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Figure 5.1. (a) Conceptual schematic of the oxide RRAM during RS. The agglomerated VOs 

enhance the local electrical conductivity and form the CF. (b) Schematic of the 

potential energy landscape for ion hopping under electric field E. (c) Schematic plot 

of the Pd/Si:Ta2O5/TaOx/Pd bilayer RRAM device. (d) DC I–V characteristics of 

undoped Ta2O5, Si2.7%:Ta2O5, and Si4.2%:Ta2O5 devices. The measured device size is 1 

μm × 1 μm, and the voltage sweep speed is 1 V/s. .......................................................... 65 

 

Figure 5.2. (a) Switching dynamics characterized by pulse measurements with increasing reset 

pulse amplitudes. The set-pulse amplitude is fixed at -1.5 V. Before the pulse 

measurements, the devices are set to LRS with a DC voltage sweep. (b) Schematic of 

the HRS and LRS for different VO drift velocities. δ and r increase as v is increased 

through Si doping. (c) Time-dependent switching transient during the reset and (d) set 

processes. ......................................................................................................................... 68 

 

Figure 5.3. The three-step measurement procedure to evaluate the effective hopping distance. 

(a) VFORMING–doxide plot to evaluate ESET; the slope represents ESET. (b) VSET–doxide plot 

to estimate δ; the y-intercept represents ESET·δ. (c) VSET–ln(tSET) plot to extract a; the 

slope represents (2kT/q)·(δ/a). ......................................................................................... 70 

 

Figure 5.4. Measurement results of (a) VFORMING–doxide to extract ESET and (b) VSET–doxide to 

extract δ in the three different samples. ........................................................................... 72 

 

Figure 5.5. (a) Snapshots of the amorphous Ta2O5 and Si-doped Ta2O5 structures obtained in 

the ab initio simulation. The Ta, O, and Si atoms are colored in dark green, red, and 

blue, respectively. (b) Pair-correlation functions of the amorphous Ta2O5 and Si-

doped Ta2O5 calculated at room temperature. (c) Histograms of the O–O distance 

from a selected oxygen atom to a neighboring oxygen atom. Three oxygen atoms are 

selected randomly, as shown in panel a. (d) O and Ta atomic ratio near the selected 

oxygen atoms. .................................................................................................................. 74 

 

Figure 5.6. (a) Schematic illustration showing a synapse connecting a pair of neurons, where 

the synaptic functions can be emulated by RRAM devices. (b) Analog switching 

behavior obtained by pulse trains consisting of 150 reset pulses (1.1 V, 10 μs) 

followed by 150 set pulses (-0.9 V, 100 μs) with small, nonperturbative read voltage 

pulses (0.2 V, 1 ms) applied in the intervals. The conductance changes are measured 

during the read pulse and plotted as a function of applied pulse number. The error 

bars indicate the standard deviation from the measured data set, which are collected 

from 50 such test cycles in five different devices in each case. ...................................... 76 

 

Figure 5.7. Analog switching behaviors obtained by pulse trains in four different cases. ........... 77 
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Figure 5.8. Implementing four different types of STDP using tantalum oxide RRAM. The pre-

spike voltage (VPre) and post-spike voltage (VPost) are applied to the TE and BE of the 

RRAM, respectively. The net programming voltage (VPre – VPost) applied across the 

device depends on the positive or negative moments tPost – tPre. The dots indicate the 

experimental data, and the lines are guides to the eye. The insets show the (red) pre- 

and (blue) postsynaptic spike schemes. ........................................................................... 78 

 

Figure 5.9. Measured cycling endurance performance of analog switching in (a) a Ta2O5-x 

RRAM and (b) a Si4.2%:Ta2O5-x RRAM. Each test cycle consists of a pulse train 

including 50 reset (1.25 V, 10 μs) pulses followed by 50 set (-1.0 V, 10 μs) pulses. ...... 79 

 

Figure 6.1. Modelling the switching performance of a RRAM. (a) DC I-V characteristics of a 

typical RRAM device showing the bipolar switching. (b)  Schematic image of a 

RRAM device having oxygen vacancy filament. (c) Calculated conductance and 

internal state variable with 100 pulses of potentiation (-1 V, 10μs) and depression 

(1.15 V, 10μs), consecutively. (d) The sequences of the applied pulses showing 4 sets 

of 100 pulses of potentiation and 100 pulses of depression. (e) The measured and 

calculated conductance changes measured by read (0.2V) pulse with the set and reset 

processes shown in Fig. 1(d). .......................................................................................... 87 

 

Figure 6.2. The network schematic. The column electrodes represent inputs and the row 

columns represent outputs. The RRAM devices are located at the intersections where 

the column electrodes and row electrodes connected. ..................................................... 89 

 

Figure 6.3. The result of principal component analysis. (a) The result of read process through 

RRAM devices showing y1 at horizontal axis and y2 at vertical axis before learning 

process. (b) Principal component analysis using traditional covariance matrix of the 

data. (c) Principal component analysis using Sanger’s rule without the RRAM model. 

(d) Principal component analysis using Sanger’s rule with the RRAM model. .............. 93 

 

Figure 6.4. Weights distribution changes for (a) the primary principal component, (b) the 

second principal component before and after learning process. ...................................... 95 

 

Figure 6.5. Weights changes with individual learning cycles for (a) the primary principal 

component, (b) the secondary principal component. ....................................................... 95 

 

Figure 6.6. The effects of potentiation/depression voltage amplitudes and learning rate 

changes. (a) The histogram of applied pulse widths as a function of 

potentiation/depression voltage amplitude. (b) The weight changes as a function of 
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file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315012
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315012
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315012
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315012
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315012
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315012
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315013
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315013
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315013
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315014
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315014
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315014
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315014
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315014
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315014
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315014
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315014
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315015
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315015
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315015
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315016
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315016
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315016
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315016
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315016
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315017
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315017
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315018
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315018
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315019
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315019
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315019
file:///C:/Users/Shinhyun%20Choi/Dropbox/Paper%20work/Thesis/Shinhyun%20Choi_thesis_finalversion.docx%23_Toc417315019


 xiii 

Figure 6.7. The effect of non-uniformity issue of the devices. (a) The measured data for the 

analog switching. The blue line and error bar represent the average and standard 

deviation, respectively. (b) Calculated analog behaviors adding the non-uniformity of 

the devices. (c) The result of the principal component analysis without device non-

uniformity. (d) The result of the principal component analysis with device uniformity. 98 

 

Figure 6.8. Energy barrier of ion hopping process. .................................................................... 101 

 

Figure 6.9. The details of conductance change measured at 0.2 V with 100 pulses of 

potentiation (-1 V) and 100 pulses of depression (1.15 V), consecutively for (a) 

measured conductance for 9 RRAM devices of the primary principal component (b) 

measured conductance for 9 RRAM devices of the second principal component (c) 

simulated conductance for 9 RRAM devices of the primary principal component (d) 

calculated conductance for 9 RRAM devices for the secondary principal component. 105 

 

Figure 7.1 Device fabrication and analog switching behavior. (a) SEM images of the 

fabricated two sets of 16 by 1 RRAM devices. Scale bar: 100 μm.  (b) DC I-V 

characteristics of a typical RRAM device showing the bipolar switching with 100 

pulses of potentiation (-1 V, 10μs) and depression (1.15 V, 10μs), consecutively. Inset: 

schematic image of a RRAM device having oxygen vacancy filament. This is not to 

scale. ............................................................................................................................... 111 

 

Figure 7.2 Peripheral circuitry (a) the photo image of the board with label parts. (b) schematic 

of the procedure of the board operation. .........................................................................112 

 

Figure 7.3 (a) Experimental measurements collected by the board for 9 RRAM devices in the 

same column (corresponding to the second principle component), showing the analog 

conductance change and device-device variations. The conductance was measured 

with 0.2 V, 1 ms pulses, and the devices were subject to 100 pulses of potentiation (-1 

V, 10 μs) and 100 pulses of depression (1.15 V, 10 μs). (b) The solid line and the error 

bars represent the average and standard deviation. ........................................................113 

 

Figure 7.4 Flowchart showing the overall operation procedure. .................................................115 

 

Figure 7.5 Results of principal component analysis. The data are plotted on y1 and y2 axis. (a) 

Initial results of an untrained RRAM network. (b) Results of a partially trained 

RRAM network. (c) Results of a fully trained RRAM network. ...................................116 

 

Figure 7.6 Weights constituting (a) the primary principal component and (b) the secondary 

principal component before (upper graph) and after (lower graph) the learning 
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ABSTRACT 

Non-volatile memory technology scaling has been driven by the ever increasing needs of 

high-capacity and low-cost data storage. Scaling the conventional floating gate device structure, 

however, has faced with several technical challenges due to constraints of electrostatics and 

reliability. Alternative memory approaches based on non-transistor structures has been 

extensively studied. Among the new approaches, resistive switching devices (RRAM) have 

attracted tremendous attention due to their high endurance, sub-nanosecond switching, long 

retention, scalability, low power consumption, high ON/OFF ratio and CMOS compatibility.   

In this thesis, we present a systematic study on the fundamental understanding and 

potential applications of RRAMs. Firstly, we introduce a quantitative and accurate model of the 

dynamic resistive switching processes, by solving the coupled equations for oxygen vacancy 

transport, current continuity and Joule heating. Secondly, we show systematic investigations on 

the resistance switching mechanism through detailed noise and transport analysis, and develop a 

unified model to explain the conduction path and account for the resistance switching effects. 

Thirdly, we perform detailed retention studies of oxide-based RRAMs at elevated temperatures 

and develop an oxygen diffusion reliability model of RRAM devices. The activation energy for 

oxygen vacancy diffusion is directly calculated from the measurement. Analytical modeling and 

detailed numerical multi-physics simulation is discussed. Fourthly, we report that doping 

tantalum oxide based RRAM with silicon atoms leads to larger dynamic ranges with improved 

accessibility to the intermediate states which is suited for neuromorphic computing applications. 
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Lastly, we investigate the application of RRAMs in neuromorphic computing by showing data 

clustering based on unsupervised learning. Through both simulation and experimental studies, 

we demonstrate that a crossbar array of RRAM devices can perform data clustering through 

unsupervised learning and enable effective data classification in a real-world problem. 

 These studies have not only helped the development and optimization of RRAM devices 

but also highlighted their application potential beyond simple memory. We believe continued 

development of this emerging device structure may lead to future high-performance and energy 

efficient memory and logic hardware systems. 
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Introduction 

 

 Non-Volatile Memory 

Non-volatile memories are widely used in many applications such as tablet PCs, smart 

phones, and solid state drives as shown in figure 1.1. The market of non-volatile memory is 

rapidly growing and has become a main driver for the semiconductor industry. For example, 38% 

annual growth is expected from 2013 to 2017, as shown in figure 1.2. 

 

 

 
Figure 1.1. Applications of non-volatile memories. Figure adapted and modified from [1]. 
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 Flash Memory Market 

Flash memory is currently the unquestionable leader of the non-volatile market. The 

demand of flash memory market has been rapidly increasing because of the advantages such as 

relatively low cost, small size, and fast speed (compared to hard drives). Flash memory has been 

a popular choice for the mobile platforms from digital camera to tablets and smart phones. The 

exponential growth of flash memory is expected to continue due to data explosion from personal 

communication to large commercial data.  

 
Figure 1.2. The demand of non-volatile memories from 2012 to 2017. Reproduced from [2]. 
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 Flash Memory and its scaling issue 

A non-volatile flash memory cell based on a floating gate is shown in Fig 1.3. It is based 

on a normal metal oxide semiconductor (MOS) structure with a floating gate and tunneling oxide. 

The control gate and the floating gate are made of polysilicon and the tunneling oxide thickness 

is ~100 Å . The inter poly dielectric layer between the two gates is made of oxide/nitride/oxide 

(ONO) structure and the thickness is 120 ~140 Å . To program the device, hot electrons in the 

channel with high kinetic energy can overcome the tunneling oxide/silicon barrier (VGS = ~ 10 V, 

VDS = ~ 4 V).   The electrons captured in the floating gate modulate the threshold voltage (Vt) 

of the cell. To erase the device, Fowler-Nordheim (FN) tunneling is utilized. By applying high 

negative bias (~ -8 V) to the control gate and high positive bias (~ -8V) to the substrate, the 

electrons are driven back into the silicon layer [4].  

 
Figure 1.3. Schematic of floating gate flash memory. Reproduced from [3]. 
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Flash memory scaling is driven by the market needs of high-capacity, low-cost data 

storage capabilities. Scaling the Flash device structure has however encountered several 

technical challenges [5,6]. First, floating gate interference is the one of the main problems. The 

space between the floating gate in one cell and the floating gate in an adjacent cell has become 

small enough that it may cause the charges in one float gate to cause Vt shift in the adjacent cell 

hence leading to a read error. 

Second, tunnel oxide scaling is also a limitation factor. Flash memory utilizes tunneling 

effect which can cause damage to the tunnel oxide. The operation of flash memory is limited by 

stress induced leakage current (SILC) related charge transfer problems. Scaling (e.g. reducing the 

thickness of) the tunnel oxide exacerbates SILC effect.  

Third, flash memory scaling increases the impact of single-electron trapping/detrapping 

in tunnel oxide which causes random telegraph noise (RTN). This results in large Vt instabilities.   

Additionally, with the scaled flash memory with constant Vt, small number of stored electrons 

are involved, resulting in large error with the loss of even a few electrons.  

Fourth, the reduction of the number of electrons in the floating gate causes few electron 

phenomena, resulting in stochastic operation in the program, erase, and retention that lead to 

large variability and unreliable operations.    

 Emerging Non-Volatile memories  

To address the issues related with Flash memory scaling, alternative memory approaches 

are being explored. In this section, candidates including Phase-change RAM, Ferroelectric RAM 

and Magnetoresistive RAM as emerging non-volatile memories are introduced.  
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1.4.1 Phase-change RAM 

 

Phase-change random access memory (also known as PCRAM, PRAM or Chalcogenide 

RAM) utilizes the memory effect from the phase change of a material. This material switches 

back and forth between the amorphous (high resistivity) and crystalline (low resistivity) states. 

The device structure is shown is Fig.1.4(a). For the phage change material (PCM), a 

chalcogenide alloy of germanium, antimony and tellurium (GeSbTe or GST) is used [8]. As the 

device is fabricated, the PCM is usually in the crystalline phase due to the processing 

temperature. To change the PCM to the amorphous phase, the programming region shown in Fig. 

1.4(a) is melted by Joule heating and quenched rapidly to room temperature. As shown in Fig. 

1.4(b), the applied pulse is large to achieve high temperature (600 °C) for a short time. In this 

process, the PCM loses its crystallinity and stays in an amorphous glass-like state. This 

amorphous region, along with the remaining crystalline region in the rest of the film in series, 

 
Figure 1.4. (a) Cross-section schematic of the conventional phase-change memory cell. (b) Temperature- 

applied electrical pulses widths for SET, RESET and Read pulses. Reproduced from [7]. 
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determines the resistance of the cell. On the other hand, to change the PCM back to the 

crystalline state, a current pulse with medium amplitude is applied to achieve a temperature 

between the melting point and the crystallization point. Additionally, the pulse is applied for a 

long enough time (in the order of 100ns) to ensure the film has enough time to fully crystallize. 

To read the device state (high resistivity or low resistivity), a low read current pulse is applied to 

keep the device from disturbance as shown in Fig. 1.4(b). However, the continuous heating and 

quenching process causes void formation (stuck at high resistivity) or elemental segregation. 

Additionally, thermal coupling between adjacent cells also limits the scaling potential of PCM 

devices. 
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1.4.2 Ferroelectric RAM 

 

Ferroelectric RAM (Ferroelectric random access memory or FeRRAM) is another non-

volatile RAM structure. In a conventional 1T1C structure, the device resembles conventional  

DRAM cells consisting of a transistor structure and a capacitor, whereas the FeRAM utilizes a 

ferroelectric layer instead of a dielectric layer in the capacitor as shown in Fig. 1.5(a). Typically 

 
Figure 1.5. (a) A schematic circuit diagram for a typical 1T1C FeRAM cell. (b) Polarization-voltage hysteresis 

of a MFM capacitor. (c) A schematic circuit diagram for a 1T FeFET device. (d) Source-drain current vs. gate 

voltage hysteresis of a FEFET device. Reproduced from [9].  

a

c

b

d

A

B
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lead zirconate titanate (PZT) is used in FeRAM. The polarization properties of a ferroelectric 

layer are used to achieve non-volatile memory effect. When the external electric field is applied 

across the ferroelectric layer, the dipole moments inside the ferroelectric layer align to the field 

direction above the coercive field and leading to a hysteresis effect in the polarization-electric 

field measuremnets as shown is Fig 1.5(b). After the external electric field is removed, the 

ferroelectric material retains its polarization as shown in points A and B of Fig. 1.5(b). FeRAM 

shows low power consumption, fast speed and high endurance. However, the main problem of 

FeRAM is the destructive read process. The read process utilizes writing process to the cell. If a 

small (displacement) current pulse is detected, it implies that the device state (polarization) 

changes and it was OFF state. The low density associated with the capacitor structure is also 

another bottleneck of a FeRAM.  

To overcome the limitation of destructive read process and scaling issues, FeRAM 

structures without the capacitor (1T structure) have been proposed, as shown in Fig. 1.5(c). This 

structure utilizes ferroelectric materials as the gate insulator. The polarity of ferroelectric 

materials modulates the channel conductance of the underlying semiconductor, so the memory 

effect is obtained as a shift in threshold voltage as shown in Fig. 1.5(d). However, new 

challenges such as chemical reactions and intermixing between Si and the ferroelectric stack and 

the short retention time prevent it from challenging the current flash memory market. 

