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SUMMARY

This paper presents a mathematical model to estimate both production frontier and energy demand frontier, and evaluate the
energy efficiency in the automotive manufacturing sector using plant-level production and utility consumption data. By
using the stochastic frontier analysis, two models—an output efficiency model (production frontier) and an input efficiency
model (energy demand frontier)—are developed to analyze the plant’s energy efficiency performance relative to the ‘best
practice’ among peers. Both the structure and parameters of two stochastic frontier functions are identified to understand the
relationship between production inputs (e.g., utilities and plant-specific variables) and the overall productivity. A case study
of a set of automotive engine manufacturing plants is conducted and shows that electricity has higher efficiency than other
forms of utility in those production-related activities, and the regional and climate factors have significant impacts on
energy efficiency. The models provide a way to measure how far from the production frontier as well as how far from
the energy demand frontier the plant is. The results also provide useful information about the inefficient energy components
in manufacturing facilities. The opportunities of improving plant-level efficiency in automotive manufacturing plants can
be revealed by the results. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

With the increasing costs of energy resources, manufactur-
ing with higher energy efficiency has become increasingly
prioritized for the next-generation manufacturing in the
United States. For U.S. automotive manufacturers, energy
consumption has a significant impact on production costs
and competitiveness. The energy consumption associated
with the U.S. automotive enterprises has been estimated
at over 850 quadrillion Joule per year [1]. Energy expendi-
tures comprise approximately 1% of total vehicle produc-
tion costs [2] and have continuously increased during the
past decades.

While today’s automotive manufacturing facilities are
modern and relatively efficient, there still exist significant
opportunities to reduce energy demand through better un-
derstanding of energy use, energy management and
energy-efficient manufacturing process innovation.
Efficient-energy utilization in manufacturing industries is
widely believed as a practical approach to achieve signifi-
cant cost savings as well as reduction of environmental
emission [1]. Therefore, increasing economic and

legislative pressures have been put on the U.S. automotive
manufacturing industry for efficiency improvement, as it
seeks to increase its competitive edge on the global market.
The automotive manufacturing industry is also motivated
to explore new ways to reduce the intensity of energy con-
sumption as well as the impacts of energy cost volatility on
its total manufacturing costs by investing in energy-
efficient technology.

The majority of energy demand in automotive
manufacturing is met by four types of utilities—electricity,
natural gas, water and compressed air. This paper attempts
to evaluate the energy efficiency in manufacturing plants
with the consumption data of these four utilities because
they characterize the energy efficiency of a manufacturing
facility.
Electricity: Electricity is used throughout the manufacturing
facility for many different purposes. Some are directly
consumed by production activities, e.g., metal forming,
air compressing, painting, welding, etc. Others can be
non-productive energy consumption such as lighting,
ventilation, air conditioning and material handling.
Estimating the distribution of energy consumption are
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very rare in manufacturing plants, and only end-use
electricity consumption (kWh) is available in most
cases.
Natural gas: Natural gas is mainly consumed for space
heating and air condition on the plant floor. Some specific
manufacturing shops, such as paint shops usually use
50%–60% of the total fuel (or natural gas) in the plants [3].
Water: Water is typically used in multiple processes in
automotive manufacturing, e.g., high pressure water jet
systems, painting processes, cleaning, heat recovery
processes, cooling systems, etc.
Compressed air: Compressed air is widely used in
manufacturing plants and is often regarded as the fourth
utility after electricity, natural gas and water. However,
compressed air is the most costly utility because of its
poor efficiency. To use compressed air in a cost-
beneficial way, the amount of compressed air should be
of the minimum quantity and pressure, and used for the
shortest possible time. Moreover, the use of compressed
air has to be constantly monitored because inadequate
maintenance may increase the risks of air leakage and
variability in pressure, temperature, moisture level, etc.

Because of the technical limitations, energy waste is in-
evitably during manufacturing processes in production
facilities. These energy wastes take different forms, such
as waste heat in gases or liquids, electricity wasted on
non-value added processes, etc. In addition, energy
efficiency varies from plant to plant because of the differ-
ences in types of products produced, facility location, age
of facility and equipment condition. These factors intro-
duce variations and present a challenge for benchmarking
the energy consumption among plants. This paper presents
a novel approach to evaluate energy efficiency and bench-
mark among peer plants. The results reveal some insights
into the reasons for energy inefficiency as well as opportu-
nities to improve energy efficiency for manufacturing
facilities.

1.1. Needs and objectives

In order to better understand the energy efficiency in the
manufacturing sector, plant-level energy efficiency analy-
sis has received great attention from researchers and engi-
neers [4–9]. However, because of the lack of systematic
data collection and limited analytics in the manufacturing
industry, it has been rare that comprehensive studies of
energy efficiency are reported in the literature. Therefore,
there is a need to develop a scientific method to measure
energy efficiency that indicates where a manufacturing
plant lies within a distribution of performance or how far
from the industry’s best practices the firm is.

The main objective of this paper is to develop a generic
model that applies the energy efficiency analysis to energy-
intensive automotive manufacturing enterprises in order to
benchmark the best practice in energy efficiency, and to
better understand the root causes of energy inefficiency.
A parametric approach is presented which uses a stochastic
frontier analysis to obtain the energy efficiency frontier

among multiple similar plants, and identify inefficient
energy components in these manufacturing plants. This
method is illustrated using a case study of a major U.S.
automotive engine manufacturer.

