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“Nobody tells this to people who are beginners; I wish someone told me. 

All of us who do creative work, we get into it because we have good taste. But 

there is this gap. For the first couple years you make stuff; it’s just not that 

good. It’s trying to be good, it has potential, but it’s not. But your taste, the 

thing that got you into the game, is still killer. And your taste is why your work 

disappoints you. A lot of people never get past this phase. They quit. Most 

people I know who do interesting, creative work went through years of this. 

We know our work doesn’t have this special thing that we want it to have. We 

all go through this. And if you are just starting out or you are still in this phase, 

you gotta know it's normal and the most important thing you can do is do a lot 

of work. Put yourself on a deadline so that every week you will finish one 

story. It is only by going through a volume of work that you will close that gap 

and your work will be as good as your ambitions. And I took longer to figure 

out how to do this than anyone I’ve ever met. It’s gonna take a while. It’s 

normal to take a while. You’ve just gotta fight your way through.”  

-Ira Glass 
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PREFACE 

 

Long gone are the days of VCRs, cassette tapes, floppy disks, camera film, and slide rulers. 

Cheap digital memory and ubiquitous processing platforms have completely revolutionized the 

way we interact with world around us. Indeed, the sheer amount of personal computing recourses 

available to human beings today should absolutely astonish anyone humbled enough to 

remember that familiar clunk of rotary dial phones and that helpful assistance of human 

telephone operators. Even the most modest personal electronic devices we carry in our pockets 

today – and sometimes toss aside like yesterday’s old toys, easily dwarf the capabilities of 

electronics from decades past. In particular, look at the Apollo guidance computer from 1969. 

That simple computer hardly rivals even some of the calculators we have available today, but 

that brilliant device landed people on the Moon. From sticks and stones, to fire, to the wheel, to 

the compass, to the telephone, to the light bulb, to penicillin, into space, and through the internet, 

the rate at which technology is advancing is unparalleled by any other stage in human history. 

Digital memory and digital computing are no exception, and perhaps even one day, in the spirit 

of Richard Feynman [1], we might eventually encode the entire history of human knowledge into 

the surface of a single atom... 

 In all seriousness, we as human beings are only limited by the ingenuity of our imagination 

and that curiously unique drive to reach outwards beyond what we know – and of course, the 

laws of physics! Already, we construct circuits with physical dimension on the order of a 

hundred atoms, and as amazing as that is, what we’ve yet to discover and what we’ve yet to do 
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with those discoveries is only going to get more amazing. The ride is far from over yet, and 

whatever fantastic marvels the future holds, digital memory and digital processing will certainly 

play an important role in those wonderful things to come. Consider even for a moment the 

discovery of the Higgs Boson, or even other particles from the Standard Model – or the entire 

Large Hadron Collider
1
 itself and every particle accelerator before. Without the mind-boggling 

amount of digital memory and computing resources available today, none of that would have 

ever happened. Sometimes we as academics, and as scientists and engineers, get so immersed in 

subtleties of our specialized fields that we often forget how life-changing what we do really can 

be… “If I have seen further it is by standing on the shoulders of giants [2].” 

The prevalence of digital electronics will continue to spread throughout the many facets of 

our lives, and as access to cheaper computing resources become more commonplace, digital 

devices will need to become more autonomous and more interactive with the world around us. 

Digital devices, however, face a serious problem when interacting with the outside world, for 

that tiny digital world of ‘1’s and ‘0’s they hold so dear – even with it’s perfect language of 

expressively complete logic, hardly describes anything beyond an abstraction of an abstraction of 

the physical world. Just flickers from shadows on a cave wall [3]. The real world isn’t digital, it’s 

analog – wonderfully continuous, and as often times seems, logically defiant right to its core. 

Sometimes it’s as sharp as it is smooth, as coarse as it is fine, and twice two makes four – 

sometimes five [4], but still a great deal removed from that tiny world of ‘1’s of ‘0’s. 

We, as human beings, perceive light and sound and heat and touch as continuous quantities, 

which is quite different from how digital electronics abstract the world. In order to reach out and 

                                                 

 

1 Estimates suggest that the Large Hadron Collider generates 20 petabytes of data per year, 20x1015 bytes, and it’s international computing grid 
is one of largest know clusters in the world. 
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interact with the physical world the same way as us, digital electronics require bilingual 

interpreters to explain the world – namely analog-to-digital converters. As digital as they say the 

world is becoming, analog is far from out the door and certainly here to stay.  
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CHAPTER I 

Introduction 

1.1   Overview 

This work investigates hybrid analog-to-digital converters (ADCs) that combine the 

phenomenal energy efficiency of successive-approximation (SAR) ADCs with the resolution 

enhancement strategies used by noise-shaping converters. Because charge-redistribution SAR 

ADCs contain few active components and rely on highly digital controllers, SAR ADCs 

demonstrate the best energy efficiencies of all low bandwidth, moderate resolution converters 

(~10 bits).  

SAR ADCs achieve remarkable power efficiency at low resolution, but as the resolution of 

the SAR ADC increases, the specifications for input-referred comparator noise become more 

stringent and total DAC capacitance becomes too large, which degrades both power efficiency 

and bandwidth. For these reasons, lower resolution, lower bandwidth applications tend to favor 

traditional SAR ADC architectures, while higher bandwidth, higher resolution applications tend 

to favor pipeline-SARs. Although the use of amplifiers in pipeline-assisted SARs relaxes the 

comparator noise requirements and improves bandwidth, amplifier design becomes more of a 

challenge in highly scaled processes with reduced supply voltages. 

In this work, we explore the use of feedback and noise-shaping to enhance the resolution 

of SAR ADCs. Unlike pipeline-SARs, which require high-gain, linear amplifiers, noise-shaping 
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SARs can be constructed using passive FIR filter structures. Furthermore, the use of feedback 

and noise-shaping reduces the impact of thermal kT/C noise and comparator noise. This work 

details and explores a new class of noise-shaping SARs. 

 

 

Figure 1-1:  The First Disclosure of PCM: Paul M. Rainey, “Facsimile Telegraph System,” 

U.S. Patent 1,608,527, Filed July 20, 1921, Issued November 30, 1926 [5]
2
 

                                                 

 

2 Figure and caption quoted directly form Figure 1-5 in [1]. 
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1.2   Comparison of Architectures 

In this section we compare different ADC architectures and explore some of the 

fundamental ADC design tradeoffs. Figure 1-2 highlights the primary division between ADC 

architectures with respect to resolution and bandwidth. As sketched in Figure 1-2, ADCs exhibit 

a fundamental tradeoff between bandwidth and resolution across architecture types. At low 

bandwidths, delta-sigma ADCs dominate higher resolution applications, followed by successive-

approximation, pipeline, and flash ADCs. Similar to the fundamental gain-bandwidth tradeoff for 

general purpose amplifiers, ADCs achieve the highest resolutions at lower bandwidths and 

accommodate higher bandwidths at the expense of lower resolutions. 

 

Figure 1-2:  Overview of conventional ADC architectures 
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The tradeoff between resolution and bandwidth is further quantified in Figure 1-3, which 

surveys measured performance data from scholarly published ADCs [6]. As shown in Figure 1-3, 

ADC resolution, expressed in signal-to-noise-and-distortion (SNDR), decreases at higher signal 

bandwidths. Similar to the sketch of architectures provided in Figure 1-2, delta-sigma ADCs 

dominate high resolution applications and flash ADCs dominate high bandwidth applications. 

When examining the limits to this resolution-bandwidth tradeoff, an interesting trend arises. The 

solid and dashed trendlines which envelope the data points in Figure 1-3 represent surfaces of 

constant jitter. Empirically, sampling jitter can be shown to sets the upper limit on the maximum 

bandwidth achievable for a given resolution [7]-[10]. 

 

Figure 1-3:  Survey of resolution versus bandwidth for various ADC architectures with data 

compiled from 2012 online survey [6]. 
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Figure 1-4:  Survey of energy versus resolution for various ADC architectures with data 

compiled from 2012 online survey [6]. 

While the connection between the ADC resolution-bandwidth tradeoff and jitter can be 

understood as a limitation resulting from the sampling operation of ADCs, the tradeoff between 

ADC energy consumption and SNDR is less clear. Figure 1-4 plots measured performance data 

relating energy consumption and SNDR. As shown in Figure 1-4, the energy consumption of 

ADCs tends to increase as the resolution increases. At higher resolutions, delta-sigma ADCs 

typically consume the highest energies, and at the lowest resolutions, flash ADCs typically 

consume the lowest energy. For most of the architectures, Figure 1-4 shows a consistent tradeoff 

between energy and SNDR at a lower limit envelope around 100fJ/conv-step.
3
 SAR ADCs, on 

                                                 

 

3 Walden figure-of-merit expressed as Power/Bandwidth/2BITS [7]. 
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the other hand, seem to break this trend and follow and FOM envelope closer to 10fJ/conv-step. 

In terms of Walden figure-of-merit (FOM), SAR ADCs exhibit a much better energy 

performance than all other ADC architectures. 

For completeness, ADC power consumption is compared with ADC bandwidth in Figure 

1-5. Except for delta-sigma ADCs, the ADCs reported in the survey are roughly bounded by a 

surface of constant energy at about 1.0 pJ. Delta-sigma ADCs, however, appear to be roughly 

bounded at about 100 pJ, which is two orders of magnitude higher than the other ADC 

architectures. For delta-sigma ADCs, this higher energy bound most likely results from the way 

in which delta-sigma ADCs logarithmically trade bandwidth for resolution through 

oversampling. 

 

Figure 1-5:  Survey of power versus bandwidth for various ADC architectures with data 

compiled from 2012 online survey [6]. 
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Based on the surfaces of constant energy described in Figure 1-5, we should expect the 

energy consumption of ADCs to remain fairly flat across bandwidth. The picture becomes less 

clear, however, when we directly compare ADC energy to bandwidth – where energy is 

expressed as power normalized by bandwidth. Figure 1-6 provides a plot of ADC energy versus 

bandwidth. Except for SAR ADCs, which seem to reveal the expected independence between 

energy and bandwidth, the other architectures reveal a trend of higher energies at lower 

bandwidths. Typically one would expect lower bandwidth application to require less energy, so 

the design tradeoff implied by Figure 1-6 is probably not completely decoupled from other ADC 

specifications, such as SNDR.  

 

 

Figure 1-6:  Survey of energy versus bandwidth for various ADC architectures with data 

compiled from 2012 online survey [6]. 
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1.3   Time Interleaving 

Traditionally, high speed applications required flash ADCs. Other architectures, such as 

SAR, were limited to lower bandwidth applications. In 1980, however, time-interleaving ADC 

architectures were introduced [11]-[12]. With time-interleaving, multiple low bandwidth ADCs 

are multiplexed together to achieve a higher effective converter bandwidth. As shown in Figure 

1-7, time-interleaving allows SAR and pipeline ADCs to achieve bandwidths that were typically 

restricted to flash ADCs. Although time-interleaving has allowed architectures such as SAR to 

achieve overall bandwidths in excessive of 20 GHz, time-interleaving is a technique restricted to 

Nyquist ADCs. Oversampling converters, like delta-sigma ADCs, do not leverage the same 

bandwidth performance benefit form time-interleaving. This point is further discussed in further 

detail in Chapter 5.  

 

Figure 1-7:  Overview of time-interleaved ADC architectures 
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In Figure 1-7, we see a gap for resolutions above time-interleaved SAR ADCs and for 

bandwidths beyond delta-sigma ADCs. To address this ADC architecture gap, this work explores 

hybrid ADC architectures that combine delta-sigma ADCs and SAR ADCs. As described in the 

rest of this work, these hybrid noise-shaping SAR ADCs leverage the high energy efficiency of 

the SAR ADC architecture and exploit the oversampling techniques of traditional delta-sigma 

ADCs to produce high-performance, energy efficient ADCs.  

1.4   Outline 

The rest of the work is divided as follows. In Chapter 2, the energy efficiency of charge-

redistribution SAR ADCs is examined. Although an energy analysis of the digital SAR controller 

is omitted form the analysis, a detailed look at the energy consumption of the SAR capacitor 

DAC and comparator is presented in terms of the resolution and bandwidth constraints.  

In Chapter 3, the effects of capacitor mismatch on ADC resolution and yield are examined. 

The analysis on capacitor mismatch is quite intensive, but the analysis is the first to relate 

resolution, yield, and mismatch for SAR ADCs with a complete closed-form statistical model.  

In Chapter 4, we describe a hybrid noise-shaping SAR ADC which combines a SAR ADC 

with a switch cap FIR filter to produce a low energy, moderate resolution oversampling ADC.  

In Chapter 5, we describe an extension to the noise-shaping SAR ADC described in Chapter 

4, and present a noise-shaping ADC structure that combines a time-interleaved SAR ADC with a 

delta-sigma MASH ADC to produce a time-interleaved oversampling converter. Although the 

time-interleaved MASH ADC described in Chapter 5 does not solve all the issues for time-

interleaving general delta-sigma ADCs, the time-interleaved MASH ADC leverages time-
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interleaving to expand the bandwidth of noise-shaping SAR ADCs, which helps to fill some of 

that gap highlighted in Figure 1-7. 

 

 



11 

 

CHAPTER II 

SAR ADC Energy Analysis 

2.1   Capacitor DAC Switching Energy 

 This chapter derives an expression for the DAC switching energy of a SAR ADC. The 

derivation begins by analyzing the energy consumption of a binary weighted capacitor array 

during a single switching event and continues by summing these energy contributions across 

complete conversion cycles for a uniformly distributed input. 

Figure 2-1 presents the model used to calculate the DAC switching energy. In this model, 

the differential DAC consists of two single ended capacitors arrays each comprised of 2
N-1

 unit 

capacitors – where N is the differential DAC resolution in bits. Furthermore, each half of the 

array uses both positive and negative reference voltages to permit addition and subtraction of 

voltage at the DAC output during conversion. SAR ADCs using similar DACs are found in [13]-

[15]. 

In terms of implementation, this dual reference switching scheme is more complex than 

single reference switching schemes [15], but from an energy perspective, this switching 

operation is more efficient since each capacitor is charged by a reference voltage only once – 

whereas a DAC using a single reference voltage may need to switch a capacitor twice: once 

during a trial bit test and again when setting the final bit decision. Although recent literature 

shows a variety of other energy efficient DAC implementations, the energy efficiency of those 
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implementations are comparable to this DAC [15]. Furthermore, the settling times analysis for 

those more complicated DACs switching schemes is less straightforward. 

 

Figure 2-1:  Single-ended circuit model used to calculate the DAC switching energy due to 

switching x capacitors from VCM to either VREFP or VREFM. VX describes final the switching 

reference voltage (either VREFP or VREFM), the quantities x, p, m, and (n-p-m-x) describe the 

number of unit capacitors at particular voltages, n is the total number of capacitors, and αT 

describes the top plate parasitic capacitance normalized to the array capacitance. 

We first calculate how the DAC output voltage responds to single switching events. As 

shown in Figure 2-1, the change in the DAC output voltage due to switching x capacitors through 

a voltage difference of ΔVX is calculated by applying conservation of charge at the top plate of 

the DAC. Equating the charge on the top plate before and after switching the reference voltage 

for the x capacitors to ΔVX, we derive (2.1).  

  

 ΔV𝐷𝐴𝐶 =
𝑥

𝑛(1 + 𝛼𝑇)
ΔV𝑥 (2.1) 

 

 

Equation (2.1) describes the change in the DAC output voltage after a single switching event 

– where ΔVDAC describes the change in the DAC voltage, n is the total number of unit 
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capacitors, x is the number switched by a voltage difference of ∆VX, and αT is fractional top plate 

parasitic capacitance as normalized by the total array capacitance. These quantities are shown in 

Figure 2-1. 

Next, we calculate the energy consumed by the reference voltages during switching events. 

During the switching of the x capacitors, transient currents flow from the reference voltages at 

each node and shuffle charge between the array capacitors in order to equalize the DAC top plate 

potential. The energy consumption of the DAC is calculated by integrating the power associated 

with each these currents over time.  

 

Figure 2-2:  Circuit model used to calculate the switching energy of an arbitrary capacitor 

from the array. Cu is the unit capacitance, CP is the bottom plate parasitic capacitance, R is 

the switch resistance, VTOP is the top plate, VBOTTOM is the bottom plate, VY is the node 

reference voltage (either VCM, VREFP, or VREFM), and IY is the current delivered by VY. 

Figure 2-2 presents an abstract model for calculating the switching energy contributed by 

each node in the array. Assuming the bottom plate of an isolated unit capacitor is connected to 
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some arbitrary voltage VY through a switch resistance R, the calculation of the energy 

contribution from this node is shown in (2.2).  

 

 Δ𝐸𝑌 = 𝑉𝑌∫ 𝐼𝑌(𝑡)
∞ 

0

𝑑𝑡 (2.2) 

 

 

Since the time integral of current is charge, ∆EY is the product of VY and ∆QY – where ∆QY is 

the change in charge at the bottom plate node. Equation (2.3) describes the change in energy 

associated with switching the reference voltage to VY through a voltage difference of ∆VY. By 

convention, a positive ΔEY indicates energy consumption, and a negative ΔEY indicates energy 

recovery. Note that the sign of the energy in (2.3) can be either positive or negative depending on 

the signs of ∆VY and ∆VTOP. 

 

 Δ𝐸𝑌 = [𝐶𝑢(Δ𝑉𝑌 − Δ𝑉𝑇𝑂𝑃) + 𝐶𝑃Δ𝑉𝑌]𝑉𝑌 (2.3) 

 

 

Next, we iterate the results from (2.3) across each of the DAC nodes and calculate the 

energy for the entire differential DAC. During the switching of x capacitors, as described in 

Figure 2-1, the energy contributions at each node are calculated and summed. Assuming a 

differential array structure, which switches the references voltages oppositely, the energy 

contributions calculated from (2.3) are summed across every node for both halves of the 

differential array. The ΔVTOP term in the resulting expression is simplified using (2.1) since 

ΔVTOP is equal to ΔVDAC. 

The simplified result of this calculation is shown in (2.4), which describes the change in 

energy for the differential DAC during the switching of x capacitors in each array through a 

differential voltage of ΔVX,DIFF – where |ΔVX,DIFF|= ½VFS, VREFP-VREFM=½VFS, αP is the bottom 
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plate parasitic capacitance normalized to a unit capacitance, αT is the top plate parasitic 

capacitance normalized to the array capacitance, n is total number of capacitors in each half of 

the array, and the quantities p and m represent the number of capacitors connected to the positive 

and negative reference voltages as shown in Figure 2-1. 

 

 

Δ𝐸 =  Δ𝐸𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 + Δ𝐸𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡                          
 

Δ𝐸𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 =
𝐶𝑢𝑉𝐹𝑆

2

8
[𝑥(1 + 𝛼𝑃) −

𝑥2

𝑛(1 + 𝛼𝑇)
]   

Δ𝐸𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 =
𝐶𝑢𝑉𝐹𝑆

2

8
[
𝑥(𝑚 − 𝑝)

𝑛(1 + 𝛼𝑇)
] ∙ 𝑠𝑖𝑔𝑛(Δ𝑉𝑋,𝑑𝑖𝑓𝑓)

 (2.4) 

 

 

Equation (2.4) is decomposed into two parts: a state independent energy term and a state 

dependent energy term. Since the energy dissipated by the reference voltages during a single 

switching event depends on the state of the DAC switches, the power dissipation of the DAC 

during a complete conversion cycle varies as a function of the sampled input voltage. The 

independent term describes the constant amount of energy required to switch x capacitors – 

independent of the DAC switch arrangement. The dependent term describes the excess switching 

energy that is either expended or recovered during a switching event as a function of the DAC 

switch configuration. 

Figure 2-3 graphs the normalized energy contributions from the state independent and 

dependent terms summed throughout the switching events of a complete conversion cycle. As 

shown in Figure 2-3, the average state dependent energy contribution across the ADC codes is 

zero. Hence, the state dependent energy contribution for a uniformly distributed input signal is 

zero and can be neglected. Note that the average state dependent energy contribution for a 
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sinusoidally distributed input signal is negative since its probability density is higher at the outer 

codes than the middle codes. Therefore, the assumption of a uniformly distributed inputs result in 

a slightly pessimistic energy approximation when considering sinusoidally distributed inputs. 

  

Figure 2-3:  Normalized energy contributions versus 10 bit ADC output code for both the 

state dependent and state independent terms from (2.4) summed throughout the switching 

events of a complete conversion cycle. For comparison purposes, both, αT and αP are set to 

zero 

Finally, we derive the average switching energy of the DAC. By summing each of the state 

independent switching energy contributions described by (2.4) throughout a complete conversion 

cycle, we calculate the average energy. Equation (2.5) describes the average energy consumption 

after completing the summation – where N is the number of bits. The parameter x from (2.4) is 
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summed in a descending binary fashion from 2
N-2

 down to 2
0
 in order to capture the binary 

weighting of the DAC capacitors. Note that the summation proceeds from 2
N-2 

since the MSB 

capacitor in each half of the differential array consists of 2
N-2 

unit capacitors and only N-1 

switching events are needed during a complete conversion cycle. 