 

1.4.3 Magnetic RAM 

Magnetic RAM (MRAM) uses magnetic effects instead of electrical charges currently 

used in memory technology. A MRAM cell has two ferromagnetic electrodes. While one has a 
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fixed magnetic polarity, the polarity of the other can be switchable. Between the two layers, there 

is a thin insulating tunnel barrier. If the polarities of the two electrodes are parallel to each other, 

the tunnel resistance of the device is low (ON state). On the other hand, if the polarities are anti-

parallel to each other, a high tunnel resistance state (OFF state) is obtained [10-12]. To switch the 

magnetization of the free layer, a large current (on the order of 10mA) is needed to produce the 

required external magnetic field, which is disadvantage of MRAM. The crosstalk issue at high 

density due to the spread of the magnetic field into neighboring cells is also a problem, even 

though MRAM has advantages of high speed and very long endurance.  

Alternatively, instead of using an external magnetic field, the magnetization of the free 

layer can be switched by the spin transfer torque (STT) effect. In this case, a simple two-terminal 

structure can be used and STT-based memory (STT-MRAM) has attracted significant interest 

because the switching current in STT-MRAM decreases when the technology scales down. The 

basic structure consists of one transistor connected in series with the magnetic tunnel junction 

(MTJ). However, the switching current is still too high for most commercial applications. 

Additionally, the energy barrier for spontaneous magnetization relaxation is reduced as the 

magnetic electrode size is scaled, leading to higher error rates.  

 

In the following section, we will discuss resistive memory which has recently emerged 

as a leading candidate of future non-volatile memory. 
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 RRAM 

RRAM (resistive random access memory) is a two terminal device which consists of a 

top electrode, a switching medium, and a bottom electrode, as shown in Fig 1.6. The top and 

bottom electrodes can be metal or compound material with high conductivity. The switching 

medium sandwiched by the two electrodes is normally an insulating material. This memory cell 

can be integrated in high-density because a device can be formed at each point in which the top 

electrode and bottom electrode are crossed to each other. The resistance of the switching medium 

material can be modulated by applying voltage or current between the electrodes and be reset 

(high resistivity) and set (low resistivity) repeatedly.  

In Fig. 1.7(a), digital-type switching behavior with abrupt resistance changes is shown. 

This type of device has been utilized for non-volatile memory used for data storage. To date, 

RRAM has demonstrated endurance up to 1012 [14,15], subnanosecond switching [16], device 

size scaling down to 10nm [17], long retention [18], low energy consumption [19], high ON/OFF 

ratio [20], 3D structure [21], and CMOS compatibility [22,23].  

 
Figure 1.6. a two-terminal switch can be formed with a switching medium sandwiched between a pair of 

electodes. Reproduced from [13]. 
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 Figure 1.7(b) illustrates analog-type behavior which has continuous resistance changes. 

While the digital-type switching has been utilized for non-volatile memory used for data storage, 

analog-type switching is being investigated for other applications such as neuromorphic 

computing. The continuous resistance change can mimic the tunable synaptic weight that 

modulates signals between neurons. This allows synaptic functions to be directly implemented to 

hardware based neuromorphic systems [25,26]. Several groups including us have demonstrated 

fundamental synaptic learning functions such as spike-timing-dependent-plasticity (STDP) [27], 

short-term and long-term plasticity [24,26], and frequency-dependent plasticity [24,28]. 

 

There are different ways to classify RRAM devices. The most natural classifications are 

based on switching characteristics (Unipolar vs. Bipolar) and switching mechanisms 

(Electrochemical metallization vs. valence change).  

 
Figure 1.7. DC I-V characteristics. (a) Digital-like type device. Obtained from stack of Pd/ TaOx /Ta2O5/Pd. 

(b) Analog-like type device. Reproduced from [22]. 
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1.5.1 Bipolar Switching vs. Unipolar Switching 

 

RRAM devices can be divided into two categories with respect to the electrical polarity 

required for the switching: bipolar switching device and unipolar switching device as shown in 

Fig. 1.8. For the unipolar devices, the switching behavior does not rely on the polarity of the 

applied programming voltage. With a single voltage polarity, the device can switch from ON to 

OFF or from OFF to ON. As shown in Fig. 1.8(a) the set voltage is always higher than reset 

voltage. For the unipolar device, Joule heating is believed as the main reason of the resistance 

switching as conducting filaments can form and rupture inside the switching layer assisted by 

thermal effects. During the set transition, a partial breakdown occurs in the dielectric layer, 

followed by conductive filament formation which is modulated by Joule heat, leading to the low-

resistance state (LRS). During the reset transition, the filaments are ruptured thermally due to the 

 
Figure 1.8. Classification of the switching characteristics in a voltage sweeping experiment. (a) Unipolar 

switching. (b) Bipolar switching. Reproduced from [29]. 

a b
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high current density as shown in Fig. 1.8(a), leading to the high-resistance state (HRS). For the 

bipolar devices, the switching behavior depends critically on the polarity of the programming 

voltage. As shown in Fig. 1.8(b), opposite voltage polarities are required for the reset and the set 

processes. This implies that the switching mechanism is an electric-field driven process that 

leads to the formation and rupture of the filaments in the dielectric. More detailed discussions on 

the switching mechanism will be presented in chapter 2.  

1.5.2 Cation Migration vs. Anion Migration 

Based on the active species that lead to resistive switching, RRAM devices can be 

characterized as electrochemical metallization (ECM) or valency change (VCM) devices. 

Resistive switching devices based on cation migration are called electrochemical metallization 

(ECM) or conductive bridge random access memory (CBRAM). The structure consists of an 

electrochemically active electrode (e.g. Ag or Cu) as the top electrode, an electrochemically inert 

electrode including W, TiN, doped-poly Si [13,30] as the bottom electrode. For the switching 

medium, an electrolyte material (e.g. chalcogenide materials) or conventional dielectric material 

(SiO2, Al2O3 or a-Si) is used. When a positive voltage is applied to the electrochemically active 

electrode (Ag or Cu), the electrode can be oxidized. Here “oxidation” is defined broadly as the 

process of a metal atom losing an electron or electrons and forming a cation. The oxidized 

cations will migrate inside the switching medium in the direction towards the inert bottom 

electrode and eventually become reduced and deposited either inside the switching material or on 

top of the inert electrode. This leads to the growth of metal filaments that modulate the overall 

resistance of the device. Instead of cations, the other class of RRAM is based on anion migration, 

mainly oxygen ions, and are termed as VCM or simply oxide-RRAM. Here inert electrodes are 
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used, and binary transition metal oxides or complex perovskite oxides are used as the switching 

medium. The resistance modulation is achieved by the migration and relocation of oxygen ions, 

or equivalently, positively charged oxygen vacancies (VOs). There are possibly two effects in 

general. In one case, the accumulation of the VOs at the electrode/switching medium interface 

can change the Schottky barrier height hence resulting in a change of the resistance of the device. 

In the other case, the redistribution of VOs can lead the formation and rupture of filaments 

consisting of VO-rich regions. To date, high endurance up to 1012 [15], long retention of < 10 

years, fast switching speed of <1ns [16], device size scaling down up 10 nm [17] has been 

demonstrated in oxide-based RRAM. 

 

1.5.3 Memristor 

The RRAM also falls in the category of memristor [31]. A mathematical framework of 

memristor (memristive systems) has been used to explain resistive switching effects in RRAM 

[30]. The resistance of memristor is determined by the instantaneous input (i) and one or a set of 

internal state variables (w) as shown in equation Eq. (1):  

𝑖 = 𝐺(𝑤, 𝑣)𝑣                                               (1) 

While a normal resistor (linear or non-linear, e.g. diode) may also be determined by an internal 

state variable (e.g. depletion width in a diode), the state of a normal resistor is determined 

directly by the instantaneous input (current or voltage). On the other hand, for a memristor, the 

input only determines the change rate of the state variable, rather than its overall value. The state 

variable equation of a memristor is shown in Eq. (2). 

𝑤̇ = 𝑓(𝑤, 𝑣)                                               (2) 
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Eq. (2) essentially states that the device state is determined by a time integral of the input 

conditions, thus leading to a history-dependent resistance. Specifically, RRAM device operations 

such as ionic diffusion and drift during conduction path formation or rupture can be effectively 

modeled within the memristor framework, which not only explains the experimentally observed 

hysteresis effects but also provides a framework for fundamental understanding of the device 

physics and allows effective analytical and numerical models to be developed that can help 

predict device operation in a circuit and guide device optimization as shown in chapter 6 and 

chapter 7.  

 

1.5.4 Research on RRAM 

As mentioned in the previous section, RRAM has attracted significant interest among 

academia and industry due to its properties such as low switching voltage [13], non-volatility 

[16], high endurance [15], and multi-level characteristics [33-35]. In this thesis, we first focus on 

the fundamental understanding of RRAM operation through systematic experimental studies and 

multi-physics modeling, including detailed standard transport studies as well as non-standard 

methods such as noise analysis and retention failure studies. Following the mechanism analysis, 

we show enhanced performance of analog switching behavior through a doping process. Finally, 

we demonstrate potential application of RRAM devices in computing through a principal 

component analysis (PCA) network using RRAM arrays. 
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 Organization of the Thesis 

In chapter 1, we have discussed several topics related to current and alternative non-

volatile memory technologies. In chapter 2, we focus on modeling of the dynamic resistive 

switching processes in RRAM. Specifically, by solving the three equations for oxygen vacancy 

transport, current continuity and Joule heating, we present a quantitative and accurate dynamic 

switching model that fully accounts for the resistive switching behaviors in RRAM in a unified 

framework.  

In chapter 3, we perform systematic investigations on the resistance switching 

mechanism through detailed noise analysis, and show the resistance switching from high-

resistance to low-resistance is accompanied by a semiconductor-to-metal transition mediated by 

the accumulation of oxygen-vacancies in the conduction path. From noise and transport analysis, 

we discuss the density of states and average distance of the VOs at different resistance states, and 

develop a unified model to explain the conduction in both the HRS and the LRS and account for 

the resistance switching effects in these devices. Significantly, it is found that even though the 

conduction channel area is larger in the HRS, during resistive switching a localized region gains 

significantly higher VO and dominates the conduction process.  

In chapter 4, we report detailed retention studies of RRAM at high temperatures and the 

development of oxygen diffusion reliability model of oxide-RRAM devices. The device 

conductance in low resistance state (LRS) is constantly monitored at several temperatures (above 

300°C). Specifically, the activation energy for oxygen vacancy diffusion can be directly 

calculated from the failure time versus temperature relationship. The experimental result is well 

explained by both analytical modeling and detailed numerical multi-physics simulation, which 



 17 

confirm the filamentary nature of the conduction path in LRS. Finally, this experiment reveals 

the existence of multiple filaments in the same device. 

In chapter 5, we show that doping tantalum oxide based RRAM with silicon atoms can 

facilitate oxygen vacancy formation and transport in the switching layer with adjustable ion 

hopping distance and drift velocity. The devices show larger dynamic ranges with easier access 

to the intermediate states while maintaining the extremely high cycling endurance (> 1010 set and 

reset), and are well suited for neuromorphic computing applications. We further provide a 

characterization methodology to quantitatively estimate the effective hopping distance of the 

oxygen vacancies.  

In chapter 6, we investigate the feasibility of using RRAM devices to implement PCA 

network. First, the conductance changes of RRAM devices in a response of voltage pulses is 

studied and modelled with one internal state variable to trace the analog behavior of a RRAM. 

Secondly, we utilize Sanger’s learning rule, which is derived from Hebb’s learning rule, to a 

crossbar array of RRAM devices to perform PCA network and the weights distribution of the 

array is re-adjusted by the applied pulses calculated by the rule. We also examine the effect of 

device non-uniformity issue on the PCA network. In chapter 7, we discuss the experimental 

demonstration of unsupervised learning using RRAM networks and periphery circuitry based on 

the result of chapter 6.   

In chapter 8, a brief discussion of this thesis and future works are mentioned.  
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Comprehensive Physical Model of Dynamic Resistive 

Switching in an Oxide Based RRAM 

 

 Introduction  

As discussed in Chapter 1, RRAM devices are two-terminal electrical devices whose 

resistances can be changed through internal reconfigurations in the switching layer. 

Mathematically, these devices can be categorized in the memristor model where the resistive 

switching process can be described by the dynamic evolution of a set of internal state variables 

[1-3]. Such devices have been extensively studied for nonvolatile memory storage, neuromorphic 

computing, and implementation logic applications [4,5,6-9]. However, although a number of 

models have been proposed to describe the device behavior, they are either non-dynamic and can 

only predict steady-state properties [10] or oversimplified [3,11-15]. Providing an accurate, 

physics-based RRAM model that can explain and predict the rich dynamic resistive switching 

behaviors not only fills an urgent need that enables accurate simulation of large-scale RRAM 

systems but also can significantly improve our understanding of the different factors that drive 

the switching process and will be critical for continued optimization and design of this important 

class of devices.  

In this chapter, we present a complete physical model that quantitatively and accurately 

describes the rich resistive switching behaviors in a tantalum-oxide-based bilayer RRAM. As 

memory devices, tantalum-oxide-based RRAM devices have shown excellent switching 
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performance between two discrete resistance levels, including extreme cycling endurances of 

over 1012 cycles and fast switching speeds below 10 ns [16,17]. By solving the dynamic transport 

equations of oxygen vacancies, we can precisely predict the resistive switching behaviors in 

tantalum-oxide-based RRAM devices in both DC and pulse operation modes using a single set of 

material-dependent parameters. More importantly, analog switching behaviors were also 

observed in the simulation and confirmed experimentally. Our quantitative analysis reveals that 

the SET process is driven by both the electric field and thermal effects, while RESET is mainly 

driven by thermal effects.  

 Resistive switching behavior of TaOx/Ta2O5 bilayer  

 The tantalum-oxide-based bilayer RRAM consists of a highly resistive Ta2O5 layer on 

top of a less resistive TaOx base layer sandwiched by top and bottom Pd electrodes (TE and BE) 

[18], as shown in Fig. 2.1(a). To explain the resistive switching behaviors, the concept of the 

formation/rupture of conductive filaments (CFs) has been generally accepted [19]. Here the 

filaments correspond to regions with high oxygen vacancy (VO) concentration so the local 

electrical conduction increases significantly and can even become metallic [20]. The device can 

be set (from a low-conductance state to a high conductance state) or reset (from a high 

conductance to a low conductance) among different resistance states by controlling the properties 

(e.g. VO concentration and shape) of the filament.  

Our simulation starts from the state immediately after the electroforming process, where 

a continuous CF connects the TE and TaOx layer in figure 2.1(c). The dynamic resistance 

switching processes are driven by VO migration through three factors: local electric field, VO 
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concentration gradient, and temperature gradient due to Joule heating [19-21]. Thus, the 

complete resistive switching process can be captured after self-consistently solving the three 

partial differential equations (PDEs) [15,21,22]: (1) a drift/diffusion continuity equation for VO 

transport  (equation (1)), (2) a current continuity equation for electrical conduction (equation 

(2)), and (3) a Fourier equation for Joule heating (equation (3)), as summarized in Figure 2. 

These three PDEs were self-consistently solved here through a numerical solver (COMSOL) to 

calculate the VO concentration nD, the electrostatic potential ψ, and the local temperature T. The 

details for the proposed model are discussed in Figures 2.2, 2.3 and 2.4. 

Figure 2.1(b) shows the measured and calculated DC I-V characteristics during the set 

and reset processes. The reset transition starts near 0.9 V, and the resistance gradually increases, 

 
Figure 2.1. Modeling a tantalum oxide RRAM during set/reset. (a) Schematic and cross-sectional TEM 

images of the Pd/Ta2O5/TaOx/Pd bilayer RRAM device. (b) Measured and calculated DC I-V characteristics 

of the Pd/Ta2O5/TaOx/Pd device. The measured device size is 50 nm × 50 nm, and the voltage sweep speed is 2 

V/s. (c) Calculated 2-D maps of nD as well as (d) 1-D profiles of nD along the center of the CF in the initial 

state, after reset, and after the set process. The depleted gap is determined as the position where nD = 5 × 1020 

cm-3. The z = 0 position is the Ta2O5/TaOx interface. 

-1 0 1 2
10

-6

10
-5

10
-4

10
-3

 measured data

 model

C
u

rr
e
n

t 
[A

]

 

 

Voltage [V]

a

b

SET

RESET

50 nm × 50 nm

Sweep rate = 2 V/s

Pd

Pd

Ta2O5

TaOx

Conductive

Filament

10 nm

Pd

Ta2O5

TaOx

Pd

Initial
(forming)

c

0.5

1.0

 

 

n
D
 x

 1
0

2
1
 [

c
m

-3
]

0.5

1.0

 

 

0 1 2 3 4 5

0.5

1.0

 

Z [nm]
n

D

[c
m

-3
]

5×1020

0

RESET SET

gap

Initial (forming)

RESET

SET

CF

TaOx

Ta2O5

z = 0

d



 25 

finally achieving a state that is roughly one decade more resistive after reset. Similarly, the set 

transition occurs at a negative voltage, and both the calculated reset and set processes are 

accurately captured by the model. The physical nature of the set and reset processes can be 

studied by examining the nD profiles, as shown in Figure 2.1(d). Specifically, during reset a gap 

of ~ 1 nm with a depleted VO concentration was formed neat the TE, leading to the increase of 

the device resistance; while refilling the gap during set leads to the recovery of the high 

conductance.  

 Details of the model 

To describe the drift/diffusion migration of VO, the model proposed by Mott and Gurney 

was employed [23]. The diffusion coefficient is given by D = 1/2∙a2∙f∙exp(–Ea/kT), and the drift 

velocity is given by v = a∙f∙exp(–Ea/kT)∙sinh(qaE/kT), where f is the escape-attempt frequency 

(1012 Hz) [23], a is the effective hopping distance (0.1 nm), and Ea is the activation energy for 

migration.  

