponding human brain 

areas (from Wu and Liu, 2007a) 
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The QN-MHP framework has been successfully used to simulate a wide variety of human 

performances including simple and choice reaction time tasks (Feyen and Liu, 2001), 

Psychological Refractory Period (PRP) (Wu and Liu, 2008a), visual search (Lim and Liu, 2004a, 

2004b, Lim, et al., 2010, Feng and Liu 2013), map reading (Liu et al., 2006), transcription typing 

(Wu and Liu, 2008b), vehicle steering (Tsimhoni and Liu, 2003), driver performance and 

workload (Wu and Liu, 2007a, Feng and Liu, 2014), etc. Recent work has also fully 

implemented ACT-R as a special case of the queuing network model (Cao and Liu, 2013a). 

Compared with all major existing cognitive architectures, QN-MHP has its strength in modeling 

multitasking performance for three major reasons.  

First, unlike other cognitive architectures in which the cognitive processing is either 

serial (e.g., ACT-R) or parallel (e.g., EPIC), QN-MHP offers a hybrid structure in its cognitive 

subnetwork. The central executive server (Server C in Figure 1) provides processing for low-

level cognitive operations and it allows multiple operations to be processed at a time. The 

complex cognitive function server (Server F in Figure 1) provides processing for high-level 

cognitive operations such as numerical calculation, and it allows only one cognitive operation to 

be processed at a time. Compared with models with either serial or parallel processing, this 

hybrid structure incorporates a larger body of the psychological findings on multitasking. This 

feature is essential to model the multitasking performance involving driving, as even driving 

itself may not require much cognitive demand in a normal driving situation for experienced 

drivers, using an in-vehicle system may induce significant cognitive demand as the driver may 

not be familiar with the system, and have to perform tasks such as searching for particular 

information on a screen, etc. 

Second, when modeling multitasking, most other existing cognitive architectures rely on 

task-dependent executive controls to strategically lock and unlock a task when switching 

between tasks. As being discussed by Kieras, et al., (2000), this is not a preferred method for 

multitask modeling as the executive controls need to be re-specified by the modeler each time 

new tasks are introduced. On the other hand, QN-MHP does not have a central executive control 

at a high level for task switching. QN-MHP uses a generic approach in which no central 

executive controls are specified. Instead, information entities representing different tasks could 

traverse the network at the same time, while they are competing for service at the local server 

level.  



7 

 

Third, a large proportion of in-vehicle non-driving tasks (e.g., setting the radio to a 

particular channel) are procedure-based visual-motor tasks that do not involve significant 

complex cognition such as problem solving, reasoning, or language comprehension. The 

NGOMSL technique that QN-MHP uses for task analysis is less of a barrier for modeler and 

model users compared with the production rule based architectures.  

Additionally, QN-MHP has other distinct features that are beneficial to model the 

multitasking performance while driving. These features include generating instantaneous 

workload estimates at both the server and subnetwork level, and simulation visualization. 

1.3 Scientific Merits and Broad Impact 

Extensive research has been conducted to study the behavior and mechanism of human 

visual search task, which generally refers to the situation in which a person looks for a particular 

object among a number of distracting objects in a visual field (Treisman & Gelade, 1980, Wolfe, 

2007). But most of the studies considered visual search as the only task performed. Less research 

has been done to study visual search as one of several tasks that are performed simultaneously 

and the interference among the tasks (Liu & Wickens, 1992; Liu, 1996b, 1996c). In the 

automotive and some other domains such as aviation and railway, it is a common task scenario 

when a human needs to interact with some device (e.g., finding an item on an electronic map or 

dialing a number on a phone) while simultaneously performing another continuous task (e.g., 

operating a vehicle). It is of great importance to gain insights into the mechanism of human 

multitask behavior in order to design the task environments and user interfaces (UIs) that 

facilitate human performance and minimize the potential safety hazards.  

In the first experiment I employed experimental work that investigates how a driver’s eye 

glance behavior and task completion time is affected during a visual search task by two basic 

design parameters of a touch screen device (i.e., number of buttons and their sizes). The findings 

from this study make contributions to the existing knowledge of how the human’s eye glance 

behaviors are affected by increased visual search difficulty (induced by a larger amount of 

buttons displayed on the screen) and increased reaching difficulty (induced by a smaller size of 

buttons) when performed simultaneously with a continuous vehicle steering task.  
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A computational model based on the cognitive architecture of QN-MHP was built to 

account for the findings from the experiments. A modeling mechanism for flexible task 

activation (rather than strict serial activations) was developed to allow task component activation 

to be based on the status of other task components. A task switching scheme was built to allow 

segmentations of tasks to model time-sharing nature of multitasking as observed from the 

experiment. These extensions offer new theoretical insights into visual search in multitask 

situations and enable the model to simulate parallel processing both within one task and among 

multiple tasks.  

In the second experiment I investigated the effect of three common control modules on 

the eye glance behavior, task completion time, and workload for a typical real-world radio-

tuning task during simulated driving. The findings from this study make contributions to the 

existing knowledge of how the human’s eye glance behaviors, task completion time, and 

workload are affected by different features of control modules (physical buttons vs. virtual 

buttons) and different input methods (pressing buttons vs. turning knobs). This experiment was 

modeled using the QN-MHP model with the multitasking features described above. The 

validation results show that the model could account for the observed behavior and performance 

differences among the control modules from the empirical data.    

Based on this model, a computer-aided engineering toolkit was developed to enable the 

UI designers of in-vehicle infotainment systems to evaluate, predict, and benchmark the usability 

of design concepts and prototypes. From the engineering application and practical value 

perspective, the new toolkit has great advantages over the traditional usability testing methods 

with human subjects. It enables the UI designers to explore a larger design space and address 

usability issues at the early stages with lower cost both in time and manpower. This work was 

based on a generic cognitive architecture modeling approach that has the potential to be 

applicable to other multitasking domains. 

1.4 Dissertation Structure 

Chapter 2 introduces the latest development on the QN-MHP cognitive architecture based 

on previous work. The modeling work of a new driver steering module is described in this 
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chapter. This lays the foundation of multitask modeling involving both steering and non-steering 

task, as in the following chapters.  

Chapters 3 and 4 describe an experiment with a visual search task on an in-vehicle touch 

screen device during simulated driving and the corresponding modeling work. Chapter 3 

describes the experiment for examining the effects of two basic design parameters of touch 

screen UIs (i.e., number of buttons and their sizes) on driver’s glance behavior and task 

completion time while simulated driving. A simple but yet common visual-motor task of finding 

and pressing a particular button on a screen was developed for the examination. The participants’ 

eye glance and performance data were collected and analyzed. Chapter 4 describes the modeling 

work of the tasks examined in Chapter 3 using QN-MHP. The results demonstrate that the model 

is able to generate eye glance behaviors and task completion time that are very similar to the 

human results reported in Chapter 3.  

Chapters 5 and 6 describe an experiment with realistic radio-tuning tasks during 

simulated driving and the corresponding modeling work. Chapter 5 describes the experiment for 

examining the effects of typical control modules of in-vehicle infotainment systems on the 

driver’s eye glance behavior, task completion time, and workload. Three control modules were 

examined including a touch screen system, a physical panel with a “direct tune” function, a 

physical panel with a tuning knob. The participants’ eye glance behavior, task completion time, 

and the subjective workload were collected and analyzed. Chapter 6 describes the modeling work 

of the radio-tuning tasks examined in Chapter 5 using QN-MHP. The results demonstrate that the 

model is able to generate eye glance behaviors and performance measures that are very similar to 

the human results reported in Chapter 5. 

Chapter 7 describes the development of a computer-aided usability testing software for 

in-vehicle infotainment systems. The software supports the usability testing of the UI designs 

created using MATLAB’s GUIDE (Graphical User Interface Design Environment). It features a 

graphic user interface (GUI) with four steps for setting up a simulation, and reports the predicted 

human eye glance behaviors and other performance metrics.  

Chapter 8 summarizes the results and conclusions from this dissertation work and 

discusses potential directions for future research.  



10 

 

Chapter 2.  

A Driver Steering Model Using the QN-MHP 

2.1 Introduction 

Driving is a common yet complicated task that many people perform on daily basis. The 

U. S. Department of Transportation (DOT) Federal Highway Administration (FHWA) reported 

that on average an American driver logs 13,476 miles each year 

(http://www.fhwa.dot.gov/ohim/onh00/bar8.htm). And yet road accidents account for 33,561 

deaths in America in 2012 according to the U.S. National Highway Traffic Safety 

Administration (NHTSA) (NHTSA, 2013). Among the road accidents, driver errors have been 

regarded as one of the leading causes. According to NHTSA, in 2010 an estimate of 899,000 or 

17% of police-reported crashes involves a distracted driver, causing 3,092 fatalities or 9.4% of 

those killed and over 400,000 injuries. Ranney et al, (2000) found driver inattention account for 

approximately 25% of police reported crashes. A naturalistic 100-car driving study conducted by 

Virginia Tech Transportation Institute estimated that 78% of crashes and 65% of near crashes are 

related to driver inattention (Klauer et al., 2006). 

These driver-related errors became an even more urgent issue in the past few years with 

the introduction of modern in-vehicle infotainment systems that allow the drivers to accomplish 

many non-driving tasks using multimodal interfaces such as touch screens, digital instrument 

clusters, and head-up-displays. Although such technologies are designed to enhance the driving 

experience, they may suffer from usability problems, such as driver distractions with frequent 

and extended eyes-off-road operations, prolonged learning curve and frustration with 

information overload. Computational driver models are a valuable tool set as it could help the 

researchers and human factor practitioners to understand the mechanism of the driving task and 

to test, benchmark, and make quantitative predictions on the human factor issues related to 

driving. 

http://www.fhwa.dot.gov/ohim/onh00/bar8.htm
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Driving by itself is a complicated task that is composed of “subtasks” including (1) 

vehicle control tasks, for example, lateral control (e.g., lane-keeping), longitudinal control (e.g., 

car-following), or a combination of both lateral and longitudinal control (e.g., passing a car); (2) 

higher level tasks, for example, looking for potential hazards (e.g., obstacles, pedestrians), 

recognizing road signs or traffic lights, trip planning, etc. Each of these subtasks is a complex 

research topic on its own. In this study we are primarily focusing on the driver’s lateral (steering) 

control of the vehicle to maintain a proper lateral position in the lane.  

Several studies have been done to model the driver’s steering behavior in the past 

decades. One school of steering models is based on control theories which consider the driver as 

one of the controllers in the driver-vehicle system (Weir and McRuer, 1973; Donges, 1978, see 

MacAdam, 2003 for a review).  In these models the driver’s control behavior is typically 

described as a continuous transfer function in the control system. And the model usually has a 

seamless incorporation with rigorous vehicle dynamic models which are typically developed 

under the control theory. These models are often criticized as been unrealistic as little 

consideration was given to the limitation of the human perception, cognition and motor 

processing. For example, most of the inputs to the model (e.g., vehicle yaw angle, road curvature) 

are likely not readily perceivable by the human driver. Also since these models typically do not 

include the components that represent the human limitation and constraints, it’s hard to expend 

the model capability to model the multitasking in which the driver is doing a non-driving task 

(e.g., making a phone call) while driving.  

Another more recent school of models is based on task-independent cognitive 

architectures which are fixed structures that represent a generic human being with characteristics 

and limitations derived from numerous experimental physiology and neuroscience studies. 

Examples of these models include the ACT-R (Adaptive Control of Thought-Rational) based 

driver model (Salvucci, 2006), Soar-based driver model (Aasman, 1995), and the QN-MHP 

(Queuing Network-Model Human Processor) driver model (Tsimhoni and Liu, 2003; Wu and 

Liu, 2007a). Building these models require a thorough understanding of the corresponding 

cognitive architecture in order to incorporate the driving task into the task-independent 

framework. But they have the potential of providing a more accurate representation of 

multitasking performance by modeling the resource sharing among the tasks.  
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Among those models, ACT-R architecture has been applied in a wide range of 

applications. But one of the essential assumptions of ACT-R is serial processing with only one 

production rule being fired at any time. And task dependent central executives may be needed to 

model the task switching in multitasking scenarios. While QN-MHP allows parallel processing 

in the queuing network, the information processing flow is governed by the service time and 

capacity of the local servers in the queuing network. Thus information could be processed 

concurrently in the queuing network. At the same time, the information representing different 

tasks could compete for service at the local server level. It is promising to use the QN-MHP 

structure to establish a more realistic and physiologically plausible model of driving and 

multitasking that includes driving. The work described in this chapter is a continuation of the 

previous effort on cognitive-architecture-based driver modeling work described above.    

2.2 Methods 

2.2.1 QN-MHP Cognitive Architecture 

QN-MHP simulates human cognition as a queuing network of information processing 

servers, derived from the psychological and neuroscience findings (Liu 1996a, 1997, Liu et al, 

2006). The queuing network is composed of three subnetworks (i.e., perceptual, cognitive, and 

motor). Each subnetwork is composed of individual servers, each of which represents a certain 

function in the brain for information processing (See Figure 1). The QN-MHP version used in 

this study is implemented in MATLAB/Simulink software. Figure 3 is a screen shot of the model 

implementation in MATLAB.   
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Figure 3. A screenshot of the model implementation in MATLAB 

The model structure with four major components is shown in Figure 4. The task 

environment (box a in Figure 4) represents the environment with which the digital driver could 

interact with. It stores the information about the driving environments once they are specified 

during the simulation setup. During the simulation run it receives outputs from the QN-MHP’s 

body part servers (e.g., the hand server to turn the steering wheel), and supplies updated input 

stimulus to the QN-MHP (box d)’s perceptual servers.  

The vehicle dynamics (box b) is a built-in module that receives input from the QN-

MHP’s driving related actions (e.g., steering), and generates the vehicle responses which would 

be used to update the driving environment in box a. Currently a three-Degree-Of-Freedom 

(longitudinal, lateral and yaw) bicycle model is implemented for its simplicity. More details on 

the vehicle dynamics model could be found in Appendix A. 

The QN-MHP (box d) represents the generic digital human. Its procedural long-term 

memory server stores the task information once it is specified in the simulation setup. During the 

simulation the task information is used as the instructions to the digital driver on how to perform 

the tasks. During the simulation, the QN-MHP is able to generate the task performance based on 

the information available at the queuing network. 
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Figure 4. Major components of the model 

2.2.2 Modeling the Steering Task 

One of the basic assumptions of our driver model is that while driving, a driver utilizes 

two distinct visual cues on the road (termed near point and far point, respectively) to determine 

how to turn the steering wheel. This assumption is based on empirical driving studies on which 

parts of the road ahead supply the visual information needed by the driver (Donges, 1978; Land 

& Horwood, 1995). The near point represents a visible point in front of the vehicle that the driver 

uses to judge how close the vehicle is to the lane center. The far point represents a visible point 

in front of the vehicle that the driver uses to predict a near future position and apply predictive 

compensations. A steering control algorithm from Salvucci (2006) was used, which assumes the 

driver determines the steering wheel φ based on the perceived near angle 𝜃𝑛𝑒𝑎𝑟 and far angle 

𝜃𝑓𝑎𝑟. The near angle is the direction from the vehicle pointing to the near point relative to the 

direction of the vehicle heading. The far angle is the direction from the vehicle pointing to the far 

point relative to the direction of the vehicle heading, as illustrated in Figure 5. 

 

(d) Cognitive Architecture (QN-MHP)

Driver Model

(b) Vehicle Dynamics

(c) Task Module (Vehicle Driving)

(a) Task Environment
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              (a) Bird’s-eye view                                       (b) Driver’s point-of-view  

Figure 5. Near and far point of the driving model 

A control law proposed by Salvucci (2006) is used to calculate the steering wheel 

adjustment: 

∆φ = kfar∆θfar + knear∆θnear + kImin⁡(θnear, θnmax)∆t 

In which: 

 θnear and ∆θfar are the differences of the near angle and far angle from the last cycle.  

knear, kfar, and kI are the weights of the three terms 

θnmax is for limiting the contribution of the θnear to changes in steering angle  

∆t is the time elapsed from last cycle.  