 

 Δ𝐸𝐷𝐴𝐶 =
𝐶𝑢𝑉𝐹𝑆

2

8
[(1 + 𝛼𝑃)(2

𝑁−1 − 1) −
2𝑁−1 − 21−𝑁

3(1 + 𝛼𝑇)
] (2.5) 

 

 

In the limit of large N, we can approximate (2.5) as (2.6),  

 

 Δ𝐸𝐷𝐴𝐶 =
2𝑁(1 + 𝛼𝑃)𝐶𝑢𝑉𝐹𝑆

2

16
[1 −

1

3(1 + 𝛼𝑇)(1 + 𝛼𝑃)
] (2.6) 

 

 

Equation (2.6) is further simplified by relating the DAC capacitance to the kT/C noise 

incurred during sampling. When a signal is sampled through bottom plate sampling, each unit 

capacitor acquires some noise voltage. The total sampling noise of the DAC is calculated by 

summing the noise power contributions from all the unit caps of the differential array, which 

yields (2.7) – where σsampling is expressed as a fraction of an LSB. The noise power expression in 

(2.7) is just the kT/C noise of the sampled voltage. 

 

 𝜎𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
2 =

1

𝐿𝑆𝐵2
∙
𝑘𝑇

2𝑁𝐶𝑢
 (2.7) 

 

 

Substituting the sampling noise expression from (2.7) into the DAC switching energy 

expression from (2.6) yields (2.8) – which describes the DAC energy in terms of the sampling 

noise. 
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 Δ𝐸𝐷𝐴𝐶 ≅ 
𝑘𝑇

16
(

2𝑁

𝜎𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
)

2

(1 + 𝛼𝑃) [1 −
1

3(1 + 𝛼𝑇)(1 + 𝛼𝑃)
] (2.8) 

 

 

Equation (2.8) describes the average DAC switching energy across a full SAR conversion 

cycle for a uniformly distributed input. As shown in (2.8), the energy consumed by the DAC 

increases as the resolution, N, of the array increases. We can, however, express (2.8) in a more 

convenient form by expressing the energy in terms of the signal-to-noise ratio of the sampled 

DAC voltage. The definition of the signal-to-noise ratio is given by (2.9).  

 

 𝑠𝑛𝑟 =
𝑆𝑖𝑔𝑛𝑎𝑙 𝑃𝑜𝑤𝑒𝑟

𝑁𝑜𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟
 (2.9) 

 

 

If we express the signal power and noise power from (2.9) in terms a full scale sine-wave 

input signal and the sampled kT/C noise, we arrive at (2.10) – where VFS is the full-scale voltage 

range of the DAC. 

 

 𝑠𝑛𝑟𝐷𝐴𝐶 =

(
𝑉𝐹𝑆
2√2

)
2

(𝐿𝑆𝐵 ∙ 𝜎𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔)
2 

(2.10) 

 

 

Since VFS is equal to 2
N
∙LSB, we can further simplify this expression. The simplified 

expression is provided by (2.11). 

 

 𝑠𝑛𝑟𝐷𝐴𝐶 =
1

8
(

2𝑁

𝜎𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
)

2

  (2.11) 
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Equation (2.11) expresses the signal-to-noise ratio of a sampled voltage on the capacitor 

DAC in the presence of kT/C noise. If we substitute (2.11) into (2.8), we can express the energy 

of capacitor DAC as function of the sampled signal-to-noise ratio and the parasitic capacitances 

for the top plate, αT, and the bottom plate, αP. 

 

 Δ𝐸𝐷𝐴𝐶 ≅ 
𝑘𝑇

2
∙ 𝑠𝑛𝑟𝐷𝐴𝐶 ∙ [(1 + 𝛼𝑃) −

1

3(1 + 𝛼𝑇)
] (2.12) 

 

 

As shown by equation (2.12) expresses, the DAC energy consumption increases linearly 

with both the available signal-to-noise ratio of the DAC and the bottom plate parasitic 

capacitance, αP. Although the DAC energy increases as the top plate parasitic capacitance, αT, 

increases as well, the increase in energy associated with αT is a much weaker function than the 

signal-to-noise ratio or the bottom plate parasitic, αP, and the increase in energy eventually 

approaches an asymptotic limit.  

2.2   Capacitor DAC Settling Time 

In this section, we calculate the DAC settling time and estimate the maximum sampling 

frequency of a SAR ADC. Using the circuit model presented in Figure 2-4, we first derive the 

time domain solution of the DAC output voltage during switching events. We then calculate the 

DAC settling time from this time domain expression and estimate the conversion time of a 

complete SAR cycle. 
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Figure 2-4:  Circuit model used to calculate the DAC settling time. The bottom plate of each 

unit capacitor is modeled by a switch resistance, R, connected to a reference voltage in 

parallel with a bottom plate parasitic capacitance, CP. For the k-th node, VK is the bottom 

plate voltage, and VRK is the node reference voltage. CT is the top plate parasitic capacitance 

Using the circuit model from Figure 2-4, we apply KCL at the DAC output and derive (2.13) 

– where CT is the top plate parasitic capacitance, VK is the bottom plate voltage of the k
th

 

capacitor, and the summation shown in (2.13) is carried over each of the n nodes within the 

array.  

 

 ∑ 𝐶𝑢(𝑉̇𝐷𝐴𝐶 − 𝑉̇𝑘)
𝑛

𝑘=1
= −𝐶𝑇𝑉̇𝐷𝐴𝐶 (2.13) 

 

 

Solving (2.13) for V̇K, and substituting CT = n∙αT ∙CU, we arrive at (2.14) – where αT is the 

fractional top-plate parasitic capacitance of the array. 

 

 ∑ 𝑉̇𝑘
𝑛

𝑘=1
= n(1 + 𝛼𝑇)𝑉̇𝐷𝐴𝐶 (2.14) 
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Equation (2.15) is the integral of (2.14) with M representing a constant of integration. 

 

 ∑ 𝑉𝑘
𝑛

𝑘=1
= n(1 + 𝛼𝑇)𝑉𝐷𝐴𝐶 −𝑀 (2.15) 

 

 

Next, applying KCL at the bottom plate of the k
th

 node, we derive (2.16).  

 

 𝑅𝐶𝑢(𝑉̇𝐷𝐴𝐶 − 𝑉̇𝐾) = 𝑅𝐶𝑃𝑉̇𝐾 + (𝑉𝐾 − 𝑉𝑅𝐾) (2.16) 

 

 

In order to obtain an expression for the VDAC, we need to substitute the VK terms from (2.14) 

and (2.15) into (2.16). A direct substitution, however, is not possible due to the summation, so to 

facilitate this substitution, we sum (2.16) over each of the n nodes in the array and substitute CP = 

αP ∙CU – where αP is the fractional bottom-plate parasitic capacitance. The summation of (2.16) 

over n is given by (2.17). 

 

 𝑉̇𝐷𝐴𝐶 =
1

𝑛
∑ [(1 + 𝛼𝑃)𝑉̇𝐾 +

𝑉𝐾 − 𝑉𝑅𝐾
𝑅𝐶𝑢

]
𝑛

𝑘=1
 (2.17) 

 

 

Substituting the summations from (2.14) and (2.15) into the summation of (2.17), we obtain 

a first order differential equation describing the DAC output voltage as shown in (2.18). 

 

 

𝜏𝑉̇𝐷𝐴𝐶 + 𝑉𝐷𝐴𝐶 =
1

𝑛(1 + 𝛼𝑇)
[𝑀 +∑ 𝑉𝑅𝐾

𝑛

𝑘=1
]

𝜏 = 𝑅𝐶𝑢 [𝛼𝑃 +
𝛼𝑇

1 + 𝛼𝑇
]

 (2.18) 

 

 

Assuming x of the node reference voltages switch by common voltage difference of ΔVX at 

time, t = 0, and assuming that the final DAC voltage is determined by the ratio of capacitors as 
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described in (2.1) by x and n, we obtain the time domain solution for the DAC voltage shown in 

(2.19) – where ∆VX is the change in the reference voltage, x is the number capacitors switched, n 

is the total number of unit capacitors in the array, αP is the bottom plate capacitance normalized 

to the unit capacitance, and αT is the top plate capacitance normalized to the array capacitance. 

Note that the constant of integration, M, cancels from the summation term when applying the 

two initial conditions described above. 

 

 

Δ𝑉𝐷𝐴𝐶(𝑡) =
𝑥

𝑛(1 + 𝛼𝑇)
[1 − 𝑒

−𝑡
𝜏𝐷𝐴𝐶⁄ ] ΔV𝑋

𝜏 = 𝑅𝐶𝑢 [𝛼𝑃 +
𝛼𝑇

1 + 𝛼𝑇
]

 (2.19) 

 

 

The DAC transient response is described by Equation (2.19). For a large top plate 

capacitance – as is the case with extremely large top plate sampling switches or large comparator 

input transistors, the contribution from the αT term approaches unity and the RC time constant 

becomes dominated by the unit capacitance and switch resistance. For a large bottom plate 

capacitance, the settling time is dominated by the RC time constant of the bottom plate parasitic 

and the switch resistance. Since αP represents the bottom plate capacitance normalized to the unit 

capacitance and αT represents the top plate capacitance normalized to the capacitance of the 

entire array, the bottom plate parasitic capacitance dominants the DAC settling time dynamics.  

Next, we calculate the time required for the DAC voltage to settle to within ½LSB of the 

final output value using (2.19). The inequality describing this condition is shown in (2.20). Note 

that the effective LSB of the DAC is attenuated by the top plate capacitance since input voltages 

acquired through bottom plate sampling will also experience this attenuation. 
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 Δ𝑉𝐷𝐴𝐶(∞) − Δ𝑉𝐷𝐴𝐶(𝑡𝑠𝑒𝑡𝑡𝑙𝑒) ≤
𝑉𝐹𝑆

2𝑛(1 + 𝛼𝑇)
 (2.20) 

 

 

Assuming ∆VX = ± ½VFS, we solve for tsettle as shown in (2.21) – where x is the number of 

capacitors switched in each half of the array. 

 

 𝑡𝑠𝑒𝑡𝑡𝑙𝑒 ≥ 𝑅𝐶𝑢 [𝛼𝑃 +
𝛼𝑇

1 + 𝛼𝑇
 ] ln 𝑥 (2.21) 

 

 

The ½LSB settling time is plotted in Figure 2-5. We see that the worst-case settling time 

occurs during the first switching transition when the number of switched capacitors in each array 

is largest – that is, x = 2
N-2

.
 

 

Figure 2-5:  Normalized ½LSB settling time from (2.21) versus the number of capacitors 

switched in each array for a 10 bit SAR ADC. The required settling time increases linearly 

on log scale with the number of caps switched. 
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The maximum settling time of the DAC is given in (2.22) – where N is the resolution of the 

ADC in bits. 

 

 𝑡𝑠𝑒𝑡𝑡𝑙𝑒,𝑚𝑖𝑛 = 𝑅𝐶𝑢 [𝛼𝑃 +
𝛼𝑇

1 + 𝛼𝑇
 ] (𝑁 − 2) ln 2 (2.22) 

 

 

The maximum sampling frequency of the ADC is approximated using the settling time 

described by (2.22). During a SAR conversion cycle, each bit is processed through a sequence of 

comparator operations and DAC switching events. If we assume the SAR cycle proceeds 

synchronously through each of the N bit trials with tsettle,min allocated to complete each 

comparator decision and another tsettle,min for each DAC settling event, the time required for a 

complete SAR conversion cycle is approximately 2N⋅tsettle,min. From this, the maximum sampling 

frequency is calculated as given by (2.23). Since the input sampling time is not included, the 

sampling frequency shown in (2.23) is optimistic. 

 

 

𝐹𝑆
−1 = 2𝑁(𝑁 − 2)𝜏𝐷𝐴𝐶 ln 2

𝜏𝐷𝐴𝐶 = 𝑅𝐶𝑢 [𝛼𝑃 +
𝛼𝑇

1 + 𝛼𝑇
]

 (2.23) 

 

 

Equation (2.23) describes the maximum sampling frequency of the ADC as function of the 

ADC resolution and the DAC settling time constant – where FS is the sampling frequency, N is 

the resolution of the ADC in bits, R is the switch resistance, CU is the DAC unit capacitance, αT 

is the top-plate parasitic capacitance normalized to the entire array, and αP is the bottom-plate 

parasitic capacitance normalized to the unit capacitance CU. These quantities are shown in Figure 

2-4. 
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2.3   Comparator Energy Model 

In this section, we derive an expression for the minimum energy consumption of a 

regenerative comparator. The goal of this derivation is to estimate the comparator energy 

consumption in a general manner such that the final expression does not depend on technology 

parameters such as threshold voltage, transition frequency, transconductance, etc. In this 

analysis, we estimate the lower bound of the comparator energy consumption in terms of the 

ADC bit resolution and the comparator input referred noise. 

 

Figure 2-6:  Simplified dynamic comparator schematic from [16]. The key features of this 

comparator are a latched output and a clocked reset. 
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Figure 2-6 shows a general comparator schematic that we use as a starting point for this 

analysis. Although the comparator is a simplified version of the dynamic comparator [16], the 

particular circuit topology is not important. For our purposes, the key features of this comparator 

are a capacitive load, a clocked reset, and a latching output. 

The comparator in Figure 2-6 has two distinct phases of operation: a reset phase and an 

amplification stage. In the reset phase, the load capacitors are pre-charged to VDD, and in the 

amplification phase, the input voltage difference is amplified by the positive feedback latching 

structure. During each of these operations, charge is transferred from the supply to the load 

capacitors. By estimating the energy consumption of these charge transfers, we estimate the 

overall energy consumption of the comparator. 

We first calculate the energy associated with the reset phase. At the beginning of the reset 

phase, we assume that one of the output capacitors is fully charged to VDD and other is 

completely discharged. Therefore, during reset, charge is only transferred to one capacitor. The 

energy consumed by the supply during this charging process is shown by (2.24). 

 

 ΔE𝑅𝐸𝑆𝐸𝑇 = 𝐶𝐿𝑉𝐷𝐷
2 (2.24) 

 

 

Next, we calculate the energy consumed during the amplification phase. Since the positive 

feedback latch structure at the output dominates the comparator behavior during amplification, 

we simplify the energy calculation by estimating only the energy consumption of a latch. Figure 

2-7 presents the latch schematic used in this calculation. Figure 2-8 presents the latch small 

signal model. 
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Figure 2-7:  Simplified model of the comparator during the amplification phase. Assuming 

the latch outputs are initially balanced at VDD/2, ΔiOP and ΔiOM describe the initial conditions 

generated from the input voltage. 

 

 

Figure 2-8:  Small signal model of the latch from Figure 2-7. For simplicity, output 

resistances are neglected and all transconductances are assumed equal 
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The energy consumed by the latch is described by (2.25) – where IDD,MAX is the peak supply 

current and Δt is time interval of the latching operation. 

 

 ΔE𝐿𝐴𝑇𝐶𝐻 ≤ 𝐼𝐷𝐷,𝑀𝐴𝑋𝑉𝐷𝐷Δ𝑡 (2.25) 

 

 

When the latch outputs in Figure 2-7 are held at mid-rail, the overdrive voltages of the 

internal gates are largest and IDD,MAX is sourced from the supply. Summing the currents flowing 

through the top devices at this bias point, we approximate the peak supply as shown in (2.26) – 

where VGS is approximated as VDD/2 and we simply neglect the threshold voltage, VTH. 

  

 𝐼𝐷𝐷,𝑀𝐴𝑋 ≅ 𝑔𝑚|𝑉𝐺𝑆 − 𝑉𝑇𝐻| <
1

2
𝑔𝑚𝑉𝐷𝐷 (2.26) 

 

 

To estimate the time interval over which latching occurs, we derive a time domain 

expressions for the latch output and calculate the time until the outputs saturate. Applying KCL 

to the small signal model in Figure 2-8, we derive the coupled system of differential equations 

shown in (2.27). 

 

 

𝑉̇𝑂𝑈𝑇𝑃 +
2 ∙ 𝑔𝑚
𝐶𝐿

𝑉𝑂𝑈𝑇𝑀 = 0

𝑉̇𝑂𝑈𝑇𝑀 +
2 ∙ 𝑔𝑚
𝐶𝐿

𝑉𝑂𝑈𝑇𝑃 = 0

 (2.27) 

 

 

We decouple the system in (2.27) by substituting the derivative of each equation into the 

other. The decoupled system is shown in (2.28). 
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𝑉̈𝑂𝑈𝑇𝑃 − (
4 ∙ 𝑔𝑚
𝐶𝐿

)
2

𝑉𝑂𝑈𝑇𝑃 = 0

𝑉̈𝑂𝑈𝑇𝑀 − (
4 ∙ 𝑔𝑚
𝐶𝐿

)
2

𝑉𝑂𝑈𝑇𝑀 = 0

 (2.28) 

 

 

Because (2.28) involves second order differential equations, the solution requires two sets of 

initial conditions. For the first set, we assume the initial output voltages are both zero, and for the 

second set, we assume that derivatives of the output voltages are established by initial currents 

flowing through the load capacitors. As shown in Figure 2-7, the initial currents are defined as 

Δiop and Δiom. Using these initial conditions, the solution to (2.28) is provided in (2.29). 

 

 

𝑉𝑂𝑈𝑇𝑃 = (
Δ𝑖𝑂𝑃
2 ∙ 𝑔𝑚

) sinh (
2 ∙ 𝑔𝑚
𝐶𝐿

𝑡)

𝑉𝑂𝑈𝑇𝑀 = (
Δ𝑖𝑂𝑀
2 ∙ 𝑔𝑚

) sinh (
2 ∙ 𝑔𝑚
𝐶𝐿

𝑡)

 (2.29) 

 

 

In a general sense, the system of equations in (2.29) expresses the latch output voltages in 

terms of the initial capacitor currents. To relate this latch analysis back to a comparator, we 

assume that the initial currents are established by the comparator input voltage. Assuming the 

input signal is connected through differential input pair as shown in Figure 2-6, the initial 

capacitor currents are related to the input signal through the input pair transconductances as in 

(2.30). For convenience, we assume that the transconductances of the differential input pair 

transistors equal the transconductances of the latch transistors. 
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Δ𝑖𝑂𝑃 = +
1

2
𝑔𝑚Δ𝑉𝐼𝑁

Δ𝑖𝑂𝑀 = −
1

2
𝑔𝑚Δ𝑉𝐼𝑁

 (2.30) 

 

 

Finally, we obtain an expression for the differential output by substituting (2.30) into (2.29) 

and subtracting the resulting expressions. Equation (2.31) describes the differential output of the 

latch. 

 

 ΔV𝑂𝑈𝑇 =
1

2
sinh (

2 ∙ 𝑔𝑚
𝐶𝐿

𝑡) Δ𝑉𝐼𝑁 (2.31) 

 

 

Since the latch saturates when the differential output voltage equals to ±VDD, we set the 

output voltage in (2.31) to VDD and solve for the latching time Δt as described in (2.32).  

 

 Δt =
𝐶𝐿

2 ∙ 𝑔𝑚
arcsinh (

2 ∙ 𝑉𝐷𝐷
Δ𝑉𝐼𝑁

) (2.32) 

 

 

Finally, we obtain an estimate of the latch energy consumption by substituting both the 

latching time interval (2.32) and the IDD,MAX expression from (2.26) into the energy expression 

(2.25). Equation (2.33) describes the latch energy consumption as function of the comparator 

input voltage magnitude. 

 

 Δ𝐸𝐿𝐴𝑇𝐶𝐻(ΔV𝐼𝑁) =
1

4
𝐶𝐿𝑉𝐷𝐷

2 arcsinh (
2 ∙ 𝑉𝐷𝐷
Δ𝑉𝐼𝑁

) (2.33) 

 

 

Assuming the magnitude of input signal to the latch is uniformly distributed between 0 and 

VDD/2
m
 – where m defines some arbitrary binary weighted scaling factor, we calculate the 
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average energy consumption as a function of m by averaging (2.33) across the input signal range 

as shown in (2.34). During a complete SAR conversion cycle, the magnitude of the comparator 

input range is halved after each comparison. Therefore, the input range is defined using 2
m
 in 

order to accommodate the binary scaling of the input signal magnitude during a conversion 

cycle. 