Considering drift and diffusion, the time-dependent evolution of the VO concentration 

(nD) can be expressed by the following continuity equation: 

)( TDSnvnnD
t

n
DDD

D 



.               (1) 
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Here, 
DnD  and 

Dvn  are terms for Fick diffusion flux and drift flux, respectively. The 

TDSnD  term is the Soret diffusion flux, where S is the Soret coefficient. Soret diffusion, also 

referred to as thermophoresis, is the movement of molecules along a temperature gradient and is 

commonly observed in liquids or molecular solutions [24]. However, its role in solid oxides has 

recently been emphasized [25,26]. The Soret diffusion term describes the tendency for VO to 

move toward the hotter region in a temperature gradient [25]. It is noted that the Soret diffusion 

term has positive sign because oxygen move towards low temperature region so oxygen 

vacancies, its counterpart, move towards high temperature. We found the Soret diffusion term 

needs to be included in the transport continuity equation to achieve accurate simulation. Equation 

 
Figure 2.2. Equations and parameters in the proposed model. Three PDEs are self-consistently solved with a 

numerical solver. 
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(1) can be solved when coupled with the current continuity equation for electrical conduction, 

such that 

0                     (2) 

where σ is the electrical conductivity; and with the steady-state Fourier equation for Joule 

heating,                                                                                                 

2||   EJTkth                 (3) 

where kth is the thermal conductivity. The transient term of the Fourier equation (ρCp•∂T/∂t) 

was disregarded in equation (3) because the values of the specific heat capacity (Cp) and mass 

density (ρ) for the different nD values are not known. Instead, an additional fitting parameter γ is 

introduced to describe the transient effect which will be different for DC and AC programming 

conditions, where γ = 1 and γ = 2 were used for DC and AC, respectively, in the simulation.  

The three PDEs in Eqs. (1)–(3) were self-consistently solved by a numerical solver 

(COMSOL) to calculate nD, ψ (potential), and T (temperature). To solve equations (2) and (3), 

models for the electrical conductivity (σ) and thermal conductivity (kth) are required. To this end, 

both σ and kth are assumed to depend on nD, as shown in Figure 2.3 [11,27]. The electrical 

conductivity is given by the Arrhenius equation [28], σ = σo∙exp(–EAC/kT), where σo is a pre-

exponential factor and EAC is the activation energy for conduction. As shown in Figure 3a, σo is 

assumed to linearly increase from 10 to 940 Ω-1 cm-1 with increasing nD. In addition, Figure 

2.2(b) shows the conduction activation energy EAC used in the calculations. The activation 

energy is -0.006 eV for high nD and linearly increases to 0.05 eV with decreasing nD; these 

values correspond to the measured values at the LRS and the HRS, respectively. Moreover, a 



 28 

linear dependence of kth on nD is assumed on the basis of the Wiedemann-Franz law, as shown in 

Figure 2.2(c) [27]. The minimum value for nD = 0 refers to the thermal conductivity of the 

insulating Ta2O5, kTa2O5 = 0.12 W m-1 K-1 for T0 = 300 K [29]. In addition, linear temperature 

dependence of kTa2O5 is assumed, as kTa2O5 = 0.12•(1+λ(T−T0)), where λ = 0.1 is the linear 

thermal coefficient. The maximum kth value at high nD corresponds to that of the metallic CF, i.e., 

the thermal conductivity of tantalum kTa = 57.5 W m-1 K-1. Here, an approximate maximum VO 

density of 1 × 1021 cm-3 is chosen because the VO concentration of the metallic Magnelli phase 

 
Figure 2.3. Parameters from measurements and assumptions. (a) Electrical conductivity pre-exponential 

factor σ0, (b) assumed activation energy for conduction EAC, and (c) assumed thermal conductivity kth as a 

function of local VO density nD. 
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Ti4O7 is on the order of 1021 cm-3 [30]. Although the particular choice of the maximum VO value 

and the linear approximations of σ0, EAC, and kth appear to be over-simplified, the calculation 

results based on these assumptions show good consistency with the experimental data. Therefore, 

these assumptions do not limit the validity of the calculations. 

 

In the actual calculations, the axisymmetric geometry of the device allowed the 3-D 

problem to be reduced to a 2-D solution with a radial coordinate and a vertical coordinate, as 

shown in Figure 2.4. The oxide bilayer materials (Ta2O5 and TaOx layers) are sandwiched by two 

electrodes, and all layers including the two electrodes are considered in the calculations (for the 

 
Figure 2.4. Simulated geometry used in the calculation. The axisymmetric geometry reduces the problem 

from 3-D to 2-D. A uniform doping concentration of nD = 1 × 1021 cm-3 was assumed within the CF and the 

TaOx layer as the initial state right after electroforming. 
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Pd TE and BE, σPd = 9.5 × 104 Ω-1 cm-1 and kPd = 71.8 W m-1 K-1). The boundary conditions for 

equation (2) are ψ = 0 and ψ = V at the BE and TE, respectively. The outermost boundaries of the 

two electrodes are defined with boundary conditions T = 300 K; this assumption is reasonable 

because the electrode area is generally large with respect to the CF and can be sufficiently cooled. 

For the VO drift/diffusion, no VO flux was assumed at the TE/Ta2O5 and TaOx/BE interfaces. A 

uniform concentration of nD = 1 × 1021 cm-3 was defined within the CF and TaOx layer as the 

initial state (i.e., the state immediately after forming). The CF size was set to a diameter of 5 nm, 

in agreement with direct evaluations using conductive atomic force microscopy [31].  

 Conclusion 

By solving the local electric field, temperature and VO concentration self-consistently, 

we developed a complete and accurate physics-based model that quantitatively explains the 

dynamic resistive switching process. Significantly, the model reveals that the conducting 

filament is ruptured and formed locally inside the switching layer, and the set process involves 

field-driven filament formation followed by filament expansion, while reset process is dominated 

by thermal-driven filament rupture followed by gap widening. The competition between the drift 

and diffusion components during reset can lead to different resistive switching characteristics. 

The proposed model allows accurate prediction of resistive switching characteristics for both DC 

and AC input signals, and was able to reproduce the analog switching behavior. We believe such 

in-depth analysis of the resistive switching process not only provides a reliable and accurate 

physical picture of the resistive switching process but also produces much-needed guidelines for 
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continued design and optimization of this important class of devices for memory and logic 

applications. 
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Random Telegraph Noise and Resistance Switching Analysis 

of Oxide Based RRAM 

 

 Introduction 

Even though RRAM has been widely viewed as a promising candidate for future data 

storage applications [1-4], important questions regarding the nature of the conduction channels 

and the switching dynamics still remain under debate. In the previous chapter, we discussed a 

complete physical model that quantitatively describes the rich resistive switching behaviors in a 

tantalum-oxide-based bilayer RRAM. However, direct observation of the conduction channels 

formed by oxygen vacancy (VO) redistribution is challenging, and electrical characterizations 

only provide limited information. In this chapter, we perform systematic investigation of the 

resistance switching mechanism in a TaOx based RRAM through detailed noise analysis, and 

show the resistance switching from high-resistance to low-resistance is accompanied by a 

semiconductor-to-metal transition mediated by the accumulation of oxygen-vacancies in the 

conduction path. Specifically, pronounced random-telegraph noise (RTN) with values up to 25% 

was observed in the device high-resistance state (HRS) but not in the low-resistance state (LRS). 

Through time-domain and temperature dependent analysis, we show the RTN effect shares the 

same origin as the resistive switching effects, and both can be traced to the (re)distribution of 

oxygen vacancies (VOs). From noise and transport analysis we further obtained the density of 
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states and average distance of the VOs at different resistance states, and developed a unified 

model to explain the conduction in both the HRS and the LRS and account for the resistance 

switching effects in these devices. Significantly, it was found that even though the conduction 

channel area is larger in the HRS, during resistive switching a localized region gains significantly 

higher VO and dominates the conduction process. These findings reveal the complex dynamics 

involved during resistive switching and will help guide continued optimization in the design and 

operation of this important emerging device class. 

 

 Device Fabrication and Measurement Setup 

The resistive memory devices studied here is based on a Pd/TaOx/Ta2O5/Pd structure, in 

which the Ta2O5 layer acts as the switching layer and the TaOx layer acts as the base layer that 

controls the device on-state resistance and provide needed oxygen vacancies for resistive 

switching [1,5]. The devices were fabricated on a Si/SiO2 substrate with a 100 nm thermal SiO2 

layer. The bottom electrode consisting of 5nm-thick NiCr and 35nm-thick Pd was first patterned 

by e-beam lithography and deposited by e-beam evaporation. The TaOX base layer (~50 nm) was 

deposited by direct current (DC) reactive sputtering of a Ta metal target with Ar/O2 (3% oxygen 

partial pressure) gas mixture at 400°C, followed by the Ta2O5 switching layer (~5 nm) deposition 

by radio frequency (RF) sputtering of a Ta2O5 ceramic target at room temperature.  Finally, the 

top-electrode consisting of 30 nm thick Pd and 20nm thick Au was patterned by e-beam 

lithography and deposited by the e-beam evaporation, forming a crossbar structure with the 

bottom electrode. Devices with different sizes from 50 nm × 50 nm to 5 µm × 5 µm were 



 37 

fabricated and tested, as shown in the inset of Fig 3.1(a). During testing, the bias voltage was 

applied to the top electrode with the bottom electrode grounded. Reliable bipolar resistance 

switching characteristics with current – voltage (I-V) curves as shown in Fig. 3.1(a) were 

obtained after an electroforming process with up to -6 V. The electrical characterizations and 

noise measurements were performed using a custom-built measurement system and a 

temperature-variable probe station (Desert Cryogenics TTP4). 

 

 Statistical and Temperature Dependent Studies of RTN 

 

A typical device switches to the LRS at around -0.7 V and switches back to the HRS at 

around 1.2 V (Fig. 3.1(a)). Noise measurements were performed by monitoring the device 

 
Figure 3.1. (a) I-V characteristics of a typical device showing the bipolar switching effects. Inset: SEM image 

of the device. Scale bar is 5μm. (b) Current-time plots measured at 0.1 V for LRS and HRS, respectively. 

Insets: zoomed-in plots of the circled areas for LRS (left) and HRS (right), showing pronounced RTN in HRS. 
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current under a low, constant bias voltage of 0.1 V (Fig. 3.1(b)). Significantly, in the HRS, abrupt 

current jumps between two (or more) discrete current levels can be regularly observed (Fig. 

3.1(b), right inset), corresponding to significant RTN. On the other hand, RTN was not observed 

in the LRS despite the fact that the resistance values between the LRS and HRS differ by only 

~10. Out of more than 70 devices tested, all devices showed similar behaviors.  

Statistical and temperature dependent studies were carried out to reveal the nature of the 

observed RTN behaviors in HRS. The RTN data recorded in time-domain from a 500nm x 

 
Figure 3.2. (a) Time-domain analysis of the RTN behavior showing raw data (red) and reproduced data (grey) 

based on the capture program. (b) Histograms of current vs. occurrence showing a bimodal distribution 

corresponding to the two current levels causing RTN.  (c), (d) Histograms of the dwell times in the upper (c) 

and lower (d) current levels. The red lines are Poisson fits using as the only fitting parameter. 
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500nm cell in HRS is shown in Fig. 3.2(a) (red line). Current jumps of ~10% between two 

discrete states are clearly observed. Plotting the current readings vs. occurrence clearly reveals a 

bimodal resistance distribution corresponding to two metastable states, as shown in Fig. 3.2(b). 

RTN as large as 25% has been observed in these devices in HRS. Such high noise levels can 

have a significant impact on device operation and deserve careful analysis. To analyze the RTN 

signal, a custom MATLAB code was used to capture the current jumps and measure the dwell 

time at each state [6]. The algorithm tests two hypotheses (whether a switching event happens or 

 
Figure 3.3. (a) Temperature dependence of the characteristic dwell times in the upper and lower current 

levels. The lines are fits following the Arrhenius equation. (b) Schematic of the cause for RTN. The trapping 

and detrapping of a trap site near the channel leads to jumps in discrete current levels. The dashed circle 

represents the area that may be electrostatically depleted by the trapped electron. (c),(d) Histograms and fits 

of the dwell times at the upper current levels at 250 K and 300 K, respectively.  
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not) within a given time window and maximizes the probability of both hypotheses in the 

presence of white noise. Using the maximum likelihood estimates, one can judge if a switching 

event occurs or not by examining the difference between the two maximized likelihood values 

and comparing it to a pre-set threshold value. If a switching event is judged to have occurred, the 

switching time is also recorded as the time that leads to the maximum likelihood. The reliability 

of this algorithm is verified in Fig. 3.2(a), where every current jump was successfully captured 

by the code (gray line) with no false positive or negative alarms. The time the device spent in 

each state is then recorded and analyzed, the histograms of which are plotted in Fig. 3.2(c), (d). 

For both metastable current states, the dwell time distribution can be fitted well with a Poisson 

distribution (solid lines). Following standard statistics, the Poisson distribution describes 

stochastic events such that the probability that an event (current jump) occurs within Δt at a 

given time t is [7, 8] 

 P(t) =
Δt

τ
𝑒−𝑡/𝜏                                            (1) 

where τ is the characteristic time constant. Results in Fig. 3.2(c), (d) can be fitted with Eq. (1) 

using τ as the only fitting parameter, showing the RTN noise can be well explained by stochastic 

events. This observation is consistent with the hypothesis that the RTN in RRAM is caused by 

electron trapping and detrapping at a trap site near the conduction path [9], as has been used to 

explain RTN in aggressively scaled MOSFET transistors [10] and nanowire devices [11].  

Following the discussions in Ref. [9], the RTN in the RRAM can be explained as 

follows: when an electron falls into a trap near the conduction path in the RRAM device, it 

depletes the conduction path and causes the current to change to a lower level, as illustrated in 

Fig. 3.3(b). Similarly, the current will change to the higher level when the trapped electron is 
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detrapped. Since the trapping/detrapping events are thermally activated and stochastic in nature, 

these processes lead to the stochastic jumps between the current levels and the observed Poisson 

distribution of dwell times with well-defined characteristic time constants, if the current is 

affected by one dominate trap. 

More evidence supporting this theory can be obtained from temperature dependent 

studies. Briefly, time-domain RTN data were analyzed at different temperatures and the extracted 

characteristic dwell time, τ, was then plotted as a function of temperature (T), as shown in Fig. 

3.3(a). Typical results obtained at 250 K and 300 K are shown in Fig. 3.3(c),(d). Both τup and 

τdown, corresponding respectively to the characteristic time constants in the upper current 

(detrapped) level and lower current (trapped) level, were recorded and analyzed. It can be seen 

that both time constants increase as the temperature is decreased [8, 12, 13]. Fitting the τ-T 

curves using an Arrhenius-type relationship produces the activation energies for the electron 

trapping and detrapping processes, which are 0.16 eV for electron trapping and 0.34 eV for 

electron detrapping for the device in Fig. 3.3. The schematic of the trapping/detrapping processes 

that lead to RTN is shown in Fig. 3.3(b).  

 Electron Transport Experiment in LRS and HRS. 

It is interesting to note that RTN in general is not observed in LRS, even though the 

resistance values between LRS and HRS do not seem to differ significantly. We believe the 

different noise behaviors in HRS and LRS can shed light into the mechanism behind resistive 

switching in these RRAM devices, and the evolution of the noise characteristics correlate with 

the evolution of the conduction channels. In metal oxide based devices the conduction is 
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believed to be through conduction channels formed in regions with higher concentration of VOs. 

Changes in VO distribution lead to changes in resistance states, with the LRS state having a 

higher VO concentration in the conduction channels compared with HRS [1, 2, 5, 14]. 

Consequently, these changes in trap distributions can also lead to different noise characteristics. 

To verify this hypothesis, temperature dependent studies of conduction through the LRS and 

HRS states were carried out, as shown in Fig. 3.4(a), (b). In the LRS, the current decreases as the 

 
Figure 3.4. (a) Temperature dependence of electron transport in LRS. (b) Temperature dependence of 

electron transport in HRS. Inset: Schematic of the hopping process. (c) Solid line: I-V characteristics without 

the series resistor, showing switching between HRS and LRS; dashed line: I-V characteristics with a 1 kΩ 

series resistor. The device is programmed to an intermediate state instead.  Inset: The circuit schematic. (d) 

Temperature dependence of electron transport in the intermediate state. Inset: Hopping with more closely 

spaced trap sites and lower hopping energy in the intermediate state compared to the HRS. 
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temperature is increased, suggesting the conduction channel is metallic with a negative activation 

energy for electron transport. On the other hand, in the HRS the device current increases as the 

temperature is increased, suggesting the conduction channel is semiconducting with a positive 

activation energy for electron transport.  

In the HRS, the electron transport is believed to be facilitated by electron hopping 

mediated through the VO trap sites [15], and the conduction can be explained using the variable-

range hopping (VRH) model. If we define 1/α as the decay length of the electron wave function 

and R as average hopping distance, then the electron can hop to another trap site within the decay 

length if αR is equal to or less than unity, as shown in the inset of Fig. 3.4(b). During the process, 

the electron overcomes the hopping energy barrier, W, which corresponds to the energy 

difference between the two trap sites, assisted by thermal energy. As a result, the conductivity 

can be written at low electrical field as [16] 

σ = 2e2R2N(EF)𝜐𝑝ℎexp (−2𝛼𝑅 −
𝑊

𝑘𝐵𝑇
)                                     (2) 

where υph is a factor related to electron-phonon interaction.. Following Mott’s approach, W is in 

turn related to the density-of-states of the traps 𝑁(𝐸𝐹) through [16]   

𝑊 =
3

4𝜋𝑅3𝑁(𝐸𝐹)
  .                                                      (3) 

Plugging Eq. (3) in to Eq. (2), and the most probable conduction occurs when 

𝑅 = [
9

8𝜋𝛼𝑁(𝐸𝐹)𝑘𝑇
]

1/4

.                                                    (4) 

At this condition, the conductivity can be written as 

σ = 2e2R2N(EF)𝜐𝑝ℎ exp (−
𝑇𝑜

𝑇
)

1/4

   ,                                     (5) 
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where 𝑇𝑜 =
18𝛼3

𝑘𝐵𝑁(𝐸𝐹)
. We note Eq. (5) is the well-known Mott equation for transport through 

disordered systems in three-dimension.  

The temperature dependent results in Fig. 3.4(b) can be well-fitted with Eq. (5), which 

leads to an extracted density of localized (oxygen vacancy) trap states N(EF) of 1.2 1021 eV-1cm-

3, and average hopping distance R of 2.8 nm and activation energy at room temperature W of 9.5 

meV for the HRS state. Here we assumed the decay length α to be 0.2nm-1, a value commonly 

used disordered films [17-19], The R and W values obtained here are consistent with the 

constraints for VRH conduction that αR is equal to or less than unity and the hopping energy 

barrier is smaller than thermal energy. If otherwise the localization is strong enough (i.e. αR is 

larger than unity), nearest-neighbor hopping (NNH) process should be employed instead [16, 18].  