1.2. State-of-the-art

The energy efficiency analysis is widely used in
manufacturing systems and focuses on the efficiency of
production process in transforming inputs into outputs.
Frontier analysis methods use a boundary to benchmark
and identify the efficiency of a single plant relative to a
reference set of manufacturing plants. The traditional
ordinary least square (OLS) regression methods are no
longer appropriate when benchmarking the manufacturer
performance in various operating environments. Instead,
the existing literature on energy efficiency benchmarking
shows that there are mainly two ways to provide bench-
marks for comparative efficiency: data envelopment analy-
sis (DEA) and stochastic frontier analysis (SFA). Both are
methods of economic modeling for the estimation of pro-
duction frontiers. However, DEA is a non-parametric
method that uses mathematical programming to identify
the efficiency frontier and is used for direct peer compari-
son. The DEA approach has been applied to many studies
such as energy use in buildings [10], crop production
systems [11], regional productivity in China [12] and
energy efficiency in industrial sectors in China [13].
However, DEA method cannot provide a general relation-
ship between inputs and outputs, nor consider statistical
noises. Artificial neural network models are also effective
for energy benchmarking [14,15] but they have similar
drawbacks as DEA.

Stochastic frontier analysis (SFA) is a parametric
method for estimating the production frontier in econom-
ics. SFA provides a direct estimate of the distribution of
efficiency measured relative to the best practice. The
advantage of SFA is that it introduces stochastic compo-
nents to deal with time-varying random factors which af-
fect the energy efficiency for production but are not
directly attributable to the producer or the underlying tech-
nology. There are many studies extending and applying the
SFA model for energy efficiency analysis in agricultural
and residential applications. For example, Buck and Young
[16] applied SFA to a cross section of Canadian commer-
cial buildings to analyze the factors that affect efficient
energy use. Constantin et al. [17] studied the total factor
productivity in Brazilian Agribusiness with SFA; Filippini
and Hunt [18] estimated the US residential frontier aggre-
gate energy demand in different states with SFA. Zhou
et al. [19] utilized SFA to estimate economy-wide energy
efficiency performance at a macro-level. Azadeh et al.
[20] predicted and analyzed the long-term natural gas
consumption behavior in different countries by integrating
an adaptive network-based fuzzy interference system
(ANFIS) and SFA where ANFIS is used for forecasting
while SFA is for examining the behavior of natural gas
consumption.
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More recently, several relevant studies have employed
SFA to analyze the performance of manufacturing plants.
Amornkitvikai and Harvie [21] utilized the SFA and a
two-stage DEA approach for a wide range of Thai
manufacturing enterprises to predict firm technical effi-
ciency and analyze inefficiency factors in manufacturing
plants. Boyd [22] proposed a method to measure the ef-
ficiency gap between the average and best practice. He
also studied plant-level energy efficiency with a stochas-
tic frontier model [23,24] and estimated the distribution
shifting of energy efficiency in US automotive
manufacturing plants using SFA [25]. However, these
studies only analyzed individual type of energy effi-
ciency while the correlation among different types of en-
ergy and the impact of energy performance on the
overall manufacturing performance has not yet been fully
explored. To fill the gap, this paper proposes a two-stage
SFA approach to analyze the energy efficiency both in
the form of individual type of energy utility such as
electricity, water, compressed air and natural gas, and
in terms of aggregated energy utility. This approach
extends the methods in [21] and [25] to enable a more
comprehensive analysis for energy efficiency perfor-
mance at the manufacturing plant level. In the first
stage, a stochastic production frontier is established by
considering the consumption of different utilities and
random variations in the plant-specific operating envi-
ronment. In the second stage, stochastic energy demand
frontiers (cost frontiers) are developed for individual
utilities and are used to measure how far from the min-
imal possible energy consumption each plant is. The
two-stage SFA approach can characterize the maximum
output—production frontier, and the minimum inputs—
energy demand frontier under given environment and
technologies.

2. STOCHASTIC FRONTIER MODELS

A production frontier characterizes the minimum input
bundles required to produce various outputs, or the maxi-
mum output producible with the input bundles. The
stochastic frontier indicates the maximum expected output
for various given inputs. The original form of SFA comes
from the production function: P= bLαCβ, b, α, β> 0, where
P represents the quantities of output, b is the total factor
productivity, L and C represent the labor and capital inputs,
respectively. The production function has two fundamental
assumptions: (i) P vanishes while either L or C approaches
to zero. (ii) constant return to scale, i.e. α+ β = 1. Later the
Cobb–Douglas functional form of the production func-
tion is developed and tested against statistical evidence
by Charles Cobb and Paul Douglas [26]. There have been
considerable studies that extend and improve the Cobb–
Douglas model. The transcendental logarithmic
(translog) production function, a more general form of
Cobb Douglas production function, was developed by
[27]. Aigner, Lovell and Schmidt [28], and Meeusen
and van den Broeck [29] independently extended the

model for cross-sectional data by adding two compo-
nents: one for random noise and one for technical ineffi-
ciency effects. Other studies such as Schmidt (1986),
Bauer (1990), Battese and Coelli (1992) and Greene
(1993) also specified some distributional assumptions
for technical inefficiency and considered time-varying
technical efficiencies for panel data. Moreover, in order
to predict firm-level efficiencies, some studies such as
Kumbhakar, Ghosh and McGukin (1991) and
Reifschneider and Stevenson (1991), improved the model
by expressing the technical inefficiency part as a function
with a vector which contains firm-specific variables and a
random error [30]. Later Battese and Coelli [31] com-
pleted the model with both technical efficiency in the sto-
chastic frontier and time-varying technical inefficiency
for panel data.