 

 Δ𝐸𝐿𝐴𝑇𝐶𝐻(𝑚) =
2𝑚𝐶𝐿𝑉𝐷𝐷

2

4
∫ arcsinh (

2 ∙ 𝑉𝐷𝐷
Δ𝑉𝐼𝑁

)𝑑(ΔV𝐼𝑁)
2−𝑚𝑉𝐷𝐷

0

 (2.34) 

 

 

The integral in (2.34) is easier to compute numerically than to solve explicitly; therefore, we 

substitute the unitless parameter u for the argument of the arcsinh in the integrand. The result of 

this substitution is shown in (2.35). 

 

 Δ𝐸𝐿𝐴𝑇𝐶𝐻(𝑚) =
2𝑚𝐶𝐿𝑉𝐷𝐷

2

4
∫ arcsinh (

2

𝑢
) 𝑑𝑢

2−𝑚

0

 (2.35) 

 

 

Equation (2.35) describes the average energy consumption of the latch as a function of a 

binary scaled input range. To calculate the average latch energy consumed after N comparisons, 

we sum the energy contributions across the binary scaling parameter m from 0 to N-1 as shown 

in (2.36). 

 

 Δ𝐸𝐿𝐴𝑇𝐶𝐻 =
𝐶𝐿𝑉𝐷𝐷

2

4
∑ 2𝑚∫ arcsinh (

2

𝑢
) 𝑑𝑢

2−𝑚

0

𝑁−1

𝑚=0
 (2.36) 

 

 

When deriving the latch energy expression in (2.36), we assumed that the latch was initially 

biased at mid-rail. During a comparison, however, the output voltages must discharge from the 
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VDD reset value to the latch common mode voltage before the positive feedback amplification 

can occurs. As the current ramps up from zero to IDD,MAX, this discharging process will consume 

energy.  

If we consider the summation term in (2.36) as a measure of how efficiently the latch 

transfers charge to the load capacitance during transitions from the peak supply current down to 

zero current, we can approximate the energy efficiency of this initial discharging process during 

a transition from zero current to peak supply current as roughly equal to (2.36). Therefore the 

total energy consumed by the comparator after N comparisons is approximately the sum of N 

reset energy contributions (2.24) and twice the latch energy contribution form (2.36). Equation 

(2.37) describes the total energy consumption of the comparator. 

 

 

Δ𝐸𝐶𝑂𝑀𝑃 = Γ𝑁 ∙ C𝐿 ∙ V𝐷𝐷
2

Γ𝑁 = 𝑁 +
1

2
∑ 2𝑚∫ arcsinh (

2

𝑢
) 𝑑𝑢

2−𝑚

0

𝑁−1

𝑚=0

 (2.37) 

 

 

The ΓN scaling parameter from (2.37) includes a complicated integral. Although an 

analytical solution exists for this integral, a simpler approximation is easier to manipulate and 

interpret. Equation (2.38) presents a quadratic approximation using the coefficients for a least-

squares fit rounded to convenient fractions. 

 

 Γ𝑁 ≅
4

23
[𝑁2 + 12𝑁 + 2] (2.38) 

 

 

Figure 2-9 compares the accuracy of the numerical approximation to ΓN. As shown in Figure 

2-9, the approximation in (2.38) slightly overestimates ΓN. 
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Figure 2-9:  Plot of ΓN (2.37) and the quadratic approximation (2.38). The coefficients of the 

quadratic approximation are the values obtained from a least-squares fit rounded to 

convenient whole numbers. As shown above, the quadratic approximation slightly 

overestimates ΓN over the range of resolution. 

Lastly, we remove the CL dependency from (2.37) by relating CL to input referred noise of 

the comparator. A comprehensive transient, noise analysis of the dynamic comparator can be 

found in [16], which describes the input referred comparator as scaled kT/C noise. Although less 

accurate than [16], we will approximate the input-referred noise as the simply the sum of the two 

kT/C noise powers contributed from each latch output. An estimate for the input referred 

comparator noise normalized to LSB
2
 is shown in (2.39) – where σCOMP is in bits, N is the 

resolution, and the differential input range, VFS, is approximated as 2VDD. 

  

 𝜎𝐶𝑂𝑀𝑃
2 ≤

2𝑘𝑇

𝐶𝐿
(

2𝑁

2 ∙ 𝑉𝐷𝐷
)

2

 (2.39) 
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Substituting the input referred noise expression (2.39) and the numeric approximation (2.38) 

into (2.37), the comparator energy is expressed as a function of the ADC resolution and the 

comparator input referred noise. 

 

 ΔE𝐶𝑂𝑀𝑃 ≅
2𝑘𝑇

23
(
2𝑁

𝜎𝐶𝑂𝑀𝑃
)

2

[𝑁2 + 12𝑁 + 2] (2.40) 

 

 

Equation (2.40) describes the energy consumed by the comparator as a function of the ADC 

resolution and the input referred comparator noise. Similar to the derivation for (2.12) from the 

DAC energy section, we can relate 2
N
 and σCOMP to the available signal-to-noise ratio from the 

comparator and express (2.40) in the more convenient form given by (2.40). 

 

 Δ𝐸𝐶𝑂𝑀𝑃 ≅
2𝑘𝑇

3
∙ 𝑠𝑛𝑟𝐶𝑂𝑀𝑃 ∙  [𝑁

2 + 12𝑁 + 2] (2.41) 

 

 

As shown in (2.41), the energy required to operate the comparator across all bit trials is 

linearly dependent on the available signal-to-noise ratio of the comparator and is a quadratic 

function of the resolution, N, as expressed in bits. The linear dependence between the comparator 

energy and the available signal-to-noise ratio from the comparator derives, to the first order, 

from the load capacitance, CL – see Figure 2-6 and Figure 2-7.
4
 

                                                 

 

4 The noise at the output is inversely proportional to CL, kT/C, and the signal-to-noise ratio is inversely proportional to noise, hence the linear 
dependence of the signal-to-noise ratio to CL. 
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CHAPTER III 

Capacitor Mismatch
5
 

3.1   Introduction 

SAR ADCs offer an attractive solution in low power applications. Due to the inherent 

energy efficiency of charge redistribution DACs and the leveraged benefits of scaling [17], SAR 

ADCs can provide power efficient analog to digital conversion in systems that require moderate 

resolution and speed. However, specific applications have specific needs, and to ensure those 

needs are met, it is important for designers to have complete understanding of the design 

tradeoffs in the key building blocks of SAR ADCs, such as the capacitor DAC, the comparator, 

and the successive approximation registers.  

It is well established that mismatch degrades the overall performance of ADCs, and various 

techniques have been proposed to overcome this degradation [18]-[24]. However, a precise 

formulation of the relationship between mismatch, the effective number of bits (ENOB), and 

yield is still lacking. In practice, an ADC designer may need to target a particular ENOB 

specification, but when estimating the yield, only indirect metrics such as integral nonlinearity 

(INL) or differential nonlinearity (DNL) are available. Although ENOB, INL, and DNL are 

important indicators of ADC performance, ENOB is a better indicator of the overall system level 

                                                 

 

5 The material in this chapter on capacitor mismatch was first presented in [55]. 
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performance, and with the yield expressions derived in this paper, ADC designers can easily 

target system level performance objectives.  

The use of INL as a yield metric for data converters is prevalent in literature, but has limited 

utility in overall system design. Although the bulk of the analytic work regarding yield has 

focused on developing INL yield models for current-steering DACs [25]-[29] in the presence of 

transistor drain current mismatch [30], the major results of these works are also generally 

applicable to ADCs. According to [29], the analytical development of INL as a yield metric 

begins with [25], where the maximum deviation of the INL is introduced as a measure for 

distinguishing between good and bad current-steering DACs. Later, in [26]-[29], we see a 

progression of refinements aimed towards improving the statistical accuracy of INL based yield 

estimates. However, none of these works [25]-[29] offer a detailed comparison between INL 

yield measurements and other performance metrics such as signal-to-noise-plus-distortion ratio 

(SNDR), and it is unclear how to precisely interpret INL based yield estimates when targeting a 

specific ENOB yield for ADCs and DACs. 

Examples of analyses relating INL/DNL to ENOB can be found in [31]-[34], but these 

works do not contain a detailed statistical treatment relating ENOB and yield. In [31], DNL is 

related to signal-to-noise ratio (SNR) by considering DNL errors as an additive noise in flash 

ADCs. In [32], SNDR is related to INL errors as a function of the input signal probability density 

function (PDF). In [33], ENOB is related to INL through a harmonic analysis for thermometer-

coded structures, and in [34] an approximate relationship between ENOB and INL is given for 

resistor strings based on analysis in [35]. Although these works provide a convenient sketch 

relating ENOB and DNL/INL, it is unclear how to extract accurate ENOB yield information. 
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In this chapter, we develop an alternative statistical model using ENOB as a yield metric. 

First, we examine the effects of mismatch in a binary weighted, charge redistribution SAR ADC. 

We then derive an exact algebraic formulation relating capacitor mismatch to the average noise 

power of the ADC output, and from this algebraic formulation, we derive ENOB as a function of 

capacitor mismatch. Next, we explore the statistics of this ENOB expression and develop a 

statistical expression that predicts yield in terms of ENOB and mismatch. Finally, we generalize 

the results of this work by presenting a compact design equation, which accurately relates 

resolution, mismatch, and ENOB to yield for all binary weighted ratiometric converters. The 

design equation offered is accurate to within ±0.17 bits for yield values between 0.5% and 99.5% 

and is consistent with standard test methodology. 

Section 3.2 analyzes the effects of mismatch and derives an expression for ENOB as a 

function of capacitor mismatch. Section 3.3 explores the statistics of this ENOB expression, and 

Section 3.4 formulates an expression for yield. Section 3.5 develops a compact design equation 

for yield, ENOB and mismatch, which generalizes the results of this work.  

3.2   Analytical ENOB Derivation 

In this section, we derive an analytic expression for the ENOB of a binary weighted SAR ADC 

in terms of capacitor mismatch. Although we derive this expression from the perspective of a 

capacitor DAC, our results are equally valid form the perspective of the ADC. We begin this 

derivation by relating the INL errors of a DAC to its average noise power. Next, we formulate an 

expression for the INL in terms of capacitor mismatch parameters, and use this relationship to 

express the mismatch induced noise power as a function of the capacitor mismatch. Finally, we 
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translate the mismatch induced noise expression into an analytical expression for ENOB which 

supports differential sinusoidal signals and is consistent with standard ADC test methodology. 

3.2.A  Mismatch Induced Noise Power 

The relationship between the mismatch induced noise power and INL can be derived in a 

manner similar to the calculation of ideal quantization noise power. By including INL errors into 

this calculation, we can capture the noise power contributed from INL errors.
6
 Figure 3-1 shows 

the transfer function of a DAC and its corresponding noise voltage with and without INL errors.  

 

Figure 3-1:  Transfer function and residual noise voltage of a capacitor DAC with mismatch 

(solid) and without mismatch (dashed). Without mismatch, the code transitions and DAC 

outputs occur in regular LSB intervals. 

                                                 

 

6 A related result in [26] expresses the average noise power of a flash ADC to its DNL errors.  

VDAC

LSB

LSB

VNOISE
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For an ideal single-ended DAC without mismatch, the established LSB
2
/12 quantization 

noise expression represents the mean-squared value of the output noise voltage [33]. Assuming 

the DAC output codes are uniformly distributed, we can calculate this quantity as shown in (3.1) 

and (3.2) – where N is the DAC resolution in bits, Λ is the LSB, u is the output noise voltage, 

and u0 is the mean output noise voltage. 

 

 𝑉𝑛𝑜𝑖𝑠𝑒
2 =

1

2𝑁Λ
∑ ∫ (𝑢 − 𝑢0)

2𝑑𝑢
Λ

0

2𝑁−1

𝑖=0
=
Λ2

12
 (3.1) 

 

 𝑢𝑜 =
1

2𝑁Λ
∑ ∫ 𝑢 𝑑𝑢

Λ

0

2𝑁−1

𝑖=0
=
Λ

2
 (3.2) 

 

 

We incorporate mismatch into this expression by modifying the limits of integration in (3.1) 

to include the INL errors of the DAC. Since the i-th code transition voltage of a mismatched 

DAC is offset from the ideal transition voltage by the INL error of that code, we offset the 

integration limits in (3.1) by the INL error as shown in (3.3) – where Φi is the INL error of the i-

th code expressed in LSB. 

 

 𝑉𝑛𝑜𝑖𝑠𝑒
2 =

1

2𝑁Λ
∑ ∫ (𝑢 −

Λ

2
)
2

𝑑𝑢
Λ(1+Φ𝑖+1)

ΛΦ𝑖

2𝑁−1

𝑖=0
 (3.3) 

 

 

Evaluating the integral in (3.3) and simplifying the resulting expression, we obtain an 

expression for the noise power in terms of the INL, which is given by (3.4).
7
 A more intuitive 

formulation of (3.4) is also presented in (3.5). 

                                                 

 

7 The DC power contributed by the INL errors is not removed from (3.4). 
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 𝑉𝑛𝑜𝑖𝑠𝑒
2 =

Λ2

12
+
Λ2

2𝑁
∑ Φ𝑖

2
2𝑁−1

𝑖=0
 (3.4) 

 

 𝑉𝑛𝑜𝑖𝑠𝑒
2 =

Λ2

12
+ Λ2 𝑀𝑒𝑎𝑛(Φ2)   (3.5) 

 

 

In the limit of a large N, the contribution from the mismatch induced noise power can be 

approximated as the variance of the INL as shown in (3.6).
8
  

 

 𝑉𝑛𝑜𝑖𝑠𝑒
2 =

Λ2

12
+ Λ2 𝑉𝑎𝑟(𝐼𝑁𝐿)   (3.6) 

 

 

Expressions (3.4)-(3.6) describe the average noise power of a single-ended DAC as the 

sum of the ideal quantization noise and the mean square of the INL errors. These results are 

generally applicable to all ADCs and DACs with both fixed quantization levels and uniformly 

distributed DAC outputs and indicate that nonlinearities in the quantization levels manifest as an 

additive noise. This conclusion is also suggested in [31] for DNL errors. 

3.2.B  Analytic Formulation of DNL and INL 

We continue by formulating an expression for the noise power contributed by the INL errors 

as a function of capacitor mismatch. To this end, we first introduce a capacitor mismatch model 

and then derive expressions for DAC DNL errors in terms of this model. Finally, we convert 

these DNL expressions into INL expressions and solve for the mean squared INL in terms of the 

capacitor mismatch parameters. 

                                                 

 

8 A similar result to (3.6) is derived in [27] using a probabilistic approach. 
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We model the mismatch of capacitors within the array as an additive random error – i.e., C = 

Cnom+∆C, where Cnom is the nominal design capacitance and ∆C is a normally distributed random 

error with zero mean with σc
2
 variance. Furthermore, we define a mismatch parameter γ to 

describe the fractional error of each binary weighted capacitor group from its ideal value. 

Assuming that the capacitors are carefully arranged, we neglect pathological errors and effects 

from spatial gradients.
9
 [36] 

The mismatch model is provided in (3.7) – where 2
N
 is the total number of capacitors in the 

array, Cu is the average unit capacitance of the array, Ci is the capacitance of the i-th binary 

weighted capacitor group, and γi is the associated fractional mismatch of the i-th group. In 

addition, we let i = N represent the MSB, i = 1 the LSB, and i = 0 the termination capacitor. Note 

that the effective unit capacitance, Cu, is distinct from the nominal design capacitance, Cnom. 

 

 

𝐶𝑖 = 2𝑖−1𝐶𝑢(1 + 𝛾𝑖)

𝐶𝑢 =
1

2𝑁
∑ (𝐶𝑛𝑜𝑚 − ΔC𝑗)

2𝑁

𝑗=1

 (3.7) 

 

 

Since the sum of the binary weighted capacitors, defined in (3.7) as Ci, must equal the total 

capacitance of the array, the weighted sum of the fractional mismatch parameters γi must sum to 

zero. This condition is enforced by (3.8).
10

 

 

 𝛾0 +∑ 2𝑖−1𝛾𝑖 = 0
𝑁

𝑖=1
 (3.8) 

 

                                                 

 

9 An analysis relating INL errors to spatial gradients is found in [31]. 
10 Although based on the physical construction of the capacitor array, the constraint on γ given by (3.8) also ensures that gain errors in the 

transfer curve are not counted as distortion since (3.8) imposes a unity gain for the DAC transfer curve. 
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Using the capacitor mismatch model defined in (3.7) and (3.8), we now relate the DNL 

errors of the DAC to the fractional mismatch parameter γi. The DNL error of a DAC can be 

expressed by (3.9) – where ΔVDAC is the difference between successive DAC output voltages 

[37]. 

 

 𝐷𝑁𝐿 =
ΔV𝐷𝐴𝐶 − 𝐿𝑆𝐵

𝐿𝑆𝐵
 (3.9) 

 

 

Furthermore, we can express the DAC output voltages in terms of the binary weighted 

capacitors as shown in (3.10) – where N is the resolution in bits, Λ is the LSB, Ci is the i-th 

binary weighted capacitor group, and bi ∈ {0,1} represents the digital bits in the DAC code. 

 

 𝑉𝐷𝐴𝐶 =∑
𝑏𝑖𝐶𝑖
𝐶𝑢

Λ
𝑁

𝑖=1
 (3.10) 

 

 

Substituting the expression for Ci from (3.7) into (3.10), we relate the DAC output voltage to 

the fractional mismatch parameter γi as in (3.11). 

 

 𝑉𝐷𝐴𝐶 =∑ 𝑏𝑖2
𝑖−1(1 + 𝛾𝑖)Λ

𝑁

𝑖=1
 (3.11) 

 

 

Using the DAC output voltage expression in (11) and the definition for DNL given in (3.9), 

we calculate the DNL errors for each of the 2
N
 DAC codes. For an N bit, single-ended, binary 

weighted capacitor DAC, however, the DNL errors are uniquely determined by N distinct DNL 

values, and these N values represent the DNL error at the major code transitions – specifically, 

codes 2
i-1

 where i ∈ {1,…,N}.  
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Intuitively, we can understand why the DAC has only N unique DNL by examining the odd 

numbered codes. Since all the odd numbered codes have a binary representation ending in one, 

the difference in the DAC output voltage between these codes and one code less is determined 

solely by the DAC LSB capacitor. Therefore, the DNL error for every odd code is the same and 

is equal to the DNL error for code 2
0
, which is an odd code. Using similar examples, we can 

show through induction that only N unique values are needed to describe the entire DNL of the 

DAC and these unique values are equal to the DNL at the major code transitions. 

We now calculate the DNL errors at the major code transitions by substituting (3.11) into 

(3.9) – where ΔVDAC from (3.9) is the difference in the DAC output voltages between codes 2
i-1

 

and 2
i-1

-1. An expression for the N unique DNL values is provided in (3.12) – where di represents 

the DNL error at code 2
i-1

, and i ∈ {1,..,N}. 

 

 𝑑𝑖 = 2𝑖−1𝛾𝑖 −∑ 2𝑗−1𝛾𝑗
𝑖−1

𝑗=1
 (3.12) 

 

 

The distribution of the DNL values given in (3.12) across each of the DAC codes can be 

described by the recursively ordered set shown in (3.13) – where DN is ordered set of DNL 

values, and dN, as described by (3.12), represents the DNL at the most significant code in the 

level of hierarchy. The arrangement of DNL values given by (3.13) describes a sequence in 

which the N unique DNL values are distributed across the DAC codes in an “x modulo 2
N-1

” 

manner.  

 

 𝐷𝑁 = {𝐷𝑁−1 𝑑𝑁 𝐷𝑁−1} (3.13) 
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As an example of how (3.13) describes the DNL distribution, we consider a 3 bit DAC. For 

N = 3, the arrangement of the DNL errors for this DAC is shown in (3.14) – where di is again 

described by (3.12).  

 

 𝐷3 = {𝑑1 𝑑2 𝑑1 𝑑3 𝑑1 𝑑2 𝑑1} (3.14) 

 

 

With both the DNL values and their arrangement calculated, we now relate the INL to the 

DNL and work towards expressing the mean-squared INL in terms of the mismatch parameter γi. 

The relationship between INL and DNL is shown in (3.15) [37] – where Φi is the INL error at 

code i, and δj is the DNL error at code j. Furthermore, δj assumes one of the values described by 

(3.12) in an order determined by (3.13).  

 

 Φ𝑖 =∑ 𝛿𝑗
𝑖

𝑗=1
 (3.15) 

 

 

Substituting the DNL expression from (3.12) into (3.15) and simplifying the resulting 

summation by exploiting the inherent folding symmetry of (3.13), we derive the mean-squared 

INL in terms of the mismatch parameter γi. The simplified result is shown in (3.16). 