The evolution of the conduction channels can be analyzed by studying how the 

distribution of VOs evolve as the device is programmed from the HRS to an intermediate state 

then eventually to the LRS. To create the intermediate state, a 1 kΩ series resistor was attached 

in front of the device during programming, as shown in inset of Fig. 3.4(c). During programming 

the series resistor creates a voltage divider effect that slows down the filament growth as the 

RRAM resistance is reduced [7, 20-22]. As a result, an intermediate state between the HRS and 

the fully programmed LRS can be obtained. The intermediate state shows similar temperature 

dependence as the HRS, as shown in Fig. 3.4(d). Following the same treatment as the HRS, a 

density of localized (Vo) state of 2.0 1025 eV-1cm-3, average hopping distance of 0.24 nm and 

hopping energy of 0.83meV can be obtained. The significantly increased density of states for VO 

and reduction of the hopping distance between VO sites are consistent with the oxygen-vacancy 

mediated resistive switching model: as the device state changes from HRS to LRS, more oxygen 
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vacancies are accumulated in the conduction channel region and the distance between oxygen 

vacancies is significantly reduced with increased density of localized VO states which in turn 

lead to a decrease in device resistance. These processes are schematically shown in Fig. 

3.5(a),(b). 

 Analysis based on noise and transport data 

Based on noise and transport analyses, a unified picture of the resistive switching 

behavior can be obtained. Even in the HRS, the conduction through the device is not 

homogenous but rather dominated by “channels” with higher VO concentration than the rest of 

 
Figure 3.5. (a) Schematics showing the changes in VO distribution for the HRS, the intermediate state and the 

LRS in the Ta2O5 switching layer, respectively. The dashed lines in (b) and (c) highlight the filament region 

with higher VO concentration than the rest of the film. (d-f) Corresponding changes in the overlap of electron 

wavefunctions lead to different resistance values for the HRS, intermediate state and LRS. dots: localized 

states, Gray dashed circle: the localization radii.  
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the matrix, as shown in Fig. 3.5(a). Conduction through the channels is by electron hopping 

mediated by the VO traps. While many VO trap sites are distributed close to the average hopping 

distance of ~ 2 nm and form the conduction channel. Additionally, the broad VO distribution in 

the film means that there will unavoidably be some VO trap sites with distance much larger than 

the rest. These VO traps are far enough from the channel to contribute to conduction current, and 

will rather act as a noise source as they occasionally trap and detrap electrons, as shown in Fig. 

3.5(a). As a result, the RTN effect will be pronounced if only one or a few discrete VOs are 

within the appropriate distance from the channel (too far the effect becomes very week while too 

close the traps become part of the channel itself [10]). These conditions are satisfied in the HRS 

when the VO concentration is still not too high. This hypothesis also explains the observation that 

the RTN noise can vary significantly after each set and reset process even if the device is reset to 

 
Figure 3.6. Current-time plots measured at 0.1 V on the same device after two different set and reset process.  
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the same resistance value as shown in Fig. 3.6, since the distribution of VOs will be different after 

each set and reset process.  

We now turn to the switching process from the HRS to LRS. During this set process, 

more VOs are accumulated in the conduction channel and the distance between the VO sites 

becomes significantly reduced (as evidenced by the reduction of average VO spacing from ~ 2 

nm in the HRS to ~ 0.24 nm in the intermediate state) [23] and eventually extended electron 

states are formed when the electron wavefunctions overlap sufficiently, as shown in Fig. 3.5(f). 

This leads to the formation of metallic LRS states and the observed negative temperature 

coefficients. Significantly, our analysis also suggests the formation of LRS conduction channels 

is not uniform but rather a localized effect. Estimations of the effective channel size from the 

calculated conductivity using Eq. 5 and the measured conductance values resulted in a channel 

diameter of 42 nm for the HRS and only 3 nm for the intermediate state. Here we assumed a υph 

value of 1012/s [16] and channel length 5nm- which corresponds to the deposited Ta2O5 film 

thickness. What is interesting is that the channel (conduction filament) diameter for the 

intermediate state is much smaller than that of HRS, even though during resistance switching 

more VOs are injected into the Ta2O5 layer. This result clearly suggests the conducting channel 

(filament) formation is a localized process, as non-uniformities in the VO distribution in the film 

leads to a few local “hot spots” that attracts higher concentration of VOs than the rest of the film. 

The enhanced local conductivity likely leads to higher local temperature which further speeds 

filament growth at these locations.  

This filament formation picture is schematically illustrated in Figs. 3.5(a-c), which show 

the evolutions of oxygen vacancy distribution from the HRS through the intermediate state and 
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to the LRS; while Figs. 3.5(d-f) show how the conduction evolves from VRH to the formation of 

extended states. The lack of RTN in LRS can now be readily explained by the fact that there are 

simply too many VO trapping sites whose noise effects overlap, making effects from individual 

trap sites (RTN) noise impossible to resolve, i.e. similar to the observation of the transition from 

RTN to regular 1/f noise in silicon inversion layers as the device size increases [10]. 

 Conclusion 

In summary, we found significant RTN exists in the HRS of the RRAM device. 

Systematic analysis of the RTN and electrical transport through the RRAM device verified the 

conduction channel formation are associated with the (re)distribution of VOs. While in HRS the 

discrete VOs outside the channel region can lead to significant RTN up to 25%, in LRS the higher 

VO concentration causes the individual effects to overlap and the disappearance of RTN effects. 

Modeling of the transport data also leads to insight into the spacing of the VO sites and the 

effective filament size. Specifically, as the device is switched from HRS to LRS, the conduction 

channel area is actually reduced with a much higher VO density is obtained locally. These 

findings will provide valuable information on the application and design of oxide-based resistive 

switching devices for memory and logic applications. 
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Retention Failure Experiments and Modeling of Metal-

Oxide Based RRAM 

 

 Introduction 

In the previous two chapters, we discussed the basic picture of filament formation 

process through physics-based modeling, and performed systematic investigation of the 

resistance switching mechanism in a TaOx based RRAM through detailed noise analysis. Both 

approaches show the resistance switching from high-resistance to low-resistance is accompanied 

by a semiconductor-to-metal transition mediated by the accumulation of oxygen-vacancies in the 

conduction path based on electrons transport. However, questions central to the device operation 

such as the switching and retention failure mechanism and important parameters such as the 

activation energy for oxygen vacancy (VO) migration remain unsolved. By analyzing how the 

devices fail at elevated temperatures, we will not only confirm the switching mechanism of the 

devices as filamentary in nature but also be able to extract important device parameters such as 

the VO activation energy from the failure time analysis.  

 Device Fabrication and Measurement Setup 

The device studied here is based on the tantalum-oxide bilayer structure which consists 

of a Ta2O5 switching layer and an oxygen-deficient TaOx base layer (Fig. 4.1(a)) [1-5]. The 40 nm 



 52 

TaOx base layer acts as a supply of oxygen vacancies for conductive filament formation and the 5 

nm Ta2O5 layer is used as the switching layer where the conductive filament is formed and 

ruptured (Figure 4.1(a)) leading to resistance changes.  The device fabrication starts with a 

Si/SiO2 substrate with a 100 nm thermal SiO2 layer. The bottom electrode (BE) consisting of 5 

nm-thick NiCr and 40 nm-thick Pd was fabricated through photolithography and lift-off. The 

TaOx layer was sputtered by direct current (DC) reactive using a Ta metal target with Ar/O2 (32.3 

SCCM/1 SCCM) gas mixture at 400 °C. Next, the Ta2O5 switching layer was deposited by radio 

frequency (RF) at room temperature using a Ta2O5 ceramic target. The base pressure of sputter 

chamber for both TaOx and Ta2O5 layers was maintained under ~10-6 Torr. To ensure the high 

quality of the interface between TaOx layer and Ta2O5 layer, the films were deposited without 

breaking the vacuum. Finally, 40 nm of Pd and 20 nm of Au were patterned and deposited as the 

top electrode (TE) through photolithography and lift-off processes. The BE and TE were 

fabricated in a crossbar structure, as shown in the inset of Figure 4.1(b). Devices with size of 1 

µm × 1 µm were fabricated and tested. During testing, the bias voltage was applied to the TE 

with the BE grounded. To perform the high-temperature retention analysis, a custom-built high 

temperature measurement setup was configured from a tube furnace (Carbolite, model CTF 

12/75/700) with electrical feedthroughs to allow in-situ measurements at elevated temperature as 

shown in Figure 4.1(c). The devices were wirebonded to a chip carrier and connected to the 

electrical feedthroughs inside the furnace via wires wrapped by nonporous high-alumina ceramic 

wire tube as shown in Figure 4.1(d). The data are collected by a custom data acquisition system 

and a DL 1211 current preamplifier from DL industries. 
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 Experimental Data 

 
Figure 4.1. (a) Schematic of the Pd/Ta2O5/TaOx/Pd bilayer RRAM device.  (b) DC I-V characteristics of the 

device showing the bipolar switching behavior. Inset: SEM image of the device. Scale bar is 20 μm. (c) A 

custom-built high temperature measurement setup using a tube furnace. The left part of the tube is connected 

to a vacuum pump and the right part of the tube is connected to electrical feedthroughs. (d)The wirebonded 

devices on a chip carrier in the furnace connected to electrical feedthroughs. (e) I-V characteristics of the 

device in log scale. (f) Retention measurement results at 320 °C. A read pulse (0.1 V/10 ms) was applied every 

6s during the test. 
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The device shows typical bipolar resistive switching behavior (Fig. 4.1(b), (e)) and can 

be SET to a low-resistance state (LRS) with a negative voltage and RESET to a high-resistance 

state (HRS) with a positive voltage. As discussed in previous chapters, the resistive switching is 

believed to be caused by oxygen vacancy (VO) redistribution and the formation of VO-rich 

conductive filaments in the Ta2O5 layer [6-9]. Below we show this model can be used to 

quantitatively explain the retention failure of the RRAM devices, and can be used to extract 

important microscopic physical parameters such as the oxygen vacancy migration activation 

energy through simple temperature dependent measurements.  

A typical retention failure is shown in Fig. 4.1(f). Here the device conductance in LRS 

was periodically monitored at 320 °C (593 K) in every 6s with a low read voltage pulse (0.1 

V/10 ms) to avoid disturbance of the device state. As shown in Fig. 4.1(f), an initial slow 

conductance drift followed by an abrupt conductance drop were normally measured, with the 

abrupt drop in conductance corresponding to the rupture of the conductive filament.  

Temperature dependent studies were carried out to reveal the nature of the filament 

failure, as shown in Fig. 4.2(a). As expected, the device failed faster at higher temperatures. 

Additionally, two different regimes of conductance change, the gradual drift and the fast drop, 

were observed at all temperatures. By measuring the time at the intersection between the gradual 

and the sudden change, the retention failure time can be determined. The retention failure time as 

a function of temperature was recorded and analyzed as shown in Fig. 4.2(b), which shows an 

apparent thermal activation effect with an activation energy of 1.6 eV. Significantly, extracting 

the retention time based on these high temperature data yields retention of 1.6 1010 years at 
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room temperature and 9.7 105  years at 80 °C, verifying the excellent retention property of the 

tantalum oxide based RRAM devices.  

The next question to be addressed is how the measured activation energy is related to the 

microscopic physical parameters of the device. The retention loss can be understood from the 

VO-based filament model as shown in Figure 4.2(c). A conducting filament is formed when 

enough VOs are accumulated in the region, leading to LRS (i). The VOs inside the filament, 

however, can be diffused away through spontaneous diffusion, which is a thermally activated 

process (ii). As a result, the VO concentration inside the filament is gradually reduced, 

corresponding to the initial drift of device conductance. Finally, over time the VO concentration 

 
Figure 4.2. (a) Temperature dependent retention measurements at 300 °C, 320 °C , 340 °C  and 360 °C. (b) 

Temperature dependence of the characteristic retention failure time (squares) and fitting (line) following the 

Arrhenius equation.  (c) Schematics showing the changes in VO distribution from the LRS (i), after VO out 

diffusion (ii), and eventual rupture of the filament (iii). (d) Oxygen vacancy concentration profile predicted 

from the simple analytical model as a function of time. Dashed red line indicates the critical oxygen vacancies 

density (defined as 5× 1020/cm3). 
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inside the filament is reduced below a critical value, i.e., when the electron wavefunctions 

associated with the VOs no longer overlap and an extended state is no longer formed [10,11], the 

filament is effectively ruptured corresponding to an abrupt drop in device conductance.  

To verify this model and extract important device parameters, we performed analytical 

calculations of the VO concentration inside the filament based on the VO diffusion model. The VO 

distribution was assumed to be cylindrically symmetric and follow a Gaussian distribution along 

the radial direction [12]. The VO concentration at position x away from the center of the filament 

at given time t and temperature T can be written as, 

N(x, t) =
𝑁𝑂

√𝜋𝐷𝑡
exp (−

𝑥2

4𝐷𝑡
)                                             (1) 

where NO is total number of VOs scaled over the device area and D is the diffusion coefficient. 

Here we neglected the background VO concentration in the Ta2O5 layer. The retention time, tc, 

corresponding to the time when the oxygen vacancy peak concentration (at x=0) becomes 

smaller than the critical VO density, N*, can then be calculated as 

         N(x = 0, t𝐶) =
𝑁𝑂

√𝜋𝐷𝑡𝑐
= 𝑁∗.                                   (2) 

Here, the diffusion coefficient D can be written as 

            D = 𝐷𝑂exp (−
𝐸𝑎

𝑘𝑇
) .                                       (3) 

where Ea is the activation energy for VO migration. By plugging Eq. (3) in to Eq. (2), the relation 

between the retention time, tc, and temperature, T, can be obtained 

             𝑡𝑐 =
1

𝜋𝐷0
(

𝑁0

𝑁∗)2 exp (
𝐸𝑎

𝑘𝑇
) .                                  (4) 

From (4), one can see that the retention time tc indeed shows a thermal activation 

behavior. More importantly, we show that the extracted activation energy Ea from the simple 
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retention measurement in fact corresponds to the microscopic activation energy for VO migration, 

which is an important physical parameter needed for the design and optimization of oxide based 

RRAM devices.   

 Multiphysics Simulation 

Results from the simple analytical model were confirmed through detailed numerical 

simulations by self-consistently solving the drift and diffusion continuity equation for oxygen 

vacancy transport, current continuity equation for electron transport and joule heating effects [6-

9]. Figure 4.3(a) shows a 2-D map in the axial and radial plane of the VO concentration at the 

 
Figure 4.3. (a) 2-D map of oxygen vacancy concentration obtained through numerical simulations, for in the 

initial state (LRS). The x=0 position is the center of the conductive filament. (b) Measured and calculated DC 

I- V characteristics of the device at 320 °C showing the model can capture the essential dynamic VO migration 

processes. (c) Oxygen vacancy concentration profile calculated from the numerical simulation as a function of 

time. (d) Measured and simulation results showing the device retention behavior at 320 °C inset: Peak VO 

concentration at different time instants (A- D). Dashed red line indicates the critical oxygen vacancies density 

(defined as 5× 1020/cm3).  
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LRS state during the simulation. The filament size at the top part of the switching layer is 2~ 3 

nm as calculated in Ref. [10]. Figure 4.3(b) shows the measured and calculated DC I-V 

characteristics during set and reset processes at 300 °C. The reset and set transition occurs at 1 V 

and -0.5 V, respectively. The simulation quantitatively captures the resistive switching dynamics 

with a fixed set of material specific parameters [10], and confirmed the parameters are 

appropriately chosen. Figure 4.3(c) shows the simulation result of the VO concentration at the 

topmost region of the conductive filament as a function of time during retention test at 320 °C. 

The detailed simulation results are consistent with the simple analytical model results shown in 

Fig. 4.2(d) and support the VO diffusion model in device retention failure analysis. Additionally, 

the conductance of the device can be directly obtained from the simulation [10], and Fig. 4.3(d) 

plots the measured and calculated conductance during the retention measurement. Again the 

retention behavior can be quantitatively predicted through simulation and verifying the accuracy 

of the filamentary model. The inset of Figure 3d shows the peak VO concentration at 0 s, 7,000 s, 

14,000 s and 18,000 s corresponding to the yellow points in Figure 4.3(d) and the dots in Figure 

4.3(c).  The dashed line indicates the critical VO concentration which is chosen as 5 1020 cm-3 

from literature [6, 7] and corresponds to the point C in the retention curve in Fig. 4.3(d). As 

expected the conductance of the device decreases abruptly beyond this point as the filament is 

considered ruptured beyond this point.  
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 Monotonic Current Increase Behavior 

Interestingly, it can be found that at points A and B, the device conductance does not 

change much even though the peak oxygen vacancy concentration decreases from 9 1020 cm-3 

to 6.1 1020 cm-3. This can be explained by the fact that the effective filament area is increased 

accompanying the decrease in peak VO concentration due to out diffusion (e.g. Figs. 4.2(d), 

4.3(c)). The increase in effective filament size counters the effect of peak VO concentration 

decrease. This effect is more pronounced by examining the retention test obtained at 320 °C, 

replotted in Fig. 4.4(b). Surprisingly, an initial increase, instead of decrease of conductance, is 

observed from point A to B. The conductance eventually decreases and abruptly drops at point C, 

corresponding to the rupture of the filament. This non-monotonic behavior is somewhat 

 
Figure 4.4. (a) 2-D map of oxygen vacancy concentration showing the evolution of the filament at different 

time scales (corresponding to points A-D in Figure 4b) (b) Measured and calculated device conductance as a 

function of time at 300 °C. (c) Effective filament diameter as a function of time. The filament was defined as 

the region with oxygen vacancy concentration higher than 5 1020 cm-3. 
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counterintuitive but can be fully explained by the model discussed earlier. For example, Figure 

4.4(a) plots the 2D map of the VO concentration in the filament at different time instants, and an 

effective increase of the filament size is clearly observed (from A to B), accompanying the 

decrease of the peak VO concentration due to diffusion. The non-monotonic change in 

conductance during retention measurement was again quantitatively predicted by the model, as 

shown in Fig. 4.4(b). Figure 4.4(c) shows the calculated effective filament diameter (defined as 

the region with VO concentration > 5 1020 cm-3). It clearly shows that the effective diameter of 

the filament increases initially and eventually starts to decrease and finally break over time.  