In this paper, a two-stage SFA approach for energy
efficiency analysis is developed based on the existing
stochastic frontier models: (i) output efficiency analysis
with SFA that measures the distance between the
observed and the maximum expected output for given
inputs, and (ii) input efficiency analysis with SFA that
measures the distance between the observed and the
minimum expected inputs for given outputs. The two
sub-models provide two different perspectives of the
assessment of energy efficiency and measurement for
benchmarking. The first sub-model focuses on the over-
all input effects on the output (productivity) and the
technical inefficiency effects are set as truncated normal
random variables. The second one isolates the measure
of each type of utilities and use frontier analysis to find
the gap between the actual energy consumption and the
energy demand frontier. This approach is used to help
identify the reasons for different efficiency of energy
utilization among plants by considering production and
plant-specific variables.

2.1. Output efficiency analysis for
production frontier

In order to estimate the production frontier which is related
to different types of utility and influenced by different
time-varying plant-specific characteristics, we formulate
the problem using the model developed by Battese and
Coelli [31].

The Cobb–Douglas Model, a simpler form of SFA
model for the production process with multiple types of
utilities, is considered first. Given the panel data associated
with observations on a sample of N plants over T time
periods, the model is defined as:

lnYit ¼ β0 þ β1lnX1it þ β2lnX2it þ…þβmlnXmit þ vit � uit ;

(1)
i ¼ 1; 2;…; N; t ¼ 1; 2;…; T:

Yit is the production volume for ith plant at time t, and Xmit

is the type-m utility consumption for ith plant at time t. The
parameters βm ’ s are the parameters of technical efficiency
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effects in a linear combination of logarithmic Xmit. They
can be estimated via maximum likelihood methods
which are available in many modern statistical packages
(e.g., FRONTIER 4.0). vit and uit are different statistical
error components in the ith plant at time t.

A general model for the stochastic frontier analysis is in
the transcendental logarithmic (translog) form [27], which
contains additional second order terms to take the non-
linear relationship between the input and output into
account. The generalized expression of translog production
function can be expressed as:

lnYit ¼ β0 þ β1lnX1it þ β2lnX2it þ…þ βmlnXmit

þ 1
2
∑
N

n¼1
∑
N

m¼1
βnmlnXnit lnXmit þ vit � uit

(2)

where Yit denotes the production volume for the ith plant
(i = 1, 2,…,N) at time t, (t = 1, 2,…, T). Xmit ’ s, are the
quantity of mth utility of production associated with the
ith plant at time t. β’s are unknown parameters associated
with the inputs and are to be estimated.

The production frontier with SFA consists of three
types of components: (i) energy-productivity effects
βmlnXmit, (ii) energy inefficiency effects uit and (iii) statis-
tical error vit. In particular, uit and vit are the ‘composed’
error terms associated with frontiers. They are composed
of a non-negative random component associated with tech-
nical inefficiency of production and a traditional symmetric
random-noise component, respectively. The inefficiency
effect uit is assumed to be a linear combination of a set of
explanatory variables, the Zpit’s and unknown parameters
σp’s. Those explanatory variables are expected to include
any variables that can explain the observations that fall
short of the corresponding frontier values. The inefficiency
effects of the frontier model uit are specified as follows.

uit ¼ σ0 þ σ1Z1it þ σ2Z2it þ σ3Z3it þ…þσpZpit þ w (3)

where w is a truncation of N(0, σ2w ) random error term.
Zpit’s are plant-specific variables associated with energy
inefficiency such as location, plant age, type of plant,
heating degree days (HDD) and cooling degree days (CDD).

In particular, the random errors vit’s are assumed to
follow i.i.d. N(0, σ2v ). The stochastic inefficiency effects
uit’s are independently and identically distributed as trun-
cation (at zero) of N(σpZpit, σ2u). The purpose of including
uit in the model is to determine plant-specific variables that
should be concerned and to estimate the effects of those
inefficiency factors on the plant efficiency. Figure 1 illus-
trates the stochastic production frontier of output Y as a
function of a single input, X. Different from traditional
ordinary regression, SFA model seeks to explain boundary
or optimal behavior rather than average behavior as in
ordinary least square (OLS) regression model.

The output efficiency is defined as

Effoutput ¼ exp �Uð Þ ¼ Actual units produced

Production frontier
: (4)

The output efficiency Effoutput provides an overall
efficiency score of utility consumption for each manufactur-
ing plant and the information about how the plant-specific
variables affect the efficiency. However, it does not include
detailed information about the energy efficiency of a particu-
lar type of utility. The second model—input efficiency—is
similar to the ‘cost frontier’ model and can evaluate the rela-
tive performance of a particular utility for a specific plant.