A NGOMSL-style task analysis for the driving task is shown in Figure 6. A steering task 

cycle is composed of five Task Components (TC 1 to 5). 

 

θfar

θnear

vehicle 

heading

lane center
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Figure 6. NGOMSL-style task description for the steering task 

 

 

Figure 7. Sequential dependency of the task components 

In the QN-MHP model the near point and far point are represented as two streams of 

visual stimuli that arrive at the visual perceptual server (Server 1) at a fixed inter-arrival time 

(currently set as 50 ms as the default value for the visual stimulus generation rate), and traverse 

the queuing network. The arriving entities representing the near (/far) point carry the value of the 

current near (/far) angle as an attribute (set by a vehicle dynamics module). At the beginning of 

each cycle of the steering, the model first processes the entities representing the far and near 

point arriving at the same time, extracts the far and near angle from the entity’s attribute at the 

visual perceptual subnetwork. The extracted far and near angle values are stored in the 

Visuospatial Sketchpad server (Server A) in the cognitive subnetwork. Once both the far and 

near angle values are available for determining the steering angle, it takes one cognitive 

processing time at the Central Executive server (Server C) to determine the value of the steering 

GOAL: Steer the vehicle in the lane

Method to accomplish goal of steering the vehicle in the lane

TC 1: Look at <far/near angle> on <road scene> at location <far point>

TC 2: Store <far/near angle value> to short-term memory

TC 3: Retrieve <far/near angle value > from short-term memory

TC 4: Determine the steering wheel angle to turn, return AdjustmentAngle

TC 5: Turn the steering wheel  with AdjustmentAngle

TC 6: Go to TC 1

Look at road Store <far/near angle> to STM

Retrieve <far/near angle> from STM

Determine steering angle adjustment

Turn steering wheel Look at road

time

Turn steering wheel

One driving cycle
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angle adjustment.  Once this computation is completed, the motor servers start to prepare and 

execute the steering action. Once the steering action is executed at the hand server, the 

information entity carrying the steering angle adjustment as its attribute is sent to the vehicle 

dynamics module (see Appendix A), which immediately generates the updated near angle and far 

angle based on the vehicle dynamics. The updated near angle and far angle are then used to set 

the attribute values for the corresponding near/far point entities in the continuous stream of 

near/far point entities to arrive at the perceptual servers as driving continues. The path of the 

information entities in the queuing network is Server 1 → Server 2/3 → Server 4 → Server A → 

Server C → Server W → Server Y → Server Z.   

2.3 Results 

As the first step of validating the steering model, four simulation conditions were selected 

with varying initial vehicle lateral positions in the lane (0.3, 0.6, 0.9, and 1.2 meters to the lane 

center, respectively). The vehicle speed is set at 65 miles per hour (=29 m/s). The initial vehicle 

heading angle and steering wheel angle are both set at 0 degree. Figure 8 shows the simulation 

result of the vehicle lateral position in the lane. It shows the steering model was able to steer the 

vehicle to the center of the lane and maintain the center position under all four conditions.  
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Figure 8. Simulation results of the vehicle lateral position in the lane. Positive (/negative) values 

means to the right (/left) of the lane center 

 

Figure 9 shows the simulated steering wheel angle over time. The characteristics that can 

be observed include:  

(1) For all 4 initial lateral positions, the steering adjustments are roughly composed of 

two phases before fading out to zero. The first phase is characterized by a curve with negative 

values (roughly from 0 to 3 seconds in Figure 9), which can be explained as the model is steering 

the vehicle to the center of the lane. It is followed by a second curve with positive values 

(roughly from 2 to 8 seconds in Figure 9), which can be explained as the model is straightening 

the vehicle with a target 0 degree heading.  

(2) In the first phase larger amplitude of steering with shorter duration is applied 

compared with the second phase. This shows the model applies a relatively harsh adjustment to 

steer the vehicle to the center first, then uses a mild adjustment to straighten the vehicle.  

(3) Larger initial offsets (e.g., 1.2 meters) induce larger steering adjustments in both the 

first and second phase compared with smaller initial offsets (e.g., 0.3 meters).  
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Figure 9. Simulation results of the steering wheel angle. Positive (/negative) values means 

steering to the right (/left) from the neutral position 

 

To further validate the model, data from a simulated driving study (described in detail in 

later chapters) was used. In the experiment the subjects were asked to drive the simulated vehicle 

on a virtual highway. The virtual highway has two lanes in one direction, and the virtual course 

is a square loop with four straight sections. The driving environment is set as day time. The 

subjects were asked to keep the vehicle in the left lane and maintain a speed between 60-70 miles 

per hour. There is no other virtual vehicle in the left lane. At certain points of the driving, the 

subjects were asked to perform radio tuning tasks. The subjects were asked to continue with the 

driving task once the radio tuning task is completed. Starting from the end of each radio tuning 

task, a 8-second data segment were extracted to capture the subjects’ behavior of how to steer the 

vehicle back to the center of the lane. Figure 10 shows one example of the vehicle lateral 

position in the 8-second segment for one of the participant and the simulation results when the 

same initial conditions were used (e.g., vehicle lateral position = -0.47 m, vehicle speed = 27.5 

m/s). The result shows the model is able to capture some major temporal characteristics of the 

vehicle lateral position.  
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Figure 10. Model validation of the vehicle lateral position 

2.4   Discussions  

In this chapter we proposed a driver steering model based on the QN-MHP cognitive 

architecture. This model utilizes the latest findings in the driver behavior and modeling work, 

and incorporates them into the QN-MHP framework. The results show the model is able to 

capture the main steering behaviors in terms of some of the major temporal characteristics of 

vehicle lateral position and steering wheel angle. It could be a promising tool for modeling the 

driving performance, and the multitasking performance that involves driving.  

There are certainly limitations to this model. Currently the model only simulates the 

lateral control subtask of driving. However, as we mentioned earlier, the driving task includes 

many other subtasks such as longitudinal control, obstacle/hazards detection and avoidance, etc. 

These subtasks are also essential components to get a more realistic and complete driver model. 

By leveraging on the inherent advantage of cognitive architecture based modeling approach, it is 

promising to model these subtasks and incorporate them into a more integrated driver model in 

future work. It should be noted that currently the model only represents a “typical” driver. 

There’s yet parameter to account for the behavior difference between different driver populations, 

for example, the novice and skilled driver, the conservative and aggressive driver, or the younger 

and older driver, etc. More work could be done in this regard to account for the variability of the 

driver population. Also the model assumes only the visual information is used as model inputs, 
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while studies have found other sensory inputs may also play a role in the steering task. For 

example, studies have found the vestibular and kinesthetic channels add useful information to 

improve the driving performance (McLane, et al., 1975, Greenberg, et al., 2003).  The modeling 

work described in this chapter lays the foundation of multitask modeling involving both steering 

and non-steering task, as in the following chapters.   
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Chapter 3.  

An Experimental Investigation on the Effects of Number of Buttons and Button Size on 

Visual Search Task Performance while Driving 

 

3.1 Introduction 

In recent years electronic infotainment systems have been brought into many vehicles, 

allowing drivers to accomplish various non-driving tasks (e.g., listening to music, adjust 

temperatures) while driving. These systems are able to integrate a large number of functionalities 

(e.g., audio, communication, navigation) into one single device.  Studies have suggested that 

interaction with some in-vehicle systems may have a detrimental effect on driving performance 

(Lansdown, 2004). Wierwille and Tijerina (1998) have previously demonstrated a relationship 

between the visual demands of in-vehicle systems and traffic accident rate. Accident data from 

2010, as compiled by the NHTSA, indicated that 17% (an estimated 899,000) of all police-

reported crashes involved some type of driver distraction. Of those 899,000 crashes, distraction 

by a device/control integral to the vehicle was reported in 26,000 crashes (3% of the distraction 

related police-reported crashes).  

A number of studies have been done to investigate the impact of non-driving tasks with 

visual displays or touch screens on driving performance. Tsimhoni, et al, (2004) found the 

driving control was significantly degraded when typing an address on a touch screen keyboard. 

Horrey and Wickens (2004) found that using a head-down display degrades task performance 

compared with using a display which is more proximally located to the road scene.  

However, less research was done to study how the different design parameters of a touch 

screen device would affect the driver’s visual search task performance. Boyle, et al, (2013) 

studied how different text length (short medium, long) affects the driver’s visual behavior for a 

text entry and text reading task. Mehler, et al (2012) examined an address entry task using 
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portable telematic devices including a touch screen. Jin, et al (2007) studied the effect of touch 

screen button sizes and spacing on older adults as a single task (i.e., without driving involved). 

The number of objects on a screen and their sizes are two basic design parameters for any 

UIs. Wolfe (2006) summarized the findings of visual search, including that the efficiency of 

visual search usually decreases with the increasing number of distractors. Visual search 

efficiency is also affected by the spatial distribution of the items in the visual field. As the 

density of the items increases, visual search usually becomes faster (Nothdurft, 2000), as it is less 

likely to require eye saccades and/or head movements in order to move the new items into the 

fovea vision. On the other hand, the search time increases when the items are getting too close to 

each other, so that it prevents the identification of the individual items (Vlaskamp & Hooge, 

2006).  While visual search has been extensively studied in the past, most of the research work 

focused on studying visual search as a single task. Little research has been done to study visual 

search during multitasking scenarios, for example, how other ongoing tasks may affect the 

strategy and execution of the visual search task. While in the real world conditions, visual search 

is often performed as only one of several active tasks.  

This chapter describes an experiment to examine the effects of two basic design 

parameters of touch screen user interfaces (UIs) with virtual buttons (i.e., number of buttons and 

button sizes) on driver’s glance behavior while simulated driving. A simple visual search and 

button pressing task was designed, in which the drivers were asked to find a specific target 

button on the screen among other buttons, and press on the target button once they found it. This 

task would be performed as a single task (i.e., without driving involved) and a dual task (i.e., 

while driving a simulator). The driver’s glance behavior were recorded using video cameras, and 

various glance metrics were used to investigate how different design parameters would affect the 

driver’s glance behavior, and the implications to road safety.  

3.2 Methods 

3.2.1 Participants 

Twenty participants (10 male and 10 female), all of whom were employees of a company 

in the United States, were recruited to participate in the experiment. For the age distribution, 9 

(45%) participants were 20-29 years old, 1 (5%) participants were 30-39 years old, 4 (20%) 
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participants were 40-49 years old, 5 (25%) participants were 50-59 years old, 1 (5%) participants 

were 60-69 years old. All participants have obtained valid driver license for at least one year. 

3.2.2 Experiment setup and procedure 

The experiment was conducted in a fixed-base driving simulator in a laboratory 

environment as shown in Figure 11. The front virtual road scene was projected on a flat 

projection screen in front of the driving simulator. A resistive touch screen was mounted in the 

center console area of the driving simulator. The touch screen was 31 degree below the 

horizontal line of sight, and 51 degree to the right of the center. The touch screen has an 8-inch 

(203 mm) diagonal size with a screen resolution of 800-by-480 pixels. Two video cameras with a 

30 Hz frame rate were mounted on the driving simulator. One camera was directed at the 

participant’s eyes. After the experiment, participant’s gaze direction was manually coded from 

the video by a human data reducer. Another camera captures a close-up view of the area from the 

steering wheel to the touch screen.  

 

Figure 11. Experiment on a driving simulator 

For the visual search task, multiple buttons with different labels were displayed on the 

touch screen (see Figure 12b). The goal of the task was to find the target button which was 

labeled with “USB”, and press the target button with the right hand. The participants were asked 

to put their hands on the steering wheel before and after the search task. The target button is 

always the “USB” button for the entire experiment. 
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The participants were asked to drive the simulator in a virtual highway (see Figure 12a). 

The virtual highway has two lanes both in the same direction, and the virtual course is a square 

loop with four straight sections connected by four curved corners. The driving environment was 

set as day time. The participants were asked to keep the vehicle in the left lane and maintain a 

speed of between 60-70 miles per hour. There was no other virtual vehicle in the left lane. The 

participants were asked to always put both hands on the steering wheel except when doing the 

visual search task. 

 

       

   (a) Driving simulator virtual environment              (b) The touch screen for the non-driving task 

Figure 12. Driving and non-driving tasks 

Once the participants arrived at the laboratory, they were firstly asked to complete a 

consent form at a desk. Then they were asked to sit in the driving simulator. They were asked to 

adjust the seat position (forward and backward, up and down) to make sure they can reach the 

touch screen with the arm only (i.e., without whole body movements). Then an introduction 

session was given to the participants to ensure that they understood the tasks they were about to 

perform. This was followed by a practice session for both the button searching task and the 

driving task. Then the experiment proceeded to the data collection part, which was divided into a 

single task session and a dual task session. Half of the participants started with the single task 

session, while the other half started with the dual task session. The order of the trials was 

randomly placed in each session, but the same order was used for all participants. 

The experimenter only instructs the participants to start the button search task only when 

the vehicle is in the straight section of the road (i.e., not when the vehicle is entering, negotiating, 

or leaving a curve). The participants were asked to perform the button search task only when 

they believe it is safe to do so. 
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3.2.3 Experimental Design 

There are three independent variables in this experiment: (1) Task condition (two levels: 

single task or dual task), (2) Button sizes (three levels: small, medium, or large), (3) Number of 

buttons (three levels: 4, 8, or 15). A full-factorial within-subject design was used for the 

experiment. The nine combinations of button sizes and number of buttons are illustrated in 

Figure 13.  

   
          (a) 2x2 Small Buttons                 (b) 2x4 Small Buttons                 (c) 3x5 Small Buttons 

   
         (d) 2x2 Medium Buttons           (e) 2x4 Medium Buttons             (f) 3x5 Medium Buttons 

   
           (g) 2x2 Large Buttons                 (h) 2x4 Large Buttons               (i) 3x5 Large Buttons 

Figure 13. Nine Test Conditions (3 levels for button sizes and 3 levels for number of buttons) 

For all the combinations, the font size of the labels remains the same (20 pixels). The 

horizontal and vertical spacing between buttons also remains the same (4 pixels, or 0.9 mm). The 

default background color of the buttons is grey (HTML color code: #404040). Once a button is 

pressed, the button’s background color changes to dark green (HTML color code: #1B402C).  

The touch panel designs of each combination were created using HTML and presented in a web 

browser in full screen mode.  
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3.2.4  Independent Variables 

(1) Button Sizes 

Three button sizes were examined in the experiment: (1) small (66 pixels or 14 mm), (2) 

medium (108 pixels or 24 mm), and (3) large (150 pixels or 33 mm).   

(2) Number of Buttons 

Three layouts of the buttons were examined in the experiment: (1) 4 buttons in a 2-by-2 

layout, (2) 8 buttons in a 2-by-4 layout, and (3) 15 buttons in a 3-by-5 layout.  

The labels for the buttons are selected from common acronyms for media sources. For the 

2x2 layout, the 4 labels are “AM1”, “FM1”, “USB”, and “DVD”. For the 2x4 layout, the same 

labels from the 2x2 layout were used with the addition of “AM2”, “FM2”, “MP3”, and “CD”. 

For the 3x5 layout, the same labels from the 2x4 layout were used with the addition of “AM3”, 

“FM3”, “TV”, “SD”, “Tape”, “AV In”, and “Scan”.  