 

 Multi-filament Effects 

Finally, we show that the experiments provide evidence for multiple filaments in some 

cases. The solid line in Figure 4.5 plots the retention test results at 340 °C. After the first abrupt 

drop in conductance at 3,700 s, the conductance did not drop to the background level, but rather 

reached a second plateau at 6,000s, and eventually reached to the background level after a 

second abrupt drop at 10,000 s. The experimental results can be quantitatively explained by the 

simulation data (dots), by considering the evolution of two filaments, as shown in Figure 4.5. 

The initial filament diameters for the two filaments were chosen as 2.3 nm to 2.7 nm, 

respectively, with all other parameters remaining the same. The excellent agreements between 

simulation results and experimental data not only prove again the quality of the model, but also 

help shed light into future design and optimization of this important class of devices. 
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 Conclusion 

In summary, we analyzed retention behaviors of oxide-based RRAM at elevated 

temperatures and matched the experimental results with an oxygen vacancy diffusion model. Our 

analysis shows that the activation energy for oxygen vacancy migration can be directly 

calculated from the failure time versus temperature relationship. A non-monotonic conductance 

drift was also observed and can be explained within the oxygen vacancy out diffusion framework. 

Evidence for multiple filaments was also examined and supported by simulation. These findings 

support the filamentary model of RRAM devices and shed valuable insight in the design and 

optimization of oxide-based resistive switching devices for memory and logic applications. 

 

 

 
Figure 4.5. Measured (black line) and calculated (squares) conductance as a function of time at 340 °C, 

showing the possible existence of multiple filaments. Evolutions of the two filaments (triangles and circles) 

were obtained through simulation and the overall conductance (squares) is the sum of the two filaments.  
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Tuning Resistive Switching Characteristics of Tantalum-

Oxide RRAM Devices through Si Doping 

 

 Introduction 

As we discussed in the previous chapters, the RS behavior is believed to be caused by the 

transport of oxygen ions (O2-) and consequent oxygen vacancy (VO) redistribution in the oxide 

layer, where high VO concentration regions (e.g., conducting filaments (CFs)) provide high 

conductance channels for electrical transport [1]. The device can be set (from a high resistance 

state (HRS) to a low resistance state (LRS)) or reset (from LRS to HRS) between the different 

resistance states according to the formation/rupture of the CFs. Although a single oxide layer can 

attain this RS behavior in RRAM devices [2-4], bi- [5,6], triple- [7], or even quadruple- [8] 

layered oxides have been explored in recent years to improve the switching characteristics. The 

additional oxide layers act as O2- or VO reservoirs, and can improve the device reliability (e.g., 

cycling endurance or switching uniformity) by confining RS at selected layers [5,6]. In other 

cases, the additional oxide layer serves as a tunneling barrier, which induces current nonlinearity 

by suppressing the leakage current at the low-voltage regime [7]. However, although these extra 

layers improve the RS controllability, the device-to-device variation and fabrication complexity 

increases as the number of oxide layers increases, potentially affecting high-density device 

integration. Therefore, providing a fundamental atomic-level design that can directly control the 
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dynamic transport of ions within the switching layer not only allows tuning of the RS behavior 

but also significantly expands the parameter space for material and device optimization, which 

will be critical for continued development of RRAM devices. 

In this chapter, we show that the RS dynamics in a tantalum-oxide-based bilayer RRAM 

can be modulated through doping of Si atoms in the Ta2O5-x switching layer. The additional 

dopant modifies the atomic structure and creates preferred VO transport channels. Even a small 

amount of dopants can significantly affect the VO drift process and change the ion hopping 

distance and drift velocity, thus allowing control of the RS process at the atomic level. The roles 

of the dopants were revealed through ab initio calculations and confirmed experimentally by 

extracting the effective VO hopping distance through a series of measurements. Finally, we show 

the Si-doped tantalum-oxide bilayer RRAM devices can emulate different synaptic plasticity 

with excellent cycling endurance, and is suitable for future neuromorphic computing applications. 

 Device Fabrication 

The RRAM devices used in this work with a size of 1 µm × 1 µm were fabricated in a 

crossbar structure on SiO2 (100 nm)/Si substrates with electrodes patterned using traditional 

photolithography (GCA AS200 AutoStep). First, a 35-nm bottom Pd electrode was deposited by 

photolithography, e-beam evaporation, and lift-off processes. Next, a 30-nm TaOx base layer was 

deposited by DC reactive sputtering of a Ta metal target in an Ar/O2 gas mixture at 400 °C. The 

total pressure of Ar/O2 was ~5 mTorr, and the oxygen partial pressure in the Ar/O2 mixture was 

3%. A 5-nm Ta2O5 switching layer was then deposited by RF sputtering using a Ta2O5 ceramic 

target, and p-doped Si was co-deposited with Ta2O5 by DC sputtering (DC power was 40, 70 W, 
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and 140 W to achieve effectively 2.7%, 4.2% and 9.3% Si doping, respectively) in Ar with a 

pressure of ~5 mTorr. A 30-nm top Pd electrode was then deposited by photolithography, e-beam 

evaporation, and lift-off processes. Finally, a reactive ion etching process using SF6/Ar was 

performed to expose the bottom contacts. For the forming step, a resistor (5 kΩ) was serially 

connected to the device to prevent permanent breakdown. 

 
Figure 5.1. (a) Conceptual schematic of the oxide RRAM during RS. The agglomerated VOs enhance the local 

electrical conductivity and form the CF. (b) Schematic of the potential energy landscape for ion hopping 

under electric field E. (c) Schematic plot of the Pd/Si:Ta2O5/TaOx/Pd bilayer RRAM device. (d) DC I–V 

characteristics of undoped Ta2O5, Si2.7%:Ta2O5, and Si4.2%:Ta2O5 devices. The measured device size is 1 μm × 1 

μm, and the voltage sweep speed is 1 V/s.  
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 Resistive Switching Behavior 

Figure 5.1(a) shows a conceptual schematic to explain the RS behavior in an oxide 

RRAM. The CF corresponds to the region with agglomerated VO, which control the local 

electrical and thermal conductance properties [1,9]. The set and reset processes are described by 

the ionic transport and consequent VO migration induced by the local electric field and 

temperature due to Joule heating. The nonlinear ionic transport under high electric field can be 

explained by the simple rigid-point-ion model shown in Figure 5.1(b) [10-12]. Oxygen ions 

(equivalently VOs) hop among the energy potential wells (assumed to have hopping distance a 

and energy barrier Ea), where the applied electric field E lowers the energy barriers by a factor of 

qaE. The average VO drift velocity is given as  

v=a·f·exp(-Ea/kT)·sinh(qaE/2kT)                                          (1) 

where f, k, T, and q are the frequency of escape attempts, Boltzmann constant, temperature, and 

electron charge, respectively [1,12]. From this equation, one can see that the VO drift is a 

strongly non-linear function of the applied electric field E through the sinh function, where the 

effect can also be strongly affected by the hopping distance a, which can in turn be affected by 

doping, as schematically shown in Figure 5.1(b). In other words, the RS behavior controlled by 

the ion hopping process can be fundamentally optimized at the atomic level through doping. To 

demonstrate this concept, a tantalum-oxide-based bilayer RRAM with Si dopants was fabricated, 

which consisted of a resistive Si-doped Ta2O5 film as the RS layer and a conductive TaOx film as 

the VO reservoir [5,7]. These two layers were sandwiched by top and bottom Pd electrodes (TE 

and BE), as shown in Figure 5.1(c). The Si dopants were introduced by a co-sputtering process 
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during the Ta2O5-x film deposition where the atomic percentage of Si was controlled by the 

sputtering power.  

Figure 5.1(d) shows DC I–V characteristics in three different devices based on RS layers 

of undoped Ta2O5, Si2.7%:Ta2O5, and Si4.2%:Ta2O5, respectively, during the set and reset processes. 

Noticeable differences can be found when Si dopant is added: 1) the current level at the LRS 

increases, 2) the current level at the HRS decreases, and 3) the set voltage (defined as the voltage 

when the current begins to increase abruptly) increases. These different switching behaviors 

indicate that the formation/rupture of the CFs is modulated by the Si dopant. These effects are 

observed more clearly in pulse switching tests.  
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 Switching Dynamics Analysis 

 

Figure 5.2(a) shows the evolution of the device conductance as a function of the reset-

pulse amplitude, by keeping the set-pulse amplitude constant while increasing the reset-pulse 

amplitude from 0.6 to 1.7 V during repeated set and reset processes. A more conductive LRS and 

a more resistive HRS are clearly obtained in the Si-doped devices. In a generally accepted theory 

[13], the difference in HRS and LRS can be explained by the evolution of the CF shape during 

switching: a thicker CF radius (r) inside the switching layer leads to higher current at the LRS 

(i.e., more conductive LRS), and a wider depleted gap length (δ) between the TE and CF tip 

leads to lower current at the HRS (i.e., more resistive HRS), as shown in Figure 5.2(b). These 

 
Figure 5.2. (a) Switching dynamics characterized by pulse measurements with increasing reset pulse 

amplitudes. The set-pulse amplitude is fixed at -1.5 V. Before the pulse measurements, the devices are set to 

LRS with a DC voltage sweep. (b) Schematic of the HRS and LRS for different VO drift velocities. δ and r 

increase as v is increased through Si doping. (c) Time-dependent switching transient during the reset and (d) 

set processes. 
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results thus suggest that Si doping allows the VOs to drift faster under the electric field during 

set/reset that leads to lower LRS resistance and higher HRS resistance. The VO drift will also be 

accelerated by Joule heating effects [1,9,10]. For example, during the set process, a faster VO 

drift (field-driven) leads to a fast decrease of device resistance, which results in enhanced Joule 

heating accelerates the VO drift further [1,9,10]. During reset the lower LRS may also cause 

higher Joule heating and lead to a faster VO drift [1,9,10] (thermally-accelerated) and 

consequently, a wider depleted gap. To accurately observe the time-dependent drift process, the 

transient response of the RS was measured, as shown in Figures 5.2(c) and 5.2(d). We observed 

the Si-doped devices show faster resistance transitions during set and reset processes, which 

again indicates a faster VO drift process. Therefore, the different RS behaviors via Si doping can 

be understood by the faster VO drift process: during set, the VO can be easily supplied from the 

TaOy layer under the same applied electric field leading to larger CF formation and a more 

conductive LRS; while during reset, the VOs can be more easily depleted leading to a wider gap δ 

and a more resistive HRS, as shown in Figures 5.3(b). 
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 Evaluation of the Effective Hopping Distance 

As shown in Eq. (1), the difference in VO drift velocity can be explained by the 

modulation of the hopping distance a. To estimate this effective hopping distance in the 

switching layer, we developed a method on the basis of a series of electrical measurements. 

Figure 5.3 shows a three-step measurement procedure to evaluate the effective hopping distance. 

First, Figure 5.3(a) shows the measured forming voltage (VFORMING) according to different 

switching layer thicknesses (doxide) to evaluate the critical electric field (ESET) that initiates VO 

 
Figure 5.3. The three-step measurement procedure to evaluate the effective hopping distance. (a) VFORMING–

doxide plot to evaluate ESET; the slope represents ESET. (b) VSET–doxide plot to estimate δ; the y-intercept 

represents ESET·δ. (c) VSET–ln(tSET) plot to extract a; the slope represents (2kT/q)·(δ/a). 

10
-7

10
-6

10
-5

10
-4

10
-3

-1.2

-1.1

-1.0

-0.9

-0.8

-0.7

-0.6

 

 

V
S

E
T
 [

V
]

SET switching time, t
SET

 [s]

a

3. VSET – ln(tSET)

1. VFORMING – dTa2O5-x

2. VSET – dTa2O5-x

ESET [V/m]

ESET×δ [V]

Effective 

hopping

distance, 

a [nm]

5 6 7 8 9 10

-10

-8

-6

-4

-2

 

 

V
F

O
R

M
IN

G
 [

V
]

d
Ta2O5-x

 [nm]

slope = ESET

0 2 4 6 8 10
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

 

 

V
S

E
T
 [

V
]

d
Ta2O5-x

 [nm]

y-intercept = ESET×δ
b

c

TaOy

dTa2O5-x

δ

Ta2O5-x

Si2.7%:Ta2O5-x

Si4.2%:Ta2O5-x

slope = (2kT/q)·(δ/a)

Ta2O5-x

VSET

Vgap

Vsub

a1 = 0.32 nm
a2 = 0.41 nm

a3 = 0.55 nm



 71 

migration. We assume that the entire forming voltage is applied on the switching layer, and the 

voltage drops in the much more conductive electrodes and the TaOx layer are neglected. Then, 

ESET can be estimated from the slope of the VFORMING–doxide plot on the basis of the relationship 

VFORMING = ESET × doxide. Second, VSET as a function of different doxide values are measured to 

evaluate δ of the CF. When the set process is initiated by VSET, the applied VSET is divided into 

two parts, as shown in Figure 5.3(b), i.e., VSET = Vgap + Vsub. Vgap is applied across the gap δ and 

can be expressed as Vgap = ESET × δ. We assumed that δ is mainly determined by the reset 

conditions and will be constant at a given reset condition regardless of doxide. On the other hand, 

because the length of the remnant CF (hence its resistance) is proportionally increased with 

increase of doxide, Vsub is to first order proportional to doxide. Thus, Vgap (= ESET·δ) can be extracted 

from the y-intercept value of the VSET–doxide curve; consequently, δ is estimated using the 

evaluated ESET in the first measurement. The experimentally extracted δ is consistent with the 

estimated values by previous studies [9,14], and δ increases from 0.58 to 0.71 nm with the 

addition of the Si dopant consistent with the observed more resistive HRS behavior in the Si-

doped devices shown in Figure 5.2(a). Finally, the effective hopping distance can be estimated 

from the slope of the VSET–ln(tSET) curve, where tSET is defined when the normalized conductance 

change ratio reaches two, and the slope is expressed as (2kT/q)·(δ/a) which will be discussed in 

the next section. From these three-step measurements, the effective hopping distance can be 

quantitatively extracted, where a increases from 0.32 to 0.55 nm as the Si dopant is added, which 

contributes to a faster drift process, as predicted in Eq. (1) and explains the experimentally 

observed higher HRS and lower LRS in Si-doped devices shown in Figures 5.2(c) and 5.2(d).  
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 Details of the model 

Figure 5.4(a) shows the extracted ESET data of the three different samples according to 

the VFORMING–doxide relationship. We note that the extracted ESET values are almost equal among 

the three different samples. In addition, the depleted gap lengths (δ) are estimated from the VSET–

doxide plot, as shown in Figure 5.4(b), where δ increases from 0.58 to 0.71 nm as the Si dopant is 

added. These results are consistent with the more resistive HRS in the Si-doped layer, as shown 

in Figure 2a.  

Effective hopping distance (a) can be extracted from the slope of the VSET–ln(tSET) curve. 

The slope can be expressed as  

 
Figure 5.4. Measurement results of (a) VFORMING–doxide to extract ESET and (b) VSET–doxide to extract δ in the 

three different samples. 
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 Ab Initio Study 

A question remained as to why the effective hopping distance is increased by the Si 

dopant. It has been believed that the hopping distance corresponds to the spacing between 

oxygen sites in the oxide [15]. To understand the nature of the hopping distance (and oxygen 

sites) modulation by dopant, we performed first-principle electronic-structure calculations on the 
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basis of the density-functional theory using the Vienna ab initio simulation package (VASP). 

Figure 5.5(a) shows the calculated atomic structure of both undoped Ta2O5 and Si-doped Ta2O5 

where a quenched amorphous Ta2O5 structure was used to better represent the experimental 

system, which is in contrast to previous ab initio studies based on crystal structures [16-18] 

Figure 5.5(b) shows the calculated pair correlation function, which represents the probability of 

 
Figure 5.5. (a) Snapshots of the amorphous Ta2O5 and Si-doped Ta2O5 structures obtained in the ab initio 

simulation. The Ta, O, and Si atoms are colored in dark green, red, and blue, respectively. (b) Pair-correlation 

functions of the amorphous Ta2O5 and Si-doped Ta2O5 calculated at room temperature. (c) Histograms of the 

O–O distance from a selected oxygen atom to a neighboring oxygen atom. Three oxygen atoms are selected 

randomly, as shown in panel a. (d) O and Ta atomic ratio near the selected oxygen atoms.  
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finding the center of a particle a given distance away from the center of another particle. In the 

undoped Ta2O5 case, the interatomic distance between Ta and O is 1.95 Å . When Si dopant is 

added, this Ta–O interatomic distance does not change. However, the interatomic Si–O distance 

is found to be shorter than the Ta–O distance, implying that oxygen can be located closer to Si 

than to Ta. In addition, the interatomic distances among oxygen atoms are investigated. Figure 

5.4(c) shows the calculated O–O distance from the selected oxygen atom to a neighboring 

oxygen atom.  