 

 𝑀𝑒𝑎𝑛(Φ2) =
1

4
𝛾0
2 +

1

4
∑ (2𝑖−1𝛾𝑖)

2𝑁

𝑖=1
 (3.16) 

 

 

 Substituting this expression for the INL noise power from (3.16) into the noise power 

expression from (3.5), we obtain an explicit expression for the average noise power of an N bit 

single-ended DAC with capacitor mismatch, which is shown in (3.17) – where Λ is the LSB, and 
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γi is the fractional mismatch of the i-th capacitor group as defined in (3.7). Furthermore, we let i 

= N represent the MSB, i = 1 the LSB, and i = 0 the termination capacitor. 

 

 𝑉𝑛𝑜𝑖𝑠𝑒
2 =

Λ2

12
+
Λ2

4
[𝛾0

2 +∑ (2𝑖−1𝛾𝑖)
2𝑁

𝑖=1
] (3.17) 

 

 

The expression given in (3.17) describes the average noise power of a binary weighted DAC 

as the sum of the ideal quantization noise and a linear combination of the γi mismatch parameters 

squared. Similar to INL and DNL, the mismatch parameter γi manifests as additive noise. 

3.2.C  Differential Conversion 

Since most high-performance SAR ADCs process differential signals, we now convert the 

noise power expression given by (3.17) from a single-ended result into a differential result. If we 

imagine constructing an N bit, differential DAC using two N-1 bit, single-ended DACs, each 

with identical mismatch and opposite polarity
11

, the average noise power of this composite 

differential DAC is the average of the two single-ended DAC noise powers. Using the results 

from (3.17) to describe the noise powers of the two N-1 bit single-ended DACs and averaging, 

we obtain the noise power of an N bit, differential, binary weighted DAC as given in (3.18) – 

where Λ now describes the differential LSB, γi is the composite fractional mismatch of the i-th 

capacitor groups, and γi,p and γi,m are the individual mismatch parameters from the positive and 

negative arrays. 

 

                                                 

 

11 This DAC structure represents a generic sign/magnitude encoded structure utilizing a fixed common-mode output. 
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𝑉𝑛𝑜𝑖𝑠𝑒
2 =

Λ2

12
+
Λ2

4
[𝛾0

2 +∑ (2𝑖−1𝛾𝑖)
2𝑁

𝑖=1
]

𝛾𝑖 =
1

2
(𝛾𝑖,𝑝 + 𝛾𝑖,𝑚) 𝑖 ∈ {0,⋯ ,𝑁 − 1}

 (3.18) 

 

 

Equation (3.18) presents an exact algebraic solution for the average noise power of a binary 

weighted N bit, differential DAC with uniformly distributed INL errors. Furthermore, since the 

differential DAC output voltages are perfectly symmetrical about the origin, the noise power 

given by (3.18) is zero mean. Additionally, the constraint on γi given by (3.8) properly accounts 

for gain errors throughout the development of (3.18). 

3.2.D  Analytic Formulation of ENOB 

We now formulate an expression for ENOB in terms of the mismatch parameter γi. For a 

perfectly matched DAC, only the quantization errors contribute noise and the average noise 

power is LSB
2
/12, as shown in (3.1). If we define an effective LSB size, which generates an 

average noise power equivalent to the noise power of a mismatched DAC, we can explicitly 

relate ENOB to the average noise power of the mismatched DAC as is done in (3.19) – where 

VFS is the differential full scale range of the DAC output voltage, and Λeff is the effective LSB 

size. 

 
𝑉𝑛𝑜𝑖𝑠𝑒

2 =
Λ𝑒𝑓𝑓

2

12

Λ𝑒𝑓𝑓 = 𝑉𝐹𝑆 ∙ 2
−𝐸𝑁𝑂𝐵

 (3.19) 

 

 

Substituting the differential noise expression from (3.18) into (3.19), we can relate the 

ENOB of the DAC to the mismatch parameters γi. Solving this resulting expression for ENOB, 

we obtain (3.20). 
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𝐸𝑁𝑂𝐵 = 𝑁 − log4 [1 + 3𝛾0
2 + 3∑ (2𝑖−1𝛾𝑖)

2𝑁

𝑖=1
]

𝛾𝑖 =
1

2
(𝛾𝑖,𝑝 + 𝛾𝑖,𝑚) 𝑖 ∈ {0,⋯ ,𝑁 − 1}

 (3.20) 

 

 

Equation (3.20) offers an exact analytic expression relating the ENOB of an N bit, 

differential, binary weighted capacitor DAC to capacitor mismatch for uniformly distributed 

signals. Although we derived (3.20) from the perspective of a SAR ADC, the result provided in 

(3.20) is applicable to all binary weighted ratiometric converters.
12

 

3.2.E  Correction for Sinusoidal Distributions 

The ENOB expression given in (3.20) assumes that the DAC codes are uniformly 

distributed. In practice, however, the ENOB of an ADC is typically measured using a sinusoidal 

input signal, not a uniformly distributed signal. With a full-scale, uniformly distributed signal, all 

of the INL errors across the entire code range each contribute equally to noise. On the other 

hand, since sinusoidal signals tend to dwell more near their peaks than their mean, the INL errors 

at the outer codes contribute a larger fraction of the noise than the INL errors near the center 

codes. Therefore, the noise power contributed by INL errors depends on the probability 

distribution of the signal.
13

 

To reconcile the ENOB expression in (3.20) with this preferred sinusoidal testing method, 

we introduce the scalar correction factor, α, to convert the ENOB expression given by (3.20) into 

an equivalent expression describing the ENOB of a sinusoidally distributed input signal. The 

                                                 

 

12 For binary weighted ratiometric converter without an explicit termination element, γ0 is still defined as in (3.8), but should instead be 
interpreted as either the mean of the single-ended INL errors or a description of the INL induced gain error of the converter transfer function. 

13 If the INL error were constant across the code range, the INL induced noise power would be independent of the signal distribution. This is 

why the quantization noise does not need to be scaled. By definition, however, the INL errors across an extended code range must sum to zero 
and therefore cannot remain constant across the codes. 
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modified ENOB expression is given in (3.21)– where γi represents the composite fractional 

mismatch parameter of the binary weighted capacitor groups as defined in (3.18) and (3.7), and α 

is approximated as the ratio between the INL noise contributions from a sinusoidal distribution 

and a uniform distribution.
14

 A derivation for the estimated value of α used in (3.21) is offered in 

APPENDIX A. 

 

 

𝐸𝑁𝑂𝐵 = 𝑁 − log4 [1 + 3𝛼𝛾0
2 + 3𝛼∑ (2𝑖−1𝛾𝑖)

2𝑁

𝑖=1
]

𝛼 =  
3(4 − 𝜋)

𝜋
≅ 0.8197

 (3.21) 

 

 

Equation (3.21) provides an accurate estimate for the ENOB of N bit, differential, binary 

weighted ratiometric converters, which is consistent with the standard sinusoidal testing of the 

ADCs and DACs. Had we not introduced the correction factor α, the ENOB expression would 

overestimate the mismatch induced noise power by 18%.
15

 Using (3.21), we can now accurately 

estimate the ENOB of a sinusoidal distribution over a wide range of γi values and compare 

results with standard ADC and DAC test measurements.  

3.3   Statistical ENOB Derivation 

Section 3.2 provides an analytic expression relating ENOB and mismatch (3.21), and in this 

section, we examine the statistics of this ENOB expression. First, we derive the probability 

density functions (PDF) for the single-ended mismatch parameters γi,p and γi,m. Next, we use 

                                                 

 

14 Alternatively, the ENOB of sinusoidally distributed DAC codes can be derived by replacing the “averaging” in (3.3) with the probability 

mass function (PMF) of a sinusoidal distribution, but it is unclear whether a tractable ENOB expression can be obtained due to the complexity of 

the sinusoidal PMF. 
15 Since α linearly scales only the mismatch induced noise power, the 18% overestimation can be approximated by 1-α. 
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these PDFs for γi,p and γi,m to derive the PDF for the differential, composite parameter γi, and 

subsequently, the PDF for the square of γi. Finally, we combine these results with the ENOB 

expression given by (3.21) and obtain a statistical expression for ENOB. Finally, we compare 

this expression to results from numerical ADC simulations. 

3.3.A  PDF for the Single-Ended Mismatch Parameter γ  

In the capacitor mismatch model presented in (3.7), each capacitor is modeled as 

C=Cnom+ΔC, where Cnom is the nominal design capacitance and ∆C is a normally distributed 

error with zero mean with σc
2

 variance. The PDF for C is shown in (3.22) – where the PDF is 

expressed using the notation fC(c). 

 

 𝑓𝐶(𝑐) =
1

√2𝜋𝜎𝑐2
𝑒𝑥𝑝 [

−(𝑐 − 𝐶𝑛𝑜𝑚)
2

2𝜎𝑐2
] (3.22) 

 

 

Furthermore, both the binary weighted capacitor groups and the total array capacitance can 

be represented as sums of the individual capacitors. Since the sum of independent normal 

random variables is itself normal with a mean and variance equal to the sum of the constituent 

means and variances, we obtain the marginal PDFs for the binary weighted capacitors directly 

from (3.22) as given in (3.23) – where Ns is the single-ended resolution, and Xi is the capacitance 

of the i-th binary weighted capacitor group in one of the single-ended arrays. To avoid 

parametric equations, we will omit the PDF of the termination capacitor and note that the 

distribution for the termination capacitor, X0, follows the same distribution as the LSB capacitor, 

X1. 
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𝑓𝑋𝑖(𝑥) =
1

√2𝜋𝜎𝑖2
𝑒𝑥𝑝 [

−(𝑥 − 𝜇𝑖)
2

2𝜎𝑖2
]

𝜇𝑖 = 2𝑖−1𝐶𝑛𝑜𝑚 𝑖 ∈ {1,⋯ ,𝑁𝑆}

𝜎𝑖
2 = 2𝑖−1𝜎𝑐

2     

 (3.23) 

 

 

 

Similarly, we derive the PDF for the total single-ended array capacitance from (22) as 

shown in (3.24) – where Ns is the single-ended resolution, and W is the total capacitance for one of 

the single-ended arrays. 

 

 

𝑓𝑊(𝑤) =
1

√2𝜋𝜎𝑊2
𝑒𝑥𝑝 [

−(𝑤 − 𝜇𝑊)
2

2𝜎𝑊2
]

𝜇𝑊 = 2𝑁𝑆𝐶𝑛𝑜𝑚

𝜎𝑊
2 = 2𝑁𝑆𝜎𝑐

2   

 (3.24) 

 

 

 

Using the definition of γi from the mismatch model given in (3.7), we next reformulate γi in 

terms of the new variables Xi and W as shown in (3.25). For convenience, we will denote the 

single-ended fractional mismatch parameter with γi. When we derive the composite mismatch 

parameter, we will clarify the notation with γi,p and γi,m. 

 

 

 𝛾𝑖 = 2(𝑁𝑆+1−𝑖)
𝑋𝑖
𝑊
− 1 (3.25) 
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As shown in (3.25), the PDF for γi is determined by ratio of two dependent normal variables, 

Xi and W, which results in a prohibitively complicated expression for the PDF.
16

 In order to 

simplify this PDF into a form amenable to further analysis, we will therefore expand (3.25) and 

approximate the capacitance of the array, W, as a constant in the denominator. The expansion of 

(3.25) is given by (3.26) with W approximated as 2
Ns

Cu in the denominator
17

 – where Cu is the 

mean capacitance of the array as defined in equation (3.7). 

 

 𝛾𝑖 =
2(𝑁𝑆+1−𝑖)𝑋𝑖 −𝑊

2𝑁𝑆𝐶𝑢
 (3.26) 

 

 

Using the PDFs for Xi and W from (3.23) and (3.24), we now derive an approximation of the 

marginal PDF for γi through the expansion given by (3.26). The simplified PDF for γi is provided 

in (3.27) – note that the correlation between Xi and W in the numerator has not been neglected. 

 

 

𝑓Γ𝑖(𝛾) ≅
1

√2𝜋𝜎𝑖2
𝑒𝑥𝑝 [

−𝛾2

2𝜎𝑖2
]

𝜎𝑖
2 ≅ (21−𝑖 − 2−𝑁𝑆) (

𝜎𝑐
𝐶𝑛𝑜𝑚

)
2

𝑖 ∈ {1,⋯ ,𝑁𝑆}

 (3.27) 

 

 

We now calculate the PDF for the composite mismatch factor. Using (3.27) to describe the 

distributions for γi,p and γi,m, we obtain the PDF for composite mismatch factor using the 

relationship for the mismatch factors given by (3.20), which states that the composite mismatch 

factor is the average of the single-ended mismatch factors. The PDF for the composite mismatch 

                                                 

 

16 An exact formulation of this PDF is derived in [30] to analyze nonlinearities in resistor strings. 

17 Approximating W as 2NsCu follows from the weak law of large numbers and is equivalent to assuming that σc/Cnom is well approximated by 
σc/Cu when the number of capacitors is large. 
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factor is provided in (3.28) – where N is the differential resolution and is related to single-ended 

resolution
18

, Ns, by N=Ns+1. 

 

𝑓Γ𝑖(𝛾) ≅
1

√2𝜋𝜎𝑖2
𝑒𝑥𝑝 [

−𝛾2

2𝜎𝑖2
]

𝜎𝑖
2 ≅ (2−𝑖 − 2−𝑁) (

𝜎𝑐
𝐶𝑛𝑜𝑚

)
2

𝑖 ∈ {1,⋯ , 𝑁 − 1}

 (3.28) 

 

 

Equation (3.28) provides an analytic expression for the PDF of the composite mismatch 

parameter γi of an N bit differential DAC – where γ0 follows the same distribution as γ1. 

3.3.B  Statistical ENOB Expression 

Since the ENOB expression in (3.21) depends on a linear combination of γi
2
, we now derive 

the PDF for the square of the composite mismatch factor from the PDF of the composite 

mismatch factor. Letting ηi = βiγi
2
 – where βi represents the scalar coefficients from the ENOB 

expression given by (3.21), the PDF of ηi follows a Chi-Squared distribution [38]. Using the PDF 

described from (3.28) and replacing the scalars βi with the appropriate values from (3.21), we 

calculate the distribution for ηi, which is shown in (3.29)
19

 – where the distributions for η0 is 

described by the distribution for η1. 

 

 

𝑓Η𝑖(𝜂) ≅
1

√2𝜋𝜎𝑖2
𝜂−1/2𝑒𝑥𝑝 [

−𝜂

2𝜎𝑖2
]

𝜎𝑖
2 ≅

9(4 − 𝜋)

4𝜋
(2𝑖 − 22𝑖−𝑁) (

𝜎𝑐
𝐶𝑛𝑜𝑚

)
2

𝑖 ∈ {1,⋯ ,𝑁 − 1}

 (3.29) 

 

                                                 

 

18 This DAC structure represents the generic sign/magnitude encoded structure described in II.C which utilizes a fixed common-mode output. 
19 This PDF is an approximation for the marginal PDF for η 
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Substituting ηi into the ENOB expression (3.21), we express the ENOB in terms of ηi as 

shown in (3.30) – where the distributions for ηi are described in (3.29). 

 

 

 𝐸𝑁𝑂𝐵 = 𝑁 − log4 (1 +∑ 𝜂𝑖
𝑁−1

𝑖=0
) (3.30) 

 

 

 

Equation (3.30) provides an analytic model describing the statistics for the ENOB of an N 

bit, binary weighted, differential SAR ADC with a normally distributed capacitor mismatch. 

Furthermore, this model includes a sinusoidal correction factor, so this statistical model is valid 

for sinusoidally distributed signals and is thus compatible with standard ADC test methods. 

3.3.C  Expected Value and Variance 

We verify the validity of (3.30) by comparing analytical expressions for the expected value 

and variance of ENOB to numerical simulations of randomly generated SAR ADCs. Because the 

ENOB expression in (3.30) contains a logarithmic term, we will estimate the expected value and 

variance using a Taylor series expansion. 

Letting X represent the sum of ηi in (3.30), the Taylor series expansion for the ENOB 

centered at E[X] is shown in (3.31). 

 

 

 𝐸𝑁𝑂𝐵 = 𝑁 − log4(1 + E[𝑋]) −∑
(−1)𝑘

𝑘! ln 4

∞

𝑘=1

(
𝑋 − 𝐸[𝑋]

1 + 𝐸[𝑋]
)

𝑘

 (3.31) 
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Taking the expected value of (3.31) and dropping higher order terms, we obtain the 

approximation for the expected ENOB shown in (3.32).  

 

 𝐸[𝐸𝑁𝑂𝐵] = 𝑁 − log4(1 + E[𝑋]) +
𝑉𝑎𝑟[𝑋]

2 ln 4 (1 + 𝐸[𝑋])2
 (3.32) 

 

 

Due to the complexity of including correlations between each ηi in later analysis, we will 

neglect all correlations.
20

 Therefore, treating the ηi from (3.30) as independent variables, we can 

approximate the expected value and variance of X as the sum of the expected values and 

variances of ηi. Figure 3-2 and Figure 3-3 offer a comparison between the calculated and 

simulated values for the expected ENOB of a SAR ADC. As shown in Figure 3-2, the calculated 

ENOB values track the simulated values reasonably well, and in Figure 3-3, we see that the 

analytic expected value is within 1.0% of the simulated value over a wide range of resolution and 

mismatch.
21

  

Next, we obtain an expression for the ENOB variance. Taking the variance of (3.31) and 

dropping higher order terms, we derive (3.33).  

 

 𝑉𝑎𝑟[𝐸𝑁𝑂𝐵] =
𝑉𝑎𝑟[𝑋]

[ln 4 (1 + 𝐸[𝑋])]2
 (3.33) 

 

                                                 

 

20 A comparison between the first four moments of the ENOB expression given in (3.30) and the moments calculated from simulation data 
showed reasonable similarity, which included correlations, and the moments derived from (3.30) with ηi treated as independent random variables.  

21 In Figure 3-3, however, the error in the expected ENOB is non-monotonic with respect to resolution, we attribute this to the fixed 1024 

point FFTs used to generate the simulation data. With a fixed 1024 FFT, only a subset of the output codes is measured for resolutions beyond 11 
bits. 
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Figure 3-2:  Comparison between simulated and calculated expected values (3.32) for ENOB 

across various resolutions. The numerical simulation results are obtained using a 1024 point 

FFT of 300,000 randomly mismatched ADCs at each resolution and each standard deviation 

of capacitor mismatch. 

 

Figure 3-3:  Comparison between simulated and calculated expected values (3.32) for ENOB 

across various resolutions expressed as percent error. The analytic expected ENOB values 

are within ±1.0% of simulated values. 



56 

 

 

Figure 3-4:  Comparison between the simulated and calculated ENOB variances (3.33) 

across various resolutions. The numerical simulation results are obtained using a 1024 point 

FFT of 300,000 randomly mismatched ADCs at each resolution and each standard deviation 

of capacitor mismatch. 

Similar to the expected value calculation, we treat the ηi from (3.30) as independent 

variables and approximate the variance of X as the sum of the ηi variances. Figure 3-4 compares 

the calculated and simulated values for the ENOB variance. 

As shown in Figure 3-4, the calculated variances compress at higher resolutions. This 

compression indicates a nonlinear relationship between the calculated and simulated variances. 

Since the inclusion of higher order terms up to the fourth moment of X in the Taylor series 

expansion did not reduce this error, we attribute the causes of this discrepancy to the scalar 

correction factor, α, and the assumption that the ηi are independent. While the correction factor α 

correctly scales the expected ENOB to approximate a sinusoidal distribution, α does not properly 

scale the higher moments. Furthermore, the ηi are not independent since the γi mismatch 
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parameters are correlated, which is evidenced by (3.8). Nevertheless, the magnitude of the error 

between the calculated and simulated variances is small compared to the resolution of the ADC. 

3.4   Yield Analysis 

We complete the statistical analysis of ENOB with an examination of the ENOB yield for an 

N bit, binary weighted, differential SAR ADC. Using the ENOB expression given in (3.30), we 

can express the probability of achieving some minimal ENOB in terms of the probabilities for ηi 

as shown in (3.34) – where ENOBMIN is the minimal desired ENOB, and N is the ADC resolution 

in bits. 

 

 

𝑃(𝐸𝑁𝑂𝐵 > 𝐸𝑁𝑂𝐵𝑀𝐼𝑁) = 𝑃(𝑋 < 4𝑁−𝐸𝑁𝑂𝐵𝑀𝐼𝑁 − 1)

𝑋 =  ∑ 𝜂𝑖
𝑁−1

𝑖=0

 (3.34) 

 

 

3.4.A  Full Yield Approximation 

We next derive an approximate ENOB yield expression in terms of the cumulative distribution 

function (CDF) for X from (3.34). The details of this derivation are provided in APPENDIX B. 