2.2. Input efficiency analysis for energy
demand frontier

In the second model, an input efficiency model is devel-
oped to identify the demand frontiers for the individual
types of energy based on the results from the first model.
The input efficiency model is derived from cost function
(dual of production function) because the frontier repre-
sents the minimum energy demand. The stochastic cost
frontier is specified by simply altering the error term
specification from (vit� uit) to (vit+ uit) because the ineffi-
ciency components uit’s would cause more energy demand
than the stochastic cost frontier rather than cause the plants
to operate below the stochastic production frontier. Using
the translog model in Battese and Coelli [32], the energy
demand frontier model can be specified as follows,

lnEkit ¼ α0 þ α1lnPit þ α2lnZ1it þ…þαplnZpit

þ 1
2
∑
N

p¼1
∑
N

q¼1
αpqlnZpitlnZqit þ vit þ uit

(5)

where Ekit is the total amount of type-k utility consumption
(e.g., electricity, water and compressed air) in the ith plant
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Figure 1. Stochastic production frontier.
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in the tth period. Pit is the total number of units produced in
the ith plant in the tth period. Zpit’s are the plant-specific var-
iables (e.g., plant age, location, climate, etc.). uit= ui exp
[�η(t� T)], where η is an unknown scalar parameter
and ui’s are non-negative random variable and are
assumed to be i.i.d. as a truncated normal distribution
with N(μ, σ2u). vit is a random variable that is assumed
to be i.i.d. N(0, σ2v) and independent of uit. Now, the in-
put efficiency is defined as

Eff input ¼ exp Uð Þ ¼ Energy demand frontier

Actual energy usage
: (6)

Based on the results of the input efficiency SFA model,
the plant managers can understand how each type of
utilities is used in their manufacturing processes and
suggest the directions for energy efficiency improvement.

2.3. Hypothesis test

The fitness of the above SFA models is evaluated by using
hypothesis tests. First, the log likelihood-ratio test is used
to identify the model significance, which is shown below:

D ¼ �2 ln H1ð Þ– ln H1ð Þ½ � (7)

where the null hypothesis H0 indicates that in the Cobb–
Douglas form, the parameters of the second order terms
are equal to zero, e.g., βnm = 0 for all n and m. While the
H1 is translog production function, e.g., βnm≠ 0. If the test-
ing result shows that the null hypothesis is strongly
rejected at 5% level of significance, the frontier model in
the Cobb–Douglas form is not adequate and the translog
form would be more suitable.

Second, a t-ratio test is applied to ensure that each tech-
nical efficiency component and technical inefficiency com-
ponent are well placed. In real manufacturing systems, not
all types of utility consumption directly contribute to the
value-added production. Hence some utilities should be
considered as technical inefficiency effects. The null
hypothesis tests of every parameter such as βm= 0 for each
type of utility are strongly rejected at 5% level of signifi-
cance. The existence of quadratic and cross terms needs
to be considered to account for the nonlinear relationship
between input and output. The null hypothesis for each
quadratic or cross term is strongly rejected by 5% level
of significance.

3. CASE STUDY

This case study demonstrates the application of the plant-
level energy efficiency frontier analysis using SFA and
the benchmarking approach using the two stochastic fron-
tier measures (Effoutput and Effinput) described in Section
2. All the plant-level utility data were collected from mul-
tiple plants of an original equipment manufacturer (OEM)
at worldwide locations.

The data set includes the total production volume,
electricity, total water use and compressed air
consumption in 12 manufacturing plants over 12 months
(i.e. 144 plant-months). Those plants spread all over the
world and have different product types. This study clas-
sifies the product types into four categories—type I, type
II, type III and type IV (Appendix A). The preliminary
statistics are shown in Table I. According to the hypoth-
esis testing shown in Appendix B, the final model turns
out to be in the translog form. The technical efficiency
effects include electricity, total water use and compressed
air. For the technical inefficiency effects, latitude that
indicates the location of each plant, heating degree days
(HDD), cooling degree days (CDD) and gas usage are
considered.

3.1. Overall production frontier using
output efficiency model
First, the output efficiency model described in section 2.1
is applied. The model for total production is

lnY ¼ β0 þ β1lnXE þ β3lnXA þ β4lnXW þ β5lnXF

þ 1
2
∑
N

n¼1
∑
M

m¼1
βnmlnXnlnXm þ v� u

(8)

where u = σ0 + σHDDZHDD + σCDDZCDD + σLZL + σFZF +
σyearZYear + σGZG +w and Y is the total production quantity
(output).

The SFA method and likelihood-ratio hypotheses test are
used to identify the structure and the parameters of both tech-
nical efficiency effects and technical inefficiency effects. The
estimated parameters are presented in Table II. The levels of
significance for all βm’s and σp’s are within 5%.

The result turns out that the parameter associated with
the usage of electricity βE is significantly positive. This im-
plies that the manufacturing plants tend to utilize their elec-
tricity effectively in order to improve their technical
efficiency for value-added production activities. The con-
sumption of water and compressed air is found to be neg-
atively related to the technical efficiency of the
manufacturing plants. The negative parameters for water
and compressed air imply that the reported data may not

Table I. Statistics of 12 sample plants in the globe.