We select three arbitrary oxygen atoms, as shown in Figure 5.5(a): 1) an oxygen atom located in 

undoped Ta2O5 (case 1), 2) an oxygen atom located near a Si atom in Si:Ta2O5 (case 2), and 3) an 

oxygen atom located far away from the Si atoms in Si:Ta2O5 (case 3). The calculated O–O 

distance in Ta2O5 is centered around 0.3 nm, which is consistent with the measured hopping 

distance (0.32 nm, shown in Figure 3c). In addition, the O–O distance near Si (case 2) appears to 

be shorter than those of the other cases. From the data shown in Figures 5.5(b) and 5.5(c), we can 

conclude that the Si dopant more strongly attracts oxygen than Ta, and the oxygen atoms near Si 

are closely gathered. As a result, the region away from the Si dopant will turn into an oxygen-

deficient state. This is confirmed by the ab initio calculations in Figure 5.5(d), which plots the 

calculated O and Ta atomic ratio in the three cases and indicates that an oxygen-deficient region 

is formed away from the Si dopant. The oxygen-deficient regions facilitate VO transport in the Si 

doped devices as the VOs can hop interstitially (i.e., oxygen-deficient region away from Si 

dopant) or by substitution through the closely gathered oxygen atoms (i.e., oxygen-abundant 

region near Si dopant). These processes allow effective ion hopping and explain the faster VO 

drift under electric field in Si doped devices. 
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 Analog Switching Behavior 

Tantalum-oxide RRAM devices have been extensively studied due to its excellent 

endurance of over 1012, which is the largest among all reported resistive devices [5]. However, 

the previously reported devices show mostly digital switching with limited dynamic range. Si 

doping improves the RS tunability and also leads to more incremental, analog-type conductance 

changes, making these devices also suitable for neuromorphic applications. In a neuromorphic 

system based on RRAM devices, the RRAM, whose weight can be incrementally modulated by 

electrical pulses (“spikes”), acts as a synapse connecting a pair neurons, as shown in Figure 5.6(a) 

[19]. Figure 5.6(b) shows the measured conductance values in the aforementioned three different 

 
Figure 5.6. (a) Schematic illustration showing a synapse connecting a pair of neurons, where the synaptic 

functions can be emulated by RRAM devices. (b) Analog switching behavior obtained by pulse trains 

consisting of 150 reset pulses (1.1 V, 10 μs) followed by 150 set pulses (-0.9 V, 100 μs) with small, 

nonperturbative read voltage pulses (0.2 V, 1 ms) applied in the intervals. The conductance changes are 

measured during the read pulse and plotted as a function of applied pulse number. The error bars indicate 

the standard deviation from the measured data set, which are collected from 50 such test cycles in five 

different devices in each case.  
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samples during the application of pulse (spike) trains. Each pulse train consists of 150 reset 

(depression) or set (potentiation) pulses, followed by read voltage pulses in the intervals. More 

intermediate states between maximum and minimum conductance in both the set and reset 

responses are clearly observed in the Si-doped devices as the number of applied pulses increases, 

offering a much larger dynamic range compared to the undoped devices. Further increasing the 

Si doping level results in higher dynamic range, but the switching becomes more digital-like due 

to the large hopping distance as shown in Figure 5.7 [9].  

Here, the more conductive LRS and consequently larger reset current in the Si-doped 

device may lead to higher power consumption during reset. However, this problem can be 

mitigated since Si doing also causes more resistive HRS and a larger dynamic range. As shown 

in Figures 5.6(b), although the maximum LRS conductance of the Si-doped device is higher than 

that of the undoped device, many intermediate conductance states with values lower than that of 

the undoped device can be obtained. The overall power consumption can be reduced if the 

devices are mostly cycled between these states, e.g., as analog switches in neuromorphic 

applications. In addition, the conductance variation of the Si-doped devices appears larger than 

 
Figure 5.7. Analog switching behaviors obtained by pulse trains in four different cases. 
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the undoped devices. We hypothesize that this larger variation may be caused by the larger 

hopping distances due to Si doping. With larger hopping distance, the stochastic properties of ion 

hopping will be more pronounced since the stochastic movement of just a few ions may already 

cause significant resistance changes which in turn affect the dynamic CF growth and dissolution 

processes, causing variations in the CF shape and resistance variations. On the contrary, small 

hopping distances mean many ions need to be moved to cause significant resistance change so 

the stochastic hopping properties of individual ions are more effectively averaged out, leading to 

smaller conductance variations.  

 
Figure 5.8. Implementing four different types of STDP using tantalum oxide RRAM. The pre-spike voltage 

(VPre) and post-spike voltage (VPost) are applied to the TE and BE of the RRAM, respectively. The net 

programming voltage (VPre – VPost) applied across the device depends on the positive or negative moments tPost 

– tPre. The dots indicate the experimental data, and the lines are guides to the eye. The insets show the (red) 

pre- and (blue) postsynaptic spike schemes.  
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The ability of the Si-doped tantalum-oxide devices was further tested by implementing 

Spike-timing-dependent-plasticity (STDP) learning rules [20,21]. STDP refers to the effect that 

the relative timing of pre- and postsynaptic spikes determines the sign and magnitude of the 

long-term synaptic weight change, which can potentially appear in four different forms [22-24]. 

These four different STDP forms are successfully implemented in our tantalum-oxide-based 

RRAM devices by designing spike-pairing protocols, as shown in Figure 5.8. Clearly, the extent 

of conductance change depends on the amount of Si dopant; and improved analog performance is 

obtained through Si-doped tantalum RRAM devices.  

 

 
Figure 5.9. Measured cycling endurance performance of analog switching in (a) a Ta2O5-x RRAM and (b) a 

Si4.2%:Ta2O5-x RRAM. Each test cycle consists of a pulse train including 50 reset (1.25 V, 10 μs) pulses followed 

by 50 set (-1.0 V, 10 μs) pulses. 

0.2

0.3

0.4

0.5

0.6

0.7

 

 

C
o

n
d

u
c
ta

n
c
e
 [

m
S

]

1st cycle

5th

10th

50th

102th

5×102th

103th 104th 105th

5×103th 5×104th

108th106th 107th

5×105th 5×106th 5×107th

Ta2O5-x

0.2

0.3

0.4

0.5

0.6

0.7

 

 

C
o

n
d

u
c
ta

n
c
e
 [

m
S

]

Si4.2%:Ta2O5-x

a

b



 80 

Finally, we show that the excellent cycling property of the tantalum oxide RRAM 

devices is preserved after Si doping, as shown in Figure 5.9. The 4.2% Si doped device still 

maintains analog RS behavior over 108 test cycles, with each test cycle containing 50 reset and 

50 set pulses corresponding to over 1010 total set/reset operations. This reliable analog RS 

behavior ensures stable long-term operation and will help the development of large-scale 

RRAM-based neuromorphic systems with designable synaptic functions. 

 Conclusion 

In conclusion, we show that the RS behavior in RRAM devices can be systematically 

tuned at the atomic level through doping. Specifically, Si doping can cause faster VO drift and 

improves the RS characteristics and leads to more controllable analog switching behavior. A 

measurement methodology was developed to extract the hopping distance and the depleted gap 

length during VO migration. The experimental findings were supported by ab initio calculations. 

We believe these results not only produce a desired RRAM system that can be directly used in 

neuromorphic computing applications, but also provide guidance for continued design and 

optimization this important class of devices. 
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Data Clustering using RRAM network 

 

 Introduction 

In the previous chapters, we investigated the properties of resistive switching and 

discussed how to improve analog switching behavior of RRAM. In this chapter, we demonstrate 

a potentially important application of RRAM networks - data clustering based on unsupervised 

learning. 

The von Neumann architecture, widely used in conventional computing systems, has 

become less optimal in data-intensive tasks due to limited data transfer rates between the 

memory and the central processing unit. Alternative computing systems such as neuromorphic or 

machine learning systems, have attracted increasing attention in dealing with “big data” 

problems such as pattern recognition from large amounts of data sets [1, 2]. Principal component 

analysis [3] is an important technique used in machine learning to discover orthogonal factors 

underlying multivariate data by examining the correlations among the set of input variables. The 

technique can also be used to reduce the dimensionality of input data and cluster data for 

subsequent data classification, and is thus an important preprocessing step for many machine 

learning algorithms. Here we show that principal component analysis (PCA) can be efficiently 

achieved in simple RRAM-based crossbar networks with online learning capability, allowing this 

technique to be used to effectively classify sensory data.  
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The two key factors that make RRAM crossbar arrays attractive for neuromorphic or 

machine learning systems are 1) their ability to naturally implement matrix operations (e.g. dot-

product): due to the resistive nature of the two-terminal device, the RRAM crossbar array can 

directly convert an input voltage vector into an output current (or charge) vector, weighed by the 

RRAM conductance at each matrix element, thus directly and efficiently performing the matrix 

operation; and 2) their ability to achieve online learning with simple programming pulses: the 

weights of the RRAM crossbar matrix - the device conductances, can be incrementally trained 

using simple voltage pulses [4-5]. Other properties such as high density, low power consumption, 

long cycling endurance and subnanosecond switching speed have also been demonstrated in 

RRAM devices [6–10].  

A typical RRAM device consists of a transition metal oxide layer such as TiOx, HfOx, 

WOx sandwiched by a pair of electrodes [11-13]. The resistance of the RRAM device can be 

adjusted by controlling the amount and distribution of oxygen vacancies, which modulate the 

local conductivity in the oxide layer [14, 15]. Using an unsupervised, online learning rule, we 

show that crossbar arrays of RRAM devices can learn the principal components from sensory 

data (e.g. database of breast cancer measurements) and effectively separate unlabeled data into 

clusters. After data clustering, a conventional supervised learning process can then be used to 

define a decision boundary and effectively classify tumors as malignant or benign.  

 Device Fabrication and Measurement Setup 

The device fabrication starts with a highly p-doped Si/SiO2 substrate with a 100 nm 

thermal SiO2 layer. The bottom electrodes (BEs) were fabricated by photolithography and liffoff 
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with 5nm-thick NiCr and 40nm-thick Pd. The 40 nm of oxygen-rich TaOx layer was sputtered by 

direct current (DC) reactive using a Ta metal target with Ar(97%)/O2(3%) gas mixture at 400 °C. 

Next, 5 nm of Ta2O5 switching layer was sputtered by 140W radio frequency (RF) sputtering 

while p-doped Si was co-sputtered with Ta2O5 layer with 70W DC sputtering at room 

temperature. The top electrodes (TEs) with 40nm of Pd and 20nm of Au were fabricated by 

photolithography and liffoff to form a crossbar structure. The electrical characterization were 

performed with a custom-built measurement system in a probe station (Desert Cryogenics TTP4). 

 Analog RRAM Behavior 

The analog switching behavior is obtained from a tantalum-oxide RRAM based on a 

bilayer structure consisting of an oxygen-rich Ta2O5 layer and an oxygen-deficient TaOx layer 

[6,10,14,16]. We have shown that such a RRAM with the tantalum oxide layer doped with 

silicon atoms can show improved dynamic range and controllable analog switching behavior [17]. 

In this study, 2 µm × 2 µm devices and crossbar arrays were used following the processes 

discussed in Ref. [17]. During measurements, the bias voltage was applied to the top electrode 

(TE) while the bottom electrode (BE) was grounded.  Fig. 6.1(a) shows DC current – voltage (I- 

V) curve of a device showing typical bipolar resistive switching characteristics. In this system, 

an applied voltage can change the amount and distribution of oxygen vacancies and modulate the 

conductive channels in the Ta2O5 layer which controls the conductance of the device [14-17], as 

schematically shown in Fig. 6.1(b). 

To model the conductance change of the RRAM, we introduce the internal state variable, 

w, which serves as an area index representing the number of conductive filaments or, 
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equivalently, the area covered by the conductive channel as shown in Fig. 6.1(b). The dynamics 

of the state variable in response to the applied voltage is described by equation (1), where u() is  

the Heaviside step function, k, μ1, u2, are positive parameters determined by material properties 

such as ion hopping distance and hopping barrier heights [13].  

 
 

Figure 6.1. Modelling the switching performance of a RRAM. (a) DC I-V characteristics of a typical RRAM 

device showing the bipolar switching. (b)  Schematic image of a RRAM device having oxygen vacancy 

filament. (c) Calculated conductance and internal state variable with 100 pulses of potentiation (-1 V, 10μs) 

and depression (1.15 V, 10μs), consecutively. (d) The sequences of the applied pulses showing 4 sets of 100 

pulses of potentiation and 100 pulses of depression. (e) The measured and calculated conductance changes 

measured by read (0.2V) pulse with the set and reset processes shown in Fig. 1(d). 
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𝑑𝑤

𝑑𝑡
= (𝑤 − 1)2𝑘(𝑒−𝜇1𝑉 − 𝑒𝜇2𝑉)𝑢(−𝑉) + 𝑤2𝑘(𝑒−𝜇1𝑉 − 𝑒𝜇2𝑉)𝑢(𝑉)             (1)    

𝐼 = 𝑤 𝛾 sinh(𝛿 × 𝑉) + (1 − 𝑤)𝛼(1 − 𝑒−𝛽×𝑉))                             (2) 

The current through the device is described by equation (2) which consists of the term describing 

conduction through the channel area (tunneling-dominated conduction, first term) and the rest of 

the device (Schottky-dominated conduction, second term) [13]. This equation clearly shows how 

the device conductance is regulated by the state variable, w. γ, δ, α, β are positive parameters 

determined by material properties such as the effective tunneling distance, tunneling barrier, the 

depletion width of the Schottky barrier region and Schottky barrier height [13] (Appendix 6A). 

The RRAM model, consisting of the state variable dynamic equation (1) and I-V equation (2), 

was tested against experimental measurements. For example, in Fig. 1c, pulse programming 

conditions were simulated with the application of a train of one-hundred -1 V, 10 μs pulses 

followed by a train of one-hundred 1.15 V, 10 μs pulses, with the device conductance  

monitored with a 0.2 V read pulse after each training pulse. With the application of a negative 

pulse, the RRAM conductance gradually increases (purple curve), followed by the increase in the 

internal state variable value (blue curve). On the other hand, a positive pulse decreases the 

conductance following the decrease of the internal state variable value. The experimental data 

measured form an actual RRAM device and the simulation data were compared and plotted 

together in Fig. 1d, showing that the model can trace the experimental data precisely. 
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 Learning in Crossbar Arrays 

To implement PCA, we adopted a neural network structure using a crossbar array of 

RRAMs as shown in Fig. 6.2, where the n input channels are connected to the rows and the m 

output channels are connected to the columns of the RRAM crossbar network. In this study, a 

standard breast cancer data set from University of Wisconsin Hospitals, Madison was used as the 

input signal data [18, 19]. The data set consists of breast cell mass properties in 9 categories 

including clump thickness, uniformity of cell size, uniformity of cell shape, marginal adhesion, 

single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli and mitoses. The sensory 

data were derived from a digitized image of a fine needle aspirate (FNA) of a breast mass and 

 
Figure 6.2. The network schematic. The column electrodes represent inputs and the row columns represent 

outputs. The RRAM devices are located at the intersections where the column electrodes and row electrodes 

connected. 
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each category has a range from 0 to 10. In a feature learning test, the measurement results from 

the 9 categories of a given cell are fed to the 9 inputs (n = 9) of the neural network, and the 

output is obtained from the 2 output channels (m = 2). The input signals are implemented as 

voltage pulses with fixed amplitude (0.2 V) and variable pulse widths proportional to the 

measured values in the corresponding category. Each training cycle consists of one hundred 

randomly sequenced data points (50 points from benign class, 50 points from malignant class). 

Afterwards, the ability of the network to successfully cluster the data and classify a cell as either 

benign or malignant was tested using 583 data points (not included in the training set).  

As discussed earlier, in this configuration the output vector is determined by the dot-

product of the input vector and the RRAM weight matrix. Additionally, the network learns the 

principal components by adjusting the RRAM weights during training. In this study, starting 

from a RRAM network with randomly distributed weights, we employ Sanger’s rule (also known 

as the generalized Hebbian algorithm) to implement online learning to learn the principal 

components of the input data set. Sanger’s rule is derived from Hebb’s learning rule [20, 21] and 

these model learning rules have been widely adapted in artificial neural networks. Specifically, 

Sanger’s rule utilizes the weight (g), output response (y) and present input (x) as shown in 

equation (3). 

∆𝑔𝑖𝑗 = 𝜂𝑦𝑗(𝑥𝑖 − ∑ 𝑔𝑖𝑘𝑦𝑘)
𝑗
𝑘=1                                             (3) 

where η is the learning rate and is typically a small positive value(<<1), 𝑥𝑖 represents the input 

pulse at input (row) i and the value of the data is represented by the pulse width, and j = 1 or 2 
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corresponds to the primary principal component and the second principal component, 

respectively. gij is the weight at row i and column j in the network. Specifically, gij is defined as  

gij =2wij – 1          (4) 

where wij is the state variable of the RRAM device at row i and column j as discussed in Eq. (1). 

While w is positive only gij ranges from -1 to 1 from the definition. Note no label is used in the 

learning process. After training, the weights in columns 1 and 2 form the (first and 2nd, 

respectively) principal components of the input data set [21]. Accordingly, outputs obtained from 

the trained network will be clustered and can be used in subsequent classification analysis. 

Specifically, with the application of an input xj, the amount of charge collected at the 

output in the RRAM network can be obtained as: 

𝑄𝑗 = ∑ [𝑤𝑖𝑗𝐴 + (1 − 𝑤𝑖𝑗)𝐵]𝑖 𝑥𝑖                                               (5) 

where the charge is assumed to be determined by the current (Eq. (2)) and linearly proportional 

to the applied pulse width (xi), and the constants in Eq. (2) have been lumped into constants A 

and B. The output, yj, is then obtained from the charge Qj through the following equation (6). 

𝑦𝑗 =
2𝑄𝑗

𝐴−𝐵
− ∑ [

𝐴+𝐵

𝐴−𝐵
𝑥𝑖]𝑖                                                       (6) 

Plugging Eqs. (4)-(5), (6) can be simplified as:  

𝑦𝑗 = ∑ 𝑔𝑖𝑗𝑥𝑖
𝑛
𝑖=1                                                            (7) 
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As expected, by properly choosing the output definition (here linearly dependent on the charge, 

eq. 6), the obtained output y corresponds to the vector product of the input and the weight matrix, 

as required by neural network algorithms.  