When N is even number of bits, the CDF of X can be approximated as in (35) – where FX(x) 

denotes the CDF of X, σ2i-2 is the i-th even σ from (29) including σ0, σ2i-1 is i-th odd σ from (29), 

and σN-1 denotes the value in the sequence. 
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𝐹𝑋(𝑥) = ∫ ∫ ⋯ ∫ ∑ 𝐵𝑖𝑒
−𝜆𝑖𝑡

𝑁/2

𝑖=1
𝑑𝜃1

𝜋
2

0

⋯𝑑𝜃𝑁/2

𝜋
2

0

𝑑𝑡
𝑥

0

𝐵𝑖 = [(𝜆𝑖 − 𝑠)∏ (
𝐴𝑗

𝜆𝑗 − 𝑠
)

𝑁/2

𝑗=1
|
𝑠→𝜆𝑖

𝐴𝑖 =
1

𝜋 ∙ 𝜎2𝑖−2 ∙ 𝜎2𝑖−1
    𝜆𝑖 =

cos2 𝜃𝑖
2 ∙ 𝜎2𝑖−22

+
sin2 𝜃𝑖
2 ∙ 𝜎2𝑖−12

 (3.35) 

 

 

 

. When N is odd number of bits, the CDF of X can be approximated as in (3.36) – where, 

again, where FX(x) denotes the CDF of X, σ2i-2 is the i-th even σ from (3.29) including σ0, σ2i-1 is 

i-th odd σ from (3.29), and σN-1 denotes the last value from (3.29).  

 

 

 

𝐹𝑋(𝑥) = ∫ ∫ ∫ ⋯ ∫ ∑ 𝐶𝑖𝑒
−𝜔𝑖𝑡

𝑁/2

𝑖=1
𝑑𝜃1

𝜋
2

0

⋯𝑑𝜃𝑁/2

𝜋
2

0

𝑑𝜙

𝜋
2

0

𝑑𝑡
𝑥

0

𝐵𝑖 = [(𝜆𝑖 − 𝑠)∏ (
𝐴𝑗

𝜆𝑗 − 𝑠
)

𝑁/2

𝑗=1
|
𝑠→𝜆𝑖

            

𝐴𝑖 =
1

𝜋 ∙ 𝜎2𝑖−2 ∙ 𝜎2𝑖−1
       𝜆𝑖 =

cos2 𝜃𝑖
2 ∙ 𝜎2𝑖−22

+
sin2 𝜃𝑖
2 ∙ 𝜎2𝑖−12

𝐶𝑖 = 𝐵𝑖 sin𝜙√
2𝑡

𝜋 ∙ 𝜎𝑁−12
𝜔𝑖 = 𝜆𝑖 sin𝜙 +

cos2 𝜙

2 ∙ 𝜎𝑁−12
  

 (3.36) 

 

 

 

Using the ENOB relationship given by (3.34) along with the CDFs provided by (3.35) and 

(3.36), we can now calculate the ENOB yield for an N bit, binary weighted, differential SAR 

ADC, but due to the complexity of these equations, however, we provide a more convenient 

approximation in Section 3.5. 



59 

 

3.4.B  Comparison with Simulation Results 

We now compare the ENOB yields predicted by the analytic expression for the CDF of X 

provided in (3.35) and (3.36) to simulated ENOB values. The simulated ENOB yield values are 

obtained using a 1024 point FFT with a sample of 300,000 randomly mismatched SAR ADCs 

generated at each resolution and each standard deviation of mismatch. Furthermore, the yield 

values are extracted from histograms of simulated ENOB values over uniformly distributed bins.  

In Figures 3-5 and 3-6, we compare the analytic and simulated ENOB yield curves for 

capacitor mismatch standard deviations of 1% and 10%. At 1% mismatch, Figure 3-5, we see 

excellent agreement between the analytic and simulated yield curves, but at 10% mismatch, 

Figure 3-6, we notice some difference between the analytical and simulated yield curves. 

Although the 8-10 bits yield curves from Figure 3-6 match well, the 11-14 bit curves display a 

larger divergence at lower yield values. 

 

Figure 3-5:  Comparison between the simulated and analytic ENOB yields with a standard 

deviation of 1.0% capacitor mismatch 
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Figure 3-6:  Comparison between the simulated and analytic ENOB yields with a standard 

deviation of 10% capacitor mismatch. 

Figures 3-7 and 3-8 offer a more detailed comparison between the analytic and simulated 

yield curves provided in Figures 3-5 and 3-6. As shown in Figure 3-7, the error between the 

simulated and analytic ENOB values at 1% mismatch is within ±0.08 bits for 8-14 bits of 

resolution across the range of yields between 0.5%-99.5%. In Figure 3-8, the error in the ENOB 

at 10% mismatch is within ±0.17 bits across the range of yields between 0.5%-99.5%. Therefore, 

at a particular yield value, we see an error in the predicted ENOB less than ±0.08 bits at 1% 

mismatch and less than ±0.17 bits at 10% mismatch.  
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Figure 3-7:  Error between the simulated and analytical ENOB values as a function of the 

yield for a 1% standard deviation of capacitor mismatch. The absolute error in the ENOB is 

within ±0.08 bits over the range of yields from 0.5% to 99.5%. 

 

Figure 3-8:  Error between the simulated and analytical ENOB values as a function of the 

yield for a 10% standard deviation of capacitor mismatch. The absolute error in the ENOB 

is within ±0.17 bits over the range of yields from 0.5% to 99.5%. 
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In Figures 3-7 and 3-8, we see that the largest errors in the ENOB occur as the yield 

approaches 0% and 100%. We attribute the source of this error to correlations between ηi values. 

Since the γi mismatch parameters are correlated, which is shown in (3.8), the ηi values are 

correlated as well. By neglecting these correlations in our statistical model, the frequency of 

outliers at the tails of the CDF curves are underestimated. Nevertheless, the error in the predicted 

ENOB is relatively small and the expressions for the CDF of X given in (3.35) and (3.36) offer a 

reasonably accurate estimate for the ENOB yield of SAR ADCs and, in general, all binary 

weighted ratiometric converters. 

3.5   Simplified Yield Expression 

The ENOB yield model provided by (3.34)-(3.36) from Section 3.4 expresses the yield as a 

function of sigma mismatch and bit resolution. These equations, however, are computationally 

expensive and cannot be inverted to calculate mismatch as a function of the yield. In this section, 

we therefore offer an accurate, yet simple, approximation for these expressions which are 

invertible and allow both the bit resolution and capacitor mismatch to be represented as functions 

of the ENOB yield.  

In what follows, we first develop a single design equation that relates the yield, capacitor 

mismatch, ENOB, and bit resolution in a more convenient form than (3.35) and (3.36). We then 

present a sample calculation showing how to extract desired parameters from this new yield 

expression. Finally, we conclude this section by comparing this compact yield expression 

derived in this section to both simulation results and the full expressions derived in Section 3.4. 
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3.5.A  Formulation of Simplified Yield Expression 

In (3.34), we express the probability of maintaining some minimal ENOB as a function X, 

where X is defined as a sum of Chi-Squared random variables with marginal PDFs described by 

(3.29). Since the sum of independent and identically distributed (iid) Chi-squared random 

variables follows a Gamma distribution, we standardize X in terms of mismatch and bit 

resolution and approximate its standardized CDF with a normalized incomplete Gamma 

function, which is the analytic form of the CDF for sums of iid Chi-squared variables. The 

standardization of X is provided in (3.37) and the form of our approximation for the standardized 

CDF is given in (3.38) – where Z represents our standardized variable, and FZ(z) is the CDF of Z 

expressed as an incomplete Gamma function. Furthermore, we denote Γ as the Gamma function 

and let k and b represent the shape and scale parameters of FZ(z). 

 

 𝑍 = 𝑋 ∙ 2−𝑁 (
𝐶𝑛𝑜𝑚
𝜎𝐶

)
2

 (3.37) 

 

 𝐹𝑍(𝑍) =
1

Γ(𝑘)
∫ 𝑡𝑘−1𝑒−𝑡𝑑𝑡
𝑏√𝑧

0

 (3.38) 

 

 

 

Using numerical optimization, we calculate values for k and b which minimize the error 

between the CDF given in (3.38) and standardized forms of the full CDFs given in (3.35) and 

(3.36) across the entire 8-14 bit resolution range. A complete formulation of our simplified yield 

approximation is given in (3.39) – where ENOBMIN is the minimum desired ENOB, N is the 

resolution in bits, σc/Cnom is the standard deviation of the fractional mismatch, FZ(z) is the CDF 
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of Z as described by (3.38)
22

, Γ is the Gamma function, and both k and b are empirical fitting 

parameters. 

 

 

𝑃(𝐸𝑁𝑂𝐵 >  𝐸𝑁𝑂𝐵𝑀𝐼𝑁) = 𝑃(𝑋 < 4𝑁−𝐸𝑁𝑂𝐵𝑀𝐼𝑁 − 1)

𝑍 = 𝑋 ∙ 2−𝑁 (
𝐶𝑛𝑜𝑚
𝜎𝐶

)
2

                                          

𝐹𝑍(𝑍) =
1

Γ(𝑘)
∫ 𝑡𝑘−1𝑒−𝑡𝑑𝑡
𝑏√𝑧

0

                          

𝑘 = 7.944 𝑏 = 13.146                                          

 (3.39) 

 

 

 

Equation (3.39) relates yield, mismatch, ENOB, and resolution in a single closed form 

expression. For simplicity, we offer MATLAB® code in Figure 3-9 as an example of how to 

interpret (3.39) – where we have implemented FZ(z) using the standard function provided by the 

software. This code in Figure 3-9 calculates both yield as a function of resolution and mismatch 

and calculates mismatch as a function of yield and resolution. When this code is executed, the 

yield calculation returns 95% for YIELD and the sigma calculation returns 0.1 for SIGMA. We 

omit a resolution calculation since resolution is easily derived from the sigma calculation by 

rearranging the terms. 

                                                 

 

22 Both the expressions for FZ(z) and its inverse are standard functions in most commercial math programs 
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Figure 3-9:  Example MATLAB® code for implementing the yield equation provided in 

(3.39). This code calculates the yield as function of resolution and mismatch and calculates 

mismatch as a function of yield and resolution. 

3.5.B  Comparison of Yield Expression 

We now compare the yield expression from (3.39) to both the full expressions from Section 

3.4 and simulation results. In Figure 3-10, we plot the difference between yield values calculated 

using the approximation given in (3.39) and analytic values calculated using (3.35) and (3.36) as 

standardized to Z through (3.37). As shown in Figure 3-10, the error in the yield values, 

expressed as a difference in percentages, is within ±0.16% over the range of resolutions between 

8-14 bits. This shows that the simplified expression provided by (3.39) is a good approximation 

of the full expressions from Section 3.4. 

 

% Parameter Values

N = 9;  SIGMA = 0.1;  ENOB_MIN = 7.7;

YIELD = 0.95;  k = 7.944;  b = 13.146; 

% Yield Calculation

X=4^(N-ENOB_MIN)-1;

Z=X/2^N/SIGMA^2;

YIELD=gammainc(b*sqrt(Z),k)

% Sigma Calculation

X=4^(N-ENOB_MIN)-1;

Z=(gammaincinv(YIELD,k)/b)^2;

SIMGA=sqrt(X/Z/2^N)
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Figure 3-10:  Error in yield values between (3.39) and the full expression given by (3.35) and 

(3.36) as standardized to Z through (3.37) at each resolution from 8-14 bits. The error is 

expressed as difference in percentages. Since the differences in yields associated with each of 

the 8-14 bit curves resemble one another so closely, we do not distinguish between the 7 

individual curves. As shown, the absolute error between the yield values is within ±0.16% 

which indicates that the Gamma Distribution approximation from (3.39) matches the full 

expressions very well. 

 

In Figures 3-11 and 3-12, we compare ENOB values calculated using (3.39) to simulated 

values at a constant yield of 95%. The simulated yield values are obtained using a 1024 point 

FFT with a sample of 300,000 randomly mismatched SAR ADCs generated at each resolution 

and each standard deviation of mismatch. As shown in Figure 3-11, the analytic ENOB values 

obtained from (3.39) agree with the simulated values, and as shown in Figure 3-12, these analytic 

ENOB values match within ±0.12 bits at a constant 95% yield. 
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Figure 3-11:  Comparison between simulated and the analytically calculated ENOBs using 

the approximation from (3.39) for a constant yield of 95%. The plot shows the minimum 

value of ENOB allowed for a good ADC to achieve a yield of 95%. As shown, the simulated 

values of ENOB match the analytic curves. 

 

Figure 3-12:  Error between simulated and analytically calculated ENOBs using the 

approximation from (3.39) with a constant yield of 95%. The error between the analytic and 

simulated ENOBs is less than ±0.12 bit. 



68 

 

Equation (3.39) represents a simple and accurate design equation for calculating yield. In 

(3.39), the CDF of X is standardized and related to a normalized incomplete Gamma function. 

Since both the incomplete gamma function and its inverse are standard functions in most 

numerical software packages, (3.39) provides a convenient design approximation which relates 

mismatch, ENOB, and yield for binary weighted ratiometric converters.  

Although we have neglected losses in ENOB that occur from comparator noise, kT/C noise, 

and sampling jitter, (3.39) can accommodate a more comprehensive yield analysis using these 

additional noise sources. Assuming these additional noise sources are independent, we can 

normalize each of their powers by Λ
2
/4 and add them to X in (3.34). Once included in X, we can 

we can calculate a refined ENOB yield equation by convolving the PDFs of the additional noise 

power terms with the PDF for X. 

3.6   Conclusions 

In this chapter, we develop a yield model for binary weighted SAR ADCs based on ENOB 

which is applicable to all binary weighted ratiometric converters, and we present the results as an 

accurate and easily implementable design equation. In addition, we derive an exact analytical 

expression relating mismatch and resolution to ENOB for uniformly distributed signals, and also 

offer an accurate expression relating mismatch and resolution to ENOB for sinusoidal signals. 

This work presents the first mathematical expression relating resolution, mismatch, ENOB, and 

yield. From this work, the mismatch required to achieve a certain ENOB with a particular yield 

can be calculated, and the fundamental limit on accuracy for binary weighted ratiometric 

converters can be estimated in terms of component matching. 
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CHAPTER IV 

Noise-Shaping SAR
23

 

4.1   Introduction 

In recent years, charge-redistribution Successive Approximation (SAR) ADCs have 

exhibited the highest conversion efficiencies for ADCs with moderate resolution and bandwidth 

[39]-[41]. For effective resolutions beyond 10 bits or so, however, the accuracy of the SAR 

circuit blocks limits the overall energy efficiency of the converter. At high resolutions, for 

instance, the DAC voltages become small compared to the input-referred noise of a dynamic 

comparator, necessitating an additional power-hungry, low-noise pre-amplifier to drive the 

comparator. To improve the effective resolution of SAR ADCs, this work introduces a technique 

that decouples the accuracy of the comparator from the resolution of the ADC. 

In this paper, we introduce a low Oversampling-ratio (OSR) noise-shaping SAR ADC that 

leverages noise shaping to increase the resolution of a conventional SAR ADC. The prototype 

converter uses an 8-bit capacitor DAC and achieves an ENOB of 10.0 bits over a signal 

bandwidth of 11MHz with an extremely low OSR of 4. Through noise-shaping and 

oversampling, we mitigate some of the losses from mismatch, kT/C noise, and comparator noise 

by trading bandwidth for accuracy, which allows us to achieve higher resolutions using lower 

                                                 

 

23 The material in this chapter on Noise-Shaping SARs was first presented in [59] and [60]. 
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resolution and lower accuracy circuit blocks. Significantly, the input referred noise of the 

comparator is noise-shaped along with the quantization noise so the comparator no longer 

requires the full accuracy of the converter. The noise-shaping technique presented in this paper 

provides a means to enhance the resolution of SAR ADCs without a significant modification to 

the basic SAR ADC structure.  

While SAR ADCs are very efficient at moderate resolutions, fundamental and related 

second-order effects significantly reduce the efficiency of SAR ADCs at higher resolutions. As 

with all ADCs, kT/C noise limits sampling accuracy. For moderate resolution ADCs, the 

minimum capacitance to achieve adequate sampling noise is greater that the required capacitance 

needed to achieve adequate matching. In addition, a large DAC array capacitance leads to 

second-order effects that also limit performance. These include the signal dependent resistance 

of the input switch and slow settling due to parasitic capacitances. Although techniques such as 

switch gate boosting [42] and redundancy [43]-[44] can alleviate these second order effects, 

these techniques invariably lead to higher power consumption. A significant advantage of 

oversampling is that it attenuates kT/C noise, but without noise shaping, oversampling is usually 

unattractive and until this work, noise shaping has not been efficiently demonstrated in SAR 

ADCs.
24

 Although noise-shaping ADCs have previously employed SAR ADC structures as a 

multi-bit quantizer in delta-sigma ADCs [45] this work embeds noise-shaping into the SAR 

ADC topology while maintaining the power efficient operation of the SAR ADC. 

The input referred noise of the comparator in a SAR ADC is a fundamental limitation to 

performance, which we alleviate by noise shaping. In a straight, binary SAR ADC, all trial 

                                                 

 

24  A similar noise-shaping system for SAR ADCs is described by [40], but the work involves only simulated data, and a practical 
implementation of [40] requires a highly linear, power-hungry opamp to drive the entire DAC array of the SAR ADC. 
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comparisons must be made at the full accuracy of the overall converter. This requirement 

determines the maximum input noise of the comparator and in turn the power consumption of the 

comparator [46]. Moreover, a preamp is often required at higher resolutions due to noise 

constraints. The large input devices, needed for low noise comparator operation, increase the 

parasitic capacitance on the critical top-plate SAR residue nodes. Redundancy schemes can 

reduce the accuracy needed for the earlier trials, but as noted earlier, redundancy substantially 

increases the complexity of the ADC. In any case, the later bit trials must still be made to the full 

ADC accuracy. In this work, a noise-shaping scheme shapes both quantization noise and 

comparator noise so that comparator noise is decoupled from the ADC resolution.  

Noise shaping reduces the number of capacitors in the DAC array, simplifying the practical 

implementation of the DAC array. It is clear that the number of capacitors in a binary weighted 

capacitor DAC array grows exponentially with resolution. While by itself, this is not a 

fundamental limit to performance, it does present practical impediments to performance. Routing 

is necessarily complicated in high resolution SAR ADCs. Furthermore, the very large ratio 

between the smallest and largest capacitances can become problematic since the finite minimum 

value of capacitance can lead to a large total capacitance at high resolutions. The use of a sub-

DAC alleviates this problem [47] but the use of a sub-DAC often requires careful calibration of 

the coupling capacitor [48]. Noise shaping reduces the DAC resolution, and therefore, 

substantially reduces the number of capacitors in the DAC array. 

4.2    SAR ADC Review 

In this section, we review the basic operation of the SAR ADC architecture used in this 

work, Figure 4-1. During the first phase of operation, an input voltage is bottom-plate sampled 
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onto a binary weighted capacitor array through a bootstrapped switch. Following this sampling 

operation, each of the capacitor array bottom plates is initialized to a common mode voltage, and 

then the ADC performs a binary search under control of the SAR logic. 

 

Figure 4-1:  Basic operation of the SAR ADC 

In this design, the SAR algorithm performs sign-magnitude encoding of the sampled input 

voltage, and the capacitor DAC uses bipolar reference voltages during the binary search. 

Therefore, after the DAC references are initialized to the common mode reference voltage, the 

comparator tests the sign of the sampled voltage and this sign decision is fed back to the bottom 

plate switches of the MSB capacitor in the DAC. When the subtraction of voltage is required, 

only the MSB switches move from the common mode reference voltage to a lower reference 

voltage, and when addition of voltage is required, only the MSB switches move from the 

common mode reference voltage to a higher reference voltage. The switches for the rest of array 

are left at the common mode reference voltage after this first decision. Throughout the rest of the 

conversion algorithm, the comparator is enabled and the decision is fed to the appropriate binary 

weighted caps in the array.  

SAR Logic

D Q D Q D Q

VREFP

VREFM

VIN

DOUT
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4.3   Noise Shaping in a SAR ADC 

4.3.A  Residue generation 

We first introduce an efficient and almost seamless technique for measurement of the 

quantization error. Efficient capture of the quantization error is vital for efficient noise shaping. 

The quantization error, Q, is simply defined by equation (4.1). 