(3) Single or dual task 

In the single task condition, the simulated vehicle is stopped on the side of the road. The 

participants were instructed to conduct the visual search task without driving the simulator. In 

the dual task condition, the participant was asked to drive the simulator in a highway scenario, 

and at given points, they were verbally instructed by the experimenter to do the button search 

task. The experimenter only instructed the participants to start the button search task when the 

vehicle was in the straight section of the road (i.e., not when the vehicle is entering, or 

negotiating, or leaving a curve). The participants were asked to perform the button search task 

only at a time when they believed it was safe to do so. 

3.2.5  Dependent Variables 

The task completion time was selected as a performance measure of the button-pressing 

task. Several glance behavior measures were selected, including total eyes off road time 

(TEORT), number of eyes-off-road glances, and proportion of long eyes-off-road. TEORT is the 

cumulative time when the driver is looking away from the road when performing the non-driving 

task. Studies have shown that besides the TEORT, long glances off the road are particularly 

related to road crashes and near crashes (NHTSA, 2010). Horrey and Wickens (2007) have 

shown that compared with the average glance durations, the tail end (i.e., larger values) of the 

glance duration distribution is more related to crash risks. A single glance is considered as “long” 

if its duration is longer than 2.0 seconds. This threshold was widely used in existing guidelines 
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and standards (e.g., AAM 2006, NHTSA 2013). Note there are different threshold values been 

used in some other studies (1.6 seconds used by Wierwille 1993b, Horrey and Wickens, 2007). 

A total of 4 trials were used. That gives a total of 72 trials for each participant.   

3.3 Results 

3.3.1 Task Completion Time 

For the task when the simulator is parked, the task completion time is the duration from 

the onset of the buttons on the touch screen to the time when a button is pressed. Note the 

participants look directly at the touch screen at the beginning of each trial. For the task 

performed during driving, the definition of task completion time from Tsimhoni and Green (2001) 

was used, which defines it as the duration from the beginning of the first glance at the device to 

the end of the last glance during the trial.  

Figure 14 shows the distribution of the task completion time under the 9 test conditions 

when the simulator is parked. Figure 15 shows the distribution when the participants were 

driving the simulator. It seems that in both the parked and driving conditions, the tasks with 

larger number of buttons are associated with more tasks with longer completion time. Shapiro-

Wilk tests were conducted to test the normality of the distributions. The results show that when 

the simulator is parked, the data violate the normality in all conditions (p < 0.013) with the 

exceptions of 2x2 small (W = 0.986, p = 0.509), 2x2 medium (W = 0.987, p = 0.621), 2x2 large 

(W = 0.977, p = 0.168), and 2x4 large (W = 0.979, p = 0.206). When the participants were 

driving the simulator, the normality is violated in all 9 conditions (all p < 0.05). 
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Figure 14. Distribution of task completion time by button number and size in the PARKED condition 
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Figure 15. Distribution of task completion time by button number and size in the DRIVING condition
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Table 1 shows the statistics of the task completion time for the nine task conditions. Since 

the normality was violated in some of the conditions, the nonparametric Friedman Test was used 

to examine whether there are significant differences of the task completion time among different 

levels of the independent variables. 

Table 1. Statistics of task completion time in experiment 1 (all units are in seconds) 

  Parked Driving 

Number 

of 

Buttons  

Button 

Size 
M SD 

50th  

Percen

tile 

95th 

Percen

tile 

M SD 

50th  

Percen

tile 

95th 

Percen

tile 

2x2 Small 1.42 0.31 1.40 1.91 2.00 0.54 1.90 2.94 

 Medium 1.35 0.29 1.37 1.77 1.82 0.45 1.74 2.67 

 Large 1.27 0.26 1.24 1.71 1.80 0.52 1.74 2.81 

2x4 Small 1.75 0.51 1.72 2.60 2.79 0.98 2.55 4.74 

 Medium 1.72 0.45 1.66 2.57 2.39 0.94 2.15 3.78 

 Large 1.65 0.41 1.62 2.31 2.57 0.94 2.35 4.59 

3x5 Small 2.49 0.98 2.24 4.30 3.73 1.68 3.10 6.76 

 Medium 2.23 0.73 2.14 3.45 3.36 1.43 3.07 5.38 

 Large 2.53 1.19 2.17 4.91 3.61 1.86 3.14 7.47 

 

Effects of the number of buttons. For small, medium, or large buttons, the task completion 

time was significantly longer for the 3x5 layout than the 2x4 layout, and was significantly longer 

for the 2x4 layout than the 2x2 layout (all p < 0.001). 

Effects of button sizes. (1). With the 2x2 layout, there was a significant difference in task 

completion time depending on the size of the buttons, χ2(2) = 21.511, p < 0.001. Post hoc 

analysis with Wilcoxon signed-rank tests was conducted with a Bonferroni correction applied, 

resulting in a significance level set at p < 0.017 (= 0.05/3 comparisons). The task completion 

time is significantly longer for the small buttons than both the medium buttons (Z = -3.507, p < 

0.001) and large buttons (Z = -4.282, p < 0.0005). There was no significant differences of task 

completion time between the medium and large buttons (Z = -0.569, p = 0.569). (2). With the 

2x4 layout, there was a significant difference in task completion time depending on the size of 

the buttons, χ2(2) = 9.849, p = 0.007. Same post hoc analysis shows that the task completion time 

was significantly longer for the small buttons than the medium buttons (Z = -3.651, p < 0.001). 
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There was no significant differences in task completion time between the small and large buttons 

(Z = -1.827, p = 0.068), or between the medium and large buttons (Z = -1.730, p = 0.084). (3). 

With the 3x5 layout, there was no significant difference in task completion time depending on 

the size of the buttons, χ2(2) = 4.821, p = 0.09.  

3.3.2 Total Eyes-Off-Road Time 

The total eyes-off-road time (TEORT) is the cumulative time when the driver is looking 

away from the road when performing the non-driving task.  

Figure 16 shows the distribution of the task completion time under the 9 test conditions. 

Shapiro-Wilk tests were conducted to test the normality of the distributions. The results show 

that the data violate the normality in all conditions (p < 0.05) with two exceptions of 2x2 small 

(W = 0.986, p = 0.523) and 2x2 medium (W = 0.975, p = 0.121).
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Figure 16. Distribution of TEORT by button number and size 
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Table 2 shows the statistics of the TEORT for the 9 task conditions. Since the normality 

was violated in some of the conditions, the nonparametric Friedman Test was used to examine 

whether there are significant differences in the TEORT among different levels of the 

independent variables. 

Table 2. Statistics of TEORT in experiment 1  (all units are in seconds) 

Number of 

Buttons  

Button 

Size 
M SD 

50th 

Percentile 

95th 

Percentile 

2x2 Small 1.87 0.39 1.84 2.54 

 Medium 1.71 0.33 1.68 2.24 

 Large 1.70 0.39 1.67 2.50 

2x4 Small 2.43 0.65 2.37 3.75 

 Medium 2.16 0.68 2.04 3.24 

 Large 2.28 0.65 2.20 3.47 

3x5 Small 3.20 1.26 2.89 5.34 

 Medium 2.92 0.99 2.72 4.64 

 Large 3.11 1.48 2.80 5.97 

 

Effects of button sizes. (1). With the 2x2 layout, there was a significant difference in 

TEORT depending on the size of the buttons, χ2(2) = 28.682, p < 0.0005. Post hoc analysis with 

Wilcoxon signed-rank tests show that the TEORT was significantly longer for small buttons than 

both medium buttons (Z = -4.008, p < 0.0005) and large buttons (Z = -4.678, p < 0.0005). There 

was no significant differences in TEORT between the medium and large buttons (Z = -0.452, p = 

0.651). (2). With the 2x4 layout, there was a significant difference in TEORT depending on the 

size of the buttons, χ2(2) = 8.884, p = 0.012. Same post hoc analysis shows that the TEORT was 

significantly longer for small buttons than medium buttons (Z = -3.016, p = 0.003), while there 

was no significant differences in TEORT between the small and large buttons (Z = -1.446, p = 

0.148), or between the medium and large buttons (Z = -1.672, p = 0.095). (3). With the 3x5 

layout, there was no significant difference in task completion time depending on the size of the 

buttons, χ2(2) = 5.003, p = 0.082.  
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Effects of the number of buttons. For small, medium, or large buttons, the TEORT was 

significantly longer for the 3x5 layout than the 2x4 layout, and was significantly longer for the 

2x4 layout than the 2x2 layout (all p < 0.001).  

3.3.3 Number of eyes-off-road glances 

The total number of eyes-off-road glances that were used by the participants in each task 

trial was extracted from the data. In a total of 720 task trials, task trials with a single glance 

account for 56% (402), task trials with 2 glances account for 33% (236), and task trials with 

more than 2 glances account for 11% (85). Figure 17 shows the percentage of the number of 

glances (1 glance, 2 glances, or more than 2 glances) in each test condition. For the 2x2 designs, 

about 70-80% of the tasks were completed with a single glance, and the rest of the tasks were 

completed with 2 glances. For the 2x4 designs, about 50-60% of the tasks were completed with a 

single glance, and about 30-40% were completed with 2 glances. For the 3x5 designs, about 30-

40% of the tasks were completed with a single glance, about 30-50% were completed with 2 

glances, and about 20-30% were completed with more than 2 glances.  

 

Figure 17. Percentage of number of eyes-off-road glances by button sizes and number of buttons 
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3.3.4 Number of long (eyes-off-road) glances 

Figure 18 shows the distributions of the duration of the individual glances in each of the 9 

test conditions. A single glance is considered as “long” if its duration is longer than 2.0 seconds.  

The result shows that in the 720 task trials (= 9 test conditions x 4 replications x 20 

participants), there are a total of 223 glances that lasted longer than 2.0 seconds. Figure 18 shows 

the distributions of the individual glances in the nine test conditions. The bins that represent long 

glances are in red color. It could be observed that with the increased number of buttons, there is 

an increased number of long glances. Table 3 shows the statistics of the number of long glances 

in the 9 task conditions.  
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Figure 18. Distribution of individual glance duration by button number and size. The bins that represent glances longer than 2 seconds 

are in red color.
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Table 3. Statistics of number of long glances in experiment 1 

Number of 

Buttons  

Button 

Size 
M SD 

50th 

Percentile 

95th 

Percentile 

2x2 Small 0.19 0.39 0.00 1.00 

 Medium 0.14 0.35 0.00 1.00 

 Large 0.06 0.24 0.00 1.00 

2x4 Small 0.30 0.46 0.00 1.00 

 Medium 0.24 0.43 0.00 1.00 

 Large 0.35 0.48 0.00 1.00 

3x5 Small 0.59 0.59 1.00 1.05 

 Medium 0.46 0.53 0.00 1.00 

 Large 0.46 0.64 0.00 1.05 

 

3.3.5 Relationship between the number of glances and glace duration 

In this section we aimed to examine whether the occurrence of the long glances is related 

to the number of glances used in a task trial. Figure 19 shows the distributions of the glance 

duration for the task trials (1) when a single glance was used (top figure), and (2) when more 

than one glance were used (bottom figure). Shapiro-Wilk tests were conducted to test the 

normality of the two distributions. The result shows that the data violate the normality in both the 

task trials with a single glance (W = 0.943, p < 0.001) and the task trials with more than one 

glance (W = 0.919, p < 0.001). Given the violation of the normality and the unequal sample size, 

a Kruskal-Wallis test was conducted to examine whether there is a significant difference in 

glance duration between the task trials with a single glance and task trials with more than one 

glance. The result shows that the glance duration in the task trials with a single glance is 

significantly longer than the glance duration in the task trials with more than one glance (χ2(1) = 

413.058, p < 0.001).  
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Figure 19. Distributions of glance duration when single glance was used (top figure) and when 

more than one glances were used (bottom figure). The dash line is the 2-second threshold for 

long glances (shown in red color).  

As shown in section 3.3.3, a single glance was used in 56% (402) of a total of 720 task 

trials. Figure 19 shows the long glances from a single glance (the red bins on the top figure) 

account for 74% (164) of a total of 223 long glances. On the other hand, task trials with more 

than one glances account for 44% (318) of the total of 720 task trials, but the long glances from 

these task trials (the red bins on the bottom figure) account for 59 (26%) of the long glances. 

This seems to suggest that long glances are overrepresented in the task trials with a single glance.  

Figure 20 shows the distributions of glance duration for the task trials with a single 

glance in the nine test conditions. It could be observed that the proportion of long glances 

increases with the increased number of buttons.  
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Figure 21 shows the distributions of glance duration for the task trials with more than one 

glance in the nine test conditions. It could be observed that very few long glances occurred with 

both the 2x2 designs and 2x4 designs. More long glances occurred with the 3x5 test conditions. 
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Figure 20. Distribution of glance duration for task trials with a single glance. The bins that represent glances longer than 2 seconds are 

in red 
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Figure 21. Distribution of glance duration for task trials with more than one glance. The bins that represent glances longer than 2 

seconds are in red 
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These results shows that for the 2x2 and 2x4 test conditions, almost all the long glances 

came from the task trials when a single glance was used. For the 3x5 design, long glances 

occurred in task trials with both a single glance and multiple glances. But when only a single 

glance was used, more than half of the glances were longer than the 2-second threshold.  

3.4 Conclusions 

Most modern user interfaces integrate many functions and features into one digital screen. 

The number of buttons in one screen and their sizes are two basic design parameters that must be 

dealt with by UI designers. The users of such systems often need to conduct visual search for 

specific buttons on a given screen. This is especially true at the learning stage of a new system or 

after major software UI updates. Searching for a particular button may induce safety hazards 

when it is conducted concurrently with the driving task, which primarily relies on visual 

perception for successful performance.  

An experiment was designed in which participants were asked to drive a driving 

simulator, and at certain points of the driving, they were asked to look for a particular button 

among a series of distracting buttons and then press on it. From the experiment we found that 

regardless of the button sizes, the task completion time and driver’s total eyes-off-road time 

(TEORT) increased significantly with increased number of buttons on the screen. With smaller 

number of buttons (i.e., 4 or 8), small button size seems to be associated with longer task 

completion time and TEORT compared with medium or large buttons.  

The results also show that while the majority of the tasks with the 4 buttons were 

completed with a single glance off the road, as the number of buttons on the screen increase, it 

becomes more likely for the driver to use multiple glances in order to complete the task. In 

addition, the number of long glances (defined by duration longer than 2 seconds) also increased 

with the increased number of buttons.  A further analysis of the relationship between the number 

of glances and glance duration revealed that long glances may be overrepresented in the task 

trials with a single glance. With a smaller number of buttons (4 or 8), almost all long glances 

occurred when the participant completed the task trial using a single glance. With the largest 

number of buttons (15), long glances occurred in both the task trials when a single glance was 

used and the task trials when multiple glances were used. These findings may suggest that for a 
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simple visual search and button-pressing task, drivers tend to use a single glance to complete the 

task even though this may induce long glance duration.  

It is necessary to note that since the location of the target button is randomly placed with 

equal probability in each task trial, there’s no other information about the possible locations of 

the target button available to the participant to facilitate the task. From the application standpoint, 

this task scenario represents a novice user who does not have any prior knowledge about the 

button locations of a system. But in reality during the usage of a system over time, users may 

gain some knowledge about the system layout which could be used to narrow down the search 

area to a smaller region rather than the entire screen. 
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Chapter 4.  