Variable Sample mean Std. dev. Units

Number of plants 12 —

Number of periods 12months —

Production volume 26 163 17 849
Electricity usage (E) 4004.26 3612.03 MWh
Natural gas (G) 1507.17 3112.99 MWh
Water (W) 6560.17 9170.65 m3

Compressed air (CA) 169 825 128 546.4635 MCF
Floor area (F) 2 197 185 4 344 163 sq. ft
HDD 191.9 206.4 °C
CDD 65.877 82.295 °C
Latitude (L) 29.99 21.3
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reflect the actual volume/amount of resources (water and
compressed air) applied to value-added production activi-
ties directly. Typically, in a manufacturing plant, water is
not only used in manufacturing processes but also in
non-production-related activities, e.g., cleaning and
cooling, etc. Also, manufacturing plants may not have a
precise control or proper maintenance of their compressed
air system which may cause leakage problems. These may
lead to negative effects on the energy efficiency.

The estimates of the technical inefficiency effects uit’s in-
dicate that floor area,HDD,CDD and latitude have negative
impacts on the production efficiency. The test result of floor
area as a technical inefficiency effect indicates that the larger
plant tends to have lower efficiency. One possible reason for
this is that the proportion of effective production area in the
larger plants is lower than that in the smaller plants, causing
more wastes of utility usage for cooling and heating.

Figure 2 shows the histogram of energy efficiency rela-
tive to the predicted best practice of 12 plants in 12months.
The bars present the number of plant-month, and the solid
line represents the cumulative percentage of the efficiency
performance. The output efficiency statistics shown in
Table III indicate that the median of the output efficiency
is about 0.85 and the average output efficiency is about

0.8. Among the 144 plant-months, 32 of them are close
to the ‘best practice’, and half of them have energy effi-
ciency lower than 85%. There are four plant-months that
have efficiency lower than 50%.

Table II. Maximum-likelihood estimates for parameters of stochastic production frontier.

Estimated Mean Standard error T-ratio Level of significance

β0 42.3 3.05 13.9 3.10778E�26
βE 6.61 1.02 6.46 1.43814E�09
βW �6.09 0.464 �13.1 1.54158E�24
βCA �6.64 0.556 �12 6.45306E�22
βE &E �0.37 0.0645 �5.74 4.25304E�08
βW &W �0.201 0.0288 �6.99 1.11471E�10
βCA &W 0.812 0.0595 13.6 1.11619E�25
σ0 �3.05 1.12 �2.71 0.003898027
σF 3.55E�08 7.14E�09 4.98 1.20612E�06
σHDD 0.00156 0.000577 2.7 0.00398853
σCDD 0.00231 0.000746 3.1 0.001222917
σL 0.0724 0.0233 3.11 0.001204827
σG �0.0000453 2.62E�05 �1.73 0.043652238

Figure 2. Output efficiency frequency: Effoutput.

Table III. Output efficiency histogram statistics result.

Output efficiency histogram table

Efficiency Number of plant-month Cumulative %

0.35 0 0.00%
0.40 0 0.00%
0.45 3 2.08%
0.50 1 2.78%
0.55 8 8.33%
0.60 12 16.67%
0.65 11 24.31%
0.70 9 30.56%
0.75 12 38.89%
0.80 1 39.58%
0.85 15 50.00%
0.90 16 61.11%
0.95 24 77.78%
1.00 32 100.00%
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The percentage of the production efficiency (output
efficiency) with seasonal and yearly data is shown in
Figures 3 and 4, respectively. Based on the efficiency
evaluation, we categorize all plants into four grades as
shown in Appendix A (grade = 1 stands for the highest
grade in output efficiency). Figure 3 shows that plants
2, 3, and 4 have a similar seasonal trend. The third
season has the lowest efficiency while the second sea-
son has the highest. Moreover, plants 2, 3, 4 and 6
have the same grade of efficiency. That is, they have
similar overall efficiency. Table I shows that the loca-
tions of these plants are all within the same region—
Region I. In the same way, plants 7, 8 and 9, all from
Region III, also have similar overall efficiency and sea-
sonal behavior. The efficiencies in the first and fourth
seasons are lower than those in the second and third
seasons. The above observations imply that the regional
(latitude) is a significant inefficiency factor of the pro-
duction energy consumption. Furthermore, Figure 4 pre-
sents a yearly ranking of the production efficiency with
respect to the multiple utility inputs. It indicates that
the energy efficiency is mainly dominated by the

regional effects (i.e. latitude and climate) rather than
the product type. To sum up, the manufacturing plants
from the same geographical region have similar perfor-
mance in the production efficiency. The positive param-
eter associated with explanatory variable latitude σL in
Table II agrees with this result.

The output efficiency frontier model provides a
benchmarking method for the production efficiency of sim-
ilar manufacturing plants in various regions and climates
through aggregated utility inputs. In order to better under-
stand the efficiency and utilization of individual utility, an
input efficiency model is described in the next section.

2.2. Energy efficiency analysis using input
efficiency model

Because of the inherent differences in energy utilization
given various plant age, location and technical capability,
there is no single number that can represent the true ‘best
practice’ of the energy efficiency. Therefore, it is necessary
to use the input efficiency model to explore how efficient
the plants are using different types of utilities which are

Figure 3. Seasonal energy efficiency of 12 plants.

Figure 4. Yearly energy efficiency of 12 plants.
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identified as energy-productivity effects by the first model,
and their relative performances to the frontier.