 

 𝐷𝑂𝑈𝑇 = 𝑉𝐼𝑁 + 𝑄 (4.1) 

 

 

In a conventional SAR ADC, the final residue information produced by the SAR DAC at the 

end of the conversion is discarded when a new input voltage is sampled onto the array for the 

next analog-to-digital conversion. As discussed in Section 4.2, after each bit trial, the DAC 

references, VREFM and VREFP, are connected to capacitor bottom plates so that the comparator 

input represents the un-digitized residue. However, since the analog-to-digital conversion is 

complete when the comparator determines the least significant bit, the last decision is not fed 

back to the DAC array. In other words, when the SAR ADC conversion is complete for an N-bit 

ADC, the magnitude of the residue voltage produced at the top plate of the DAC represents the 

difference between the sampled input and a digital estimate constructed from the first N-1
th

 

decision. This is shown in the example of an 8-bit ADC in Figure 4-2.  
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Figure 4-2:  The residue voltage produced on the DAC after conversion by an 8-bit SAR 

ADC is the difference between the sampled input and a 7-bit digital estimate. 

The residue voltage produced on the DAC after completing the digital conversion by the 8-

bit SAR ADC is the difference between the sampled input and a 7-bit digital estimate. The final 

residue is therefore not based on the full resolution of the digital estimate. This inequality is 

expressed by (4.2) – where DOUT is the 7-bit estimate of an 8-bit conversion. 

 𝑉𝑅𝐸𝑆 ≠ 𝐷𝑂𝑈𝑇 − 𝑉𝐼𝑁 (4.2) 

 

 

In Figure 4-3, we make one extra switching of the DAC array based on the final comparator 

decision so that the final residue is: 

 𝑉𝑅𝐸𝑆 = 𝐷𝑂𝑈𝑇 − 𝑉𝐼𝑁 (4.3) 

 

Significantly, this final residue voltage also contains information about the input-referred 

comparator noise, VN,COMP. As indicated in Figure 4-4, this final residue also captures the 

comparator noise for the N
th

 comparison. As in (4.4), VRES can be expressed as a function of 

DOUT, VIN, and VN,COMP. 

 𝑉𝑅𝐸𝑆 = 𝐷𝑂𝑈𝑇 − 𝑉𝐼𝑁 + 𝑉𝑁,𝐶𝑂𝑀𝑃 (4.4) 
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Figure 4-3:  One extra switching of the DAC array based to generate resume 

 

 

Figure 4-4:  Final residue also captures the comparator noise for the N
th

 comparison. 
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4.3.B  Simple Noise Shaping 

For clarity of explanation, we begin with the simple SAR ADC noise shaping technique 

introduced in Figure 4-5.
25

  

 

Figure 4-5:  Simple SAR ADC noise shaping technique. 

In this technique, the residue, VRES(k-1), from the conversion of the previous ADC sample, 

k-1, is applied to the negative input of the comparator during the conversion of current sample, k. 

Including comparator noise, VN,COMP(k), DOUT is expressed by (4.5). 

 

 𝐷𝑂𝑈𝑇(𝑘) = 𝑉𝐼𝑁(𝑘) + 𝑄(𝑘) + 𝑉𝑁,𝐶𝑂𝑀𝑃(𝑘) − 𝑉𝑅𝐸𝑆(𝑘 − 1) (4.5) 

 

 

Considering that the residue voltage generated by the DAC represents the difference 

between DOUT and VIN, VRES can be expressed as follows, 

                                                 

 

25 It is important to note that the technique employed in this subsection is for illustration purposes only and does not produce a stable noise-
shaping system. 
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 𝑉𝑅𝐸𝑆(𝑘) = 𝐷𝑂𝑈𝑇(𝑘) − 𝑉𝐼𝑁(𝑘) (4.6) 

 

 

Substituting (4.6) into (4.5) and performing a z-transform, we obtain the following system 

transfer function, 

 

 𝐷𝑂𝑈𝑇(𝑧) = 𝑉𝐼𝑁(𝑧) +
1

1 + 𝑧−1
[𝑄(𝑧) + 𝑉𝑁,𝐶𝑂𝑀𝑃(𝑧)] (4.7) 

 

 

This equation indicates an all-pass signal-transfer function (STF) and a high-pass noise-

transfer function (NTF), which shapes both the quantization noise and comparator noise, thereby 

attenuating both the quantization noise and comparator noise at lower frequencies. At high 

frequencies, however, the system becomes unstable since the NTF contains a pole at Nyquist. 

In practice, the battery that applies VRES(k-1) to the negative input of the comparator can be 

implemented as a capacitor, CCOMP. At the end a the SAR conversion, and after the last 

comparator decision is fed back into the array, the battery capacitor, CCOMP, is charged-shared 

with the DAC top plate voltage. Since CCOMP is much smaller than the total DAC capacitance, 

the residue voltage that is sampled onto CCOMP is almost identical to the actual residue voltage. 

Because CCOMP is small compared to the DAC, memory effects can also be ignored. 

With a small CCOMP capacitance, sampling of the SAR ADC residue on CCOMP introduces an 

additional kT/C noise contribution in the ADC operation, which depends on the capacitance of 

CCOMP. This kT/C noise contribution, however, presents itself to the comparator in series with the 

input-referred comparator noise, and thus, this additional kT/C noise experiences the same noise 

transfer function as the quantization noise and the input-referred comparator noise. Therefore, 

noise shaping and oversampling and the eventual digital filtering of the overall ADC output will 

greatly reduce the effective contribution of this kT/C noise from CCOMP.  
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Figure 4-6 shows a functional representation and the equivalent signal flow diagram of this 

simple noise shaping SAR ADC. Thanks to the additional DAC switching, the DAC array 

generates the quantization residue. Effectively, this ADC architecture feeds forward the ADC 

input to the quantizer, where a delayed version of this residue is summed with the input and is 

then fed to the quantizer.  

 

Figure 4-6:  Functional representation and the equivalent signal flow diagram of the simple 

noise shaping SAR ADC. 

Through this simplified noise shaping implementation, both the quantization noise and the 

input-referred comparator noise of the ADC can be reduced at the expense of bandwidth. The 

noise transfer function that is associated with this simple noise shaping is shown in Figure 4-7. 

Although the architecture illustrates the advantage of shaping both quantization noise and the 

comparator noise, the NTF indicates only a flat 6dB of attenuation of low frequency. For this 

reason, the effective improvement in resolution offered by this technique is small. The resolution 
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improvement from this simplified implementation does not trade resolution and bandwidth 

equally, so in terms of figure of merit, the resolution improvement is not an energy efficient 

design tradeoff. More importantly, however, this noise shaping technique does not produce a 

stable NTF, and is thus, of little use in practice. 

 

Figure 4-7:  Noise transfer function associated with this simple noise shaping. 

4.3.C  Improved Noise Shaping 

The simplified noise shaping system described in Section 4.3.B illustrates an 

implementation that uses the DAC residue voltage produced at the end of the SAR conversion to 

perform noise shaping. We improve the resolution gain of the simplified implementation and 

stabilize the NTF described in the previous section by inserting an integrator between the passive 

sampling network and the inverting terminal of the comparator. With ideal sampling of the DAC 

residue voltage and an ideal integrator, this system behaves exactly like a first order delta-sigma 

modulator. 
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Figure 4-8 shows a functional representation and the equivalent signal flow diagram of the 

improved noise-shaping SAR ADC, which now includes a integration filter after the sampling of 

the final DAC residue. As shown in the signal flow diagram, the sum of the input signal and the 

integrated residue is fed to the quantizer.  

 

Figure 4-8:  Functional representation and the equivalent signal flow diagram of the 

improved noise-shaping SAR ADC. 

The transfer function for this improved noise-shaping system is: 

 𝐷𝑂𝑈𝑇(𝑧) = 𝑉𝐼𝑁(𝑧) + (1 − 𝑧
−1)𝑄(𝑧) (4.8) 

 

 

As before, the STF is all-pass. However, the NTF, 1-z
-1

, is now identical to the NTF of a 

first order delta-sigma modulator. As expected, a plot of noise transfer function, as shown in 

Figure 4-9, indicates significant attention of quantization noise at lower frequencies. 
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Figure 4-9:  Plot of noise transfer function for the improved noise shaping SAR ADC. 

Frequency is plotted on a linear scale in order to include frequencies near Nyquist, but on a 

log-log scale, the NTF will show the traditional 20dB/decade slope at low frequencies. 

To understand the limitations of this improved architecture, we consider the simplified 

depiction of this system shown in Figure 4-10. The DAC residue is sampled by residue-sampling 

capacitor, CR, and this sampled charge is then transferred to an integrator, which is formed by an 

OTA with a feedback capacitor, CF – where CP represents parasitic capacitances which include 

contributions from the switches and the OTA input. As with the simple noise-shaping scheme in 

Section 4.3.B, CR introduces an additional kT/C noise contribution. Unlike the simple noise-

shaping scheme from Section 4.3.B, however, this kT/C noise contribution from CR is not noise-

shaped, but is still digitally filtered. Practically speaking, the inclusion of the integrator prevents 

noise-shaping of this kT/C noise because the integrator provides gain through the loop and this 

noise contribution occurs before the integrator and cannot be input-referred though the 

integration. The residue-sampling capacitor, CR, must therefore be sized in accordance with the 

desired resolution of the ADC in order to keep the kT/C noise negligible, and at high resolutions, 

charge sharing between the ADC and a large CR will set the minimum size of the DAC array to 

avoid too much attenuation on the residue-sampling capacitor. 
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Figure 4-10:  Simplified depiction of improved noise-shaping SAR ADC. 

We now consider the effect of finite amplifier gain as well as errors related to the parasitic 

capacitance CP. For this purpose, we model the residue processing with the signal flow diagram 

shown in Figure 4-11.  

 

Figure 4-11:  Model of the residue processing in the improved noise shaping SAR ADC. 

In Figure 4-11, we introduce a quality factor A for the integrator. A A value of 1.0 

indicates an ideal integrator, and in practice A is smaller than but very close to unity. This 

quality factor represents losses due to both finite amplifier gain and the attenuation due to charge 

sharing between CR and CP. Figure 4-12 plots the noise transfer function for three values of A 

ranging from 0.6 to ideal, 1.0.  
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Figure 4-12:  Noise transfer function for three values of A . 

We see that even with a very poor integrator (i.e. A of 0.6), reasonable noise shaping is still 

obtained. Nevertheless, a higher value of A is typically desired to achieve an attractive tradeoff 

between bandwidth and resolution. However, a high value of A requires a high gain amplifier 

and accurate handling of charge. This extra complexity is undesirable since it is at odds with the 

scaling friendly nature of the basic switched capacitor SAR architecture. 

4.3.D  Practical Noise Shaping 

We introduce a cascaded Finite-Impulse-Response (FIR) Infinite-Input-Response (IIR) filter 

as a loop filter to achieve practical noise shaping. To reconcile the design tradeoff between 

bandwidth and resolution, the additional switched capacitor FIR filter replaces the passive 

sampling network described in Sections 4.3.B and 4.3.C. Figure 4-13 shows the signal flow 

diagram for the noise-shaping scheme that incorporates this new FIR-IIR loop filter. 
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Figure 4-13:  Noise shaping with cascaded FIR/IIR filter. 

In this system, the residue voltage, VRES(z), is processed by the cascade of the FIR and IIR 

filters and produces an output Y(z). The filter output, Y(z), is then summed with the input signal 

feed-forward path and fed to the quantizer. The FIR filter is a two-tap filter with coefficients 1 

and 2. The IIR filter is formed with the integrator which has a quality factor A. The overall 

transfer function of this FIR-IIR system is given by (4.9). 

 

 𝐷𝑂𝑈𝑇(𝑧) = 𝑉𝐼𝑁(𝑧) +
1 − 𝜅𝐴𝑧

−1

1 − 𝜅𝐴(𝛼1 − 1)𝑧−1 + 𝜅𝐴𝛼2𝑧−2
𝑄(𝑧) (4.9) 
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Again the signal transfer function described by (4.9) is all-pass, but now thanks to 

coefficients 1 and 2 there is flexibility in the form of the noise transfer function. In this design, 

α1 is set at 3.0 and α2 is set at 1.0 for a simple integrator with κA of 0.64.
26

  

The circuit implementation of the cascaded FIR-IIR filter is shown in Figure 4-14. The FIR 

filter is a two-tap filter constructed as a pair of two-capacitor banks. Alternate DAC residue 

voltages are alternately sampled onto BANK1 and BANK2 at the end of each ADC conversion cycle.  

 

Figure 4-14:  Circuit implementation of the cascaded FIR-IIR filter. 

As shown in Figure 4-15, BANK1 is formed with capacitor CA1 and CB1 while BANK2 is formed 

with CA2 and CB2. The FIR tap coefficients 1 and 2 are set by the size of capacitors (i.e. 

capacitor designated A and B) within the capacitor banks. 

                                                 

 

26 The tap coefficients chosen for FIR filter produce an unstable filter, but when combined with losses from the integrator, the noise transfer 
function is stabilized.  
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Figure 4-15:  Capacitor banks in FIR filter. 

 

Figure 4-16:  Interleaved FIR operation. 

As shown in Figure 4-16, the residue voltage, VRES(k-1), is passively sampled onto CB2 and 

CA2. Later, residue, VRES(k), is passively sampled onto CB1 and CA1. The charges on CB2 and CA1 

are combined to form the FIR filtered charge QOUT(k). Next, CB2 and CA2 are reused to sample the 

next residue, VRES(k+1), and after this, the charges on CB1 and CA2 are combined to form the FIR 

filtered charge QOUT(k+1). We see that interleaved capacitors are required because each residue 

value must contribute to two FIR filtered outputs and the sampled charge stored on a capacitor is 

destroyed after a single charge sharing. 



87 

 

Returning to the simplified schematic representation, shown in Figure 4-14, the IIR filter is 

implemented with a simple, single-stage opamp along with feedback capacitor CF, which sums 

and integrates the FIR filter tap charges onto a feedback capacitor. The FIR filter taps are 

summed and integrated during the relatively long signal-sampling period of the SAR ADC to 

ensure that there is sufficient time for the filter outputs to settle before the start of the next ADC 

conversion cycle. The overall filtered residue is given as:  

 

 𝑉𝑂𝑈𝑇(𝑧) = [
𝐶𝐴
𝐶𝐹
𝑧−1 +

𝐶𝐵
𝐶𝐹
𝑧−2]

𝜅𝐴
1 − 𝜅𝐴𝑧−1

𝑉𝑅𝐸𝑆(𝑧) (4.10) 

 

 

Figure 4-17 compares the noise transfer function from a lossy IIR filter with the combined 

FIR-IIR.
27

 Even with the low value of 0.6 for A, it is clear that that the FIR-IIR produces better 

noise attenuation compared to the IIR structure. The better noise attenuation is the result of 

additional gain from the FIR filter structure. Furthermore the attenuation bandwidth is wide, 

facilitating a low oversampling ratio. The wider bandwidth results from additional zeros added 

by the FIR filter. Figure 4-18 compares the NTF of this noise-shaping SAR ADC and the NTF of 

an ideal delta-sigma ADC. As shown in Figure 4-18, the NTF for this noise-shaping SAR ADC 

with FIR-IIR loop filter indicates resolution gains equivalent to a third order delta-sigma 

modulator at an oversampling ratio of 4.
28

 

                                                 

 

27 Both the IIR and FIR-IIR use an itegrator with a low A value of 0.6 

28 Mismatch and noise are not included in the comparison. 
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Figure 4-17:  Noise transfer function for the IIR filter alone (Section III.C) compared to that 

of combined IIR with FIR filter. 

 

Figure 4-18:  Comparison in resolution gains between a noise-shaping SAR ADC using a 

FIR-IIR loop filter and ideal delta-sigma ADCs. Noise and mismatch are not considered. At 

a low oversampling ratio of 4, the FIR-IIR filter provides resolution gains comparable to a 

third order modulator. 

4.4   Circuit Details 

The SAR ADC is a fully differential implementation of the architecture shown in Figure 4-1, 

along with a differential realization of the noise shaping circuitry shown in Figure 4-13. The loop 

filter opamp is a simple single-stage low-gain amplifier. The comparator is shown in Figure 

4-19. The comparator compares the differential residue voltage with the differential filtered 
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residue signal. A simple dynamic structure is employed for energy efficiency and is a double 

differential version of the double tail latch comparator [49]. 

 

Figure 4-19:  Comparator. 

To save power and to eliminate the need for a very fast reference clock, the timing for this 

SAR ADC is generated using an asynchronous clocking scheme. A 90MHz master clock controls 

the sampling instance, and a single delay element is used to time each of the DAC settling 

events. The delay element, Figure 4-20, consists of a ring oscillator type structure with one 
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inversion produced by a flip-flop, which when triggered by the comparator-ready signal, 

immediately resets the comparator and initiates the inverter delays to time the DAC. By 

recycling this single delay element, the delays of all DAC settling events match without the use 

of calibration. 

 

Figure 4-20:  Clock generation. 

4.5    Prototype and Measurements 

The prototype ADC, Figure 4-21, is fabricated in 65nm CMOS. The ADC occupies an area 

of 0.03mm
2
 (231μm by 140μm) and more than half of this area shown is taken up by decoupling 

capacitance. The DAC is an 8 bit, binary-weighted capacitor array. Each half of the array has a 

total capacitance of 640fF. The unit capacitors are implemented as stacked, finger capacitors.  
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Figure 4-21:  Die Photo 

The measured spectral density of the converter for a 2MHz input signal sampled at 90MS/s 

is shown in Figure 4-22. With an OSR of 4, the signal bandwidth is 11 MHz and the ADC 

achieves a measured ENOB of 10.0 bits with a 2MHz input signal. The measured SFDR is 72dB. 

With a resolution gain of 2-bits above the 8-bit DAC resolution and a reduction of the signal 

bandwidth by 4, this noise-shaping SAR ADC trades bandwidth and resolution equally in terms 

of FOM.  
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Figure 4-22:  The measured spectral density of the converter for a 2MHz input signal 

sampled at 90MS/s. 

The measured SNDR versus input frequency and versus input amplitude are shown in 

Figures 4-23 and 4-24, respectively. At 90MS/s the total power consumption is 806μW. Of this, 

the digital power consumption is 608μW, and the analog power consumption is 198μW. The 

analog power consumption includes 30μW for the comparator, 45μW for the sampling circuit, 

44μW for the DAC reference voltages, and 79μW for the FIR-IIR filter. For a 2MHz input the 

measured FOM for this converter is 35.8fJ/conversion-step.  
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Figure 4-23:  Measured SNDR versus frequency with a full-scale input 

 

Figure 4-24:  Measured SNDR versus input signal amplitude 

4.6   Conclusions 

This chapter introduces a noise-shaping SAR ADC. This low OSR noise-shaping 

architecture allows 10 bit ENOB to be achieved with a compact 8 bit DAC array. Noise-shaping 

shapes both comparator noise and quantization noise, helping to decouple comparator noise from 

ADC performance. A loop filter comprised of a cascade of a two-tap charge domain FIR filters 

and an integrator achieves good noise shaping even with a low quality integrator. A wide 

attenuation bandwidth in noise transfer function facilitates a low over-sampling ratio of 4. A 

comparison with previously published work is provided in Table 4-1. 
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TABLE 4-1:  COMPARISON WITH OTHER WORK 

 

Specifications 

 

JSSC’10 

[34] 

VLSI’10 

[36] 

ISSCC’11 

[45] 

ISSCC’10 

[42] 

ISSCC’10 

[48] 
This Work 

Architecture SAR SAR SAR SAR SAR NS-SAR 

Technology (nm) 65 180 65 65 90 65 

Resolution (bit) 10 10 10 10 10 --- 

Bandwidth (MHz) 0.5 5 0.01 25 50 11 

Power (μW) 1.9 98 0.206 820 1130 806 

ENOB (bit) 8.75 9.83 8.84 9.16 9.51 10 

FOM (fJ/conv) 4.42 11 22.4 30 15.5 35.8 
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CHAPTER V 

Time-Interleaved MASH SAR 

5.1   Introduction 

Charge-redistribution successive-approximation (SAR) ADCs dominate low power 

applications. Because the SAR architecture is highly digital in nature and contains few active 

components, SAR ADCs achieve phenomenal energy efficiencies [53]. Additionally, noise-

shaping SAR ADCs have shown that the extra information produced by the SAR algorithm can 

be used to construct low-power noise-shaping techniques, which increase the resolution of SAR 

ADCs and reduce the bottleneck of comparator noise [54]. Our work on noise-shaping SAR 

ADCs has demonstrated that oversampling can relax both the comparator noise and the sampling 

kT/C noise requirements for SAR ADCs while extending resolutions closer to the limitations of 

capacitor mismatch, which tend to improve as lithography improves. 

This chapter describes a noise-shaping converter built upon time-interleaved SAR ADCs. 