Queuing Network Modeling of Visual Search Task Performance while Driving 

 

4.1 Introduction 

Great efforts have been made to model human visual search performance in the past 

decades. One of the simplest models is the serial search model (Neisser, 1964), which assumes 

that the items are inspected one at a time, and each item takes a constant time to inspect. Thus 

the time it takes to find a target is the multiple of the inspection time per item and the number of 

items over 2. The division by 2 is based on the assumption that the target has equal probability to 

appear at any step of the serial inspections. This model works well if the search space is 

organized coherently in structure, for example when finding a number from a yellow book. But it 

does not work so well when the search space is less organized, for example, finding a street 

name on a map. One of the earliest and most influential theories on visual search is the Feature 

Integration Theory (FIT; Treisman & Gelade, 1980). According to this theory, visual search 

proceeds in several stages, and in its first stage, a set of low-level features (color, motion, 

orientation, etc) are processed in parallel feature channels of the human visual system. In the 

second stage, these features are integrated to form a global salience map that can be accessed to 

direct attention to the most conspicuous location. Another visual search theory is the N-SEEV 

cognitive model of visual attention recently proposed by Steelman et al., (2009). It incorporates 

both bottom-up (salience, effort) and top-down (expectancy, value) factors that move attention to 

selectively attend various sources of information. The major limitation of the N-SEEV model is 

that it has quite a number of free parameters as a computational model. It would not be easy to 

quantify these parameters when applying it to specific attention tasks in the applied domain. 

Guided Search (Wolfe, 1994, 2007) is another important visual search model, which assumes 

that visual search is guided by a combination of influence from the bottom-up and top-down 
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factors (termed ‘activation’). The human perceiver would first look at the location with the 

highest activation, then look at the location with the second highest activation, etc. 

Besides the visual search models discussed above, efforts have also been made to 

incorporate visual search mechanisms to the comprehensive cognitive architectures.  The work 

includes the reinforcement learning based model of eye movements accounting for both the top-

down and the bottom-up processes (Lim & Liu, 2009), and the ACT-R-based Eye Movements 

and Movement of Attention (EMMA; Salvucci, 2001) model and Pre-attention and Attentive 

Vision (PAAV; Nyamsuren & Taatgen, 2013) model. 

The following section describes the modeling work using QN-MHP to simulate a visual 

search task in both single and dual task situations (i.e., visual search alone or with a concurrent 

steering task).   

4.2 Methods 

4.2.1 Task Analysis 

To model any task using the QN-MHP architecture, a task analysis is required in the 

format of Natural Goals, Operators, Methods, and Selection rules Language (NGOMSL; Kieras, 

1999). The NGOMSL task analysis breaks down the task in a “top-down, breadth-first” manner 

into “atomic-level” Task Components (TC). Each TC is associated with a task-independent 

context-free QN-MHP operator from the QN-MHP operator library. The operators have 

parameters which could be set either explicitly by the modeler when specifying the task before 

the simulation, or implicitly by the model during the simulation. The sequential dependency of 

the task components are set by the modeler before the simulation. This task specification is 

loaded into the QN-MHP model and the task is performed as the model runs in response to its 

associated environment stimuli.  

4.2.2 Task Components 

A NGOMSL task analysis for the visual search task was conducted. The result is shown 

in Figure 22 with 9 TCs.  
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Figure 22. NGOMSL-style task analysis of the visual search task 

Below is a description of each of the task components: 

(1) TC 1 is associated with the perceptual operator LOOK_AT. This operator directs the 

model to “look at” a specific location in the environment for the specific visual feature (e.g., 

color, orientation, text). In the visual search task, the visual feature is set to “text”, as to 

accomplish the goal of finding the “USB” button, the model needs to extract the labels of the 

buttons and check whether is the target button or not. The location to look at is generated as the 

output of TC 6 (visual search).  

(2) TC 2 is associated with the memory operator STORE_TO_STM (Short Term 

Memory). This operator stores information entities to the working memory servers (i.e., 

Visualspatial Sketchpad or Phonological Loop) depending on the type of information they carry 

(i.e., visual-spatial or verbal). In this case, the text information is stored at the Phonological Loop.  

(3) TC 3 is associated with the memory operator RETRIEVE_FROM_STM. This 

operator retrieves information from the short-term memory, and assigns the retrieved value to a 

global variable that is accessible by other operators. 

(4) TC 4 is associated with the cognitive operator COMPARE. It compares two values 

and returns the result of 1 if a match is found and 0 if a mismatch is found. In this case, it 

compares a text perceived from a button with the target text “USB”.  

GOAL: Find and press the USB button on the display

Method to accomplish goal of finding and pressing the USB button on the display

TC 1: Look at <feature> on <device> at location <x, y>

TC 2: Store <feature value> to short-term memory

TC 3: Retrieve <feature value> from short-term memory

TC 4: Compare <feature value> to <target value (i.e., “USB”)>

If match, return result = 1, else return result = 0

TC 5: If  result = 1, go to TC 7, else go to TC 6

TC 6: Visual Search with <search pattern>

TC 7: Reach <location> with <which hand> <with or without visual guidance>

TC 8: Click with <which hand> <which finger> 

TC 9: Return with goal accomplished

*TC: Task Component
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(5) TC 5 is associated with the procedural flow operator GOTO. It specifies the 

procedural sequence of the steps in a task list. Specifically, it determines which step or steps in 

the task list should be activated based on the output of the cognitive entity upon its completion of 

processing. In this case, if a match is found (i.e., a button labeled “USB” is perceived and 

recognized), it activates TC 7 to start the reaching action. Otherwise, it activates TC 6 to decide 

whether to continue checking at the location of the current visual attention, or move the visual 

attention to a new location to check. Note here for simplicity we assume the reach is initiated 

after the identification of the target label. It is observed during the experiment that sometimes the 

participants started the reach before the identification of the target and adjusted the final 

direction towards the target after the identification. This strategy is not currently modeled.  

(6) TC 6 is associated with the cognitive operator VISUAL_SEARCH. This operator first 

checks if a visual search is needed based on the search progress (i.e., how many objects under the 

current visual attention have already been checked). If this number is smaller than the total 

number of items under the current visual attention, the processing stops. Otherwise it indicates 

that all the items in the current visual attention have been examined, and no target has been 

found. In this case it determines the new visual attention location by randomly selects (with 

equal probability) a new item that has not been previously examined, and activates the 

LOOK_AT operator to move the visual attention to the new location.  

 (7) TC 7 is associated with the motor operator REACH_WITH_HAND. This operator 

initiates a reaching action using the model’s hand servers. The modeler specifies which hand 

(left or right) for the reaching, and whether the reach is with or without visual guidance.  The 

target location for the reaching is implicitly specified by the cognitive entity that activates this 

operator. In this visual search task, it is assumed that this task component is activated when the 

target button is found in TC 4. And the reaching is executed with the right hand and with visual 

guidance (i.e., no touch-typing).  In the current version of QN-MHP, if the reaching is with 

visual guidance, the time it takes to reach the target is determined based on Fitts’s Law and its 

extensions (MacKenzie and Buxton, 1992, Bi et al., 2013).  

(8) TC 8 is associated with the motor operator CLICK_WITH_FINGER. This operator 

initiates a clicking action using the model’s hand servers. The modeler specifies which hand and 

which finger is to be used for the clicking. This task component is activated when TC 7 is 

completed. 
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(9) TC 9 is associated with the procedural flow operator GOAL_ACCOMPLISHED. It 

indicates the completion of a task. Once this operator is activated, it reports the completion of the 

task, and checks if there are any other pending tasks, and switches to that task if there is any. If 

there is no other pending task, it terminates the simulation. In this visual search task, the task 

goal is accomplished when the target button is pressed in TC 8.  

Figure 23 demonstrates the multitasking scheme of the visual search and the driving task.  

Figure 23 (a) shows the sequential dependency of the task components of the visual search task 

in a single task condition. Figure 23 (b) shown the task components of the visual search task are 

segmented by the driving task in a dual task condition, in which the task components 

representing the driving cycle is inserted into the task components of the visual search task. 

During the visual search task each time when the target object is not found and a new visual 

search is needed, instead of immediately activating the visual search task component (TC 6), the 

model checks an internal clock of the QN-MHP which record how much time the human has 

already switched away from the primary task of driving, and then decides whether it should 

switch to the driving task by activating the task components of the driving task or continue with 

the visual search task.  

  



50 

 

 

(a) Sequential dependency of the task components (TCs) for the search task in a single task condition 

 

 

(b) Insert driving task in front of the visual search TC 

Figure 23. Multitasking of the search task and driving
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4.2.3 Device Mockups 

Aside from the cognitive model, which represents the human, digital mockups of the 

devices are needed to simulate the interaction between the human and the environment. The 

digital mockups provide stimuli as inputs to the cognitive model, and could be acted upon by the 

actions generated by the cognitive model (e.g., pressing a button). Digital mockups for this visual 

search task were created using MATLAB GUIDE (Graphical User Interface Design 

Environment). Figure 24 shows both the physical device used in the human experiment and the 

digital mockups created for the simulation.  

 

          

(a) Real Device used by the human participants            (b) Digital mockup used by the model 

Figure 24. A comparison of the real device used in the human experiment and the digital mockup 

4.2.4 Specifications of the Task Environment and Initial Conditions 

The task environment specifications include (1) the physical location of the touch screen 

device relative to the steering wheel, (2) the visual angle between the road scene and the device, 

and (3) the viewing distance of the device from the driver. These specifications were set as the 

same value as those measured from the experiment with human subjects. For the single task 

condition, it is assumed that the driver starts the task with both hands on the steering wheel, and 

eyes looking at the center of the touch screen. For the dual task, it is assumed that the driver 

starts the driving task first with both hands on the steering wheel, and eyes looking at the front 

road.  
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4.3 Results 

The human results from Chapter 3 show that with increased number of buttons on the 

screen, the task completion time increases in both parked and driving conditions, the driver’s 

Total Eyes Off Road Time (TEORT) increases, the drivers needed more glances to complete the 

task, and the number of long glances (defined using a threshold of 2.0 seconds) also increases. 

The button sizes seem to affect the task completion time and TEORT only when there was a 

small amount of buttons (2x2 or 2x4).   

Simulations were conducted for the search task with ten replications. As shown in Figure 

26, the simulation result is able to capture the increased task completion time with the increased 

number of buttons. The mean absolute percentage error (MAPE) is 9.9%. The root-mean-square 

error (RMSE) is 0.34 seconds. As shown in Figure 27, the simulation result is able to capture the 

increased TEORT with the increased number of buttons. The MAPE is 8.8%. The RMSE is 0.29 

seconds. 

 

 

Figure 25. Effects of button number and size on task completion time in the parked condition for 

both human and model results. Error bars represent standard deviation 

 

0

1

2

3

4

5

Small Medium Large Small Medium Large Small Medium Large

T
a
sk

 C
o
m

p
le

tio
n
 T

im
e
 (

se
c
)

Human Model

2 x 2 2 x 4 3 x 5



53 

 

 

Figure 26. Effects of button number and size on task completion time in the driving condition for 

both human and model results. Error bars represent standard deviation 

 

Figure 27. Effects of button number and size on TEORT for both human and model results. Error 

bars represent standard deviation 

 

As shown in Figure 28 and Figure 29, the model is also able to produce similar individual 

glance duration data that could account for the differences of the number of glances and long 

glances in the task conditions.   
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Figure 28. Effects of button number and size on the number of glances for both human and 

model results 

 

Figure 29. Effects of button number and size on number of long glances per task trial for both 

human and model results 

4.4 Discussions  

As the result shows, the model is able to generate similar task completion time as the 

empirical data from the human subjects for both the single and dual task conditions. As the 
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number of button increases, the model prediction of the task completion time also increases. This 

could be accounted for by two mechanisms of the model. The first mechanism is the serial nature 

of eye saccade when searching for the target button among distracting buttons. The model could 

only move the visual attention to one location at a time. With more buttons spatially distributed 

on the display, it would take longer time on average to find the target button. The second 

mechanism is the limitation on the number of objects that could be recognized simultaneously. It 

is commonly believed that there is a bottle neck in the human visual perception that limits the 

number of objects that could be recognized at the same time. Some studies have identified the 

limit to be 4 (Atkinson, 1976). In the current QN-MHP model the capacity of the visual object 

recognition server is set as 4. Thus with more buttons on the display, it may take longer for the 

server to process the visual stimuli entities which represent the buttons.  

Another observation from the visual search task is that for the same number of buttons, 

the button size does not seem to affect the task completion time. There are two factors that may 

play a role. Firstly, since the same width of spacing between buttons were used for all three 

different button sizes, and the labels were always placed in the center of the button, the labels in 

the larger button sizes are more spatially apart from each other. Thus for larger button sizes, it 

takes longer time to execute the eye saccade from one button to another. Secondly, according to 

Fitts’s law which was implemented in the REACH-WITH-HAND operator, for the same 

reaching distance, it takes shorter time to reach to a larger button than a smaller button. So the 

affects of the two factors above may cancel each other, which lead to the non-significance of the 

button sizes on the task completion time.  

The longer task completion time for the dual task condition for most designs except the 

2x2 small and medium size buttons could be explained. With very few buttons (4 buttons in this 

case), most drivers were able to complete the task with a single shot of eyes-off-road. Thus there 

is no difference of task completion time from the single task condition.  While when there are 

more buttons on the device, it would take longer time to complete the task than the driver is 

willing to keep the eyes off the road. Thus the visual search task is segmented and the driver is 

shifting the visual attention back on the road to check the road, and if the driving safety is 

confirmed, he/she shift the visual attention back on the road to continue the visual search task. 

By implementing this mechanism using an internal clock at the performance monitor server, the 
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model is able to imitate this behavior in the dual task condition, and generate similar results as 

from the empirical data.  

There are several limitations to this study.  First, since no eye tracking devices were used 

in the experiment, we were not able to look into the details of the driver’s eye movement 

behavior during the visual search task. An equal-probability random special search over the 

entire device was used in the visual search algorithm. While in reality the driver may use other 

search patterns. For example, since the device is mounted on the center console which is on the 

driver’s right side, drivers may start search from the left size on the device (near side) to the right 

size on the device (far side). This other visual search patterns were yet to be examined. Secondly, 

for simplicity the model assumes a perfect visual search memory, so that a button that was 

examined before would never been reselected in the search process even if the search progress is 

segmented by the driving task. While studies have found evidences that the visual search 

memory does exist (Kristjansson, 2000) but it is not perfect either (Horowitz and Wolfe, 2005). 

Some researchers were building models to settle somewhere in between. For example, in 

Wolfe’s Guided Search model (Wolfe, 2007), an arbitrary probability of 0.75 of reselecting a 

previously examined item was implemented. And this probability does not change over the 

search progress, meaning a recently examined item has the same probability to be reselected as 

an item that has been examined a while ago. More research advancement in the visual search 

memory is needed for a more accurate model.  
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Chapter 5.  

An Experimental Study on Task Performance and Mental Workload in Using Three 

Typical In-Vehicle Infotainment Systems while Driving 

 

5.1 Introduction 

Driver distraction has been regarded as one of the leading causes of road accidents. And 

it is becoming a growing concern in the past decade with the introduction of various electronic 

technologies into the vehicle (e.g., touch screens, digital instrument clusters, and head-up-

displays). These in-vehicle technologies allow the drivers to accomplish many “secondary tasks”, 

which is defined by the U.S. National Highway Traffic Safety Administration (NHTSA) as “any 

interaction a driver has with an in-vehicle device that is not directly related to the primary task of 

the safe operation and control of a vehicle”. Examples of secondary tasks include adjusting cabin 

temperatures, tuning radios, finding the nearest gas station, etc. Previous studies on naturalistic 

driving have found that performing secondary task is fairly common while driving. A naturalistic 

100-car driving study performed by the Virginia Tech Transportation Institute (VTTI) found that 

performing secondary task was observed in 54% of the randomly selected baseline time 

segments from their data. 