The input efficiency model described in section 2.2 is
applied to the same case. For each utility (electricity, water
and compressed air), an input efficiency model is devel-
oped. For type-k utility, the stochastic frontier model is
written as

Ek ¼ α0 þ αY lnY þ αFlnZF þ αHDDlnZHDD

þαDDDlnZCDD þ αLlnZL þ αyearlnZyear

þαGlnZG þ 1
2
∑
N

p¼1
∑
N

q¼1
αpqlnZplnZq þ u� v

(9)

where Ek is the consumption of type-k utility; Y is the pro-
duction quantity; Zp’s are the plant-specific non-energy
production inputs and αp’s are the parameters to be esti-
mated. It is assumed that the energy inefficiency u yields
a truncated normal distribution (non-negative half) because
the actual utility consumption will be higher than the ‘best
practice’. The parameters of Eq. (9) are estimated for each

type of utility, as shown in Appendix C. Table IV shows
the result of estimated parameters.

For electricity usage, the positive parameter αY associ-
ated with production quantity shown in Table IV implies
that the utility use increases as the production volume
increases. Based on the input efficiency defined in section
2.2, it indicates that the plants produce larger volume of
production utilize electricity usage more efficiently. In
the meanwhile, the parameters with positive values such
as year of built and location (latitude) show positive im-
pacts on electricity efficiency. However, the factors with
negative parameters such as HDD, CDD and gas usage
have adverse effects on electricity efficiency. These results
can be explained by the followings. Electricity is the main
resource of cooling and heating system. HDD, CDD and
gas usage reflect the weather condition such that the larger
values of them indicate more intensive cooling/heating.
Moreover, larger scale of manufacturing plant with more
machines or larger plant area usually requires more
cooling/heating so that it does not necessarily have advan-
tages in energy efficiency, especially in electricity
efficiency. Figure 5 shows the percentage of the electricity

Table IV. Parameters of electricity.

Estimated parameter Parameter Standard error T-ratio Level of significance

α0 5540 0.999 5540 5.3E�246
αY 359 0.926 388 2.4E�144
αF �54.7 0.88 �62.2 7.79E�75
αHDD �38.8 0.982 �39.5 4.34E�58
αCDD �22.2 0.981 �22.6 1.05E�38
αyear 708 0.953 743 3.4E�169
αL 918 0.983 933 6.6E�178
αGas �41.9 0.975 �43 3.9E�61
αCDD * Year 2.92 0.129 22.6 9.58E�39
αYear * L �115 0.288 �400 1.5E�145
αHDD * Year 5.1 0.129 39.4 5.48E�58
αYear * Gas 5.52 0.128 43 3.4E�61
αF * Year 8.73 0.134 65 1.71E�76
αY * Year �47.2 0.123 �384 5.3E�144
αF * L �3.13 0.144 �21.7 2.51E�37

Figure 5. Electricity efficiency of 12 plants in 12months.
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efficiency for 12 plants using the panel data. The figure
illustrates the efficiency of electricity relative to the frontier
and the ranking of the plants. The ratio of the utility con-
sumption of the best practice to the actual plant utility con-
sumption is defined as the energy efficiency score. It shows
that the consistent performance ranking throughout
12months and the overall performance declines gradually
as the time goes on. The first tier of the ranking is
composed of plants 10, 11 and 12 which are exactly the
plants in region IV. This indicates that the plants in this
geographical area have the best performance in terms of
electricity efficiency during manufacturing processes.
The middle tier consists of plants 2, 4, 3 and 6 which are
also in the similar region (Region II). Therefore, it implies
that electricity efficiency is affected by the regional factor
significantly, which is also supported by the large value of
latitude parameter.

The benchmarking of energy efficiency using the same
method of Eq. (9) is also applied to water use and compressed
air usage, respectively (see Figures 6 and 7). By comparing the
statistical results of electricity, compressed air and water use
shown in Appendix D, we find that the electricity efficiency
is much higher than the efficiency of compressed air and water
use. This agrees with the parameters of the output efficiency

model—positive parameters for electricity while negative pa-
rameters for the compressed air and water. Furthermore, from
Figures 5, 6 and 7, there is an interesting observation that the
plants with ‘best performance’ in both overall production effi-
ciency and electricity efficiency (i.e. plants 10, 11 and 12) do
not perform well in water efficiency and compressed air
efficiency. Therefore, the analysis using the input efficiency
model becomes necessary and useful because it helps to further
pinpoint the inefficient energy components of each plant and
potentially provides guidance for energy-related operational
improvement.

Example 1. The overall production efficiency and electric-
ity efficiency of plants 10 and 11 have relatively good per-
formance. However, both the efficiency of compressed air
and water use of plants 10 and 11 are lower than 50%. This
indicates that there still exist opportunities to improve these
two plants even if they have excellent overall production
efficiency performance. Therefore, the managers can invest
in technologies to continuously improve the water use effi-
ciency as well as the monitoring and maintenance of the
compressed air systems.
Example 2. Plant 1 has a relatively poor performance in
terms of overall production efficiency and electricity

Figure 6. Total water use efficiency of 12 plants in 12months.