During the training phase, the output is first obtained (by applying a 0.2 V read voltage 

with a pulse width proportional to the value of the training data at each column) from the RRAM 

array using equation (6), and the desired weight update ∆𝑔𝑖𝑗  is then calculated based on 

equation (3). Programming voltage pulses are then applied to the inputs to modify the RRAM 

weights. The programming pulses are determined by the polarity and magnitude of  ∆𝑔𝑖𝑗, with 

potentiation (-1 V) pulses applied to the input for positive ∆𝑔𝑖𝑗 and depression (1.15 V) pulses 

for negative  ∆𝑔𝑖𝑗, while the pulse widths are determined by the magnitude of │∆𝑔𝑖𝑗│. To 

account for the non-linear response of w with respect to training pulse (i.e. the effectiveness of 

weight change dw/dt depends on the device state w, as evidenced in Eq. 1 and Fig. 6.1 (c)-(d)), a 

compensation scheme is employed to ensure the desired conductance change. Specifically, the 

pulse width │∆t│ is determined as 

∆𝑡𝑖𝑗 =
2

𝑘(𝑒
−𝜇1𝑉𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛−𝑒

𝜇2𝑉𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛)
(

−1

𝑔𝑖𝑗,𝑎𝑓𝑡𝑒𝑟−1
+

1

𝑔𝑖𝑗,𝑏𝑒𝑓𝑜𝑟𝑒−1
) 𝑢(∆g) 

     + 
2

𝑘(𝑒
−𝜇1𝑉𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛−𝑒

𝜇2𝑉𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)
(

−1

𝑔𝑖𝑗,𝑎𝑓𝑡𝑒𝑟+1
+

1

𝑔𝑖𝑗,𝑏𝑒𝑓𝑜𝑟𝑒+1
) 𝑢(−∆g)             (8) 

When applied to equation (1) and by noticing the relationship between w and g (g = 2w – 1), 

equation (7) leads to the desired weight change in equation (3).  
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 Details of the Training Process 

Fig. 6.3(a) shows results of the 583 test data points before learning (e.g. when the 

RRAM weights are random), with y1 at horizontal axis and y2 at vertical axis. Blue dots and 

purple dots represent benign and malignant cells (the ground truth), respectively. We note the 

labels were not used during training and are only shown here to illustrate the effectiveness of the 

 
Figure 6.3. The result of principal component analysis. (a) The result of read process through RRAM devices 

showing y1 at horizontal axis and y2 at vertical axis before learning process. (b) Principal component analysis 

using traditional covariance matrix of the data. (c) Principal component analysis using Sanger’s rule without 

the RRAM model. (d) Principal component analysis using Sanger’s rule with the RRAM model.  
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clustering process. It’s clear from Fig. 6.3(a) that before training the benign set and the malignant 

set significantly overlap each other. In other words, the network before learning cannot 

effectively cluster the sets (with untrained, random weights). Results obtained after performing 

classical PCA calculations by directly calculating the eigenvectors and eigenvalues of the data 

covariance using matrix operations are shown in Fig. 6.3(b). The PCA calculations perform 

orthogonal transformation to identify the primary principal component in the direction of the 

largest variance, and subsequently the 2nd principal component, etc [22]. As expected, the data 

become clustered after transforming the data along the first two principal components, as shown 

in Fig. 6.3(b).  

Instead of directly calculating the principal components using matrix operations and 

existing data, the principal components can also be obtained through training in neural networks, 

as discussed earlier. Fig. 6.3(c) shows results obtained from an idealized neural network using 

Sanger’s rule, using only equation (3) and equation (7) without considering the physical RRAM 

device model. Successful linear separation of the data sets was also achieved in the neural 

network. In this case, instead of computed from current data set, the principal components were 

learned using Sanger’s rule and are represented by the weights associated with specific outputs. 

More importantly, Fig. 6.3(d) shows the results obtained in the neural network employing the 

physical RRAM device model during training and feature extraction analysis. Successful 

clustering of the data, similar to the ones obtained from direct PCA calculations and learning 

with an ideal neural work, was also obtained in the RRAM network, suggesting the potential of 

the RRAM networks for feature learning tasks with online, unsupervised learning.  
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Fig. 6.4 shows the primary and secondary principal components learned in the RRAM 

network from the training process, represented by the two 9-dimentional weight vectors 

associated with the two outputs. The training consists of 1000 training cycles. Since the 

application of Sanger’s rule automatically normalizes the weights the Euclidean norm of the 

 
Figure 6.5. Weights changes with individual learning cycles for (a) the primary principal component, (b) the 

secondary principal component. 

 

 
Figure 6.4. Weights distribution changes for (a) the primary principal component, (b) the second principal 

component before and after learning process.  
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weights should converge to 1 after training (Appendix 6B). Indeed, the length of the weight 

vector for the primary principal component was found to converge from 0.9 to 1.0005 and that 

for the secondary principal component was found to converge from 1.12 to 1.003. In practice, 

this normalization condition can be used to determine when the network has completed learning.  

To examine how the weights change during learning, weight distributions for the first two 

principal components during training are plotted in Fig. 6.5. For the primary principal component 

(Fig. 6.5(a)), the weights change rapidly in the first 10 cycles and quickly become stabilized for 

the rest of the learning cycles. While for the secondary principal component (Fig. 6.5(b)) the 

weights change gradually and the distribution stabilizes at a much later time. The reason for the 

different behaviors lie in the fact that for the primary principal component, only y1 and gi1 need 

to be taken into account during weight update (equation (3)); however, for the secondary 

principal component, both y1, y2, and gi1 and gi2 need to be considered so convergence of the 

secondary principal component is more difficult and only happens after the primary principal 

component has stabilized.  

 Effect of Applied Voltage Amplitude and the Learning Rate  

The effect of the applied voltage during learning and the learning rate are shown in Fig. 

6.6. Fig 6.6(a) shows the histogram graphs of the number of pulses used during the training 

processes for different pulse amplitudes, measured in 20ns intervals. As expected, it can be seen 

that lower potentiation/depression voltages requires longer pulse widths in general, while faster 

learning can be obtained at higher voltages. Additionally, Fig. 6.6(b) shows the effect of the 

learning rate, η, on the training process. The weight redistribution for the secondary principal 
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component as a function of training is plotted. If the learning rate is too high (η=0.1), weight 

update becomes too fast (Eq. 3) and can overshoot the optimal value. As a result, the weight 

distributions fluctuate during training and never fully stabilize, as shown in the top graph in Fig. 

6b. On the other hand, if the learning rate is too small (η=0.001), the weight updates becomes 

very slow and may not be able to overcome local minima, as shown in the bottom graph in Fig. 

6.6(b). A properly chosen learning rate (η=0.01) balances learning speed and accuracy. 

 The Effect of Device Non-Uniformity 

In the following, we discuss the effects of device-device variations in the network 

performance. Nanoscale devices such as RRAMs whose operations are essentially based on 

defects (e.g. oxygen vacancies) are intrinsically less reliable than conventional transistor devices. 

 
Figure 6.6. The effects of potentiation/depression voltage amplitudes and learning rate changes. (a) The 

histogram of applied pulse widths as a function of potentiation/depression voltage amplitude. (b) The weight 

changes as a function of learning rate.  
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As shown in Fig. 6.9(a) and Fig. 6.9(b) (Appendix 6C), large device-device and cycle-cycle 

variations exist in the analog switching behaviors of RRAMs. The variations in the RRAM 

switching characteristics can be attributed to variations in device parameters such as the amount 

and distribution of oxygen vacancies in the conduction channel area, resistance variations of the 

TaOx base region, stoichiometric non-uniformity and film thickness variations.  Fig. 6.7(a) 

shows the conductance changes of 9 RRAM devices in the network during the application of 100 

pulses of potentiation (-1 V) and 100 pulses of depression (1.15 V). The blue line represents the 

average value and the error bars represent the standard deviation of the measured conductance. 

 
Figure 6.7. The effect of non-uniformity issue of the devices. (a) The measured data for the analog switching. 

The blue line and error bar represent the average and standard deviation, respectively. (b) Calculated analog 

behaviors adding the non-uniformity of the devices. (c) The result of the principal component analysis 

without device non-uniformity. (d) The result of the principal component analysis with device uniformity.   
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The relative standard deviation ranges from 10 % to 23 % for each point and are clearly 

substantial. To understand the effects of the device variations on the network performance, 

variations were introduced to the physical device parameters in Eqs. (1)-(2), and simulation 

results after incorporation of device variations are shown in Fig. 6.7(b), capturing the same 

average value and standard deviation as the measured data. Details of the measured data and 

modeling can be found in the Appendix 6C. The learning and PCA classification results of the 

RRAM network, with and without considering device variations, are shown in Fig. 6.7(c) and 

6.7(d) for comparison. Significantly, even with substantial device-device and cycle-cycle 

variations (Fig. 7b), the network is still able to successfully learn the principal components and 

classify the data sets into the 2 categories (Fig. 6.7(d)). The training becomes slightly less 

optimal with the length of the weight vectors increased slightly to 1.05 and 1.06 for the primary 

and secondary principal components, respectively, compared to 1.0005 and 1.003 without 

considering device variations.  

 Analysis of Performance of the RRAM Network 

Finally, to quantitatively analyze the performance of the RRAM network, logistic 

regression [25] was used to measure the effectiveness of the PCA analysis. The linear decision 

boundaries obtained from logistic regression are shown as dotted lines separating the two 

clustered sets of data in Fig. 6.7(c) and 6.7(d). Classification based on the PCA analysis and 

linear decision boundaries on the clustered data obtained from different approaches yielded 

essentially identical results (97.4% in Fig. 6.7(c) for the ideal case without considering device 

variations, and 97.6% in Fig. 6.7(d) for the case considering realistic device variations). This 
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result suggests that the RRAM network can be inherently tolerant to device variations due to the 

distributed network structure, and systems based on such networks can lead to reliable operations 

despite the nanoscale devices being intrinsically unreliable.  

 

 

 Conclusion  

In conclusion, we show that RRAM networks can effectively implement unsupervised 

learning rules and be trained to learn principal components from data sets. The principal 

components learned during the training process can then be directly used to perform 

classification tasks using the same network. A realistic physical model was developed for the 

TaOx based RRAM and used in the analysis. Sanger’s learning rule was utilized to implement 

online learning by adjusting the weights of each RRAM in the crossbar network. After learning 

the principal components, the RRAM network was successfully used to classify breast cancer 

data set as an example through first data clustering and then deriving a linear decision boundary. 

Significantly, successful learning and classification can still be obtained in the RRAM network 

even in the presence of substantial device variations, demonstrating the reliability of the network 

structure and the learning algorithm. The ability to achieve online learning and perform 

classification tasks reliably in the presence of unreliable devices suggest this approach can be 

extended to larger networks and other machine learning algorithms for more complex data-

intensive tasks.  
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 Appendix  

6.10.1  Appendix A- Device Modeling 

The growth rate of the state variable, w, is determined by ion hopping process over an 

energy barrier as shown in figure 6.8. It can be written as: 

dw

dt
= 𝑓(𝑤, 𝑉) ∙ d ∙ f [exp (

−q(U−𝛼1𝑉)

kT
) − exp (

−q(U+𝛼2𝑉)

kT
)]                         (9) 

where d is half of the average hopping distance of ions, f is the attempt frequency, q is the charge 

of an electron, U is the activation potential energy, k is the Boltzmann’s constant, T is the 

temperature in Kelvin, α1 and α2 are barrier lowering coefficients [22], and f(w,V) is a window 

function to account for the non-linear response to the applied voltage[23].  The window 

function used in this paper is shown in equation (10): 

f(w, V) = (w − 1)2u(−V) + w2u(V)                                            (10) 

 

Figure 6.8. Energy barrier of ion hopping process. 

: An oxygen vacancy

U

α1V

α2V
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Where u() is the Heaviside step function. By plugging equation (10) into equation (9), the rate 

equation of w can be re-written as: 

dw

dt
= (w − 1)2k(e−μ1V − eμ2V)u(−V) + w2k(e−μ1V − eμ2V)u(V)                 (11) 

where 𝑘 = 𝑑𝑓 𝑒𝑥𝑝 (
−𝑞𝑈

𝑘𝑇
), 𝜇1 = exp (

−𝑞𝛼1

𝑘𝑇
), and 𝜇2 = 𝑒𝑥𝑝 (

−𝑞𝛼2

𝑘𝑇
). Eq. (11) is Eq. (1) in the main 

text. 

The current through the device described by equation (2) consists of tunneling-dominated 

conduction and Schottky-dominated conduction. The tunneling current can be calculated by 

assuming MIM structure with very thin insulator so that the tunneling current is observed. Using 

the expressions for a square barrier [24-26], the current can be derived as: 

I = A
4𝑞𝜋𝑚(𝑘𝑇)2

ℎ3 exp (−𝑏1)
1

(𝑐1𝑘𝑇)2

𝜋𝑐1𝑘𝑇

sin(𝜋𝑐1𝑘𝑇)
(1 − exp(𝑐1𝑞𝑉))                    (12) 

Where 

𝑏1 =  
2𝛼𝑑√𝑞

3𝑉
(𝜑0

3

2 − (𝜑0 − 𝑉)
3

2   if V < 𝜑𝑂                                      (13) 

   =
 2𝛼𝑑√𝑞

3𝑉
(𝜑0

3

2)             if V > 𝜑𝑂                                         

 

𝑐1 =  
𝛼𝑑

𝑉√𝑞
(𝜑0

1

2 − (𝜑0 − 𝑉)
1

2)    if V < 𝜑𝑂                                      (14) 

  =
𝛼𝑑

𝑉√𝑞
(𝜑0

1

2)               if V > 𝜑𝑂 

A is the filament area, m is the effective electron mass, h is Plank’s constant, φ0 is the barrier 

height at zero bias, d is the tunneling distance, and α =
4𝜋√2𝑚

ℎ
. 

At low bias, equation (13) and (14) can be simplified as: 
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     𝑏1 =  
2𝛼𝑑√𝑞

3𝑉
(𝜑0

3

2 − (𝜑0 − 𝑉)
3

2)                                                     

       =
2𝛼𝑑√𝑞

3𝑉
𝜑𝑂

3

2 (1 − (1 −
𝑉

𝜑0
)

3

2
) 

       =
2𝛼𝑑√𝑞

3𝑉
𝜑𝑂

3

2(1 − (1 −
3𝑉

2𝜑0
)) 

       =
2𝛼𝑑√𝑞

3𝑉
𝜑𝑂

3

2(
3𝑉

2𝜑0
)                                                (15) 

 

𝑐1 =
𝛼𝑑

2√𝑞𝜑0
                                                             (16) 

 

By plugging equation (15) and equation (16) into the equation (12), 

       I = A
4𝑞𝜋𝑚(𝑘𝑇)2

ℎ3 exp(−𝑏1)
1

(𝑐1𝑘𝑇)2

𝜋𝑐1𝑘𝑇

sin(𝜋𝑐1𝑘𝑇)
(1 − exp(𝑐1𝑞𝑉)) 

        = A
4𝑞𝜋𝑚(𝑘𝑇)2

ℎ3

1

(𝑐1𝑘𝑇)2

𝜋𝑐1𝑘𝑇

sin(𝜋𝑐1𝑘𝑇)
𝑒−𝛼𝑑√𝑞𝜑0𝑒

𝛼𝑑𝑉

4 √
𝑞

𝜑0 (1 − 𝑒
−𝛼𝑑𝑉

2 √
𝑞

𝜑0) 

        = A
4𝑞𝜋𝑚(𝑘𝑇)2

ℎ3

1

(𝑐1𝑘𝑇)2

𝜋𝑐1𝑘𝑇

sin(𝜋𝑐1𝑘𝑇)
𝑒−𝛼𝑑√𝑞𝜑0sinh (

𝛼𝑑𝑉

4
√

𝑞

𝜑0
) 

        = A
16𝑘𝑇𝜋2𝑚𝑞√𝑞𝜑0

𝛼𝑑ℎ3 sin(
𝜋𝛼𝑑𝑘𝑇

2√𝑞𝜑0
)

𝑒−𝛼𝑑√𝑞𝜑0sinh (
𝛼𝑑𝑉

4
√

𝑞

𝜑0
)                          (17) 

For the Schottky junction current is explained by equation (18). 

       𝐼 =
𝑞𝐴𝐷𝑛

𝐿
(1 − 𝑒𝑥𝑝 (−

𝑞𝑉

𝜗𝑘𝑇
))                                        (18)                     

where q in the charge of an electron, A is the dimension of the device, D is the diffusion 

coefficient, n is the number of electrons, L is the diffusion length of electrons, V is the applied 

voltage, 𝜗 is an ideality factor, k is the Boltzmann’s constant and T is the temperature in Kelvin. 
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6.10.2 Appendix B- Normalization of the weights 

The Sanger’s rule originates from Hebb’s rule . For the simplicity, with the assumption that we 

have only one output, we can write the Hebb’s rule as shown in the equation below. 

𝑤𝑖(𝑛 + 1) = 𝑤𝑖 + 𝜂𝑦𝑥𝑖                                           (19) 

If we require the weights to be normalized to prevent infinite growing output of Hebb’s rule, the 

update rule is modified as: 

𝑤𝑖(𝑛 + 1) =
𝑤𝑖+𝜂𝑦𝑥𝑖

√∑ (𝑤𝑗+𝜂𝑦𝑥𝑗)2𝑚
𝑗=1

2
                                      (20) 

where m is the number of inputs. Because 𝜂, the update rate, is normally very small(<<1), 

through Taylor expansion and keeping only the leading term, Equation (20) becomes.  

𝑤𝑖(𝑛 + 1) = 𝑤𝑖 + 𝜂𝑦(𝑥𝑖−𝑤𝑖𝑦)                 (21) 

Eq. (21) is the equation for Sanger’s rule (with only 1 output. The case for more than one outputs 

can be derived similarly). In other words, by implementing Sanger’s rule (21), we are effectively 

implementing rule (20) (again for small update rates 𝜂 which is satisfied in experiments) with 

normalized weights. 
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6.10.3 Appendix C- Details of the measured data and modelling 

 

Figure 6.10 shows the analog conductance changes of the 18 memristor devices forming the 

network. Device-device variations are clearly observed which causes conductance discrepancy 

after potentiation/depression pulses. To verify the effect of device variations on the network 

 
Figure 6.9. The details of conductance change measured at 0.2 V with 100 pulses of potentiation (-1 V) and 

100 pulses of depression (1.15 V), consecutively for (a) measured conductance for 9 RRAM devices of the 

primary principal component (b) measured conductance for 9 RRAM devices of the second principal 

component (c) simulated conductance for 9 RRAM devices of the primary principal component (d) calculated 

conductance for 9 RRAM devices for the secondary principal component.  
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performance, the relevant device parameters were assumed to vary following Gaussian 

distributions (Table 6.1) and the exact value of a parameter for a given device was chosen 

randomly using a Monte Carlo method during the simulations. Figure 6.7(b) shows the average 

value and standard deviation calculated using this approach, which are consistent with the 

experimentally observed variations. The model with the random device variations was then 

applied to the network analysis and led to Figure 6.7(d).  The parameters used in the simulation 

are shown in Table 6.1. 