Although such in-vehicle technologies are designed to enhance the driving experience, 

they may have a potential negative impact on the driving safety by inducing driver distraction 

and increased workload while driving. According to NHTSA, in 2010 an estimate of 899,000 or 

17% of police-reported crashes involves a distracted driver, causing 3,092 fatalities or 9.4% of 

those killed and over 400,000 injuries. According to the police reports, in 26,000 of those 

899,000 crashes the driver was using an integrated control device. Furthermore, these numbers 

are likely underreported given the difficulty in identifying the use of these control devices during 

the accident investigation. Ranny et al, (2000) found driver inattention account for approximately 
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25% of police reported crashes. The naturalistic 100-car driving study estimated that 78% of 

crashes and 65% of near crashes were related to driver inattention (Klauer et al., 2006) 

Given the importance of this issue, many researches had been done to study how 

secondary tasks are related to driving distraction and safety. Along the lines of the Model Human 

Processor (MHP), a secondary task could interfere with the driving task during the three 

processing stages of a task (i.e., perceptual, cognitive, and motor). At the perceptual stage, a 

visual-manual secondary task may require the driver to move the eyes away from the road in 

order to perceive the visual information on the devices (“eyes off the road”). At the cognitive 

stage, it may require the driver to reallocate his/her mental resources (e.g., attention, working 

memory) from the driving task (“mind off the road”). At the motor stage, it may require the 

driver to move his/her hands away from the steering wheel to manipulate a device, for example, 

clicking a button or turning a knob (“hands off the wheel”).  

Extensive studies have found that driver distraction degrades the driving performance in 

multiple aspects, including degraded lane keeping performance (e.g., increased standard 

deviation of lane positions (SDLP), increased lateral acceleration on curves, and more lane 

deviations), degraded longitudinal control, and longer response time to object and events (Horrey 

and Wickens, 2004, Reed-Jones, et al. 2008, Peng, et al, 2013). According Wickens’s Multiple 

Resource Theory (MRT), interference to driving performance would occur when the secondary 

task is competing for the same mental resources (e.g., visual or auditory modalities). As the 

driving task relies heavily on visual information (Sivak, 1998), secondary tasks that require 

substantial usage of visual information would more likely to interfere with the driving task.  

A variety of metrics have been developed based on the driver’s visual behavior to 

measure the driver distraction, including number of glances (off the road), duration of glances, 

and total eyes-off-road time (TEORT). Guidelines and standards have been proposed to evaluate 

various secondary tasks and their associated user interface designs. The Society of Automotive 

Engineering (SAE) Standard J2364 proposes that the maximum time for drivers to complete 

navigation-related tasks involving visual displays and manual controls should be less than 15 

seconds (referred to as the 15-Second Rule) (Green, 1999). In 2013, NHTSA published a 

guideline for in-vehicle electronic devices which recommend that tasks should be completed by 

the driver with glances away from the road of 2 seconds or less and a TEORT of 12 seconds or 

less (referred to as the 2/12 rule). Many visual-manual tasks are composed of multiple steps that 
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altogether take more than a few seconds to complete even as a single task (i.e., without driving). 

In order to complete these tasks while driving, a time-sharing strategy is needed to shift the 

visual attention back and forth between the road scene and the devices (Tivesten and Dozza, 

2014).  

Most previous work focused on secondary tasks using one specific type of user interface 

(e.g., a navigation screen with a virtual keypad for address entry). Little research is done to 

compare different types of user interfaces (UIs) or UI elements on driver distraction for identical 

or similar secondary tasks, and how the inherently characteristics would affect task performance. 

While this is one of the important design decisions that HMI practitioners has to make when 

multiple design options are available. In addition, some studies have proposed that drivers avoid 

eyes-off-road time longer than a specific time, and drivers would divert the eyes back on the road 

right before this critical time is reached (e.g., 1.5 seconds by Wierwille, 1993). It is unclear if 

this critical time is the only constrain that dictates visual behavior (specifically, the timing for the 

start of the on-road glances). It is possible that there are other constrains imposed from the user 

interface that may also affect visual behavior. Typical in-vehicle control methods include the 

traditional physical push buttons (e.g., to turn the AC on or off), knobs (e.g., to increase or 

decrease the radio volume), resistive virtual buttons (e.g., to type in address on a touch screen 

navigation system), 2D gesture controls (e.g., swipe, pinch to zoom on a multi- touch screen).  

These control methods have their distinct interaction characteristics. For example, physical push 

buttons provide tactile feedback after the button actuation, while virtual buttons may only 

provide visual feedback after the button actuation. One of the fundamental principles in the 

NHTSA guidelines states that “Any task performed by a driver should be interruptible at any 

time.” But there is a lack of studies on how a specific user interface and/or task specification 

would affect whether the task could be interrupted or not at a given moment. 

This chapter describes an experiment in which we aimed at examining the effects of 

different control methods of in-vehicle technologies on the driver’s visual behavior, task 

performance, and workload. Three control methods were selected for the investigation: (1) 

physical push buttons, (b) physical knobs, and (3) visual buttons without tactile feedback. We 

hypothesized that these three control methods would induce various levels of driver visual 

behavior, task performance, and workload.  
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5.2 Methods 

5.2.1 Participants 

Twenty participants (10 male and 10 female), all of whom were employees from a 

company in the U.S., were recruited for the experiment. In terms of age distribution, 9 (45%) 

participants were 20-29 years old, 1 (5%) participants were 30-39 years old, 4 (20%) participants 

were 40-49 years old, 5 (25%) participants were 50-59 years old, 1 (5%) participants were 60-69 

years old. All participants had got their driver license for at least one year. The participants 

contributed to the experiment on their work time.  

5.2.2 Tasks 

The experiment was conducted in a stationary driving simulator in a laboratory 

environment as shown in Figure 30(a). The front virtual road scene was projected on a flat 

projection screen in front of the driving simulator. The tasks for the participants are described 

below:  

Radio tuning task: The participants were asked to perform a radio tuning task using three 

methods as shown in Figures 2, 3, and 4.  

 

           

       (a) Tuning radio using the “direct tune” method    (b) A zoom-in view of the physical panel 

Figure 30. Task Procedure using the physical buttons: (1) press the power button, (2) press the 

AM/FM button, (3) press the “DIRECT” button, (4) enter the radio frequency on the keypad. 
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                   (a) Tuning radio using the knob               (b) A zoom-in view of the physical panel 

Figure 31. Task Procedure using the knob: (1) press the power button, (2) press the AM/FM 

button, (3) turn the knob to decrease or increase the frequency shown on the display (“590” as in 

the picture) 

            

        (a) Tuning radio on the touch screen                     (b) Click the “Entertainment” button                          

        

    (c) Click the “FM” then “Direct Tune” button           (d) Enter the radio frequency 

Figure 32. Task procedure using the virtual buttons 
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Table 4. Task procedures of tuning the radio to FM 98.7 using the three methods 

Device 
Physical 

Buttons 
Physical Knobs Virtual Buttons 

Initial state  System OFF System OFF Home Screen  

Step 1 Press ‘Power’ Press ‘Power’ Press ‘Entertainment’ 

Step 2 Press ‘AM/FM’ Press ‘AM/FM’ Press ‘FM1’ 

Step 3 Press ‘DIRECT’ Turn the knob to 98.7 Press ‘Direct Tune’ 

Step 4 Press ‘9’ Done Press ‘9’ 

Step 5 Press ‘8’  Press ‘8’ 

Step 6 Press ‘7’  Press ‘7’ 

Step 7 Done  Press “Enter” 

Step 8   Done 

 

Driving task: The participants were asked to drive the simulated vehicle on a virtual 

highway. The virtual highway has two lanes in one direction, and the virtual course is a square 

loop with four straight sections connected by four curved corners. The driving environment is set 

as day time. The participants were asked to keep the vehicle in the left lane and maintain a speed 

of between 60-70 miles per hour. There is no other virtual vehicle in the left lane. The 

participants were asked to put both hands always on the steering wheel except when doing the 

radio-tuning task.  

5.2.3 Experimental Design 

There are two independent variables in this experiment: (1) Task condition (two levels: 

single or dual task), (2) Control modules (three levels: physical buttons, knobs, or virtual 

buttons).   

Independent variables: Two task conditions were examined in the experiment: (1) single 

task, and (2) dual task. In the single task condition, the simulated vehicle is stopped on the side 

of the road. The participants were instructed to perform the radio-tuning task without driving the 

simulator. In the dual task condition, the participant was asked to drive the simulator in a 

highway scenario, and at given points, they were verbally instructed by the experimenter to start 

the radio-tuning task. The experimenter only instructs the participants to start the task when the 
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vehicle is in the straight section of the road (i.e., not when the vehicle is entering, negotiating, or 

leaving a curve). The participants were asked to perform the radio-tuning task only at a time 

when they believe it is safe to do so. Three control modules (physical buttons, knob, and virtual 

buttons) were investigated in the experiment. The details of these three modules were described 

above.  

Dependent variables: Two video cameras were used for collecting the task performance 

data. One camera was used to capture the participant’s front face, which could be used to identify 

whether the participant was looking at the road or the device. Another camera was used to 

capture a close-up view of the area from the steering wheel to the device. This information could 

be used to measure the performance of the radio-tuning task. The driving related data were 

recorded by the driving simulator.  

Task completion time is used as one of the performance measures. For the single task 

condition, task completion time is measured from the time when the driver starts to move his/her 

right hand away from the steering wheel to the time when the target radio frequency is reached. 

For the dual task condition, the task completion time is measured from the time when the 

participant started to move his/her eyes from the road to the device, to the time when the target 

radio frequency is reached. Other performance measures include the total eyes-off-road time 

(TEORT), which can be extracted from the video recording, and the number of glances (to the 

device from the road). 

After each session the participants were asked to rate their subjective workload using the 

standard NASA-Task Load Index (NASA-TLX, Hart & Staveland, 1988, Hart, 2006). 

 A full factorial design was used in this experiment. Two independent variables gives 6 (= 

2x3) combinations in total. For each combination, 3 trials were used. The experiment used a 

within-participant design. Each participant went through all the combinations. That gives a total 

of 18 (= 6 combinations x 3 trails per combination) trials for each participant.  

5.2.4 Procedure 

Once the participants arrived at the laboratory, they were firstly asked to complete a 

consent form. Then an introduction session was given to the participants to ensure that they 

understood the tasks they were about to perform. This was followed by a practice session for 

both the radio-tuning task and the driving task. Then the data collection part started, which was 

divided into one single task session and one dual task session. Half (10) of the participants 
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started with the single task session, while the other half (10) started with the dual task. Half (10) 

of the participants started with the virtual buttons, a quarter (5) of them started with the physical 

buttons, and a quarter (5) of them started with the knob.  

5.3 Results 

5.3.1 Mental Workload 

The mean and standard deviation of the subjective mental workload were shown in 

Figure 33. Statistical analyses of paired t-test were conducted to examine whether there is 

significance difference of workload between the two task conditions and among the three control 

modules. With alpha level of 0.05, it is found that the mental workload was significantly higher 

(all p < 0.001) in the driving condition than the parked conditions for all three control modules. 

In the parked condition, the mental workload when using the knob is significantly lower than 

using either physical buttons (p = 0.031) or virtual buttons (p = 0.019), while there is no 

significant difference (p = 0.088) in mental workload between using physical button and virtual 

button.  In the driving condition, significant differences of mental workload were found in all 

three comparisons. Specifically, the mental workload when using the knob is significantly lower 

(p = 0.0027) than using the physical buttons, and the mental workload when using the physical 

buttons is significantly lower (p = 0.0011) than using the virtual buttons.  

 

 

Figure 33. Subjective Mental Workload 
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5.3.2 Task Completion Time 

For the task when the simulator is parked, the task completion time is the duration from 

the time when the participant started to perform the radio-tuning task to the time when the target 

radio frequency is reached. For the task performed during driving, the definition of task 

completion time from Tsimhoni and Green (2001) was used, which defines it as the duration 

from the beginning of the first glance at the device to the end of the last glance during the trial.  

The statistics of the task completion time is shown in Table 5. The mean and standard 

deviation of the task completion time is shown in Figure 34. It is noticeable that there are larger 

variances of the task completion time in the driving condition than the parked condition.  

Table 5. Statistics of task completion time in experiment 2 (all units are in seconds) 

 Parked Driving 

Control Module  M SD 

50th  

Percen

tile 

95th 

Percen

tile 

M SD 

50th  

Percen

tile 

95th 

Percen

tile 

Virtual buttons 7.46 1.08 7.62 9.03 10.81 3.01 10.14 16.01 

Physical buttons 5.72 1.32 5.51 7.66 7.02 2.03 6.71 10.90 

Knob 5.52 1.45 5.50 8.22 7.16 2.44 7.04 11.95 

 

 

Figure 34. Task completion time 
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Wilcoxon signed-rank tests was conducted to examine whether there is a significant 

difference of task completion time between the parked and driving condition. The result shown 

the task completion time was significantly longer when using visual buttons (Z = -3.680, p < 

0.001), physical buttons (Z = -2.352, p = 0.019), and knob (Z = -3.260, p = 0.01). 

The nonparametric Friedman Test was used to examine whether there are significant 

differences of the task completion time among the three control modules in both the parked and 

driving conditions. When the driving simulator is parked, the result shows there was a significant 

difference in task completion time among the three control modules, χ2(2) = 24.333, p < 0.001. 

Post hoc analysis with Wilcoxon signed-rank tests was conducted with a Bonferroni correction 

applied, resulting in a significance level set at p < 0.017 (= 0.05/3 comparisons). The result 

shows the task completion time with the virtual buttons was significantly longer than the task 

completion time with both the physical buttons (Z = -3.550, p < 0.001) and the knob (Z = -3.724, 

p < 0.001), while there was no significant difference between the physical buttons and knob (Z = 

-0.675, p = 0.500). 

When the participants were driving the virtual car in the simulator, the result shows a 

similar pattern. There was a significant difference in task completion time among the three 

control modules, χ2(2) = 21.895, p < 0.001. The same post hoc analysis with Wilcoxon signed-

rank tests was conducted. And the result shows the task completion time with the virtual buttons 

was significantly longer than the task completion time with both the physical buttons (Z = -3.783, 

p < 0.001) and the knob (Z = -3.702, p < 0.001), while there was no significant difference 

between the physical buttons and knob (Z = -1.087, p = 0.277).  

5.3.3 Total Eyes-Off-Road Time 

The statistics of the total eyes-off-road time (TEORT) is shown in Table 6. The mean and 

standard deviation of the task completion time is shown in Figure 35.  The mean value of 

TEORT when using the virtual buttons is roughly 3 seconds longer than the mean of TEORT 

when using either the physical buttons or the knob.   
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Table 6. Statistics of TEORT in experiment 2 (all units are in seconds) 

Control Module M SD 
50th 

Percentile 

95th 

Percentile 

Virtual buttons 8.27 1.95 8.07 11.23 

Physical buttons 5.28 2.14 4.84 7.68 

Knob 4.93 1.66 4.60 8.30 

 

 

Figure 35. Total eyes-off-road time (TEORT) 

The nonparametric Friedman Test was used to examine whether there are significant 

differences of the TEORT the three control modules. The result shows there was a significant 

difference in task completion time among the three control modules, χ2(2) = 25.579, p < 0.001. 

Post hoc analysis with Wilcoxon signed-rank tests was conducted with a Bonferroni correction 

applied, resulting in a significance level set at p < 0.017 (= 0.05/3 comparisons). The result 

shows the TEORT with the virtual buttons was significantly longer than the TEORT with both 

the physical buttons (Z = -3.582, p < 0.001) and the knob (Z = -3.823, p < 0.001), while there 

was no significant difference between the physical buttons and knob (Z = -0.373, p = 0.709).  
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5.4 Discussions  

This experiment examined three typical and inherently different in-vehicle control 

modules, namely physical buttons, virtual buttons, and knobs, for their effect on the driver’s 

visual behavior, task performance, and workload. A visual-manual task of radio-tuning was 

performed on each of the control modules in both single and dual task conditions. As the primary 

information for driving is from the visual channel, metrics based on eyes-off-road were used to 

measure the level of driver distraction. And subjective ratings based on NASA-TLX were used 

to measure the driver’s mental workload. For the workload, the experiment results show that for 

all three control modules, the mental workload increases significantly when driving is involved. 