Figure 7. Compressed air usage efficiency of 12 plants in 12months.
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efficiency. However, it ranks top in compressed air and
water efficiency. This provides the plant manager a quick
decision support that investing on the electricity perfor-
mance could potentially improve the overall production
efficiency of the plant.

Comparing Figures 5, 6 and 7, we observe that the con-
sumption of electricity, water and compressed air exhibits dif-
ferent seasonality. All plants show a slight decrease over time
in electric energy efficiency, implying that the equipment de-
grades over time. The pattern is not observed in other two
types of utilities, indicating that water or compressed air
efficiency might have less to do with the seasonality but more
to do with other factors such as system configuration or tech-
nological variations.

4. CONCLUSIONS

This paper presents a two-stage stochastic frontier model
for plant-level energy efficiency analysis and bench-
marking for automotive manufacturing plants. The two
sub-models are developed based on plant-level panel data
and a stochastic frontier regression approach. The first
sub-model estimates the parameters of both utility inputs
and plant-specific variables in the production frontier func-
tion. It is advantageous in finding the relationship between
various inputs (energy or non-energy related) and produc-
tion. The second sub-model, input-oriented, is developed
to investigate the performance of individual plants relative
to their peers for each utility. The result shows the regional
or climate effects could have significant impact on the
energy efficiency performance, while the plant’s size and
product type have less effect on the energy consumption
efficiency and manufacturing performance. In the specific
automotive engine manufacturing plants case study,

electricity has higher efficiency than water and compressed
air. The analysis can help us to pinpoint the weakness of
the shop floor utility consumption and identify the best
direction to improve the manufacturing performance and
energy utilization of each plant. For those who have low
overall production efficiency, improving electricity
efficiency may highly increase its manufacturing perfor-
mance while for those who already have more than 90%
overall production efficiency, the improvement of com-
pressed air system and water utilization could present op-
portunities for energy savings.

In summary, the integration of the output efficiency
model and the input efficiency model provides a
complete framework for energy management and
benchmarking based on the utility data and plant informa-
tion. Using the output efficiency model, manufacturing
plants are able to evaluate not only their overall plant-level
energy efficiency based on the production frontier but also
the relationship between plant-specific variables and the
production frontier (e.g., age, location, climate, floor area,
etc.). The input efficiency model can help the plants iden-
tify the relationship between individual types of energy
consumption and its inefficient energy effects, and imple-
ment more effective energy management programs. The
presented method can be easily employed to analyze en-
ergy efficiency in other types of automotive manufacturing
plants such as assembly plants and transmission plants
which involve similar utilities during production. Besides
automotive industries, the method is also applicable to
other industries to provide information on potential energy
efficiency improvement within factory floors by consider-
ing main types of energy consumption and plant-specific
variables (environmental and technological). The results
will advance their understanding of the current status
among peers and the achievable levels of energy perfor-
mance in production-related activities.

Appendix A

Table A.1. Overall information for each plant.

Plant Country Product type Overall efficiency grade Efficiency grade of individual utility

Electricity Total water Compressed air

1 Region I Type I 4 11 3 1
2 Region II Type II 2 4 9 2
3 Region II Type II 2 6 5 7
4 Region II Type II 2 5 1 3
5 Region II Type IV 3 9 12 8
6 Region II Type II 2 7 6 10
7 Region III Type I 3 8 2 11
8 Region III Type III 3 10 10 12
9 Region III Type III 4 12 8 5
10 Region IV Type III 1 2 7 9
11 Region IV Type III 1 1 4 6
12 Region IV Type II 2 3 11 4
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Appendix B. Likelihood-ratio Hypotheses Tests for Output EfficiencyModel
and Input Efficiency Model

Table B.1.Likelihood-ratio Hypotheses Test for Output Efficiency Model.

Null hypothesis Overall production

LR statistics Critical value Decision

Cobb–Douglas (H0 : βCA * TW = βE * E = βTW * TW= 0) 51.0 6.25 Reject H0

Table B.2: Likelihood-ratio Hypotheses Test for Input Efficiency Model - Electricity.

Null hypothesis Electricity

LR statistics Critical value Decision

Cobb–Douglas (H0 : αCDD * Year = αYear * Latitude = αHDD * Year =
αYear * Gas = αFA * Year = αY * Year = αFA * Latitude= 0)

79.4 14.07 Reject H0

No stochastic inefficiency (H0 : γ = 0) 68.3 3.84 Reject H0

Table B.3: Likelihood-ratio Hypotheses Test for Input Efficiency Model – Compressed Air.

Null hypothesis Compressed air

LR statistics Critical value Decision

Cobb–Douglas (H0 : αYear * Latitude= βY * Year= 0) 35.3 5.99 Reject H0

No HDD, CDD or Gas effects (H0 : αHDD = αCDD= αGas = 0) �27.7 6.25* Not reject H0

No inefficiency effects(H0 : γ = σ0 = σHDD = σCDD = σGas = 0) 13.4 11.07 Reject H0

No stochastic inefficiency (H0 : γ = 0) 34.1 3.84 Reject H0

No inefficiency (H0 : σ0 = σHDD = σCDD = σGas = 0) �17.4 7.78* Not reject H0

Table B.4: Likelihood-ratio Hypotheses Test for Input Efficiency Model – Total Water Use.