The prototype ADC consists of four time-interleaved SAR ADC channels, each with a 6 bit 

binary-weighted capacitor DAC. Like traditional Nyquist-rate SAR ADCs, noise-shaping SAR 

ADCs present a direct tradeoff between sampling speed and resolution due to the linear 

progression of the SAR algorithm – sampling speed trades linearly with the resolution as 

measured in bits. With traditional SAR ADCs, however, time-interleaving has allowed SAR 

ADCs to extend sampling speeds while maintaining excellent power efficiencies [53]. This 
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section describes an extension to the time-interleaved technique that extends the bandwidth of 

noise-shaping SAR ADCs. 

5.2   Time-Interleaving 

Time-interleaving is a proven technique for combining multiple low bandwidth ADCs into a 

single high bandwidth ADC. With Nyquist ADCs, time-interleaving involves successive ADC 

channels converting successive samples of the input signal. Figure 5-1 presents the basic 

structure of a time-interleaved Nyquist ADC. As shown in Figure 5-1, the time-interleaved ADC 

consists of multiple Nyquist ADCs, where each channel successively samples and processes the 

input signal. Because each channel only sees a subset of the samples, the bandwidth 

requirements for each individual channel, after sampling, are less than the overall ADC 

bandwidth, thus, lower bandwidth, slower ADCs can be used to construct the channels. With 

time-interleaving, a higher bandwidth ADC can be constructed using multiple lower bandwidth 

ADCs.  

 

Figure 5-1:  Basic time-interleaving structure for Nyquist ADCs 
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Figure 5-2 plots the output spectrum for the time-interleaved ADC shown in Figure 5-1. 

Although each of the channels of the time-interleaved ADC from Figure 5-1 subsamples the 

input signal at a rate of FS/4, the reconstructed time-interleaved spectrum matches the spectrum 

of an equivalent Nyquist ADC sampling at the full rate of FS. Time-interleaved converters can, 

therefore, digitally convert input signals up to the overall converter Nyquist, FS/2. In time-

interleaved ADCs, the quantization noise from each channel is aliased across the full Nyquist 

spectrum of the overall ADC. Although each channel effectively subsamples the input, no such 

aliasing occurs with the input signal. Only the quantization noise is aliased. 

 

Figure 5-2:  Ideal spectrum for time-interleaved Nyquist ADCs – where Fs is expressed as 

the overall converter sampling rate  

Time-interleaved Nyquist ADCs, however, introduce latency into the conversion process. 

Since each channel of a time-interleaved ADC continues to perform a digital conversion while 

the next sample is acquired on the free channel, the digital conversion process for a channel does 

not complete before the next sampling instance of the overall ADC. For Nyquist ADCs, this 
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time-interleaving latency has no effect the overall ADC operation because time-interleaved 

Nyquist ADCs do not generally require communication between channels during the digital 

conversion. Nevertheless, this latency in time-interleaved ADCs can introduce stability problems 

due to loop delay when time-interleaved ADCs are configured in a mixed-signal feedback loops. 

Noise-shaping ADCs, on the other hand, depend on knowing the entire history of the 

previous conversions from every sample, and unlike Nyquist ADCs, the latency introduced by 

time-interleaving diminishes the usefulness of noise-shaping ADCs. Figure 5-3 depicts a 

straightforward time-interleaving of noise-shaping ADCs similar to Figure 5-1. The 

reconstructed spectrum for the time-interleaved noise-shaping ADCs is presented in Figure 5-4. 

 

Figure 5-3:  Naive time-interleaved delta-sigma ADCs 
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Figure 5-4:  Ideal spectrum for naive time-interleaved delta-sigma ADCs, – where Fs is 

expressed as the overall converter sampling rate 

As depicted in Figure 5-4, a straightforward time-interleaving of noise-shaping ADCs 

produces a spectrum with periodic nulls. These nulls represent the aliasing of quantization noise 

from each channel. For some applications, these nulls could potentially be useful, but as a 

general bandwidth extension technique, these nulls defeat the purpose of time-interleaving. Even 

with time-interleaving, the useful bandwidth over which noise is attenuated does not improve 

more than the bandwidth of a non-interleaved approach. For instance, in Figure 5-4, the 

bandwidth of the attenuated noise around DC is the same as using a single noise-shaping ADC at 

the equivalent channel sampling frequency, FS/4. For noise-shaping ADCs, traditional time-

interleaving doesn’t extend the bandwidth of the overall converter in the same manner as for 

Nyquist ADCs. 
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5.3   Block Level System Description 

To overcome the limitations of the naïvely interleaved noise-shaping structure shown in in 

Figure 5-3, this section introduces a time-interleaved noise-shaping ADC based on the MASH 

architecture. The overall block level system diagram is shown in Figure 5-5 and described below. 

The block diagram in Figure 5-5 consists of three primary signal paths. In the top path, the 

input signal, Vin, is converted directly into a 2-bit output, Dout1. For a typical MASH structure, 

each of the paths are noise-shaping loops, however, because the magnitude of 2-bit quantization 

noise introduced by the first conversion, Q1, is quite large, ~VFS/4, meeting the dynamic range 

requirement for an integrator based loop filter becomes difficult. As the quantization error scales 

down in later loops, however, the output swing requirements relax and implementing accurate 

integrators becomes more feasible. Therefore, the first path directly digitizes the input signal in 

order to reduce the magnitude of the signal passed to the later noise-shaping loops. 

 

Figure 5-5:  Block level system diagram for the time-interleaved noise-shaping ADC 
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 The relationship between Vin and Dout1, is shown in (5.1), where Q1, is the first 2-bit 

quantization error. 

 

 𝐷𝑜𝑢𝑡1 = 𝑉𝑖𝑛 + 𝑄1 (5.1) 

 

 

In the center path, the quantization error from previous 2-bit MSB conversion, Q1, is further 

quantized into another 2-bit output, Dout2, but unlike the top path, the quantization error, Q2, is 

noised-shaped by the feedback loop (5.2). 

 

 𝐷𝑜𝑢𝑡2 = −𝑄1 + (1 − 𝑧
−1)𝑄2 (5.2) 

 

 

In the bottom path, the quantization error from the center path, Q2, is again noise shaped. 

Dout3 is described by (5.3). 

 

 𝐷𝑜𝑢𝑡3 = −𝑄2 + (1 − 𝑧
−1)𝑄3 (5.3) 

 

 

Exactly like a MASH structure, the digital outputs are summed after digital filtering. The 

transfer function for the weighted summation is described in (5.4), 

 

 𝐷𝑜𝑢𝑡 = 𝐷𝑜𝑢𝑡1 + 𝐷𝑜𝑢𝑡2 + (1 − 𝑧
−1)𝐷𝑜𝑢𝑡3 (5.4) 

 

 

Simplifying Dout in terms of the quantization error reveals a second-order noise transfer 

function (5.5) – where the magnitude of Q3 is set by the LSB of the SAR capacitor DAC, ~VFS/2
6
. 

 

 𝐷𝑜𝑢𝑡 = 𝑉𝑖𝑛 + (1 − 𝑧−1)2𝑄3 (5.5) 
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In this MASH structure, Figure 5-5, the quantization error is passed through multiple noise-

shaping loops, which produces higher order noise-shaping. Since each loop operates in series and 

does not depend on information from later loops to operate, this MASH structure can be 

parallelized and time-interleaved – unlike the naïve interleaving shown in Figure 5-3. 

5.4   Circuit level Implementation 

This section describes the circuit level implementation for the system shown in Figure 5-5. 

For the sake of clarity, this section is broken into two parts. The first section describes a 

simplified, non-interleaved implementation of the system where different conversion cycles from 

the SAR algorithm are used to implement the MASH stages. The second section describes a 

time-interleaved implementation. 

5.4.A  Simplified Single Channel Circuit Implementation  

A schematic for the simplified circuit is given in Figure 5-6. The circuit topology is 

essentially a SAR ADC with the addition of two integrators. The SAR portion of the circuit 

contains a 4 bit binary-weighted capacitor DAC, an input sampling switch, and a comparator.
29

 

The inputs of both integrators connect to top plate the capacitor DAC and the outputs both 

connect to the comparator reference terminal through a mux. In this configuration, the integrators 

can accumulate the DAC residue voltages and pass this accumulated value to the comparator 

reference node. For clarity, the top path from the system block diagram, Figure 5-5, is ignored in 

this simplified implementation – only the two noise-shaping feedback loops are considered. 

                                                 

 

29 For simplicity, the SAR feedback controller is neglected from Figure 5-6. 
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Figure 5-6:  Simplified single channel implementation. Circuit contains a SAR ADC with 

two additional integrators. 

The operation of the single channel implementation shown in Figure 5-6 can be broken 

down into discrete steps. At the onset of the conversion, the two integrators are disabled, and the 

input signal is sampled onto the cap array of the SAR ADC, Figure 5-7. 

 

Figure 5-7:  Sampling Operation 
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Following this sampling operation, the top integrator is connected to the comparator, and a 

2-bit digital conversion is performed with the accumulated residues from the top integrator used 

as a reference for the conversion, Figure 5-8. 

 

Figure 5-8:  Noise-shaping digital conversion (first loop) 

After the digital conversion is completed, the residue voltage on DAC top plate voltage 

equals the noise shaped residue quantization error, Q1[k]-Q1[k-1], where Q1 is the quantization 

error from the two MSB bits. Intuitively, this noise-shaped quantization error results from the 

ADC using the integrator output as the comparator reference for the SAR conversion. Since the 

integrator already stores the quantization error from the previous conversion, the previous 

quantization error, Q1[k-1], is subtracted from Q1[k].  

Following, the first 2-bit conversion, the top integrator accumulates the DAC residue, Figure 

5-9. This accumulation updates the top integrator with the quantization error from the first 2-bit 

conversion, Q1[k], which will be used during the next nsampling cycle. 
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Figure 5-9:  Integrate the DAC residue (first loop) 

With the first noise-shaping loop completed, the digital conversion continues by performing 

the second noise shaping loop. In a MASH structure, the unshaped quantization noise from the 

preceding stages is fed into later noise-shaping stages. As show in Figure 5-9, however, the DAC 

residue voltage shows a noise-shaped quantization error, Q1[k]-Q1[k-1]. Since the DAC voltage 

represents the signal that is processed, the circuit synthesizes an unshaped quantization error on 

the DAC by integrating the output from the top integrator onto the bottom integrator, Figure 

5-10. 
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Figure 5-10:  Integrate the output of the first integrator onto the second integrator 

By integrating the output form the top integrator onto the bottom integrator, the circuit 

essentially level shifts the reference voltage for the conversion so that the DAC residue voltage 

appears to hold Q1[k]. The actual residue voltage on the DAC is still Q1[k]-Q1[k-1], but the 

output of the second integrator has been shifted by Q1[k-1] so that the second conversion can 

proceed as if Q1[k] is the DAC voltage.
30

 Figure 5-11 shows the second digital conversion. 

                                                 

 

30 Although not equivalent, this is very similar to connecting two integrators in series as in a second order delta-sigma.  
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Figure 5-11:  Noise-shaping digital conversion (second loop) 

Similar to the digital conversion in the first noise-shaping loop, the second digital 

conversion produces a noise-shaped residue voltage, Q2[k]-Q2[k-1], where Q2 is quantization 

error from the two LSB bits. The second noise-shaping loop finishes by updating the bottom 

integrator output with the DAC residue voltage, Figure 5-12. 

 

Figure 5-12:  Integrate the DAC residue (second loop) 
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After the second noise-shaping loop finishes, the cycle repeats by sampling input signal as in 

Figure 5-7. Although the circuit described in this section processes the noise-shaping loop 

sequentially, the circuit performs a MASH conversion similar to the system level block diagram 

shown in Figure 5-5.  

5.4.B  Simplified Time-Interleaved Circuit Implementation  

In this section we outline a simplified time-interleaved implementation of the MASH 

structure given in Figure 5-5. A simplified schematic for the time-interleaved structure is given 

in Figure 5-13. 

 

Figure 5-13:  Time-interleaved MASH with three channels 
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Figure 5-13 shows a simplified three-channel implementation for the MASH structure 

shown in Figure 5-5. This simplified three-channel implementation consists of the three SAR 

ADCs, each with a 4 bit binary weight capacitor array and comparator, and two integrators. The 

operation of this time-interleaved ADC parallels the operation described in Section 5.4.A for a 

signal channel.  

In the first step, Channel 1 disconnects the integrator and samples the input signal. This 

sampling operation occurs in parallel with Channel 2 integrating the DAC residue voltage onto 

Integrator B and Channel 3 integrating the DAC residue voltage onto Integrator A. Following the 

sampling operation for Channel 1, Channel 1 connects to integrator A and performs a noise-

shaping digital conversion of the MSB bits. Simultaneously, Channel 2 begins sampling the 

input signal and Channel 3 connects with integrator B to perform a noise-shaping digital 

conversion of the LSB bits. After Channels 1 and 3 finishes the digital conversions and updates 

the integrator, Channel 1 connects to integrator B to convert the LSB bits, Channel 2 connects to 

integrator A to convert MSB bits, and Channel 3 begins samplings.  

5.5   Prototype and Measurements 

The prototype ADC, Figure 5-14, is designed in 65nm CMOS. The ADC occupies an area of 

0.62mm
2
 (960μm by 640μm). The DAC for each channel is a 6 bit, binary-weighted capacitor 

array. Each half of the array has a total capacitance of 600fF. The unit capacitors are 

implemented as stacked, finger capacitors, with the top plate shielded on all sides by additional 

bottom plate routing. Although shielding the top plate with the bottom plate substantially 

increases the bottom plate parasitic capacitance, this shielding enhances the array linearity by 

eliminating most of the stray capacitance between the top plate and the bottom plate routing.  
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Figure 5-14:  Die Screenshot (1.2mm x 1.0mm) 

The simulated spectral density of the time-interleaved converter for a 3.42 MHz input signal 

sampled at 250MS/s is shown in Figure 5-15. As shown in Figure 5-15, the noise floor displays 

the characteristic 40dB/decade slope of 2nd-order noise shaping systems. The SNDR of the 

converter is graphed as function of the oversample ratio (OSR) in Figure 5-16 – where the OSR 

is expressed in octave. At an OSR of 16 (4 octaves), the time-interleaved converter achieves an 

SNDR of 61.3 dB with a 3.42 MHz input signal. At 250MS/s, the estimated power consumption 

is 10mW. 
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Figure 5-15:  Simulated spectral density of the time-interleaved converter for a 3.42MHz 

input signal sampled at 250MS/s. 

 

Figure 5-16:  Simulated SNDR versus OSR for the measured spectral density given in Figure 

5-15. 
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5.6   Conclusions 

This section describes a time-interleaved MASH ADC using multiple SAR ADC channels. 

Like traditional time-interleaving, each of the SAR ADC channels performs time-interleaved 

sampling, which improves the bandwidth of the overall converter up to the speed of a 2 bit SAR 

Unlike traditional time-interleaving, however, the loop filter is time-shared between channels to 

create 2-bit noise-shaping loops. When the digital outputs from the all of channels are combined, 

the overall ADC shows second order noise shaping with a VFS/2
6
 LSB size. Although this 

method of interleaving does not reduce the bandwidth requirements of the loop filter integrators, 

which ultimately limit the speed of the ADC, the additional channels increase the order of the 

noise-shaping while providing a moderate bandwidth improvement of 30% to the noise-shaping 

SAR ADC described in CHAPTER IV. This 2nd-order noise-shaping architecture achieves 10 

bit ENOB at 16x OSR with 4x time-interleaved noise shaping SAR ADCs. Noise-shaping 

reduces both the comparator noise and the quantization noise. A comparison with previously 

published work is provided in Table 5-1. 
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TABLE 5-1:  COMPARISON WITH OTHER WORK 

 

 

 

Specifications 

 

JSSC’10 

[34] 

VLSI’10 

[36] 

ISSCC’11 

[45] 

ISSCC’10 

[42] 

ISSCC’10 

[48] 
This Work 

Architecture SAR SAR SAR SAR SAR 
TI-MASH 

SAR 

Technology (nm) 65 180 65 65 90 65 

Resolution (bit) 10 10 10 10 10 --- 

Bandwidth (MHz) 0.5 5 0.01 25 50 15.6 

Power (μW) 1.9 98 0.206 820 1130 10e3 

ENOB (bit) 8.75 9.83 8.84 9.16 9.51 10 

FOM (fJ/conv) 4.42 11 22.4 30 15.5 313 
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CHAPTER VI 

Conclusion 

6.1   Contributions 

In Chapter 2, the energy efficiency for the analog portions of charge-redistribution SAR 

ADCs are examined. First, we derive an expression for the DAC switching energy of a SAR 

ADC, which provides insight into the fundamental energy limit of the DAC. We also analyze the 

transient operation of the DAC and calculate the DAC settling time, which allows us to estimate 

the maximum sampling frequency of a SAR ADC. Finally, we derive an expression for the 

minimum energy consumption of a regenerative comparator that does not depend on technology 

parameters such as threshold voltage, transition frequency, trans-conductance, etc. The analysis 

provides an estimate for the lower bound of the comparator energy consumption in terms of the 

ADC bit resolution and the comparator input referred noise. 

In Chapter 3, the effects of capacitor mismatch on ADC resolution and yield are examined. 

We develop an alternative statistical model using ENOB as a yield metric. First, we examine the 

effects of mismatch in a binary weighted, charge redistribution SAR ADC. We then derive an 

exact algebraic formulation relating capacitor mismatch to the average noise power of the ADC 

output, and from this algebraic formulation, we derive ENOB as a function of capacitor 

mismatch. Next, we explore the statistics of this ENOB expression and develop a statistical 

expression that predicts yield in terms of ENOB and mismatch. Finally, we generalize the results 

of this work by presenting a compact design equation, which accurately relates resolution, 
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mismatch, and ENOB to yield for all binary weighted, ratiometric converters. The design 

equation offered is accurate to within ±0.17 bits for yield values between 0.5% and 99.5% and is 

consistent with standard test methodology. 

In Chapter 4, we describe a hybrid noise-shaping SAR ADC which combined a SAR ADC 

with a switch cap FIR filter to produce a low energy, moderate resolution oversampling ADC. 

Although charge redistribution successive approximation (SAR) ADCs are highly efficient, 

comparator noise and other effects limit the most efficient operation to below 10 bits ENOB. 

This work introduces an oversampling, noise-shaping SAR ADC architecture that achieves 10b 

ENOB with an 8-bit SAR DAC array. A noise-shaping scheme shapes both comparator noise 

and quantization noise, thereby decoupling comparator noise from ADC performance. The loop 

filter is comprised of a cascade of a two-tap charge-domain FIR filter and an integrator to 

achieve good noise shaping even with a low quality integrator. The prototype ADC is fabricated 

in 65nm CMOS and occupies a core area of 0.03mm
2
. Operating at 90MS/s, it consumes 806W 

from a 1.2V supply. 

Chapter 5 describes an extension to the noise-shaping SAR ADC from Chapter 4. We 

present a noise-shaping ADC structure that combines a time-interleaved SAR ADC with a delta-

sigma MASH ADC to produce a time-interleaved oversampling converter. Although the time-

interleaved MASH ADC described in Chapter 5 does not solve all the issues for time-

interleaving general delta-sigma ADCs, the time-interleaved MASH ADC leverages time-

interleaving to expand the bandwidth of noise-shaping SAR ADCs. 
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6.2   Future Research Directions 

6.2.A  Pseudo-Non-Causal Noise-Shaping SAR ADC  

By definition, non-causal filters cannot be implemented in any practical system because 

such filters require knowledge of the future state of system. We will address this concern in a 

moment, but let us begin by exploring what we could achieve if non-causal filters could be 

practically realized. Figure 6-1 shows the block diagram for a proportional controller with a 

feedforward path, constant forward path gain, A, and a single delay, z
−1

, in the feedback path.  

 

Figure 6-1:  Block diagram of simple proportional controller with a feedforward path, a 

constant forward path gain, and delay in the feedback path. 

The closed-loop transfer function is described by (6.1) – where VIN(z) represents the input 

signal in the z-domain, Q(z) represents the quantization noise, and DOUT(z) is the digital output. 

 

 𝐷𝑂𝑈𝑇(z) =
1 + 𝐴

1 + 𝐴𝑧−1
𝑉𝐼𝑁(z) + 

1

1 + 𝐴𝑧−1
Q(z) (6.1) 
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Both the signal-transfer function (STF) and the noise-transfer function (NTF) from (6.1) 

have an unstable pole when A≥1. If we ignore this instability concern for a moment, we can 

asymptotically approximate (6.1) with (6.2) when forward gain is really big, A ≫ 1.  