An explanation for the increased workload when driving is that, while driving, the radio tuning 

task is partitioned as driver needs to switch the visual attention back on the road to check the 

vehicle stability, and make corrective maneuvers if needed until the stability is regained, and 

then switch the visual attention back to the radio tuning device. This essentially increases the 

utilizations of the mental resources for different purposes (e.g., switching visual attention 

between the road scene and the device, using an internal clock to make sure the eyes-off-road 

does not exceed a threshold, etc.). For both single and dual task conditions, using the knob seems 

to induce the lowest workload among the three. In the single task condition, no significant 

difference of workload was found between the physical and virtual buttons, but once driving is 

involved, the visual buttons induces more workload than the physical buttons.  

The experiment results show that the visual buttons induces the longest task completion 

time and total eyes-off-road time among the three. No significant different differences were 

found between the physical button and the knob. This may be due to the inherent characteristics 

of the control modules.  For example, clicking a virtual button on a touch screen without tactile 

feedback requires visual attention to confirm that the correct button is successfully clicked (by 

using the visual cues of, for example, a change of the button’s background color). And in some 

cases, the next button to click would not appear until the previous button has been pressed (e.g., 

The ‘FM’ button on the entertainment screen (Figure 32 (c)) appears only after the 

‘Entertainment’ button on the home screen (Figure 32 (b)) is pressed). Thus the step of searching 

for the next button could start only after the pressing of the previous button finishes. While for 

the physical buttons on the other hand, the searching for the next button may start simultaneously 
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as the start of pressing the previous button, as we assume that a successful pressing on a physical 

button does not require visual attention as it could be confirmed by the tactile feedback.  

Even though the result shows the TEORT with the virtual buttons (about 8 seconds on 

average) is mostly shorter than the NHTSA guideline of 12 seconds. The distribution of the eyes-

off-road time duration shows that 28% of the eyes-off-road are longer than 2 seconds, and 11% 

of the eyes-off-road are longer than 3 seconds.  At the experiment driving speed of 60-70 miles 

per hour, this translates to roughly 60 or 90 meters driving without looking at the road. It is also 

interesting to notice that even it seems there’s no significant difference in the TEORT between 

the physical buttons and the knob (both with an average ETORT of about 5 seconds), the 

distribution of the eyes-off-road duration seems to suggest that when using the knob, looking at 

the device were performed in a more short-and-rapid fashion without longer eyes-off-road (e.g., 

only 6% of the eyes-off-road were longer than 2 seconds compared with 16% when using the 

physical buttons).  
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Chapter 6.  

Queuing Network Modeling of Visual-Manual Secondary Tasks while Driving 

6.1 Introduction 

Today in-vehicle infotainment systems allow the driver to accomplish many non-driving 

tasks (e.g., listening to radios, adjusting cabin temperatures, finding the nearest gas station) using 

multimodal interfaces, such as touch screens, digital instrument clusters, head-up-displays, etc. 

Although such systems are designed to enhance the driving experience, they often suffer from 

serious usability problems, such as driver distractions with frequent and extended eyes-off-road 

operations, prolonged learning curve with information overload and unintuitive designs. 

Compared with the traditional usability testing methods using real human subjects, digital 

human models can be used to test design concepts and prototypes with low costs in both time 

and manpower. This allows the HMI designers to explore a larger design space and address 

usability issues at the early stages of the system design process. Digital human models have been 

a valuable asset in many industries to analyze the human factors and ergonomics problems of 

products (e.g., Feyen, et al., 2000). In the past decades many driver models have been developed 

for particular aspects of the driving task, such as lane-keeping, car-following, and road signs 

searching. Several models have been developed based on task-independent cognitive 

architectures, including the ACT-R based driver models (Salvucci, 2006) and the QN-MHP 

(Queuing Network-Model Human Processor) driver model (Liu et al., 2006; Wu and Liu, 2007a). 

ACT-R assumes serial processing of production rules (i.e., only one production rules can be fired 

at any time). To model multitasking, each individual model needs to pass control to the other, 

and thus requires modifications of the single task models in order to model the multitasking 

scenarios. Salvucci (2002) compared two version of the model termed Single-Step and Group-

Step. For the Single-Step model, the driving task intervenes after each firing of the rules of the 

secondary task, while for the Group-Step model, the driving task intervenes after a pre-
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determined group of production rules got fired. But the way to group the production rules are 

largely arbitrary. There are no rigorous criteria or guidelines for this approach.  

 QN-MHP simulates the human cognition as a queuing network of information 

processing servers derived from the psychological and neuroscience fields (Liu 1996, 1997, Liu, 

Feyen, & Tsimhoni, 2006). This modeling framework has been successfully used to simulate a 

wide variety of human performances including transcription typing (Wu & Liu, 2008a), visual 

search (Feng & Liu, 2013), vehicle steering (Tsimhoni & Liu, 2003), driver performance and 

workload (Wu & Liu, 2007), etc. Recent work has also fully implemented ACT-R as a special 

case of the queuing network model (Cao & Liu, 2013).  

Along the lines of the Model Human Processor (MHP), a secondary task could interfere 

with the driving task during the three processing stages of a task (i.e., perceptual, cognitive, and 

motor). At the perceptual stage, a visual-manual secondary task may require the driver to move 

the eyes away from the road in order to perceive the visual information on the devices (“eyes off 

the road”). At the cognitive stage, it may require the driver to reallocate his/her mental resources 

(e.g., attention, working memory) from the driving task (“mind off the road”). At the motor stage, 

it may require the driver to move his/her hands away from the steering wheel to manipulate a 

device, for example, clicking a button or turning a knob (“hands off the wheel”).  

Nonetheless even for the generic cognitive architecture-based models, there is still a gap 

that prevents them from being deployed in practice, as using them usually requires the designers 

to have a fairly deep understanding of the theoretical foundation of the model as well as 

programming skills in order to setup a simulation to run any particular task with HMI designs. 

6.2 Methods 

6.2.1 Task Analysis 

To model any task using the QN-MHP architecture, a task analysis is required in the 

format of NGOMSL (Natural Goals, Operators, Methods, and Selection rules Language, Kieras, 

1999). The NGOMSL task analysis breaks down the task in a “top-down, breadth-first” manner 

into “atomic-level” Task Components (TC). Each task component is associated with a task 

independent “context-free” QN-MHP operator from the QN-MHP operator library. The 

operators are set with parameters either explicitly by the modeler when specifying the task before 
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the simulation, or implicitly by the model during the simulation. The sequential dependency of 

the task components are set by the modeler before the simulation. This task specification was 

loaded to the QN-MHP model and the task was performed in response to its associated 

environment stimuli. More details on the QN-MHP task analysis could be found in Chapter 2.  

A NGOMSL-style task analysis of tuning the radio station using the direct tune was 

conducted as shown in Figure 36.  

 

 

(a) Task Description 

 

 

(b) Sequential Dependency of the Task Components 

Figure 36. NGOMSL-style task analysis of the direct tune using the physical panel 

GOAL: Tune the radio to FM 98.7 using the direct tune on the physical panel

Method to accomplish goal of tuning the radio to FM 98.7 using the direct tune 

TC 1: Look at <text feature> on <physical panel> at location <190, 46>

TC 2: Store <feature value> to short-term memory

TC 3: Retrieve <feature value> from short-term memory

TC 4: Compare <feature value> to <“Power”>

If match, return result = 1, else return result = 0

TC 5: If  result = 1, go to TC 6, else go to TC 999    //  999 is a dummy TC 

TC 6: Reach <location> with <right hand> <with visual guidance>

TC 7: Click with <right hand> <index finger> 

TC 8: Look at <text feature> on <physical panel> at location <224, 88>

...  :  ...

TC N-1: Click with <right hand> <index finger> // click the last button (“7”)

TC N: Return with goal accomplished

Look at button “9” Store <label> to STM

Retrieve <label> from STM

Compare <label> to target value

Reach button

time

Click  button “9”

Look at button “8”

Click  button 

“DIRECT”
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(a) Task Description 

 

 

(b) Sequential Dependency of the Task Components 

Figure 37. NGOMSL-style task analysis of the direct tune using the touch screen 

GOAL: Tune the radio to FM 98.7 using the direct tune on the touch screen

Method to accomplish goal of tuning the radio to FM 98.7 using the direct tune 

TC 1: Look at <text feature> on <physical panel> at location <457, 130>

TC 2: Store <feature value> to short-term memory

TC 3: Retrieve <feature value> from short-term memory

TC 4: Compare <feature value> to <“Entertainment”>

If match, return result = 1, else return result = 0

TC 5: If  result = 1, go to TC 6, else go to TC 999    //  999 is a dummy TC 

TC 6: Reach <location> with <right hand> <with visual guidance>

TC 7: Click with <right hand> <index finger> 

TC 8: Look at <text feature> on <physical panel> at location <167, 75>

...  :  ...

TC N-1: Click with <right hand> <index finger> // click the last button (“Enter”)

TC N: Return with goal accomplished

Look at button “9” Store <label> to STM

Retrieve <label> from STM

Compare <label> to target value

Reach button

time

Click  button “9” Look at button “8”Click  button 

“Direct Tune”
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(a) Task Description 

 

 

(b) Sequential Dependency of the Task Components 

Figure 38. NGOMSL-style task analysis of the radio tuning using the knob 

The description for the task of using the touch screen follows a similar pattern, while 

there are differences on the sequential dependency of the steps (i.e., at what time a step starts 

GOAL: Tune the radio to FM 107.1 using the knob on the physical panel

Method to accomplish goal of tuning the radio to FM 98.7 using the direct tune 

TC 1: Look at <text feature> on <physical panel> at location <190, 46>

… : …  // TC 1-14 are identical to the TC 1-14 for the direct tune on the   

physical panel

TC 15: Look at <text feature> on <physical panel> at location <190, 204>

TC 16: Store <feature value> to short-term memory

TC 17: Retrieve <feature value> from short-term memory

TC 18: Compare <feature value> to <“TUNE”>

If match, return result = 1, else return result = 0

TC 19: If  result = 1, go to TC 20, else go to TC 999    //  999 is a dummy TC 

TC 20: Reach <location> with <right hand> <with visual guidance>

TC 21: Look at <text feature> on <physical panel> at location <32, 96>

TC 22: Store <feature value> to short-term memory

TC 23: Retrieve <feature value> from short-term memory

TC 24: Compute <subtract from> <107.1>         // 107.1 is the target frequency

TC 25: If  result = 0, go to TC 27, else go to TC 26

TC 26: Turn knob with <right hand> 

TC 27: Return with goal accomplished

Look at frequency 

on display

Store <frequency> to 

STM

Retrieve < frequency > 

from STM

Compute difference 

with the target value

Tune knob 

time

Reach  button 

“TUNE”
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being executed) due to the inherent characteristics of the devices.  For example, clicking a virtual 

button on a touch screen without tactile feedback requires visual attention to confirm that the 

correct button is successfully clicked (by using the visual cues of, for example, a change of the 

button’s background color). And in some cases, the next button to click would not appear until 

the previous button has been clicked (e.g., The ‘FM’ button in the entertainment screen appears 

only after the ‘Entertainment’ button is clicked). Thus the step of searching for the next button 

could start only after the clicking of the previous button finishes. For the physical panel on the 

other hand, search for the next button could start simultaneously as the start of clicking the 

previous button, as it is assumed that successful clicking on a physical button could be confirmed 

sufficiently by the tactile feedback (currently not explicitly modeled) with no need for visual 

attention. We do assume that the driver needs the visual guidance for reaching the button (i.e., no 

‘touch typing’), so the search for the next button could start as early as the button is reached by 

hand, but not earlier. 

6.2.2 Multitasking Modeling 

Given that the secondary tasks usually take at least a few seconds to complete even as a 

single task, when they are performed with driving, the driver is likely not able to complete the 

entire secondary task with a single glance of eyes off the road. Thus the secondary task needs to 

be segmented by the driving task so the driver could look back to the road to check the safety 

and vehicle stability, and make potential necessary maneuvers before continuing with the 

secondary task. Figure 39 shows how the three secondary task of tuning radio are segmented by 

the driving task. For the physical buttons, we assume that the driver is able to use the haptic 

feedback instead of visual feedback to confirm a successful clicking of a button. Thus he could 

start looking back to the road as soon as he starts to click the button. But this is not possible 

when using the touch screen, where the driver could only use the visual feedback to confirm if a 

button is successfully clicked. In this case, the driver can only start looking at the road when the 

clicking action is completed.    
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(a) Using physical buttons 

 

 

(b) Using virtual buttons 

 

 

(c) Using knob 

Figure 39. Multitasking of radio tuning and driving 

6.2.3 Device Mockups 

Aside from the cognitive model which represents the human, digital mockups of the 

devices are needed to simulate the interaction between the human and the environment. The 

digital mockups provide stimuli as inputs to the cognitive model, and could be acted upon by the 

actions generated by the cognitive model (e.g., clicking a button). Digital mockups for this visual 

search task were created using MATLAB GUIDE (Graphical User Interface Design 

Environment). Figure 40 shows both the physical device using in the human experiment and the 

digital mockups created for the simulation.  
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(a) Real device used by the human participants            (b) Digital mockup used by the model 

Figure 40. Real device used in the human experiment and its digital mockup 
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(a) Home screen – real device                          (b) Home screen – digital mockup 

   

(c) FM preset screen – real device                          (d) FM present screen – digital mockup 

   

(e) Direct tune screen – real device                          (f) Direct tune screen – digital mockup 

Figure 41. Real device used in the human experiment and its digital mockup 

6.2.4 Specifications of the Task Environment and Initial Conditions 

The task environment specifications include (1) the physical location of the devices (i.e., 

the physical panel and the touch screen) relative to the steering wheel, (2) the visual angle 

between the road scene and the devices, and (3) the viewing distance of the devices from the 

driver. These specifications were set as the same value as measured from the experiment with 
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human subjects in Chapter 5. For the single task condition, it is assumed that the driver starts the 

task with both hands on the steering wheel, and eyes looking at the center of the touch screen. 

For the dual task, it is assumed that the driver starts the driving task first with both hands on the 

steering wheel, and eyes on the road scene. After setting up the simulation, simulation was 

conducted for the radio tuning task.   

6.3 Results 

6.3.1 Mental Workload 

The experiment with human subjects showed that the mental workload was significantly 

higher in the driving condition than the parked conditions for all three control modules. The 

simulation results are shown in Figure 42. The model results are similar to the empirical data 

from the human participants for both the parked and driving conditions. For the parked condition, 

the mean absolute percentage error (MAPE) is 14.1%. The root-mean-square error (RMSE) is 

0.50. For the driving condition, the MAPE is 18.8%. The RMSE is 1.13. 

 

 

Figure 42. Simulation results of mental workload in comparison to human results 

6.3.2 Task Completion Time 

The experiment with human subjects showed that the dual task has significantly longer 

reaction time than single task for all three control modules. In the single task condition, the task 
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completion time is significantly longer when using the virtual buttons than using either the 

physical buttons or the knob. There is no significant difference in task completion time between 

the physical buttons and knob. In the dual task condition, the task completion time is 

significantly longer when using the virtual buttons than using either the physical buttons or the 

knob. There is no significant difference in task completion time between the physical buttons and 

knob. The model predictions of the task completion time are shown in Figure 43. The model 

predictions are similar to the empirical human data. For the parked condition, the MAPE is 5.7%. 

The RMSE is 0.38 second. For the driving condition, the MAPE is 9.0%. The RMSE is 0.81 

second. 