 

 

Table 6.1. Device parameters used in the simulation. 
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Experimental Demonstration of Unsupervised Learning 

Using RRAM networks 

 

 Introduction 

In chapter 6, we showed through simulation that RRAM networks can effectively 

implement unsupervised learning rules and be trained to learn principal components from data 

sets by simulation. As discussed, PCA is an important technique used in machine learning for 

preprocessing a data set or dimension reduction [1]. In this chapter, we study the experimental 

demonstration of unsupervised learning using RRAM crossbar arrays. The breast cancer data 

having malignant cell and benign cell is again used as an example in this experimental study.  

 Device Fabrication and Analog switching behavior 

As discussed in chapter 5, our recent studies on RRAM devices having a tantalum oxide 

layer doped with silicon atoms show high On/Off ratio and controllable analog switching 

behavior [2]. Two sets of 16 by 1 arrays were fabricated and the device size is 2 µm × 2 µm as 

shown in Figure 7.1(a). The inset of figure 1b shows the schematic of the Pd/TaOx/Ta2O5/Pd 

stack. As shown in figure 7.1(b), analog behavior is measured by a read (0.2 V) pulse during 100 

potentiation pulses (-1 V, 10 μs) and 100 depression pulses (1.15 V, 10 μs). The plotted current is 

the average current from 9 devices.  
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 Peripheral Circuitry 

To experimentally demonstrate the PCA network, a printed circuit board was designed 

by our collaborators (Prof. Zhengya Zhang’s group) at University of Michigan, Ann Arbor. The 

board is shown in Figure 7.2(a). The Digital to Analog Converters (DACs) (Analog Devices, 

model AD7305) provide bias to the top electrodes (TEs) and bottom electrodes (BEs). The 

switches (Analog Devices, model ADG 738) are utilized to select a cell so the cell can be 

programmed or be read out. The Analog to Digital Converter (ADC) (Linear Technology, model 

LTC 1412) and Op amp (Texas Instruments, model OPA 657) are designed to read current or 

calculate charge during read operation. The left part of the board is connected to a 

microcontroller with FPGA chip (Xilix, Spartan 6) for the communication between a computer 

 
 

Figure 7.1 Device fabrication and analog switching behavior. (a) SEM images of the fabricated two sets of 16 

by 1 RRAM devices. Scale bar: 100 μm.  (b) DC I-V characteristics of a typical RRAM device showing the 

bipolar switching with 100 pulses of potentiation (-1 V, 10μs) and depression (1.15 V, 10μs), consecutively. 

Inset: schematic image of a RRAM device having oxygen vacancy filament. This is not to scale.  
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and the board. A wire bonded RRAM array shown in Figure 7.1(a) is attached to the board 

through a socket.  

The detailed procedure of the board operation is shown in figure 2b. For the write 

process, a positive write voltage is applied to DAC2 while DAC1 is grounded so BE has positive 

voltage and TE is grounded. Under this condition, a selected RRAM device is subjected to an 

effectively negative write voltage at the TE and 0 V at the BE. The oxygen vacancies migrate in 

the direction of TE, so the device becomes more conductive. For the erase process, a positive 

erase voltage is applied to DAC1 with 0V applied to DAC2, so the oxygen vacancies in the 

filament of the selected device move back to the BE resulting in decrease of conductivity of the 

RRAM device. For the write and erase process explained above, the switch matrix 1 and switch 

matrix 2 have value 1 for selected devices to apply voltages between DAC1 and DAC 2. For read 

process, DAC1 applies the read voltage and the current is read using the op amp, a sensing 

 
 

Figure 7.2 Peripheral circuitry (a) the photo image of the board with label parts. (b) schematic of the 

procedure of the board operation. 
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resistor and the ADC. The switch matrix 2 output value 0 while the switch matrix1 output value 

1 for the selected devices to get current from DAC1 to ADC.   

 

  Learning in the RRAM array 

As discussed in chapter 6, even with the presence of substantial device-device and cycle-

cycle variations, the network is still able to successfully learn the principal components and 

cluster the data sets. Figure 7.3(a) shows responses from each RRAM devices measured by 0.2V 

read pulse when 100 potentiation and 100 depression pulses applied. To obtain the weights gij for 

each device, Eq. (1) was used along with the measured current I through the device at applied 

voltage V. Same parameters (γ, δ, α, and β) were used for all devices, and those parameters were 

obtained by fitting the memristor equations with the averaged measured current.  

𝐼 =
1+𝑔

2
 𝛾 sinh(𝛿 × 𝑉) +

1−𝑔

2
𝛼(1 − 𝑒−𝛽×𝑉))                                   (1)                                     

 
 

Figure 7.3 (a) Experimental measurements collected by the board for 9 RRAM devices in the same column 

(corresponding to the second principle component), showing the analog conductance change and device-

device variations. The conductance was measured with 0.2 V, 1 ms pulses, and the devices were subject to 100 

pulses of potentiation (-1 V, 10 μs) and 100 pulses of depression (1.15 V, 10 μs). (b) The solid line and the error 

bars represent the average and standard deviation.  
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To initialize the PCA network, initial weights of each RRAM devices were calculated by 

applying read voltage pulse. From the current equation given by equation (1), weight, g, is 

extracted. 

During training, voltage pulses representing input x, are applied to the inputs (rows). Charge is 

calculated from the measured current at each output (column), and the output function y at each 

column is calculated through equation (2)  

𝑦𝑗 =
2𝑄𝑗

𝐴−𝐵
− ∑ [

𝐴+𝐵

𝐴−𝐵
𝑥𝑖]𝑖                                                         (2) 

As shown in Ch. 6, 𝑦𝑗 = ∑ 𝑔𝑖𝑗𝑥𝑖
𝑛
𝑖=1  following the definition used in (2).                                              

To learn the principal components from the training set, Sanger’s rule is applied to calculate the 

changes of weights following equation (3) [3]. 

∆𝑔𝑖𝑗 = 𝜂𝑦𝑗(𝑥𝑖 − ∑ 𝑔𝑖𝑘𝑦𝑘)
𝑗
𝑘=1                                                    (3) 

As discussed in Ch. 6, to implement Sanger’s rule, the programming pulse width, │∆t│, is 

calculated based on the current weight and Δg as shown in equation (4). 

∆𝑡𝑖𝑗 = 𝑓(𝑔𝑖𝑗 , ∆𝑔𝑖𝑗) =
2

𝑘(𝑒
−𝜇1𝑉𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛−𝑒

𝜇2𝑉𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛)
(

−1

𝑔𝑖𝑗,𝑎𝑓𝑡𝑒𝑟−1
+

1

𝑔𝑖𝑗,𝑏𝑒𝑓𝑜𝑟𝑒−1
) 𝑢(∆g) 

                 + 
2

𝑘(𝑒
−𝜇1𝑉𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛−𝑒

𝜇2𝑉𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)
(

−1

𝑔𝑖𝑗,𝑎𝑓𝑡𝑒𝑟+1
+

1

𝑔𝑖𝑗,𝑏𝑒𝑓𝑜𝑟𝑒+1
) 𝑢(−∆g)    (4) 

The details of the calculation of the parameters above are explained in chapter 6.  

Since the practical minimum pulse width with the board is around 700ns, in our experiment, 1μs 

pulse width is used if the calculated pulse width is between 100ns and 1μs, and the pulse is 



 115 

ignored if the calculated pulse width is smaller than 100ns. Once the pulse width is calculated, 

the actual write pulse or erase pulse is applied to the device. A write pulse with pulse width, Δt, 

is applied when Δg is positive while an erase pulse with pulse width, Δt, is applied when Δg is 

negative. After applying all training pulses to the RRAM array, the updated weight is calculated 

by applying a read voltage. The procedure explained above is then repeated until all training data 

are used in one cycle of training. To apply another cycle of training, the sequence of the training 

data is randomized to prevent the RRAM array from learning the (artificial) pattern of sequence 

of the training data. The flowchart in figure 7.4 is the summary of the operating procedure 

explained above. 

 
 

Figure 7.4 Flowchart showing the overall operation procedure.  
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 Data Clustering before and after Applying Unsupervised Learning Rule 

 To test the PCA network, a standard breast cancer data set from University of Wisconsin 

Hospitals, Madison was adopted as the input signal data, as discussed in chapter 6. Each training 

cycle consists of one hundred randomly sequenced data points (50 points from benign class, 50 

points from malignant class). After training, the ability of the network to cluster the data was 

tested by analyzed 583 data points from the same data base but not included in the training data. 

Figure 7.5(a) shows the output from the network for the 583 data points before learning, with y1 

as the horizontal axis and y2 as the vertical axis. Red dots and dark yellow dots show benign and 

malignant cells (ground truth), respectively. Before training, the two groups, red dots and dark 

yellow dots are mixed with each other. In other words, the network was not able to cluster the 

data without training. Figure 7.5(b) shows the results after 50 cycles of training. As explained in 

chapter 6, for the primary principal component (y1), the weights changes rapidly and become 

stabilized while the weight changes for the secondary principal component (y2) needs more time 

to be stabilized. The Euclidean norm of the weights for the primary principal component is 1.06  

 
 

Figure 7.5 Results of principal component analysis. The data are plotted on y1 and y2 axis. (a) Initial results of 

an untrained RRAM network. (b) Results of a partially trained RRAM network. (c) Results of a fully trained 

RRAM network. 
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which is almost converged to 1 (as expected from implementing Sanger’s rule, Ch 6) and that of 

the weights for the secondary principal component is 1.56 in figure 7.5(b). This implies that the 

weights for the primary principal component are stabilized while the weights for the secondary 

principal component still need to trained further. Figure 7.5(c) shows the results after 100 cycles 

of training. The Euclidean norm of the weights for both primary principal component and 

secondary principal component are closed to 1, indicating the network has completed learning.  

 As shown in figure 7.6, the weight distributions changed for both primary principal 

component and secondary principal component during the learning step. Interestingly, the 

weights for the primary principal component in this experimental study after learning were found 

to be all negative, while the weights found in our simulation in chapter 6 were all positive. The 

primary principal component corresponds to the direction of the largest variance in the data set, 

and the experimentally obtained primary principle component in Fig. 7.6 is roughly the mirror 

 
 

Figure 7.6 Weights constituting (a) the primary principal component and (b) the secondary principal 

component before (upper graph) and after (lower graph) the learning process. 
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image of that obtained through simulation shown in Fig. 6.4, so they in fact correspond to 

(roughly) the same direction and leading to (roughly) the same primary principle component. 

However, those two results are not a perfect match of each other, since Sanger’s rule only leads 

to the exact principle components after infinite training in ideal cases, and the actual vectors 

obtained in both experimental and simulation studies are only approximating the exact solutions. 

However, the approximation is still sufficiently close enough to the exact solutions and excellent 

clustering and classification results can still be obtained.  

 Figure 7.7 shows the evolution of the Euclidean norm of the weights during learning. 

The red dots and the dark cyan dots represent the norm value for primary principal component 

and secondary principal component, respectively. It can be seen that the norm value of the 

primary principal component converges to 1 faster than that of the secondary principal 

component. This is because the convergence of the secondary principal component only happens 

after the primary principal component has converged. It is noted that the norm values are not 

 
 

Figure 7.7 Evolution of the Euclidean norm of weights during learning. Red dots represents the norm value 

of the weights for the primary principal component and dark cyan dots shows the norm value of the weights 

for the secondary principal component. 
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stabilized and some points are out of the tendency. For example, devices can be stuck at the 

highest current level or lowest current level of the device which makes the norm value high and 

out of the trend. This problem can be resolved by applying longer write or erase pulse for the 

devices stuck at low current level or high current level, respectively. 

 To analyze the clustered data to measure the accuracy of the RRAM network, a linear 

decision boundary was developed by logistic regression [4]. The decision boundary obtained 

from logistic regression is shown as black line in figure 7.8. The boundary line separates the two 

sets of clustered data accurately. Only 17 data points among 583 data points are misclassified 

corresponding to 97% accuracy. This result suggests that data clustering through an RRAM-

based network employing unsupervised learning can be used for effective data classification. 

 
 

Figure 7.8 Classification based on linear decision boundary (black line) on the clustered data. 
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 Conclusion 

 In conclusion, we show that RRAM networks can implement PCA, one of the most used 

and representative unsupervised learning rule, and successfully cluster data in a real-world 

environment. The experiments were carried out in TaOx-based RRAM arrays and a customized 

PCB board with FPGA and a microcontroller. Online learning was successfully demonstrated by 

adjusting the weights of each RRAM device in the crossbar network through unsupervised 

learning even with abnormal unpredictable behavior of the devices. We believe this experiment 

contributes to bridging the software based machine learning algorithm to hardware framework.  
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Summary and Future Work 

 Discussion 

 

In chapter 2, we studied modeling of the dynamic resistive switching processes in RRAM. 

We developed a compreshensive and accurate physical model that quantitatively explains the 

dynamic memristive switching process by solving the local electric field, temperature and VO 

concentration self-consistently. This model confirms that the conductive filament is formed and 

ruptured inside the switching layer. The set process involves field-driven filament formation 

followed by filament expansion, while reset process is dominated by thermal-driven filament 

rupture followed by gap widening. A quantitative and accurate dynamic switching model that 

fully accounts for the resistive switching behaviors in RRAM in a unified framework provides a 

physical picture of the resistive switching behavior and a basis for continued device 

optimizations.  

In chapter 3 and chapter 4, we discussed several experiments that revealed the resistive 

switching mechanism and distributions of oxygen vacancies inside the switching layer. In 

chapter 3, we carried out systematic investigations of the mechanism using detailed noise 

analysis and electron transport analysis. These systematic analyses verified the conduction 

channel formation is associated with the distribution of oxygen vacancies. Interestingly, as the 

device was switched from HRS to LRS the conduction channel area was reduced although the 
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local oxygen vacancy concentration is increased. In chapter 4, we studied retention failure 

mechanism of RRAM devices at high temperature. The activation energy for oxygen vacancy 

diffusion was calculated and analyzed by both analytical modeling and detailed numerical multi-

physics simulation, which verifies filament-based conduction path in LRS. 

In chapter 5, we studied how to improve the resistive switching behavior in RRAM 

devices. By systematical tuning at the atomic level through doping, the resistive switching 

characteristics were improved. Si doping expedited oxygen vacancy drift and the device showed 

larger dynamic analog switching ranges with high endurance. These findings will provide 

valuable information on the application of neuromorphic computing system.  

In chapter 6 and chapter 7, we investigated the application of the RRAM in neuromorphic 

computing, by showing data clustering based on unsupervised learning. In chapter 6, we 

investigated PCA network using RRAM crossbar arrays through simulations with realistic device 

models and also accounting for expected device variations. The trained RRAM network was able 

to cluster and separate input data set into 2 categories. Even with relatively large device 

variability, the network with RRAM devices categorized the input signals with high accuracy. In 

chapter 7, the concept of RRAM-array based PCA network was demonstrated experimentally. 

Detailed experimental procedures have been developed and successful data clustering and 

classification were achieved through the trained RRAM network and peripheral circuitry at the 

board level. 
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 Future work 

8.2.1 RRAM Crossbar Array for Preprocessing of Neural Signal 

In chapter 6, we demonstrated the feasibility of performing component analysis based on 

RRAM devices. In principle, the RRAM-based hardware can be directly embedded in biological 

systems due to its simplicity, high endurance [1,2] and low power consumption [3]. For the next 

step, coupling of the artificial neural network system with biological systems will be 

demonstrated. From a set of bio neural signal collected by electroencephalogram (EEG), 

electrocardiogram (ECG) or electromyogram (EMG), the pulse data can be obtained as shown in 

Fig. 8.1. Fig. 8.1(a) shows an example of the measured data from a channel in motor cortex of a 

Monkey. The neural signal data consist of pulses collected from 96 channels. By stimulating 

individual fingertips, the fire rate at each neuron (measured by each channel) would be 

modulated. From the recorded data, we can extract the (digitized) spike patterns as shown in Fig. 

 
Figure 8.1. (a) Measured neural signals in motor cortex from a Monkey. Data obtained from Cortical Neural 

Prosthetics Lab from Biomedical Engineering in University of Michigan. (b) Extracted spikes with constant 

voltage from Fig. 1(a).   
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8.1(b) by applying the equation, VTH = -4.5 x VRMS [4]. When voltage is higher than VTH, it is 

considered as spike. The calculated spike firing pattern serves as the input signal of the RRAM 

arrays to perform PCA network using Sanger’s rule. The unsupervised learning discussed in 

chapter 6 and chapter 7 may enable a neural signal processing system embedded the body that 

can efficiently and quickly analyze biological neural signals for potential diagnosis and 

prosthesis applications.  

 

8.2.2 Device Optimization – Analog Switching 

As discussed in Chapters 6 and 7, analog switching behavior of RRAM devices can be 

utilized for neuromorphic computing systems where memory and logic are implemented at the 

same physical locations. However, reliable analog switching behaviors of RRAM devices still 

need further development. For example, tungsten oxide based RRAM devices [5] show reliable 

analog switching, but they normally offer short retention times that limit their range of 

applications. The Si doped tantalum oxide based RRAM device discussed in chapter 5 shows 

good retention and long endurance, but they still suffer issues such as device to device and cycle 

to cycle uniformity variations and relatively small window for the analog switching. Optimizing 

the analog switching characteristics is a relatively unexplored areas and lots of work still need to 

be performed to identify and optimize the switching material and engineer the device stack. 

Continued optimization of analog RRAM devices will not only leads to better memories but can 

also result in reliable analog computing systems or neuromorphic computing systems based on 

RRAM devices.  
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