 

 𝐷𝑂𝑈𝑇(z) = z𝑉𝐼𝑁(z) + 
𝑧

𝐴
Q(z) (6.2) 

 

 

Examining the STF and NTF from (6.2), we see that the magnitude response of the STF is 

all-pass and the magnitude of the NTF attenuates the quantization across the entire bandwidth of 

the system. The problem, however, is that both the STF and NTF have non-causal phase 

responses and can never be achieved in practice. Although (6.2) describes a system where future 

samples of the input signal, VIN(z), and the quantization noise, Q(z), appear in time before the 

signal has even arrived, if non-causal filters were practical, we could suppress all the 

quantization of the system throughout the entire bandwidth of the system – which would be an 

extremely powerful technique to improve the resolution of SAR ADCs and all noise-shaping 

systems. 

Due to the unstable pole, we cannot directly implement system described in Figure 6-1, but 

we can implement a similar system. In Table 6-1, we describe a practical process for 

implementing pseudo-non-casual FIR filters with a SAR ADC. If we assume that our ADC is 

constructed using five separate capacitor DACs, we can time-interleaved the sampling operation 

across each of the DAC. Although we only perform a digital conversion of the signal sampled on 

the first DAC, time-interleaved sampling continues across each of the other DACs. 
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TABLE 6-1:  TIME-INTERLEAVED SAMPLING FOR A SAR ADC 

 

When the digital conversion from the first channel finishes, we can feed the digital output 

from the first channel to each of the other DACs. If the input frequency is small relative to 

overall time-interleaved sampling, the digital representation from the first channel will serve as a 

decent approximation for the other samples held by the additional DACs.  

After feeding the digital output code from the first DAC to the other DACs, we can perform 

a weighted sum of the residue charge from each of the samples. Relative to the sampling instance 

on the first DAC, this weighted sum can be described by the FIR filter transfer function shown in 

(6.3) – where VIN(z) is the input signal, DOUT(z) is the digital code from the first channel, VOUT(z) 

is the output of the filter, and α are the FIR filter weights. 

 

 𝑉𝑂𝑈𝑇(z) = (1 +∑ 𝛼𝑘𝑧
𝑘/5

4

𝑘=1
)𝑉𝐼𝑁(z)  − 𝐷𝑂𝑈𝑇(z) (6.3) 

 

 

There are two important things to notice about the filter equation shown in (6.3). First, the 

delays associated with each of the filter taps are positive. With positive delay, each of the filter 

taps represents a future sample of the input signal. Typically, future samples are prohibited in 

systems, but due to the latency of the SAR conversion process, we were able to accumulate 

samples of the input signal that appear as future samples relative to the sampling instance of the 
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first channel. The filter described by (6.3) is pseudo-non-casual. It is not strictly non-causal 

because we are not using samples of the input signal before it is even possible to sample, but 

relative to the original input sample on the first DAC, the filter can contain pseudo-non-causal 

taps up to the limit allowed by the latency of the SAR operation. 

The second important point about (6.3) is the fractional exponents of the delay terms. 

Typically, the exponents for z-domain transfer functions are represented as whole numbers, 

which allows the interpreting the exponent as unit delays with a duration equal to the period of 

the sampling clock. With fractional delays, however, the apparent sampling rate is much higher 

than the clock rate at which the digital outputs are produces. In this case, the time-interleaved 

sampling is 5x greater than the rate at which the first channel produces digital outputs. This 

means that the bandwidth of the FIR filter in (6.3) is five times greater than what could be 

achieved with non-interleaved sampling. In effect, we get an additional 5x enhancement to noise-

shaping oversampling rate of the converter.  

A block diagram for a hypothetical system is provided in Figure 6-2. As shown in Figure 

6-2, the pseudo-non-causal filter takes the form of the pre-compensation filter, C(z).  

 

Figure 6-2:  Block diagram for a SAR noise-shaping system using a pseudo-non-casual filter, 

C(z). The transfer function C(z) can be implanted similar to (6.3). 
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In the simplest implantation, each of the filter taps, α, as described in (6.3), are equal to 

unity. For unity weighted taps, and for a DC input signal, the pre-compensation filter, C(z), will 

produce an effective 5x increase to the loop gain of the system. This 5x gain produced by the 

passive FIR results from summing the same residual charge from each of the five DACs after the 

digital output from the first channel is applied to each of the DACs. Since the input signal is DC, 

each DAC produces the same residue. Furthermore, this 5x gain will suppress quantization 

across the whole “Nyquist band” of the non-interleaved sample rate.  

Due to the time-interleaved sampling, and the pseudo-non-casual filter, we can produce 

pseudo-non-casual STFs and NTFs, which allows us to develop very powerful noise-shaping 

systems that do extraordinary things like the one shown in Figure 6-1. With this system, we can 

suppress noise within the bandwidth of the first channel, and push the noise into the artificial 

bandwidth of the time-interleaved system. After digital processing and digital filtering, we can 

recover a NTZ that appears non-causal within the single channel bandwidth, and we can push the 

bandwidth over which we improve resolution much close to the single channel bandwidth. 

Furthermore, we save power from the digital controller because we are only running one 

comparator and one digital controller, so this system seems suitable for low power, low 

bandwidth applications. 

6.2.B  Statistical Analysis of the SFDR yield for a Binary Weighted DAC 

In CHAPTER III, we presented a statistical analysis of yield in terms of ENOB for a binary 

weighted DAC. A derivation of the yield in terms of spurious-free-dynamic-range (SFDR) is an 

important extension of that work. In some applications, ENOB is an effective measure of 

performance, but in other application, SFDR may be more important. In this section, we discuss 

a possible strategy for developing an SFDR probability model. 
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In Figure 6-3, we show the typical transfer function of a Nyquist-rate ADC. Since we 

digitally approximate the input signal with discrete digital values, the transfer function assumes a 

staircase shape and the quantization error assume a saw-tooth shape. 

 

Figure 6-3:  Transfer function of a typical Nyquist-rate ADC. 

If we perform a polynomial expansion of the transfer function show in Figure 6-3, we can 

derive an approximation for the transfer function as provided in (6.4) – where n represents the 

nth power of VIN. 

 𝐷𝑂𝑈𝑇 =∑𝛽𝑛𝑉𝐼𝑁
𝑛 (6.4) 
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 The coefficients, β, from (6.4) characterize the magnitude of the harmonics generated from 

the ADC transfer function. For a very linear ADC, β1 = 1, and every other β assume some value 

which makes the quantization noise floor look flat. If we summed the power of the coefficients, 

β, we would derive the expected LSB
2
/12 noise power for an ADC. For a nonlinear ADC, the 

magnitude the n-th coefficient, βn, would tell us how much power to expect from the n-th 

harmonic, which provides a means to calculate the SFDR. The analysis from CHAPTER III 

shows how to relate the DNL and INL in terms of the noise power for a binary-weighted DAC, 

and the foundation for that analysis provides enough insight about DNL and INL to formulate a 

probabilistic derivation for SFDR using (6.4). 
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APPENDIX A 

Correction Factor for Sinusoidal Distributions 

 

In this Appendix, we derive a linear scaling factor α which estimates the noise power 

contributed by sinusoidal signals in terms of the noise power contributed by uniformly 

distributed signals. As shown by (3.4) and (3.5), the average noise power of a single-ended DAC 

is expressed as the sum of the quantization noise and the mean squared INL. This noise power 

formulation suggests that we can obtain the noise power for a sinusoidal distribution by 

reweighting the mean squared INL values according to the probability mass function of a 

sinusoidal distribution. In what follows, we first develop an expression for the squared INL 

values and then use this expression to calculate the average INL noise power contributed by both 

uniform and sinusoidal DAC code distributions. Finally, we extract the linear scaling factor α 

from the ratio of these noise powers. 

We obtain an analytic formulation of the of the squared INL values by simulating the INL of 

mismatched differential DACs and numerically calculating the mean squared INL at each code. 

Figure A-1 graphs the simulated mean square INL values, and (A.1) provides a quadratic 

approximation of the results – where Φi is the INL at code i, N is the number of bits, and A is the 

peak amplitude of the squared INL values. 
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Figure A-1:  Simulated values of the normalized mean squared INL at each code of an N bit 

DAC. The INL values were obtained by averaging the squared INL values at each code 

across randomly mismatched DACs. 

 Φ𝑖
2 =

{
 
 

 
 𝐴 ∙

𝑖 ∙ (2𝑁−1 − 𝑖)

22𝑁−4
              0 ≤ 𝑖 ≤ 2𝑁−1

𝐴 ∙
(2𝑁 − 𝑖)(𝑖 − 2𝑁−1)

22𝑁−4
2𝑁−1 ≤ 𝑖 ≤ 2𝑁

 (A.1) 

 

 

To simplify the calculations, we normalize the code range of (A.1) to half a period. The 

normalized INL expression is given in (A.2) – where x is the normalized index variable. 

 

 Φ𝑖
2 = {

4𝐴 ∙ 𝑥(1 − 𝑥)           0 ≤ 𝑥 ≤ 1

4𝐴 ∙ (𝑥 − 1)(2 − 𝑥) 1 ≤ 𝑥 ≤ 2
 (A.2) 
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Assuming an infinite resolution DAC with continuously distributed INL values, we estimate 

the average noise power contributed from uniformly distributed INL errors by integrating (A.2) 

across one period of the normalized code range. This calculation is shown in (A.3).  

 

 𝑉𝑛𝑜𝑖𝑠𝑒,𝐼𝑁𝐿
2 = 4𝐴∫ 𝑥(1 − 𝑥)𝑑𝑥

1

0

=
2𝐴

3
 (A.3) 

 

 

Similarly, we calculate the average noise power contributed from sinusoidally distributed 

INL errors by weighting the squared INL values according to a sinusoidal probability 

distribution and again integrating across a normalized code range. This calculation is shown in 

(A.4). 

 𝑉𝑛𝑜𝑖𝑠𝑒,𝐼𝑁𝐿
2 =

8𝐴

𝜋
∫  

𝑥(1 − 𝑥)

√1 − 𝑥2
𝑑𝑥

1

0

=
2𝐴(4 − 𝜋)

𝜋
 (A.4) 

 

 

Letting α equal the ratio of these noise contributions, we obtain the estimate for α given in 

(A.5). 

 𝛼 =
3(4 − 𝜋)

𝜋
≅ 0.8197 (A.5) 

 

 

With this value for α, we can now estimate the noise power contribution from a sinusoidal 

signal in terms of a uniformly distributed signal, which enables us to estimate the ENOB of a 

sinusoidal distribution and compare results with standard ADC test measurements. 
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APPENDIX B 

Full Yield Approximation – CDF of X Derivation 

 

As shown in (3.34), the probability of maintaining some minimal ENOB can be expressed as 

the probability that X remains within some bound determined by the desired ENOB. Therefore, 

we can estimate the ENOB yield using the cumulative distribution function (CDF) of X. In what 

follows we will derive the CDF for X and compare the analytic expression for the ENOB yield to 

simulation results. 

Treating the ηi in (3.34) as independent random variables, we can express the PDF of X as 

the series convolution of the ηi PDFs, which are defined in (3.29). This expression for the PDF 

for X is shown in (B.1) – where Π* denotes the convolution operator. 

 

 𝑓𝑋(𝑥) =∏⋆
𝑖=0

𝑁−1

𝑓Η𝑖(𝑥) (B.1) 

 

 

To obtain the CDF for X, we must compute the series convolution shown in (B.1). Although 

we can efficiently compute this convolution by transforming each of the ηi PDFs into the s 

domain and multiplying their moment generating functions
31

, the resulting s domain expression 

we obtain for X is poorly structured and lacks a clear procedure for inverting the transformation 

                                                 

 

31 Moment generating functions are analogous to Laplace transformations, where convolutions become products in the s domain. 
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and recovering a PDF.
32

 Furthermore, a direct numerical calculation of this series convolution is 

troublesome since the PDFs of ηi are singular at the origin, which leads to numerical instability. 

In lieu of these difficulties, a less straightforward approach is used to derive a computationally 

feasible expression for the PDF of X.
 33

  

The method we employ to derive the CDF of X is based on an s domain transformation over 

convolved pairs of ηi. First, we will analytically compute the convolution over particular pairs of 

ηi, and then perform an s domain transformation on these expressions to obtain the moment 

generating functions. Next, we multiply the resulting moment generating functions and obtain a 

form for the moment generating function of X which is invertible. Finally, we recover the PDF of 

X and integrate to obtain the CDF. Following this procedure, we obtain an analytic expression 

for the CDF of X amenable to numerical approximation using standard numerical integration 

techniques. 

Letting ηij represent the sum of ηi and ηj, we can express the PDF of ηij as the convolution of 

the ηi and ηj PDFs as in (B.2) – where σi and σj are described in (B.1). 

 

 𝑓Η𝑖𝑗(𝜂) ≅
1

2𝜋 ∙ 𝜎𝑖 ∙ 𝜎𝑗
∫

1

√𝑡(𝜂 − 𝑡)
𝑒𝑥𝑝 [

−𝑡

2𝜎𝑖2
+
−(𝜂 − 𝑡)

2𝜎𝑗2
] 𝑑𝑡

𝜂

0

 (B.2) 

 

 

Using the trigonometric substitution t = ηcos
2
θ, we reduce (B.2) into the alternative 

formulation shown by (B.3), which resembles the PDF of an exponential random variable. The 

integral expression given in (B.3) represents our final simplification for the PDF of ηij. 

                                                 

 

32 The moment generating functions for ηi each contain distinct branch points along the real axis. 
33 A simple closed form expression for the CDF of a linear combination of Chi-Squared variables does not exist, but possible alternative 

computational solutions to this problem can be found in [51] – [52], where [51] offers an algorithm for numerically inverting the moment 
generation function, and [52] presents a asymptotic expansion based on an infinite series of incomplete gamma integrals. 
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𝑓Η𝑖𝑗(𝜂) ≅
1

𝜋 ∙ 𝜎𝑖 ∙ 𝜎𝑗
∫ 𝑒𝑥𝑝(−𝜆𝑖𝑗𝜂)𝑑𝜃

𝜋
2

0

𝜆𝑖𝑗 =
cos2 𝜃

2 ∙ 𝜎𝑖2
+
sin2 𝜃

2 ∙ 𝜎𝑗2

 (B.3) 

 

 

Next, we transform (B.3) into the s domain by calculating its moment generating function. 

Since the expression in (B.3) is absolutely convergent within the region of convergence for s, we 

can apply Fubini’s Theorem and interchange of the order of integration during this 

transformation. The resulting moment generating function for ηij is shown in (B.4). 

 

 

𝑀Η𝑖𝑗
(𝑠) ≅

1

𝜋 ∙ 𝜎𝑖 ∙ 𝜎𝑗
∫

𝑑𝜃

𝜆𝑖𝑗 − 𝑠

𝜋
2

0

𝜆𝑖𝑗 =
cos2 𝜃

2 ∙ 𝜎𝑖2
+
sin2 𝜃

2 ∙ 𝜎𝑗2

 (B.4) 

 

 

The expression given in (B.4) is the moment generating function of the convolution over the 

pairs ηi and ηj. From a practical perspective, however, the integrand of (B.4) is just the moment 

generating function of an exponential random variable. Since moment generating functions 

formed through products of exponential random variables are easily inverted using Cauchy’s 

Residue Theorem,
34

 we can generate an invertible representation for X in the s domain by 

multiplying the moment generating functions derived from convolved pairs of ηi. 

                                                 

 

34  Computationally, inverting moment generating functions formed through products of exponential random variables is the same as 
performing an Inverse Laplace Transform on a transfer function with a polynomial denominator. 
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Assuming that the resolution of the ADC is an even number of bits, the number of terms 

summed in X is even, and we can reduce the series convolution described by (B.1) into a series 

product of moment generating functions of the form given by (B.4). We will address the case 

where X is the sum of an odd number of terms later. Multiplying each of these moment 

generating functions, we obtain (B.5) – where MX(x) is the moment generating function of X, i 

denotes the moment generating function derived from i-th convolved pair of η, σ2i-2 is the i-th 

even σ from (B.1) including σ0, and σ2i-1 is i-th odd σ from (B.1).
35

 

 

 

𝑀𝑋(𝑠) = ∫ ⋯∫ ∏ (
𝐴𝑖

𝜆𝑖 − 𝑠
)

𝑁/2

𝑖=1
𝑑𝜃1

𝜋
2

0

⋯𝑑𝜃𝑁/2

𝜋
2

0

𝐴𝑖 =
1

𝜋 ∙ 𝜎2𝑖−2 ∙ 𝜎2𝑖−1
      𝜆𝑖 =

cos2 𝜃𝑖
2 ∙ 𝜎2𝑖−22

+
sin2 𝜃𝑖
2 ∙ 𝜎2𝑖−12

 (B.5) 

 

 

Using Cauchy’s Residue Theorem to invert (B.4), we recover the PDF of X. Integrating this 

PDF, we obtain the CDF for X as given in (B.6) – where σ2i-2 is the i-th even σ from (B.1) 

including σ0, σ2i-1 is i-th odd σ from (B.1). 

 

 

𝐹𝑋(𝑥) = ∫ ∫ ⋯ ∫ ∑ 𝐵𝑖𝑒
−𝜆𝑖𝑡

𝑁/2

𝑖=1
𝑑𝜃1

𝜋
2

0

⋯𝑑𝜃𝑁/2

𝜋
2

0

𝑑𝑡
𝑥

0

𝐵𝑖 = [(𝜆𝑖 − 𝑠)∏ (
𝐴𝑗

𝜆𝑗 − 𝑠
)

𝑁/2

𝑗=1
|
𝑠→𝜆𝑖

𝐴𝑖 =
1

𝜋 ∙ 𝜎2𝑖−2 ∙ 𝜎2𝑖−1
    𝜆𝑖 =

cos2 𝜃𝑖
2 ∙ 𝜎2𝑖−22

+
sin2 𝜃𝑖
2 ∙ 𝜎2𝑖−12

 (B.6) 

 

                                                 

 

35 As long as the sigma values are sequenced in order of their magnitudes, the poles of the integrand in (B.4) remain unique throughout each 
dimension of the integration and complications arising from repeated roots are avoided when applying Cauchy’s Residue Theorem. 
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Equation (B.6) is the CDF for X when the ADC resolution is even. Since the integrand of 

this expression is finite across all dimensions of θ, and the limits of integration are well defined, 

(B.6) is numerically well behaved. Through (B.6), we can numerically estimate the CDF of X 

and subsequently the ENOB yield of even resolution ADCs. 

When the resolution of the ADC is an odd number of bits, however, the number of terms 

summed in X is odd. If we imagine constructing an ADC with odd number of bits by adding one 

bit to an even resolution ADC, we can treat (B.4) as the moment generating function for the even 

contribution. Using Cauchy’s Residue Theorem to invert (B.4) and then convolving the resulting 

PDF with the PDF for ηN-1 to capture the extra bit, we obtain the PDF for X in the case of odd 

resolutions. Integrating this expression, we obtain the CDF of X as shown in (B.7) – where σ2i-2 

is the i-th even σ from (B.1) including σ0, σ2i-1 is i-th odd σ from (B.1), and σN-1 denotes the 

unpaired value from (B.1). 

 

 

𝐹𝑋(𝑥) = ∫ ∫ ∫ ⋯ ∫ ∑ 𝐶𝑖𝑒
−𝜔𝑖𝑡

𝑁/2

𝑖=1
𝑑𝜃1

𝜋
2

0

⋯𝑑𝜃𝑁/2

𝜋
2

0

𝑑𝜙

𝜋
2

0

𝑑𝑡
𝑥

0

𝐵𝑖 = [(𝜆𝑖 − 𝑠)∏ (
𝐴𝑗

𝜆𝑗 − 𝑠
)

𝑁/2

𝑗=1
|
𝑠→𝜆𝑖

            

𝐴𝑖 =
1

𝜋 ∙ 𝜎2𝑖−2 ∙ 𝜎2𝑖−1
       𝜆𝑖 =

cos2 𝜃𝑖
2 ∙ 𝜎2𝑖−22

+
sin2 𝜃𝑖
2 ∙ 𝜎2𝑖−12

𝐶𝑖 = 𝐵𝑖 sin𝜙√
2𝑡

𝜋 ∙ 𝜎𝑁−12
𝜔𝑖 = 𝜆𝑖 sin𝜙 +

cos2 𝜙

2 ∙ 𝜎𝑁−12
  

 (B.7) 

 

 

From a computational standpoint, the CDFs given by (B.6) and (B.7) are quite expensive, 

and the time required to numerically estimate the CDF for X with reasonable error becomes 
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impractically large as the dimension of the integrals becomes large. Nevertheless, the CDFs 

given by (B.6) and (B.7) along with probability relationship given by (3.34) allow us to estimate 

the ENOB yield of a SAR ADC more efficiently than circuit level Monte-Carlo simulations. We 

provide a more convenient approximation for the CDFs given in (3.35) and (3.36) in Section 3.5. 
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