 

 

Figure 43. Simulation results of task completion time in comparison to human results 

6.3.3 Total Eyes Off Road Time (TEORT) 

The experiment with human participants shows that the TEORT was significantly longer 

when using the virtual buttons than either the physical buttons or the knob, while there is no 

significant difference of TEORT between the physical buttons and the knob. The model 

simulation results of the TEORT are shown in Figure 44. As can be seen the model predictions 

are similar to the human data. The MAPE is 12.1%. The RMSE is 0.71 second. 
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Figure 44. Simulation results of TEORT in comparison to human results 

6.4 Discussions  

The observed performance differences among the three control modules and the two task 

scenarios may be accounted for by the digital driver model in several aspects. As discussed in the 

previous section, the tasks on the physical panel take shorter time to complete, because the driver 

is able to click one button while simultaneously direct the visual attention to the next button, but 

this is not possible for the touch screen without tactile feedback, because the user could only 

relies on the visual feedback to confirm the button is successfully clicked. In addition for the 

touch screen, some virtual buttons may not appear (e.g., the ‘FM’ button in the above case) until 

the activation of previous buttons prevents the driver from performing the task in a more parallel 

fashion. These differences were naturally captured during the task and device setup of the QN-

MHP simulation. The predicted task completion time when using the touch screen in the dual 

task condition is about 1 second longer than the human data (mean value). This could be due to 

the time pressure in the dual task condition human subjects sometimes skip the confirmation of 

button clicking, and start to look at the next button location before a clicking action is completed. 

This essentially makes the task faster to complete, while it risks of making errors of unsuccessful 

clicking of a virtual button.  

An explanation for the increased task completion time and mental workload when driving 

is involved, is that, while driving, the radio tuning task is partitioned as driver needs to switch the 
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visual attention back on the road to check the vehicle stability, and make corrective maneuvers if 

needed until the stability is regained, and then switch the visual attention back to the radio tuning 

device. This essentially makes the task longer to complete and increases the server utilizations 

which are used to estimate the mental workload. 

It should be noted that each of the task analysis presented in this chapter only represents 

one typical case for how the task is performed. It is assumed that the driver has perfect and 

complete memories of the locations of the target buttons, so the visual attention could be directed 

by the top-down knowledge, rather than having to perform a thorough visual search over the 

whole device for the target button. This is essentially only modeling the user population who are 

familiar with the devices (which is assumed to be the case of the subjects in the validation 

experiment). If it is of interest to model the novice users who may not always remember the 

target button locations, or to model the extremely proficient user who may be able to ‘touch type’ 

without the use of visual attention, different task analyses have to be conducted to represent the 

differences in the task strategies for the intended user population.  
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Chapter 7.  

A Computer-Aided Usability Testing Tool for In-Vehicle Infotainment Systems 

 

7.1 Introduction 

Usability evaluation is one of the important processes of user-centered design for 

interactive systems. The traditional methods for usability testing typically rely on human test 

subjects, who are asked to perform specified tasks using the systems being tested. Their 

performances are recorded and then analyzed. Compared with the traditional methods, digital 

human models can be used to test design concepts and prototypes with low costs in both time 

and manpower. They allow the user interface (UI) designers to compare multiple design concepts, 

explore a larger design space, and address usability issues at the early stages of the design 

process.  

Digital human models have been a valuable asset in many industries to analyze the 

physical ergonomics problems of product or biomechanical injury risk of workplace designs 

(Feyen, et al., 2000, Chaffin, 2007). One of the most successful digital human models is Jack 

which was originally developed by the University of Pennsylvania and later became commercial 

software (SIEMENS). The model could be used to address the ergonomic aspects of manual 

operations. The University of Michigan developed Human Motion Simulation (HUMOSIM) 

framework that could simulate realistic human movements and be used for ergonomic analysis of 

products and workplaces (Reed, et al., 2006). Despite the success of these digital models, they 

are largely focused on the physical ergonomics (e.g., involving human posture, reach, 

movements) based mostly on human biomechanics. Given the complexity of human cognition, 

fewer applications are found in the industry with human cognitive models.  

Many driver models have been developed for particular aspects of the driving task, such 

as lane-keeping, car-following, and road signs searching. Several models have been developed 

based on task-independent cognitive architectures, including the ACT-R based driver models 
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(Salvucci, 2006) and the QN-MHP (Queuing Network-Model Human Processor) driver model 

(Liu, Feyen, & Tsimhoni, 2006; Wu & Liu, 2007a). QN-MHP simulates the human cognition as 

a queuing network of information processing servers derived from the psychological and 

neuroscience fields (Liu 1996, 1997, Liu, Feyen, & Tsimhoni, 2006). This modeling framework 

has been successfully used to simulate a wide variety of human performances including 

transcription typing (Wu & Liu, 2008a), visual search (Feng & Liu, 2013), vehicle steering 

(Tsimhoni & Liu, 2003), driver performance and workload (Wu & Liu, 2007), etc. Recent work 

has also fully implemented ACT-R as a special case of the queuing network model (Cao & Liu, 

2013). Nonetheless even for these generic cognitive architecture-based models, there is still a 

gap that prevents them from being deployed in practice, as using them usually requires the 

designers to have a fairly deep understanding of the theoretical foundation of the model as well 

as programming skills in order to setup a simulation to run any particular task with HMI designs.  

Pew (2008) listed three major challenges for a successful digital human model: (1). 

Simplified model development; (2) better capabilities for articulating and visualizing how the 

models work, and (3) model validation. Several digital cognitive models were developed in the 

past decades with the aim of predicting human performance. A summary of these existing model 

s are listed in Table 1.  

The work described in this chapter aims at developing a CAE software tool that could 

make quantitative predictions of the usability of in-vehicle infotainment systems in terms of the 

task performance and workload. To achieve this goal, the core of the software needs to be built 

upon a model that is capable of simulating human multi-task performance including driving and 

a wide variety of in-vehicle tasks in an accurate and reliable manner. In addition, the software 

needs to allow the UI designers to set up the simulation with an easy-to-follow and user-friendly 

interface.  
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Table 7. Summary of some existing cognitive modeling tools 

Tools 
Theoretical 

framework 

Modeling 

multitask 
Software GUI UI prototyping Software requirements References 

QN-MHP MATLAB QN-MHP Yes Yes 
Yes (MATLAB 

GUIDE) 
MATLAB/Simulink Feng, et al, 2014 

QN-MHP with VBA QN-MHP Yes Yes 
Rudimentary with 

static images only 

ProModel + VBA in 

Excel 
Wu & Liu, 2009 

QN-ACTR ACT-R, QN Yes Yes Yes Micro Saint Cao & Liu, 2012 

ADAT 

SEEV and N-

SEEV attention 

models 

Yes Yes No - Sebok, et al., 2012 

GLEAN EPIC No 
Rudimentary 

menu interface 
No 

Macintosh Common 

Lisp 
Kieras, et al., 1995 

CRITIQUE KLM No Yes 
Yes (subArctic 

toolkit) 
- Hudson, et al., 1999 

APEX GOMS Yes - - Standalone software Freed, et al, 2003 

ACT-Simple ACT-R No No No - Salvucci & Lee, 2003 

Distract-R ACT-R Yes Yes Yes Standalone software Salvucci, et al, 2005 

CogTool 
KLM + ACT-

R 
No Yes Import HTML Standalone software John, et al., 2004 

E-GOMS GOMS No Yes - - Gil, 2010 
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7.2 Software Development 

7.2.1 UI Design Prototyping 

To evaluate a UI design, first a prototyping tool is needed to create a digital mockup of 

the design that the cognitive model could interact with. The interaction would include the 

cognitive model perceiving information from the digital mockup (e.g., visual information of 

buttons), and the cognitive model generating motor actions upon the digital mockup (e.g., 

clicking a button). In this proposed work a prototyping tool was developed using MATLAB 

GUIDE (Graphical User Interface Design Environment, see Figure 45 (a)). MATLAB GUIDE 

allows creating UI designs with the support of common GUI objects including push buttons, 

toggle buttons, text, etc.  These objects could be created graphically with drag-and-drop and 

edited by editing the property inspector of the selected object (see Figure 45 (b)). The behaviors 

of objects upon user actions (e.g., switching to a different screen once a button is clicked) could 

be defined by editing the callback function of the object. MATLAB GUIDE also supports 

WYSIWYG (What You See Is What You Get). The software user could check the current 

design’s look and behavior at any time during the prototyping process. Figure 46 shows two 

digital mockups developed using the MATLAB GUIDE. The created design is saved in the 

format of MATLAB FIG-file and its associated m-file.  
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                          (a) MATLAB GUIDE Main Screen                         (b) Object Property Inspector 

Figure 45. MATLAB GUIDE for UI design prototyping 

  

Figure 46. Demonstration of two digital mockups created using MATLAB GUIDE 

7.2.2 Front End: Software GUI  

Once the digital mockups of the to-be-tested designs are created, the software user could 

setup the simulation using the software GUI. Figure 47 shows the software structure of the 

proposed work. At the front end is a graphic user interface (GUI) that allows the software users 

to setup and run the simulation in four steps. At the back end is the simulation environment with 

four components. The details of the front and back end of the software and the information flow 

between the components are described below.  
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Figure 47. Software architecture 

Step 1: The setup starts with adding virtual devices to the task environment. A virtual 

device could be added by filling out one row in the virtual device table (see Figure 48). A unique 

name is required for each virtual device, and the user can select one of the pre-defined device 

types (currently support physical panels, touch screens, and displays). The viewing distance 

refers to the distance from the digital human’s eyes to the device. The profile of the device could 

be imported to the task environment by first clicking the “Import Device Profile” button, and 

then select the design profile saved earlier in the design prototyping. The software also allows 

the user to temporarily disable a device without deleting the device.  
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Figure 48. Main window of the software GUI 

Once the devices are defined, the user needs to specify the locations of the devices in the 

task environment. This is done in the “Device Locations” window (see Figure 49) after clicking 

the “Define Device Location” button on the main screen. The locations are specified in terms of 

their physical distance and/or visual angles between the device to the steering wheel or the front 

road scene.   

 

 

Figure 49. Device location window 
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Step 2: After the virtual devices and their locations are specified in Step 1, the related 

task information needs to be specified as the instructions to the digital driver on how to perform 

the tasks with the devices. A new task could be added by filling out one row in the task table in 

the “Manage Tasks” window (see Figure 50) after clicking the “Define Tasks” button on the 

main screen. A unique name is required for each task, and the user can select one of the two task 

types (either user-defined or driving). The details of a user-defined task can be specified in the 

“Task Component Table” in the “Define Tasks” window (see Figure 51) after clicking the 

“Define Task Details” on the “Manage Tasks” screen. The details of the task are defined by 

conducting an NGOMSL-style (Natural Goals, Operators, Methods, and Selection rules 

Language) task analysis which breaks down the task into QN-MHP-level operators. More details 

on the NGOMSL-style task analysis could be found on Liu et al. (2006). The software also 

allows the user to save a task and load it later. The built-in driving task could be included by 

simply creating a new task and selecting driving as its task type. 

 

 

Figure 50. Task management window 
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Figure 51. User-defined task definition window 

Step 3: Once the task information is specified in Step 2, the software user needs to 

specify the initial conditions of the digital driver (e.g., where the digital driver’s visual attention 

is located), the devices (e.g., a device is at a particular screen), and the vehicle (e.g., position on 

the road) at simulation time zero in Step 3. Step 4 is to run the simulation and generate the 

outputs. Throughout the course of the simulation the software is able to generate digital driver’s 

instantaneous task performance and workload. 
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(a) Initial conditions of the digital human                (b) Initial conditions of the vehicle 

Figure 52. Setting the initial condition of the simulation 

Once Steps 1-3 are completed, the software user can run the simulation by clicking the 

“Start” button on the main screen.  

7.2.3 Backend: Software Architecture 

At the back end of the software the task environment (box a in Figure 47) represents the 

environment with which the digital driver interacts. It stores the information of the mockup 

designs and the driving environments once they are specified during the simulation setup by 

following the 3 steps described above. During the simulation run it receives outputs from the 

QN-MHP’s body part servers (e.g., the hand server to click a button), and supplies updated input 

stimulus to the QN-MHP (box d)’s perceptual servers (e.g., the visual input server).  

The vehicle dynamics (box b) is a built-in module that receives input from the QN-

MHP’s driving related actions (e.g., steering), and generates the vehicle responses which would 

be used to update the driving environment in box a. Currently a three-Degree-Of-Freedom 

(longitudinal, lateral and yaw) bicycle model of vehicle dynamics was implemented for its 
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simplicity and wide use. More details about the vehicle dynamics module can be found in 

Chapter 2.  

The driving task module (box c) is a built-in extension of the QN-MHP that represents 

the skills of driving a vehicle. Its current implementation is adopted from Salvucci (2006)’s 

driving model, which assumes that a driver utilizes two distinct visual cues on the road (termed 

near point and far point, respectively) to determine how much to steer the vehicle. More details 

on the driving task module can be found in Chapter 2.   

The QN-MHP (box d) represents the generic digital human. Its procedural long-term 

memory server stores the task information once it is specified in the simulation setup. During the 

simulation the task information is used as the instructions to the digital driver on how to perform 

the tasks. During the simulation, the QN-MHP is able to generate the task performance based on 

the information available at the queuing network, and estimate the workload based on the 

queuing network server utilizations (Wu & Liu, 2007). 

7.3 Software Outputs 

During the simulation the software is able to generate instantaneous outputs of the task 

performance of the digital human. Figure 53 shows the instantaneous simulation outputs of the 

digital driver performs a secondary task while driving in one simulation run. The model is able to 

generate outputs of vehicle states such as steering wheel angle, vehicle position in the lane (both 

lateral and longitudinal), driving performance measures such as Time to Lane Crossing (TLC), 

and driver behavior and states such as eye gaze location (on the road or off the road) and 

estimated mental workload.  
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Figure 53. Instantaneous simulation outputs in one simulation run 

During the simulation a trace window (see Figure 54) also shows the discrete events that 

have occurred in chronological order with the latest event on the top. This trace information 

could be useful for the software user to examine the progress of the task execution and get some 

insights of how the task is performed at the QN-MHP server level. This information could also 

be used by the model developers to debug and verify the cognitive model or extension modules 

at the model and software development stage.  

At the end of the simulation, the software generates a report of the simulation results in 

terms of the task performance (see Figure 55). The detailed information of the digital human 

during the simulation is automatically saved in a spreadsheet that can be viewed later after the 

simulation (see Figure 56).  

 



95 

 

 

 

Figure 54. A fraction of the simulation trace during a secondary task 

 

Figure 55. Simulation results for the user-defined non-driving task 

 

Figure 56. A spreadsheet shows a fraction of the system states during a simulation run 
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7.4 Discussions  

This chapter describes the development of a CAE software for human machine interface 

(HMI) designers to predict and benchmark the usability of in-vehicle infotainment systems. At 

the front end of the software a GUI was developed that allows HMI designers to create digital 

mockups of designs and setup the tasks for simulation. At the back end a digital driver was 

created for simulating the driver cognition and performance based on the cognitive architecture 

of QN-MHP. The software is able to simulate a driver performing in-vehicle secondary tasks 

(e.g., tuning radios) while steering a vehicle, make quantitative predictions of the driver’s task 

performance and workload. 

The software does not require the user to know any programming language to simulate 

tasks with specified designs, as all the simulation setup is conducted in the software’s easy-to-

use GUIs in four steps. The software also adopts the MATLAB GUIDE as the design 

prototyping tool, which allows the user to design UIs graphically with drag-and-drop and 

WYSIWYG (What You See Is What You Get). These features enable more UI designers to use 

the software as a usability testing tool with less training and reduced modeling time.  

This work demonstrates the potential of the software as a useful usability testing tool for 

UI designers. We are exploring several further developments of the software in several directions. 