Null hypothesis Total water use

LR statistics Critical value Decision

Cobb–Douglas (H0 : αY * FA = αFA * HDD = αCDD * Year = αYear * Latitude =
αHDD * Year = αYear * Gas = αFA * Year = αY * Year = αFA * Latitude = 0)

22.96 16.92 Reject H0

No stochastic inefficiency (H0 : γ = 0) 46.2 3.84 Reject H0

Appendix C. Parameters for Input Efficiency Model

Table C.1: Parameters of input efficiency model - Electricity.

Estimated Parameter Standard error T-ratio Level of significance

α0 5540 0.999 5540 5.3E�246
αY 359 0.926 388 2.4E�144
αFA �54.7 0.88 �62.2 7.79E�75
αHDD �38.8 0.982 �39.5 4.34E�58
αCDD �22.2 0.981 �22.6 1.05E�38
αYear 708 0.953 743 3.4E�169
αL 918 0.983 933 6.6E�178
αGas �41.9 0.975 �43 3.9E�61
αCDD * Year 2.92 0.129 22.6 9.58E�39

(Continues)
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Table C.2: Parameters of input efficiency model - Total Water Use.

Estimated Parameter Standard error T-ratio Level of significance

α0 7630 1.01 7540 4.7E�255
αY 875 1.24 708 1.1E�165
αFA �190 1.43 �133 1.7E�102
αHDD 53.6 1.03 52.1 1.13E�67
αCDD �31.1 1.05 �29.7 1.21E�47
αYear 944 1.16 814 5.6E�171
αL 541 1.02 528 1.4E�154
αGas �22.1 1.04 �21.3 1.67E�36
αY * FA �0.414 0.0728 �5.68 8.65E�08
αFA * HDD �0.141 0.0205 �6.88 4.37E�10
αCDD * Year 4.1 0.138 29.7 1.31E�47
αYear * L �56.5 0.496 �114 7.82E�97
αHDD * Year �6.82 0.142 �48.1 9.29E�65
αYear * Gas 2.92 0.138 21.2 1.84E�36
αFA * Year 29.4 0.23 128 3.7E�101
αY * Year �114 0.191 �598 2.8E�159
αFA * L �7.93 0.262 �30.3 2.87E�48

Table C.3: Parameters of input efficiency model - Compressed Air.

Estimated Parameter Standard error T-ratio Level of significance

α0 6170 1.02 6070 3.6465E�270
αY 34.8 2.84 12.2 1.45204E�21
αFA 0.377 0.0433 8.69 4.74846E�14
αYear 812 0.367 2210 4.8548E�228
αL 1560 1.23 1260 9.4253E�205
αYear * L �205 0.211 �970 1.0465E�193
αY * Year �4.5 0.377 �11.9 5.38326E�21

Estimated Parameter Standard error T-ratio Level of significance

αYear * L �115 0.288 �400 1.5E�145
αHDD * Year 5.1 0.129 39.4 5.48E�58
αYear * Gas 5.52 0.128 43 3.4E�61
αFA * Year 8.73 0.134 65 1.71E�76
αY * Year �47.2 0.123 �384 5.3E�144
αFA * L �3.13 0.144 �21.7 2.51E�37

Appendix Table C.1: (Continued)
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Appendix D. Distribution of Input Ef-
ficiency Effelec.,EffCA.,Effwater.

Figure D1. Input efficiency frequency: Effelec.

Table D.1: Input Efficiency Histogram Statistics
Result - Electricity.

Electricity histogram table

Efficiency # of plant-month Cumulative %
0.2 0 0.00%
0.25 0 0.00%
0.3 0 0.00%
0.35 0 0.00%
0.4 0 0.00%
0.45 0 0.00%
0.5 0 0.00%
0.55 0 0.00%
0.6 0 0.00%
0.65 0 0.00%
0.7 0 0.00%
0.75 0 0.00%
0.8 0 0.00%
0.85 7 6.86%
0.9 39 45.10%
0.95 40 84.31%
1 16 100.00%

Figure D2. Input efficiency frequency: EffCA.

TableD.2: InputEfficiencyHistogramStatisticsResult–CompressedAir.

Compressed air histogram table

Efficiency # of plant-month Cumulative %
0.2 0 0.00%
0.25 0 0.00%
0.3 2 1.92%
0.35 32 32.69%
0.4 15 47.12%
0.45 14 60.58%
0.5 17 76.92%
0.55 0 76.92%
0.6 0 76.92%
0.65 0 76.92%
0.7 0 76.92%
0.75 9 85.58%
0.8 6 91.35%
0.85 0 91.35%
0.9 0 91.35%
0.95 9 100.00%
1 0 100.00%

Figure D3. Input efficiency frequency: Effwater.

TableD.3: Input EfficiencyHistogramStatisticsResult –TotalWaterUse.

Total water histogram table

Efficiency # of plant-month Cumulative %
0.2 0 0.00%
0.25 3 2.88%
0.3 3 5.77%
0.35 8 13.46%
0.4 38 50.00%
0.45 13 62.50%
0.5 0 62.50%
0.55 0 62.50%
0.6 12 74.04%
0.65 5 78.85%
0.7 4 82.69%
0.75 2 84.62%
0.8 7 91.35%
0.85 9 100.00%
0.9 0 100.00%
0.95 0 100.00%
1 0 100.00%
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