First, currently the software requires the user to be able to conduct a NGOMSL task analysis 

(described in detail in Liu, et al, 2006).  This may require some initial training time to the 

software user, and the accuracy of the model outputs may be affected by the accuracy of the task 

analysis by the user. In the future we are planning to add “templates” for specifying typical in-

vehicle operations (e.g., clicking a button with visual guidance) at a higher level than the 

GOMS’s perceptual, cognitive, and motor level. So the users could use these built-in templates 

with higher level task components to create the tasks to be modeled. This will help reduce the 

training time of conducting task analysis, and reduce the potential errors and discrepancy during 

the task analysis.  

Second, we are currently using the MATLAB GUIDE for prototyping the UI designs to 

be tested. In some applications, the designs are already implemented on some other UI languages 

(e.g., HTML, XML, QML). To test these UIs, the software user first needs to recreate the UIs 

using MATLAB GUIDE. In the future we may explore the techniques to support direct import of 

popular UI formats into the software, so that the UI designs created in other formats could be 
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directly tested in their original formats. This would further reduce the time and workload for 

using this usability testing software.  

Third, the software structure treats the driving task (box c in Figure 47) as a built-in 

extension module to the task-independent cognitive architecture of QN-MHP (box d in Figure 3). 

This structure allows the software developer to add other extension modules in the future if the 

needs arise. For example, a potential module for flying an airplane could be added by the 

software developer as another built-in task that users could specify and simulate. This flexibility 

makes it possible to extend this software from the usability testing of in-vehicle systems to 

systems in other domains with human-in-the-loop systems.  

Fourth, a simple vehicle dynamics module was used (box b in Figure 47), and its outputs 

(the updated near/far angle values) are fed directly into the cognitive model, as if they are being 

“seen”. In the future we may be able to connect the cognitive model with a driving simulator (the 

driver simulator would replace box b and part of box a in Figure 47). In this way we could ask 

the human subjects to performance the tasks in the same setting as the simulation, and compare 

the task performance of the human subjects and the cognitive model side-by-side. This would be 

useful to further calibrate and validate the model, and illustrate the usefulness of the software.  
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Chapter 8.  

Conclusion 

8.1 Dissertation Summary 

In the automotive and some other domains (e.g., aviation, railway), it is a common task 

scenario when a human needs to interact with some device (e.g., finding an item on an electronic 

map or dialing a number on a phone) while simultaneously performing another continuous task 

(e.g., steering a vehicle). It is of great importance to understand the mechanisms of human 

multitasking behavior in order to design the task environments and user interfaces (UIs) that 

facilitate human performance and minimize potential safety hazards such as driver distractions.  

Extensive research has been conducted to study the behavior and mechanism of human 

visual search task. But most of these studies considered visual search as the only task performed. 

Less research has been done to study visual search as one of several tasks that are performed 

simultaneously and the interference among the tasks. In this dissertation I investigated and 

modeled human multitask performance with a vehicle steering task and several typical in-vehicle 

secondary tasks.  

Two experiments were conducted to investigate how various display designs and control 

modules affect the driver's eye glance behavior and performance. In the first experiment I 

employed experimental work that investigates how a driver’s eye glance behavior and task 

performance is affected during a visual search task by two basic design parameters of a touch 

screen device (number of buttons and their sizes). The findings from this study make 

contributions to the existing knowledge of how the human’s eye glance behaviors are affected by 

increased visual search difficulty (induced by a larger amount of buttons displayed on the screen) 

and increased reaching difficulty (induced by a smaller size of buttons) when performed 

simultaneously with a continuous vehicle steering task.  

A computational model based on the cognitive architecture of Queuing Network-Model 

Human Processor (QN-MHP) was built to account for the findings from the experiments. A 
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modeling mechanism for flexible task activation (rather than strict serial activations) was 

developed to allow task component activation to be based on the status of other task components. 

A task switching scheme was built to allow segmentations of tasks to model time-sharing nature 

of multitasking as observed from the experiment. These extensions offer new theoretical insights 

into visual search in multitask situations and enable the model to simulate parallel processing 

both within one task and among multiple tasks.  The QN-MHP cognitive architecture was 

implemented in MATLAB/Simulink, which is a general-purpose numerical computing platform 

that is widely used in both academic and research institutions and industry. 

In the second experiment I investigated the effect of three common control modules on 

the eye glance behavior, task performance for a typical real-world radio-tuning task during 

simulated driving. The findings from this study make contributions to the existing knowledge of 

how the human’s eye glance behaviors, task performance, and workload are affected by different 

features of control modules (physical buttons vs. virtual buttons) and different input methods 

(pressing buttons vs. turning knobs). This experiment was modeled using the QN-MHP model 

with the multitasking features described above. The validation results show that the model could 

account for the observed behavior and performance differences from the empirical data.    

Based on this model, a computer-aided engineering toolkit was developed to enable the 

UI designers of in-vehicle infotainment systems to evaluate, predict, and benchmark the usability 

of design concepts and prototypes. This toolkit supports the usability testing of the UI designs 

created using MATLAB’s GUI design environment (GUIDE). At the front end of the software a 

GUI was developed that allows HMI designers to create digital mockups of designs and setup the 

tasks for simulation. At the back end a digital driver was created for simulating the driver 

cognition and performance based on the cognitive architecture of QN-MHP. From the 

engineering application and practical value perspective, the new toolkit has great advantages 

over the traditional usability testing methods with human subjects. It enables the UI designers to 

explore a larger design space and address usability issues at the early stages with lower cost both 

in time and manpower. This work was based on a generic cognitive architecture modeling 

approach that has the potential to be applicable to other multitasking domains. 
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8.2 Conclusions 

 A new driver steering module was developed within the QN-MHP framework based on the 

latest findings in the driver behavior and modeling work. The results shows the model is able 

to capture the main steering behaviors in terms of the temporal characteristics of vehicle 

lateral position and steering wheel angle that were captured by other studies as well as our 

own driving simulation study. 

 A simulated driving experiment was designed and conducted to examine the driver’s eye 

glance behavior and task performance during a visual search task on a touch screen device. 

The results show that the two basic design parameters being tested, namely the number of 

buttons and their sizes, may affect the driver’s eye glance behavior during the multitasking 

scenario. The results provide insights into the driver’s eye glance strategy and the mechanism 

of task switching between a visual-based continuous task (e.g., steering a car) and a simple 

visual-motor self-terminating task.  

 The QN-MHP model with the new driving module and has successfully modeled the visual 

search task during driving. The model is able to generate similar eye glance behaviors and 

task performance compared with the human data.  

 To further validate the model’s capability in modeling realist in-vehicle tasks, a simulated 

driving experiment was designed and conducted to examine the driver’s eye glance behavior, 

task performance, and mental workload for a typical radio-tuning task. Compared with the 

first visual search task, the radio-tuning task requires multiple button clicking or knob turning, 

and the task completion time as a single task is much longer than the previous visual search 

task. The results show that the three typical control modules used for the task, namely 

physical buttons, virtual buttons, and physical knob, may induce different eye glance 

behavior, task performance, and mental workload. The results also provide insights into the 

driver’s eye glance strategy and the mechanism of task switching between a visual-based 

continuous task (e.g., steering a car) and a realistic multi-step visual-motor self-terminating 

task.  

 The QN-MHP model has successfully modeled the radio-tuning task during driving. The 

model is able to generate very similar eye glance behavior, task-switching behavior, task 

performance, and estimated mental workload compared with the collected human data.  
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 Based on the modeling work, a usability testing software package was developed for the UI 

designers of in-vehicle infotainment systems. The software features an easy-to-use graphical 

user interface for the software users to create digital mockups of the designs to be tested and 

setup the simulation. The software is able to make quantitative predictions of the driver’s 

task performance and workload. 

8.3 Future Research 

8.3.1 Model the effect of learning 

Currently the QN-MHP model only simulates the “expert” human who possesses perfect 

knowledge and skills needed to perform the specified task. In the future it would be beneficial to 

expand the cognitive servers of the QN-MHP to include a mechanism of learning. This would 

allow the model to predict the level of intuitiveness of an UI design from a prospective of a 

novice or experienced user. With this capability it would also make it possible to predict UI 

performances over the course of the ownership of a to-be-tested, which is very important but 

rarely done even with human subjects. 

8.3.2 Multimodal interaction 

Currently the QN-MHP model utilizes vision as the primary perceptual channel and 

generates basic motor actions including reaching an object, clicking a button, turning a knob, etc. 

In the future it would be beneficial to expand the model’s perceptual and motor servers to 

support a wider range of multimodal interactions, following the trend of emerging in-vehicle 

infotainment systems. Examples include, but are not limited to, the use of sound/voice, 2-

dimension or 3-demension gesture controls, haptic feedback, and proprioception (i.e., the sense 

of the position and movement of one’s body parts, essential for modeling body actions without 

looking, e.g., touch-typing).  

8.3.3 More realistic driver models 

Currently the QN-MHP driver module includes only the steering component of the 

driving task. In the real world, however, driving is a lot more complicated, including not only the 

lateral control of steering, but also longitudinal control of pressing the gas or brake pedals (either 

with or without a leading vehicle), negotiating a curve, changing lanes, passing another vehicle, 
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visual checking the road environment (e.g., traffic lights, potential obstacles), etc. Many 

individual models have been developed in the past decades for specific subtask or set of subtasks 

of driving. But it is still a challenge to incorporate these separate models into a unified driver 

model. Currently the QN-MHP driver module only represents a “typical” driver. There’s yet 

parameter to account for the behavior difference between different driver populations, for 

example, the novice and skilled driver, the conservative and aggressive driver, or the younger 

and older driver, etc. More work could be done in this regard to account for the variability of the 

driver population. Also the current model assumes that only the visual information is used as 

model inputs, while studies have found other sensory inputs may also play a role in the steering 

task. As mentioned earlier in Chapter 2, studies have found that the vestibular and kinesthetic 

channels add useful information to improve the driving performance. More work can be done to 

incorporate these sensory channels and their functions to the driver model. All these work 

requires a combination of effort from the field of both empirical study of driver behaviors and 

unified-theory based driving modeling. But it is strongly desired in order to further improve the 

accuracy and applicability of the driver model. 

8.3.4 Model validation with a wider range of realistic secondary tasks 

Currently the model is only validated using a few typical in-vehicle tasks under 

simplified driving conditions (e.g., steering on a straight road with no other vehicles). More 

validations would be desired in the future to further calibrate the model for a wider range of in-

vehicle tasks and driving scenarios. For example, a potential testing case could be using a touch 

screen infotainment system to answer an incoming call in a car-following scenario. This work is 

essential for further improving the model applicability and credibility. 

8.3.5 Further improvements on the CAE usability testing tool 

The CAE usability testing software described in Chapter 7 could be improved in several 

ways. First, the currently software requires the user to conduct a NGOMSL-style task analysis 

which decomposes the task into QN-MHP level operators. This requires the software using to 

have some fairly good understanding of the NGOMSL task analysis method and familiarity to 

the QN-MHP operators. The accuracy of the model outputs may decrease if a less accurate task 

analysis is used. A potential way to solve this problem is to add “templates” for specifying 

typical in-vehicle operations (e.g., clicking a button with visual guidance) at a higher level than 
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the QN-MHP operator level. The users could use these built-in templates to create the tasks to be 

modeled. And the software would compile the user task analysis by automatically decomposing 

the templates into the QN-MHP operators and inserting necessary operator so the cognitive 

model could use. This will help reduce the training time of conducting task analysis, and reduce 

the potential errors and discrepancy during the task analysis.  

Second, currently the MATLAB GUIDE is used for prototyping the to-be-tested UI 

designs. In some applications, the designs are already implemented on some other UI languages 

(e.g., HTML, XML, QML). To test these UIs, the software user first needs to recreate the UIs 

using MATLAB GUIDE. In the future we may explore the techniques to support direct import of 

popular UI formats into the software, so that the UI designs created in other formats could be 

directly tested in their original formats. This would further reduce the time and workload for 

using this usability testing software.  

8.3.6 Model human performance in other domains 

Although the main application of the modeling work described in this dissertation is on 

the infotainment systems for automobiles. The structure of the model treats the driving task (box 

c in Figure 4 ) as a built-in extension module to the task-independent cognitive architecture of 

QN-MHP (box d in Figure 4). This structure allows the modeler to add other extension modules 

in the future if the needs arise. For example, a potential module for flying an airplane could be 

added by the software developer as another built-in task that users could specify and simulate. 

This flexibility makes it possible to extend this software from the usability testing of in-vehicle 

systems to systems in other domains with human-in-the-loop systems. 
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APPENDIX 

Vehicle dynamics module (Rajamani, 2012) 

 

Figure 57. Vehicle dynamics module 

 

∆𝑑 = 𝑠𝑝𝑒𝑒𝑑 ∗ ∆𝑡 

In which: 

Δd is the distance traveled since the last cycle. 

Δt is the time elapsed since the last cycle. 

speed is the speed of the vehicle. It’s currently set as a constant. 

𝜑𝑛𝑒𝑤 = 𝜑𝑜𝑙𝑑 + ∆𝜑 

In which: 
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𝜑𝑜𝑙𝑑 and 𝜑𝑛𝑒𝑤 are the steering wheel position before and after the update.  

𝑅 = {

𝑤ℎ𝑒𝑒𝑙𝑏𝑎𝑠𝑒

sin(𝜑𝑛𝑒𝑤)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝜑𝑛𝑒𝑤 <> 0

1000,000⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝜑𝑛𝑒𝑤 = 0⁡⁡⁡(𝑎𝑣𝑜𝑖𝑑⁡𝑏𝑒𝑖𝑛𝑔⁡𝑑𝑒𝑣𝑖𝑑𝑒𝑑⁡𝑏𝑦⁡𝑧𝑒𝑟𝑜)

 

In which: 

R is the vehicle turning radius (negative value means turning to the left). 

wheelbase is the distance between the centers of the front and rear wheels. It’s a constant 

for a given vehicle.  

𝛼 =
∆𝑑

𝑅
 

In which: 

𝛼 is the change of vehicle heading direction since the last cycle (in radian) 

𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑 + 2 ∗ |𝑅| ∗ sin (
𝛼

2
) ∗ sin⁡(𝑌𝑎𝑤𝑜𝑙𝑑 +

𝛼

2
) 

𝑍𝑛𝑒𝑤 = 𝑍𝑜𝑙𝑑 + 2 ∗ |𝑅| ∗ sin (
𝛼

2
) ∗ cos⁡(𝑌𝑎𝑤𝑜𝑙𝑑 +

𝛼

2
) 

𝑌𝑎𝑤𝑛𝑒𝑤 = 𝑌𝑎𝑤𝑜𝑙𝑑 + 𝛼 

In which: 

X is the distance from the center of the vehicle to the lane center. 

Z is the distance traveled from the origin point along the lane center. 

Yaw: the angle between the direction of the vehicle heading and the direction of the lane 

center. 

𝜃𝑛𝑒𝑎𝑟 = atan (
𝑋𝑛𝑒𝑤

𝑛𝑒𝑎𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
) + 𝑌𝑎𝑤𝑛𝑒𝑤 

𝜃𝑓𝑎𝑟 = atan (
𝑋𝑛𝑒𝑤

𝑓𝑎𝑟𝑇𝐻𝑊 ∗ 𝑠𝑝𝑒𝑒𝑑
) + 𝑌𝑎𝑤𝑛𝑒𝑤 

In which: 

𝜃𝑛𝑒𝑎𝑟 is the updated near angle. 
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𝜃𝑓𝑎𝑟 is the updated far angle. 

nearDistance is near point location (in distance) on the road, and set as a constant (10 m). 

farTHW is the far point location (in time headway) on the road, and set as a constant (4 s). 
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